blob: d1996acb18f242573b9f84dc5032d58957bf920b [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
510An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
575initial values before the start of the global initializer. This is
576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Dan Liew2661dfc2014-08-20 15:06:30 +0000693The argument list is a comma seperated sequence of arguments where each
694argument is of the following form
695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
Rafael Espindola464fe022014-07-30 22:51:54 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Richard Smith32dbdf62014-07-31 04:25:36 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
750that key over some other key. Aliases are placed in the same COMDAT that their
751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
825with the same name. This is necessary because both globals belong to different
826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
831COMDAT IR. This arises when the code generator is configured to emit globals
832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
897 in a special target-dependent fashion during while emitting code for
898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
932 the call may deallocate it. The ``inalloca`` attribute cannot be
933 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
941 results are undefined. It is possible to allocate additional stack
942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1030 time. All non-null pointers tagged with
1031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
1037 ``dereferenceable(<n>)``). This attribute may only be applied to
1038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Philip Reamesf80bbff2015-02-25 23:45:20 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
1055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
1073index -1. This implies that the IR symbol points just past the end of
1074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
1090of the prefix data's type. The function will be placed such that the
1091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
1097A function may have prefix data but no body. This has similar semantics
1098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001111have a particular format. Specifically, it must begin with a sequence of
1112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001116definition without needing to reason about the prologue data. Obviously this
1117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
1222 Transformations that are execution model agnostic may only move or
1223 tranform this call if the final location is control equivalent to its
1224 original position in the program, where control equivalence is defined as
1225 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001226``inlinehint``
1227 This attribute indicates that the source code contained a hint that
1228 inlining this function is desirable (such as the "inline" keyword in
1229 C/C++). It is just a hint; it imposes no requirements on the
1230 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001231``jumptable``
1232 This attribute indicates that the function should be added to a
1233 jump-instruction table at code-generation time, and that all address-taken
1234 references to this function should be replaced with a reference to the
1235 appropriate jump-instruction-table function pointer. Note that this creates
1236 a new pointer for the original function, which means that code that depends
1237 on function-pointer identity can break. So, any function annotated with
1238 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001239``minsize``
1240 This attribute suggests that optimization passes and code generator
1241 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001242 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001243 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001244``naked``
1245 This attribute disables prologue / epilogue emission for the
1246 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001247``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001248 This indicates that the callee function at a call site is not recognized as
1249 a built-in function. LLVM will retain the original call and not replace it
1250 with equivalent code based on the semantics of the built-in function, unless
1251 the call site uses the ``builtin`` attribute. This is valid at call sites
1252 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001253``noduplicate``
1254 This attribute indicates that calls to the function cannot be
1255 duplicated. A call to a ``noduplicate`` function may be moved
1256 within its parent function, but may not be duplicated within
1257 its parent function.
1258
1259 A function containing a ``noduplicate`` call may still
1260 be an inlining candidate, provided that the call is not
1261 duplicated by inlining. That implies that the function has
1262 internal linkage and only has one call site, so the original
1263 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001264``noimplicitfloat``
1265 This attributes disables implicit floating point instructions.
1266``noinline``
1267 This attribute indicates that the inliner should never inline this
1268 function in any situation. This attribute may not be used together
1269 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001270``nonlazybind``
1271 This attribute suppresses lazy symbol binding for the function. This
1272 may make calls to the function faster, at the cost of extra program
1273 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001274``noredzone``
1275 This attribute indicates that the code generator should not use a
1276 red zone, even if the target-specific ABI normally permits it.
1277``noreturn``
1278 This function attribute indicates that the function never returns
1279 normally. This produces undefined behavior at runtime if the
1280 function ever does dynamically return.
1281``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001282 This function attribute indicates that the function never raises an
1283 exception. If the function does raise an exception, its runtime
1284 behavior is undefined. However, functions marked nounwind may still
1285 trap or generate asynchronous exceptions. Exception handling schemes
1286 that are recognized by LLVM to handle asynchronous exceptions, such
1287 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288``optnone``
1289 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291 exception of interprocedural optimization passes.
1292 This attribute cannot be used together with the ``alwaysinline``
1293 attribute; this attribute is also incompatible
1294 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001295
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 This attribute requires the ``noinline`` attribute to be specified on
1297 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001298 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``optsize``
1301 This attribute suggests that optimization passes and code generator
1302 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001303 and otherwise do optimizations specifically to reduce code size as
1304 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001305``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001306 On a function, this attribute indicates that the function computes its
1307 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001308 without dereferencing any pointer arguments or otherwise accessing
1309 any mutable state (e.g. memory, control registers, etc) visible to
1310 caller functions. It does not write through any pointer arguments
1311 (including ``byval`` arguments) and never changes any state visible
1312 to callers. This means that it cannot unwind exceptions by calling
1313 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001314
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001315 On an argument, this attribute indicates that the function does not
1316 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001317 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001318``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001319 On a function, this attribute indicates that the function does not write
1320 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001321 modify any state (e.g. memory, control registers, etc) visible to
1322 caller functions. It may dereference pointer arguments and read
1323 state that may be set in the caller. A readonly function always
1324 returns the same value (or unwinds an exception identically) when
1325 called with the same set of arguments and global state. It cannot
1326 unwind an exception by calling the ``C++`` exception throwing
1327 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001328
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On an argument, this attribute indicates that the function does not write
1330 through this pointer argument, even though it may write to the memory that
1331 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001332``argmemonly``
1333 This attribute indicates that the only memory accesses inside function are
1334 loads and stores from objects pointed to by its pointer-typed arguments,
1335 with arbitrary offsets. Or in other words, all memory operations in the
1336 function can refer to memory only using pointers based on its function
1337 arguments.
1338 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1339 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001340``returns_twice``
1341 This attribute indicates that this function can return twice. The C
1342 ``setjmp`` is an example of such a function. The compiler disables
1343 some optimizations (like tail calls) in the caller of these
1344 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001345``safestack``
1346 This attribute indicates that
1347 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1348 protection is enabled for this function.
1349
1350 If a function that has a ``safestack`` attribute is inlined into a
1351 function that doesn't have a ``safestack`` attribute or which has an
1352 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1353 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001354``sanitize_address``
1355 This attribute indicates that AddressSanitizer checks
1356 (dynamic address safety analysis) are enabled for this function.
1357``sanitize_memory``
1358 This attribute indicates that MemorySanitizer checks (dynamic detection
1359 of accesses to uninitialized memory) are enabled for this function.
1360``sanitize_thread``
1361 This attribute indicates that ThreadSanitizer checks
1362 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001363``ssp``
1364 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001365 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001366 placed on the stack before the local variables that's checked upon
1367 return from the function to see if it has been overwritten. A
1368 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001370
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001371 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1372 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1373 - Calls to alloca() with variable sizes or constant sizes greater than
1374 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378
Sean Silvab084af42012-12-07 10:36:55 +00001379 If a function that has an ``ssp`` attribute is inlined into a
1380 function that doesn't have an ``ssp`` attribute, then the resulting
1381 function will have an ``ssp`` attribute.
1382``sspreq``
1383 This attribute indicates that the function should *always* emit a
1384 stack smashing protector. This overrides the ``ssp`` function
1385 attribute.
1386
Josh Magee24c7f062014-02-01 01:36:16 +00001387 Variables that are identified as requiring a protector will be arranged
1388 on the stack such that they are adjacent to the stack protector guard.
1389 The specific layout rules are:
1390
1391 #. Large arrays and structures containing large arrays
1392 (``>= ssp-buffer-size``) are closest to the stack protector.
1393 #. Small arrays and structures containing small arrays
1394 (``< ssp-buffer-size``) are 2nd closest to the protector.
1395 #. Variables that have had their address taken are 3rd closest to the
1396 protector.
1397
Sean Silvab084af42012-12-07 10:36:55 +00001398 If a function that has an ``sspreq`` attribute is inlined into a
1399 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001400 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1401 an ``sspreq`` attribute.
1402``sspstrong``
1403 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 protector. This attribute causes a strong heuristic to be used when
1405 determining if a function needs stack protectors. The strong heuristic
1406 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001407
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001408 - Arrays of any size and type
1409 - Aggregates containing an array of any size and type.
1410 - Calls to alloca().
1411 - Local variables that have had their address taken.
1412
Josh Magee24c7f062014-02-01 01:36:16 +00001413 Variables that are identified as requiring a protector will be arranged
1414 on the stack such that they are adjacent to the stack protector guard.
1415 The specific layout rules are:
1416
1417 #. Large arrays and structures containing large arrays
1418 (``>= ssp-buffer-size``) are closest to the stack protector.
1419 #. Small arrays and structures containing small arrays
1420 (``< ssp-buffer-size``) are 2nd closest to the protector.
1421 #. Variables that have had their address taken are 3rd closest to the
1422 protector.
1423
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001424 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001425
1426 If a function that has an ``sspstrong`` attribute is inlined into a
1427 function that doesn't have an ``sspstrong`` attribute, then the
1428 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001429``"thunk"``
1430 This attribute indicates that the function will delegate to some other
1431 function with a tail call. The prototype of a thunk should not be used for
1432 optimization purposes. The caller is expected to cast the thunk prototype to
1433 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001434``uwtable``
1435 This attribute indicates that the ABI being targeted requires that
1436 an unwind table entry be produce for this function even if we can
1437 show that no exceptions passes by it. This is normally the case for
1438 the ELF x86-64 abi, but it can be disabled for some compilation
1439 units.
Sean Silvab084af42012-12-07 10:36:55 +00001440
1441.. _moduleasm:
1442
1443Module-Level Inline Assembly
1444----------------------------
1445
1446Modules may contain "module-level inline asm" blocks, which corresponds
1447to the GCC "file scope inline asm" blocks. These blocks are internally
1448concatenated by LLVM and treated as a single unit, but may be separated
1449in the ``.ll`` file if desired. The syntax is very simple:
1450
1451.. code-block:: llvm
1452
1453 module asm "inline asm code goes here"
1454 module asm "more can go here"
1455
1456The strings can contain any character by escaping non-printable
1457characters. The escape sequence used is simply "\\xx" where "xx" is the
1458two digit hex code for the number.
1459
James Y Knightbc832ed2015-07-08 18:08:36 +00001460Note that the assembly string *must* be parseable by LLVM's integrated assembler
1461(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001462
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001463.. _langref_datalayout:
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465Data Layout
1466-----------
1467
1468A module may specify a target specific data layout string that specifies
1469how data is to be laid out in memory. The syntax for the data layout is
1470simply:
1471
1472.. code-block:: llvm
1473
1474 target datalayout = "layout specification"
1475
1476The *layout specification* consists of a list of specifications
1477separated by the minus sign character ('-'). Each specification starts
1478with a letter and may include other information after the letter to
1479define some aspect of the data layout. The specifications accepted are
1480as follows:
1481
1482``E``
1483 Specifies that the target lays out data in big-endian form. That is,
1484 the bits with the most significance have the lowest address
1485 location.
1486``e``
1487 Specifies that the target lays out data in little-endian form. That
1488 is, the bits with the least significance have the lowest address
1489 location.
1490``S<size>``
1491 Specifies the natural alignment of the stack in bits. Alignment
1492 promotion of stack variables is limited to the natural stack
1493 alignment to avoid dynamic stack realignment. The stack alignment
1494 must be a multiple of 8-bits. If omitted, the natural stack
1495 alignment defaults to "unspecified", which does not prevent any
1496 alignment promotions.
1497``p[n]:<size>:<abi>:<pref>``
1498 This specifies the *size* of a pointer and its ``<abi>`` and
1499 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001500 bits. The address space, ``n`` is optional, and if not specified,
1501 denotes the default address space 0. The value of ``n`` must be
1502 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001503``i<size>:<abi>:<pref>``
1504 This specifies the alignment for an integer type of a given bit
1505 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1506``v<size>:<abi>:<pref>``
1507 This specifies the alignment for a vector type of a given bit
1508 ``<size>``.
1509``f<size>:<abi>:<pref>``
1510 This specifies the alignment for a floating point type of a given bit
1511 ``<size>``. Only values of ``<size>`` that are supported by the target
1512 will work. 32 (float) and 64 (double) are supported on all targets; 80
1513 or 128 (different flavors of long double) are also supported on some
1514 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001515``a:<abi>:<pref>``
1516 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001517``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001518 If present, specifies that llvm names are mangled in the output. The
1519 options are
1520
1521 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1522 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1523 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1524 symbols get a ``_`` prefix.
1525 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1526 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001527``n<size1>:<size2>:<size3>...``
1528 This specifies a set of native integer widths for the target CPU in
1529 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1530 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1531 this set are considered to support most general arithmetic operations
1532 efficiently.
1533
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001534On every specification that takes a ``<abi>:<pref>``, specifying the
1535``<pref>`` alignment is optional. If omitted, the preceding ``:``
1536should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1537
Sean Silvab084af42012-12-07 10:36:55 +00001538When constructing the data layout for a given target, LLVM starts with a
1539default set of specifications which are then (possibly) overridden by
1540the specifications in the ``datalayout`` keyword. The default
1541specifications are given in this list:
1542
1543- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001544- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1545- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1546 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001547- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001548- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1549- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1550- ``i16:16:16`` - i16 is 16-bit aligned
1551- ``i32:32:32`` - i32 is 32-bit aligned
1552- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1553 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001554- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001555- ``f32:32:32`` - float is 32-bit aligned
1556- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001557- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001558- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1559- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001560- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001561
1562When LLVM is determining the alignment for a given type, it uses the
1563following rules:
1564
1565#. If the type sought is an exact match for one of the specifications,
1566 that specification is used.
1567#. If no match is found, and the type sought is an integer type, then
1568 the smallest integer type that is larger than the bitwidth of the
1569 sought type is used. If none of the specifications are larger than
1570 the bitwidth then the largest integer type is used. For example,
1571 given the default specifications above, the i7 type will use the
1572 alignment of i8 (next largest) while both i65 and i256 will use the
1573 alignment of i64 (largest specified).
1574#. If no match is found, and the type sought is a vector type, then the
1575 largest vector type that is smaller than the sought vector type will
1576 be used as a fall back. This happens because <128 x double> can be
1577 implemented in terms of 64 <2 x double>, for example.
1578
1579The function of the data layout string may not be what you expect.
1580Notably, this is not a specification from the frontend of what alignment
1581the code generator should use.
1582
1583Instead, if specified, the target data layout is required to match what
1584the ultimate *code generator* expects. This string is used by the
1585mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001586what the ultimate code generator uses. There is no way to generate IR
1587that does not embed this target-specific detail into the IR. If you
1588don't specify the string, the default specifications will be used to
1589generate a Data Layout and the optimization phases will operate
1590accordingly and introduce target specificity into the IR with respect to
1591these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001592
Bill Wendling5cc90842013-10-18 23:41:25 +00001593.. _langref_triple:
1594
1595Target Triple
1596-------------
1597
1598A module may specify a target triple string that describes the target
1599host. The syntax for the target triple is simply:
1600
1601.. code-block:: llvm
1602
1603 target triple = "x86_64-apple-macosx10.7.0"
1604
1605The *target triple* string consists of a series of identifiers delimited
1606by the minus sign character ('-'). The canonical forms are:
1607
1608::
1609
1610 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1611 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1612
1613This information is passed along to the backend so that it generates
1614code for the proper architecture. It's possible to override this on the
1615command line with the ``-mtriple`` command line option.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617.. _pointeraliasing:
1618
1619Pointer Aliasing Rules
1620----------------------
1621
1622Any memory access must be done through a pointer value associated with
1623an address range of the memory access, otherwise the behavior is
1624undefined. Pointer values are associated with address ranges according
1625to the following rules:
1626
1627- A pointer value is associated with the addresses associated with any
1628 value it is *based* on.
1629- An address of a global variable is associated with the address range
1630 of the variable's storage.
1631- The result value of an allocation instruction is associated with the
1632 address range of the allocated storage.
1633- A null pointer in the default address-space is associated with no
1634 address.
1635- An integer constant other than zero or a pointer value returned from
1636 a function not defined within LLVM may be associated with address
1637 ranges allocated through mechanisms other than those provided by
1638 LLVM. Such ranges shall not overlap with any ranges of addresses
1639 allocated by mechanisms provided by LLVM.
1640
1641A pointer value is *based* on another pointer value according to the
1642following rules:
1643
1644- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001645 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001646- The result value of a ``bitcast`` is *based* on the operand of the
1647 ``bitcast``.
1648- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1649 values that contribute (directly or indirectly) to the computation of
1650 the pointer's value.
1651- The "*based* on" relationship is transitive.
1652
1653Note that this definition of *"based"* is intentionally similar to the
1654definition of *"based"* in C99, though it is slightly weaker.
1655
1656LLVM IR does not associate types with memory. The result type of a
1657``load`` merely indicates the size and alignment of the memory from
1658which to load, as well as the interpretation of the value. The first
1659operand type of a ``store`` similarly only indicates the size and
1660alignment of the store.
1661
1662Consequently, type-based alias analysis, aka TBAA, aka
1663``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1664:ref:`Metadata <metadata>` may be used to encode additional information
1665which specialized optimization passes may use to implement type-based
1666alias analysis.
1667
1668.. _volatile:
1669
1670Volatile Memory Accesses
1671------------------------
1672
1673Certain memory accesses, such as :ref:`load <i_load>`'s,
1674:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1675marked ``volatile``. The optimizers must not change the number of
1676volatile operations or change their order of execution relative to other
1677volatile operations. The optimizers *may* change the order of volatile
1678operations relative to non-volatile operations. This is not Java's
1679"volatile" and has no cross-thread synchronization behavior.
1680
Andrew Trick89fc5a62013-01-30 21:19:35 +00001681IR-level volatile loads and stores cannot safely be optimized into
1682llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1683flagged volatile. Likewise, the backend should never split or merge
1684target-legal volatile load/store instructions.
1685
Andrew Trick7e6f9282013-01-31 00:49:39 +00001686.. admonition:: Rationale
1687
1688 Platforms may rely on volatile loads and stores of natively supported
1689 data width to be executed as single instruction. For example, in C
1690 this holds for an l-value of volatile primitive type with native
1691 hardware support, but not necessarily for aggregate types. The
1692 frontend upholds these expectations, which are intentionally
1693 unspecified in the IR. The rules above ensure that IR transformation
1694 do not violate the frontend's contract with the language.
1695
Sean Silvab084af42012-12-07 10:36:55 +00001696.. _memmodel:
1697
1698Memory Model for Concurrent Operations
1699--------------------------------------
1700
1701The LLVM IR does not define any way to start parallel threads of
1702execution or to register signal handlers. Nonetheless, there are
1703platform-specific ways to create them, and we define LLVM IR's behavior
1704in their presence. This model is inspired by the C++0x memory model.
1705
1706For a more informal introduction to this model, see the :doc:`Atomics`.
1707
1708We define a *happens-before* partial order as the least partial order
1709that
1710
1711- Is a superset of single-thread program order, and
1712- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1713 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1714 techniques, like pthread locks, thread creation, thread joining,
1715 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1716 Constraints <ordering>`).
1717
1718Note that program order does not introduce *happens-before* edges
1719between a thread and signals executing inside that thread.
1720
1721Every (defined) read operation (load instructions, memcpy, atomic
1722loads/read-modify-writes, etc.) R reads a series of bytes written by
1723(defined) write operations (store instructions, atomic
1724stores/read-modify-writes, memcpy, etc.). For the purposes of this
1725section, initialized globals are considered to have a write of the
1726initializer which is atomic and happens before any other read or write
1727of the memory in question. For each byte of a read R, R\ :sub:`byte`
1728may see any write to the same byte, except:
1729
1730- If write\ :sub:`1` happens before write\ :sub:`2`, and
1731 write\ :sub:`2` happens before R\ :sub:`byte`, then
1732 R\ :sub:`byte` does not see write\ :sub:`1`.
1733- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1734 R\ :sub:`byte` does not see write\ :sub:`3`.
1735
1736Given that definition, R\ :sub:`byte` is defined as follows:
1737
1738- If R is volatile, the result is target-dependent. (Volatile is
1739 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001740 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001741 like normal memory. It does not generally provide cross-thread
1742 synchronization.)
1743- Otherwise, if there is no write to the same byte that happens before
1744 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1745- Otherwise, if R\ :sub:`byte` may see exactly one write,
1746 R\ :sub:`byte` returns the value written by that write.
1747- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1748 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1749 Memory Ordering Constraints <ordering>` section for additional
1750 constraints on how the choice is made.
1751- Otherwise R\ :sub:`byte` returns ``undef``.
1752
1753R returns the value composed of the series of bytes it read. This
1754implies that some bytes within the value may be ``undef`` **without**
1755the entire value being ``undef``. Note that this only defines the
1756semantics of the operation; it doesn't mean that targets will emit more
1757than one instruction to read the series of bytes.
1758
1759Note that in cases where none of the atomic intrinsics are used, this
1760model places only one restriction on IR transformations on top of what
1761is required for single-threaded execution: introducing a store to a byte
1762which might not otherwise be stored is not allowed in general.
1763(Specifically, in the case where another thread might write to and read
1764from an address, introducing a store can change a load that may see
1765exactly one write into a load that may see multiple writes.)
1766
1767.. _ordering:
1768
1769Atomic Memory Ordering Constraints
1770----------------------------------
1771
1772Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1773:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1774:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001775ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001776the same address they *synchronize with*. These semantics are borrowed
1777from Java and C++0x, but are somewhat more colloquial. If these
1778descriptions aren't precise enough, check those specs (see spec
1779references in the :doc:`atomics guide <Atomics>`).
1780:ref:`fence <i_fence>` instructions treat these orderings somewhat
1781differently since they don't take an address. See that instruction's
1782documentation for details.
1783
1784For a simpler introduction to the ordering constraints, see the
1785:doc:`Atomics`.
1786
1787``unordered``
1788 The set of values that can be read is governed by the happens-before
1789 partial order. A value cannot be read unless some operation wrote
1790 it. This is intended to provide a guarantee strong enough to model
1791 Java's non-volatile shared variables. This ordering cannot be
1792 specified for read-modify-write operations; it is not strong enough
1793 to make them atomic in any interesting way.
1794``monotonic``
1795 In addition to the guarantees of ``unordered``, there is a single
1796 total order for modifications by ``monotonic`` operations on each
1797 address. All modification orders must be compatible with the
1798 happens-before order. There is no guarantee that the modification
1799 orders can be combined to a global total order for the whole program
1800 (and this often will not be possible). The read in an atomic
1801 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1802 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1803 order immediately before the value it writes. If one atomic read
1804 happens before another atomic read of the same address, the later
1805 read must see the same value or a later value in the address's
1806 modification order. This disallows reordering of ``monotonic`` (or
1807 stronger) operations on the same address. If an address is written
1808 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1809 read that address repeatedly, the other threads must eventually see
1810 the write. This corresponds to the C++0x/C1x
1811 ``memory_order_relaxed``.
1812``acquire``
1813 In addition to the guarantees of ``monotonic``, a
1814 *synchronizes-with* edge may be formed with a ``release`` operation.
1815 This is intended to model C++'s ``memory_order_acquire``.
1816``release``
1817 In addition to the guarantees of ``monotonic``, if this operation
1818 writes a value which is subsequently read by an ``acquire``
1819 operation, it *synchronizes-with* that operation. (This isn't a
1820 complete description; see the C++0x definition of a release
1821 sequence.) This corresponds to the C++0x/C1x
1822 ``memory_order_release``.
1823``acq_rel`` (acquire+release)
1824 Acts as both an ``acquire`` and ``release`` operation on its
1825 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1826``seq_cst`` (sequentially consistent)
1827 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001828 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001829 writes), there is a global total order on all
1830 sequentially-consistent operations on all addresses, which is
1831 consistent with the *happens-before* partial order and with the
1832 modification orders of all the affected addresses. Each
1833 sequentially-consistent read sees the last preceding write to the
1834 same address in this global order. This corresponds to the C++0x/C1x
1835 ``memory_order_seq_cst`` and Java volatile.
1836
1837.. _singlethread:
1838
1839If an atomic operation is marked ``singlethread``, it only *synchronizes
1840with* or participates in modification and seq\_cst total orderings with
1841other operations running in the same thread (for example, in signal
1842handlers).
1843
1844.. _fastmath:
1845
1846Fast-Math Flags
1847---------------
1848
1849LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1850:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001851:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1852be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001853
1854``nnan``
1855 No NaNs - Allow optimizations to assume the arguments and result are not
1856 NaN. Such optimizations are required to retain defined behavior over
1857 NaNs, but the value of the result is undefined.
1858
1859``ninf``
1860 No Infs - Allow optimizations to assume the arguments and result are not
1861 +/-Inf. Such optimizations are required to retain defined behavior over
1862 +/-Inf, but the value of the result is undefined.
1863
1864``nsz``
1865 No Signed Zeros - Allow optimizations to treat the sign of a zero
1866 argument or result as insignificant.
1867
1868``arcp``
1869 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1870 argument rather than perform division.
1871
1872``fast``
1873 Fast - Allow algebraically equivalent transformations that may
1874 dramatically change results in floating point (e.g. reassociate). This
1875 flag implies all the others.
1876
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001877.. _uselistorder:
1878
1879Use-list Order Directives
1880-------------------------
1881
1882Use-list directives encode the in-memory order of each use-list, allowing the
1883order to be recreated. ``<order-indexes>`` is a comma-separated list of
1884indexes that are assigned to the referenced value's uses. The referenced
1885value's use-list is immediately sorted by these indexes.
1886
1887Use-list directives may appear at function scope or global scope. They are not
1888instructions, and have no effect on the semantics of the IR. When they're at
1889function scope, they must appear after the terminator of the final basic block.
1890
1891If basic blocks have their address taken via ``blockaddress()`` expressions,
1892``uselistorder_bb`` can be used to reorder their use-lists from outside their
1893function's scope.
1894
1895:Syntax:
1896
1897::
1898
1899 uselistorder <ty> <value>, { <order-indexes> }
1900 uselistorder_bb @function, %block { <order-indexes> }
1901
1902:Examples:
1903
1904::
1905
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001906 define void @foo(i32 %arg1, i32 %arg2) {
1907 entry:
1908 ; ... instructions ...
1909 bb:
1910 ; ... instructions ...
1911
1912 ; At function scope.
1913 uselistorder i32 %arg1, { 1, 0, 2 }
1914 uselistorder label %bb, { 1, 0 }
1915 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001916
1917 ; At global scope.
1918 uselistorder i32* @global, { 1, 2, 0 }
1919 uselistorder i32 7, { 1, 0 }
1920 uselistorder i32 (i32) @bar, { 1, 0 }
1921 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1922
Sean Silvab084af42012-12-07 10:36:55 +00001923.. _typesystem:
1924
1925Type System
1926===========
1927
1928The LLVM type system is one of the most important features of the
1929intermediate representation. Being typed enables a number of
1930optimizations to be performed on the intermediate representation
1931directly, without having to do extra analyses on the side before the
1932transformation. A strong type system makes it easier to read the
1933generated code and enables novel analyses and transformations that are
1934not feasible to perform on normal three address code representations.
1935
Rafael Espindola08013342013-12-07 19:34:20 +00001936.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001937
Rafael Espindola08013342013-12-07 19:34:20 +00001938Void Type
1939---------
Sean Silvab084af42012-12-07 10:36:55 +00001940
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001941:Overview:
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943
1944The void type does not represent any value and has no size.
1945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Syntax:
1947
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949::
1950
1951 void
Sean Silvab084af42012-12-07 10:36:55 +00001952
1953
Rafael Espindola08013342013-12-07 19:34:20 +00001954.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola08013342013-12-07 19:34:20 +00001956Function Type
1957-------------
Sean Silvab084af42012-12-07 10:36:55 +00001958
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001959:Overview:
1960
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962The function type can be thought of as a function signature. It consists of a
1963return type and a list of formal parameter types. The return type of a function
1964type is a void type or first class type --- except for :ref:`label <t_label>`
1965and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola08013342013-12-07 19:34:20 +00001969::
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola08013342013-12-07 19:34:20 +00001973...where '``<parameter list>``' is a comma-separated list of type
1974specifiers. Optionally, the parameter list may include a type ``...``, which
1975indicates that the function takes a variable number of arguments. Variable
1976argument functions can access their arguments with the :ref:`variable argument
1977handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1978except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001979
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001980:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001981
Rafael Espindola08013342013-12-07 19:34:20 +00001982+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1983| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1984+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1985| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1986+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1987| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1988+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1989| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1990+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1991
1992.. _t_firstclass:
1993
1994First Class Types
1995-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997The :ref:`first class <t_firstclass>` types are perhaps the most important.
1998Values of these types are the only ones which can be produced by
1999instructions.
2000
Rafael Espindola08013342013-12-07 19:34:20 +00002001.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola08013342013-12-07 19:34:20 +00002003Single Value Types
2004^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002005
Rafael Espindola08013342013-12-07 19:34:20 +00002006These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002007
2008.. _t_integer:
2009
2010Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
2015The integer type is a very simple type that simply specifies an
2016arbitrary bit width for the integer type desired. Any bit width from 1
2017bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021::
2022
2023 iN
2024
2025The number of bits the integer will occupy is specified by the ``N``
2026value.
2027
2028Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002029*********
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031+----------------+------------------------------------------------+
2032| ``i1`` | a single-bit integer. |
2033+----------------+------------------------------------------------+
2034| ``i32`` | a 32-bit integer. |
2035+----------------+------------------------------------------------+
2036| ``i1942652`` | a really big integer of over 1 million bits. |
2037+----------------+------------------------------------------------+
2038
2039.. _t_floating:
2040
2041Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002042""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002043
2044.. list-table::
2045 :header-rows: 1
2046
2047 * - Type
2048 - Description
2049
2050 * - ``half``
2051 - 16-bit floating point value
2052
2053 * - ``float``
2054 - 32-bit floating point value
2055
2056 * - ``double``
2057 - 64-bit floating point value
2058
2059 * - ``fp128``
2060 - 128-bit floating point value (112-bit mantissa)
2061
2062 * - ``x86_fp80``
2063 - 80-bit floating point value (X87)
2064
2065 * - ``ppc_fp128``
2066 - 128-bit floating point value (two 64-bits)
2067
Reid Kleckner9a16d082014-03-05 02:41:37 +00002068X86_mmx Type
2069""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002074machine. The operations allowed on it are quite limited: parameters and
2075return values, load and store, and bitcast. User-specified MMX
2076instructions are represented as intrinsic or asm calls with arguments
2077and/or results of this type. There are no arrays, vectors or constants
2078of this type.
2079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002081
2082::
2083
Reid Kleckner9a16d082014-03-05 02:41:37 +00002084 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002085
Sean Silvab084af42012-12-07 10:36:55 +00002086
Rafael Espindola08013342013-12-07 19:34:20 +00002087.. _t_pointer:
2088
2089Pointer Type
2090""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola08013342013-12-07 19:34:20 +00002094The pointer type is used to specify memory locations. Pointers are
2095commonly used to reference objects in memory.
2096
2097Pointer types may have an optional address space attribute defining the
2098numbered address space where the pointed-to object resides. The default
2099address space is number zero. The semantics of non-zero address spaces
2100are target-specific.
2101
2102Note that LLVM does not permit pointers to void (``void*``) nor does it
2103permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002104
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002105:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002106
2107::
2108
Rafael Espindola08013342013-12-07 19:34:20 +00002109 <type> *
2110
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002111:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002112
2113+-------------------------+--------------------------------------------------------------------------------------------------------------+
2114| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2115+-------------------------+--------------------------------------------------------------------------------------------------------------+
2116| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2117+-------------------------+--------------------------------------------------------------------------------------------------------------+
2118| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2119+-------------------------+--------------------------------------------------------------------------------------------------------------+
2120
2121.. _t_vector:
2122
2123Vector Type
2124"""""""""""
2125
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002126:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002127
2128A vector type is a simple derived type that represents a vector of
2129elements. Vector types are used when multiple primitive data are
2130operated in parallel using a single instruction (SIMD). A vector type
2131requires a size (number of elements) and an underlying primitive data
2132type. Vector types are considered :ref:`first class <t_firstclass>`.
2133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002135
2136::
2137
2138 < <# elements> x <elementtype> >
2139
2140The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002141elementtype may be any integer, floating point or pointer type. Vectors
2142of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002145
2146+-------------------+--------------------------------------------------+
2147| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2148+-------------------+--------------------------------------------------+
2149| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2150+-------------------+--------------------------------------------------+
2151| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2152+-------------------+--------------------------------------------------+
2153| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2154+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156.. _t_label:
2157
2158Label Type
2159^^^^^^^^^^
2160
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002161:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163The label type represents code labels.
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167::
2168
2169 label
2170
2171.. _t_metadata:
2172
2173Metadata Type
2174^^^^^^^^^^^^^
2175
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002176:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002177
2178The metadata type represents embedded metadata. No derived types may be
2179created from metadata except for :ref:`function <t_function>` arguments.
2180
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002181:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002182
2183::
2184
2185 metadata
2186
Sean Silvab084af42012-12-07 10:36:55 +00002187.. _t_aggregate:
2188
2189Aggregate Types
2190^^^^^^^^^^^^^^^
2191
2192Aggregate Types are a subset of derived types that can contain multiple
2193member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2194aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2195aggregate types.
2196
2197.. _t_array:
2198
2199Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002200""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002201
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002202:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002203
2204The array type is a very simple derived type that arranges elements
2205sequentially in memory. The array type requires a size (number of
2206elements) and an underlying data type.
2207
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002208:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002209
2210::
2211
2212 [<# elements> x <elementtype>]
2213
2214The number of elements is a constant integer value; ``elementtype`` may
2215be any type with a size.
2216
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002217:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002218
2219+------------------+--------------------------------------+
2220| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2221+------------------+--------------------------------------+
2222| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2223+------------------+--------------------------------------+
2224| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2225+------------------+--------------------------------------+
2226
2227Here are some examples of multidimensional arrays:
2228
2229+-----------------------------+----------------------------------------------------------+
2230| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2231+-----------------------------+----------------------------------------------------------+
2232| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2233+-----------------------------+----------------------------------------------------------+
2234| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2235+-----------------------------+----------------------------------------------------------+
2236
2237There is no restriction on indexing beyond the end of the array implied
2238by a static type (though there are restrictions on indexing beyond the
2239bounds of an allocated object in some cases). This means that
2240single-dimension 'variable sized array' addressing can be implemented in
2241LLVM with a zero length array type. An implementation of 'pascal style
2242arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2243example.
2244
Sean Silvab084af42012-12-07 10:36:55 +00002245.. _t_struct:
2246
2247Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002248""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002249
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002250:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002251
2252The structure type is used to represent a collection of data members
2253together in memory. The elements of a structure may be any type that has
2254a size.
2255
2256Structures in memory are accessed using '``load``' and '``store``' by
2257getting a pointer to a field with the '``getelementptr``' instruction.
2258Structures in registers are accessed using the '``extractvalue``' and
2259'``insertvalue``' instructions.
2260
2261Structures may optionally be "packed" structures, which indicate that
2262the alignment of the struct is one byte, and that there is no padding
2263between the elements. In non-packed structs, padding between field types
2264is inserted as defined by the DataLayout string in the module, which is
2265required to match what the underlying code generator expects.
2266
2267Structures can either be "literal" or "identified". A literal structure
2268is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2269identified types are always defined at the top level with a name.
2270Literal types are uniqued by their contents and can never be recursive
2271or opaque since there is no way to write one. Identified types can be
2272recursive, can be opaqued, and are never uniqued.
2273
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002274:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002275
2276::
2277
2278 %T1 = type { <type list> } ; Identified normal struct type
2279 %T2 = type <{ <type list> }> ; Identified packed struct type
2280
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002281:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002282
2283+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2284| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2285+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002286| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002287+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2288| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2289+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2290
2291.. _t_opaque:
2292
2293Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002294""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002295
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002296:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002297
2298Opaque structure types are used to represent named structure types that
2299do not have a body specified. This corresponds (for example) to the C
2300notion of a forward declared structure.
2301
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002302:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002303
2304::
2305
2306 %X = type opaque
2307 %52 = type opaque
2308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311+--------------+-------------------+
2312| ``opaque`` | An opaque type. |
2313+--------------+-------------------+
2314
Sean Silva1703e702014-04-08 21:06:22 +00002315.. _constants:
2316
Sean Silvab084af42012-12-07 10:36:55 +00002317Constants
2318=========
2319
2320LLVM has several different basic types of constants. This section
2321describes them all and their syntax.
2322
2323Simple Constants
2324----------------
2325
2326**Boolean constants**
2327 The two strings '``true``' and '``false``' are both valid constants
2328 of the ``i1`` type.
2329**Integer constants**
2330 Standard integers (such as '4') are constants of the
2331 :ref:`integer <t_integer>` type. Negative numbers may be used with
2332 integer types.
2333**Floating point constants**
2334 Floating point constants use standard decimal notation (e.g.
2335 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2336 hexadecimal notation (see below). The assembler requires the exact
2337 decimal value of a floating-point constant. For example, the
2338 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2339 decimal in binary. Floating point constants must have a :ref:`floating
2340 point <t_floating>` type.
2341**Null pointer constants**
2342 The identifier '``null``' is recognized as a null pointer constant
2343 and must be of :ref:`pointer type <t_pointer>`.
2344
2345The one non-intuitive notation for constants is the hexadecimal form of
2346floating point constants. For example, the form
2347'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2348than) '``double 4.5e+15``'. The only time hexadecimal floating point
2349constants are required (and the only time that they are generated by the
2350disassembler) is when a floating point constant must be emitted but it
2351cannot be represented as a decimal floating point number in a reasonable
2352number of digits. For example, NaN's, infinities, and other special
2353values are represented in their IEEE hexadecimal format so that assembly
2354and disassembly do not cause any bits to change in the constants.
2355
2356When using the hexadecimal form, constants of types half, float, and
2357double are represented using the 16-digit form shown above (which
2358matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002359must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002360precision, respectively. Hexadecimal format is always used for long
2361double, and there are three forms of long double. The 80-bit format used
2362by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2363128-bit format used by PowerPC (two adjacent doubles) is represented by
2364``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002365represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2366will only work if they match the long double format on your target.
2367The IEEE 16-bit format (half precision) is represented by ``0xH``
2368followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2369(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002370
Reid Kleckner9a16d082014-03-05 02:41:37 +00002371There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002372
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002373.. _complexconstants:
2374
Sean Silvab084af42012-12-07 10:36:55 +00002375Complex Constants
2376-----------------
2377
2378Complex constants are a (potentially recursive) combination of simple
2379constants and smaller complex constants.
2380
2381**Structure constants**
2382 Structure constants are represented with notation similar to
2383 structure type definitions (a comma separated list of elements,
2384 surrounded by braces (``{}``)). For example:
2385 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2386 "``@G = external global i32``". Structure constants must have
2387 :ref:`structure type <t_struct>`, and the number and types of elements
2388 must match those specified by the type.
2389**Array constants**
2390 Array constants are represented with notation similar to array type
2391 definitions (a comma separated list of elements, surrounded by
2392 square brackets (``[]``)). For example:
2393 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2394 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002395 match those specified by the type. As a special case, character array
2396 constants may also be represented as a double-quoted string using the ``c``
2397 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002398**Vector constants**
2399 Vector constants are represented with notation similar to vector
2400 type definitions (a comma separated list of elements, surrounded by
2401 less-than/greater-than's (``<>``)). For example:
2402 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2403 must have :ref:`vector type <t_vector>`, and the number and types of
2404 elements must match those specified by the type.
2405**Zero initialization**
2406 The string '``zeroinitializer``' can be used to zero initialize a
2407 value to zero of *any* type, including scalar and
2408 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2409 having to print large zero initializers (e.g. for large arrays) and
2410 is always exactly equivalent to using explicit zero initializers.
2411**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002412 A metadata node is a constant tuple without types. For example:
2413 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2414 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2415 Unlike other typed constants that are meant to be interpreted as part of
2416 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002417 information such as debug info.
2418
2419Global Variable and Function Addresses
2420--------------------------------------
2421
2422The addresses of :ref:`global variables <globalvars>` and
2423:ref:`functions <functionstructure>` are always implicitly valid
2424(link-time) constants. These constants are explicitly referenced when
2425the :ref:`identifier for the global <identifiers>` is used and always have
2426:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2427file:
2428
2429.. code-block:: llvm
2430
2431 @X = global i32 17
2432 @Y = global i32 42
2433 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2434
2435.. _undefvalues:
2436
2437Undefined Values
2438----------------
2439
2440The string '``undef``' can be used anywhere a constant is expected, and
2441indicates that the user of the value may receive an unspecified
2442bit-pattern. Undefined values may be of any type (other than '``label``'
2443or '``void``') and be used anywhere a constant is permitted.
2444
2445Undefined values are useful because they indicate to the compiler that
2446the program is well defined no matter what value is used. This gives the
2447compiler more freedom to optimize. Here are some examples of
2448(potentially surprising) transformations that are valid (in pseudo IR):
2449
2450.. code-block:: llvm
2451
2452 %A = add %X, undef
2453 %B = sub %X, undef
2454 %C = xor %X, undef
2455 Safe:
2456 %A = undef
2457 %B = undef
2458 %C = undef
2459
2460This is safe because all of the output bits are affected by the undef
2461bits. Any output bit can have a zero or one depending on the input bits.
2462
2463.. code-block:: llvm
2464
2465 %A = or %X, undef
2466 %B = and %X, undef
2467 Safe:
2468 %A = -1
2469 %B = 0
2470 Unsafe:
2471 %A = undef
2472 %B = undef
2473
2474These logical operations have bits that are not always affected by the
2475input. For example, if ``%X`` has a zero bit, then the output of the
2476'``and``' operation will always be a zero for that bit, no matter what
2477the corresponding bit from the '``undef``' is. As such, it is unsafe to
2478optimize or assume that the result of the '``and``' is '``undef``'.
2479However, it is safe to assume that all bits of the '``undef``' could be
24800, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2481all the bits of the '``undef``' operand to the '``or``' could be set,
2482allowing the '``or``' to be folded to -1.
2483
2484.. code-block:: llvm
2485
2486 %A = select undef, %X, %Y
2487 %B = select undef, 42, %Y
2488 %C = select %X, %Y, undef
2489 Safe:
2490 %A = %X (or %Y)
2491 %B = 42 (or %Y)
2492 %C = %Y
2493 Unsafe:
2494 %A = undef
2495 %B = undef
2496 %C = undef
2497
2498This set of examples shows that undefined '``select``' (and conditional
2499branch) conditions can go *either way*, but they have to come from one
2500of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2501both known to have a clear low bit, then ``%A`` would have to have a
2502cleared low bit. However, in the ``%C`` example, the optimizer is
2503allowed to assume that the '``undef``' operand could be the same as
2504``%Y``, allowing the whole '``select``' to be eliminated.
2505
2506.. code-block:: llvm
2507
2508 %A = xor undef, undef
2509
2510 %B = undef
2511 %C = xor %B, %B
2512
2513 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002514 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002515 %F = icmp gte %D, 4
2516
2517 Safe:
2518 %A = undef
2519 %B = undef
2520 %C = undef
2521 %D = undef
2522 %E = undef
2523 %F = undef
2524
2525This example points out that two '``undef``' operands are not
2526necessarily the same. This can be surprising to people (and also matches
2527C semantics) where they assume that "``X^X``" is always zero, even if
2528``X`` is undefined. This isn't true for a number of reasons, but the
2529short answer is that an '``undef``' "variable" can arbitrarily change
2530its value over its "live range". This is true because the variable
2531doesn't actually *have a live range*. Instead, the value is logically
2532read from arbitrary registers that happen to be around when needed, so
2533the value is not necessarily consistent over time. In fact, ``%A`` and
2534``%C`` need to have the same semantics or the core LLVM "replace all
2535uses with" concept would not hold.
2536
2537.. code-block:: llvm
2538
2539 %A = fdiv undef, %X
2540 %B = fdiv %X, undef
2541 Safe:
2542 %A = undef
2543 b: unreachable
2544
2545These examples show the crucial difference between an *undefined value*
2546and *undefined behavior*. An undefined value (like '``undef``') is
2547allowed to have an arbitrary bit-pattern. This means that the ``%A``
2548operation can be constant folded to '``undef``', because the '``undef``'
2549could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2550However, in the second example, we can make a more aggressive
2551assumption: because the ``undef`` is allowed to be an arbitrary value,
2552we are allowed to assume that it could be zero. Since a divide by zero
2553has *undefined behavior*, we are allowed to assume that the operation
2554does not execute at all. This allows us to delete the divide and all
2555code after it. Because the undefined operation "can't happen", the
2556optimizer can assume that it occurs in dead code.
2557
2558.. code-block:: llvm
2559
2560 a: store undef -> %X
2561 b: store %X -> undef
2562 Safe:
2563 a: <deleted>
2564 b: unreachable
2565
2566These examples reiterate the ``fdiv`` example: a store *of* an undefined
2567value can be assumed to not have any effect; we can assume that the
2568value is overwritten with bits that happen to match what was already
2569there. However, a store *to* an undefined location could clobber
2570arbitrary memory, therefore, it has undefined behavior.
2571
2572.. _poisonvalues:
2573
2574Poison Values
2575-------------
2576
2577Poison values are similar to :ref:`undef values <undefvalues>`, however
2578they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002579that cannot evoke side effects has nevertheless detected a condition
2580that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582There is currently no way of representing a poison value in the IR; they
2583only exist when produced by operations such as :ref:`add <i_add>` with
2584the ``nsw`` flag.
2585
2586Poison value behavior is defined in terms of value *dependence*:
2587
2588- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2589- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2590 their dynamic predecessor basic block.
2591- Function arguments depend on the corresponding actual argument values
2592 in the dynamic callers of their functions.
2593- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2594 instructions that dynamically transfer control back to them.
2595- :ref:`Invoke <i_invoke>` instructions depend on the
2596 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2597 call instructions that dynamically transfer control back to them.
2598- Non-volatile loads and stores depend on the most recent stores to all
2599 of the referenced memory addresses, following the order in the IR
2600 (including loads and stores implied by intrinsics such as
2601 :ref:`@llvm.memcpy <int_memcpy>`.)
2602- An instruction with externally visible side effects depends on the
2603 most recent preceding instruction with externally visible side
2604 effects, following the order in the IR. (This includes :ref:`volatile
2605 operations <volatile>`.)
2606- An instruction *control-depends* on a :ref:`terminator
2607 instruction <terminators>` if the terminator instruction has
2608 multiple successors and the instruction is always executed when
2609 control transfers to one of the successors, and may not be executed
2610 when control is transferred to another.
2611- Additionally, an instruction also *control-depends* on a terminator
2612 instruction if the set of instructions it otherwise depends on would
2613 be different if the terminator had transferred control to a different
2614 successor.
2615- Dependence is transitive.
2616
Richard Smith32dbdf62014-07-31 04:25:36 +00002617Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2618with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002619on a poison value has undefined behavior.
2620
2621Here are some examples:
2622
2623.. code-block:: llvm
2624
2625 entry:
2626 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2627 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002628 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002629 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2630
2631 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002632 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002633
2634 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2635
2636 %narrowaddr = bitcast i32* @g to i16*
2637 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002638 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2639 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002640
2641 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2642 br i1 %cmp, label %true, label %end ; Branch to either destination.
2643
2644 true:
2645 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2646 ; it has undefined behavior.
2647 br label %end
2648
2649 end:
2650 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2651 ; Both edges into this PHI are
2652 ; control-dependent on %cmp, so this
2653 ; always results in a poison value.
2654
2655 store volatile i32 0, i32* @g ; This would depend on the store in %true
2656 ; if %cmp is true, or the store in %entry
2657 ; otherwise, so this is undefined behavior.
2658
2659 br i1 %cmp, label %second_true, label %second_end
2660 ; The same branch again, but this time the
2661 ; true block doesn't have side effects.
2662
2663 second_true:
2664 ; No side effects!
2665 ret void
2666
2667 second_end:
2668 store volatile i32 0, i32* @g ; This time, the instruction always depends
2669 ; on the store in %end. Also, it is
2670 ; control-equivalent to %end, so this is
2671 ; well-defined (ignoring earlier undefined
2672 ; behavior in this example).
2673
2674.. _blockaddress:
2675
2676Addresses of Basic Blocks
2677-------------------------
2678
2679``blockaddress(@function, %block)``
2680
2681The '``blockaddress``' constant computes the address of the specified
2682basic block in the specified function, and always has an ``i8*`` type.
2683Taking the address of the entry block is illegal.
2684
2685This value only has defined behavior when used as an operand to the
2686':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2687against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002688undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002689no label is equal to the null pointer. This may be passed around as an
2690opaque pointer sized value as long as the bits are not inspected. This
2691allows ``ptrtoint`` and arithmetic to be performed on these values so
2692long as the original value is reconstituted before the ``indirectbr``
2693instruction.
2694
2695Finally, some targets may provide defined semantics when using the value
2696as the operand to an inline assembly, but that is target specific.
2697
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002698.. _constantexprs:
2699
Sean Silvab084af42012-12-07 10:36:55 +00002700Constant Expressions
2701--------------------
2702
2703Constant expressions are used to allow expressions involving other
2704constants to be used as constants. Constant expressions may be of any
2705:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2706that does not have side effects (e.g. load and call are not supported).
2707The following is the syntax for constant expressions:
2708
2709``trunc (CST to TYPE)``
2710 Truncate a constant to another type. The bit size of CST must be
2711 larger than the bit size of TYPE. Both types must be integers.
2712``zext (CST to TYPE)``
2713 Zero extend a constant to another type. The bit size of CST must be
2714 smaller than the bit size of TYPE. Both types must be integers.
2715``sext (CST to TYPE)``
2716 Sign extend a constant to another type. The bit size of CST must be
2717 smaller than the bit size of TYPE. Both types must be integers.
2718``fptrunc (CST to TYPE)``
2719 Truncate a floating point constant to another floating point type.
2720 The size of CST must be larger than the size of TYPE. Both types
2721 must be floating point.
2722``fpext (CST to TYPE)``
2723 Floating point extend a constant to another type. The size of CST
2724 must be smaller or equal to the size of TYPE. Both types must be
2725 floating point.
2726``fptoui (CST to TYPE)``
2727 Convert a floating point constant to the corresponding unsigned
2728 integer constant. TYPE must be a scalar or vector integer type. CST
2729 must be of scalar or vector floating point type. Both CST and TYPE
2730 must be scalars, or vectors of the same number of elements. If the
2731 value won't fit in the integer type, the results are undefined.
2732``fptosi (CST to TYPE)``
2733 Convert a floating point constant to the corresponding signed
2734 integer constant. TYPE must be a scalar or vector integer type. CST
2735 must be of scalar or vector floating point type. Both CST and TYPE
2736 must be scalars, or vectors of the same number of elements. If the
2737 value won't fit in the integer type, the results are undefined.
2738``uitofp (CST to TYPE)``
2739 Convert an unsigned integer constant to the corresponding floating
2740 point constant. TYPE must be a scalar or vector floating point type.
2741 CST must be of scalar or vector integer type. Both CST and TYPE must
2742 be scalars, or vectors of the same number of elements. If the value
2743 won't fit in the floating point type, the results are undefined.
2744``sitofp (CST to TYPE)``
2745 Convert a signed integer constant to the corresponding floating
2746 point constant. TYPE must be a scalar or vector floating point type.
2747 CST must be of scalar or vector integer type. Both CST and TYPE must
2748 be scalars, or vectors of the same number of elements. If the value
2749 won't fit in the floating point type, the results are undefined.
2750``ptrtoint (CST to TYPE)``
2751 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002752 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002753 pointer type. The ``CST`` value is zero extended, truncated, or
2754 unchanged to make it fit in ``TYPE``.
2755``inttoptr (CST to TYPE)``
2756 Convert an integer constant to a pointer constant. TYPE must be a
2757 pointer type. CST must be of integer type. The CST value is zero
2758 extended, truncated, or unchanged to make it fit in a pointer size.
2759 This one is *really* dangerous!
2760``bitcast (CST to TYPE)``
2761 Convert a constant, CST, to another TYPE. The constraints of the
2762 operands are the same as those for the :ref:`bitcast
2763 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002764``addrspacecast (CST to TYPE)``
2765 Convert a constant pointer or constant vector of pointer, CST, to another
2766 TYPE in a different address space. The constraints of the operands are the
2767 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002768``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002769 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2770 constants. As with the :ref:`getelementptr <i_getelementptr>`
2771 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002772 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002773``select (COND, VAL1, VAL2)``
2774 Perform the :ref:`select operation <i_select>` on constants.
2775``icmp COND (VAL1, VAL2)``
2776 Performs the :ref:`icmp operation <i_icmp>` on constants.
2777``fcmp COND (VAL1, VAL2)``
2778 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2779``extractelement (VAL, IDX)``
2780 Perform the :ref:`extractelement operation <i_extractelement>` on
2781 constants.
2782``insertelement (VAL, ELT, IDX)``
2783 Perform the :ref:`insertelement operation <i_insertelement>` on
2784 constants.
2785``shufflevector (VEC1, VEC2, IDXMASK)``
2786 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2787 constants.
2788``extractvalue (VAL, IDX0, IDX1, ...)``
2789 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2790 constants. The index list is interpreted in a similar manner as
2791 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2792 least one index value must be specified.
2793``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2794 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2795 The index list is interpreted in a similar manner as indices in a
2796 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2797 value must be specified.
2798``OPCODE (LHS, RHS)``
2799 Perform the specified operation of the LHS and RHS constants. OPCODE
2800 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2801 binary <bitwiseops>` operations. The constraints on operands are
2802 the same as those for the corresponding instruction (e.g. no bitwise
2803 operations on floating point values are allowed).
2804
2805Other Values
2806============
2807
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002808.. _inlineasmexprs:
2809
Sean Silvab084af42012-12-07 10:36:55 +00002810Inline Assembler Expressions
2811----------------------------
2812
2813LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002814Inline Assembly <moduleasm>`) through the use of a special value. This value
2815represents the inline assembler as a template string (containing the
2816instructions to emit), a list of operand constraints (stored as a string), a
2817flag that indicates whether or not the inline asm expression has side effects,
2818and a flag indicating whether the function containing the asm needs to align its
2819stack conservatively.
2820
2821The template string supports argument substitution of the operands using "``$``"
2822followed by a number, to indicate substitution of the given register/memory
2823location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2824be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2825operand (See :ref:`inline-asm-modifiers`).
2826
2827A literal "``$``" may be included by using "``$$``" in the template. To include
2828other special characters into the output, the usual "``\XX``" escapes may be
2829used, just as in other strings. Note that after template substitution, the
2830resulting assembly string is parsed by LLVM's integrated assembler unless it is
2831disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2832syntax known to LLVM.
2833
2834LLVM's support for inline asm is modeled closely on the requirements of Clang's
2835GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2836modifier codes listed here are similar or identical to those in GCC's inline asm
2837support. However, to be clear, the syntax of the template and constraint strings
2838described here is *not* the same as the syntax accepted by GCC and Clang, and,
2839while most constraint letters are passed through as-is by Clang, some get
2840translated to other codes when converting from the C source to the LLVM
2841assembly.
2842
2843An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002844
2845.. code-block:: llvm
2846
2847 i32 (i32) asm "bswap $0", "=r,r"
2848
2849Inline assembler expressions may **only** be used as the callee operand
2850of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2851Thus, typically we have:
2852
2853.. code-block:: llvm
2854
2855 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2856
2857Inline asms with side effects not visible in the constraint list must be
2858marked as having side effects. This is done through the use of the
2859'``sideeffect``' keyword, like so:
2860
2861.. code-block:: llvm
2862
2863 call void asm sideeffect "eieio", ""()
2864
2865In some cases inline asms will contain code that will not work unless
2866the stack is aligned in some way, such as calls or SSE instructions on
2867x86, yet will not contain code that does that alignment within the asm.
2868The compiler should make conservative assumptions about what the asm
2869might contain and should generate its usual stack alignment code in the
2870prologue if the '``alignstack``' keyword is present:
2871
2872.. code-block:: llvm
2873
2874 call void asm alignstack "eieio", ""()
2875
2876Inline asms also support using non-standard assembly dialects. The
2877assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2878the inline asm is using the Intel dialect. Currently, ATT and Intel are
2879the only supported dialects. An example is:
2880
2881.. code-block:: llvm
2882
2883 call void asm inteldialect "eieio", ""()
2884
2885If multiple keywords appear the '``sideeffect``' keyword must come
2886first, the '``alignstack``' keyword second and the '``inteldialect``'
2887keyword last.
2888
James Y Knightbc832ed2015-07-08 18:08:36 +00002889Inline Asm Constraint String
2890^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2891
2892The constraint list is a comma-separated string, each element containing one or
2893more constraint codes.
2894
2895For each element in the constraint list an appropriate register or memory
2896operand will be chosen, and it will be made available to assembly template
2897string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2898second, etc.
2899
2900There are three different types of constraints, which are distinguished by a
2901prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2902constraints must always be given in that order: outputs first, then inputs, then
2903clobbers. They cannot be intermingled.
2904
2905There are also three different categories of constraint codes:
2906
2907- Register constraint. This is either a register class, or a fixed physical
2908 register. This kind of constraint will allocate a register, and if necessary,
2909 bitcast the argument or result to the appropriate type.
2910- Memory constraint. This kind of constraint is for use with an instruction
2911 taking a memory operand. Different constraints allow for different addressing
2912 modes used by the target.
2913- Immediate value constraint. This kind of constraint is for an integer or other
2914 immediate value which can be rendered directly into an instruction. The
2915 various target-specific constraints allow the selection of a value in the
2916 proper range for the instruction you wish to use it with.
2917
2918Output constraints
2919""""""""""""""""""
2920
2921Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2922indicates that the assembly will write to this operand, and the operand will
2923then be made available as a return value of the ``asm`` expression. Output
2924constraints do not consume an argument from the call instruction. (Except, see
2925below about indirect outputs).
2926
2927Normally, it is expected that no output locations are written to by the assembly
2928expression until *all* of the inputs have been read. As such, LLVM may assign
2929the same register to an output and an input. If this is not safe (e.g. if the
2930assembly contains two instructions, where the first writes to one output, and
2931the second reads an input and writes to a second output), then the "``&``"
2932modifier must be used (e.g. "``=&r``") to specify that the output is an
2933"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2934will not use the same register for any inputs (other than an input tied to this
2935output).
2936
2937Input constraints
2938"""""""""""""""""
2939
2940Input constraints do not have a prefix -- just the constraint codes. Each input
2941constraint will consume one argument from the call instruction. It is not
2942permitted for the asm to write to any input register or memory location (unless
2943that input is tied to an output). Note also that multiple inputs may all be
2944assigned to the same register, if LLVM can determine that they necessarily all
2945contain the same value.
2946
2947Instead of providing a Constraint Code, input constraints may also "tie"
2948themselves to an output constraint, by providing an integer as the constraint
2949string. Tied inputs still consume an argument from the call instruction, and
2950take up a position in the asm template numbering as is usual -- they will simply
2951be constrained to always use the same register as the output they've been tied
2952to. For example, a constraint string of "``=r,0``" says to assign a register for
2953output, and use that register as an input as well (it being the 0'th
2954constraint).
2955
2956It is permitted to tie an input to an "early-clobber" output. In that case, no
2957*other* input may share the same register as the input tied to the early-clobber
2958(even when the other input has the same value).
2959
2960You may only tie an input to an output which has a register constraint, not a
2961memory constraint. Only a single input may be tied to an output.
2962
2963There is also an "interesting" feature which deserves a bit of explanation: if a
2964register class constraint allocates a register which is too small for the value
2965type operand provided as input, the input value will be split into multiple
2966registers, and all of them passed to the inline asm.
2967
2968However, this feature is often not as useful as you might think.
2969
2970Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2971architectures that have instructions which operate on multiple consecutive
2972instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2973SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2974hardware then loads into both the named register, and the next register. This
2975feature of inline asm would not be useful to support that.)
2976
2977A few of the targets provide a template string modifier allowing explicit access
2978to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2979``D``). On such an architecture, you can actually access the second allocated
2980register (yet, still, not any subsequent ones). But, in that case, you're still
2981probably better off simply splitting the value into two separate operands, for
2982clarity. (e.g. see the description of the ``A`` constraint on X86, which,
2983despite existing only for use with this feature, is not really a good idea to
2984use)
2985
2986Indirect inputs and outputs
2987"""""""""""""""""""""""""""
2988
2989Indirect output or input constraints can be specified by the "``*``" modifier
2990(which goes after the "``=``" in case of an output). This indicates that the asm
2991will write to or read from the contents of an *address* provided as an input
2992argument. (Note that in this way, indirect outputs act more like an *input* than
2993an output: just like an input, they consume an argument of the call expression,
2994rather than producing a return value. An indirect output constraint is an
2995"output" only in that the asm is expected to write to the contents of the input
2996memory location, instead of just read from it).
2997
2998This is most typically used for memory constraint, e.g. "``=*m``", to pass the
2999address of a variable as a value.
3000
3001It is also possible to use an indirect *register* constraint, but only on output
3002(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3003value normally, and then, separately emit a store to the address provided as
3004input, after the provided inline asm. (It's not clear what value this
3005functionality provides, compared to writing the store explicitly after the asm
3006statement, and it can only produce worse code, since it bypasses many
3007optimization passes. I would recommend not using it.)
3008
3009
3010Clobber constraints
3011"""""""""""""""""""
3012
3013A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3014consume an input operand, nor generate an output. Clobbers cannot use any of the
3015general constraint code letters -- they may use only explicit register
3016constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3017"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3018memory locations -- not only the memory pointed to by a declared indirect
3019output.
3020
3021
3022Constraint Codes
3023""""""""""""""""
3024After a potential prefix comes constraint code, or codes.
3025
3026A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3027followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3028(e.g. "``{eax}``").
3029
3030The one and two letter constraint codes are typically chosen to be the same as
3031GCC's constraint codes.
3032
3033A single constraint may include one or more than constraint code in it, leaving
3034it up to LLVM to choose which one to use. This is included mainly for
3035compatibility with the translation of GCC inline asm coming from clang.
3036
3037There are two ways to specify alternatives, and either or both may be used in an
3038inline asm constraint list:
3039
30401) Append the codes to each other, making a constraint code set. E.g. "``im``"
3041 or "``{eax}m``". This means "choose any of the options in the set". The
3042 choice of constraint is made independently for each constraint in the
3043 constraint list.
3044
30452) Use "``|``" between constraint code sets, creating alternatives. Every
3046 constraint in the constraint list must have the same number of alternative
3047 sets. With this syntax, the same alternative in *all* of the items in the
3048 constraint list will be chosen together.
3049
3050Putting those together, you might have a two operand constraint string like
3051``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3052operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3053may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3054
3055However, the use of either of the alternatives features is *NOT* recommended, as
3056LLVM is not able to make an intelligent choice about which one to use. (At the
3057point it currently needs to choose, not enough information is available to do so
3058in a smart way.) Thus, it simply tries to make a choice that's most likely to
3059compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3060always choose to use memory, not registers). And, if given multiple registers,
3061or multiple register classes, it will simply choose the first one. (In fact, it
3062doesn't currently even ensure explicitly specified physical registers are
3063unique, so specifying multiple physical registers as alternatives, like
3064``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3065intended.)
3066
3067Supported Constraint Code List
3068""""""""""""""""""""""""""""""
3069
3070The constraint codes are, in general, expected to behave the same way they do in
3071GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3072inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3073and GCC likely indicates a bug in LLVM.
3074
3075Some constraint codes are typically supported by all targets:
3076
3077- ``r``: A register in the target's general purpose register class.
3078- ``m``: A memory address operand. It is target-specific what addressing modes
3079 are supported, typical examples are register, or register + register offset,
3080 or register + immediate offset (of some target-specific size).
3081- ``i``: An integer constant (of target-specific width). Allows either a simple
3082 immediate, or a relocatable value.
3083- ``n``: An integer constant -- *not* including relocatable values.
3084- ``s``: An integer constant, but allowing *only* relocatable values.
3085- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3086 useful to pass a label for an asm branch or call.
3087
3088 .. FIXME: but that surely isn't actually okay to jump out of an asm
3089 block without telling llvm about the control transfer???)
3090
3091- ``{register-name}``: Requires exactly the named physical register.
3092
3093Other constraints are target-specific:
3094
3095AArch64:
3096
3097- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3098- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3099 i.e. 0 to 4095 with optional shift by 12.
3100- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3101 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3102- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3103 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3104- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3105 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3106- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3107 32-bit register. This is a superset of ``K``: in addition to the bitmask
3108 immediate, also allows immediate integers which can be loaded with a single
3109 ``MOVZ`` or ``MOVL`` instruction.
3110- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3111 64-bit register. This is a superset of ``L``.
3112- ``Q``: Memory address operand must be in a single register (no
3113 offsets). (However, LLVM currently does this for the ``m`` constraint as
3114 well.)
3115- ``r``: A 32 or 64-bit integer register (W* or X*).
3116- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3117- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3118
3119AMDGPU:
3120
3121- ``r``: A 32 or 64-bit integer register.
3122- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3123- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3124
3125
3126All ARM modes:
3127
3128- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3129 operand. Treated the same as operand ``m``, at the moment.
3130
3131ARM and ARM's Thumb2 mode:
3132
3133- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3134- ``I``: An immediate integer valid for a data-processing instruction.
3135- ``J``: An immediate integer between -4095 and 4095.
3136- ``K``: An immediate integer whose bitwise inverse is valid for a
3137 data-processing instruction. (Can be used with template modifier "``B``" to
3138 print the inverted value).
3139- ``L``: An immediate integer whose negation is valid for a data-processing
3140 instruction. (Can be used with template modifier "``n``" to print the negated
3141 value).
3142- ``M``: A power of two or a integer between 0 and 32.
3143- ``N``: Invalid immediate constraint.
3144- ``O``: Invalid immediate constraint.
3145- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3146- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3147 as ``r``.
3148- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3149 invalid.
3150- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3151 ``d0-d31``, or ``q0-q15``.
3152- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3153 ``d0-d7``, or ``q0-q3``.
3154- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3155 ``s0-s31``.
3156
3157ARM's Thumb1 mode:
3158
3159- ``I``: An immediate integer between 0 and 255.
3160- ``J``: An immediate integer between -255 and -1.
3161- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3162 some amount.
3163- ``L``: An immediate integer between -7 and 7.
3164- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3165- ``N``: An immediate integer between 0 and 31.
3166- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3167- ``r``: A low 32-bit GPR register (``r0-r7``).
3168- ``l``: A low 32-bit GPR register (``r0-r7``).
3169- ``h``: A high GPR register (``r0-r7``).
3170- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3171 ``d0-d31``, or ``q0-q15``.
3172- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3173 ``d0-d7``, or ``q0-q3``.
3174- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3175 ``s0-s31``.
3176
3177
3178Hexagon:
3179
3180- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3181 at the moment.
3182- ``r``: A 32 or 64-bit register.
3183
3184MSP430:
3185
3186- ``r``: An 8 or 16-bit register.
3187
3188MIPS:
3189
3190- ``I``: An immediate signed 16-bit integer.
3191- ``J``: An immediate integer zero.
3192- ``K``: An immediate unsigned 16-bit integer.
3193- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3194- ``N``: An immediate integer between -65535 and -1.
3195- ``O``: An immediate signed 15-bit integer.
3196- ``P``: An immediate integer between 1 and 65535.
3197- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3198 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3199- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3200 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3201 ``m``.
3202- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3203 ``sc`` instruction on the given subtarget (details vary).
3204- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3205- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003206 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3207 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003208- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3209 ``25``).
3210- ``l``: The ``lo`` register, 32 or 64-bit.
3211- ``x``: Invalid.
3212
3213NVPTX:
3214
3215- ``b``: A 1-bit integer register.
3216- ``c`` or ``h``: A 16-bit integer register.
3217- ``r``: A 32-bit integer register.
3218- ``l`` or ``N``: A 64-bit integer register.
3219- ``f``: A 32-bit float register.
3220- ``d``: A 64-bit float register.
3221
3222
3223PowerPC:
3224
3225- ``I``: An immediate signed 16-bit integer.
3226- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3227- ``K``: An immediate unsigned 16-bit integer.
3228- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3229- ``M``: An immediate integer greater than 31.
3230- ``N``: An immediate integer that is an exact power of 2.
3231- ``O``: The immediate integer constant 0.
3232- ``P``: An immediate integer constant whose negation is a signed 16-bit
3233 constant.
3234- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3235 treated the same as ``m``.
3236- ``r``: A 32 or 64-bit integer register.
3237- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3238 ``R1-R31``).
3239- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3240 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3241- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3242 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3243 altivec vector register (``V0-V31``).
3244
3245 .. FIXME: is this a bug that v accepts QPX registers? I think this
3246 is supposed to only use the altivec vector registers?
3247
3248- ``y``: Condition register (``CR0-CR7``).
3249- ``wc``: An individual CR bit in a CR register.
3250- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3251 register set (overlapping both the floating-point and vector register files).
3252- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3253 set.
3254
3255Sparc:
3256
3257- ``I``: An immediate 13-bit signed integer.
3258- ``r``: A 32-bit integer register.
3259
3260SystemZ:
3261
3262- ``I``: An immediate unsigned 8-bit integer.
3263- ``J``: An immediate unsigned 12-bit integer.
3264- ``K``: An immediate signed 16-bit integer.
3265- ``L``: An immediate signed 20-bit integer.
3266- ``M``: An immediate integer 0x7fffffff.
3267- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3268 ``m``, at the moment.
3269- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3270- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3271 address context evaluates as zero).
3272- ``h``: A 32-bit value in the high part of a 64bit data register
3273 (LLVM-specific)
3274- ``f``: A 32, 64, or 128-bit floating point register.
3275
3276X86:
3277
3278- ``I``: An immediate integer between 0 and 31.
3279- ``J``: An immediate integer between 0 and 64.
3280- ``K``: An immediate signed 8-bit integer.
3281- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3282 0xffffffff.
3283- ``M``: An immediate integer between 0 and 3.
3284- ``N``: An immediate unsigned 8-bit integer.
3285- ``O``: An immediate integer between 0 and 127.
3286- ``e``: An immediate 32-bit signed integer.
3287- ``Z``: An immediate 32-bit unsigned integer.
3288- ``o``, ``v``: Treated the same as ``m``, at the moment.
3289- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3290 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3291 registers, and on X86-64, it is all of the integer registers.
3292- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3293 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3294- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3295- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3296 existed since i386, and can be accessed without the REX prefix.
3297- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3298- ``y``: A 64-bit MMX register, if MMX is enabled.
3299- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3300 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3301 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3302 512-bit vector operand in an AVX512 register, Otherwise, an error.
3303- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3304- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3305 32-bit mode, a 64-bit integer operand will get split into two registers). It
3306 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3307 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3308 you're better off splitting it yourself, before passing it to the asm
3309 statement.
3310
3311XCore:
3312
3313- ``r``: A 32-bit integer register.
3314
3315
3316.. _inline-asm-modifiers:
3317
3318Asm template argument modifiers
3319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3320
3321In the asm template string, modifiers can be used on the operand reference, like
3322"``${0:n}``".
3323
3324The modifiers are, in general, expected to behave the same way they do in
3325GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3326inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3327and GCC likely indicates a bug in LLVM.
3328
3329Target-independent:
3330
3331- ``c``: Print an immediate integer constant unadorned, without
3332 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3333- ``n``: Negate and print immediate integer constant unadorned, without the
3334 target-specific immediate punctuation (e.g. no ``$`` prefix).
3335- ``l``: Print as an unadorned label, without the target-specific label
3336 punctuation (e.g. no ``$`` prefix).
3337
3338AArch64:
3339
3340- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3341 instead of ``x30``, print ``w30``.
3342- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3343- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3344 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3345 ``v*``.
3346
3347AMDGPU:
3348
3349- ``r``: No effect.
3350
3351ARM:
3352
3353- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3354 register).
3355- ``P``: No effect.
3356- ``q``: No effect.
3357- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3358 as ``d4[1]`` instead of ``s9``)
3359- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3360 prefix.
3361- ``L``: Print the low 16-bits of an immediate integer constant.
3362- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3363 register operands subsequent to the specified one (!), so use carefully.
3364- ``Q``: Print the low-order register of a register-pair, or the low-order
3365 register of a two-register operand.
3366- ``R``: Print the high-order register of a register-pair, or the high-order
3367 register of a two-register operand.
3368- ``H``: Print the second register of a register-pair. (On a big-endian system,
3369 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3370 to ``R``.)
3371
3372 .. FIXME: H doesn't currently support printing the second register
3373 of a two-register operand.
3374
3375- ``e``: Print the low doubleword register of a NEON quad register.
3376- ``f``: Print the high doubleword register of a NEON quad register.
3377- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3378 adornment.
3379
3380Hexagon:
3381
3382- ``L``: Print the second register of a two-register operand. Requires that it
3383 has been allocated consecutively to the first.
3384
3385 .. FIXME: why is it restricted to consecutive ones? And there's
3386 nothing that ensures that happens, is there?
3387
3388- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3389 nothing. Used to print 'addi' vs 'add' instructions.
3390
3391MSP430:
3392
3393No additional modifiers.
3394
3395MIPS:
3396
3397- ``X``: Print an immediate integer as hexadecimal
3398- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3399- ``d``: Print an immediate integer as decimal.
3400- ``m``: Subtract one and print an immediate integer as decimal.
3401- ``z``: Print $0 if an immediate zero, otherwise print normally.
3402- ``L``: Print the low-order register of a two-register operand, or prints the
3403 address of the low-order word of a double-word memory operand.
3404
3405 .. FIXME: L seems to be missing memory operand support.
3406
3407- ``M``: Print the high-order register of a two-register operand, or prints the
3408 address of the high-order word of a double-word memory operand.
3409
3410 .. FIXME: M seems to be missing memory operand support.
3411
3412- ``D``: Print the second register of a two-register operand, or prints the
3413 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3414 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3415 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003416- ``w``: No effect. Provided for compatibility with GCC which requires this
3417 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3418 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003419
3420NVPTX:
3421
3422- ``r``: No effect.
3423
3424PowerPC:
3425
3426- ``L``: Print the second register of a two-register operand. Requires that it
3427 has been allocated consecutively to the first.
3428
3429 .. FIXME: why is it restricted to consecutive ones? And there's
3430 nothing that ensures that happens, is there?
3431
3432- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3433 nothing. Used to print 'addi' vs 'add' instructions.
3434- ``y``: For a memory operand, prints formatter for a two-register X-form
3435 instruction. (Currently always prints ``r0,OPERAND``).
3436- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3437 otherwise. (NOTE: LLVM does not support update form, so this will currently
3438 always print nothing)
3439- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3440 not support indexed form, so this will currently always print nothing)
3441
3442Sparc:
3443
3444- ``r``: No effect.
3445
3446SystemZ:
3447
3448SystemZ implements only ``n``, and does *not* support any of the other
3449target-independent modifiers.
3450
3451X86:
3452
3453- ``c``: Print an unadorned integer or symbol name. (The latter is
3454 target-specific behavior for this typically target-independent modifier).
3455- ``A``: Print a register name with a '``*``' before it.
3456- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3457 operand.
3458- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3459 memory operand.
3460- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3461 operand.
3462- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3463 operand.
3464- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3465 available, otherwise the 32-bit register name; do nothing on a memory operand.
3466- ``n``: Negate and print an unadorned integer, or, for operands other than an
3467 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3468 the operand. (The behavior for relocatable symbol expressions is a
3469 target-specific behavior for this typically target-independent modifier)
3470- ``H``: Print a memory reference with additional offset +8.
3471- ``P``: Print a memory reference or operand for use as the argument of a call
3472 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3473
3474XCore:
3475
3476No additional modifiers.
3477
3478
Sean Silvab084af42012-12-07 10:36:55 +00003479Inline Asm Metadata
3480^^^^^^^^^^^^^^^^^^^
3481
3482The call instructions that wrap inline asm nodes may have a
3483"``!srcloc``" MDNode attached to it that contains a list of constant
3484integers. If present, the code generator will use the integer as the
3485location cookie value when report errors through the ``LLVMContext``
3486error reporting mechanisms. This allows a front-end to correlate backend
3487errors that occur with inline asm back to the source code that produced
3488it. For example:
3489
3490.. code-block:: llvm
3491
3492 call void asm sideeffect "something bad", ""(), !srcloc !42
3493 ...
3494 !42 = !{ i32 1234567 }
3495
3496It is up to the front-end to make sense of the magic numbers it places
3497in the IR. If the MDNode contains multiple constants, the code generator
3498will use the one that corresponds to the line of the asm that the error
3499occurs on.
3500
3501.. _metadata:
3502
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003503Metadata
3504========
Sean Silvab084af42012-12-07 10:36:55 +00003505
3506LLVM IR allows metadata to be attached to instructions in the program
3507that can convey extra information about the code to the optimizers and
3508code generator. One example application of metadata is source-level
3509debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003510
3511Metadata does not have a type, and is not a value. If referenced from a
3512``call`` instruction, it uses the ``metadata`` type.
3513
3514All metadata are identified in syntax by a exclamation point ('``!``').
3515
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003516.. _metadata-string:
3517
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003518Metadata Nodes and Metadata Strings
3519-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003520
3521A metadata string is a string surrounded by double quotes. It can
3522contain any character by escaping non-printable characters with
3523"``\xx``" where "``xx``" is the two digit hex code. For example:
3524"``!"test\00"``".
3525
3526Metadata nodes are represented with notation similar to structure
3527constants (a comma separated list of elements, surrounded by braces and
3528preceded by an exclamation point). Metadata nodes can have any values as
3529their operand. For example:
3530
3531.. code-block:: llvm
3532
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003533 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003534
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003535Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3536
3537.. code-block:: llvm
3538
3539 !0 = distinct !{!"test\00", i32 10}
3540
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003541``distinct`` nodes are useful when nodes shouldn't be merged based on their
3542content. They can also occur when transformations cause uniquing collisions
3543when metadata operands change.
3544
Sean Silvab084af42012-12-07 10:36:55 +00003545A :ref:`named metadata <namedmetadatastructure>` is a collection of
3546metadata nodes, which can be looked up in the module symbol table. For
3547example:
3548
3549.. code-block:: llvm
3550
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003551 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003552
3553Metadata can be used as function arguments. Here ``llvm.dbg.value``
3554function is using two metadata arguments:
3555
3556.. code-block:: llvm
3557
3558 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3559
3560Metadata can be attached with an instruction. Here metadata ``!21`` is
3561attached to the ``add`` instruction using the ``!dbg`` identifier:
3562
3563.. code-block:: llvm
3564
3565 %indvar.next = add i64 %indvar, 1, !dbg !21
3566
3567More information about specific metadata nodes recognized by the
3568optimizers and code generator is found below.
3569
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003570.. _specialized-metadata:
3571
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003572Specialized Metadata Nodes
3573^^^^^^^^^^^^^^^^^^^^^^^^^^
3574
3575Specialized metadata nodes are custom data structures in metadata (as opposed
3576to generic tuples). Their fields are labelled, and can be specified in any
3577order.
3578
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003579These aren't inherently debug info centric, but currently all the specialized
3580metadata nodes are related to debug info.
3581
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003582.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003583
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003584DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003585"""""""""""""
3586
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003587``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003588``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3589tuples containing the debug info to be emitted along with the compile unit,
3590regardless of code optimizations (some nodes are only emitted if there are
3591references to them from instructions).
3592
3593.. code-block:: llvm
3594
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003595 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003596 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3597 splitDebugFilename: "abc.debug", emissionKind: 1,
3598 enums: !2, retainedTypes: !3, subprograms: !4,
3599 globals: !5, imports: !6)
3600
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003601Compile unit descriptors provide the root scope for objects declared in a
3602specific compilation unit. File descriptors are defined using this scope.
3603These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
3604keep track of subprograms, global variables, type information, and imported
3605entities (declarations and namespaces).
3606
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003607.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003608
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003609DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003610""""""
3611
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003612``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003613
3614.. code-block:: llvm
3615
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003616 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003617
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003618Files are sometimes used in ``scope:`` fields, and are the only valid target
3619for ``file:`` fields.
3620
Michael Kuperstein605308a2015-05-14 10:58:59 +00003621.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003622
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003623DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003624"""""""""""
3625
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003626``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003627``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003628
3629.. code-block:: llvm
3630
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003631 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003632 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003633 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003634
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003635The ``encoding:`` describes the details of the type. Usually it's one of the
3636following:
3637
3638.. code-block:: llvm
3639
3640 DW_ATE_address = 1
3641 DW_ATE_boolean = 2
3642 DW_ATE_float = 4
3643 DW_ATE_signed = 5
3644 DW_ATE_signed_char = 6
3645 DW_ATE_unsigned = 7
3646 DW_ATE_unsigned_char = 8
3647
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003648.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003649
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003650DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003651""""""""""""""""
3652
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003653``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003654refers to a tuple; the first operand is the return type, while the rest are the
3655types of the formal arguments in order. If the first operand is ``null``, that
3656represents a function with no return value (such as ``void foo() {}`` in C++).
3657
3658.. code-block:: llvm
3659
3660 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3661 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003662 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003663
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003664.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003665
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003666DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003667"""""""""""""
3668
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003669``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003670qualified types.
3671
3672.. code-block:: llvm
3673
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003674 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003675 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003676 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003677 align: 32)
3678
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003679The following ``tag:`` values are valid:
3680
3681.. code-block:: llvm
3682
3683 DW_TAG_formal_parameter = 5
3684 DW_TAG_member = 13
3685 DW_TAG_pointer_type = 15
3686 DW_TAG_reference_type = 16
3687 DW_TAG_typedef = 22
3688 DW_TAG_ptr_to_member_type = 31
3689 DW_TAG_const_type = 38
3690 DW_TAG_volatile_type = 53
3691 DW_TAG_restrict_type = 55
3692
3693``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003694<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003695is the ``baseType:``. The ``offset:`` is the member's bit offset.
3696``DW_TAG_formal_parameter`` is used to define a member which is a formal
3697argument of a subprogram.
3698
3699``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3700
3701``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3702``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3703``baseType:``.
3704
3705Note that the ``void *`` type is expressed as a type derived from NULL.
3706
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003707.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003708
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003709DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003710"""""""""""""""
3711
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003712``DICompositeType`` nodes represent types composed of other types, like
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003713structures and unions. ``elements:`` points to a tuple of the composed types.
3714
3715If the source language supports ODR, the ``identifier:`` field gives the unique
3716identifier used for type merging between modules. When specified, other types
3717can refer to composite types indirectly via a :ref:`metadata string
3718<metadata-string>` that matches their identifier.
3719
3720.. code-block:: llvm
3721
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003722 !0 = !DIEnumerator(name: "SixKind", value: 7)
3723 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3724 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3725 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003726 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3727 elements: !{!0, !1, !2})
3728
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003729The following ``tag:`` values are valid:
3730
3731.. code-block:: llvm
3732
3733 DW_TAG_array_type = 1
3734 DW_TAG_class_type = 2
3735 DW_TAG_enumeration_type = 4
3736 DW_TAG_structure_type = 19
3737 DW_TAG_union_type = 23
3738 DW_TAG_subroutine_type = 21
3739 DW_TAG_inheritance = 28
3740
3741
3742For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003743descriptors <DISubrange>`, each representing the range of subscripts at that
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003744level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
3745array type is a native packed vector.
3746
3747For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003748descriptors <DIEnumerator>`, each representing the definition of an enumeration
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003749value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003750``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003751
3752For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3753``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003754<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003755
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003756.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003757
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003758DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003759""""""""""
3760
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003761``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3762:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003763
3764.. code-block:: llvm
3765
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003766 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3767 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3768 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003769
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003770.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003771
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003772DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003773""""""""""""
3774
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003775``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3776variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003777
3778.. code-block:: llvm
3779
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003780 !0 = !DIEnumerator(name: "SixKind", value: 7)
3781 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3782 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003784DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003785"""""""""""""""""""""""
3786
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003787``DITemplateTypeParameter`` nodes represent type parameters to generic source
3788language constructs. They are used (optionally) in :ref:`DICompositeType` and
3789:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790
3791.. code-block:: llvm
3792
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003793 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003796""""""""""""""""""""""""
3797
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003798``DITemplateValueParameter`` nodes represent value parameters to generic source
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003799language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3800but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3801``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003802:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003803
3804.. code-block:: llvm
3805
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003806 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003807
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003808DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003809"""""""""""
3810
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003811``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003812
3813.. code-block:: llvm
3814
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003816
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003817DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003818""""""""""""""""
3819
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003820``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003821
3822.. code-block:: llvm
3823
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003824 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003825 file: !2, line: 7, type: !3, isLocal: true,
3826 isDefinition: false, variable: i32* @foo,
3827 declaration: !4)
3828
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003829All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003830:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003831
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003832.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003833
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003834DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003835""""""""""""
3836
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837``DISubprogram`` nodes represent functions from the source language. The
3838``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003839retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841
3842.. code-block:: llvm
3843
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003844 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003845 file: !2, line: 7, type: !3, isLocal: true,
3846 isDefinition: false, scopeLine: 8, containingType: !4,
3847 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3848 flags: DIFlagPrototyped, isOptimized: true,
3849 function: void ()* @_Z3foov,
3850 templateParams: !5, declaration: !6, variables: !7)
3851
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855""""""""""""""
3856
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003857``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
3858<DISubprogram>`. The line number and column numbers are used to dinstinguish
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003859two lexical blocks at same depth. They are valid targets for ``scope:``
3860fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
3862.. code-block:: llvm
3863
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003864 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003865
3866Usually lexical blocks are ``distinct`` to prevent node merging based on
3867operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003868
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003869.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003870
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003871DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003872""""""""""""""""""
3873
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874``DILexicalBlockFile`` nodes are used to discriminate between sections of a
3875:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876indicate textual inclusion, or the ``discriminator:`` field can be used to
3877discriminate between control flow within a single block in the source language.
3878
3879.. code-block:: llvm
3880
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003881 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3882 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3883 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003884
Michael Kuperstein605308a2015-05-14 10:58:59 +00003885.. _DILocation:
3886
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003887DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003888""""""""""
3889
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003890``DILocation`` nodes represent source debug locations. The ``scope:`` field is
3891mandatory, and points at an :ref:`DILexicalBlockFile`, an
3892:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003893
3894.. code-block:: llvm
3895
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003896 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003897
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003898.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003899
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003900DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003901"""""""""""""""
3902
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903``DILocalVariable`` nodes represent local variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3905discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3906arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3907specifies the argument position, and this variable will be included in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003908``variables:`` field of its :ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003909
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003910.. code-block:: llvm
3911
Duncan P. N. Exon Smith56b893b2015-07-24 23:59:25 +00003912 !0 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003913 scope: !3, file: !2, line: 7, type: !3,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003914 flags: DIFlagArtificial)
Duncan P. N. Exon Smith56b893b2015-07-24 23:59:25 +00003915 !1 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 2,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003916 scope: !4, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smith56b893b2015-07-24 23:59:25 +00003917 !2 = !DILocalVariable(tag: DW_TAG_auto_variable, name: "y",
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003918 scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921""""""""""""
3922
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003923``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003924:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3925describe how the referenced LLVM variable relates to the source language
3926variable.
3927
3928The current supported vocabulary is limited:
3929
3930- ``DW_OP_deref`` dereferences the working expression.
3931- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3932- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3933 here, respectively) of the variable piece from the working expression.
3934
3935.. code-block:: llvm
3936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937 !0 = !DIExpression(DW_OP_deref)
3938 !1 = !DIExpression(DW_OP_plus, 3)
3939 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3940 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003942DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003943""""""""""""""
3944
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003945``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003946
3947.. code-block:: llvm
3948
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003949 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950 getter: "getFoo", attributes: 7, type: !2)
3951
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003952DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003953""""""""""""""""
3954
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003955``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003956compile unit.
3957
3958.. code-block:: llvm
3959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003961 entity: !1, line: 7)
3962
Sean Silvab084af42012-12-07 10:36:55 +00003963'``tbaa``' Metadata
3964^^^^^^^^^^^^^^^^^^^
3965
3966In LLVM IR, memory does not have types, so LLVM's own type system is not
3967suitable for doing TBAA. Instead, metadata is added to the IR to
3968describe a type system of a higher level language. This can be used to
3969implement typical C/C++ TBAA, but it can also be used to implement
3970custom alias analysis behavior for other languages.
3971
3972The current metadata format is very simple. TBAA metadata nodes have up
3973to three fields, e.g.:
3974
3975.. code-block:: llvm
3976
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003977 !0 = !{ !"an example type tree" }
3978 !1 = !{ !"int", !0 }
3979 !2 = !{ !"float", !0 }
3980 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003981
3982The first field is an identity field. It can be any value, usually a
3983metadata string, which uniquely identifies the type. The most important
3984name in the tree is the name of the root node. Two trees with different
3985root node names are entirely disjoint, even if they have leaves with
3986common names.
3987
3988The second field identifies the type's parent node in the tree, or is
3989null or omitted for a root node. A type is considered to alias all of
3990its descendants and all of its ancestors in the tree. Also, a type is
3991considered to alias all types in other trees, so that bitcode produced
3992from multiple front-ends is handled conservatively.
3993
3994If the third field is present, it's an integer which if equal to 1
3995indicates that the type is "constant" (meaning
3996``pointsToConstantMemory`` should return true; see `other useful
3997AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3998
3999'``tbaa.struct``' Metadata
4000^^^^^^^^^^^^^^^^^^^^^^^^^^
4001
4002The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4003aggregate assignment operations in C and similar languages, however it
4004is defined to copy a contiguous region of memory, which is more than
4005strictly necessary for aggregate types which contain holes due to
4006padding. Also, it doesn't contain any TBAA information about the fields
4007of the aggregate.
4008
4009``!tbaa.struct`` metadata can describe which memory subregions in a
4010memcpy are padding and what the TBAA tags of the struct are.
4011
4012The current metadata format is very simple. ``!tbaa.struct`` metadata
4013nodes are a list of operands which are in conceptual groups of three.
4014For each group of three, the first operand gives the byte offset of a
4015field in bytes, the second gives its size in bytes, and the third gives
4016its tbaa tag. e.g.:
4017
4018.. code-block:: llvm
4019
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004020 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004021
4022This describes a struct with two fields. The first is at offset 0 bytes
4023with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4024and has size 4 bytes and has tbaa tag !2.
4025
4026Note that the fields need not be contiguous. In this example, there is a
40274 byte gap between the two fields. This gap represents padding which
4028does not carry useful data and need not be preserved.
4029
Hal Finkel94146652014-07-24 14:25:39 +00004030'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004032
4033``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4034noalias memory-access sets. This means that some collection of memory access
4035instructions (loads, stores, memory-accessing calls, etc.) that carry
4036``noalias`` metadata can specifically be specified not to alias with some other
4037collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004038Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004039a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004040of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004041subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004042instruction's ``noalias`` list, then the two memory accesses are assumed not to
4043alias.
Hal Finkel94146652014-07-24 14:25:39 +00004044
Hal Finkel029cde62014-07-25 15:50:02 +00004045The metadata identifying each domain is itself a list containing one or two
4046entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00004047string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004048self-reference can be used to create globally unique domain names. A
4049descriptive string may optionally be provided as a second list entry.
4050
4051The metadata identifying each scope is also itself a list containing two or
4052three entries. The first entry is the name of the scope. Note that if the name
4053is a string then it can be combined accross functions and translation units. A
4054self-reference can be used to create globally unique scope names. A metadata
4055reference to the scope's domain is the second entry. A descriptive string may
4056optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004057
4058For example,
4059
4060.. code-block:: llvm
4061
Hal Finkel029cde62014-07-25 15:50:02 +00004062 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004063 !0 = !{!0}
4064 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004065
Hal Finkel029cde62014-07-25 15:50:02 +00004066 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004067 !2 = !{!2, !0}
4068 !3 = !{!3, !0}
4069 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004070
Hal Finkel029cde62014-07-25 15:50:02 +00004071 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004072 !5 = !{!4} ; A list containing only scope !4
4073 !6 = !{!4, !3, !2}
4074 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004075
4076 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004077 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004078 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004079
Hal Finkel029cde62014-07-25 15:50:02 +00004080 ; These two instructions also don't alias (for domain !1, the set of scopes
4081 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004082 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004083 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004084
Adam Nemet0a8416f2015-05-11 08:30:28 +00004085 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004086 ; the !noalias list is not a superset of, or equal to, the scopes in the
4087 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004088 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004089 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004090
Sean Silvab084af42012-12-07 10:36:55 +00004091'``fpmath``' Metadata
4092^^^^^^^^^^^^^^^^^^^^^
4093
4094``fpmath`` metadata may be attached to any instruction of floating point
4095type. It can be used to express the maximum acceptable error in the
4096result of that instruction, in ULPs, thus potentially allowing the
4097compiler to use a more efficient but less accurate method of computing
4098it. ULP is defined as follows:
4099
4100 If ``x`` is a real number that lies between two finite consecutive
4101 floating-point numbers ``a`` and ``b``, without being equal to one
4102 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4103 distance between the two non-equal finite floating-point numbers
4104 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4105
4106The metadata node shall consist of a single positive floating point
4107number representing the maximum relative error, for example:
4108
4109.. code-block:: llvm
4110
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004111 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004112
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004113.. _range-metadata:
4114
Sean Silvab084af42012-12-07 10:36:55 +00004115'``range``' Metadata
4116^^^^^^^^^^^^^^^^^^^^
4117
Jingyue Wu37fcb592014-06-19 16:50:16 +00004118``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4119integer types. It expresses the possible ranges the loaded value or the value
4120returned by the called function at this call site is in. The ranges are
4121represented with a flattened list of integers. The loaded value or the value
4122returned is known to be in the union of the ranges defined by each consecutive
4123pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004124
4125- The type must match the type loaded by the instruction.
4126- The pair ``a,b`` represents the range ``[a,b)``.
4127- Both ``a`` and ``b`` are constants.
4128- The range is allowed to wrap.
4129- The range should not represent the full or empty set. That is,
4130 ``a!=b``.
4131
4132In addition, the pairs must be in signed order of the lower bound and
4133they must be non-contiguous.
4134
4135Examples:
4136
4137.. code-block:: llvm
4138
David Blaikiec7aabbb2015-03-04 22:06:14 +00004139 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4140 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004141 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4142 %d = invoke i8 @bar() to label %cont
4143 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004144 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004145 !0 = !{ i8 0, i8 2 }
4146 !1 = !{ i8 255, i8 2 }
4147 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4148 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004149
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004150'``llvm.loop``'
4151^^^^^^^^^^^^^^^
4152
4153It is sometimes useful to attach information to loop constructs. Currently,
4154loop metadata is implemented as metadata attached to the branch instruction
4155in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004156guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004157specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004158
4159The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004160itself to avoid merging it with any other identifier metadata, e.g.,
4161during module linkage or function inlining. That is, each loop should refer
4162to their own identification metadata even if they reside in separate functions.
4163The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004164constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004165
4166.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004167
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004168 !0 = !{!0}
4169 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004170
Mark Heffernan893752a2014-07-18 19:24:51 +00004171The loop identifier metadata can be used to specify additional
4172per-loop metadata. Any operands after the first operand can be treated
4173as user-defined metadata. For example the ``llvm.loop.unroll.count``
4174suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004175
Paul Redmond5fdf8362013-05-28 20:00:34 +00004176.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004177
Paul Redmond5fdf8362013-05-28 20:00:34 +00004178 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4179 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004180 !0 = !{!0, !1}
4181 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004182
Mark Heffernan9d20e422014-07-21 23:11:03 +00004183'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004185
Mark Heffernan9d20e422014-07-21 23:11:03 +00004186Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4187used to control per-loop vectorization and interleaving parameters such as
4188vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00004189conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004190``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4191optimization hints and the optimizer will only interleave and vectorize loops if
4192it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
4193which contains information about loop-carried memory dependencies can be helpful
4194in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004195
Mark Heffernan9d20e422014-07-21 23:11:03 +00004196'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4198
Mark Heffernan9d20e422014-07-21 23:11:03 +00004199This metadata suggests an interleave count to the loop interleaver.
4200The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004201second operand is an integer specifying the interleave count. For
4202example:
4203
4204.. code-block:: llvm
4205
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004206 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004207
Mark Heffernan9d20e422014-07-21 23:11:03 +00004208Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
4209multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
4210then the interleave count will be determined automatically.
4211
4212'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004214
4215This metadata selectively enables or disables vectorization for the loop. The
4216first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
4217is a bit. If the bit operand value is 1 vectorization is enabled. A value of
42180 disables vectorization:
4219
4220.. code-block:: llvm
4221
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004222 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4223 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004224
4225'``llvm.loop.vectorize.width``' Metadata
4226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4227
4228This metadata sets the target width of the vectorizer. The first
4229operand is the string ``llvm.loop.vectorize.width`` and the second
4230operand is an integer specifying the width. For example:
4231
4232.. code-block:: llvm
4233
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004234 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004235
4236Note that setting ``llvm.loop.vectorize.width`` to 1 disables
4237vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
42380 or if the loop does not have this metadata the width will be
4239determined automatically.
4240
4241'``llvm.loop.unroll``'
4242^^^^^^^^^^^^^^^^^^^^^^
4243
4244Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4245optimization hints such as the unroll factor. ``llvm.loop.unroll``
4246metadata should be used in conjunction with ``llvm.loop`` loop
4247identification metadata. The ``llvm.loop.unroll`` metadata are only
4248optimization hints and the unrolling will only be performed if the
4249optimizer believes it is safe to do so.
4250
Mark Heffernan893752a2014-07-18 19:24:51 +00004251'``llvm.loop.unroll.count``' Metadata
4252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4253
4254This metadata suggests an unroll factor to the loop unroller. The
4255first operand is the string ``llvm.loop.unroll.count`` and the second
4256operand is a positive integer specifying the unroll factor. For
4257example:
4258
4259.. code-block:: llvm
4260
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004261 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004262
4263If the trip count of the loop is less than the unroll count the loop
4264will be partially unrolled.
4265
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004266'``llvm.loop.unroll.disable``' Metadata
4267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4268
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004269This metadata disables loop unrolling. The metadata has a single operand
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004270which is the string ``llvm.loop.unroll.disable``. For example:
4271
4272.. code-block:: llvm
4273
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004274 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004275
Kevin Qin715b01e2015-03-09 06:14:18 +00004276'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004278
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004279This metadata disables runtime loop unrolling. The metadata has a single
Kevin Qin715b01e2015-03-09 06:14:18 +00004280operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
4281
4282.. code-block:: llvm
4283
4284 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4285
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004286'``llvm.loop.unroll.full``' Metadata
4287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4288
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004289This metadata suggests that the loop should be unrolled fully. The
4290metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004291For example:
4292
4293.. code-block:: llvm
4294
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004295 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004296
4297'``llvm.mem``'
4298^^^^^^^^^^^^^^^
4299
4300Metadata types used to annotate memory accesses with information helpful
4301for optimizations are prefixed with ``llvm.mem``.
4302
4303'``llvm.mem.parallel_loop_access``' Metadata
4304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4305
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004306The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4307or metadata containing a list of loop identifiers for nested loops.
4308The metadata is attached to memory accessing instructions and denotes that
4309no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004310with the same loop identifier.
4311
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004312Precisely, given two instructions ``m1`` and ``m2`` that both have the
4313``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4314set of loops associated with that metadata, respectively, then there is no loop
4315carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004316``L2``.
4317
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004318As a special case, if all memory accessing instructions in a loop have
4319``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4320loop has no loop carried memory dependences and is considered to be a parallel
4321loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004322
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004323Note that if not all memory access instructions have such metadata referring to
4324the loop, then the loop is considered not being trivially parallel. Additional
4325memory dependence analysis is required to make that determination. As a fail
4326safe mechanism, this causes loops that were originally parallel to be considered
4327sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004328insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004329
4330Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004331both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004332metadata types that refer to the same loop identifier metadata.
4333
4334.. code-block:: llvm
4335
4336 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004337 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004338 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004339 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004340 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004341 ...
4342 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004343
4344 for.end:
4345 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004346 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004347
4348It is also possible to have nested parallel loops. In that case the
4349memory accesses refer to a list of loop identifier metadata nodes instead of
4350the loop identifier metadata node directly:
4351
4352.. code-block:: llvm
4353
4354 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004355 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004356 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004357 ...
4358 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004359
4360 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004361 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004362 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004363 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004364 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004365 ...
4366 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004367
4368 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004369 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004370 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004371 ...
4372 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004373
4374 outer.for.end: ; preds = %for.body
4375 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004376 !0 = !{!1, !2} ; a list of loop identifiers
4377 !1 = !{!1} ; an identifier for the inner loop
4378 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004379
Peter Collingbournee6909c82015-02-20 20:30:47 +00004380'``llvm.bitsets``'
4381^^^^^^^^^^^^^^^^^^
4382
4383The ``llvm.bitsets`` global metadata is used to implement
4384:doc:`bitsets <BitSets>`.
4385
Sean Silvab084af42012-12-07 10:36:55 +00004386Module Flags Metadata
4387=====================
4388
4389Information about the module as a whole is difficult to convey to LLVM's
4390subsystems. The LLVM IR isn't sufficient to transmit this information.
4391The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004392this. These flags are in the form of key / value pairs --- much like a
4393dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004394look it up.
4395
4396The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4397Each triplet has the following form:
4398
4399- The first element is a *behavior* flag, which specifies the behavior
4400 when two (or more) modules are merged together, and it encounters two
4401 (or more) metadata with the same ID. The supported behaviors are
4402 described below.
4403- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004404 metadata. Each module may only have one flag entry for each unique ID (not
4405 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004406- The third element is the value of the flag.
4407
4408When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004409``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4410each unique metadata ID string, there will be exactly one entry in the merged
4411modules ``llvm.module.flags`` metadata table, and the value for that entry will
4412be determined by the merge behavior flag, as described below. The only exception
4413is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004414
4415The following behaviors are supported:
4416
4417.. list-table::
4418 :header-rows: 1
4419 :widths: 10 90
4420
4421 * - Value
4422 - Behavior
4423
4424 * - 1
4425 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004426 Emits an error if two values disagree, otherwise the resulting value
4427 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004428
4429 * - 2
4430 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004431 Emits a warning if two values disagree. The result value will be the
4432 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004433
4434 * - 3
4435 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004436 Adds a requirement that another module flag be present and have a
4437 specified value after linking is performed. The value must be a
4438 metadata pair, where the first element of the pair is the ID of the
4439 module flag to be restricted, and the second element of the pair is
4440 the value the module flag should be restricted to. This behavior can
4441 be used to restrict the allowable results (via triggering of an
4442 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004443
4444 * - 4
4445 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004446 Uses the specified value, regardless of the behavior or value of the
4447 other module. If both modules specify **Override**, but the values
4448 differ, an error will be emitted.
4449
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004450 * - 5
4451 - **Append**
4452 Appends the two values, which are required to be metadata nodes.
4453
4454 * - 6
4455 - **AppendUnique**
4456 Appends the two values, which are required to be metadata
4457 nodes. However, duplicate entries in the second list are dropped
4458 during the append operation.
4459
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004460It is an error for a particular unique flag ID to have multiple behaviors,
4461except in the case of **Require** (which adds restrictions on another metadata
4462value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004463
4464An example of module flags:
4465
4466.. code-block:: llvm
4467
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004468 !0 = !{ i32 1, !"foo", i32 1 }
4469 !1 = !{ i32 4, !"bar", i32 37 }
4470 !2 = !{ i32 2, !"qux", i32 42 }
4471 !3 = !{ i32 3, !"qux",
4472 !{
4473 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004474 }
4475 }
4476 !llvm.module.flags = !{ !0, !1, !2, !3 }
4477
4478- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4479 if two or more ``!"foo"`` flags are seen is to emit an error if their
4480 values are not equal.
4481
4482- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4483 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004484 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004485
4486- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4487 behavior if two or more ``!"qux"`` flags are seen is to emit a
4488 warning if their values are not equal.
4489
4490- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4491
4492 ::
4493
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004494 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004495
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004496 The behavior is to emit an error if the ``llvm.module.flags`` does not
4497 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4498 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004499
4500Objective-C Garbage Collection Module Flags Metadata
4501----------------------------------------------------
4502
4503On the Mach-O platform, Objective-C stores metadata about garbage
4504collection in a special section called "image info". The metadata
4505consists of a version number and a bitmask specifying what types of
4506garbage collection are supported (if any) by the file. If two or more
4507modules are linked together their garbage collection metadata needs to
4508be merged rather than appended together.
4509
4510The Objective-C garbage collection module flags metadata consists of the
4511following key-value pairs:
4512
4513.. list-table::
4514 :header-rows: 1
4515 :widths: 30 70
4516
4517 * - Key
4518 - Value
4519
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004520 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004521 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004522
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004523 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004524 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004525 always 0.
4526
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004527 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004528 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004529 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4530 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4531 Objective-C ABI version 2.
4532
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004533 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004534 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004535 not. Valid values are 0, for no garbage collection, and 2, for garbage
4536 collection supported.
4537
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004538 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004539 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004540 If present, its value must be 6. This flag requires that the
4541 ``Objective-C Garbage Collection`` flag have the value 2.
4542
4543Some important flag interactions:
4544
4545- If a module with ``Objective-C Garbage Collection`` set to 0 is
4546 merged with a module with ``Objective-C Garbage Collection`` set to
4547 2, then the resulting module has the
4548 ``Objective-C Garbage Collection`` flag set to 0.
4549- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4550 merged with a module with ``Objective-C GC Only`` set to 6.
4551
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004552Automatic Linker Flags Module Flags Metadata
4553--------------------------------------------
4554
4555Some targets support embedding flags to the linker inside individual object
4556files. Typically this is used in conjunction with language extensions which
4557allow source files to explicitly declare the libraries they depend on, and have
4558these automatically be transmitted to the linker via object files.
4559
4560These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004561using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004562to be ``AppendUnique``, and the value for the key is expected to be a metadata
4563node which should be a list of other metadata nodes, each of which should be a
4564list of metadata strings defining linker options.
4565
4566For example, the following metadata section specifies two separate sets of
4567linker options, presumably to link against ``libz`` and the ``Cocoa``
4568framework::
4569
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004570 !0 = !{ i32 6, !"Linker Options",
4571 !{
4572 !{ !"-lz" },
4573 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004574 !llvm.module.flags = !{ !0 }
4575
4576The metadata encoding as lists of lists of options, as opposed to a collapsed
4577list of options, is chosen so that the IR encoding can use multiple option
4578strings to specify e.g., a single library, while still having that specifier be
4579preserved as an atomic element that can be recognized by a target specific
4580assembly writer or object file emitter.
4581
4582Each individual option is required to be either a valid option for the target's
4583linker, or an option that is reserved by the target specific assembly writer or
4584object file emitter. No other aspect of these options is defined by the IR.
4585
Oliver Stannard5dc29342014-06-20 10:08:11 +00004586C type width Module Flags Metadata
4587----------------------------------
4588
4589The ARM backend emits a section into each generated object file describing the
4590options that it was compiled with (in a compiler-independent way) to prevent
4591linking incompatible objects, and to allow automatic library selection. Some
4592of these options are not visible at the IR level, namely wchar_t width and enum
4593width.
4594
4595To pass this information to the backend, these options are encoded in module
4596flags metadata, using the following key-value pairs:
4597
4598.. list-table::
4599 :header-rows: 1
4600 :widths: 30 70
4601
4602 * - Key
4603 - Value
4604
4605 * - short_wchar
4606 - * 0 --- sizeof(wchar_t) == 4
4607 * 1 --- sizeof(wchar_t) == 2
4608
4609 * - short_enum
4610 - * 0 --- Enums are at least as large as an ``int``.
4611 * 1 --- Enums are stored in the smallest integer type which can
4612 represent all of its values.
4613
4614For example, the following metadata section specifies that the module was
4615compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4616enum is the smallest type which can represent all of its values::
4617
4618 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004619 !0 = !{i32 1, !"short_wchar", i32 1}
4620 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004621
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004622.. _intrinsicglobalvariables:
4623
Sean Silvab084af42012-12-07 10:36:55 +00004624Intrinsic Global Variables
4625==========================
4626
4627LLVM has a number of "magic" global variables that contain data that
4628affect code generation or other IR semantics. These are documented here.
4629All globals of this sort should have a section specified as
4630"``llvm.metadata``". This section and all globals that start with
4631"``llvm.``" are reserved for use by LLVM.
4632
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004633.. _gv_llvmused:
4634
Sean Silvab084af42012-12-07 10:36:55 +00004635The '``llvm.used``' Global Variable
4636-----------------------------------
4637
Rafael Espindola74f2e462013-04-22 14:58:02 +00004638The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004639:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004640pointers to named global variables, functions and aliases which may optionally
4641have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004642use of it is:
4643
4644.. code-block:: llvm
4645
4646 @X = global i8 4
4647 @Y = global i32 123
4648
4649 @llvm.used = appending global [2 x i8*] [
4650 i8* @X,
4651 i8* bitcast (i32* @Y to i8*)
4652 ], section "llvm.metadata"
4653
Rafael Espindola74f2e462013-04-22 14:58:02 +00004654If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4655and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004656symbol that it cannot see (which is why they have to be named). For example, if
4657a variable has internal linkage and no references other than that from the
4658``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4659references from inline asms and other things the compiler cannot "see", and
4660corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004661
4662On some targets, the code generator must emit a directive to the
4663assembler or object file to prevent the assembler and linker from
4664molesting the symbol.
4665
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004666.. _gv_llvmcompilerused:
4667
Sean Silvab084af42012-12-07 10:36:55 +00004668The '``llvm.compiler.used``' Global Variable
4669--------------------------------------------
4670
4671The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4672directive, except that it only prevents the compiler from touching the
4673symbol. On targets that support it, this allows an intelligent linker to
4674optimize references to the symbol without being impeded as it would be
4675by ``@llvm.used``.
4676
4677This is a rare construct that should only be used in rare circumstances,
4678and should not be exposed to source languages.
4679
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004680.. _gv_llvmglobalctors:
4681
Sean Silvab084af42012-12-07 10:36:55 +00004682The '``llvm.global_ctors``' Global Variable
4683-------------------------------------------
4684
4685.. code-block:: llvm
4686
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004687 %0 = type { i32, void ()*, i8* }
4688 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004689
4690The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004691functions, priorities, and an optional associated global or function.
4692The functions referenced by this array will be called in ascending order
4693of priority (i.e. lowest first) when the module is loaded. The order of
4694functions with the same priority is not defined.
4695
4696If the third field is present, non-null, and points to a global variable
4697or function, the initializer function will only run if the associated
4698data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004699
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004700.. _llvmglobaldtors:
4701
Sean Silvab084af42012-12-07 10:36:55 +00004702The '``llvm.global_dtors``' Global Variable
4703-------------------------------------------
4704
4705.. code-block:: llvm
4706
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004707 %0 = type { i32, void ()*, i8* }
4708 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004709
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004710The ``@llvm.global_dtors`` array contains a list of destructor
4711functions, priorities, and an optional associated global or function.
4712The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004713order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004714order of functions with the same priority is not defined.
4715
4716If the third field is present, non-null, and points to a global variable
4717or function, the destructor function will only run if the associated
4718data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004719
4720Instruction Reference
4721=====================
4722
4723The LLVM instruction set consists of several different classifications
4724of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4725instructions <binaryops>`, :ref:`bitwise binary
4726instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4727:ref:`other instructions <otherops>`.
4728
4729.. _terminators:
4730
4731Terminator Instructions
4732-----------------------
4733
4734As mentioned :ref:`previously <functionstructure>`, every basic block in a
4735program ends with a "Terminator" instruction, which indicates which
4736block should be executed after the current block is finished. These
4737terminator instructions typically yield a '``void``' value: they produce
4738control flow, not values (the one exception being the
4739':ref:`invoke <i_invoke>`' instruction).
4740
4741The terminator instructions are: ':ref:`ret <i_ret>`',
4742':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4743':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemerdb82d2f2015-07-10 07:15:17 +00004744':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004745
4746.. _i_ret:
4747
4748'``ret``' Instruction
4749^^^^^^^^^^^^^^^^^^^^^
4750
4751Syntax:
4752"""""""
4753
4754::
4755
4756 ret <type> <value> ; Return a value from a non-void function
4757 ret void ; Return from void function
4758
4759Overview:
4760"""""""""
4761
4762The '``ret``' instruction is used to return control flow (and optionally
4763a value) from a function back to the caller.
4764
4765There are two forms of the '``ret``' instruction: one that returns a
4766value and then causes control flow, and one that just causes control
4767flow to occur.
4768
4769Arguments:
4770""""""""""
4771
4772The '``ret``' instruction optionally accepts a single argument, the
4773return value. The type of the return value must be a ':ref:`first
4774class <t_firstclass>`' type.
4775
4776A function is not :ref:`well formed <wellformed>` if it it has a non-void
4777return type and contains a '``ret``' instruction with no return value or
4778a return value with a type that does not match its type, or if it has a
4779void return type and contains a '``ret``' instruction with a return
4780value.
4781
4782Semantics:
4783""""""""""
4784
4785When the '``ret``' instruction is executed, control flow returns back to
4786the calling function's context. If the caller is a
4787":ref:`call <i_call>`" instruction, execution continues at the
4788instruction after the call. If the caller was an
4789":ref:`invoke <i_invoke>`" instruction, execution continues at the
4790beginning of the "normal" destination block. If the instruction returns
4791a value, that value shall set the call or invoke instruction's return
4792value.
4793
4794Example:
4795""""""""
4796
4797.. code-block:: llvm
4798
4799 ret i32 5 ; Return an integer value of 5
4800 ret void ; Return from a void function
4801 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4802
4803.. _i_br:
4804
4805'``br``' Instruction
4806^^^^^^^^^^^^^^^^^^^^
4807
4808Syntax:
4809"""""""
4810
4811::
4812
4813 br i1 <cond>, label <iftrue>, label <iffalse>
4814 br label <dest> ; Unconditional branch
4815
4816Overview:
4817"""""""""
4818
4819The '``br``' instruction is used to cause control flow to transfer to a
4820different basic block in the current function. There are two forms of
4821this instruction, corresponding to a conditional branch and an
4822unconditional branch.
4823
4824Arguments:
4825""""""""""
4826
4827The conditional branch form of the '``br``' instruction takes a single
4828'``i1``' value and two '``label``' values. The unconditional form of the
4829'``br``' instruction takes a single '``label``' value as a target.
4830
4831Semantics:
4832""""""""""
4833
4834Upon execution of a conditional '``br``' instruction, the '``i1``'
4835argument is evaluated. If the value is ``true``, control flows to the
4836'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4837to the '``iffalse``' ``label`` argument.
4838
4839Example:
4840""""""""
4841
4842.. code-block:: llvm
4843
4844 Test:
4845 %cond = icmp eq i32 %a, %b
4846 br i1 %cond, label %IfEqual, label %IfUnequal
4847 IfEqual:
4848 ret i32 1
4849 IfUnequal:
4850 ret i32 0
4851
4852.. _i_switch:
4853
4854'``switch``' Instruction
4855^^^^^^^^^^^^^^^^^^^^^^^^
4856
4857Syntax:
4858"""""""
4859
4860::
4861
4862 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4863
4864Overview:
4865"""""""""
4866
4867The '``switch``' instruction is used to transfer control flow to one of
4868several different places. It is a generalization of the '``br``'
4869instruction, allowing a branch to occur to one of many possible
4870destinations.
4871
4872Arguments:
4873""""""""""
4874
4875The '``switch``' instruction uses three parameters: an integer
4876comparison value '``value``', a default '``label``' destination, and an
4877array of pairs of comparison value constants and '``label``'s. The table
4878is not allowed to contain duplicate constant entries.
4879
4880Semantics:
4881""""""""""
4882
4883The ``switch`` instruction specifies a table of values and destinations.
4884When the '``switch``' instruction is executed, this table is searched
4885for the given value. If the value is found, control flow is transferred
4886to the corresponding destination; otherwise, control flow is transferred
4887to the default destination.
4888
4889Implementation:
4890"""""""""""""""
4891
4892Depending on properties of the target machine and the particular
4893``switch`` instruction, this instruction may be code generated in
4894different ways. For example, it could be generated as a series of
4895chained conditional branches or with a lookup table.
4896
4897Example:
4898""""""""
4899
4900.. code-block:: llvm
4901
4902 ; Emulate a conditional br instruction
4903 %Val = zext i1 %value to i32
4904 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4905
4906 ; Emulate an unconditional br instruction
4907 switch i32 0, label %dest [ ]
4908
4909 ; Implement a jump table:
4910 switch i32 %val, label %otherwise [ i32 0, label %onzero
4911 i32 1, label %onone
4912 i32 2, label %ontwo ]
4913
4914.. _i_indirectbr:
4915
4916'``indirectbr``' Instruction
4917^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4918
4919Syntax:
4920"""""""
4921
4922::
4923
4924 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4925
4926Overview:
4927"""""""""
4928
4929The '``indirectbr``' instruction implements an indirect branch to a
4930label within the current function, whose address is specified by
4931"``address``". Address must be derived from a
4932:ref:`blockaddress <blockaddress>` constant.
4933
4934Arguments:
4935""""""""""
4936
4937The '``address``' argument is the address of the label to jump to. The
4938rest of the arguments indicate the full set of possible destinations
4939that the address may point to. Blocks are allowed to occur multiple
4940times in the destination list, though this isn't particularly useful.
4941
4942This destination list is required so that dataflow analysis has an
4943accurate understanding of the CFG.
4944
4945Semantics:
4946""""""""""
4947
4948Control transfers to the block specified in the address argument. All
4949possible destination blocks must be listed in the label list, otherwise
4950this instruction has undefined behavior. This implies that jumps to
4951labels defined in other functions have undefined behavior as well.
4952
4953Implementation:
4954"""""""""""""""
4955
4956This is typically implemented with a jump through a register.
4957
4958Example:
4959""""""""
4960
4961.. code-block:: llvm
4962
4963 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4964
4965.. _i_invoke:
4966
4967'``invoke``' Instruction
4968^^^^^^^^^^^^^^^^^^^^^^^^
4969
4970Syntax:
4971"""""""
4972
4973::
4974
4975 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4976 to label <normal label> unwind label <exception label>
4977
4978Overview:
4979"""""""""
4980
4981The '``invoke``' instruction causes control to transfer to a specified
4982function, with the possibility of control flow transfer to either the
4983'``normal``' label or the '``exception``' label. If the callee function
4984returns with the "``ret``" instruction, control flow will return to the
4985"normal" label. If the callee (or any indirect callees) returns via the
4986":ref:`resume <i_resume>`" instruction or other exception handling
4987mechanism, control is interrupted and continued at the dynamically
4988nearest "exception" label.
4989
4990The '``exception``' label is a `landing
4991pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4992'``exception``' label is required to have the
4993":ref:`landingpad <i_landingpad>`" instruction, which contains the
4994information about the behavior of the program after unwinding happens,
4995as its first non-PHI instruction. The restrictions on the
4996"``landingpad``" instruction's tightly couples it to the "``invoke``"
4997instruction, so that the important information contained within the
4998"``landingpad``" instruction can't be lost through normal code motion.
4999
5000Arguments:
5001""""""""""
5002
5003This instruction requires several arguments:
5004
5005#. The optional "cconv" marker indicates which :ref:`calling
5006 convention <callingconv>` the call should use. If none is
5007 specified, the call defaults to using C calling conventions.
5008#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5009 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5010 are valid here.
5011#. '``ptr to function ty``': shall be the signature of the pointer to
5012 function value being invoked. In most cases, this is a direct
5013 function invocation, but indirect ``invoke``'s are just as possible,
5014 branching off an arbitrary pointer to function value.
5015#. '``function ptr val``': An LLVM value containing a pointer to a
5016 function to be invoked.
5017#. '``function args``': argument list whose types match the function
5018 signature argument types and parameter attributes. All arguments must
5019 be of :ref:`first class <t_firstclass>` type. If the function signature
5020 indicates the function accepts a variable number of arguments, the
5021 extra arguments can be specified.
5022#. '``normal label``': the label reached when the called function
5023 executes a '``ret``' instruction.
5024#. '``exception label``': the label reached when a callee returns via
5025 the :ref:`resume <i_resume>` instruction or other exception handling
5026 mechanism.
5027#. The optional :ref:`function attributes <fnattrs>` list. Only
5028 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5029 attributes are valid here.
5030
5031Semantics:
5032""""""""""
5033
5034This instruction is designed to operate as a standard '``call``'
5035instruction in most regards. The primary difference is that it
5036establishes an association with a label, which is used by the runtime
5037library to unwind the stack.
5038
5039This instruction is used in languages with destructors to ensure that
5040proper cleanup is performed in the case of either a ``longjmp`` or a
5041thrown exception. Additionally, this is important for implementation of
5042'``catch``' clauses in high-level languages that support them.
5043
5044For the purposes of the SSA form, the definition of the value returned
5045by the '``invoke``' instruction is deemed to occur on the edge from the
5046current block to the "normal" label. If the callee unwinds then no
5047return value is available.
5048
5049Example:
5050""""""""
5051
5052.. code-block:: llvm
5053
5054 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005055 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005056 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005057 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005058
5059.. _i_resume:
5060
5061'``resume``' Instruction
5062^^^^^^^^^^^^^^^^^^^^^^^^
5063
5064Syntax:
5065"""""""
5066
5067::
5068
5069 resume <type> <value>
5070
5071Overview:
5072"""""""""
5073
5074The '``resume``' instruction is a terminator instruction that has no
5075successors.
5076
5077Arguments:
5078""""""""""
5079
5080The '``resume``' instruction requires one argument, which must have the
5081same type as the result of any '``landingpad``' instruction in the same
5082function.
5083
5084Semantics:
5085""""""""""
5086
5087The '``resume``' instruction resumes propagation of an existing
5088(in-flight) exception whose unwinding was interrupted with a
5089:ref:`landingpad <i_landingpad>` instruction.
5090
5091Example:
5092""""""""
5093
5094.. code-block:: llvm
5095
5096 resume { i8*, i32 } %exn
5097
5098.. _i_unreachable:
5099
5100'``unreachable``' Instruction
5101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5102
5103Syntax:
5104"""""""
5105
5106::
5107
5108 unreachable
5109
5110Overview:
5111"""""""""
5112
5113The '``unreachable``' instruction has no defined semantics. This
5114instruction is used to inform the optimizer that a particular portion of
5115the code is not reachable. This can be used to indicate that the code
5116after a no-return function cannot be reached, and other facts.
5117
5118Semantics:
5119""""""""""
5120
5121The '``unreachable``' instruction has no defined semantics.
5122
5123.. _binaryops:
5124
5125Binary Operations
5126-----------------
5127
5128Binary operators are used to do most of the computation in a program.
5129They require two operands of the same type, execute an operation on
5130them, and produce a single value. The operands might represent multiple
5131data, as is the case with the :ref:`vector <t_vector>` data type. The
5132result value has the same type as its operands.
5133
5134There are several different binary operators:
5135
5136.. _i_add:
5137
5138'``add``' Instruction
5139^^^^^^^^^^^^^^^^^^^^^
5140
5141Syntax:
5142"""""""
5143
5144::
5145
Tim Northover675a0962014-06-13 14:24:23 +00005146 <result> = add <ty> <op1>, <op2> ; yields ty:result
5147 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5148 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5149 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005150
5151Overview:
5152"""""""""
5153
5154The '``add``' instruction returns the sum of its two operands.
5155
5156Arguments:
5157""""""""""
5158
5159The two arguments to the '``add``' instruction must be
5160:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5161arguments must have identical types.
5162
5163Semantics:
5164""""""""""
5165
5166The value produced is the integer sum of the two operands.
5167
5168If the sum has unsigned overflow, the result returned is the
5169mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5170the result.
5171
5172Because LLVM integers use a two's complement representation, this
5173instruction is appropriate for both signed and unsigned integers.
5174
5175``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5176respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5177result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5178unsigned and/or signed overflow, respectively, occurs.
5179
5180Example:
5181""""""""
5182
5183.. code-block:: llvm
5184
Tim Northover675a0962014-06-13 14:24:23 +00005185 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005186
5187.. _i_fadd:
5188
5189'``fadd``' Instruction
5190^^^^^^^^^^^^^^^^^^^^^^
5191
5192Syntax:
5193"""""""
5194
5195::
5196
Tim Northover675a0962014-06-13 14:24:23 +00005197 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005198
5199Overview:
5200"""""""""
5201
5202The '``fadd``' instruction returns the sum of its two operands.
5203
5204Arguments:
5205""""""""""
5206
5207The two arguments to the '``fadd``' instruction must be :ref:`floating
5208point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5209Both arguments must have identical types.
5210
5211Semantics:
5212""""""""""
5213
5214The value produced is the floating point sum of the two operands. This
5215instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5216which are optimization hints to enable otherwise unsafe floating point
5217optimizations:
5218
5219Example:
5220""""""""
5221
5222.. code-block:: llvm
5223
Tim Northover675a0962014-06-13 14:24:23 +00005224 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005225
5226'``sub``' Instruction
5227^^^^^^^^^^^^^^^^^^^^^
5228
5229Syntax:
5230"""""""
5231
5232::
5233
Tim Northover675a0962014-06-13 14:24:23 +00005234 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5235 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5236 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5237 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005238
5239Overview:
5240"""""""""
5241
5242The '``sub``' instruction returns the difference of its two operands.
5243
5244Note that the '``sub``' instruction is used to represent the '``neg``'
5245instruction present in most other intermediate representations.
5246
5247Arguments:
5248""""""""""
5249
5250The two arguments to the '``sub``' instruction must be
5251:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5252arguments must have identical types.
5253
5254Semantics:
5255""""""""""
5256
5257The value produced is the integer difference of the two operands.
5258
5259If the difference has unsigned overflow, the result returned is the
5260mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5261the result.
5262
5263Because LLVM integers use a two's complement representation, this
5264instruction is appropriate for both signed and unsigned integers.
5265
5266``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5267respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5268result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5269unsigned and/or signed overflow, respectively, occurs.
5270
5271Example:
5272""""""""
5273
5274.. code-block:: llvm
5275
Tim Northover675a0962014-06-13 14:24:23 +00005276 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5277 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005278
5279.. _i_fsub:
5280
5281'``fsub``' Instruction
5282^^^^^^^^^^^^^^^^^^^^^^
5283
5284Syntax:
5285"""""""
5286
5287::
5288
Tim Northover675a0962014-06-13 14:24:23 +00005289 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005290
5291Overview:
5292"""""""""
5293
5294The '``fsub``' instruction returns the difference of its two operands.
5295
5296Note that the '``fsub``' instruction is used to represent the '``fneg``'
5297instruction present in most other intermediate representations.
5298
5299Arguments:
5300""""""""""
5301
5302The two arguments to the '``fsub``' instruction must be :ref:`floating
5303point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5304Both arguments must have identical types.
5305
5306Semantics:
5307""""""""""
5308
5309The value produced is the floating point difference of the two operands.
5310This instruction can also take any number of :ref:`fast-math
5311flags <fastmath>`, which are optimization hints to enable otherwise
5312unsafe floating point optimizations:
5313
5314Example:
5315""""""""
5316
5317.. code-block:: llvm
5318
Tim Northover675a0962014-06-13 14:24:23 +00005319 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5320 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005321
5322'``mul``' Instruction
5323^^^^^^^^^^^^^^^^^^^^^
5324
5325Syntax:
5326"""""""
5327
5328::
5329
Tim Northover675a0962014-06-13 14:24:23 +00005330 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5331 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5332 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5333 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005334
5335Overview:
5336"""""""""
5337
5338The '``mul``' instruction returns the product of its two operands.
5339
5340Arguments:
5341""""""""""
5342
5343The two arguments to the '``mul``' instruction must be
5344:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5345arguments must have identical types.
5346
5347Semantics:
5348""""""""""
5349
5350The value produced is the integer product of the two operands.
5351
5352If the result of the multiplication has unsigned overflow, the result
5353returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5354bit width of the result.
5355
5356Because LLVM integers use a two's complement representation, and the
5357result is the same width as the operands, this instruction returns the
5358correct result for both signed and unsigned integers. If a full product
5359(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5360sign-extended or zero-extended as appropriate to the width of the full
5361product.
5362
5363``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5364respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5365result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5366unsigned and/or signed overflow, respectively, occurs.
5367
5368Example:
5369""""""""
5370
5371.. code-block:: llvm
5372
Tim Northover675a0962014-06-13 14:24:23 +00005373 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005374
5375.. _i_fmul:
5376
5377'``fmul``' Instruction
5378^^^^^^^^^^^^^^^^^^^^^^
5379
5380Syntax:
5381"""""""
5382
5383::
5384
Tim Northover675a0962014-06-13 14:24:23 +00005385 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005386
5387Overview:
5388"""""""""
5389
5390The '``fmul``' instruction returns the product of its two operands.
5391
5392Arguments:
5393""""""""""
5394
5395The two arguments to the '``fmul``' instruction must be :ref:`floating
5396point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5397Both arguments must have identical types.
5398
5399Semantics:
5400""""""""""
5401
5402The value produced is the floating point product of the two operands.
5403This instruction can also take any number of :ref:`fast-math
5404flags <fastmath>`, which are optimization hints to enable otherwise
5405unsafe floating point optimizations:
5406
5407Example:
5408""""""""
5409
5410.. code-block:: llvm
5411
Tim Northover675a0962014-06-13 14:24:23 +00005412 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005413
5414'``udiv``' Instruction
5415^^^^^^^^^^^^^^^^^^^^^^
5416
5417Syntax:
5418"""""""
5419
5420::
5421
Tim Northover675a0962014-06-13 14:24:23 +00005422 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5423 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005424
5425Overview:
5426"""""""""
5427
5428The '``udiv``' instruction returns the quotient of its two operands.
5429
5430Arguments:
5431""""""""""
5432
5433The two arguments to the '``udiv``' instruction must be
5434:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5435arguments must have identical types.
5436
5437Semantics:
5438""""""""""
5439
5440The value produced is the unsigned integer quotient of the two operands.
5441
5442Note that unsigned integer division and signed integer division are
5443distinct operations; for signed integer division, use '``sdiv``'.
5444
5445Division by zero leads to undefined behavior.
5446
5447If the ``exact`` keyword is present, the result value of the ``udiv`` is
5448a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5449such, "((a udiv exact b) mul b) == a").
5450
5451Example:
5452""""""""
5453
5454.. code-block:: llvm
5455
Tim Northover675a0962014-06-13 14:24:23 +00005456 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005457
5458'``sdiv``' Instruction
5459^^^^^^^^^^^^^^^^^^^^^^
5460
5461Syntax:
5462"""""""
5463
5464::
5465
Tim Northover675a0962014-06-13 14:24:23 +00005466 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5467 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005468
5469Overview:
5470"""""""""
5471
5472The '``sdiv``' instruction returns the quotient of its two operands.
5473
5474Arguments:
5475""""""""""
5476
5477The two arguments to the '``sdiv``' instruction must be
5478:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5479arguments must have identical types.
5480
5481Semantics:
5482""""""""""
5483
5484The value produced is the signed integer quotient of the two operands
5485rounded towards zero.
5486
5487Note that signed integer division and unsigned integer division are
5488distinct operations; for unsigned integer division, use '``udiv``'.
5489
5490Division by zero leads to undefined behavior. Overflow also leads to
5491undefined behavior; this is a rare case, but can occur, for example, by
5492doing a 32-bit division of -2147483648 by -1.
5493
5494If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5495a :ref:`poison value <poisonvalues>` if the result would be rounded.
5496
5497Example:
5498""""""""
5499
5500.. code-block:: llvm
5501
Tim Northover675a0962014-06-13 14:24:23 +00005502 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005503
5504.. _i_fdiv:
5505
5506'``fdiv``' Instruction
5507^^^^^^^^^^^^^^^^^^^^^^
5508
5509Syntax:
5510"""""""
5511
5512::
5513
Tim Northover675a0962014-06-13 14:24:23 +00005514 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005515
5516Overview:
5517"""""""""
5518
5519The '``fdiv``' instruction returns the quotient of its two operands.
5520
5521Arguments:
5522""""""""""
5523
5524The two arguments to the '``fdiv``' instruction must be :ref:`floating
5525point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5526Both arguments must have identical types.
5527
5528Semantics:
5529""""""""""
5530
5531The value produced is the floating point quotient of the two operands.
5532This instruction can also take any number of :ref:`fast-math
5533flags <fastmath>`, which are optimization hints to enable otherwise
5534unsafe floating point optimizations:
5535
5536Example:
5537""""""""
5538
5539.. code-block:: llvm
5540
Tim Northover675a0962014-06-13 14:24:23 +00005541 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005542
5543'``urem``' Instruction
5544^^^^^^^^^^^^^^^^^^^^^^
5545
5546Syntax:
5547"""""""
5548
5549::
5550
Tim Northover675a0962014-06-13 14:24:23 +00005551 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005552
5553Overview:
5554"""""""""
5555
5556The '``urem``' instruction returns the remainder from the unsigned
5557division of its two arguments.
5558
5559Arguments:
5560""""""""""
5561
5562The two arguments to the '``urem``' instruction must be
5563:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5564arguments must have identical types.
5565
5566Semantics:
5567""""""""""
5568
5569This instruction returns the unsigned integer *remainder* of a division.
5570This instruction always performs an unsigned division to get the
5571remainder.
5572
5573Note that unsigned integer remainder and signed integer remainder are
5574distinct operations; for signed integer remainder, use '``srem``'.
5575
5576Taking the remainder of a division by zero leads to undefined behavior.
5577
5578Example:
5579""""""""
5580
5581.. code-block:: llvm
5582
Tim Northover675a0962014-06-13 14:24:23 +00005583 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005584
5585'``srem``' Instruction
5586^^^^^^^^^^^^^^^^^^^^^^
5587
5588Syntax:
5589"""""""
5590
5591::
5592
Tim Northover675a0962014-06-13 14:24:23 +00005593 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005594
5595Overview:
5596"""""""""
5597
5598The '``srem``' instruction returns the remainder from the signed
5599division of its two operands. This instruction can also take
5600:ref:`vector <t_vector>` versions of the values in which case the elements
5601must be integers.
5602
5603Arguments:
5604""""""""""
5605
5606The two arguments to the '``srem``' instruction must be
5607:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5608arguments must have identical types.
5609
5610Semantics:
5611""""""""""
5612
5613This instruction returns the *remainder* of a division (where the result
5614is either zero or has the same sign as the dividend, ``op1``), not the
5615*modulo* operator (where the result is either zero or has the same sign
5616as the divisor, ``op2``) of a value. For more information about the
5617difference, see `The Math
5618Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
5619table of how this is implemented in various languages, please see
5620`Wikipedia: modulo
5621operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
5622
5623Note that signed integer remainder and unsigned integer remainder are
5624distinct operations; for unsigned integer remainder, use '``urem``'.
5625
5626Taking the remainder of a division by zero leads to undefined behavior.
5627Overflow also leads to undefined behavior; this is a rare case, but can
5628occur, for example, by taking the remainder of a 32-bit division of
5629-2147483648 by -1. (The remainder doesn't actually overflow, but this
5630rule lets srem be implemented using instructions that return both the
5631result of the division and the remainder.)
5632
5633Example:
5634""""""""
5635
5636.. code-block:: llvm
5637
Tim Northover675a0962014-06-13 14:24:23 +00005638 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005639
5640.. _i_frem:
5641
5642'``frem``' Instruction
5643^^^^^^^^^^^^^^^^^^^^^^
5644
5645Syntax:
5646"""""""
5647
5648::
5649
Tim Northover675a0962014-06-13 14:24:23 +00005650 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005651
5652Overview:
5653"""""""""
5654
5655The '``frem``' instruction returns the remainder from the division of
5656its two operands.
5657
5658Arguments:
5659""""""""""
5660
5661The two arguments to the '``frem``' instruction must be :ref:`floating
5662point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5663Both arguments must have identical types.
5664
5665Semantics:
5666""""""""""
5667
5668This instruction returns the *remainder* of a division. The remainder
5669has the same sign as the dividend. This instruction can also take any
5670number of :ref:`fast-math flags <fastmath>`, which are optimization hints
5671to enable otherwise unsafe floating point optimizations:
5672
5673Example:
5674""""""""
5675
5676.. code-block:: llvm
5677
Tim Northover675a0962014-06-13 14:24:23 +00005678 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005679
5680.. _bitwiseops:
5681
5682Bitwise Binary Operations
5683-------------------------
5684
5685Bitwise binary operators are used to do various forms of bit-twiddling
5686in a program. They are generally very efficient instructions and can
5687commonly be strength reduced from other instructions. They require two
5688operands of the same type, execute an operation on them, and produce a
5689single value. The resulting value is the same type as its operands.
5690
5691'``shl``' Instruction
5692^^^^^^^^^^^^^^^^^^^^^
5693
5694Syntax:
5695"""""""
5696
5697::
5698
Tim Northover675a0962014-06-13 14:24:23 +00005699 <result> = shl <ty> <op1>, <op2> ; yields ty:result
5700 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
5701 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
5702 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005703
5704Overview:
5705"""""""""
5706
5707The '``shl``' instruction returns the first operand shifted to the left
5708a specified number of bits.
5709
5710Arguments:
5711""""""""""
5712
5713Both arguments to the '``shl``' instruction must be the same
5714:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5715'``op2``' is treated as an unsigned value.
5716
5717Semantics:
5718""""""""""
5719
5720The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
5721where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00005722dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00005723``op1``, the result is undefined. If the arguments are vectors, each
5724vector element of ``op1`` is shifted by the corresponding shift amount
5725in ``op2``.
5726
5727If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
5728value <poisonvalues>` if it shifts out any non-zero bits. If the
5729``nsw`` keyword is present, then the shift produces a :ref:`poison
5730value <poisonvalues>` if it shifts out any bits that disagree with the
5731resultant sign bit. As such, NUW/NSW have the same semantics as they
5732would if the shift were expressed as a mul instruction with the same
5733nsw/nuw bits in (mul %op1, (shl 1, %op2)).
5734
5735Example:
5736""""""""
5737
5738.. code-block:: llvm
5739
Tim Northover675a0962014-06-13 14:24:23 +00005740 <result> = shl i32 4, %var ; yields i32: 4 << %var
5741 <result> = shl i32 4, 2 ; yields i32: 16
5742 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00005743 <result> = shl i32 1, 32 ; undefined
5744 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
5745
5746'``lshr``' Instruction
5747^^^^^^^^^^^^^^^^^^^^^^
5748
5749Syntax:
5750"""""""
5751
5752::
5753
Tim Northover675a0962014-06-13 14:24:23 +00005754 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
5755 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005756
5757Overview:
5758"""""""""
5759
5760The '``lshr``' instruction (logical shift right) returns the first
5761operand shifted to the right a specified number of bits with zero fill.
5762
5763Arguments:
5764""""""""""
5765
5766Both arguments to the '``lshr``' instruction must be the same
5767:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5768'``op2``' is treated as an unsigned value.
5769
5770Semantics:
5771""""""""""
5772
5773This instruction always performs a logical shift right operation. The
5774most significant bits of the result will be filled with zero bits after
5775the shift. If ``op2`` is (statically or dynamically) equal to or larger
5776than the number of bits in ``op1``, the result is undefined. If the
5777arguments are vectors, each vector element of ``op1`` is shifted by the
5778corresponding shift amount in ``op2``.
5779
5780If the ``exact`` keyword is present, the result value of the ``lshr`` is
5781a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5782non-zero.
5783
5784Example:
5785""""""""
5786
5787.. code-block:: llvm
5788
Tim Northover675a0962014-06-13 14:24:23 +00005789 <result> = lshr i32 4, 1 ; yields i32:result = 2
5790 <result> = lshr i32 4, 2 ; yields i32:result = 1
5791 <result> = lshr i8 4, 3 ; yields i8:result = 0
5792 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00005793 <result> = lshr i32 1, 32 ; undefined
5794 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
5795
5796'``ashr``' Instruction
5797^^^^^^^^^^^^^^^^^^^^^^
5798
5799Syntax:
5800"""""""
5801
5802::
5803
Tim Northover675a0962014-06-13 14:24:23 +00005804 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
5805 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005806
5807Overview:
5808"""""""""
5809
5810The '``ashr``' instruction (arithmetic shift right) returns the first
5811operand shifted to the right a specified number of bits with sign
5812extension.
5813
5814Arguments:
5815""""""""""
5816
5817Both arguments to the '``ashr``' instruction must be the same
5818:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5819'``op2``' is treated as an unsigned value.
5820
5821Semantics:
5822""""""""""
5823
5824This instruction always performs an arithmetic shift right operation,
5825The most significant bits of the result will be filled with the sign bit
5826of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
5827than the number of bits in ``op1``, the result is undefined. If the
5828arguments are vectors, each vector element of ``op1`` is shifted by the
5829corresponding shift amount in ``op2``.
5830
5831If the ``exact`` keyword is present, the result value of the ``ashr`` is
5832a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5833non-zero.
5834
5835Example:
5836""""""""
5837
5838.. code-block:: llvm
5839
Tim Northover675a0962014-06-13 14:24:23 +00005840 <result> = ashr i32 4, 1 ; yields i32:result = 2
5841 <result> = ashr i32 4, 2 ; yields i32:result = 1
5842 <result> = ashr i8 4, 3 ; yields i8:result = 0
5843 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00005844 <result> = ashr i32 1, 32 ; undefined
5845 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
5846
5847'``and``' Instruction
5848^^^^^^^^^^^^^^^^^^^^^
5849
5850Syntax:
5851"""""""
5852
5853::
5854
Tim Northover675a0962014-06-13 14:24:23 +00005855 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005856
5857Overview:
5858"""""""""
5859
5860The '``and``' instruction returns the bitwise logical and of its two
5861operands.
5862
5863Arguments:
5864""""""""""
5865
5866The two arguments to the '``and``' instruction must be
5867:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5868arguments must have identical types.
5869
5870Semantics:
5871""""""""""
5872
5873The truth table used for the '``and``' instruction is:
5874
5875+-----+-----+-----+
5876| In0 | In1 | Out |
5877+-----+-----+-----+
5878| 0 | 0 | 0 |
5879+-----+-----+-----+
5880| 0 | 1 | 0 |
5881+-----+-----+-----+
5882| 1 | 0 | 0 |
5883+-----+-----+-----+
5884| 1 | 1 | 1 |
5885+-----+-----+-----+
5886
5887Example:
5888""""""""
5889
5890.. code-block:: llvm
5891
Tim Northover675a0962014-06-13 14:24:23 +00005892 <result> = and i32 4, %var ; yields i32:result = 4 & %var
5893 <result> = and i32 15, 40 ; yields i32:result = 8
5894 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00005895
5896'``or``' Instruction
5897^^^^^^^^^^^^^^^^^^^^
5898
5899Syntax:
5900"""""""
5901
5902::
5903
Tim Northover675a0962014-06-13 14:24:23 +00005904 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005905
5906Overview:
5907"""""""""
5908
5909The '``or``' instruction returns the bitwise logical inclusive or of its
5910two operands.
5911
5912Arguments:
5913""""""""""
5914
5915The two arguments to the '``or``' instruction must be
5916:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5917arguments must have identical types.
5918
5919Semantics:
5920""""""""""
5921
5922The truth table used for the '``or``' instruction is:
5923
5924+-----+-----+-----+
5925| In0 | In1 | Out |
5926+-----+-----+-----+
5927| 0 | 0 | 0 |
5928+-----+-----+-----+
5929| 0 | 1 | 1 |
5930+-----+-----+-----+
5931| 1 | 0 | 1 |
5932+-----+-----+-----+
5933| 1 | 1 | 1 |
5934+-----+-----+-----+
5935
5936Example:
5937""""""""
5938
5939::
5940
Tim Northover675a0962014-06-13 14:24:23 +00005941 <result> = or i32 4, %var ; yields i32:result = 4 | %var
5942 <result> = or i32 15, 40 ; yields i32:result = 47
5943 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00005944
5945'``xor``' Instruction
5946^^^^^^^^^^^^^^^^^^^^^
5947
5948Syntax:
5949"""""""
5950
5951::
5952
Tim Northover675a0962014-06-13 14:24:23 +00005953 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005954
5955Overview:
5956"""""""""
5957
5958The '``xor``' instruction returns the bitwise logical exclusive or of
5959its two operands. The ``xor`` is used to implement the "one's
5960complement" operation, which is the "~" operator in C.
5961
5962Arguments:
5963""""""""""
5964
5965The two arguments to the '``xor``' instruction must be
5966:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5967arguments must have identical types.
5968
5969Semantics:
5970""""""""""
5971
5972The truth table used for the '``xor``' instruction is:
5973
5974+-----+-----+-----+
5975| In0 | In1 | Out |
5976+-----+-----+-----+
5977| 0 | 0 | 0 |
5978+-----+-----+-----+
5979| 0 | 1 | 1 |
5980+-----+-----+-----+
5981| 1 | 0 | 1 |
5982+-----+-----+-----+
5983| 1 | 1 | 0 |
5984+-----+-----+-----+
5985
5986Example:
5987""""""""
5988
5989.. code-block:: llvm
5990
Tim Northover675a0962014-06-13 14:24:23 +00005991 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
5992 <result> = xor i32 15, 40 ; yields i32:result = 39
5993 <result> = xor i32 4, 8 ; yields i32:result = 12
5994 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00005995
5996Vector Operations
5997-----------------
5998
5999LLVM supports several instructions to represent vector operations in a
6000target-independent manner. These instructions cover the element-access
6001and vector-specific operations needed to process vectors effectively.
6002While LLVM does directly support these vector operations, many
6003sophisticated algorithms will want to use target-specific intrinsics to
6004take full advantage of a specific target.
6005
6006.. _i_extractelement:
6007
6008'``extractelement``' Instruction
6009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6010
6011Syntax:
6012"""""""
6013
6014::
6015
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006016 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006017
6018Overview:
6019"""""""""
6020
6021The '``extractelement``' instruction extracts a single scalar element
6022from a vector at a specified index.
6023
6024Arguments:
6025""""""""""
6026
6027The first operand of an '``extractelement``' instruction is a value of
6028:ref:`vector <t_vector>` type. The second operand is an index indicating
6029the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006030variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006031
6032Semantics:
6033""""""""""
6034
6035The result is a scalar of the same type as the element type of ``val``.
6036Its value is the value at position ``idx`` of ``val``. If ``idx``
6037exceeds the length of ``val``, the results are undefined.
6038
6039Example:
6040""""""""
6041
6042.. code-block:: llvm
6043
6044 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6045
6046.. _i_insertelement:
6047
6048'``insertelement``' Instruction
6049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6050
6051Syntax:
6052"""""""
6053
6054::
6055
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006056 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006057
6058Overview:
6059"""""""""
6060
6061The '``insertelement``' instruction inserts a scalar element into a
6062vector at a specified index.
6063
6064Arguments:
6065""""""""""
6066
6067The first operand of an '``insertelement``' instruction is a value of
6068:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6069type must equal the element type of the first operand. The third operand
6070is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006071index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006072
6073Semantics:
6074""""""""""
6075
6076The result is a vector of the same type as ``val``. Its element values
6077are those of ``val`` except at position ``idx``, where it gets the value
6078``elt``. If ``idx`` exceeds the length of ``val``, the results are
6079undefined.
6080
6081Example:
6082""""""""
6083
6084.. code-block:: llvm
6085
6086 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6087
6088.. _i_shufflevector:
6089
6090'``shufflevector``' Instruction
6091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6092
6093Syntax:
6094"""""""
6095
6096::
6097
6098 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6099
6100Overview:
6101"""""""""
6102
6103The '``shufflevector``' instruction constructs a permutation of elements
6104from two input vectors, returning a vector with the same element type as
6105the input and length that is the same as the shuffle mask.
6106
6107Arguments:
6108""""""""""
6109
6110The first two operands of a '``shufflevector``' instruction are vectors
6111with the same type. The third argument is a shuffle mask whose element
6112type is always 'i32'. The result of the instruction is a vector whose
6113length is the same as the shuffle mask and whose element type is the
6114same as the element type of the first two operands.
6115
6116The shuffle mask operand is required to be a constant vector with either
6117constant integer or undef values.
6118
6119Semantics:
6120""""""""""
6121
6122The elements of the two input vectors are numbered from left to right
6123across both of the vectors. The shuffle mask operand specifies, for each
6124element of the result vector, which element of the two input vectors the
6125result element gets. The element selector may be undef (meaning "don't
6126care") and the second operand may be undef if performing a shuffle from
6127only one vector.
6128
6129Example:
6130""""""""
6131
6132.. code-block:: llvm
6133
6134 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6135 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6136 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6137 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6138 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6139 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6140 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6141 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6142
6143Aggregate Operations
6144--------------------
6145
6146LLVM supports several instructions for working with
6147:ref:`aggregate <t_aggregate>` values.
6148
6149.. _i_extractvalue:
6150
6151'``extractvalue``' Instruction
6152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6153
6154Syntax:
6155"""""""
6156
6157::
6158
6159 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6160
6161Overview:
6162"""""""""
6163
6164The '``extractvalue``' instruction extracts the value of a member field
6165from an :ref:`aggregate <t_aggregate>` value.
6166
6167Arguments:
6168""""""""""
6169
6170The first operand of an '``extractvalue``' instruction is a value of
6171:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6172constant indices to specify which value to extract in a similar manner
6173as indices in a '``getelementptr``' instruction.
6174
6175The major differences to ``getelementptr`` indexing are:
6176
6177- Since the value being indexed is not a pointer, the first index is
6178 omitted and assumed to be zero.
6179- At least one index must be specified.
6180- Not only struct indices but also array indices must be in bounds.
6181
6182Semantics:
6183""""""""""
6184
6185The result is the value at the position in the aggregate specified by
6186the index operands.
6187
6188Example:
6189""""""""
6190
6191.. code-block:: llvm
6192
6193 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6194
6195.. _i_insertvalue:
6196
6197'``insertvalue``' Instruction
6198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6199
6200Syntax:
6201"""""""
6202
6203::
6204
6205 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6206
6207Overview:
6208"""""""""
6209
6210The '``insertvalue``' instruction inserts a value into a member field in
6211an :ref:`aggregate <t_aggregate>` value.
6212
6213Arguments:
6214""""""""""
6215
6216The first operand of an '``insertvalue``' instruction is a value of
6217:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6218a first-class value to insert. The following operands are constant
6219indices indicating the position at which to insert the value in a
6220similar manner as indices in a '``extractvalue``' instruction. The value
6221to insert must have the same type as the value identified by the
6222indices.
6223
6224Semantics:
6225""""""""""
6226
6227The result is an aggregate of the same type as ``val``. Its value is
6228that of ``val`` except that the value at the position specified by the
6229indices is that of ``elt``.
6230
6231Example:
6232""""""""
6233
6234.. code-block:: llvm
6235
6236 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6237 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006238 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006239
6240.. _memoryops:
6241
6242Memory Access and Addressing Operations
6243---------------------------------------
6244
6245A key design point of an SSA-based representation is how it represents
6246memory. In LLVM, no memory locations are in SSA form, which makes things
6247very simple. This section describes how to read, write, and allocate
6248memory in LLVM.
6249
6250.. _i_alloca:
6251
6252'``alloca``' Instruction
6253^^^^^^^^^^^^^^^^^^^^^^^^
6254
6255Syntax:
6256"""""""
6257
6258::
6259
Tim Northover675a0962014-06-13 14:24:23 +00006260 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006261
6262Overview:
6263"""""""""
6264
6265The '``alloca``' instruction allocates memory on the stack frame of the
6266currently executing function, to be automatically released when this
6267function returns to its caller. The object is always allocated in the
6268generic address space (address space zero).
6269
6270Arguments:
6271""""""""""
6272
6273The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6274bytes of memory on the runtime stack, returning a pointer of the
6275appropriate type to the program. If "NumElements" is specified, it is
6276the number of elements allocated, otherwise "NumElements" is defaulted
6277to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006278allocation is guaranteed to be aligned to at least that boundary. The
6279alignment may not be greater than ``1 << 29``. If not specified, or if
6280zero, the target can choose to align the allocation on any convenient
6281boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006282
6283'``type``' may be any sized type.
6284
6285Semantics:
6286""""""""""
6287
6288Memory is allocated; a pointer is returned. The operation is undefined
6289if there is insufficient stack space for the allocation. '``alloca``'d
6290memory is automatically released when the function returns. The
6291'``alloca``' instruction is commonly used to represent automatic
6292variables that must have an address available. When the function returns
6293(either with the ``ret`` or ``resume`` instructions), the memory is
6294reclaimed. Allocating zero bytes is legal, but the result is undefined.
6295The order in which memory is allocated (ie., which way the stack grows)
6296is not specified.
6297
6298Example:
6299""""""""
6300
6301.. code-block:: llvm
6302
Tim Northover675a0962014-06-13 14:24:23 +00006303 %ptr = alloca i32 ; yields i32*:ptr
6304 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6305 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6306 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006307
6308.. _i_load:
6309
6310'``load``' Instruction
6311^^^^^^^^^^^^^^^^^^^^^^
6312
6313Syntax:
6314"""""""
6315
6316::
6317
Sanjoy Dasf9995472015-05-19 20:10:19 +00006318 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006319 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
6320 !<index> = !{ i32 1 }
6321
6322Overview:
6323"""""""""
6324
6325The '``load``' instruction is used to read from memory.
6326
6327Arguments:
6328""""""""""
6329
Eli Bendersky239a78b2013-04-17 20:17:08 +00006330The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006331from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006332class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6333then the optimizer is not allowed to modify the number or order of
6334execution of this ``load`` with other :ref:`volatile
6335operations <volatile>`.
6336
6337If the ``load`` is marked as ``atomic``, it takes an extra
6338:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6339``release`` and ``acq_rel`` orderings are not valid on ``load``
6340instructions. Atomic loads produce :ref:`defined <memmodel>` results
6341when they may see multiple atomic stores. The type of the pointee must
6342be an integer type whose bit width is a power of two greater than or
6343equal to eight and less than or equal to a target-specific size limit.
6344``align`` must be explicitly specified on atomic loads, and the load has
6345undefined behavior if the alignment is not set to a value which is at
6346least the size in bytes of the pointee. ``!nontemporal`` does not have
6347any defined semantics for atomic loads.
6348
6349The optional constant ``align`` argument specifies the alignment of the
6350operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006351or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006352alignment for the target. It is the responsibility of the code emitter
6353to ensure that the alignment information is correct. Overestimating the
6354alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006355may produce less efficient code. An alignment of 1 is always safe. The
6356maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006357
6358The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006359metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006360``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006361metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006362that this load is not expected to be reused in the cache. The code
6363generator may select special instructions to save cache bandwidth, such
6364as the ``MOVNT`` instruction on x86.
6365
6366The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006367metadata name ``<index>`` corresponding to a metadata node with no
6368entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006369instruction tells the optimizer and code generator that the address
6370operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006371Being invariant does not imply that a location is dereferenceable,
6372but it does imply that once the location is known dereferenceable
6373its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006374
Philip Reamescdb72f32014-10-20 22:40:55 +00006375The optional ``!nonnull`` metadata must reference a single
6376metadata name ``<index>`` corresponding to a metadata node with no
6377entries. The existence of the ``!nonnull`` metadata on the
6378instruction tells the optimizer that the value loaded is known to
6379never be null. This is analogous to the ''nonnull'' attribute
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006380on parameters and return values. This metadata can only be applied
6381to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006382
Sanjoy Dasf9995472015-05-19 20:10:19 +00006383The optional ``!dereferenceable`` metadata must reference a single
6384metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6385entry. The existence of the ``!dereferenceable`` metadata on the instruction
6386tells the optimizer that the value loaded is known to be dereferenceable.
6387The number of bytes known to be dereferenceable is specified by the integer
6388value in the metadata node. This is analogous to the ''dereferenceable''
6389attribute on parameters and return values. This metadata can only be applied
6390to loads of a pointer type.
6391
6392The optional ``!dereferenceable_or_null`` metadata must reference a single
6393metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6394entry. The existence of the ``!dereferenceable_or_null`` metadata on the
6395instruction tells the optimizer that the value loaded is known to be either
6396dereferenceable or null.
6397The number of bytes known to be dereferenceable is specified by the integer
6398value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6399attribute on parameters and return values. This metadata can only be applied
6400to loads of a pointer type.
6401
Sean Silvab084af42012-12-07 10:36:55 +00006402Semantics:
6403""""""""""
6404
6405The location of memory pointed to is loaded. If the value being loaded
6406is of scalar type then the number of bytes read does not exceed the
6407minimum number of bytes needed to hold all bits of the type. For
6408example, loading an ``i24`` reads at most three bytes. When loading a
6409value of a type like ``i20`` with a size that is not an integral number
6410of bytes, the result is undefined if the value was not originally
6411written using a store of the same type.
6412
6413Examples:
6414"""""""""
6415
6416.. code-block:: llvm
6417
Tim Northover675a0962014-06-13 14:24:23 +00006418 %ptr = alloca i32 ; yields i32*:ptr
6419 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006420 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006421
6422.. _i_store:
6423
6424'``store``' Instruction
6425^^^^^^^^^^^^^^^^^^^^^^^
6426
6427Syntax:
6428"""""""
6429
6430::
6431
Tim Northover675a0962014-06-13 14:24:23 +00006432 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
6433 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006434
6435Overview:
6436"""""""""
6437
6438The '``store``' instruction is used to write to memory.
6439
6440Arguments:
6441""""""""""
6442
Eli Benderskyca380842013-04-17 17:17:20 +00006443There are two arguments to the ``store`` instruction: a value to store
6444and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006445operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006446the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006447then the optimizer is not allowed to modify the number or order of
6448execution of this ``store`` with other :ref:`volatile
6449operations <volatile>`.
6450
6451If the ``store`` is marked as ``atomic``, it takes an extra
6452:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6453``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6454instructions. Atomic loads produce :ref:`defined <memmodel>` results
6455when they may see multiple atomic stores. The type of the pointee must
6456be an integer type whose bit width is a power of two greater than or
6457equal to eight and less than or equal to a target-specific size limit.
6458``align`` must be explicitly specified on atomic stores, and the store
6459has undefined behavior if the alignment is not set to a value which is
6460at least the size in bytes of the pointee. ``!nontemporal`` does not
6461have any defined semantics for atomic stores.
6462
Eli Benderskyca380842013-04-17 17:17:20 +00006463The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006464operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006465or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006466alignment for the target. It is the responsibility of the code emitter
6467to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006468alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006469alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006470safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006471
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006472The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006473name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006474value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006475tells the optimizer and code generator that this load is not expected to
6476be reused in the cache. The code generator may select special
6477instructions to save cache bandwidth, such as the MOVNT instruction on
6478x86.
6479
6480Semantics:
6481""""""""""
6482
Eli Benderskyca380842013-04-17 17:17:20 +00006483The contents of memory are updated to contain ``<value>`` at the
6484location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006485of scalar type then the number of bytes written does not exceed the
6486minimum number of bytes needed to hold all bits of the type. For
6487example, storing an ``i24`` writes at most three bytes. When writing a
6488value of a type like ``i20`` with a size that is not an integral number
6489of bytes, it is unspecified what happens to the extra bits that do not
6490belong to the type, but they will typically be overwritten.
6491
6492Example:
6493""""""""
6494
6495.. code-block:: llvm
6496
Tim Northover675a0962014-06-13 14:24:23 +00006497 %ptr = alloca i32 ; yields i32*:ptr
6498 store i32 3, i32* %ptr ; yields void
6499 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006500
6501.. _i_fence:
6502
6503'``fence``' Instruction
6504^^^^^^^^^^^^^^^^^^^^^^^
6505
6506Syntax:
6507"""""""
6508
6509::
6510
Tim Northover675a0962014-06-13 14:24:23 +00006511 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006512
6513Overview:
6514"""""""""
6515
6516The '``fence``' instruction is used to introduce happens-before edges
6517between operations.
6518
6519Arguments:
6520""""""""""
6521
6522'``fence``' instructions take an :ref:`ordering <ordering>` argument which
6523defines what *synchronizes-with* edges they add. They can only be given
6524``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
6525
6526Semantics:
6527""""""""""
6528
6529A fence A which has (at least) ``release`` ordering semantics
6530*synchronizes with* a fence B with (at least) ``acquire`` ordering
6531semantics if and only if there exist atomic operations X and Y, both
6532operating on some atomic object M, such that A is sequenced before X, X
6533modifies M (either directly or through some side effect of a sequence
6534headed by X), Y is sequenced before B, and Y observes M. This provides a
6535*happens-before* dependency between A and B. Rather than an explicit
6536``fence``, one (but not both) of the atomic operations X or Y might
6537provide a ``release`` or ``acquire`` (resp.) ordering constraint and
6538still *synchronize-with* the explicit ``fence`` and establish the
6539*happens-before* edge.
6540
6541A ``fence`` which has ``seq_cst`` ordering, in addition to having both
6542``acquire`` and ``release`` semantics specified above, participates in
6543the global program order of other ``seq_cst`` operations and/or fences.
6544
6545The optional ":ref:`singlethread <singlethread>`" argument specifies
6546that the fence only synchronizes with other fences in the same thread.
6547(This is useful for interacting with signal handlers.)
6548
6549Example:
6550""""""""
6551
6552.. code-block:: llvm
6553
Tim Northover675a0962014-06-13 14:24:23 +00006554 fence acquire ; yields void
6555 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006556
6557.. _i_cmpxchg:
6558
6559'``cmpxchg``' Instruction
6560^^^^^^^^^^^^^^^^^^^^^^^^^
6561
6562Syntax:
6563"""""""
6564
6565::
6566
Tim Northover675a0962014-06-13 14:24:23 +00006567 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00006568
6569Overview:
6570"""""""""
6571
6572The '``cmpxchg``' instruction is used to atomically modify memory. It
6573loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00006574equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00006575
6576Arguments:
6577""""""""""
6578
6579There are three arguments to the '``cmpxchg``' instruction: an address
6580to operate on, a value to compare to the value currently be at that
6581address, and a new value to place at that address if the compared values
6582are equal. The type of '<cmp>' must be an integer type whose bit width
6583is a power of two greater than or equal to eight and less than or equal
6584to a target-specific size limit. '<cmp>' and '<new>' must have the same
6585type, and the type of '<pointer>' must be a pointer to that type. If the
6586``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
6587to modify the number or order of execution of this ``cmpxchg`` with
6588other :ref:`volatile operations <volatile>`.
6589
Tim Northovere94a5182014-03-11 10:48:52 +00006590The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00006591``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
6592must be at least ``monotonic``, the ordering constraint on failure must be no
6593stronger than that on success, and the failure ordering cannot be either
6594``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00006595
6596The optional "``singlethread``" argument declares that the ``cmpxchg``
6597is only atomic with respect to code (usually signal handlers) running in
6598the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
6599respect to all other code in the system.
6600
6601The pointer passed into cmpxchg must have alignment greater than or
6602equal to the size in memory of the operand.
6603
6604Semantics:
6605""""""""""
6606
Tim Northover420a2162014-06-13 14:24:07 +00006607The contents of memory at the location specified by the '``<pointer>``' operand
6608is read and compared to '``<cmp>``'; if the read value is the equal, the
6609'``<new>``' is written. The original value at the location is returned, together
6610with a flag indicating success (true) or failure (false).
6611
6612If the cmpxchg operation is marked as ``weak`` then a spurious failure is
6613permitted: the operation may not write ``<new>`` even if the comparison
6614matched.
6615
6616If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
6617if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00006618
Tim Northovere94a5182014-03-11 10:48:52 +00006619A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
6620identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
6621load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00006622
6623Example:
6624""""""""
6625
6626.. code-block:: llvm
6627
6628 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006629 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006630 br label %loop
6631
6632 loop:
6633 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6634 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006635 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006636 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6637 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006638 br i1 %success, label %done, label %loop
6639
6640 done:
6641 ...
6642
6643.. _i_atomicrmw:
6644
6645'``atomicrmw``' Instruction
6646^^^^^^^^^^^^^^^^^^^^^^^^^^^
6647
6648Syntax:
6649"""""""
6650
6651::
6652
Tim Northover675a0962014-06-13 14:24:23 +00006653 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00006654
6655Overview:
6656"""""""""
6657
6658The '``atomicrmw``' instruction is used to atomically modify memory.
6659
6660Arguments:
6661""""""""""
6662
6663There are three arguments to the '``atomicrmw``' instruction: an
6664operation to apply, an address whose value to modify, an argument to the
6665operation. The operation must be one of the following keywords:
6666
6667- xchg
6668- add
6669- sub
6670- and
6671- nand
6672- or
6673- xor
6674- max
6675- min
6676- umax
6677- umin
6678
6679The type of '<value>' must be an integer type whose bit width is a power
6680of two greater than or equal to eight and less than or equal to a
6681target-specific size limit. The type of the '``<pointer>``' operand must
6682be a pointer to that type. If the ``atomicrmw`` is marked as
6683``volatile``, then the optimizer is not allowed to modify the number or
6684order of execution of this ``atomicrmw`` with other :ref:`volatile
6685operations <volatile>`.
6686
6687Semantics:
6688""""""""""
6689
6690The contents of memory at the location specified by the '``<pointer>``'
6691operand are atomically read, modified, and written back. The original
6692value at the location is returned. The modification is specified by the
6693operation argument:
6694
6695- xchg: ``*ptr = val``
6696- add: ``*ptr = *ptr + val``
6697- sub: ``*ptr = *ptr - val``
6698- and: ``*ptr = *ptr & val``
6699- nand: ``*ptr = ~(*ptr & val)``
6700- or: ``*ptr = *ptr | val``
6701- xor: ``*ptr = *ptr ^ val``
6702- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
6703- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
6704- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
6705 comparison)
6706- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
6707 comparison)
6708
6709Example:
6710""""""""
6711
6712.. code-block:: llvm
6713
Tim Northover675a0962014-06-13 14:24:23 +00006714 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006715
6716.. _i_getelementptr:
6717
6718'``getelementptr``' Instruction
6719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6720
6721Syntax:
6722"""""""
6723
6724::
6725
David Blaikie16a97eb2015-03-04 22:02:58 +00006726 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6727 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6728 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00006729
6730Overview:
6731"""""""""
6732
6733The '``getelementptr``' instruction is used to get the address of a
6734subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00006735address calculation only and does not access memory. The instruction can also
6736be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00006737
6738Arguments:
6739""""""""""
6740
David Blaikie16a97eb2015-03-04 22:02:58 +00006741The first argument is always a type used as the basis for the calculations.
6742The second argument is always a pointer or a vector of pointers, and is the
6743base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00006744that indicate which of the elements of the aggregate object are indexed.
6745The interpretation of each index is dependent on the type being indexed
6746into. The first index always indexes the pointer value given as the
6747first argument, the second index indexes a value of the type pointed to
6748(not necessarily the value directly pointed to, since the first index
6749can be non-zero), etc. The first type indexed into must be a pointer
6750value, subsequent types can be arrays, vectors, and structs. Note that
6751subsequent types being indexed into can never be pointers, since that
6752would require loading the pointer before continuing calculation.
6753
6754The type of each index argument depends on the type it is indexing into.
6755When indexing into a (optionally packed) structure, only ``i32`` integer
6756**constants** are allowed (when using a vector of indices they must all
6757be the **same** ``i32`` integer constant). When indexing into an array,
6758pointer or vector, integers of any width are allowed, and they are not
6759required to be constant. These integers are treated as signed values
6760where relevant.
6761
6762For example, let's consider a C code fragment and how it gets compiled
6763to LLVM:
6764
6765.. code-block:: c
6766
6767 struct RT {
6768 char A;
6769 int B[10][20];
6770 char C;
6771 };
6772 struct ST {
6773 int X;
6774 double Y;
6775 struct RT Z;
6776 };
6777
6778 int *foo(struct ST *s) {
6779 return &s[1].Z.B[5][13];
6780 }
6781
6782The LLVM code generated by Clang is:
6783
6784.. code-block:: llvm
6785
6786 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
6787 %struct.ST = type { i32, double, %struct.RT }
6788
6789 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
6790 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00006791 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00006792 ret i32* %arrayidx
6793 }
6794
6795Semantics:
6796""""""""""
6797
6798In the example above, the first index is indexing into the
6799'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
6800= '``{ i32, double, %struct.RT }``' type, a structure. The second index
6801indexes into the third element of the structure, yielding a
6802'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
6803structure. The third index indexes into the second element of the
6804structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
6805dimensions of the array are subscripted into, yielding an '``i32``'
6806type. The '``getelementptr``' instruction returns a pointer to this
6807element, thus computing a value of '``i32*``' type.
6808
6809Note that it is perfectly legal to index partially through a structure,
6810returning a pointer to an inner element. Because of this, the LLVM code
6811for the given testcase is equivalent to:
6812
6813.. code-block:: llvm
6814
6815 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00006816 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
6817 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
6818 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
6819 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
6820 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00006821 ret i32* %t5
6822 }
6823
6824If the ``inbounds`` keyword is present, the result value of the
6825``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
6826pointer is not an *in bounds* address of an allocated object, or if any
6827of the addresses that would be formed by successive addition of the
6828offsets implied by the indices to the base address with infinitely
6829precise signed arithmetic are not an *in bounds* address of that
6830allocated object. The *in bounds* addresses for an allocated object are
6831all the addresses that point into the object, plus the address one byte
6832past the end. In cases where the base is a vector of pointers the
6833``inbounds`` keyword applies to each of the computations element-wise.
6834
6835If the ``inbounds`` keyword is not present, the offsets are added to the
6836base address with silently-wrapping two's complement arithmetic. If the
6837offsets have a different width from the pointer, they are sign-extended
6838or truncated to the width of the pointer. The result value of the
6839``getelementptr`` may be outside the object pointed to by the base
6840pointer. The result value may not necessarily be used to access memory
6841though, even if it happens to point into allocated storage. See the
6842:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
6843information.
6844
6845The getelementptr instruction is often confusing. For some more insight
6846into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
6847
6848Example:
6849""""""""
6850
6851.. code-block:: llvm
6852
6853 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006854 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006855 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006856 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006857 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006858 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006859 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006860 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00006861
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00006862Vector of pointers:
6863"""""""""""""""""""
6864
6865The ``getelementptr`` returns a vector of pointers, instead of a single address,
6866when one or more of its arguments is a vector. In such cases, all vector
6867arguments should have the same number of elements, and every scalar argument
6868will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00006869
6870.. code-block:: llvm
6871
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00006872 ; All arguments are vectors:
6873 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
6874 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
6875
6876 ; Add the same scalar offset to each pointer of a vector:
6877 ; A[i] = ptrs[i] + offset*sizeof(i8)
6878 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
6879
6880 ; Add distinct offsets to the same pointer:
6881 ; A[i] = ptr + offsets[i]*sizeof(i8)
6882 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
6883
6884 ; In all cases described above the type of the result is <4 x i8*>
6885
6886The two following instructions are equivalent:
6887
6888.. code-block:: llvm
6889
6890 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
6891 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
6892 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
6893 <4 x i32> %ind4,
6894 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
6895
6896 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
6897 i32 2, i32 1, <4 x i32> %ind4, i64 13
6898
6899Let's look at the C code, where the vector version of ``getelementptr``
6900makes sense:
6901
6902.. code-block:: c
6903
6904 // Let's assume that we vectorize the following loop:
6905 double *A, B; int *C;
6906 for (int i = 0; i < size; ++i) {
6907 A[i] = B[C[i]];
6908 }
6909
6910.. code-block:: llvm
6911
6912 ; get pointers for 8 elements from array B
6913 %ptrs = getelementptr double, double* %B, <8 x i32> %C
6914 ; load 8 elements from array B into A
6915 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
6916 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00006917
6918Conversion Operations
6919---------------------
6920
6921The instructions in this category are the conversion instructions
6922(casting) which all take a single operand and a type. They perform
6923various bit conversions on the operand.
6924
6925'``trunc .. to``' Instruction
6926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6927
6928Syntax:
6929"""""""
6930
6931::
6932
6933 <result> = trunc <ty> <value> to <ty2> ; yields ty2
6934
6935Overview:
6936"""""""""
6937
6938The '``trunc``' instruction truncates its operand to the type ``ty2``.
6939
6940Arguments:
6941""""""""""
6942
6943The '``trunc``' instruction takes a value to trunc, and a type to trunc
6944it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
6945of the same number of integers. The bit size of the ``value`` must be
6946larger than the bit size of the destination type, ``ty2``. Equal sized
6947types are not allowed.
6948
6949Semantics:
6950""""""""""
6951
6952The '``trunc``' instruction truncates the high order bits in ``value``
6953and converts the remaining bits to ``ty2``. Since the source size must
6954be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
6955It will always truncate bits.
6956
6957Example:
6958""""""""
6959
6960.. code-block:: llvm
6961
6962 %X = trunc i32 257 to i8 ; yields i8:1
6963 %Y = trunc i32 123 to i1 ; yields i1:true
6964 %Z = trunc i32 122 to i1 ; yields i1:false
6965 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
6966
6967'``zext .. to``' Instruction
6968^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6969
6970Syntax:
6971"""""""
6972
6973::
6974
6975 <result> = zext <ty> <value> to <ty2> ; yields ty2
6976
6977Overview:
6978"""""""""
6979
6980The '``zext``' instruction zero extends its operand to type ``ty2``.
6981
6982Arguments:
6983""""""""""
6984
6985The '``zext``' instruction takes a value to cast, and a type to cast it
6986to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6987the same number of integers. The bit size of the ``value`` must be
6988smaller than the bit size of the destination type, ``ty2``.
6989
6990Semantics:
6991""""""""""
6992
6993The ``zext`` fills the high order bits of the ``value`` with zero bits
6994until it reaches the size of the destination type, ``ty2``.
6995
6996When zero extending from i1, the result will always be either 0 or 1.
6997
6998Example:
6999""""""""
7000
7001.. code-block:: llvm
7002
7003 %X = zext i32 257 to i64 ; yields i64:257
7004 %Y = zext i1 true to i32 ; yields i32:1
7005 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7006
7007'``sext .. to``' Instruction
7008^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7009
7010Syntax:
7011"""""""
7012
7013::
7014
7015 <result> = sext <ty> <value> to <ty2> ; yields ty2
7016
7017Overview:
7018"""""""""
7019
7020The '``sext``' sign extends ``value`` to the type ``ty2``.
7021
7022Arguments:
7023""""""""""
7024
7025The '``sext``' instruction takes a value to cast, and a type to cast it
7026to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7027the same number of integers. The bit size of the ``value`` must be
7028smaller than the bit size of the destination type, ``ty2``.
7029
7030Semantics:
7031""""""""""
7032
7033The '``sext``' instruction performs a sign extension by copying the sign
7034bit (highest order bit) of the ``value`` until it reaches the bit size
7035of the type ``ty2``.
7036
7037When sign extending from i1, the extension always results in -1 or 0.
7038
7039Example:
7040""""""""
7041
7042.. code-block:: llvm
7043
7044 %X = sext i8 -1 to i16 ; yields i16 :65535
7045 %Y = sext i1 true to i32 ; yields i32:-1
7046 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7047
7048'``fptrunc .. to``' Instruction
7049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7050
7051Syntax:
7052"""""""
7053
7054::
7055
7056 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7057
7058Overview:
7059"""""""""
7060
7061The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7062
7063Arguments:
7064""""""""""
7065
7066The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7067value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7068The size of ``value`` must be larger than the size of ``ty2``. This
7069implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7070
7071Semantics:
7072""""""""""
7073
7074The '``fptrunc``' instruction truncates a ``value`` from a larger
7075:ref:`floating point <t_floating>` type to a smaller :ref:`floating
7076point <t_floating>` type. If the value cannot fit within the
7077destination type, ``ty2``, then the results are undefined.
7078
7079Example:
7080""""""""
7081
7082.. code-block:: llvm
7083
7084 %X = fptrunc double 123.0 to float ; yields float:123.0
7085 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7086
7087'``fpext .. to``' Instruction
7088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093::
7094
7095 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7096
7097Overview:
7098"""""""""
7099
7100The '``fpext``' extends a floating point ``value`` to a larger floating
7101point value.
7102
7103Arguments:
7104""""""""""
7105
7106The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7107``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7108to. The source type must be smaller than the destination type.
7109
7110Semantics:
7111""""""""""
7112
7113The '``fpext``' instruction extends the ``value`` from a smaller
7114:ref:`floating point <t_floating>` type to a larger :ref:`floating
7115point <t_floating>` type. The ``fpext`` cannot be used to make a
7116*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7117*no-op cast* for a floating point cast.
7118
7119Example:
7120""""""""
7121
7122.. code-block:: llvm
7123
7124 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7125 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7126
7127'``fptoui .. to``' Instruction
7128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7129
7130Syntax:
7131"""""""
7132
7133::
7134
7135 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7136
7137Overview:
7138"""""""""
7139
7140The '``fptoui``' converts a floating point ``value`` to its unsigned
7141integer equivalent of type ``ty2``.
7142
7143Arguments:
7144""""""""""
7145
7146The '``fptoui``' instruction takes a value to cast, which must be a
7147scalar or vector :ref:`floating point <t_floating>` value, and a type to
7148cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7149``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7150type with the same number of elements as ``ty``
7151
7152Semantics:
7153""""""""""
7154
7155The '``fptoui``' instruction converts its :ref:`floating
7156point <t_floating>` operand into the nearest (rounding towards zero)
7157unsigned integer value. If the value cannot fit in ``ty2``, the results
7158are undefined.
7159
7160Example:
7161""""""""
7162
7163.. code-block:: llvm
7164
7165 %X = fptoui double 123.0 to i32 ; yields i32:123
7166 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7167 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7168
7169'``fptosi .. to``' Instruction
7170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7171
7172Syntax:
7173"""""""
7174
7175::
7176
7177 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7178
7179Overview:
7180"""""""""
7181
7182The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7183``value`` to type ``ty2``.
7184
7185Arguments:
7186""""""""""
7187
7188The '``fptosi``' instruction takes a value to cast, which must be a
7189scalar or vector :ref:`floating point <t_floating>` value, and a type to
7190cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7191``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7192type with the same number of elements as ``ty``
7193
7194Semantics:
7195""""""""""
7196
7197The '``fptosi``' instruction converts its :ref:`floating
7198point <t_floating>` operand into the nearest (rounding towards zero)
7199signed integer value. If the value cannot fit in ``ty2``, the results
7200are undefined.
7201
7202Example:
7203""""""""
7204
7205.. code-block:: llvm
7206
7207 %X = fptosi double -123.0 to i32 ; yields i32:-123
7208 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7209 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7210
7211'``uitofp .. to``' Instruction
7212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7213
7214Syntax:
7215"""""""
7216
7217::
7218
7219 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7220
7221Overview:
7222"""""""""
7223
7224The '``uitofp``' instruction regards ``value`` as an unsigned integer
7225and converts that value to the ``ty2`` type.
7226
7227Arguments:
7228""""""""""
7229
7230The '``uitofp``' instruction takes a value to cast, which must be a
7231scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7232``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7233``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7234type with the same number of elements as ``ty``
7235
7236Semantics:
7237""""""""""
7238
7239The '``uitofp``' instruction interprets its operand as an unsigned
7240integer quantity and converts it to the corresponding floating point
7241value. If the value cannot fit in the floating point value, the results
7242are undefined.
7243
7244Example:
7245""""""""
7246
7247.. code-block:: llvm
7248
7249 %X = uitofp i32 257 to float ; yields float:257.0
7250 %Y = uitofp i8 -1 to double ; yields double:255.0
7251
7252'``sitofp .. to``' Instruction
7253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7254
7255Syntax:
7256"""""""
7257
7258::
7259
7260 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7261
7262Overview:
7263"""""""""
7264
7265The '``sitofp``' instruction regards ``value`` as a signed integer and
7266converts that value to the ``ty2`` type.
7267
7268Arguments:
7269""""""""""
7270
7271The '``sitofp``' instruction takes a value to cast, which must be a
7272scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7273``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7274``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7275type with the same number of elements as ``ty``
7276
7277Semantics:
7278""""""""""
7279
7280The '``sitofp``' instruction interprets its operand as a signed integer
7281quantity and converts it to the corresponding floating point value. If
7282the value cannot fit in the floating point value, the results are
7283undefined.
7284
7285Example:
7286""""""""
7287
7288.. code-block:: llvm
7289
7290 %X = sitofp i32 257 to float ; yields float:257.0
7291 %Y = sitofp i8 -1 to double ; yields double:-1.0
7292
7293.. _i_ptrtoint:
7294
7295'``ptrtoint .. to``' Instruction
7296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7297
7298Syntax:
7299"""""""
7300
7301::
7302
7303 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7304
7305Overview:
7306"""""""""
7307
7308The '``ptrtoint``' instruction converts the pointer or a vector of
7309pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7310
7311Arguments:
7312""""""""""
7313
7314The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007315a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007316type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7317a vector of integers type.
7318
7319Semantics:
7320""""""""""
7321
7322The '``ptrtoint``' instruction converts ``value`` to integer type
7323``ty2`` by interpreting the pointer value as an integer and either
7324truncating or zero extending that value to the size of the integer type.
7325If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7326``value`` is larger than ``ty2`` then a truncation is done. If they are
7327the same size, then nothing is done (*no-op cast*) other than a type
7328change.
7329
7330Example:
7331""""""""
7332
7333.. code-block:: llvm
7334
7335 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7336 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7337 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7338
7339.. _i_inttoptr:
7340
7341'``inttoptr .. to``' Instruction
7342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7343
7344Syntax:
7345"""""""
7346
7347::
7348
7349 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7350
7351Overview:
7352"""""""""
7353
7354The '``inttoptr``' instruction converts an integer ``value`` to a
7355pointer type, ``ty2``.
7356
7357Arguments:
7358""""""""""
7359
7360The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7361cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7362type.
7363
7364Semantics:
7365""""""""""
7366
7367The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7368applying either a zero extension or a truncation depending on the size
7369of the integer ``value``. If ``value`` is larger than the size of a
7370pointer then a truncation is done. If ``value`` is smaller than the size
7371of a pointer then a zero extension is done. If they are the same size,
7372nothing is done (*no-op cast*).
7373
7374Example:
7375""""""""
7376
7377.. code-block:: llvm
7378
7379 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7380 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7381 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7382 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7383
7384.. _i_bitcast:
7385
7386'``bitcast .. to``' Instruction
7387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7388
7389Syntax:
7390"""""""
7391
7392::
7393
7394 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7395
7396Overview:
7397"""""""""
7398
7399The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7400changing any bits.
7401
7402Arguments:
7403""""""""""
7404
7405The '``bitcast``' instruction takes a value to cast, which must be a
7406non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007407also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7408bit sizes of ``value`` and the destination type, ``ty2``, must be
7409identical. If the source type is a pointer, the destination type must
7410also be a pointer of the same size. This instruction supports bitwise
7411conversion of vectors to integers and to vectors of other types (as
7412long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007413
7414Semantics:
7415""""""""""
7416
Matt Arsenault24b49c42013-07-31 17:49:08 +00007417The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7418is always a *no-op cast* because no bits change with this
7419conversion. The conversion is done as if the ``value`` had been stored
7420to memory and read back as type ``ty2``. Pointer (or vector of
7421pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007422pointers) types with the same address space through this instruction.
7423To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7424or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007425
7426Example:
7427""""""""
7428
7429.. code-block:: llvm
7430
7431 %X = bitcast i8 255 to i8 ; yields i8 :-1
7432 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7433 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7434 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7435
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007436.. _i_addrspacecast:
7437
7438'``addrspacecast .. to``' Instruction
7439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7440
7441Syntax:
7442"""""""
7443
7444::
7445
7446 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7447
7448Overview:
7449"""""""""
7450
7451The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7452address space ``n`` to type ``pty2`` in address space ``m``.
7453
7454Arguments:
7455""""""""""
7456
7457The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7458to cast and a pointer type to cast it to, which must have a different
7459address space.
7460
7461Semantics:
7462""""""""""
7463
7464The '``addrspacecast``' instruction converts the pointer value
7465``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007466value modification, depending on the target and the address space
7467pair. Pointer conversions within the same address space must be
7468performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007469conversion is legal then both result and operand refer to the same memory
7470location.
7471
7472Example:
7473""""""""
7474
7475.. code-block:: llvm
7476
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007477 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7478 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7479 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007480
Sean Silvab084af42012-12-07 10:36:55 +00007481.. _otherops:
7482
7483Other Operations
7484----------------
7485
7486The instructions in this category are the "miscellaneous" instructions,
7487which defy better classification.
7488
7489.. _i_icmp:
7490
7491'``icmp``' Instruction
7492^^^^^^^^^^^^^^^^^^^^^^
7493
7494Syntax:
7495"""""""
7496
7497::
7498
Tim Northover675a0962014-06-13 14:24:23 +00007499 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007500
7501Overview:
7502"""""""""
7503
7504The '``icmp``' instruction returns a boolean value or a vector of
7505boolean values based on comparison of its two integer, integer vector,
7506pointer, or pointer vector operands.
7507
7508Arguments:
7509""""""""""
7510
7511The '``icmp``' instruction takes three operands. The first operand is
7512the condition code indicating the kind of comparison to perform. It is
7513not a value, just a keyword. The possible condition code are:
7514
7515#. ``eq``: equal
7516#. ``ne``: not equal
7517#. ``ugt``: unsigned greater than
7518#. ``uge``: unsigned greater or equal
7519#. ``ult``: unsigned less than
7520#. ``ule``: unsigned less or equal
7521#. ``sgt``: signed greater than
7522#. ``sge``: signed greater or equal
7523#. ``slt``: signed less than
7524#. ``sle``: signed less or equal
7525
7526The remaining two arguments must be :ref:`integer <t_integer>` or
7527:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
7528must also be identical types.
7529
7530Semantics:
7531""""""""""
7532
7533The '``icmp``' compares ``op1`` and ``op2`` according to the condition
7534code given as ``cond``. The comparison performed always yields either an
7535:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
7536
7537#. ``eq``: yields ``true`` if the operands are equal, ``false``
7538 otherwise. No sign interpretation is necessary or performed.
7539#. ``ne``: yields ``true`` if the operands are unequal, ``false``
7540 otherwise. No sign interpretation is necessary or performed.
7541#. ``ugt``: interprets the operands as unsigned values and yields
7542 ``true`` if ``op1`` is greater than ``op2``.
7543#. ``uge``: interprets the operands as unsigned values and yields
7544 ``true`` if ``op1`` is greater than or equal to ``op2``.
7545#. ``ult``: interprets the operands as unsigned values and yields
7546 ``true`` if ``op1`` is less than ``op2``.
7547#. ``ule``: interprets the operands as unsigned values and yields
7548 ``true`` if ``op1`` is less than or equal to ``op2``.
7549#. ``sgt``: interprets the operands as signed values and yields ``true``
7550 if ``op1`` is greater than ``op2``.
7551#. ``sge``: interprets the operands as signed values and yields ``true``
7552 if ``op1`` is greater than or equal to ``op2``.
7553#. ``slt``: interprets the operands as signed values and yields ``true``
7554 if ``op1`` is less than ``op2``.
7555#. ``sle``: interprets the operands as signed values and yields ``true``
7556 if ``op1`` is less than or equal to ``op2``.
7557
7558If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
7559are compared as if they were integers.
7560
7561If the operands are integer vectors, then they are compared element by
7562element. The result is an ``i1`` vector with the same number of elements
7563as the values being compared. Otherwise, the result is an ``i1``.
7564
7565Example:
7566""""""""
7567
7568.. code-block:: llvm
7569
7570 <result> = icmp eq i32 4, 5 ; yields: result=false
7571 <result> = icmp ne float* %X, %X ; yields: result=false
7572 <result> = icmp ult i16 4, 5 ; yields: result=true
7573 <result> = icmp sgt i16 4, 5 ; yields: result=false
7574 <result> = icmp ule i16 -4, 5 ; yields: result=false
7575 <result> = icmp sge i16 4, 5 ; yields: result=false
7576
7577Note that the code generator does not yet support vector types with the
7578``icmp`` instruction.
7579
7580.. _i_fcmp:
7581
7582'``fcmp``' Instruction
7583^^^^^^^^^^^^^^^^^^^^^^
7584
7585Syntax:
7586"""""""
7587
7588::
7589
James Molloy88eb5352015-07-10 12:52:00 +00007590 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007591
7592Overview:
7593"""""""""
7594
7595The '``fcmp``' instruction returns a boolean value or vector of boolean
7596values based on comparison of its operands.
7597
7598If the operands are floating point scalars, then the result type is a
7599boolean (:ref:`i1 <t_integer>`).
7600
7601If the operands are floating point vectors, then the result type is a
7602vector of boolean with the same number of elements as the operands being
7603compared.
7604
7605Arguments:
7606""""""""""
7607
7608The '``fcmp``' instruction takes three operands. The first operand is
7609the condition code indicating the kind of comparison to perform. It is
7610not a value, just a keyword. The possible condition code are:
7611
7612#. ``false``: no comparison, always returns false
7613#. ``oeq``: ordered and equal
7614#. ``ogt``: ordered and greater than
7615#. ``oge``: ordered and greater than or equal
7616#. ``olt``: ordered and less than
7617#. ``ole``: ordered and less than or equal
7618#. ``one``: ordered and not equal
7619#. ``ord``: ordered (no nans)
7620#. ``ueq``: unordered or equal
7621#. ``ugt``: unordered or greater than
7622#. ``uge``: unordered or greater than or equal
7623#. ``ult``: unordered or less than
7624#. ``ule``: unordered or less than or equal
7625#. ``une``: unordered or not equal
7626#. ``uno``: unordered (either nans)
7627#. ``true``: no comparison, always returns true
7628
7629*Ordered* means that neither operand is a QNAN while *unordered* means
7630that either operand may be a QNAN.
7631
7632Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
7633point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
7634type. They must have identical types.
7635
7636Semantics:
7637""""""""""
7638
7639The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
7640condition code given as ``cond``. If the operands are vectors, then the
7641vectors are compared element by element. Each comparison performed
7642always yields an :ref:`i1 <t_integer>` result, as follows:
7643
7644#. ``false``: always yields ``false``, regardless of operands.
7645#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
7646 is equal to ``op2``.
7647#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
7648 is greater than ``op2``.
7649#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
7650 is greater than or equal to ``op2``.
7651#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
7652 is less than ``op2``.
7653#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
7654 is less than or equal to ``op2``.
7655#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
7656 is not equal to ``op2``.
7657#. ``ord``: yields ``true`` if both operands are not a QNAN.
7658#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
7659 equal to ``op2``.
7660#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
7661 greater than ``op2``.
7662#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
7663 greater than or equal to ``op2``.
7664#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
7665 less than ``op2``.
7666#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
7667 less than or equal to ``op2``.
7668#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
7669 not equal to ``op2``.
7670#. ``uno``: yields ``true`` if either operand is a QNAN.
7671#. ``true``: always yields ``true``, regardless of operands.
7672
James Molloy88eb5352015-07-10 12:52:00 +00007673The ``fcmp`` instruction can also optionally take any number of
7674:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
7675otherwise unsafe floating point optimizations.
7676
7677Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
7678only flags that have any effect on its semantics are those that allow
7679assumptions to be made about the values of input arguments; namely
7680``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
7681
Sean Silvab084af42012-12-07 10:36:55 +00007682Example:
7683""""""""
7684
7685.. code-block:: llvm
7686
7687 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
7688 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
7689 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
7690 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
7691
7692Note that the code generator does not yet support vector types with the
7693``fcmp`` instruction.
7694
7695.. _i_phi:
7696
7697'``phi``' Instruction
7698^^^^^^^^^^^^^^^^^^^^^
7699
7700Syntax:
7701"""""""
7702
7703::
7704
7705 <result> = phi <ty> [ <val0>, <label0>], ...
7706
7707Overview:
7708"""""""""
7709
7710The '``phi``' instruction is used to implement the φ node in the SSA
7711graph representing the function.
7712
7713Arguments:
7714""""""""""
7715
7716The type of the incoming values is specified with the first type field.
7717After this, the '``phi``' instruction takes a list of pairs as
7718arguments, with one pair for each predecessor basic block of the current
7719block. Only values of :ref:`first class <t_firstclass>` type may be used as
7720the value arguments to the PHI node. Only labels may be used as the
7721label arguments.
7722
7723There must be no non-phi instructions between the start of a basic block
7724and the PHI instructions: i.e. PHI instructions must be first in a basic
7725block.
7726
7727For the purposes of the SSA form, the use of each incoming value is
7728deemed to occur on the edge from the corresponding predecessor block to
7729the current block (but after any definition of an '``invoke``'
7730instruction's return value on the same edge).
7731
7732Semantics:
7733""""""""""
7734
7735At runtime, the '``phi``' instruction logically takes on the value
7736specified by the pair corresponding to the predecessor basic block that
7737executed just prior to the current block.
7738
7739Example:
7740""""""""
7741
7742.. code-block:: llvm
7743
7744 Loop: ; Infinite loop that counts from 0 on up...
7745 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
7746 %nextindvar = add i32 %indvar, 1
7747 br label %Loop
7748
7749.. _i_select:
7750
7751'``select``' Instruction
7752^^^^^^^^^^^^^^^^^^^^^^^^
7753
7754Syntax:
7755"""""""
7756
7757::
7758
7759 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
7760
7761 selty is either i1 or {<N x i1>}
7762
7763Overview:
7764"""""""""
7765
7766The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00007767condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00007768
7769Arguments:
7770""""""""""
7771
7772The '``select``' instruction requires an 'i1' value or a vector of 'i1'
7773values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00007774class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00007775
7776Semantics:
7777""""""""""
7778
7779If the condition is an i1 and it evaluates to 1, the instruction returns
7780the first value argument; otherwise, it returns the second value
7781argument.
7782
7783If the condition is a vector of i1, then the value arguments must be
7784vectors of the same size, and the selection is done element by element.
7785
David Majnemer40a0b592015-03-03 22:45:47 +00007786If the condition is an i1 and the value arguments are vectors of the
7787same size, then an entire vector is selected.
7788
Sean Silvab084af42012-12-07 10:36:55 +00007789Example:
7790""""""""
7791
7792.. code-block:: llvm
7793
7794 %X = select i1 true, i8 17, i8 42 ; yields i8:17
7795
7796.. _i_call:
7797
7798'``call``' Instruction
7799^^^^^^^^^^^^^^^^^^^^^^
7800
7801Syntax:
7802"""""""
7803
7804::
7805
Reid Kleckner5772b772014-04-24 20:14:34 +00007806 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00007807
7808Overview:
7809"""""""""
7810
7811The '``call``' instruction represents a simple function call.
7812
7813Arguments:
7814""""""""""
7815
7816This instruction requires several arguments:
7817
Reid Kleckner5772b772014-04-24 20:14:34 +00007818#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
7819 should perform tail call optimization. The ``tail`` marker is a hint that
7820 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
7821 means that the call must be tail call optimized in order for the program to
7822 be correct. The ``musttail`` marker provides these guarantees:
7823
7824 #. The call will not cause unbounded stack growth if it is part of a
7825 recursive cycle in the call graph.
7826 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
7827 forwarded in place.
7828
7829 Both markers imply that the callee does not access allocas or varargs from
7830 the caller. Calls marked ``musttail`` must obey the following additional
7831 rules:
7832
7833 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
7834 or a pointer bitcast followed by a ret instruction.
7835 - The ret instruction must return the (possibly bitcasted) value
7836 produced by the call or void.
7837 - The caller and callee prototypes must match. Pointer types of
7838 parameters or return types may differ in pointee type, but not
7839 in address space.
7840 - The calling conventions of the caller and callee must match.
7841 - All ABI-impacting function attributes, such as sret, byval, inreg,
7842 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00007843 - The callee must be varargs iff the caller is varargs. Bitcasting a
7844 non-varargs function to the appropriate varargs type is legal so
7845 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00007846
7847 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
7848 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00007849
7850 - Caller and callee both have the calling convention ``fastcc``.
7851 - The call is in tail position (ret immediately follows call and ret
7852 uses value of call or is void).
7853 - Option ``-tailcallopt`` is enabled, or
7854 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00007855 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00007856 met. <CodeGenerator.html#tailcallopt>`_
7857
7858#. The optional "cconv" marker indicates which :ref:`calling
7859 convention <callingconv>` the call should use. If none is
7860 specified, the call defaults to using C calling conventions. The
7861 calling convention of the call must match the calling convention of
7862 the target function, or else the behavior is undefined.
7863#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7864 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7865 are valid here.
7866#. '``ty``': the type of the call instruction itself which is also the
7867 type of the return value. Functions that return no value are marked
7868 ``void``.
7869#. '``fnty``': shall be the signature of the pointer to function value
7870 being invoked. The argument types must match the types implied by
7871 this signature. This type can be omitted if the function is not
7872 varargs and if the function type does not return a pointer to a
7873 function.
7874#. '``fnptrval``': An LLVM value containing a pointer to a function to
7875 be invoked. In most cases, this is a direct function invocation, but
7876 indirect ``call``'s are just as possible, calling an arbitrary pointer
7877 to function value.
7878#. '``function args``': argument list whose types match the function
7879 signature argument types and parameter attributes. All arguments must
7880 be of :ref:`first class <t_firstclass>` type. If the function signature
7881 indicates the function accepts a variable number of arguments, the
7882 extra arguments can be specified.
7883#. The optional :ref:`function attributes <fnattrs>` list. Only
7884 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
7885 attributes are valid here.
7886
7887Semantics:
7888""""""""""
7889
7890The '``call``' instruction is used to cause control flow to transfer to
7891a specified function, with its incoming arguments bound to the specified
7892values. Upon a '``ret``' instruction in the called function, control
7893flow continues with the instruction after the function call, and the
7894return value of the function is bound to the result argument.
7895
7896Example:
7897""""""""
7898
7899.. code-block:: llvm
7900
7901 %retval = call i32 @test(i32 %argc)
7902 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
7903 %X = tail call i32 @foo() ; yields i32
7904 %Y = tail call fastcc i32 @foo() ; yields i32
7905 call void %foo(i8 97 signext)
7906
7907 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00007908 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00007909 %gr = extractvalue %struct.A %r, 0 ; yields i32
7910 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
7911 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
7912 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
7913
7914llvm treats calls to some functions with names and arguments that match
7915the standard C99 library as being the C99 library functions, and may
7916perform optimizations or generate code for them under that assumption.
7917This is something we'd like to change in the future to provide better
7918support for freestanding environments and non-C-based languages.
7919
7920.. _i_va_arg:
7921
7922'``va_arg``' Instruction
7923^^^^^^^^^^^^^^^^^^^^^^^^
7924
7925Syntax:
7926"""""""
7927
7928::
7929
7930 <resultval> = va_arg <va_list*> <arglist>, <argty>
7931
7932Overview:
7933"""""""""
7934
7935The '``va_arg``' instruction is used to access arguments passed through
7936the "variable argument" area of a function call. It is used to implement
7937the ``va_arg`` macro in C.
7938
7939Arguments:
7940""""""""""
7941
7942This instruction takes a ``va_list*`` value and the type of the
7943argument. It returns a value of the specified argument type and
7944increments the ``va_list`` to point to the next argument. The actual
7945type of ``va_list`` is target specific.
7946
7947Semantics:
7948""""""""""
7949
7950The '``va_arg``' instruction loads an argument of the specified type
7951from the specified ``va_list`` and causes the ``va_list`` to point to
7952the next argument. For more information, see the variable argument
7953handling :ref:`Intrinsic Functions <int_varargs>`.
7954
7955It is legal for this instruction to be called in a function which does
7956not take a variable number of arguments, for example, the ``vfprintf``
7957function.
7958
7959``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
7960function <intrinsics>` because it takes a type as an argument.
7961
7962Example:
7963""""""""
7964
7965See the :ref:`variable argument processing <int_varargs>` section.
7966
7967Note that the code generator does not yet fully support va\_arg on many
7968targets. Also, it does not currently support va\_arg with aggregate
7969types on any target.
7970
7971.. _i_landingpad:
7972
7973'``landingpad``' Instruction
7974^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7975
7976Syntax:
7977"""""""
7978
7979::
7980
David Majnemer7fddecc2015-06-17 20:52:32 +00007981 <resultval> = landingpad <resultty> <clause>+
7982 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00007983
7984 <clause> := catch <type> <value>
7985 <clause> := filter <array constant type> <array constant>
7986
7987Overview:
7988"""""""""
7989
7990The '``landingpad``' instruction is used by `LLVM's exception handling
7991system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007992is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00007993code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00007994defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00007995re-entry to the function. The ``resultval`` has the type ``resultty``.
7996
7997Arguments:
7998""""""""""
7999
David Majnemer7fddecc2015-06-17 20:52:32 +00008000The optional
Sean Silvab084af42012-12-07 10:36:55 +00008001``cleanup`` flag indicates that the landing pad block is a cleanup.
8002
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008003A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008004contains the global variable representing the "type" that may be caught
8005or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8006clause takes an array constant as its argument. Use
8007"``[0 x i8**] undef``" for a filter which cannot throw. The
8008'``landingpad``' instruction must contain *at least* one ``clause`` or
8009the ``cleanup`` flag.
8010
8011Semantics:
8012""""""""""
8013
8014The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008015:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008016therefore the "result type" of the ``landingpad`` instruction. As with
8017calling conventions, how the personality function results are
8018represented in LLVM IR is target specific.
8019
8020The clauses are applied in order from top to bottom. If two
8021``landingpad`` instructions are merged together through inlining, the
8022clauses from the calling function are appended to the list of clauses.
8023When the call stack is being unwound due to an exception being thrown,
8024the exception is compared against each ``clause`` in turn. If it doesn't
8025match any of the clauses, and the ``cleanup`` flag is not set, then
8026unwinding continues further up the call stack.
8027
8028The ``landingpad`` instruction has several restrictions:
8029
8030- A landing pad block is a basic block which is the unwind destination
8031 of an '``invoke``' instruction.
8032- A landing pad block must have a '``landingpad``' instruction as its
8033 first non-PHI instruction.
8034- There can be only one '``landingpad``' instruction within the landing
8035 pad block.
8036- A basic block that is not a landing pad block may not include a
8037 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008038
8039Example:
8040""""""""
8041
8042.. code-block:: llvm
8043
8044 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008045 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008046 catch i8** @_ZTIi
8047 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008048 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008049 cleanup
8050 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008051 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008052 catch i8** @_ZTIi
8053 filter [1 x i8**] [@_ZTId]
8054
8055.. _intrinsics:
8056
8057Intrinsic Functions
8058===================
8059
8060LLVM supports the notion of an "intrinsic function". These functions
8061have well known names and semantics and are required to follow certain
8062restrictions. Overall, these intrinsics represent an extension mechanism
8063for the LLVM language that does not require changing all of the
8064transformations in LLVM when adding to the language (or the bitcode
8065reader/writer, the parser, etc...).
8066
8067Intrinsic function names must all start with an "``llvm.``" prefix. This
8068prefix is reserved in LLVM for intrinsic names; thus, function names may
8069not begin with this prefix. Intrinsic functions must always be external
8070functions: you cannot define the body of intrinsic functions. Intrinsic
8071functions may only be used in call or invoke instructions: it is illegal
8072to take the address of an intrinsic function. Additionally, because
8073intrinsic functions are part of the LLVM language, it is required if any
8074are added that they be documented here.
8075
8076Some intrinsic functions can be overloaded, i.e., the intrinsic
8077represents a family of functions that perform the same operation but on
8078different data types. Because LLVM can represent over 8 million
8079different integer types, overloading is used commonly to allow an
8080intrinsic function to operate on any integer type. One or more of the
8081argument types or the result type can be overloaded to accept any
8082integer type. Argument types may also be defined as exactly matching a
8083previous argument's type or the result type. This allows an intrinsic
8084function which accepts multiple arguments, but needs all of them to be
8085of the same type, to only be overloaded with respect to a single
8086argument or the result.
8087
8088Overloaded intrinsics will have the names of its overloaded argument
8089types encoded into its function name, each preceded by a period. Only
8090those types which are overloaded result in a name suffix. Arguments
8091whose type is matched against another type do not. For example, the
8092``llvm.ctpop`` function can take an integer of any width and returns an
8093integer of exactly the same integer width. This leads to a family of
8094functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8095``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8096overloaded, and only one type suffix is required. Because the argument's
8097type is matched against the return type, it does not require its own
8098name suffix.
8099
8100To learn how to add an intrinsic function, please see the `Extending
8101LLVM Guide <ExtendingLLVM.html>`_.
8102
8103.. _int_varargs:
8104
8105Variable Argument Handling Intrinsics
8106-------------------------------------
8107
8108Variable argument support is defined in LLVM with the
8109:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8110functions. These functions are related to the similarly named macros
8111defined in the ``<stdarg.h>`` header file.
8112
8113All of these functions operate on arguments that use a target-specific
8114value type "``va_list``". The LLVM assembly language reference manual
8115does not define what this type is, so all transformations should be
8116prepared to handle these functions regardless of the type used.
8117
8118This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8119variable argument handling intrinsic functions are used.
8120
8121.. code-block:: llvm
8122
Tim Northoverab60bb92014-11-02 01:21:51 +00008123 ; This struct is different for every platform. For most platforms,
8124 ; it is merely an i8*.
8125 %struct.va_list = type { i8* }
8126
8127 ; For Unix x86_64 platforms, va_list is the following struct:
8128 ; %struct.va_list = type { i32, i32, i8*, i8* }
8129
Sean Silvab084af42012-12-07 10:36:55 +00008130 define i32 @test(i32 %X, ...) {
8131 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008132 %ap = alloca %struct.va_list
8133 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008134 call void @llvm.va_start(i8* %ap2)
8135
8136 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008137 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008138
8139 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8140 %aq = alloca i8*
8141 %aq2 = bitcast i8** %aq to i8*
8142 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8143 call void @llvm.va_end(i8* %aq2)
8144
8145 ; Stop processing of arguments.
8146 call void @llvm.va_end(i8* %ap2)
8147 ret i32 %tmp
8148 }
8149
8150 declare void @llvm.va_start(i8*)
8151 declare void @llvm.va_copy(i8*, i8*)
8152 declare void @llvm.va_end(i8*)
8153
8154.. _int_va_start:
8155
8156'``llvm.va_start``' Intrinsic
8157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8158
8159Syntax:
8160"""""""
8161
8162::
8163
Nick Lewycky04f6de02013-09-11 22:04:52 +00008164 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008165
8166Overview:
8167"""""""""
8168
8169The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8170subsequent use by ``va_arg``.
8171
8172Arguments:
8173""""""""""
8174
8175The argument is a pointer to a ``va_list`` element to initialize.
8176
8177Semantics:
8178""""""""""
8179
8180The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8181available in C. In a target-dependent way, it initializes the
8182``va_list`` element to which the argument points, so that the next call
8183to ``va_arg`` will produce the first variable argument passed to the
8184function. Unlike the C ``va_start`` macro, this intrinsic does not need
8185to know the last argument of the function as the compiler can figure
8186that out.
8187
8188'``llvm.va_end``' Intrinsic
8189^^^^^^^^^^^^^^^^^^^^^^^^^^^
8190
8191Syntax:
8192"""""""
8193
8194::
8195
8196 declare void @llvm.va_end(i8* <arglist>)
8197
8198Overview:
8199"""""""""
8200
8201The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8202initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8203
8204Arguments:
8205""""""""""
8206
8207The argument is a pointer to a ``va_list`` to destroy.
8208
8209Semantics:
8210""""""""""
8211
8212The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8213available in C. In a target-dependent way, it destroys the ``va_list``
8214element to which the argument points. Calls to
8215:ref:`llvm.va_start <int_va_start>` and
8216:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8217``llvm.va_end``.
8218
8219.. _int_va_copy:
8220
8221'``llvm.va_copy``' Intrinsic
8222^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8223
8224Syntax:
8225"""""""
8226
8227::
8228
8229 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8230
8231Overview:
8232"""""""""
8233
8234The '``llvm.va_copy``' intrinsic copies the current argument position
8235from the source argument list to the destination argument list.
8236
8237Arguments:
8238""""""""""
8239
8240The first argument is a pointer to a ``va_list`` element to initialize.
8241The second argument is a pointer to a ``va_list`` element to copy from.
8242
8243Semantics:
8244""""""""""
8245
8246The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8247available in C. In a target-dependent way, it copies the source
8248``va_list`` element into the destination ``va_list`` element. This
8249intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8250arbitrarily complex and require, for example, memory allocation.
8251
8252Accurate Garbage Collection Intrinsics
8253--------------------------------------
8254
Philip Reamesc5b0f562015-02-25 23:52:06 +00008255LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008256(GC) requires the frontend to generate code containing appropriate intrinsic
8257calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008258intrinsics in a manner which is appropriate for the target collector.
8259
Sean Silvab084af42012-12-07 10:36:55 +00008260These intrinsics allow identification of :ref:`GC roots on the
8261stack <int_gcroot>`, as well as garbage collector implementations that
8262require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008263Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008264these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008265details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008266
Philip Reamesf80bbff2015-02-25 23:45:20 +00008267Experimental Statepoint Intrinsics
8268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8269
8270LLVM provides an second experimental set of intrinsics for describing garbage
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008271collection safepoints in compiled code. These intrinsics are an alternative
8272to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
8273:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
8274differences in approach are covered in the `Garbage Collection with LLVM
8275<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008276described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008277
8278.. _int_gcroot:
8279
8280'``llvm.gcroot``' Intrinsic
8281^^^^^^^^^^^^^^^^^^^^^^^^^^^
8282
8283Syntax:
8284"""""""
8285
8286::
8287
8288 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8289
8290Overview:
8291"""""""""
8292
8293The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8294the code generator, and allows some metadata to be associated with it.
8295
8296Arguments:
8297""""""""""
8298
8299The first argument specifies the address of a stack object that contains
8300the root pointer. The second pointer (which must be either a constant or
8301a global value address) contains the meta-data to be associated with the
8302root.
8303
8304Semantics:
8305""""""""""
8306
8307At runtime, a call to this intrinsic stores a null pointer into the
8308"ptrloc" location. At compile-time, the code generator generates
8309information to allow the runtime to find the pointer at GC safe points.
8310The '``llvm.gcroot``' intrinsic may only be used in a function which
8311:ref:`specifies a GC algorithm <gc>`.
8312
8313.. _int_gcread:
8314
8315'``llvm.gcread``' Intrinsic
8316^^^^^^^^^^^^^^^^^^^^^^^^^^^
8317
8318Syntax:
8319"""""""
8320
8321::
8322
8323 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8324
8325Overview:
8326"""""""""
8327
8328The '``llvm.gcread``' intrinsic identifies reads of references from heap
8329locations, allowing garbage collector implementations that require read
8330barriers.
8331
8332Arguments:
8333""""""""""
8334
8335The second argument is the address to read from, which should be an
8336address allocated from the garbage collector. The first object is a
8337pointer to the start of the referenced object, if needed by the language
8338runtime (otherwise null).
8339
8340Semantics:
8341""""""""""
8342
8343The '``llvm.gcread``' intrinsic has the same semantics as a load
8344instruction, but may be replaced with substantially more complex code by
8345the garbage collector runtime, as needed. The '``llvm.gcread``'
8346intrinsic may only be used in a function which :ref:`specifies a GC
8347algorithm <gc>`.
8348
8349.. _int_gcwrite:
8350
8351'``llvm.gcwrite``' Intrinsic
8352^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8353
8354Syntax:
8355"""""""
8356
8357::
8358
8359 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8360
8361Overview:
8362"""""""""
8363
8364The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8365locations, allowing garbage collector implementations that require write
8366barriers (such as generational or reference counting collectors).
8367
8368Arguments:
8369""""""""""
8370
8371The first argument is the reference to store, the second is the start of
8372the object to store it to, and the third is the address of the field of
8373Obj to store to. If the runtime does not require a pointer to the
8374object, Obj may be null.
8375
8376Semantics:
8377""""""""""
8378
8379The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8380instruction, but may be replaced with substantially more complex code by
8381the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8382intrinsic may only be used in a function which :ref:`specifies a GC
8383algorithm <gc>`.
8384
8385Code Generator Intrinsics
8386-------------------------
8387
8388These intrinsics are provided by LLVM to expose special features that
8389may only be implemented with code generator support.
8390
8391'``llvm.returnaddress``' Intrinsic
8392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8393
8394Syntax:
8395"""""""
8396
8397::
8398
8399 declare i8 *@llvm.returnaddress(i32 <level>)
8400
8401Overview:
8402"""""""""
8403
8404The '``llvm.returnaddress``' intrinsic attempts to compute a
8405target-specific value indicating the return address of the current
8406function or one of its callers.
8407
8408Arguments:
8409""""""""""
8410
8411The argument to this intrinsic indicates which function to return the
8412address for. Zero indicates the calling function, one indicates its
8413caller, etc. The argument is **required** to be a constant integer
8414value.
8415
8416Semantics:
8417""""""""""
8418
8419The '``llvm.returnaddress``' intrinsic either returns a pointer
8420indicating the return address of the specified call frame, or zero if it
8421cannot be identified. The value returned by this intrinsic is likely to
8422be incorrect or 0 for arguments other than zero, so it should only be
8423used for debugging purposes.
8424
8425Note that calling this intrinsic does not prevent function inlining or
8426other aggressive transformations, so the value returned may not be that
8427of the obvious source-language caller.
8428
8429'``llvm.frameaddress``' Intrinsic
8430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8431
8432Syntax:
8433"""""""
8434
8435::
8436
8437 declare i8* @llvm.frameaddress(i32 <level>)
8438
8439Overview:
8440"""""""""
8441
8442The '``llvm.frameaddress``' intrinsic attempts to return the
8443target-specific frame pointer value for the specified stack frame.
8444
8445Arguments:
8446""""""""""
8447
8448The argument to this intrinsic indicates which function to return the
8449frame pointer for. Zero indicates the calling function, one indicates
8450its caller, etc. The argument is **required** to be a constant integer
8451value.
8452
8453Semantics:
8454""""""""""
8455
8456The '``llvm.frameaddress``' intrinsic either returns a pointer
8457indicating the frame address of the specified call frame, or zero if it
8458cannot be identified. The value returned by this intrinsic is likely to
8459be incorrect or 0 for arguments other than zero, so it should only be
8460used for debugging purposes.
8461
8462Note that calling this intrinsic does not prevent function inlining or
8463other aggressive transformations, so the value returned may not be that
8464of the obvious source-language caller.
8465
Reid Kleckner60381792015-07-07 22:25:32 +00008466'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00008467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8468
8469Syntax:
8470"""""""
8471
8472::
8473
Reid Kleckner60381792015-07-07 22:25:32 +00008474 declare void @llvm.localescape(...)
8475 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00008476
8477Overview:
8478"""""""""
8479
Reid Kleckner60381792015-07-07 22:25:32 +00008480The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
8481allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008482live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00008483computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00008484
8485Arguments:
8486""""""""""
8487
Reid Kleckner60381792015-07-07 22:25:32 +00008488All arguments to '``llvm.localescape``' must be pointers to static allocas or
8489casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008490once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00008491
Reid Kleckner60381792015-07-07 22:25:32 +00008492The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00008493bitcasted pointer to a function defined in the current module. The code
8494generator cannot determine the frame allocation offset of functions defined in
8495other modules.
8496
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00008497The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
8498call frame that is currently live. The return value of '``llvm.localaddress``'
8499is one way to produce such a value, but various runtimes also expose a suitable
8500pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00008501
Reid Kleckner60381792015-07-07 22:25:32 +00008502The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
8503'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008504
Reid Klecknere9b89312015-01-13 00:48:10 +00008505Semantics:
8506""""""""""
8507
Reid Kleckner60381792015-07-07 22:25:32 +00008508These intrinsics allow a group of functions to share access to a set of local
8509stack allocations of a one parent function. The parent function may call the
8510'``llvm.localescape``' intrinsic once from the function entry block, and the
8511child functions can use '``llvm.localrecover``' to access the escaped allocas.
8512The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
8513the escaped allocas are allocated, which would break attempts to use
8514'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00008515
Renato Golinc7aea402014-05-06 16:51:25 +00008516.. _int_read_register:
8517.. _int_write_register:
8518
8519'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
8520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8521
8522Syntax:
8523"""""""
8524
8525::
8526
8527 declare i32 @llvm.read_register.i32(metadata)
8528 declare i64 @llvm.read_register.i64(metadata)
8529 declare void @llvm.write_register.i32(metadata, i32 @value)
8530 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00008531 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00008532
8533Overview:
8534"""""""""
8535
8536The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
8537provides access to the named register. The register must be valid on
8538the architecture being compiled to. The type needs to be compatible
8539with the register being read.
8540
8541Semantics:
8542""""""""""
8543
8544The '``llvm.read_register``' intrinsic returns the current value of the
8545register, where possible. The '``llvm.write_register``' intrinsic sets
8546the current value of the register, where possible.
8547
8548This is useful to implement named register global variables that need
8549to always be mapped to a specific register, as is common practice on
8550bare-metal programs including OS kernels.
8551
8552The compiler doesn't check for register availability or use of the used
8553register in surrounding code, including inline assembly. Because of that,
8554allocatable registers are not supported.
8555
8556Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00008557architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00008558work is needed to support other registers and even more so, allocatable
8559registers.
8560
Sean Silvab084af42012-12-07 10:36:55 +00008561.. _int_stacksave:
8562
8563'``llvm.stacksave``' Intrinsic
8564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8565
8566Syntax:
8567"""""""
8568
8569::
8570
8571 declare i8* @llvm.stacksave()
8572
8573Overview:
8574"""""""""
8575
8576The '``llvm.stacksave``' intrinsic is used to remember the current state
8577of the function stack, for use with
8578:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
8579implementing language features like scoped automatic variable sized
8580arrays in C99.
8581
8582Semantics:
8583""""""""""
8584
8585This intrinsic returns a opaque pointer value that can be passed to
8586:ref:`llvm.stackrestore <int_stackrestore>`. When an
8587``llvm.stackrestore`` intrinsic is executed with a value saved from
8588``llvm.stacksave``, it effectively restores the state of the stack to
8589the state it was in when the ``llvm.stacksave`` intrinsic executed. In
8590practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
8591were allocated after the ``llvm.stacksave`` was executed.
8592
8593.. _int_stackrestore:
8594
8595'``llvm.stackrestore``' Intrinsic
8596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8597
8598Syntax:
8599"""""""
8600
8601::
8602
8603 declare void @llvm.stackrestore(i8* %ptr)
8604
8605Overview:
8606"""""""""
8607
8608The '``llvm.stackrestore``' intrinsic is used to restore the state of
8609the function stack to the state it was in when the corresponding
8610:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
8611useful for implementing language features like scoped automatic variable
8612sized arrays in C99.
8613
8614Semantics:
8615""""""""""
8616
8617See the description for :ref:`llvm.stacksave <int_stacksave>`.
8618
8619'``llvm.prefetch``' Intrinsic
8620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8621
8622Syntax:
8623"""""""
8624
8625::
8626
8627 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
8628
8629Overview:
8630"""""""""
8631
8632The '``llvm.prefetch``' intrinsic is a hint to the code generator to
8633insert a prefetch instruction if supported; otherwise, it is a noop.
8634Prefetches have no effect on the behavior of the program but can change
8635its performance characteristics.
8636
8637Arguments:
8638""""""""""
8639
8640``address`` is the address to be prefetched, ``rw`` is the specifier
8641determining if the fetch should be for a read (0) or write (1), and
8642``locality`` is a temporal locality specifier ranging from (0) - no
8643locality, to (3) - extremely local keep in cache. The ``cache type``
8644specifies whether the prefetch is performed on the data (1) or
8645instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
8646arguments must be constant integers.
8647
8648Semantics:
8649""""""""""
8650
8651This intrinsic does not modify the behavior of the program. In
8652particular, prefetches cannot trap and do not produce a value. On
8653targets that support this intrinsic, the prefetch can provide hints to
8654the processor cache for better performance.
8655
8656'``llvm.pcmarker``' Intrinsic
8657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8658
8659Syntax:
8660"""""""
8661
8662::
8663
8664 declare void @llvm.pcmarker(i32 <id>)
8665
8666Overview:
8667"""""""""
8668
8669The '``llvm.pcmarker``' intrinsic is a method to export a Program
8670Counter (PC) in a region of code to simulators and other tools. The
8671method is target specific, but it is expected that the marker will use
8672exported symbols to transmit the PC of the marker. The marker makes no
8673guarantees that it will remain with any specific instruction after
8674optimizations. It is possible that the presence of a marker will inhibit
8675optimizations. The intended use is to be inserted after optimizations to
8676allow correlations of simulation runs.
8677
8678Arguments:
8679""""""""""
8680
8681``id`` is a numerical id identifying the marker.
8682
8683Semantics:
8684""""""""""
8685
8686This intrinsic does not modify the behavior of the program. Backends
8687that do not support this intrinsic may ignore it.
8688
8689'``llvm.readcyclecounter``' Intrinsic
8690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8691
8692Syntax:
8693"""""""
8694
8695::
8696
8697 declare i64 @llvm.readcyclecounter()
8698
8699Overview:
8700"""""""""
8701
8702The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
8703counter register (or similar low latency, high accuracy clocks) on those
8704targets that support it. On X86, it should map to RDTSC. On Alpha, it
8705should map to RPCC. As the backing counters overflow quickly (on the
8706order of 9 seconds on alpha), this should only be used for small
8707timings.
8708
8709Semantics:
8710""""""""""
8711
8712When directly supported, reading the cycle counter should not modify any
8713memory. Implementations are allowed to either return a application
8714specific value or a system wide value. On backends without support, this
8715is lowered to a constant 0.
8716
Tim Northoverbc933082013-05-23 19:11:20 +00008717Note that runtime support may be conditional on the privilege-level code is
8718running at and the host platform.
8719
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008720'``llvm.clear_cache``' Intrinsic
8721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8722
8723Syntax:
8724"""""""
8725
8726::
8727
8728 declare void @llvm.clear_cache(i8*, i8*)
8729
8730Overview:
8731"""""""""
8732
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008733The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
8734in the specified range to the execution unit of the processor. On
8735targets with non-unified instruction and data cache, the implementation
8736flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008737
8738Semantics:
8739""""""""""
8740
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008741On platforms with coherent instruction and data caches (e.g. x86), this
8742intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00008743cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008744instructions or a system call, if cache flushing requires special
8745privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008746
Sean Silvad02bf3e2014-04-07 22:29:53 +00008747The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008748time library.
Renato Golin93010e62014-03-26 14:01:32 +00008749
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008750This instrinsic does *not* empty the instruction pipeline. Modifications
8751of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008752
Justin Bogner61ba2e32014-12-08 18:02:35 +00008753'``llvm.instrprof_increment``' Intrinsic
8754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8755
8756Syntax:
8757"""""""
8758
8759::
8760
8761 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
8762 i32 <num-counters>, i32 <index>)
8763
8764Overview:
8765"""""""""
8766
8767The '``llvm.instrprof_increment``' intrinsic can be emitted by a
8768frontend for use with instrumentation based profiling. These will be
8769lowered by the ``-instrprof`` pass to generate execution counts of a
8770program at runtime.
8771
8772Arguments:
8773""""""""""
8774
8775The first argument is a pointer to a global variable containing the
8776name of the entity being instrumented. This should generally be the
8777(mangled) function name for a set of counters.
8778
8779The second argument is a hash value that can be used by the consumer
8780of the profile data to detect changes to the instrumented source, and
8781the third is the number of counters associated with ``name``. It is an
8782error if ``hash`` or ``num-counters`` differ between two instances of
8783``instrprof_increment`` that refer to the same name.
8784
8785The last argument refers to which of the counters for ``name`` should
8786be incremented. It should be a value between 0 and ``num-counters``.
8787
8788Semantics:
8789""""""""""
8790
8791This intrinsic represents an increment of a profiling counter. It will
8792cause the ``-instrprof`` pass to generate the appropriate data
8793structures and the code to increment the appropriate value, in a
8794format that can be written out by a compiler runtime and consumed via
8795the ``llvm-profdata`` tool.
8796
Sean Silvab084af42012-12-07 10:36:55 +00008797Standard C Library Intrinsics
8798-----------------------------
8799
8800LLVM provides intrinsics for a few important standard C library
8801functions. These intrinsics allow source-language front-ends to pass
8802information about the alignment of the pointer arguments to the code
8803generator, providing opportunity for more efficient code generation.
8804
8805.. _int_memcpy:
8806
8807'``llvm.memcpy``' Intrinsic
8808^^^^^^^^^^^^^^^^^^^^^^^^^^^
8809
8810Syntax:
8811"""""""
8812
8813This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
8814integer bit width and for different address spaces. Not all targets
8815support all bit widths however.
8816
8817::
8818
8819 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8820 i32 <len>, i32 <align>, i1 <isvolatile>)
8821 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8822 i64 <len>, i32 <align>, i1 <isvolatile>)
8823
8824Overview:
8825"""""""""
8826
8827The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8828source location to the destination location.
8829
8830Note that, unlike the standard libc function, the ``llvm.memcpy.*``
8831intrinsics do not return a value, takes extra alignment/isvolatile
8832arguments and the pointers can be in specified address spaces.
8833
8834Arguments:
8835""""""""""
8836
8837The first argument is a pointer to the destination, the second is a
8838pointer to the source. The third argument is an integer argument
8839specifying the number of bytes to copy, the fourth argument is the
8840alignment of the source and destination locations, and the fifth is a
8841boolean indicating a volatile access.
8842
8843If the call to this intrinsic has an alignment value that is not 0 or 1,
8844then the caller guarantees that both the source and destination pointers
8845are aligned to that boundary.
8846
8847If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
8848a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8849very cleanly specified and it is unwise to depend on it.
8850
8851Semantics:
8852""""""""""
8853
8854The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8855source location to the destination location, which are not allowed to
8856overlap. It copies "len" bytes of memory over. If the argument is known
8857to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00008858argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008859
8860'``llvm.memmove``' Intrinsic
8861^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8862
8863Syntax:
8864"""""""
8865
8866This is an overloaded intrinsic. You can use llvm.memmove on any integer
8867bit width and for different address space. Not all targets support all
8868bit widths however.
8869
8870::
8871
8872 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8873 i32 <len>, i32 <align>, i1 <isvolatile>)
8874 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8875 i64 <len>, i32 <align>, i1 <isvolatile>)
8876
8877Overview:
8878"""""""""
8879
8880The '``llvm.memmove.*``' intrinsics move a block of memory from the
8881source location to the destination location. It is similar to the
8882'``llvm.memcpy``' intrinsic but allows the two memory locations to
8883overlap.
8884
8885Note that, unlike the standard libc function, the ``llvm.memmove.*``
8886intrinsics do not return a value, takes extra alignment/isvolatile
8887arguments and the pointers can be in specified address spaces.
8888
8889Arguments:
8890""""""""""
8891
8892The first argument is a pointer to the destination, the second is a
8893pointer to the source. The third argument is an integer argument
8894specifying the number of bytes to copy, the fourth argument is the
8895alignment of the source and destination locations, and the fifth is a
8896boolean indicating a volatile access.
8897
8898If the call to this intrinsic has an alignment value that is not 0 or 1,
8899then the caller guarantees that the source and destination pointers are
8900aligned to that boundary.
8901
8902If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
8903is a :ref:`volatile operation <volatile>`. The detailed access behavior is
8904not very cleanly specified and it is unwise to depend on it.
8905
8906Semantics:
8907""""""""""
8908
8909The '``llvm.memmove.*``' intrinsics copy a block of memory from the
8910source location to the destination location, which may overlap. It
8911copies "len" bytes of memory over. If the argument is known to be
8912aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00008913otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008914
8915'``llvm.memset.*``' Intrinsics
8916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8917
8918Syntax:
8919"""""""
8920
8921This is an overloaded intrinsic. You can use llvm.memset on any integer
8922bit width and for different address spaces. However, not all targets
8923support all bit widths.
8924
8925::
8926
8927 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
8928 i32 <len>, i32 <align>, i1 <isvolatile>)
8929 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
8930 i64 <len>, i32 <align>, i1 <isvolatile>)
8931
8932Overview:
8933"""""""""
8934
8935The '``llvm.memset.*``' intrinsics fill a block of memory with a
8936particular byte value.
8937
8938Note that, unlike the standard libc function, the ``llvm.memset``
8939intrinsic does not return a value and takes extra alignment/volatile
8940arguments. Also, the destination can be in an arbitrary address space.
8941
8942Arguments:
8943""""""""""
8944
8945The first argument is a pointer to the destination to fill, the second
8946is the byte value with which to fill it, the third argument is an
8947integer argument specifying the number of bytes to fill, and the fourth
8948argument is the known alignment of the destination location.
8949
8950If the call to this intrinsic has an alignment value that is not 0 or 1,
8951then the caller guarantees that the destination pointer is aligned to
8952that boundary.
8953
8954If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
8955a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8956very cleanly specified and it is unwise to depend on it.
8957
8958Semantics:
8959""""""""""
8960
8961The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
8962at the destination location. If the argument is known to be aligned to
8963some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00008964it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008965
8966'``llvm.sqrt.*``' Intrinsic
8967^^^^^^^^^^^^^^^^^^^^^^^^^^^
8968
8969Syntax:
8970"""""""
8971
8972This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
8973floating point or vector of floating point type. Not all targets support
8974all types however.
8975
8976::
8977
8978 declare float @llvm.sqrt.f32(float %Val)
8979 declare double @llvm.sqrt.f64(double %Val)
8980 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
8981 declare fp128 @llvm.sqrt.f128(fp128 %Val)
8982 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
8983
8984Overview:
8985"""""""""
8986
8987The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
8988returning the same value as the libm '``sqrt``' functions would. Unlike
8989``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
8990negative numbers other than -0.0 (which allows for better optimization,
8991because there is no need to worry about errno being set).
8992``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
8993
8994Arguments:
8995""""""""""
8996
8997The argument and return value are floating point numbers of the same
8998type.
8999
9000Semantics:
9001""""""""""
9002
9003This function returns the sqrt of the specified operand if it is a
9004nonnegative floating point number.
9005
9006'``llvm.powi.*``' Intrinsic
9007^^^^^^^^^^^^^^^^^^^^^^^^^^^
9008
9009Syntax:
9010"""""""
9011
9012This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9013floating point or vector of floating point type. Not all targets support
9014all types however.
9015
9016::
9017
9018 declare float @llvm.powi.f32(float %Val, i32 %power)
9019 declare double @llvm.powi.f64(double %Val, i32 %power)
9020 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9021 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9022 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9023
9024Overview:
9025"""""""""
9026
9027The '``llvm.powi.*``' intrinsics return the first operand raised to the
9028specified (positive or negative) power. The order of evaluation of
9029multiplications is not defined. When a vector of floating point type is
9030used, the second argument remains a scalar integer value.
9031
9032Arguments:
9033""""""""""
9034
9035The second argument is an integer power, and the first is a value to
9036raise to that power.
9037
9038Semantics:
9039""""""""""
9040
9041This function returns the first value raised to the second power with an
9042unspecified sequence of rounding operations.
9043
9044'``llvm.sin.*``' Intrinsic
9045^^^^^^^^^^^^^^^^^^^^^^^^^^
9046
9047Syntax:
9048"""""""
9049
9050This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9051floating point or vector of floating point type. Not all targets support
9052all types however.
9053
9054::
9055
9056 declare float @llvm.sin.f32(float %Val)
9057 declare double @llvm.sin.f64(double %Val)
9058 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9059 declare fp128 @llvm.sin.f128(fp128 %Val)
9060 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9061
9062Overview:
9063"""""""""
9064
9065The '``llvm.sin.*``' intrinsics return the sine of the operand.
9066
9067Arguments:
9068""""""""""
9069
9070The argument and return value are floating point numbers of the same
9071type.
9072
9073Semantics:
9074""""""""""
9075
9076This function returns the sine of the specified operand, returning the
9077same values as the libm ``sin`` functions would, and handles error
9078conditions in the same way.
9079
9080'``llvm.cos.*``' Intrinsic
9081^^^^^^^^^^^^^^^^^^^^^^^^^^
9082
9083Syntax:
9084"""""""
9085
9086This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9087floating point or vector of floating point type. Not all targets support
9088all types however.
9089
9090::
9091
9092 declare float @llvm.cos.f32(float %Val)
9093 declare double @llvm.cos.f64(double %Val)
9094 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9095 declare fp128 @llvm.cos.f128(fp128 %Val)
9096 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9097
9098Overview:
9099"""""""""
9100
9101The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9102
9103Arguments:
9104""""""""""
9105
9106The argument and return value are floating point numbers of the same
9107type.
9108
9109Semantics:
9110""""""""""
9111
9112This function returns the cosine of the specified operand, returning the
9113same values as the libm ``cos`` functions would, and handles error
9114conditions in the same way.
9115
9116'``llvm.pow.*``' Intrinsic
9117^^^^^^^^^^^^^^^^^^^^^^^^^^
9118
9119Syntax:
9120"""""""
9121
9122This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9123floating point or vector of floating point type. Not all targets support
9124all types however.
9125
9126::
9127
9128 declare float @llvm.pow.f32(float %Val, float %Power)
9129 declare double @llvm.pow.f64(double %Val, double %Power)
9130 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9131 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9132 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9133
9134Overview:
9135"""""""""
9136
9137The '``llvm.pow.*``' intrinsics return the first operand raised to the
9138specified (positive or negative) power.
9139
9140Arguments:
9141""""""""""
9142
9143The second argument is a floating point power, and the first is a value
9144to raise to that power.
9145
9146Semantics:
9147""""""""""
9148
9149This function returns the first value raised to the second power,
9150returning the same values as the libm ``pow`` functions would, and
9151handles error conditions in the same way.
9152
9153'``llvm.exp.*``' Intrinsic
9154^^^^^^^^^^^^^^^^^^^^^^^^^^
9155
9156Syntax:
9157"""""""
9158
9159This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9160floating point or vector of floating point type. Not all targets support
9161all types however.
9162
9163::
9164
9165 declare float @llvm.exp.f32(float %Val)
9166 declare double @llvm.exp.f64(double %Val)
9167 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9168 declare fp128 @llvm.exp.f128(fp128 %Val)
9169 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9170
9171Overview:
9172"""""""""
9173
9174The '``llvm.exp.*``' intrinsics perform the exp function.
9175
9176Arguments:
9177""""""""""
9178
9179The argument and return value are floating point numbers of the same
9180type.
9181
9182Semantics:
9183""""""""""
9184
9185This function returns the same values as the libm ``exp`` functions
9186would, and handles error conditions in the same way.
9187
9188'``llvm.exp2.*``' Intrinsic
9189^^^^^^^^^^^^^^^^^^^^^^^^^^^
9190
9191Syntax:
9192"""""""
9193
9194This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9195floating point or vector of floating point type. Not all targets support
9196all types however.
9197
9198::
9199
9200 declare float @llvm.exp2.f32(float %Val)
9201 declare double @llvm.exp2.f64(double %Val)
9202 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9203 declare fp128 @llvm.exp2.f128(fp128 %Val)
9204 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9205
9206Overview:
9207"""""""""
9208
9209The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9210
9211Arguments:
9212""""""""""
9213
9214The argument and return value are floating point numbers of the same
9215type.
9216
9217Semantics:
9218""""""""""
9219
9220This function returns the same values as the libm ``exp2`` functions
9221would, and handles error conditions in the same way.
9222
9223'``llvm.log.*``' Intrinsic
9224^^^^^^^^^^^^^^^^^^^^^^^^^^
9225
9226Syntax:
9227"""""""
9228
9229This is an overloaded intrinsic. You can use ``llvm.log`` on any
9230floating point or vector of floating point type. Not all targets support
9231all types however.
9232
9233::
9234
9235 declare float @llvm.log.f32(float %Val)
9236 declare double @llvm.log.f64(double %Val)
9237 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9238 declare fp128 @llvm.log.f128(fp128 %Val)
9239 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9240
9241Overview:
9242"""""""""
9243
9244The '``llvm.log.*``' intrinsics perform the log function.
9245
9246Arguments:
9247""""""""""
9248
9249The argument and return value are floating point numbers of the same
9250type.
9251
9252Semantics:
9253""""""""""
9254
9255This function returns the same values as the libm ``log`` functions
9256would, and handles error conditions in the same way.
9257
9258'``llvm.log10.*``' Intrinsic
9259^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9260
9261Syntax:
9262"""""""
9263
9264This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9265floating point or vector of floating point type. Not all targets support
9266all types however.
9267
9268::
9269
9270 declare float @llvm.log10.f32(float %Val)
9271 declare double @llvm.log10.f64(double %Val)
9272 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9273 declare fp128 @llvm.log10.f128(fp128 %Val)
9274 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9275
9276Overview:
9277"""""""""
9278
9279The '``llvm.log10.*``' intrinsics perform the log10 function.
9280
9281Arguments:
9282""""""""""
9283
9284The argument and return value are floating point numbers of the same
9285type.
9286
9287Semantics:
9288""""""""""
9289
9290This function returns the same values as the libm ``log10`` functions
9291would, and handles error conditions in the same way.
9292
9293'``llvm.log2.*``' Intrinsic
9294^^^^^^^^^^^^^^^^^^^^^^^^^^^
9295
9296Syntax:
9297"""""""
9298
9299This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9300floating point or vector of floating point type. Not all targets support
9301all types however.
9302
9303::
9304
9305 declare float @llvm.log2.f32(float %Val)
9306 declare double @llvm.log2.f64(double %Val)
9307 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9308 declare fp128 @llvm.log2.f128(fp128 %Val)
9309 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9310
9311Overview:
9312"""""""""
9313
9314The '``llvm.log2.*``' intrinsics perform the log2 function.
9315
9316Arguments:
9317""""""""""
9318
9319The argument and return value are floating point numbers of the same
9320type.
9321
9322Semantics:
9323""""""""""
9324
9325This function returns the same values as the libm ``log2`` functions
9326would, and handles error conditions in the same way.
9327
9328'``llvm.fma.*``' Intrinsic
9329^^^^^^^^^^^^^^^^^^^^^^^^^^
9330
9331Syntax:
9332"""""""
9333
9334This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9335floating point or vector of floating point type. Not all targets support
9336all types however.
9337
9338::
9339
9340 declare float @llvm.fma.f32(float %a, float %b, float %c)
9341 declare double @llvm.fma.f64(double %a, double %b, double %c)
9342 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9343 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9344 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9345
9346Overview:
9347"""""""""
9348
9349The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9350operation.
9351
9352Arguments:
9353""""""""""
9354
9355The argument and return value are floating point numbers of the same
9356type.
9357
9358Semantics:
9359""""""""""
9360
9361This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009362would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009363
9364'``llvm.fabs.*``' Intrinsic
9365^^^^^^^^^^^^^^^^^^^^^^^^^^^
9366
9367Syntax:
9368"""""""
9369
9370This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9371floating point or vector of floating point type. Not all targets support
9372all types however.
9373
9374::
9375
9376 declare float @llvm.fabs.f32(float %Val)
9377 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009378 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009379 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009380 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009381
9382Overview:
9383"""""""""
9384
9385The '``llvm.fabs.*``' intrinsics return the absolute value of the
9386operand.
9387
9388Arguments:
9389""""""""""
9390
9391The argument and return value are floating point numbers of the same
9392type.
9393
9394Semantics:
9395""""""""""
9396
9397This function returns the same values as the libm ``fabs`` functions
9398would, and handles error conditions in the same way.
9399
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009400'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009402
9403Syntax:
9404"""""""
9405
9406This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9407floating point or vector of floating point type. Not all targets support
9408all types however.
9409
9410::
9411
Matt Arsenault64313c92014-10-22 18:25:02 +00009412 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9413 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9414 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9415 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9416 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009417
9418Overview:
9419"""""""""
9420
9421The '``llvm.minnum.*``' intrinsics return the minimum of the two
9422arguments.
9423
9424
9425Arguments:
9426""""""""""
9427
9428The arguments and return value are floating point numbers of the same
9429type.
9430
9431Semantics:
9432""""""""""
9433
9434Follows the IEEE-754 semantics for minNum, which also match for libm's
9435fmin.
9436
9437If either operand is a NaN, returns the other non-NaN operand. Returns
9438NaN only if both operands are NaN. If the operands compare equal,
9439returns a value that compares equal to both operands. This means that
9440fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9441
9442'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009443^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009444
9445Syntax:
9446"""""""
9447
9448This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
9449floating point or vector of floating point type. Not all targets support
9450all types however.
9451
9452::
9453
Matt Arsenault64313c92014-10-22 18:25:02 +00009454 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
9455 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
9456 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9457 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
9458 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009459
9460Overview:
9461"""""""""
9462
9463The '``llvm.maxnum.*``' intrinsics return the maximum of the two
9464arguments.
9465
9466
9467Arguments:
9468""""""""""
9469
9470The arguments and return value are floating point numbers of the same
9471type.
9472
9473Semantics:
9474""""""""""
9475Follows the IEEE-754 semantics for maxNum, which also match for libm's
9476fmax.
9477
9478If either operand is a NaN, returns the other non-NaN operand. Returns
9479NaN only if both operands are NaN. If the operands compare equal,
9480returns a value that compares equal to both operands. This means that
9481fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9482
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00009483'``llvm.copysign.*``' Intrinsic
9484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9485
9486Syntax:
9487"""""""
9488
9489This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
9490floating point or vector of floating point type. Not all targets support
9491all types however.
9492
9493::
9494
9495 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
9496 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
9497 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
9498 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
9499 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
9500
9501Overview:
9502"""""""""
9503
9504The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
9505first operand and the sign of the second operand.
9506
9507Arguments:
9508""""""""""
9509
9510The arguments and return value are floating point numbers of the same
9511type.
9512
9513Semantics:
9514""""""""""
9515
9516This function returns the same values as the libm ``copysign``
9517functions would, and handles error conditions in the same way.
9518
Sean Silvab084af42012-12-07 10:36:55 +00009519'``llvm.floor.*``' Intrinsic
9520^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9521
9522Syntax:
9523"""""""
9524
9525This is an overloaded intrinsic. You can use ``llvm.floor`` on any
9526floating point or vector of floating point type. Not all targets support
9527all types however.
9528
9529::
9530
9531 declare float @llvm.floor.f32(float %Val)
9532 declare double @llvm.floor.f64(double %Val)
9533 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
9534 declare fp128 @llvm.floor.f128(fp128 %Val)
9535 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
9536
9537Overview:
9538"""""""""
9539
9540The '``llvm.floor.*``' intrinsics return the floor of the operand.
9541
9542Arguments:
9543""""""""""
9544
9545The argument and return value are floating point numbers of the same
9546type.
9547
9548Semantics:
9549""""""""""
9550
9551This function returns the same values as the libm ``floor`` functions
9552would, and handles error conditions in the same way.
9553
9554'``llvm.ceil.*``' Intrinsic
9555^^^^^^^^^^^^^^^^^^^^^^^^^^^
9556
9557Syntax:
9558"""""""
9559
9560This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
9561floating point or vector of floating point type. Not all targets support
9562all types however.
9563
9564::
9565
9566 declare float @llvm.ceil.f32(float %Val)
9567 declare double @llvm.ceil.f64(double %Val)
9568 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
9569 declare fp128 @llvm.ceil.f128(fp128 %Val)
9570 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
9571
9572Overview:
9573"""""""""
9574
9575The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
9576
9577Arguments:
9578""""""""""
9579
9580The argument and return value are floating point numbers of the same
9581type.
9582
9583Semantics:
9584""""""""""
9585
9586This function returns the same values as the libm ``ceil`` functions
9587would, and handles error conditions in the same way.
9588
9589'``llvm.trunc.*``' Intrinsic
9590^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9591
9592Syntax:
9593"""""""
9594
9595This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
9596floating point or vector of floating point type. Not all targets support
9597all types however.
9598
9599::
9600
9601 declare float @llvm.trunc.f32(float %Val)
9602 declare double @llvm.trunc.f64(double %Val)
9603 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
9604 declare fp128 @llvm.trunc.f128(fp128 %Val)
9605 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
9606
9607Overview:
9608"""""""""
9609
9610The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
9611nearest integer not larger in magnitude than the operand.
9612
9613Arguments:
9614""""""""""
9615
9616The argument and return value are floating point numbers of the same
9617type.
9618
9619Semantics:
9620""""""""""
9621
9622This function returns the same values as the libm ``trunc`` functions
9623would, and handles error conditions in the same way.
9624
9625'``llvm.rint.*``' Intrinsic
9626^^^^^^^^^^^^^^^^^^^^^^^^^^^
9627
9628Syntax:
9629"""""""
9630
9631This is an overloaded intrinsic. You can use ``llvm.rint`` on any
9632floating point or vector of floating point type. Not all targets support
9633all types however.
9634
9635::
9636
9637 declare float @llvm.rint.f32(float %Val)
9638 declare double @llvm.rint.f64(double %Val)
9639 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
9640 declare fp128 @llvm.rint.f128(fp128 %Val)
9641 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
9642
9643Overview:
9644"""""""""
9645
9646The '``llvm.rint.*``' intrinsics returns the operand rounded to the
9647nearest integer. It may raise an inexact floating-point exception if the
9648operand isn't an integer.
9649
9650Arguments:
9651""""""""""
9652
9653The argument and return value are floating point numbers of the same
9654type.
9655
9656Semantics:
9657""""""""""
9658
9659This function returns the same values as the libm ``rint`` functions
9660would, and handles error conditions in the same way.
9661
9662'``llvm.nearbyint.*``' Intrinsic
9663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9664
9665Syntax:
9666"""""""
9667
9668This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
9669floating point or vector of floating point type. Not all targets support
9670all types however.
9671
9672::
9673
9674 declare float @llvm.nearbyint.f32(float %Val)
9675 declare double @llvm.nearbyint.f64(double %Val)
9676 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
9677 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
9678 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
9679
9680Overview:
9681"""""""""
9682
9683The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
9684nearest integer.
9685
9686Arguments:
9687""""""""""
9688
9689The argument and return value are floating point numbers of the same
9690type.
9691
9692Semantics:
9693""""""""""
9694
9695This function returns the same values as the libm ``nearbyint``
9696functions would, and handles error conditions in the same way.
9697
Hal Finkel171817e2013-08-07 22:49:12 +00009698'``llvm.round.*``' Intrinsic
9699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9700
9701Syntax:
9702"""""""
9703
9704This is an overloaded intrinsic. You can use ``llvm.round`` on any
9705floating point or vector of floating point type. Not all targets support
9706all types however.
9707
9708::
9709
9710 declare float @llvm.round.f32(float %Val)
9711 declare double @llvm.round.f64(double %Val)
9712 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
9713 declare fp128 @llvm.round.f128(fp128 %Val)
9714 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
9715
9716Overview:
9717"""""""""
9718
9719The '``llvm.round.*``' intrinsics returns the operand rounded to the
9720nearest integer.
9721
9722Arguments:
9723""""""""""
9724
9725The argument and return value are floating point numbers of the same
9726type.
9727
9728Semantics:
9729""""""""""
9730
9731This function returns the same values as the libm ``round``
9732functions would, and handles error conditions in the same way.
9733
Sean Silvab084af42012-12-07 10:36:55 +00009734Bit Manipulation Intrinsics
9735---------------------------
9736
9737LLVM provides intrinsics for a few important bit manipulation
9738operations. These allow efficient code generation for some algorithms.
9739
9740'``llvm.bswap.*``' Intrinsics
9741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9742
9743Syntax:
9744"""""""
9745
9746This is an overloaded intrinsic function. You can use bswap on any
9747integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
9748
9749::
9750
9751 declare i16 @llvm.bswap.i16(i16 <id>)
9752 declare i32 @llvm.bswap.i32(i32 <id>)
9753 declare i64 @llvm.bswap.i64(i64 <id>)
9754
9755Overview:
9756"""""""""
9757
9758The '``llvm.bswap``' family of intrinsics is used to byte swap integer
9759values with an even number of bytes (positive multiple of 16 bits).
9760These are useful for performing operations on data that is not in the
9761target's native byte order.
9762
9763Semantics:
9764""""""""""
9765
9766The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
9767and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
9768intrinsic returns an i32 value that has the four bytes of the input i32
9769swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
9770returned i32 will have its bytes in 3, 2, 1, 0 order. The
9771``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
9772concept to additional even-byte lengths (6 bytes, 8 bytes and more,
9773respectively).
9774
9775'``llvm.ctpop.*``' Intrinsic
9776^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9777
9778Syntax:
9779"""""""
9780
9781This is an overloaded intrinsic. You can use llvm.ctpop on any integer
9782bit width, or on any vector with integer elements. Not all targets
9783support all bit widths or vector types, however.
9784
9785::
9786
9787 declare i8 @llvm.ctpop.i8(i8 <src>)
9788 declare i16 @llvm.ctpop.i16(i16 <src>)
9789 declare i32 @llvm.ctpop.i32(i32 <src>)
9790 declare i64 @llvm.ctpop.i64(i64 <src>)
9791 declare i256 @llvm.ctpop.i256(i256 <src>)
9792 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
9793
9794Overview:
9795"""""""""
9796
9797The '``llvm.ctpop``' family of intrinsics counts the number of bits set
9798in a value.
9799
9800Arguments:
9801""""""""""
9802
9803The only argument is the value to be counted. The argument may be of any
9804integer type, or a vector with integer elements. The return type must
9805match the argument type.
9806
9807Semantics:
9808""""""""""
9809
9810The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
9811each element of a vector.
9812
9813'``llvm.ctlz.*``' Intrinsic
9814^^^^^^^^^^^^^^^^^^^^^^^^^^^
9815
9816Syntax:
9817"""""""
9818
9819This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
9820integer bit width, or any vector whose elements are integers. Not all
9821targets support all bit widths or vector types, however.
9822
9823::
9824
9825 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
9826 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
9827 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
9828 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
9829 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
9830 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9831
9832Overview:
9833"""""""""
9834
9835The '``llvm.ctlz``' family of intrinsic functions counts the number of
9836leading zeros in a variable.
9837
9838Arguments:
9839""""""""""
9840
9841The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009842any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009843type must match the first argument type.
9844
9845The second argument must be a constant and is a flag to indicate whether
9846the intrinsic should ensure that a zero as the first argument produces a
9847defined result. Historically some architectures did not provide a
9848defined result for zero values as efficiently, and many algorithms are
9849now predicated on avoiding zero-value inputs.
9850
9851Semantics:
9852""""""""""
9853
9854The '``llvm.ctlz``' intrinsic counts the leading (most significant)
9855zeros in a variable, or within each element of the vector. If
9856``src == 0`` then the result is the size in bits of the type of ``src``
9857if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9858``llvm.ctlz(i32 2) = 30``.
9859
9860'``llvm.cttz.*``' Intrinsic
9861^^^^^^^^^^^^^^^^^^^^^^^^^^^
9862
9863Syntax:
9864"""""""
9865
9866This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
9867integer bit width, or any vector of integer elements. Not all targets
9868support all bit widths or vector types, however.
9869
9870::
9871
9872 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
9873 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
9874 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
9875 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
9876 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
9877 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9878
9879Overview:
9880"""""""""
9881
9882The '``llvm.cttz``' family of intrinsic functions counts the number of
9883trailing zeros.
9884
9885Arguments:
9886""""""""""
9887
9888The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009889any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009890type must match the first argument type.
9891
9892The second argument must be a constant and is a flag to indicate whether
9893the intrinsic should ensure that a zero as the first argument produces a
9894defined result. Historically some architectures did not provide a
9895defined result for zero values as efficiently, and many algorithms are
9896now predicated on avoiding zero-value inputs.
9897
9898Semantics:
9899""""""""""
9900
9901The '``llvm.cttz``' intrinsic counts the trailing (least significant)
9902zeros in a variable, or within each element of a vector. If ``src == 0``
9903then the result is the size in bits of the type of ``src`` if
9904``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9905``llvm.cttz(2) = 1``.
9906
Philip Reames34843ae2015-03-05 05:55:55 +00009907.. _int_overflow:
9908
Sean Silvab084af42012-12-07 10:36:55 +00009909Arithmetic with Overflow Intrinsics
9910-----------------------------------
9911
9912LLVM provides intrinsics for some arithmetic with overflow operations.
9913
9914'``llvm.sadd.with.overflow.*``' Intrinsics
9915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9916
9917Syntax:
9918"""""""
9919
9920This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
9921on any integer bit width.
9922
9923::
9924
9925 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
9926 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9927 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
9928
9929Overview:
9930"""""""""
9931
9932The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9933a signed addition of the two arguments, and indicate whether an overflow
9934occurred during the signed summation.
9935
9936Arguments:
9937""""""""""
9938
9939The arguments (%a and %b) and the first element of the result structure
9940may be of integer types of any bit width, but they must have the same
9941bit width. The second element of the result structure must be of type
9942``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9943addition.
9944
9945Semantics:
9946""""""""""
9947
9948The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009949a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009950first element of which is the signed summation, and the second element
9951of which is a bit specifying if the signed summation resulted in an
9952overflow.
9953
9954Examples:
9955"""""""""
9956
9957.. code-block:: llvm
9958
9959 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9960 %sum = extractvalue {i32, i1} %res, 0
9961 %obit = extractvalue {i32, i1} %res, 1
9962 br i1 %obit, label %overflow, label %normal
9963
9964'``llvm.uadd.with.overflow.*``' Intrinsics
9965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9966
9967Syntax:
9968"""""""
9969
9970This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
9971on any integer bit width.
9972
9973::
9974
9975 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
9976 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9977 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
9978
9979Overview:
9980"""""""""
9981
9982The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9983an unsigned addition of the two arguments, and indicate whether a carry
9984occurred during the unsigned summation.
9985
9986Arguments:
9987""""""""""
9988
9989The arguments (%a and %b) and the first element of the result structure
9990may be of integer types of any bit width, but they must have the same
9991bit width. The second element of the result structure must be of type
9992``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9993addition.
9994
9995Semantics:
9996""""""""""
9997
9998The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009999an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010000first element of which is the sum, and the second element of which is a
10001bit specifying if the unsigned summation resulted in a carry.
10002
10003Examples:
10004"""""""""
10005
10006.. code-block:: llvm
10007
10008 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10009 %sum = extractvalue {i32, i1} %res, 0
10010 %obit = extractvalue {i32, i1} %res, 1
10011 br i1 %obit, label %carry, label %normal
10012
10013'``llvm.ssub.with.overflow.*``' Intrinsics
10014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10015
10016Syntax:
10017"""""""
10018
10019This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10020on any integer bit width.
10021
10022::
10023
10024 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10025 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10026 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10027
10028Overview:
10029"""""""""
10030
10031The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10032a signed subtraction of the two arguments, and indicate whether an
10033overflow occurred during the signed subtraction.
10034
10035Arguments:
10036""""""""""
10037
10038The arguments (%a and %b) and the first element of the result structure
10039may be of integer types of any bit width, but they must have the same
10040bit width. The second element of the result structure must be of type
10041``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10042subtraction.
10043
10044Semantics:
10045""""""""""
10046
10047The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010048a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010049first element of which is the subtraction, and the second element of
10050which is a bit specifying if the signed subtraction resulted in an
10051overflow.
10052
10053Examples:
10054"""""""""
10055
10056.. code-block:: llvm
10057
10058 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10059 %sum = extractvalue {i32, i1} %res, 0
10060 %obit = extractvalue {i32, i1} %res, 1
10061 br i1 %obit, label %overflow, label %normal
10062
10063'``llvm.usub.with.overflow.*``' Intrinsics
10064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10065
10066Syntax:
10067"""""""
10068
10069This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10070on any integer bit width.
10071
10072::
10073
10074 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10075 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10076 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10077
10078Overview:
10079"""""""""
10080
10081The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10082an unsigned subtraction of the two arguments, and indicate whether an
10083overflow occurred during the unsigned subtraction.
10084
10085Arguments:
10086""""""""""
10087
10088The arguments (%a and %b) and the first element of the result structure
10089may be of integer types of any bit width, but they must have the same
10090bit width. The second element of the result structure must be of type
10091``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10092subtraction.
10093
10094Semantics:
10095""""""""""
10096
10097The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010098an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010099the first element of which is the subtraction, and the second element of
10100which is a bit specifying if the unsigned subtraction resulted in an
10101overflow.
10102
10103Examples:
10104"""""""""
10105
10106.. code-block:: llvm
10107
10108 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10109 %sum = extractvalue {i32, i1} %res, 0
10110 %obit = extractvalue {i32, i1} %res, 1
10111 br i1 %obit, label %overflow, label %normal
10112
10113'``llvm.smul.with.overflow.*``' Intrinsics
10114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10115
10116Syntax:
10117"""""""
10118
10119This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10120on any integer bit width.
10121
10122::
10123
10124 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10125 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10126 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10127
10128Overview:
10129"""""""""
10130
10131The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10132a signed multiplication of the two arguments, and indicate whether an
10133overflow occurred during the signed multiplication.
10134
10135Arguments:
10136""""""""""
10137
10138The arguments (%a and %b) and the first element of the result structure
10139may be of integer types of any bit width, but they must have the same
10140bit width. The second element of the result structure must be of type
10141``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10142multiplication.
10143
10144Semantics:
10145""""""""""
10146
10147The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010148a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010149the first element of which is the multiplication, and the second element
10150of which is a bit specifying if the signed multiplication resulted in an
10151overflow.
10152
10153Examples:
10154"""""""""
10155
10156.. code-block:: llvm
10157
10158 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10159 %sum = extractvalue {i32, i1} %res, 0
10160 %obit = extractvalue {i32, i1} %res, 1
10161 br i1 %obit, label %overflow, label %normal
10162
10163'``llvm.umul.with.overflow.*``' Intrinsics
10164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10165
10166Syntax:
10167"""""""
10168
10169This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10170on any integer bit width.
10171
10172::
10173
10174 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10175 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10176 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10177
10178Overview:
10179"""""""""
10180
10181The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10182a unsigned multiplication of the two arguments, and indicate whether an
10183overflow occurred during the unsigned multiplication.
10184
10185Arguments:
10186""""""""""
10187
10188The arguments (%a and %b) and the first element of the result structure
10189may be of integer types of any bit width, but they must have the same
10190bit width. The second element of the result structure must be of type
10191``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10192multiplication.
10193
10194Semantics:
10195""""""""""
10196
10197The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010198an unsigned multiplication of the two arguments. They return a structure ---
10199the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010200element of which is a bit specifying if the unsigned multiplication
10201resulted in an overflow.
10202
10203Examples:
10204"""""""""
10205
10206.. code-block:: llvm
10207
10208 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10209 %sum = extractvalue {i32, i1} %res, 0
10210 %obit = extractvalue {i32, i1} %res, 1
10211 br i1 %obit, label %overflow, label %normal
10212
10213Specialised Arithmetic Intrinsics
10214---------------------------------
10215
Owen Anderson1056a922015-07-11 07:01:27 +000010216'``llvm.canonicalize.*``' Intrinsic
10217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10218
10219Syntax:
10220"""""""
10221
10222::
10223
10224 declare float @llvm.canonicalize.f32(float %a)
10225 declare double @llvm.canonicalize.f64(double %b)
10226
10227Overview:
10228"""""""""
10229
10230The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
10231encoding of a floating point number. This canonicalization is useful for
10232implementing certain numeric primitives such as frexp. The canonical encoding is
10233defined by IEEE-754-2008 to be:
10234
10235::
10236
10237 2.1.8 canonical encoding: The preferred encoding of a floating-point
10238 representation in a format. Applied to declets, significands of finite
10239 numbers, infinities, and NaNs, especially in decimal formats.
10240
10241This operation can also be considered equivalent to the IEEE-754-2008
10242conversion of a floating-point value to the same format. NaNs are handled
10243according to section 6.2.
10244
10245Examples of non-canonical encodings:
10246
10247- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
10248 converted to a canonical representation per hardware-specific protocol.
10249- Many normal decimal floating point numbers have non-canonical alternative
10250 encodings.
10251- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10252 These are treated as non-canonical encodings of zero and with be flushed to
10253 a zero of the same sign by this operation.
10254
10255Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10256default exception handling must signal an invalid exception, and produce a
10257quiet NaN result.
10258
10259This function should always be implementable as multiplication by 1.0, provided
10260that the compiler does not constant fold the operation. Likewise, division by
102611.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
10262-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10263
10264``@llvm.canonicalize`` must preserve the equality relation. That is:
10265
10266- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10267- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10268 to ``(x == y)``
10269
10270Additionally, the sign of zero must be conserved:
10271``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10272
10273The payload bits of a NaN must be conserved, with two exceptions.
10274First, environments which use only a single canonical representation of NaN
10275must perform said canonicalization. Second, SNaNs must be quieted per the
10276usual methods.
10277
10278The canonicalization operation may be optimized away if:
10279
10280- The input is known to be canonical. For example, it was produced by a
10281 floating-point operation that is required by the standard to be canonical.
10282- The result is consumed only by (or fused with) other floating-point
10283 operations. That is, the bits of the floating point value are not examined.
10284
Sean Silvab084af42012-12-07 10:36:55 +000010285'``llvm.fmuladd.*``' Intrinsic
10286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10287
10288Syntax:
10289"""""""
10290
10291::
10292
10293 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10294 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10295
10296Overview:
10297"""""""""
10298
10299The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010300expressions that can be fused if the code generator determines that (a) the
10301target instruction set has support for a fused operation, and (b) that the
10302fused operation is more efficient than the equivalent, separate pair of mul
10303and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010304
10305Arguments:
10306""""""""""
10307
10308The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10309multiplicands, a and b, and an addend c.
10310
10311Semantics:
10312""""""""""
10313
10314The expression:
10315
10316::
10317
10318 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10319
10320is equivalent to the expression a \* b + c, except that rounding will
10321not be performed between the multiplication and addition steps if the
10322code generator fuses the operations. Fusion is not guaranteed, even if
10323the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010324corresponding llvm.fma.\* intrinsic function should be used
10325instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010326
10327Examples:
10328"""""""""
10329
10330.. code-block:: llvm
10331
Tim Northover675a0962014-06-13 14:24:23 +000010332 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010333
James Molloy7395a812015-07-16 15:22:46 +000010334
10335'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10336^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10337
10338Syntax:
10339"""""""
10340This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10341
10342.. code-block:: llvm
10343
10344 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10345
10346
10347Overview:
10348"""""""""
10349
10350The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference of the two operands,
10351treating them both as unsigned integers.
10352
10353The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of the two operands,
10354treating them both as signed integers.
10355
10356.. note::
10357
10358 These intrinsics are primarily used during the code generation stage of compilation.
10359 They are generated by compiler passes such as the Loop and SLP vectorizers.it is not
10360 recommended for users to create them manually.
10361
10362Arguments:
10363""""""""""
10364
10365Both intrinsics take two integer of the same bitwidth.
10366
10367Semantics:
10368""""""""""
10369
10370The expression::
10371
10372 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10373
10374is equivalent to::
10375
10376 %sub = sub <4 x i32> %a, %b
10377 %ispos = icmp ugt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10378 %neg = sub <4 x i32> zeroinitializer, %sub
10379 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10380
10381Similarly the expression::
10382
10383 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10384
10385is equivalent to::
10386
10387 %sub = sub nsw <4 x i32> %a, %b
10388 %ispos = icmp sgt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10389 %neg = sub nsw <4 x i32> zeroinitializer, %sub
10390 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10391
10392
Sean Silvab084af42012-12-07 10:36:55 +000010393Half Precision Floating Point Intrinsics
10394----------------------------------------
10395
10396For most target platforms, half precision floating point is a
10397storage-only format. This means that it is a dense encoding (in memory)
10398but does not support computation in the format.
10399
10400This means that code must first load the half-precision floating point
10401value as an i16, then convert it to float with
10402:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10403then be performed on the float value (including extending to double
10404etc). To store the value back to memory, it is first converted to float
10405if needed, then converted to i16 with
10406:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10407i16 value.
10408
10409.. _int_convert_to_fp16:
10410
10411'``llvm.convert.to.fp16``' Intrinsic
10412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10413
10414Syntax:
10415"""""""
10416
10417::
10418
Tim Northoverfd7e4242014-07-17 10:51:23 +000010419 declare i16 @llvm.convert.to.fp16.f32(float %a)
10420 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010421
10422Overview:
10423"""""""""
10424
Tim Northoverfd7e4242014-07-17 10:51:23 +000010425The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10426conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000010427
10428Arguments:
10429""""""""""
10430
10431The intrinsic function contains single argument - the value to be
10432converted.
10433
10434Semantics:
10435""""""""""
10436
Tim Northoverfd7e4242014-07-17 10:51:23 +000010437The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10438conventional floating point format to half precision floating point format. The
10439return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000010440
10441Examples:
10442"""""""""
10443
10444.. code-block:: llvm
10445
Tim Northoverfd7e4242014-07-17 10:51:23 +000010446 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000010447 store i16 %res, i16* @x, align 2
10448
10449.. _int_convert_from_fp16:
10450
10451'``llvm.convert.from.fp16``' Intrinsic
10452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10453
10454Syntax:
10455"""""""
10456
10457::
10458
Tim Northoverfd7e4242014-07-17 10:51:23 +000010459 declare float @llvm.convert.from.fp16.f32(i16 %a)
10460 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010461
10462Overview:
10463"""""""""
10464
10465The '``llvm.convert.from.fp16``' intrinsic function performs a
10466conversion from half precision floating point format to single precision
10467floating point format.
10468
10469Arguments:
10470""""""""""
10471
10472The intrinsic function contains single argument - the value to be
10473converted.
10474
10475Semantics:
10476""""""""""
10477
10478The '``llvm.convert.from.fp16``' intrinsic function performs a
10479conversion from half single precision floating point format to single
10480precision floating point format. The input half-float value is
10481represented by an ``i16`` value.
10482
10483Examples:
10484"""""""""
10485
10486.. code-block:: llvm
10487
David Blaikiec7aabbb2015-03-04 22:06:14 +000010488 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000010489 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010490
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000010491.. _dbg_intrinsics:
10492
Sean Silvab084af42012-12-07 10:36:55 +000010493Debugger Intrinsics
10494-------------------
10495
10496The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
10497prefix), are described in the `LLVM Source Level
10498Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
10499document.
10500
10501Exception Handling Intrinsics
10502-----------------------------
10503
10504The LLVM exception handling intrinsics (which all start with
10505``llvm.eh.`` prefix), are described in the `LLVM Exception
10506Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
10507
10508.. _int_trampoline:
10509
10510Trampoline Intrinsics
10511---------------------
10512
10513These intrinsics make it possible to excise one parameter, marked with
10514the :ref:`nest <nest>` attribute, from a function. The result is a
10515callable function pointer lacking the nest parameter - the caller does
10516not need to provide a value for it. Instead, the value to use is stored
10517in advance in a "trampoline", a block of memory usually allocated on the
10518stack, which also contains code to splice the nest value into the
10519argument list. This is used to implement the GCC nested function address
10520extension.
10521
10522For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
10523then the resulting function pointer has signature ``i32 (i32, i32)*``.
10524It can be created as follows:
10525
10526.. code-block:: llvm
10527
10528 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000010529 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000010530 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
10531 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
10532 %fp = bitcast i8* %p to i32 (i32, i32)*
10533
10534The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
10535``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
10536
10537.. _int_it:
10538
10539'``llvm.init.trampoline``' Intrinsic
10540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10541
10542Syntax:
10543"""""""
10544
10545::
10546
10547 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
10548
10549Overview:
10550"""""""""
10551
10552This fills the memory pointed to by ``tramp`` with executable code,
10553turning it into a trampoline.
10554
10555Arguments:
10556""""""""""
10557
10558The ``llvm.init.trampoline`` intrinsic takes three arguments, all
10559pointers. The ``tramp`` argument must point to a sufficiently large and
10560sufficiently aligned block of memory; this memory is written to by the
10561intrinsic. Note that the size and the alignment are target-specific -
10562LLVM currently provides no portable way of determining them, so a
10563front-end that generates this intrinsic needs to have some
10564target-specific knowledge. The ``func`` argument must hold a function
10565bitcast to an ``i8*``.
10566
10567Semantics:
10568""""""""""
10569
10570The block of memory pointed to by ``tramp`` is filled with target
10571dependent code, turning it into a function. Then ``tramp`` needs to be
10572passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
10573be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
10574function's signature is the same as that of ``func`` with any arguments
10575marked with the ``nest`` attribute removed. At most one such ``nest``
10576argument is allowed, and it must be of pointer type. Calling the new
10577function is equivalent to calling ``func`` with the same argument list,
10578but with ``nval`` used for the missing ``nest`` argument. If, after
10579calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
10580modified, then the effect of any later call to the returned function
10581pointer is undefined.
10582
10583.. _int_at:
10584
10585'``llvm.adjust.trampoline``' Intrinsic
10586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10587
10588Syntax:
10589"""""""
10590
10591::
10592
10593 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
10594
10595Overview:
10596"""""""""
10597
10598This performs any required machine-specific adjustment to the address of
10599a trampoline (passed as ``tramp``).
10600
10601Arguments:
10602""""""""""
10603
10604``tramp`` must point to a block of memory which already has trampoline
10605code filled in by a previous call to
10606:ref:`llvm.init.trampoline <int_it>`.
10607
10608Semantics:
10609""""""""""
10610
10611On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010612different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000010613intrinsic returns the executable address corresponding to ``tramp``
10614after performing the required machine specific adjustments. The pointer
10615returned can then be :ref:`bitcast and executed <int_trampoline>`.
10616
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010617.. _int_mload_mstore:
10618
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010619Masked Vector Load and Store Intrinsics
10620---------------------------------------
10621
10622LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
10623
10624.. _int_mload:
10625
10626'``llvm.masked.load.*``' Intrinsics
10627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10628
10629Syntax:
10630"""""""
10631This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
10632
10633::
10634
10635 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
10636 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
10637
10638Overview:
10639"""""""""
10640
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010641Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010642
10643
10644Arguments:
10645""""""""""
10646
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010647The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010648
10649
10650Semantics:
10651""""""""""
10652
10653The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
10654The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
10655
10656
10657::
10658
10659 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010660
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010661 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000010662 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000010663 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010664
10665.. _int_mstore:
10666
10667'``llvm.masked.store.*``' Intrinsics
10668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10669
10670Syntax:
10671"""""""
10672This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
10673
10674::
10675
10676 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
10677 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
10678
10679Overview:
10680"""""""""
10681
10682Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
10683
10684Arguments:
10685""""""""""
10686
10687The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
10688
10689
10690Semantics:
10691""""""""""
10692
10693The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
10694The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
10695
10696::
10697
10698 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010699
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000010700 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000010701 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010702 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
10703 store <16 x float> %res, <16 x float>* %ptr, align 4
10704
10705
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010706Masked Vector Gather and Scatter Intrinsics
10707-------------------------------------------
10708
10709LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
10710
10711.. _int_mgather:
10712
10713'``llvm.masked.gather.*``' Intrinsics
10714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10715
10716Syntax:
10717"""""""
10718This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
10719
10720::
10721
10722 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
10723 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
10724
10725Overview:
10726"""""""""
10727
10728Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
10729
10730
10731Arguments:
10732""""""""""
10733
10734The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
10735
10736
10737Semantics:
10738""""""""""
10739
10740The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
10741The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
10742
10743
10744::
10745
10746 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
10747
10748 ;; The gather with all-true mask is equivalent to the following instruction sequence
10749 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
10750 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
10751 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
10752 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
10753
10754 %val0 = load double, double* %ptr0, align 8
10755 %val1 = load double, double* %ptr1, align 8
10756 %val2 = load double, double* %ptr2, align 8
10757 %val3 = load double, double* %ptr3, align 8
10758
10759 %vec0 = insertelement <4 x double>undef, %val0, 0
10760 %vec01 = insertelement <4 x double>%vec0, %val1, 1
10761 %vec012 = insertelement <4 x double>%vec01, %val2, 2
10762 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
10763
10764.. _int_mscatter:
10765
10766'``llvm.masked.scatter.*``' Intrinsics
10767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10768
10769Syntax:
10770"""""""
10771This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
10772
10773::
10774
10775 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
10776 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
10777
10778Overview:
10779"""""""""
10780
10781Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
10782
10783Arguments:
10784""""""""""
10785
10786The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
10787
10788
10789Semantics:
10790""""""""""
10791
10792The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
10793
10794::
10795
10796 ;; This instruction unconditionaly stores data vector in multiple addresses
10797 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
10798
10799 ;; It is equivalent to a list of scalar stores
10800 %val0 = extractelement <8 x i32> %value, i32 0
10801 %val1 = extractelement <8 x i32> %value, i32 1
10802 ..
10803 %val7 = extractelement <8 x i32> %value, i32 7
10804 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
10805 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
10806 ..
10807 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
10808 ;; Note: the order of the following stores is important when they overlap:
10809 store i32 %val0, i32* %ptr0, align 4
10810 store i32 %val1, i32* %ptr1, align 4
10811 ..
10812 store i32 %val7, i32* %ptr7, align 4
10813
10814
Sean Silvab084af42012-12-07 10:36:55 +000010815Memory Use Markers
10816------------------
10817
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010818This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000010819memory objects and ranges where variables are immutable.
10820
Reid Klecknera534a382013-12-19 02:14:12 +000010821.. _int_lifestart:
10822
Sean Silvab084af42012-12-07 10:36:55 +000010823'``llvm.lifetime.start``' Intrinsic
10824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10825
10826Syntax:
10827"""""""
10828
10829::
10830
10831 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
10832
10833Overview:
10834"""""""""
10835
10836The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
10837object's lifetime.
10838
10839Arguments:
10840""""""""""
10841
10842The first argument is a constant integer representing the size of the
10843object, or -1 if it is variable sized. The second argument is a pointer
10844to the object.
10845
10846Semantics:
10847""""""""""
10848
10849This intrinsic indicates that before this point in the code, the value
10850of the memory pointed to by ``ptr`` is dead. This means that it is known
10851to never be used and has an undefined value. A load from the pointer
10852that precedes this intrinsic can be replaced with ``'undef'``.
10853
Reid Klecknera534a382013-12-19 02:14:12 +000010854.. _int_lifeend:
10855
Sean Silvab084af42012-12-07 10:36:55 +000010856'``llvm.lifetime.end``' Intrinsic
10857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10858
10859Syntax:
10860"""""""
10861
10862::
10863
10864 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
10865
10866Overview:
10867"""""""""
10868
10869The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
10870object's lifetime.
10871
10872Arguments:
10873""""""""""
10874
10875The first argument is a constant integer representing the size of the
10876object, or -1 if it is variable sized. The second argument is a pointer
10877to the object.
10878
10879Semantics:
10880""""""""""
10881
10882This intrinsic indicates that after this point in the code, the value of
10883the memory pointed to by ``ptr`` is dead. This means that it is known to
10884never be used and has an undefined value. Any stores into the memory
10885object following this intrinsic may be removed as dead.
10886
10887'``llvm.invariant.start``' Intrinsic
10888^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10889
10890Syntax:
10891"""""""
10892
10893::
10894
10895 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
10896
10897Overview:
10898"""""""""
10899
10900The '``llvm.invariant.start``' intrinsic specifies that the contents of
10901a memory object will not change.
10902
10903Arguments:
10904""""""""""
10905
10906The first argument is a constant integer representing the size of the
10907object, or -1 if it is variable sized. The second argument is a pointer
10908to the object.
10909
10910Semantics:
10911""""""""""
10912
10913This intrinsic indicates that until an ``llvm.invariant.end`` that uses
10914the return value, the referenced memory location is constant and
10915unchanging.
10916
10917'``llvm.invariant.end``' Intrinsic
10918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10919
10920Syntax:
10921"""""""
10922
10923::
10924
10925 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
10926
10927Overview:
10928"""""""""
10929
10930The '``llvm.invariant.end``' intrinsic specifies that the contents of a
10931memory object are mutable.
10932
10933Arguments:
10934""""""""""
10935
10936The first argument is the matching ``llvm.invariant.start`` intrinsic.
10937The second argument is a constant integer representing the size of the
10938object, or -1 if it is variable sized and the third argument is a
10939pointer to the object.
10940
10941Semantics:
10942""""""""""
10943
10944This intrinsic indicates that the memory is mutable again.
10945
10946General Intrinsics
10947------------------
10948
10949This class of intrinsics is designed to be generic and has no specific
10950purpose.
10951
10952'``llvm.var.annotation``' Intrinsic
10953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10954
10955Syntax:
10956"""""""
10957
10958::
10959
10960 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10961
10962Overview:
10963"""""""""
10964
10965The '``llvm.var.annotation``' intrinsic.
10966
10967Arguments:
10968""""""""""
10969
10970The first argument is a pointer to a value, the second is a pointer to a
10971global string, the third is a pointer to a global string which is the
10972source file name, and the last argument is the line number.
10973
10974Semantics:
10975""""""""""
10976
10977This intrinsic allows annotation of local variables with arbitrary
10978strings. This can be useful for special purpose optimizations that want
10979to look for these annotations. These have no other defined use; they are
10980ignored by code generation and optimization.
10981
Michael Gottesman88d18832013-03-26 00:34:27 +000010982'``llvm.ptr.annotation.*``' Intrinsic
10983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10984
10985Syntax:
10986"""""""
10987
10988This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
10989pointer to an integer of any width. *NOTE* you must specify an address space for
10990the pointer. The identifier for the default address space is the integer
10991'``0``'.
10992
10993::
10994
10995 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10996 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
10997 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
10998 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
10999 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11000
11001Overview:
11002"""""""""
11003
11004The '``llvm.ptr.annotation``' intrinsic.
11005
11006Arguments:
11007""""""""""
11008
11009The first argument is a pointer to an integer value of arbitrary bitwidth
11010(result of some expression), the second is a pointer to a global string, the
11011third is a pointer to a global string which is the source file name, and the
11012last argument is the line number. It returns the value of the first argument.
11013
11014Semantics:
11015""""""""""
11016
11017This intrinsic allows annotation of a pointer to an integer with arbitrary
11018strings. This can be useful for special purpose optimizations that want to look
11019for these annotations. These have no other defined use; they are ignored by code
11020generation and optimization.
11021
Sean Silvab084af42012-12-07 10:36:55 +000011022'``llvm.annotation.*``' Intrinsic
11023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11024
11025Syntax:
11026"""""""
11027
11028This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11029any integer bit width.
11030
11031::
11032
11033 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11034 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11035 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11036 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11037 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11038
11039Overview:
11040"""""""""
11041
11042The '``llvm.annotation``' intrinsic.
11043
11044Arguments:
11045""""""""""
11046
11047The first argument is an integer value (result of some expression), the
11048second is a pointer to a global string, the third is a pointer to a
11049global string which is the source file name, and the last argument is
11050the line number. It returns the value of the first argument.
11051
11052Semantics:
11053""""""""""
11054
11055This intrinsic allows annotations to be put on arbitrary expressions
11056with arbitrary strings. This can be useful for special purpose
11057optimizations that want to look for these annotations. These have no
11058other defined use; they are ignored by code generation and optimization.
11059
11060'``llvm.trap``' Intrinsic
11061^^^^^^^^^^^^^^^^^^^^^^^^^
11062
11063Syntax:
11064"""""""
11065
11066::
11067
11068 declare void @llvm.trap() noreturn nounwind
11069
11070Overview:
11071"""""""""
11072
11073The '``llvm.trap``' intrinsic.
11074
11075Arguments:
11076""""""""""
11077
11078None.
11079
11080Semantics:
11081""""""""""
11082
11083This intrinsic is lowered to the target dependent trap instruction. If
11084the target does not have a trap instruction, this intrinsic will be
11085lowered to a call of the ``abort()`` function.
11086
11087'``llvm.debugtrap``' Intrinsic
11088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11089
11090Syntax:
11091"""""""
11092
11093::
11094
11095 declare void @llvm.debugtrap() nounwind
11096
11097Overview:
11098"""""""""
11099
11100The '``llvm.debugtrap``' intrinsic.
11101
11102Arguments:
11103""""""""""
11104
11105None.
11106
11107Semantics:
11108""""""""""
11109
11110This intrinsic is lowered to code which is intended to cause an
11111execution trap with the intention of requesting the attention of a
11112debugger.
11113
11114'``llvm.stackprotector``' Intrinsic
11115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11116
11117Syntax:
11118"""""""
11119
11120::
11121
11122 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11123
11124Overview:
11125"""""""""
11126
11127The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11128onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11129is placed on the stack before local variables.
11130
11131Arguments:
11132""""""""""
11133
11134The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11135The first argument is the value loaded from the stack guard
11136``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11137enough space to hold the value of the guard.
11138
11139Semantics:
11140""""""""""
11141
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011142This intrinsic causes the prologue/epilogue inserter to force the position of
11143the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11144to ensure that if a local variable on the stack is overwritten, it will destroy
11145the value of the guard. When the function exits, the guard on the stack is
11146checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11147different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11148calling the ``__stack_chk_fail()`` function.
11149
11150'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011152
11153Syntax:
11154"""""""
11155
11156::
11157
11158 declare void @llvm.stackprotectorcheck(i8** <guard>)
11159
11160Overview:
11161"""""""""
11162
11163The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011164created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011165``__stack_chk_fail()`` function.
11166
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011167Arguments:
11168""""""""""
11169
11170The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11171the variable ``@__stack_chk_guard``.
11172
11173Semantics:
11174""""""""""
11175
11176This intrinsic is provided to perform the stack protector check by comparing
11177``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11178values do not match call the ``__stack_chk_fail()`` function.
11179
11180The reason to provide this as an IR level intrinsic instead of implementing it
11181via other IR operations is that in order to perform this operation at the IR
11182level without an intrinsic, one would need to create additional basic blocks to
11183handle the success/failure cases. This makes it difficult to stop the stack
11184protector check from disrupting sibling tail calls in Codegen. With this
11185intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011186codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011187
Sean Silvab084af42012-12-07 10:36:55 +000011188'``llvm.objectsize``' Intrinsic
11189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11190
11191Syntax:
11192"""""""
11193
11194::
11195
11196 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11197 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11198
11199Overview:
11200"""""""""
11201
11202The ``llvm.objectsize`` intrinsic is designed to provide information to
11203the optimizers to determine at compile time whether a) an operation
11204(like memcpy) will overflow a buffer that corresponds to an object, or
11205b) that a runtime check for overflow isn't necessary. An object in this
11206context means an allocation of a specific class, structure, array, or
11207other object.
11208
11209Arguments:
11210""""""""""
11211
11212The ``llvm.objectsize`` intrinsic takes two arguments. The first
11213argument is a pointer to or into the ``object``. The second argument is
11214a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11215or -1 (if false) when the object size is unknown. The second argument
11216only accepts constants.
11217
11218Semantics:
11219""""""""""
11220
11221The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11222the size of the object concerned. If the size cannot be determined at
11223compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11224on the ``min`` argument).
11225
11226'``llvm.expect``' Intrinsic
11227^^^^^^^^^^^^^^^^^^^^^^^^^^^
11228
11229Syntax:
11230"""""""
11231
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011232This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11233integer bit width.
11234
Sean Silvab084af42012-12-07 10:36:55 +000011235::
11236
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011237 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011238 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11239 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11240
11241Overview:
11242"""""""""
11243
11244The ``llvm.expect`` intrinsic provides information about expected (the
11245most probable) value of ``val``, which can be used by optimizers.
11246
11247Arguments:
11248""""""""""
11249
11250The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11251a value. The second argument is an expected value, this needs to be a
11252constant value, variables are not allowed.
11253
11254Semantics:
11255""""""""""
11256
11257This intrinsic is lowered to the ``val``.
11258
Philip Reamese0e90832015-04-26 22:23:12 +000011259.. _int_assume:
11260
Hal Finkel93046912014-07-25 21:13:35 +000011261'``llvm.assume``' Intrinsic
11262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11263
11264Syntax:
11265"""""""
11266
11267::
11268
11269 declare void @llvm.assume(i1 %cond)
11270
11271Overview:
11272"""""""""
11273
11274The ``llvm.assume`` allows the optimizer to assume that the provided
11275condition is true. This information can then be used in simplifying other parts
11276of the code.
11277
11278Arguments:
11279""""""""""
11280
11281The condition which the optimizer may assume is always true.
11282
11283Semantics:
11284""""""""""
11285
11286The intrinsic allows the optimizer to assume that the provided condition is
11287always true whenever the control flow reaches the intrinsic call. No code is
11288generated for this intrinsic, and instructions that contribute only to the
11289provided condition are not used for code generation. If the condition is
11290violated during execution, the behavior is undefined.
11291
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011292Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011293used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11294only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011295if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011296sufficient overall improvement in code quality. For this reason,
11297``llvm.assume`` should not be used to document basic mathematical invariants
11298that the optimizer can otherwise deduce or facts that are of little use to the
11299optimizer.
11300
Peter Collingbournee6909c82015-02-20 20:30:47 +000011301.. _bitset.test:
11302
11303'``llvm.bitset.test``' Intrinsic
11304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11305
11306Syntax:
11307"""""""
11308
11309::
11310
11311 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11312
11313
11314Arguments:
11315""""""""""
11316
11317The first argument is a pointer to be tested. The second argument is a
11318metadata string containing the name of a :doc:`bitset <BitSets>`.
11319
11320Overview:
11321"""""""""
11322
11323The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11324member of the given bitset.
11325
Sean Silvab084af42012-12-07 10:36:55 +000011326'``llvm.donothing``' Intrinsic
11327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11328
11329Syntax:
11330"""""""
11331
11332::
11333
11334 declare void @llvm.donothing() nounwind readnone
11335
11336Overview:
11337"""""""""
11338
Juergen Ributzkac9161192014-10-23 22:36:13 +000011339The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11340two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11341with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011342
11343Arguments:
11344""""""""""
11345
11346None.
11347
11348Semantics:
11349""""""""""
11350
11351This intrinsic does nothing, and it's removed by optimizers and ignored
11352by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011353
11354Stack Map Intrinsics
11355--------------------
11356
11357LLVM provides experimental intrinsics to support runtime patching
11358mechanisms commonly desired in dynamic language JITs. These intrinsics
11359are described in :doc:`StackMaps`.