blob: 8a9ea13de08d25ecb2cedd4042850331177e261b [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Sean Silva706fba52015-08-06 22:56:24 +0000693The argument list is a comma separated sequence of arguments where each
694argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
Rafael Espindola464fe022014-07-30 22:51:54 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Sean Silvaa1190322015-08-06 22:56:48 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000750that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000825with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000831COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000897 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000932 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000933 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000941 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001030 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001037 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001073index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001090of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
Sean Silvaa1190322015-08-06 22:56:48 +00001097A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001111have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001116definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Sean Silvaa1190322015-08-06 22:56:48 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
1222 Transformations that are execution model agnostic may only move or
1223 tranform this call if the final location is control equivalent to its
1224 original position in the program, where control equivalence is defined as
1225 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001226``inlinehint``
1227 This attribute indicates that the source code contained a hint that
1228 inlining this function is desirable (such as the "inline" keyword in
1229 C/C++). It is just a hint; it imposes no requirements on the
1230 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001231``jumptable``
1232 This attribute indicates that the function should be added to a
1233 jump-instruction table at code-generation time, and that all address-taken
1234 references to this function should be replaced with a reference to the
1235 appropriate jump-instruction-table function pointer. Note that this creates
1236 a new pointer for the original function, which means that code that depends
1237 on function-pointer identity can break. So, any function annotated with
1238 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001239``minsize``
1240 This attribute suggests that optimization passes and code generator
1241 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001242 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001243 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001244``naked``
1245 This attribute disables prologue / epilogue emission for the
1246 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001247``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001248 This indicates that the callee function at a call site is not recognized as
1249 a built-in function. LLVM will retain the original call and not replace it
1250 with equivalent code based on the semantics of the built-in function, unless
1251 the call site uses the ``builtin`` attribute. This is valid at call sites
1252 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001253``noduplicate``
1254 This attribute indicates that calls to the function cannot be
1255 duplicated. A call to a ``noduplicate`` function may be moved
1256 within its parent function, but may not be duplicated within
1257 its parent function.
1258
1259 A function containing a ``noduplicate`` call may still
1260 be an inlining candidate, provided that the call is not
1261 duplicated by inlining. That implies that the function has
1262 internal linkage and only has one call site, so the original
1263 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001264``noimplicitfloat``
1265 This attributes disables implicit floating point instructions.
1266``noinline``
1267 This attribute indicates that the inliner should never inline this
1268 function in any situation. This attribute may not be used together
1269 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001270``nonlazybind``
1271 This attribute suppresses lazy symbol binding for the function. This
1272 may make calls to the function faster, at the cost of extra program
1273 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001274``noredzone``
1275 This attribute indicates that the code generator should not use a
1276 red zone, even if the target-specific ABI normally permits it.
1277``noreturn``
1278 This function attribute indicates that the function never returns
1279 normally. This produces undefined behavior at runtime if the
1280 function ever does dynamically return.
1281``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001282 This function attribute indicates that the function never raises an
1283 exception. If the function does raise an exception, its runtime
1284 behavior is undefined. However, functions marked nounwind may still
1285 trap or generate asynchronous exceptions. Exception handling schemes
1286 that are recognized by LLVM to handle asynchronous exceptions, such
1287 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288``optnone``
1289 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291 exception of interprocedural optimization passes.
1292 This attribute cannot be used together with the ``alwaysinline``
1293 attribute; this attribute is also incompatible
1294 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001295
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 This attribute requires the ``noinline`` attribute to be specified on
1297 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001298 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``optsize``
1301 This attribute suggests that optimization passes and code generator
1302 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001303 and otherwise do optimizations specifically to reduce code size as
1304 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001305``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001306 On a function, this attribute indicates that the function computes its
1307 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001308 without dereferencing any pointer arguments or otherwise accessing
1309 any mutable state (e.g. memory, control registers, etc) visible to
1310 caller functions. It does not write through any pointer arguments
1311 (including ``byval`` arguments) and never changes any state visible
1312 to callers. This means that it cannot unwind exceptions by calling
1313 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001314
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001315 On an argument, this attribute indicates that the function does not
1316 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001317 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001318``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001319 On a function, this attribute indicates that the function does not write
1320 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001321 modify any state (e.g. memory, control registers, etc) visible to
1322 caller functions. It may dereference pointer arguments and read
1323 state that may be set in the caller. A readonly function always
1324 returns the same value (or unwinds an exception identically) when
1325 called with the same set of arguments and global state. It cannot
1326 unwind an exception by calling the ``C++`` exception throwing
1327 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001328
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On an argument, this attribute indicates that the function does not write
1330 through this pointer argument, even though it may write to the memory that
1331 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001332``argmemonly``
1333 This attribute indicates that the only memory accesses inside function are
1334 loads and stores from objects pointed to by its pointer-typed arguments,
1335 with arbitrary offsets. Or in other words, all memory operations in the
1336 function can refer to memory only using pointers based on its function
1337 arguments.
1338 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1339 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001340``returns_twice``
1341 This attribute indicates that this function can return twice. The C
1342 ``setjmp`` is an example of such a function. The compiler disables
1343 some optimizations (like tail calls) in the caller of these
1344 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001345``safestack``
1346 This attribute indicates that
1347 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1348 protection is enabled for this function.
1349
1350 If a function that has a ``safestack`` attribute is inlined into a
1351 function that doesn't have a ``safestack`` attribute or which has an
1352 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1353 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001354``sanitize_address``
1355 This attribute indicates that AddressSanitizer checks
1356 (dynamic address safety analysis) are enabled for this function.
1357``sanitize_memory``
1358 This attribute indicates that MemorySanitizer checks (dynamic detection
1359 of accesses to uninitialized memory) are enabled for this function.
1360``sanitize_thread``
1361 This attribute indicates that ThreadSanitizer checks
1362 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001363``ssp``
1364 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001365 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001366 placed on the stack before the local variables that's checked upon
1367 return from the function to see if it has been overwritten. A
1368 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001370
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001371 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1372 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1373 - Calls to alloca() with variable sizes or constant sizes greater than
1374 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378
Sean Silvab084af42012-12-07 10:36:55 +00001379 If a function that has an ``ssp`` attribute is inlined into a
1380 function that doesn't have an ``ssp`` attribute, then the resulting
1381 function will have an ``ssp`` attribute.
1382``sspreq``
1383 This attribute indicates that the function should *always* emit a
1384 stack smashing protector. This overrides the ``ssp`` function
1385 attribute.
1386
Josh Magee24c7f062014-02-01 01:36:16 +00001387 Variables that are identified as requiring a protector will be arranged
1388 on the stack such that they are adjacent to the stack protector guard.
1389 The specific layout rules are:
1390
1391 #. Large arrays and structures containing large arrays
1392 (``>= ssp-buffer-size``) are closest to the stack protector.
1393 #. Small arrays and structures containing small arrays
1394 (``< ssp-buffer-size``) are 2nd closest to the protector.
1395 #. Variables that have had their address taken are 3rd closest to the
1396 protector.
1397
Sean Silvab084af42012-12-07 10:36:55 +00001398 If a function that has an ``sspreq`` attribute is inlined into a
1399 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001400 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1401 an ``sspreq`` attribute.
1402``sspstrong``
1403 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001405 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001406 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001407
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001408 - Arrays of any size and type
1409 - Aggregates containing an array of any size and type.
1410 - Calls to alloca().
1411 - Local variables that have had their address taken.
1412
Josh Magee24c7f062014-02-01 01:36:16 +00001413 Variables that are identified as requiring a protector will be arranged
1414 on the stack such that they are adjacent to the stack protector guard.
1415 The specific layout rules are:
1416
1417 #. Large arrays and structures containing large arrays
1418 (``>= ssp-buffer-size``) are closest to the stack protector.
1419 #. Small arrays and structures containing small arrays
1420 (``< ssp-buffer-size``) are 2nd closest to the protector.
1421 #. Variables that have had their address taken are 3rd closest to the
1422 protector.
1423
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001424 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001425
1426 If a function that has an ``sspstrong`` attribute is inlined into a
1427 function that doesn't have an ``sspstrong`` attribute, then the
1428 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001429``"thunk"``
1430 This attribute indicates that the function will delegate to some other
1431 function with a tail call. The prototype of a thunk should not be used for
1432 optimization purposes. The caller is expected to cast the thunk prototype to
1433 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001434``uwtable``
1435 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001436 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001437 show that no exceptions passes by it. This is normally the case for
1438 the ELF x86-64 abi, but it can be disabled for some compilation
1439 units.
Sean Silvab084af42012-12-07 10:36:55 +00001440
1441.. _moduleasm:
1442
1443Module-Level Inline Assembly
1444----------------------------
1445
1446Modules may contain "module-level inline asm" blocks, which corresponds
1447to the GCC "file scope inline asm" blocks. These blocks are internally
1448concatenated by LLVM and treated as a single unit, but may be separated
1449in the ``.ll`` file if desired. The syntax is very simple:
1450
1451.. code-block:: llvm
1452
1453 module asm "inline asm code goes here"
1454 module asm "more can go here"
1455
1456The strings can contain any character by escaping non-printable
1457characters. The escape sequence used is simply "\\xx" where "xx" is the
1458two digit hex code for the number.
1459
James Y Knightbc832ed2015-07-08 18:08:36 +00001460Note that the assembly string *must* be parseable by LLVM's integrated assembler
1461(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001462
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001463.. _langref_datalayout:
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465Data Layout
1466-----------
1467
1468A module may specify a target specific data layout string that specifies
1469how data is to be laid out in memory. The syntax for the data layout is
1470simply:
1471
1472.. code-block:: llvm
1473
1474 target datalayout = "layout specification"
1475
1476The *layout specification* consists of a list of specifications
1477separated by the minus sign character ('-'). Each specification starts
1478with a letter and may include other information after the letter to
1479define some aspect of the data layout. The specifications accepted are
1480as follows:
1481
1482``E``
1483 Specifies that the target lays out data in big-endian form. That is,
1484 the bits with the most significance have the lowest address
1485 location.
1486``e``
1487 Specifies that the target lays out data in little-endian form. That
1488 is, the bits with the least significance have the lowest address
1489 location.
1490``S<size>``
1491 Specifies the natural alignment of the stack in bits. Alignment
1492 promotion of stack variables is limited to the natural stack
1493 alignment to avoid dynamic stack realignment. The stack alignment
1494 must be a multiple of 8-bits. If omitted, the natural stack
1495 alignment defaults to "unspecified", which does not prevent any
1496 alignment promotions.
1497``p[n]:<size>:<abi>:<pref>``
1498 This specifies the *size* of a pointer and its ``<abi>`` and
1499 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001500 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001501 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001502 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001503``i<size>:<abi>:<pref>``
1504 This specifies the alignment for an integer type of a given bit
1505 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1506``v<size>:<abi>:<pref>``
1507 This specifies the alignment for a vector type of a given bit
1508 ``<size>``.
1509``f<size>:<abi>:<pref>``
1510 This specifies the alignment for a floating point type of a given bit
1511 ``<size>``. Only values of ``<size>`` that are supported by the target
1512 will work. 32 (float) and 64 (double) are supported on all targets; 80
1513 or 128 (different flavors of long double) are also supported on some
1514 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001515``a:<abi>:<pref>``
1516 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001517``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001518 If present, specifies that llvm names are mangled in the output. The
1519 options are
1520
1521 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1522 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1523 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1524 symbols get a ``_`` prefix.
1525 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1526 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001527``n<size1>:<size2>:<size3>...``
1528 This specifies a set of native integer widths for the target CPU in
1529 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1530 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1531 this set are considered to support most general arithmetic operations
1532 efficiently.
1533
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001534On every specification that takes a ``<abi>:<pref>``, specifying the
1535``<pref>`` alignment is optional. If omitted, the preceding ``:``
1536should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1537
Sean Silvab084af42012-12-07 10:36:55 +00001538When constructing the data layout for a given target, LLVM starts with a
1539default set of specifications which are then (possibly) overridden by
1540the specifications in the ``datalayout`` keyword. The default
1541specifications are given in this list:
1542
1543- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001544- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1545- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1546 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001547- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001548- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1549- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1550- ``i16:16:16`` - i16 is 16-bit aligned
1551- ``i32:32:32`` - i32 is 32-bit aligned
1552- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1553 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001554- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001555- ``f32:32:32`` - float is 32-bit aligned
1556- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001557- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001558- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1559- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001560- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001561
1562When LLVM is determining the alignment for a given type, it uses the
1563following rules:
1564
1565#. If the type sought is an exact match for one of the specifications,
1566 that specification is used.
1567#. If no match is found, and the type sought is an integer type, then
1568 the smallest integer type that is larger than the bitwidth of the
1569 sought type is used. If none of the specifications are larger than
1570 the bitwidth then the largest integer type is used. For example,
1571 given the default specifications above, the i7 type will use the
1572 alignment of i8 (next largest) while both i65 and i256 will use the
1573 alignment of i64 (largest specified).
1574#. If no match is found, and the type sought is a vector type, then the
1575 largest vector type that is smaller than the sought vector type will
1576 be used as a fall back. This happens because <128 x double> can be
1577 implemented in terms of 64 <2 x double>, for example.
1578
1579The function of the data layout string may not be what you expect.
1580Notably, this is not a specification from the frontend of what alignment
1581the code generator should use.
1582
1583Instead, if specified, the target data layout is required to match what
1584the ultimate *code generator* expects. This string is used by the
1585mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001586what the ultimate code generator uses. There is no way to generate IR
1587that does not embed this target-specific detail into the IR. If you
1588don't specify the string, the default specifications will be used to
1589generate a Data Layout and the optimization phases will operate
1590accordingly and introduce target specificity into the IR with respect to
1591these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001592
Bill Wendling5cc90842013-10-18 23:41:25 +00001593.. _langref_triple:
1594
1595Target Triple
1596-------------
1597
1598A module may specify a target triple string that describes the target
1599host. The syntax for the target triple is simply:
1600
1601.. code-block:: llvm
1602
1603 target triple = "x86_64-apple-macosx10.7.0"
1604
1605The *target triple* string consists of a series of identifiers delimited
1606by the minus sign character ('-'). The canonical forms are:
1607
1608::
1609
1610 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1611 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1612
1613This information is passed along to the backend so that it generates
1614code for the proper architecture. It's possible to override this on the
1615command line with the ``-mtriple`` command line option.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617.. _pointeraliasing:
1618
1619Pointer Aliasing Rules
1620----------------------
1621
1622Any memory access must be done through a pointer value associated with
1623an address range of the memory access, otherwise the behavior is
1624undefined. Pointer values are associated with address ranges according
1625to the following rules:
1626
1627- A pointer value is associated with the addresses associated with any
1628 value it is *based* on.
1629- An address of a global variable is associated with the address range
1630 of the variable's storage.
1631- The result value of an allocation instruction is associated with the
1632 address range of the allocated storage.
1633- A null pointer in the default address-space is associated with no
1634 address.
1635- An integer constant other than zero or a pointer value returned from
1636 a function not defined within LLVM may be associated with address
1637 ranges allocated through mechanisms other than those provided by
1638 LLVM. Such ranges shall not overlap with any ranges of addresses
1639 allocated by mechanisms provided by LLVM.
1640
1641A pointer value is *based* on another pointer value according to the
1642following rules:
1643
1644- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001645 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001646- The result value of a ``bitcast`` is *based* on the operand of the
1647 ``bitcast``.
1648- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1649 values that contribute (directly or indirectly) to the computation of
1650 the pointer's value.
1651- The "*based* on" relationship is transitive.
1652
1653Note that this definition of *"based"* is intentionally similar to the
1654definition of *"based"* in C99, though it is slightly weaker.
1655
1656LLVM IR does not associate types with memory. The result type of a
1657``load`` merely indicates the size and alignment of the memory from
1658which to load, as well as the interpretation of the value. The first
1659operand type of a ``store`` similarly only indicates the size and
1660alignment of the store.
1661
1662Consequently, type-based alias analysis, aka TBAA, aka
1663``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1664:ref:`Metadata <metadata>` may be used to encode additional information
1665which specialized optimization passes may use to implement type-based
1666alias analysis.
1667
1668.. _volatile:
1669
1670Volatile Memory Accesses
1671------------------------
1672
1673Certain memory accesses, such as :ref:`load <i_load>`'s,
1674:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1675marked ``volatile``. The optimizers must not change the number of
1676volatile operations or change their order of execution relative to other
1677volatile operations. The optimizers *may* change the order of volatile
1678operations relative to non-volatile operations. This is not Java's
1679"volatile" and has no cross-thread synchronization behavior.
1680
Andrew Trick89fc5a62013-01-30 21:19:35 +00001681IR-level volatile loads and stores cannot safely be optimized into
1682llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1683flagged volatile. Likewise, the backend should never split or merge
1684target-legal volatile load/store instructions.
1685
Andrew Trick7e6f9282013-01-31 00:49:39 +00001686.. admonition:: Rationale
1687
1688 Platforms may rely on volatile loads and stores of natively supported
1689 data width to be executed as single instruction. For example, in C
1690 this holds for an l-value of volatile primitive type with native
1691 hardware support, but not necessarily for aggregate types. The
1692 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001693 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001694 do not violate the frontend's contract with the language.
1695
Sean Silvab084af42012-12-07 10:36:55 +00001696.. _memmodel:
1697
1698Memory Model for Concurrent Operations
1699--------------------------------------
1700
1701The LLVM IR does not define any way to start parallel threads of
1702execution or to register signal handlers. Nonetheless, there are
1703platform-specific ways to create them, and we define LLVM IR's behavior
1704in their presence. This model is inspired by the C++0x memory model.
1705
1706For a more informal introduction to this model, see the :doc:`Atomics`.
1707
1708We define a *happens-before* partial order as the least partial order
1709that
1710
1711- Is a superset of single-thread program order, and
1712- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1713 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1714 techniques, like pthread locks, thread creation, thread joining,
1715 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1716 Constraints <ordering>`).
1717
1718Note that program order does not introduce *happens-before* edges
1719between a thread and signals executing inside that thread.
1720
1721Every (defined) read operation (load instructions, memcpy, atomic
1722loads/read-modify-writes, etc.) R reads a series of bytes written by
1723(defined) write operations (store instructions, atomic
1724stores/read-modify-writes, memcpy, etc.). For the purposes of this
1725section, initialized globals are considered to have a write of the
1726initializer which is atomic and happens before any other read or write
1727of the memory in question. For each byte of a read R, R\ :sub:`byte`
1728may see any write to the same byte, except:
1729
1730- If write\ :sub:`1` happens before write\ :sub:`2`, and
1731 write\ :sub:`2` happens before R\ :sub:`byte`, then
1732 R\ :sub:`byte` does not see write\ :sub:`1`.
1733- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1734 R\ :sub:`byte` does not see write\ :sub:`3`.
1735
1736Given that definition, R\ :sub:`byte` is defined as follows:
1737
1738- If R is volatile, the result is target-dependent. (Volatile is
1739 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001740 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001741 like normal memory. It does not generally provide cross-thread
1742 synchronization.)
1743- Otherwise, if there is no write to the same byte that happens before
1744 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1745- Otherwise, if R\ :sub:`byte` may see exactly one write,
1746 R\ :sub:`byte` returns the value written by that write.
1747- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1748 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1749 Memory Ordering Constraints <ordering>` section for additional
1750 constraints on how the choice is made.
1751- Otherwise R\ :sub:`byte` returns ``undef``.
1752
1753R returns the value composed of the series of bytes it read. This
1754implies that some bytes within the value may be ``undef`` **without**
1755the entire value being ``undef``. Note that this only defines the
1756semantics of the operation; it doesn't mean that targets will emit more
1757than one instruction to read the series of bytes.
1758
1759Note that in cases where none of the atomic intrinsics are used, this
1760model places only one restriction on IR transformations on top of what
1761is required for single-threaded execution: introducing a store to a byte
1762which might not otherwise be stored is not allowed in general.
1763(Specifically, in the case where another thread might write to and read
1764from an address, introducing a store can change a load that may see
1765exactly one write into a load that may see multiple writes.)
1766
1767.. _ordering:
1768
1769Atomic Memory Ordering Constraints
1770----------------------------------
1771
1772Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1773:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1774:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001775ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001776the same address they *synchronize with*. These semantics are borrowed
1777from Java and C++0x, but are somewhat more colloquial. If these
1778descriptions aren't precise enough, check those specs (see spec
1779references in the :doc:`atomics guide <Atomics>`).
1780:ref:`fence <i_fence>` instructions treat these orderings somewhat
1781differently since they don't take an address. See that instruction's
1782documentation for details.
1783
1784For a simpler introduction to the ordering constraints, see the
1785:doc:`Atomics`.
1786
1787``unordered``
1788 The set of values that can be read is governed by the happens-before
1789 partial order. A value cannot be read unless some operation wrote
1790 it. This is intended to provide a guarantee strong enough to model
1791 Java's non-volatile shared variables. This ordering cannot be
1792 specified for read-modify-write operations; it is not strong enough
1793 to make them atomic in any interesting way.
1794``monotonic``
1795 In addition to the guarantees of ``unordered``, there is a single
1796 total order for modifications by ``monotonic`` operations on each
1797 address. All modification orders must be compatible with the
1798 happens-before order. There is no guarantee that the modification
1799 orders can be combined to a global total order for the whole program
1800 (and this often will not be possible). The read in an atomic
1801 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1802 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1803 order immediately before the value it writes. If one atomic read
1804 happens before another atomic read of the same address, the later
1805 read must see the same value or a later value in the address's
1806 modification order. This disallows reordering of ``monotonic`` (or
1807 stronger) operations on the same address. If an address is written
1808 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1809 read that address repeatedly, the other threads must eventually see
1810 the write. This corresponds to the C++0x/C1x
1811 ``memory_order_relaxed``.
1812``acquire``
1813 In addition to the guarantees of ``monotonic``, a
1814 *synchronizes-with* edge may be formed with a ``release`` operation.
1815 This is intended to model C++'s ``memory_order_acquire``.
1816``release``
1817 In addition to the guarantees of ``monotonic``, if this operation
1818 writes a value which is subsequently read by an ``acquire``
1819 operation, it *synchronizes-with* that operation. (This isn't a
1820 complete description; see the C++0x definition of a release
1821 sequence.) This corresponds to the C++0x/C1x
1822 ``memory_order_release``.
1823``acq_rel`` (acquire+release)
1824 Acts as both an ``acquire`` and ``release`` operation on its
1825 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1826``seq_cst`` (sequentially consistent)
1827 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001828 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001829 writes), there is a global total order on all
1830 sequentially-consistent operations on all addresses, which is
1831 consistent with the *happens-before* partial order and with the
1832 modification orders of all the affected addresses. Each
1833 sequentially-consistent read sees the last preceding write to the
1834 same address in this global order. This corresponds to the C++0x/C1x
1835 ``memory_order_seq_cst`` and Java volatile.
1836
1837.. _singlethread:
1838
1839If an atomic operation is marked ``singlethread``, it only *synchronizes
1840with* or participates in modification and seq\_cst total orderings with
1841other operations running in the same thread (for example, in signal
1842handlers).
1843
1844.. _fastmath:
1845
1846Fast-Math Flags
1847---------------
1848
1849LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1850:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001851:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1852be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001853
1854``nnan``
1855 No NaNs - Allow optimizations to assume the arguments and result are not
1856 NaN. Such optimizations are required to retain defined behavior over
1857 NaNs, but the value of the result is undefined.
1858
1859``ninf``
1860 No Infs - Allow optimizations to assume the arguments and result are not
1861 +/-Inf. Such optimizations are required to retain defined behavior over
1862 +/-Inf, but the value of the result is undefined.
1863
1864``nsz``
1865 No Signed Zeros - Allow optimizations to treat the sign of a zero
1866 argument or result as insignificant.
1867
1868``arcp``
1869 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1870 argument rather than perform division.
1871
1872``fast``
1873 Fast - Allow algebraically equivalent transformations that may
1874 dramatically change results in floating point (e.g. reassociate). This
1875 flag implies all the others.
1876
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001877.. _uselistorder:
1878
1879Use-list Order Directives
1880-------------------------
1881
1882Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001883order to be recreated. ``<order-indexes>`` is a comma-separated list of
1884indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001885value's use-list is immediately sorted by these indexes.
1886
Sean Silvaa1190322015-08-06 22:56:48 +00001887Use-list directives may appear at function scope or global scope. They are not
1888instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001889function scope, they must appear after the terminator of the final basic block.
1890
1891If basic blocks have their address taken via ``blockaddress()`` expressions,
1892``uselistorder_bb`` can be used to reorder their use-lists from outside their
1893function's scope.
1894
1895:Syntax:
1896
1897::
1898
1899 uselistorder <ty> <value>, { <order-indexes> }
1900 uselistorder_bb @function, %block { <order-indexes> }
1901
1902:Examples:
1903
1904::
1905
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001906 define void @foo(i32 %arg1, i32 %arg2) {
1907 entry:
1908 ; ... instructions ...
1909 bb:
1910 ; ... instructions ...
1911
1912 ; At function scope.
1913 uselistorder i32 %arg1, { 1, 0, 2 }
1914 uselistorder label %bb, { 1, 0 }
1915 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001916
1917 ; At global scope.
1918 uselistorder i32* @global, { 1, 2, 0 }
1919 uselistorder i32 7, { 1, 0 }
1920 uselistorder i32 (i32) @bar, { 1, 0 }
1921 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1922
Sean Silvab084af42012-12-07 10:36:55 +00001923.. _typesystem:
1924
1925Type System
1926===========
1927
1928The LLVM type system is one of the most important features of the
1929intermediate representation. Being typed enables a number of
1930optimizations to be performed on the intermediate representation
1931directly, without having to do extra analyses on the side before the
1932transformation. A strong type system makes it easier to read the
1933generated code and enables novel analyses and transformations that are
1934not feasible to perform on normal three address code representations.
1935
Rafael Espindola08013342013-12-07 19:34:20 +00001936.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001937
Rafael Espindola08013342013-12-07 19:34:20 +00001938Void Type
1939---------
Sean Silvab084af42012-12-07 10:36:55 +00001940
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001941:Overview:
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943
1944The void type does not represent any value and has no size.
1945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Syntax:
1947
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949::
1950
1951 void
Sean Silvab084af42012-12-07 10:36:55 +00001952
1953
Rafael Espindola08013342013-12-07 19:34:20 +00001954.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola08013342013-12-07 19:34:20 +00001956Function Type
1957-------------
Sean Silvab084af42012-12-07 10:36:55 +00001958
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001959:Overview:
1960
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962The function type can be thought of as a function signature. It consists of a
1963return type and a list of formal parameter types. The return type of a function
1964type is a void type or first class type --- except for :ref:`label <t_label>`
1965and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola08013342013-12-07 19:34:20 +00001969::
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola08013342013-12-07 19:34:20 +00001973...where '``<parameter list>``' is a comma-separated list of type
1974specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00001975indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00001976argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00001977handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00001978except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001979
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001980:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001981
Rafael Espindola08013342013-12-07 19:34:20 +00001982+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1983| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1984+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1985| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1986+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1987| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1988+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1989| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1990+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1991
1992.. _t_firstclass:
1993
1994First Class Types
1995-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997The :ref:`first class <t_firstclass>` types are perhaps the most important.
1998Values of these types are the only ones which can be produced by
1999instructions.
2000
Rafael Espindola08013342013-12-07 19:34:20 +00002001.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola08013342013-12-07 19:34:20 +00002003Single Value Types
2004^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002005
Rafael Espindola08013342013-12-07 19:34:20 +00002006These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002007
2008.. _t_integer:
2009
2010Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
2015The integer type is a very simple type that simply specifies an
2016arbitrary bit width for the integer type desired. Any bit width from 1
2017bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021::
2022
2023 iN
2024
2025The number of bits the integer will occupy is specified by the ``N``
2026value.
2027
2028Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002029*********
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031+----------------+------------------------------------------------+
2032| ``i1`` | a single-bit integer. |
2033+----------------+------------------------------------------------+
2034| ``i32`` | a 32-bit integer. |
2035+----------------+------------------------------------------------+
2036| ``i1942652`` | a really big integer of over 1 million bits. |
2037+----------------+------------------------------------------------+
2038
2039.. _t_floating:
2040
2041Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002042""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002043
2044.. list-table::
2045 :header-rows: 1
2046
2047 * - Type
2048 - Description
2049
2050 * - ``half``
2051 - 16-bit floating point value
2052
2053 * - ``float``
2054 - 32-bit floating point value
2055
2056 * - ``double``
2057 - 64-bit floating point value
2058
2059 * - ``fp128``
2060 - 128-bit floating point value (112-bit mantissa)
2061
2062 * - ``x86_fp80``
2063 - 80-bit floating point value (X87)
2064
2065 * - ``ppc_fp128``
2066 - 128-bit floating point value (two 64-bits)
2067
Reid Kleckner9a16d082014-03-05 02:41:37 +00002068X86_mmx Type
2069""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002074machine. The operations allowed on it are quite limited: parameters and
2075return values, load and store, and bitcast. User-specified MMX
2076instructions are represented as intrinsic or asm calls with arguments
2077and/or results of this type. There are no arrays, vectors or constants
2078of this type.
2079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002081
2082::
2083
Reid Kleckner9a16d082014-03-05 02:41:37 +00002084 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002085
Sean Silvab084af42012-12-07 10:36:55 +00002086
Rafael Espindola08013342013-12-07 19:34:20 +00002087.. _t_pointer:
2088
2089Pointer Type
2090""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola08013342013-12-07 19:34:20 +00002094The pointer type is used to specify memory locations. Pointers are
2095commonly used to reference objects in memory.
2096
2097Pointer types may have an optional address space attribute defining the
2098numbered address space where the pointed-to object resides. The default
2099address space is number zero. The semantics of non-zero address spaces
2100are target-specific.
2101
2102Note that LLVM does not permit pointers to void (``void*``) nor does it
2103permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002104
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002105:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002106
2107::
2108
Rafael Espindola08013342013-12-07 19:34:20 +00002109 <type> *
2110
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002111:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002112
2113+-------------------------+--------------------------------------------------------------------------------------------------------------+
2114| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2115+-------------------------+--------------------------------------------------------------------------------------------------------------+
2116| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2117+-------------------------+--------------------------------------------------------------------------------------------------------------+
2118| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2119+-------------------------+--------------------------------------------------------------------------------------------------------------+
2120
2121.. _t_vector:
2122
2123Vector Type
2124"""""""""""
2125
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002126:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002127
2128A vector type is a simple derived type that represents a vector of
2129elements. Vector types are used when multiple primitive data are
2130operated in parallel using a single instruction (SIMD). A vector type
2131requires a size (number of elements) and an underlying primitive data
2132type. Vector types are considered :ref:`first class <t_firstclass>`.
2133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002135
2136::
2137
2138 < <# elements> x <elementtype> >
2139
2140The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002141elementtype may be any integer, floating point or pointer type. Vectors
2142of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002145
2146+-------------------+--------------------------------------------------+
2147| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2148+-------------------+--------------------------------------------------+
2149| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2150+-------------------+--------------------------------------------------+
2151| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2152+-------------------+--------------------------------------------------+
2153| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2154+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156.. _t_label:
2157
2158Label Type
2159^^^^^^^^^^
2160
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002161:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163The label type represents code labels.
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167::
2168
2169 label
2170
David Majnemerb611e3f2015-08-14 05:09:07 +00002171.. _t_token:
2172
2173Token Type
2174^^^^^^^^^^
2175
2176:Overview:
2177
2178The token type is used when a value is associated with an instruction
2179but all uses of the value must not attempt to introspect or obscure it.
2180As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2181:ref:`select <i_select>` of type token.
2182
2183:Syntax:
2184
2185::
2186
2187 token
2188
2189
2190
Sean Silvab084af42012-12-07 10:36:55 +00002191.. _t_metadata:
2192
2193Metadata Type
2194^^^^^^^^^^^^^
2195
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002196:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002197
2198The metadata type represents embedded metadata. No derived types may be
2199created from metadata except for :ref:`function <t_function>` arguments.
2200
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002201:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002202
2203::
2204
2205 metadata
2206
Sean Silvab084af42012-12-07 10:36:55 +00002207.. _t_aggregate:
2208
2209Aggregate Types
2210^^^^^^^^^^^^^^^
2211
2212Aggregate Types are a subset of derived types that can contain multiple
2213member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2214aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2215aggregate types.
2216
2217.. _t_array:
2218
2219Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002220""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002221
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002222:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002223
2224The array type is a very simple derived type that arranges elements
2225sequentially in memory. The array type requires a size (number of
2226elements) and an underlying data type.
2227
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002228:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002229
2230::
2231
2232 [<# elements> x <elementtype>]
2233
2234The number of elements is a constant integer value; ``elementtype`` may
2235be any type with a size.
2236
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002237:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002238
2239+------------------+--------------------------------------+
2240| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2241+------------------+--------------------------------------+
2242| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2243+------------------+--------------------------------------+
2244| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2245+------------------+--------------------------------------+
2246
2247Here are some examples of multidimensional arrays:
2248
2249+-----------------------------+----------------------------------------------------------+
2250| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2251+-----------------------------+----------------------------------------------------------+
2252| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2253+-----------------------------+----------------------------------------------------------+
2254| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2255+-----------------------------+----------------------------------------------------------+
2256
2257There is no restriction on indexing beyond the end of the array implied
2258by a static type (though there are restrictions on indexing beyond the
2259bounds of an allocated object in some cases). This means that
2260single-dimension 'variable sized array' addressing can be implemented in
2261LLVM with a zero length array type. An implementation of 'pascal style
2262arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2263example.
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _t_struct:
2266
2267Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002268""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002271
2272The structure type is used to represent a collection of data members
2273together in memory. The elements of a structure may be any type that has
2274a size.
2275
2276Structures in memory are accessed using '``load``' and '``store``' by
2277getting a pointer to a field with the '``getelementptr``' instruction.
2278Structures in registers are accessed using the '``extractvalue``' and
2279'``insertvalue``' instructions.
2280
2281Structures may optionally be "packed" structures, which indicate that
2282the alignment of the struct is one byte, and that there is no padding
2283between the elements. In non-packed structs, padding between field types
2284is inserted as defined by the DataLayout string in the module, which is
2285required to match what the underlying code generator expects.
2286
2287Structures can either be "literal" or "identified". A literal structure
2288is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2289identified types are always defined at the top level with a name.
2290Literal types are uniqued by their contents and can never be recursive
2291or opaque since there is no way to write one. Identified types can be
2292recursive, can be opaqued, and are never uniqued.
2293
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002294:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002295
2296::
2297
2298 %T1 = type { <type list> } ; Identified normal struct type
2299 %T2 = type <{ <type list> }> ; Identified packed struct type
2300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002302
2303+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2304| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2305+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002306| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002307+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2308| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2309+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2310
2311.. _t_opaque:
2312
2313Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002314""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002316:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002317
2318Opaque structure types are used to represent named structure types that
2319do not have a body specified. This corresponds (for example) to the C
2320notion of a forward declared structure.
2321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002323
2324::
2325
2326 %X = type opaque
2327 %52 = type opaque
2328
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002329:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002330
2331+--------------+-------------------+
2332| ``opaque`` | An opaque type. |
2333+--------------+-------------------+
2334
Sean Silva1703e702014-04-08 21:06:22 +00002335.. _constants:
2336
Sean Silvab084af42012-12-07 10:36:55 +00002337Constants
2338=========
2339
2340LLVM has several different basic types of constants. This section
2341describes them all and their syntax.
2342
2343Simple Constants
2344----------------
2345
2346**Boolean constants**
2347 The two strings '``true``' and '``false``' are both valid constants
2348 of the ``i1`` type.
2349**Integer constants**
2350 Standard integers (such as '4') are constants of the
2351 :ref:`integer <t_integer>` type. Negative numbers may be used with
2352 integer types.
2353**Floating point constants**
2354 Floating point constants use standard decimal notation (e.g.
2355 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2356 hexadecimal notation (see below). The assembler requires the exact
2357 decimal value of a floating-point constant. For example, the
2358 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2359 decimal in binary. Floating point constants must have a :ref:`floating
2360 point <t_floating>` type.
2361**Null pointer constants**
2362 The identifier '``null``' is recognized as a null pointer constant
2363 and must be of :ref:`pointer type <t_pointer>`.
2364
2365The one non-intuitive notation for constants is the hexadecimal form of
2366floating point constants. For example, the form
2367'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2368than) '``double 4.5e+15``'. The only time hexadecimal floating point
2369constants are required (and the only time that they are generated by the
2370disassembler) is when a floating point constant must be emitted but it
2371cannot be represented as a decimal floating point number in a reasonable
2372number of digits. For example, NaN's, infinities, and other special
2373values are represented in their IEEE hexadecimal format so that assembly
2374and disassembly do not cause any bits to change in the constants.
2375
2376When using the hexadecimal form, constants of types half, float, and
2377double are represented using the 16-digit form shown above (which
2378matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002379must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002380precision, respectively. Hexadecimal format is always used for long
2381double, and there are three forms of long double. The 80-bit format used
2382by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2383128-bit format used by PowerPC (two adjacent doubles) is represented by
2384``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002385represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2386will only work if they match the long double format on your target.
2387The IEEE 16-bit format (half precision) is represented by ``0xH``
2388followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2389(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002390
Reid Kleckner9a16d082014-03-05 02:41:37 +00002391There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002392
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002393.. _complexconstants:
2394
Sean Silvab084af42012-12-07 10:36:55 +00002395Complex Constants
2396-----------------
2397
2398Complex constants are a (potentially recursive) combination of simple
2399constants and smaller complex constants.
2400
2401**Structure constants**
2402 Structure constants are represented with notation similar to
2403 structure type definitions (a comma separated list of elements,
2404 surrounded by braces (``{}``)). For example:
2405 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2406 "``@G = external global i32``". Structure constants must have
2407 :ref:`structure type <t_struct>`, and the number and types of elements
2408 must match those specified by the type.
2409**Array constants**
2410 Array constants are represented with notation similar to array type
2411 definitions (a comma separated list of elements, surrounded by
2412 square brackets (``[]``)). For example:
2413 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2414 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002415 match those specified by the type. As a special case, character array
2416 constants may also be represented as a double-quoted string using the ``c``
2417 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002418**Vector constants**
2419 Vector constants are represented with notation similar to vector
2420 type definitions (a comma separated list of elements, surrounded by
2421 less-than/greater-than's (``<>``)). For example:
2422 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2423 must have :ref:`vector type <t_vector>`, and the number and types of
2424 elements must match those specified by the type.
2425**Zero initialization**
2426 The string '``zeroinitializer``' can be used to zero initialize a
2427 value to zero of *any* type, including scalar and
2428 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2429 having to print large zero initializers (e.g. for large arrays) and
2430 is always exactly equivalent to using explicit zero initializers.
2431**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002432 A metadata node is a constant tuple without types. For example:
2433 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002434 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2435 Unlike other typed constants that are meant to be interpreted as part of
2436 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002437 information such as debug info.
2438
2439Global Variable and Function Addresses
2440--------------------------------------
2441
2442The addresses of :ref:`global variables <globalvars>` and
2443:ref:`functions <functionstructure>` are always implicitly valid
2444(link-time) constants. These constants are explicitly referenced when
2445the :ref:`identifier for the global <identifiers>` is used and always have
2446:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2447file:
2448
2449.. code-block:: llvm
2450
2451 @X = global i32 17
2452 @Y = global i32 42
2453 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2454
2455.. _undefvalues:
2456
2457Undefined Values
2458----------------
2459
2460The string '``undef``' can be used anywhere a constant is expected, and
2461indicates that the user of the value may receive an unspecified
2462bit-pattern. Undefined values may be of any type (other than '``label``'
2463or '``void``') and be used anywhere a constant is permitted.
2464
2465Undefined values are useful because they indicate to the compiler that
2466the program is well defined no matter what value is used. This gives the
2467compiler more freedom to optimize. Here are some examples of
2468(potentially surprising) transformations that are valid (in pseudo IR):
2469
2470.. code-block:: llvm
2471
2472 %A = add %X, undef
2473 %B = sub %X, undef
2474 %C = xor %X, undef
2475 Safe:
2476 %A = undef
2477 %B = undef
2478 %C = undef
2479
2480This is safe because all of the output bits are affected by the undef
2481bits. Any output bit can have a zero or one depending on the input bits.
2482
2483.. code-block:: llvm
2484
2485 %A = or %X, undef
2486 %B = and %X, undef
2487 Safe:
2488 %A = -1
2489 %B = 0
2490 Unsafe:
2491 %A = undef
2492 %B = undef
2493
2494These logical operations have bits that are not always affected by the
2495input. For example, if ``%X`` has a zero bit, then the output of the
2496'``and``' operation will always be a zero for that bit, no matter what
2497the corresponding bit from the '``undef``' is. As such, it is unsafe to
2498optimize or assume that the result of the '``and``' is '``undef``'.
2499However, it is safe to assume that all bits of the '``undef``' could be
25000, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2501all the bits of the '``undef``' operand to the '``or``' could be set,
2502allowing the '``or``' to be folded to -1.
2503
2504.. code-block:: llvm
2505
2506 %A = select undef, %X, %Y
2507 %B = select undef, 42, %Y
2508 %C = select %X, %Y, undef
2509 Safe:
2510 %A = %X (or %Y)
2511 %B = 42 (or %Y)
2512 %C = %Y
2513 Unsafe:
2514 %A = undef
2515 %B = undef
2516 %C = undef
2517
2518This set of examples shows that undefined '``select``' (and conditional
2519branch) conditions can go *either way*, but they have to come from one
2520of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2521both known to have a clear low bit, then ``%A`` would have to have a
2522cleared low bit. However, in the ``%C`` example, the optimizer is
2523allowed to assume that the '``undef``' operand could be the same as
2524``%Y``, allowing the whole '``select``' to be eliminated.
2525
2526.. code-block:: llvm
2527
2528 %A = xor undef, undef
2529
2530 %B = undef
2531 %C = xor %B, %B
2532
2533 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002534 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002535 %F = icmp gte %D, 4
2536
2537 Safe:
2538 %A = undef
2539 %B = undef
2540 %C = undef
2541 %D = undef
2542 %E = undef
2543 %F = undef
2544
2545This example points out that two '``undef``' operands are not
2546necessarily the same. This can be surprising to people (and also matches
2547C semantics) where they assume that "``X^X``" is always zero, even if
2548``X`` is undefined. This isn't true for a number of reasons, but the
2549short answer is that an '``undef``' "variable" can arbitrarily change
2550its value over its "live range". This is true because the variable
2551doesn't actually *have a live range*. Instead, the value is logically
2552read from arbitrary registers that happen to be around when needed, so
2553the value is not necessarily consistent over time. In fact, ``%A`` and
2554``%C`` need to have the same semantics or the core LLVM "replace all
2555uses with" concept would not hold.
2556
2557.. code-block:: llvm
2558
2559 %A = fdiv undef, %X
2560 %B = fdiv %X, undef
2561 Safe:
2562 %A = undef
2563 b: unreachable
2564
2565These examples show the crucial difference between an *undefined value*
2566and *undefined behavior*. An undefined value (like '``undef``') is
2567allowed to have an arbitrary bit-pattern. This means that the ``%A``
2568operation can be constant folded to '``undef``', because the '``undef``'
2569could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2570However, in the second example, we can make a more aggressive
2571assumption: because the ``undef`` is allowed to be an arbitrary value,
2572we are allowed to assume that it could be zero. Since a divide by zero
2573has *undefined behavior*, we are allowed to assume that the operation
2574does not execute at all. This allows us to delete the divide and all
2575code after it. Because the undefined operation "can't happen", the
2576optimizer can assume that it occurs in dead code.
2577
2578.. code-block:: llvm
2579
2580 a: store undef -> %X
2581 b: store %X -> undef
2582 Safe:
2583 a: <deleted>
2584 b: unreachable
2585
2586These examples reiterate the ``fdiv`` example: a store *of* an undefined
2587value can be assumed to not have any effect; we can assume that the
2588value is overwritten with bits that happen to match what was already
2589there. However, a store *to* an undefined location could clobber
2590arbitrary memory, therefore, it has undefined behavior.
2591
2592.. _poisonvalues:
2593
2594Poison Values
2595-------------
2596
2597Poison values are similar to :ref:`undef values <undefvalues>`, however
2598they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002599that cannot evoke side effects has nevertheless detected a condition
2600that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602There is currently no way of representing a poison value in the IR; they
2603only exist when produced by operations such as :ref:`add <i_add>` with
2604the ``nsw`` flag.
2605
2606Poison value behavior is defined in terms of value *dependence*:
2607
2608- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2609- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2610 their dynamic predecessor basic block.
2611- Function arguments depend on the corresponding actual argument values
2612 in the dynamic callers of their functions.
2613- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2614 instructions that dynamically transfer control back to them.
2615- :ref:`Invoke <i_invoke>` instructions depend on the
2616 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2617 call instructions that dynamically transfer control back to them.
2618- Non-volatile loads and stores depend on the most recent stores to all
2619 of the referenced memory addresses, following the order in the IR
2620 (including loads and stores implied by intrinsics such as
2621 :ref:`@llvm.memcpy <int_memcpy>`.)
2622- An instruction with externally visible side effects depends on the
2623 most recent preceding instruction with externally visible side
2624 effects, following the order in the IR. (This includes :ref:`volatile
2625 operations <volatile>`.)
2626- An instruction *control-depends* on a :ref:`terminator
2627 instruction <terminators>` if the terminator instruction has
2628 multiple successors and the instruction is always executed when
2629 control transfers to one of the successors, and may not be executed
2630 when control is transferred to another.
2631- Additionally, an instruction also *control-depends* on a terminator
2632 instruction if the set of instructions it otherwise depends on would
2633 be different if the terminator had transferred control to a different
2634 successor.
2635- Dependence is transitive.
2636
Richard Smith32dbdf62014-07-31 04:25:36 +00002637Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2638with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002639on a poison value has undefined behavior.
2640
2641Here are some examples:
2642
2643.. code-block:: llvm
2644
2645 entry:
2646 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2647 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002648 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002649 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2650
2651 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002652 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002653
2654 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2655
2656 %narrowaddr = bitcast i32* @g to i16*
2657 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002658 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2659 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002660
2661 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2662 br i1 %cmp, label %true, label %end ; Branch to either destination.
2663
2664 true:
2665 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2666 ; it has undefined behavior.
2667 br label %end
2668
2669 end:
2670 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2671 ; Both edges into this PHI are
2672 ; control-dependent on %cmp, so this
2673 ; always results in a poison value.
2674
2675 store volatile i32 0, i32* @g ; This would depend on the store in %true
2676 ; if %cmp is true, or the store in %entry
2677 ; otherwise, so this is undefined behavior.
2678
2679 br i1 %cmp, label %second_true, label %second_end
2680 ; The same branch again, but this time the
2681 ; true block doesn't have side effects.
2682
2683 second_true:
2684 ; No side effects!
2685 ret void
2686
2687 second_end:
2688 store volatile i32 0, i32* @g ; This time, the instruction always depends
2689 ; on the store in %end. Also, it is
2690 ; control-equivalent to %end, so this is
2691 ; well-defined (ignoring earlier undefined
2692 ; behavior in this example).
2693
2694.. _blockaddress:
2695
2696Addresses of Basic Blocks
2697-------------------------
2698
2699``blockaddress(@function, %block)``
2700
2701The '``blockaddress``' constant computes the address of the specified
2702basic block in the specified function, and always has an ``i8*`` type.
2703Taking the address of the entry block is illegal.
2704
2705This value only has defined behavior when used as an operand to the
2706':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2707against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002708undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002709no label is equal to the null pointer. This may be passed around as an
2710opaque pointer sized value as long as the bits are not inspected. This
2711allows ``ptrtoint`` and arithmetic to be performed on these values so
2712long as the original value is reconstituted before the ``indirectbr``
2713instruction.
2714
2715Finally, some targets may provide defined semantics when using the value
2716as the operand to an inline assembly, but that is target specific.
2717
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002718.. _constantexprs:
2719
Sean Silvab084af42012-12-07 10:36:55 +00002720Constant Expressions
2721--------------------
2722
2723Constant expressions are used to allow expressions involving other
2724constants to be used as constants. Constant expressions may be of any
2725:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2726that does not have side effects (e.g. load and call are not supported).
2727The following is the syntax for constant expressions:
2728
2729``trunc (CST to TYPE)``
2730 Truncate a constant to another type. The bit size of CST must be
2731 larger than the bit size of TYPE. Both types must be integers.
2732``zext (CST to TYPE)``
2733 Zero extend a constant to another type. The bit size of CST must be
2734 smaller than the bit size of TYPE. Both types must be integers.
2735``sext (CST to TYPE)``
2736 Sign extend a constant to another type. The bit size of CST must be
2737 smaller than the bit size of TYPE. Both types must be integers.
2738``fptrunc (CST to TYPE)``
2739 Truncate a floating point constant to another floating point type.
2740 The size of CST must be larger than the size of TYPE. Both types
2741 must be floating point.
2742``fpext (CST to TYPE)``
2743 Floating point extend a constant to another type. The size of CST
2744 must be smaller or equal to the size of TYPE. Both types must be
2745 floating point.
2746``fptoui (CST to TYPE)``
2747 Convert a floating point constant to the corresponding unsigned
2748 integer constant. TYPE must be a scalar or vector integer type. CST
2749 must be of scalar or vector floating point type. Both CST and TYPE
2750 must be scalars, or vectors of the same number of elements. If the
2751 value won't fit in the integer type, the results are undefined.
2752``fptosi (CST to TYPE)``
2753 Convert a floating point constant to the corresponding signed
2754 integer constant. TYPE must be a scalar or vector integer type. CST
2755 must be of scalar or vector floating point type. Both CST and TYPE
2756 must be scalars, or vectors of the same number of elements. If the
2757 value won't fit in the integer type, the results are undefined.
2758``uitofp (CST to TYPE)``
2759 Convert an unsigned integer constant to the corresponding floating
2760 point constant. TYPE must be a scalar or vector floating point type.
2761 CST must be of scalar or vector integer type. Both CST and TYPE must
2762 be scalars, or vectors of the same number of elements. If the value
2763 won't fit in the floating point type, the results are undefined.
2764``sitofp (CST to TYPE)``
2765 Convert a signed integer constant to the corresponding floating
2766 point constant. TYPE must be a scalar or vector floating point type.
2767 CST must be of scalar or vector integer type. Both CST and TYPE must
2768 be scalars, or vectors of the same number of elements. If the value
2769 won't fit in the floating point type, the results are undefined.
2770``ptrtoint (CST to TYPE)``
2771 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002772 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002773 pointer type. The ``CST`` value is zero extended, truncated, or
2774 unchanged to make it fit in ``TYPE``.
2775``inttoptr (CST to TYPE)``
2776 Convert an integer constant to a pointer constant. TYPE must be a
2777 pointer type. CST must be of integer type. The CST value is zero
2778 extended, truncated, or unchanged to make it fit in a pointer size.
2779 This one is *really* dangerous!
2780``bitcast (CST to TYPE)``
2781 Convert a constant, CST, to another TYPE. The constraints of the
2782 operands are the same as those for the :ref:`bitcast
2783 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002784``addrspacecast (CST to TYPE)``
2785 Convert a constant pointer or constant vector of pointer, CST, to another
2786 TYPE in a different address space. The constraints of the operands are the
2787 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002788``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002789 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2790 constants. As with the :ref:`getelementptr <i_getelementptr>`
2791 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002792 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002793``select (COND, VAL1, VAL2)``
2794 Perform the :ref:`select operation <i_select>` on constants.
2795``icmp COND (VAL1, VAL2)``
2796 Performs the :ref:`icmp operation <i_icmp>` on constants.
2797``fcmp COND (VAL1, VAL2)``
2798 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2799``extractelement (VAL, IDX)``
2800 Perform the :ref:`extractelement operation <i_extractelement>` on
2801 constants.
2802``insertelement (VAL, ELT, IDX)``
2803 Perform the :ref:`insertelement operation <i_insertelement>` on
2804 constants.
2805``shufflevector (VEC1, VEC2, IDXMASK)``
2806 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2807 constants.
2808``extractvalue (VAL, IDX0, IDX1, ...)``
2809 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2810 constants. The index list is interpreted in a similar manner as
2811 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2812 least one index value must be specified.
2813``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2814 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2815 The index list is interpreted in a similar manner as indices in a
2816 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2817 value must be specified.
2818``OPCODE (LHS, RHS)``
2819 Perform the specified operation of the LHS and RHS constants. OPCODE
2820 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2821 binary <bitwiseops>` operations. The constraints on operands are
2822 the same as those for the corresponding instruction (e.g. no bitwise
2823 operations on floating point values are allowed).
2824
2825Other Values
2826============
2827
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002828.. _inlineasmexprs:
2829
Sean Silvab084af42012-12-07 10:36:55 +00002830Inline Assembler Expressions
2831----------------------------
2832
2833LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002834Inline Assembly <moduleasm>`) through the use of a special value. This value
2835represents the inline assembler as a template string (containing the
2836instructions to emit), a list of operand constraints (stored as a string), a
2837flag that indicates whether or not the inline asm expression has side effects,
2838and a flag indicating whether the function containing the asm needs to align its
2839stack conservatively.
2840
2841The template string supports argument substitution of the operands using "``$``"
2842followed by a number, to indicate substitution of the given register/memory
2843location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2844be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2845operand (See :ref:`inline-asm-modifiers`).
2846
2847A literal "``$``" may be included by using "``$$``" in the template. To include
2848other special characters into the output, the usual "``\XX``" escapes may be
2849used, just as in other strings. Note that after template substitution, the
2850resulting assembly string is parsed by LLVM's integrated assembler unless it is
2851disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2852syntax known to LLVM.
2853
2854LLVM's support for inline asm is modeled closely on the requirements of Clang's
2855GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2856modifier codes listed here are similar or identical to those in GCC's inline asm
2857support. However, to be clear, the syntax of the template and constraint strings
2858described here is *not* the same as the syntax accepted by GCC and Clang, and,
2859while most constraint letters are passed through as-is by Clang, some get
2860translated to other codes when converting from the C source to the LLVM
2861assembly.
2862
2863An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002864
2865.. code-block:: llvm
2866
2867 i32 (i32) asm "bswap $0", "=r,r"
2868
2869Inline assembler expressions may **only** be used as the callee operand
2870of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2871Thus, typically we have:
2872
2873.. code-block:: llvm
2874
2875 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2876
2877Inline asms with side effects not visible in the constraint list must be
2878marked as having side effects. This is done through the use of the
2879'``sideeffect``' keyword, like so:
2880
2881.. code-block:: llvm
2882
2883 call void asm sideeffect "eieio", ""()
2884
2885In some cases inline asms will contain code that will not work unless
2886the stack is aligned in some way, such as calls or SSE instructions on
2887x86, yet will not contain code that does that alignment within the asm.
2888The compiler should make conservative assumptions about what the asm
2889might contain and should generate its usual stack alignment code in the
2890prologue if the '``alignstack``' keyword is present:
2891
2892.. code-block:: llvm
2893
2894 call void asm alignstack "eieio", ""()
2895
2896Inline asms also support using non-standard assembly dialects. The
2897assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2898the inline asm is using the Intel dialect. Currently, ATT and Intel are
2899the only supported dialects. An example is:
2900
2901.. code-block:: llvm
2902
2903 call void asm inteldialect "eieio", ""()
2904
2905If multiple keywords appear the '``sideeffect``' keyword must come
2906first, the '``alignstack``' keyword second and the '``inteldialect``'
2907keyword last.
2908
James Y Knightbc832ed2015-07-08 18:08:36 +00002909Inline Asm Constraint String
2910^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2911
2912The constraint list is a comma-separated string, each element containing one or
2913more constraint codes.
2914
2915For each element in the constraint list an appropriate register or memory
2916operand will be chosen, and it will be made available to assembly template
2917string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2918second, etc.
2919
2920There are three different types of constraints, which are distinguished by a
2921prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2922constraints must always be given in that order: outputs first, then inputs, then
2923clobbers. They cannot be intermingled.
2924
2925There are also three different categories of constraint codes:
2926
2927- Register constraint. This is either a register class, or a fixed physical
2928 register. This kind of constraint will allocate a register, and if necessary,
2929 bitcast the argument or result to the appropriate type.
2930- Memory constraint. This kind of constraint is for use with an instruction
2931 taking a memory operand. Different constraints allow for different addressing
2932 modes used by the target.
2933- Immediate value constraint. This kind of constraint is for an integer or other
2934 immediate value which can be rendered directly into an instruction. The
2935 various target-specific constraints allow the selection of a value in the
2936 proper range for the instruction you wish to use it with.
2937
2938Output constraints
2939""""""""""""""""""
2940
2941Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2942indicates that the assembly will write to this operand, and the operand will
2943then be made available as a return value of the ``asm`` expression. Output
2944constraints do not consume an argument from the call instruction. (Except, see
2945below about indirect outputs).
2946
2947Normally, it is expected that no output locations are written to by the assembly
2948expression until *all* of the inputs have been read. As such, LLVM may assign
2949the same register to an output and an input. If this is not safe (e.g. if the
2950assembly contains two instructions, where the first writes to one output, and
2951the second reads an input and writes to a second output), then the "``&``"
2952modifier must be used (e.g. "``=&r``") to specify that the output is an
2953"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2954will not use the same register for any inputs (other than an input tied to this
2955output).
2956
2957Input constraints
2958"""""""""""""""""
2959
2960Input constraints do not have a prefix -- just the constraint codes. Each input
2961constraint will consume one argument from the call instruction. It is not
2962permitted for the asm to write to any input register or memory location (unless
2963that input is tied to an output). Note also that multiple inputs may all be
2964assigned to the same register, if LLVM can determine that they necessarily all
2965contain the same value.
2966
2967Instead of providing a Constraint Code, input constraints may also "tie"
2968themselves to an output constraint, by providing an integer as the constraint
2969string. Tied inputs still consume an argument from the call instruction, and
2970take up a position in the asm template numbering as is usual -- they will simply
2971be constrained to always use the same register as the output they've been tied
2972to. For example, a constraint string of "``=r,0``" says to assign a register for
2973output, and use that register as an input as well (it being the 0'th
2974constraint).
2975
2976It is permitted to tie an input to an "early-clobber" output. In that case, no
2977*other* input may share the same register as the input tied to the early-clobber
2978(even when the other input has the same value).
2979
2980You may only tie an input to an output which has a register constraint, not a
2981memory constraint. Only a single input may be tied to an output.
2982
2983There is also an "interesting" feature which deserves a bit of explanation: if a
2984register class constraint allocates a register which is too small for the value
2985type operand provided as input, the input value will be split into multiple
2986registers, and all of them passed to the inline asm.
2987
2988However, this feature is often not as useful as you might think.
2989
2990Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2991architectures that have instructions which operate on multiple consecutive
2992instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2993SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2994hardware then loads into both the named register, and the next register. This
2995feature of inline asm would not be useful to support that.)
2996
2997A few of the targets provide a template string modifier allowing explicit access
2998to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2999``D``). On such an architecture, you can actually access the second allocated
3000register (yet, still, not any subsequent ones). But, in that case, you're still
3001probably better off simply splitting the value into two separate operands, for
3002clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3003despite existing only for use with this feature, is not really a good idea to
3004use)
3005
3006Indirect inputs and outputs
3007"""""""""""""""""""""""""""
3008
3009Indirect output or input constraints can be specified by the "``*``" modifier
3010(which goes after the "``=``" in case of an output). This indicates that the asm
3011will write to or read from the contents of an *address* provided as an input
3012argument. (Note that in this way, indirect outputs act more like an *input* than
3013an output: just like an input, they consume an argument of the call expression,
3014rather than producing a return value. An indirect output constraint is an
3015"output" only in that the asm is expected to write to the contents of the input
3016memory location, instead of just read from it).
3017
3018This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3019address of a variable as a value.
3020
3021It is also possible to use an indirect *register* constraint, but only on output
3022(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3023value normally, and then, separately emit a store to the address provided as
3024input, after the provided inline asm. (It's not clear what value this
3025functionality provides, compared to writing the store explicitly after the asm
3026statement, and it can only produce worse code, since it bypasses many
3027optimization passes. I would recommend not using it.)
3028
3029
3030Clobber constraints
3031"""""""""""""""""""
3032
3033A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3034consume an input operand, nor generate an output. Clobbers cannot use any of the
3035general constraint code letters -- they may use only explicit register
3036constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3037"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3038memory locations -- not only the memory pointed to by a declared indirect
3039output.
3040
3041
3042Constraint Codes
3043""""""""""""""""
3044After a potential prefix comes constraint code, or codes.
3045
3046A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3047followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3048(e.g. "``{eax}``").
3049
3050The one and two letter constraint codes are typically chosen to be the same as
3051GCC's constraint codes.
3052
3053A single constraint may include one or more than constraint code in it, leaving
3054it up to LLVM to choose which one to use. This is included mainly for
3055compatibility with the translation of GCC inline asm coming from clang.
3056
3057There are two ways to specify alternatives, and either or both may be used in an
3058inline asm constraint list:
3059
30601) Append the codes to each other, making a constraint code set. E.g. "``im``"
3061 or "``{eax}m``". This means "choose any of the options in the set". The
3062 choice of constraint is made independently for each constraint in the
3063 constraint list.
3064
30652) Use "``|``" between constraint code sets, creating alternatives. Every
3066 constraint in the constraint list must have the same number of alternative
3067 sets. With this syntax, the same alternative in *all* of the items in the
3068 constraint list will be chosen together.
3069
3070Putting those together, you might have a two operand constraint string like
3071``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3072operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3073may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3074
3075However, the use of either of the alternatives features is *NOT* recommended, as
3076LLVM is not able to make an intelligent choice about which one to use. (At the
3077point it currently needs to choose, not enough information is available to do so
3078in a smart way.) Thus, it simply tries to make a choice that's most likely to
3079compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3080always choose to use memory, not registers). And, if given multiple registers,
3081or multiple register classes, it will simply choose the first one. (In fact, it
3082doesn't currently even ensure explicitly specified physical registers are
3083unique, so specifying multiple physical registers as alternatives, like
3084``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3085intended.)
3086
3087Supported Constraint Code List
3088""""""""""""""""""""""""""""""
3089
3090The constraint codes are, in general, expected to behave the same way they do in
3091GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3092inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3093and GCC likely indicates a bug in LLVM.
3094
3095Some constraint codes are typically supported by all targets:
3096
3097- ``r``: A register in the target's general purpose register class.
3098- ``m``: A memory address operand. It is target-specific what addressing modes
3099 are supported, typical examples are register, or register + register offset,
3100 or register + immediate offset (of some target-specific size).
3101- ``i``: An integer constant (of target-specific width). Allows either a simple
3102 immediate, or a relocatable value.
3103- ``n``: An integer constant -- *not* including relocatable values.
3104- ``s``: An integer constant, but allowing *only* relocatable values.
3105- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3106 useful to pass a label for an asm branch or call.
3107
3108 .. FIXME: but that surely isn't actually okay to jump out of an asm
3109 block without telling llvm about the control transfer???)
3110
3111- ``{register-name}``: Requires exactly the named physical register.
3112
3113Other constraints are target-specific:
3114
3115AArch64:
3116
3117- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3118- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3119 i.e. 0 to 4095 with optional shift by 12.
3120- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3121 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3122- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3123 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3124- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3125 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3126- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3127 32-bit register. This is a superset of ``K``: in addition to the bitmask
3128 immediate, also allows immediate integers which can be loaded with a single
3129 ``MOVZ`` or ``MOVL`` instruction.
3130- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3131 64-bit register. This is a superset of ``L``.
3132- ``Q``: Memory address operand must be in a single register (no
3133 offsets). (However, LLVM currently does this for the ``m`` constraint as
3134 well.)
3135- ``r``: A 32 or 64-bit integer register (W* or X*).
3136- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3137- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3138
3139AMDGPU:
3140
3141- ``r``: A 32 or 64-bit integer register.
3142- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3143- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3144
3145
3146All ARM modes:
3147
3148- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3149 operand. Treated the same as operand ``m``, at the moment.
3150
3151ARM and ARM's Thumb2 mode:
3152
3153- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3154- ``I``: An immediate integer valid for a data-processing instruction.
3155- ``J``: An immediate integer between -4095 and 4095.
3156- ``K``: An immediate integer whose bitwise inverse is valid for a
3157 data-processing instruction. (Can be used with template modifier "``B``" to
3158 print the inverted value).
3159- ``L``: An immediate integer whose negation is valid for a data-processing
3160 instruction. (Can be used with template modifier "``n``" to print the negated
3161 value).
3162- ``M``: A power of two or a integer between 0 and 32.
3163- ``N``: Invalid immediate constraint.
3164- ``O``: Invalid immediate constraint.
3165- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3166- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3167 as ``r``.
3168- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3169 invalid.
3170- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3171 ``d0-d31``, or ``q0-q15``.
3172- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3173 ``d0-d7``, or ``q0-q3``.
3174- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3175 ``s0-s31``.
3176
3177ARM's Thumb1 mode:
3178
3179- ``I``: An immediate integer between 0 and 255.
3180- ``J``: An immediate integer between -255 and -1.
3181- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3182 some amount.
3183- ``L``: An immediate integer between -7 and 7.
3184- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3185- ``N``: An immediate integer between 0 and 31.
3186- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3187- ``r``: A low 32-bit GPR register (``r0-r7``).
3188- ``l``: A low 32-bit GPR register (``r0-r7``).
3189- ``h``: A high GPR register (``r0-r7``).
3190- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3191 ``d0-d31``, or ``q0-q15``.
3192- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3193 ``d0-d7``, or ``q0-q3``.
3194- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3195 ``s0-s31``.
3196
3197
3198Hexagon:
3199
3200- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3201 at the moment.
3202- ``r``: A 32 or 64-bit register.
3203
3204MSP430:
3205
3206- ``r``: An 8 or 16-bit register.
3207
3208MIPS:
3209
3210- ``I``: An immediate signed 16-bit integer.
3211- ``J``: An immediate integer zero.
3212- ``K``: An immediate unsigned 16-bit integer.
3213- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3214- ``N``: An immediate integer between -65535 and -1.
3215- ``O``: An immediate signed 15-bit integer.
3216- ``P``: An immediate integer between 1 and 65535.
3217- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3218 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3219- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3220 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3221 ``m``.
3222- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3223 ``sc`` instruction on the given subtarget (details vary).
3224- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3225- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003226 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3227 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003228- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3229 ``25``).
3230- ``l``: The ``lo`` register, 32 or 64-bit.
3231- ``x``: Invalid.
3232
3233NVPTX:
3234
3235- ``b``: A 1-bit integer register.
3236- ``c`` or ``h``: A 16-bit integer register.
3237- ``r``: A 32-bit integer register.
3238- ``l`` or ``N``: A 64-bit integer register.
3239- ``f``: A 32-bit float register.
3240- ``d``: A 64-bit float register.
3241
3242
3243PowerPC:
3244
3245- ``I``: An immediate signed 16-bit integer.
3246- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3247- ``K``: An immediate unsigned 16-bit integer.
3248- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3249- ``M``: An immediate integer greater than 31.
3250- ``N``: An immediate integer that is an exact power of 2.
3251- ``O``: The immediate integer constant 0.
3252- ``P``: An immediate integer constant whose negation is a signed 16-bit
3253 constant.
3254- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3255 treated the same as ``m``.
3256- ``r``: A 32 or 64-bit integer register.
3257- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3258 ``R1-R31``).
3259- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3260 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3261- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3262 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3263 altivec vector register (``V0-V31``).
3264
3265 .. FIXME: is this a bug that v accepts QPX registers? I think this
3266 is supposed to only use the altivec vector registers?
3267
3268- ``y``: Condition register (``CR0-CR7``).
3269- ``wc``: An individual CR bit in a CR register.
3270- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3271 register set (overlapping both the floating-point and vector register files).
3272- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3273 set.
3274
3275Sparc:
3276
3277- ``I``: An immediate 13-bit signed integer.
3278- ``r``: A 32-bit integer register.
3279
3280SystemZ:
3281
3282- ``I``: An immediate unsigned 8-bit integer.
3283- ``J``: An immediate unsigned 12-bit integer.
3284- ``K``: An immediate signed 16-bit integer.
3285- ``L``: An immediate signed 20-bit integer.
3286- ``M``: An immediate integer 0x7fffffff.
3287- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3288 ``m``, at the moment.
3289- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3290- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3291 address context evaluates as zero).
3292- ``h``: A 32-bit value in the high part of a 64bit data register
3293 (LLVM-specific)
3294- ``f``: A 32, 64, or 128-bit floating point register.
3295
3296X86:
3297
3298- ``I``: An immediate integer between 0 and 31.
3299- ``J``: An immediate integer between 0 and 64.
3300- ``K``: An immediate signed 8-bit integer.
3301- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3302 0xffffffff.
3303- ``M``: An immediate integer between 0 and 3.
3304- ``N``: An immediate unsigned 8-bit integer.
3305- ``O``: An immediate integer between 0 and 127.
3306- ``e``: An immediate 32-bit signed integer.
3307- ``Z``: An immediate 32-bit unsigned integer.
3308- ``o``, ``v``: Treated the same as ``m``, at the moment.
3309- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3310 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3311 registers, and on X86-64, it is all of the integer registers.
3312- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3313 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3314- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3315- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3316 existed since i386, and can be accessed without the REX prefix.
3317- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3318- ``y``: A 64-bit MMX register, if MMX is enabled.
3319- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3320 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3321 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3322 512-bit vector operand in an AVX512 register, Otherwise, an error.
3323- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3324- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3325 32-bit mode, a 64-bit integer operand will get split into two registers). It
3326 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3327 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3328 you're better off splitting it yourself, before passing it to the asm
3329 statement.
3330
3331XCore:
3332
3333- ``r``: A 32-bit integer register.
3334
3335
3336.. _inline-asm-modifiers:
3337
3338Asm template argument modifiers
3339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3340
3341In the asm template string, modifiers can be used on the operand reference, like
3342"``${0:n}``".
3343
3344The modifiers are, in general, expected to behave the same way they do in
3345GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3346inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3347and GCC likely indicates a bug in LLVM.
3348
3349Target-independent:
3350
Sean Silvaa1190322015-08-06 22:56:48 +00003351- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003352 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3353- ``n``: Negate and print immediate integer constant unadorned, without the
3354 target-specific immediate punctuation (e.g. no ``$`` prefix).
3355- ``l``: Print as an unadorned label, without the target-specific label
3356 punctuation (e.g. no ``$`` prefix).
3357
3358AArch64:
3359
3360- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3361 instead of ``x30``, print ``w30``.
3362- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3363- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3364 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3365 ``v*``.
3366
3367AMDGPU:
3368
3369- ``r``: No effect.
3370
3371ARM:
3372
3373- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3374 register).
3375- ``P``: No effect.
3376- ``q``: No effect.
3377- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3378 as ``d4[1]`` instead of ``s9``)
3379- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3380 prefix.
3381- ``L``: Print the low 16-bits of an immediate integer constant.
3382- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3383 register operands subsequent to the specified one (!), so use carefully.
3384- ``Q``: Print the low-order register of a register-pair, or the low-order
3385 register of a two-register operand.
3386- ``R``: Print the high-order register of a register-pair, or the high-order
3387 register of a two-register operand.
3388- ``H``: Print the second register of a register-pair. (On a big-endian system,
3389 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3390 to ``R``.)
3391
3392 .. FIXME: H doesn't currently support printing the second register
3393 of a two-register operand.
3394
3395- ``e``: Print the low doubleword register of a NEON quad register.
3396- ``f``: Print the high doubleword register of a NEON quad register.
3397- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3398 adornment.
3399
3400Hexagon:
3401
3402- ``L``: Print the second register of a two-register operand. Requires that it
3403 has been allocated consecutively to the first.
3404
3405 .. FIXME: why is it restricted to consecutive ones? And there's
3406 nothing that ensures that happens, is there?
3407
3408- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3409 nothing. Used to print 'addi' vs 'add' instructions.
3410
3411MSP430:
3412
3413No additional modifiers.
3414
3415MIPS:
3416
3417- ``X``: Print an immediate integer as hexadecimal
3418- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3419- ``d``: Print an immediate integer as decimal.
3420- ``m``: Subtract one and print an immediate integer as decimal.
3421- ``z``: Print $0 if an immediate zero, otherwise print normally.
3422- ``L``: Print the low-order register of a two-register operand, or prints the
3423 address of the low-order word of a double-word memory operand.
3424
3425 .. FIXME: L seems to be missing memory operand support.
3426
3427- ``M``: Print the high-order register of a two-register operand, or prints the
3428 address of the high-order word of a double-word memory operand.
3429
3430 .. FIXME: M seems to be missing memory operand support.
3431
3432- ``D``: Print the second register of a two-register operand, or prints the
3433 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3434 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3435 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003436- ``w``: No effect. Provided for compatibility with GCC which requires this
3437 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3438 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003439
3440NVPTX:
3441
3442- ``r``: No effect.
3443
3444PowerPC:
3445
3446- ``L``: Print the second register of a two-register operand. Requires that it
3447 has been allocated consecutively to the first.
3448
3449 .. FIXME: why is it restricted to consecutive ones? And there's
3450 nothing that ensures that happens, is there?
3451
3452- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3453 nothing. Used to print 'addi' vs 'add' instructions.
3454- ``y``: For a memory operand, prints formatter for a two-register X-form
3455 instruction. (Currently always prints ``r0,OPERAND``).
3456- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3457 otherwise. (NOTE: LLVM does not support update form, so this will currently
3458 always print nothing)
3459- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3460 not support indexed form, so this will currently always print nothing)
3461
3462Sparc:
3463
3464- ``r``: No effect.
3465
3466SystemZ:
3467
3468SystemZ implements only ``n``, and does *not* support any of the other
3469target-independent modifiers.
3470
3471X86:
3472
3473- ``c``: Print an unadorned integer or symbol name. (The latter is
3474 target-specific behavior for this typically target-independent modifier).
3475- ``A``: Print a register name with a '``*``' before it.
3476- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3477 operand.
3478- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3479 memory operand.
3480- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3481 operand.
3482- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3483 operand.
3484- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3485 available, otherwise the 32-bit register name; do nothing on a memory operand.
3486- ``n``: Negate and print an unadorned integer, or, for operands other than an
3487 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3488 the operand. (The behavior for relocatable symbol expressions is a
3489 target-specific behavior for this typically target-independent modifier)
3490- ``H``: Print a memory reference with additional offset +8.
3491- ``P``: Print a memory reference or operand for use as the argument of a call
3492 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3493
3494XCore:
3495
3496No additional modifiers.
3497
3498
Sean Silvab084af42012-12-07 10:36:55 +00003499Inline Asm Metadata
3500^^^^^^^^^^^^^^^^^^^
3501
3502The call instructions that wrap inline asm nodes may have a
3503"``!srcloc``" MDNode attached to it that contains a list of constant
3504integers. If present, the code generator will use the integer as the
3505location cookie value when report errors through the ``LLVMContext``
3506error reporting mechanisms. This allows a front-end to correlate backend
3507errors that occur with inline asm back to the source code that produced
3508it. For example:
3509
3510.. code-block:: llvm
3511
3512 call void asm sideeffect "something bad", ""(), !srcloc !42
3513 ...
3514 !42 = !{ i32 1234567 }
3515
3516It is up to the front-end to make sense of the magic numbers it places
3517in the IR. If the MDNode contains multiple constants, the code generator
3518will use the one that corresponds to the line of the asm that the error
3519occurs on.
3520
3521.. _metadata:
3522
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003523Metadata
3524========
Sean Silvab084af42012-12-07 10:36:55 +00003525
3526LLVM IR allows metadata to be attached to instructions in the program
3527that can convey extra information about the code to the optimizers and
3528code generator. One example application of metadata is source-level
3529debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003530
Sean Silvaa1190322015-08-06 22:56:48 +00003531Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003532``call`` instruction, it uses the ``metadata`` type.
3533
3534All metadata are identified in syntax by a exclamation point ('``!``').
3535
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003536.. _metadata-string:
3537
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003538Metadata Nodes and Metadata Strings
3539-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003540
3541A metadata string is a string surrounded by double quotes. It can
3542contain any character by escaping non-printable characters with
3543"``\xx``" where "``xx``" is the two digit hex code. For example:
3544"``!"test\00"``".
3545
3546Metadata nodes are represented with notation similar to structure
3547constants (a comma separated list of elements, surrounded by braces and
3548preceded by an exclamation point). Metadata nodes can have any values as
3549their operand. For example:
3550
3551.. code-block:: llvm
3552
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003553 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003554
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003555Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3556
3557.. code-block:: llvm
3558
3559 !0 = distinct !{!"test\00", i32 10}
3560
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003561``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003562content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003563when metadata operands change.
3564
Sean Silvab084af42012-12-07 10:36:55 +00003565A :ref:`named metadata <namedmetadatastructure>` is a collection of
3566metadata nodes, which can be looked up in the module symbol table. For
3567example:
3568
3569.. code-block:: llvm
3570
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003571 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003572
3573Metadata can be used as function arguments. Here ``llvm.dbg.value``
3574function is using two metadata arguments:
3575
3576.. code-block:: llvm
3577
3578 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3579
3580Metadata can be attached with an instruction. Here metadata ``!21`` is
3581attached to the ``add`` instruction using the ``!dbg`` identifier:
3582
3583.. code-block:: llvm
3584
3585 %indvar.next = add i64 %indvar, 1, !dbg !21
3586
3587More information about specific metadata nodes recognized by the
3588optimizers and code generator is found below.
3589
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003590.. _specialized-metadata:
3591
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003592Specialized Metadata Nodes
3593^^^^^^^^^^^^^^^^^^^^^^^^^^
3594
3595Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003596to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003597order.
3598
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003599These aren't inherently debug info centric, but currently all the specialized
3600metadata nodes are related to debug info.
3601
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003602.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003603
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003604DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003605"""""""""""""
3606
Sean Silvaa1190322015-08-06 22:56:48 +00003607``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003608``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3609tuples containing the debug info to be emitted along with the compile unit,
3610regardless of code optimizations (some nodes are only emitted if there are
3611references to them from instructions).
3612
3613.. code-block:: llvm
3614
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003615 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003616 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3617 splitDebugFilename: "abc.debug", emissionKind: 1,
3618 enums: !2, retainedTypes: !3, subprograms: !4,
3619 globals: !5, imports: !6)
3620
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003621Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003622specific compilation unit. File descriptors are defined using this scope.
3623These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003624keep track of subprograms, global variables, type information, and imported
3625entities (declarations and namespaces).
3626
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003627.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003628
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003629DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003630""""""
3631
Sean Silvaa1190322015-08-06 22:56:48 +00003632``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003633
3634.. code-block:: llvm
3635
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003636 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003637
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003638Files are sometimes used in ``scope:`` fields, and are the only valid target
3639for ``file:`` fields.
3640
Michael Kuperstein605308a2015-05-14 10:58:59 +00003641.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003642
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003643DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003644"""""""""""
3645
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003646``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003647``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003648
3649.. code-block:: llvm
3650
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003651 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003652 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003653 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003654
Sean Silvaa1190322015-08-06 22:56:48 +00003655The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003656following:
3657
3658.. code-block:: llvm
3659
3660 DW_ATE_address = 1
3661 DW_ATE_boolean = 2
3662 DW_ATE_float = 4
3663 DW_ATE_signed = 5
3664 DW_ATE_signed_char = 6
3665 DW_ATE_unsigned = 7
3666 DW_ATE_unsigned_char = 8
3667
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003668.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003669
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003670DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003671""""""""""""""""
3672
Sean Silvaa1190322015-08-06 22:56:48 +00003673``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003674refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003675types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003676represents a function with no return value (such as ``void foo() {}`` in C++).
3677
3678.. code-block:: llvm
3679
3680 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3681 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003682 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003683
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003684.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003685
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003686DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003687"""""""""""""
3688
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003689``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003690qualified types.
3691
3692.. code-block:: llvm
3693
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003694 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003695 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003696 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003697 align: 32)
3698
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003699The following ``tag:`` values are valid:
3700
3701.. code-block:: llvm
3702
3703 DW_TAG_formal_parameter = 5
3704 DW_TAG_member = 13
3705 DW_TAG_pointer_type = 15
3706 DW_TAG_reference_type = 16
3707 DW_TAG_typedef = 22
3708 DW_TAG_ptr_to_member_type = 31
3709 DW_TAG_const_type = 38
3710 DW_TAG_volatile_type = 53
3711 DW_TAG_restrict_type = 55
3712
3713``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003714<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3715is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003716``DW_TAG_formal_parameter`` is used to define a member which is a formal
3717argument of a subprogram.
3718
3719``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3720
3721``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3722``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3723``baseType:``.
3724
3725Note that the ``void *`` type is expressed as a type derived from NULL.
3726
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003727.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003728
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003729DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003730"""""""""""""""
3731
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003732``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003733structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003734
3735If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003736identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003737can refer to composite types indirectly via a :ref:`metadata string
3738<metadata-string>` that matches their identifier.
3739
3740.. code-block:: llvm
3741
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003742 !0 = !DIEnumerator(name: "SixKind", value: 7)
3743 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3744 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3745 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003746 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3747 elements: !{!0, !1, !2})
3748
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003749The following ``tag:`` values are valid:
3750
3751.. code-block:: llvm
3752
3753 DW_TAG_array_type = 1
3754 DW_TAG_class_type = 2
3755 DW_TAG_enumeration_type = 4
3756 DW_TAG_structure_type = 19
3757 DW_TAG_union_type = 23
3758 DW_TAG_subroutine_type = 21
3759 DW_TAG_inheritance = 28
3760
3761
3762For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003763descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003764level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003765array type is a native packed vector.
3766
3767For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003768descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003769value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003770``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003771
3772For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3773``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003774<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003775
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003776.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003777
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003778DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003779""""""""""
3780
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003781``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003782:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783
3784.. code-block:: llvm
3785
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003786 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3787 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3788 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003790.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003793""""""""""""
3794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3796variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003797
3798.. code-block:: llvm
3799
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003800 !0 = !DIEnumerator(name: "SixKind", value: 7)
3801 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3802 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003803
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003804DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003805"""""""""""""""""""""""
3806
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003807``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003808language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003809:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003810
3811.. code-block:: llvm
3812
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003813 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003814
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003816""""""""""""""""""""""""
3817
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003818``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003819language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003820but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003821``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003822:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823
3824.. code-block:: llvm
3825
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003826 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003828DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003829"""""""""""
3830
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003831``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832
3833.. code-block:: llvm
3834
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003835 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003836
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003838""""""""""""""""
3839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841
3842.. code-block:: llvm
3843
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003844 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003845 file: !2, line: 7, type: !3, isLocal: true,
3846 isDefinition: false, variable: i32* @foo,
3847 declaration: !4)
3848
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003849All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003850:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003851
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855""""""""""""
3856
Sean Silvaa1190322015-08-06 22:56:48 +00003857``DISubprogram`` nodes represent functions from the source language. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Sean Silvaa1190322015-08-06 22:56:48 +00003859retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
3862.. code-block:: llvm
3863
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003864 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865 file: !2, line: 7, type: !3, isLocal: true,
3866 isDefinition: false, scopeLine: 8, containingType: !4,
3867 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3868 flags: DIFlagPrototyped, isOptimized: true,
3869 function: void ()* @_Z3foov,
3870 templateParams: !5, declaration: !6, variables: !7)
3871
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003872.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003875""""""""""""""
3876
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003877``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Sean Silvaa1190322015-08-06 22:56:48 +00003878<DISubprogram>`. The line number and column numbers are used to dinstinguish
3879two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003880fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881
3882.. code-block:: llvm
3883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003885
3886Usually lexical blocks are ``distinct`` to prevent node merging based on
3887operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003891DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892""""""""""""""""""
3893
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003895:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896indicate textual inclusion, or the ``discriminator:`` field can be used to
3897discriminate between control flow within a single block in the source language.
3898
3899.. code-block:: llvm
3900
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3902 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3903 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904
Michael Kuperstein605308a2015-05-14 10:58:59 +00003905.. _DILocation:
3906
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003907DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003908""""""""""
3909
Sean Silvaa1190322015-08-06 22:56:48 +00003910``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003911mandatory, and points at an :ref:`DILexicalBlockFile`, an
3912:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003913
3914.. code-block:: llvm
3915
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003917
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003918.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921"""""""""""""""
3922
Sean Silvaa1190322015-08-06 22:56:48 +00003923``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003924the ``arg:`` field is set to non-zero, then this variable is a subprogram
3925parameter, and it will be included in the ``variables:`` field of its
3926:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003927
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928.. code-block:: llvm
3929
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003930 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
3931 type: !3, flags: DIFlagArtificial)
3932 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
3933 type: !3)
3934 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937""""""""""""
3938
Sean Silvaa1190322015-08-06 22:56:48 +00003939``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3941describe how the referenced LLVM variable relates to the source language
3942variable.
3943
3944The current supported vocabulary is limited:
3945
3946- ``DW_OP_deref`` dereferences the working expression.
3947- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3948- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3949 here, respectively) of the variable piece from the working expression.
3950
3951.. code-block:: llvm
3952
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953 !0 = !DIExpression(DW_OP_deref)
3954 !1 = !DIExpression(DW_OP_plus, 3)
3955 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3956 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003959""""""""""""""
3960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962
3963.. code-block:: llvm
3964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966 getter: "getFoo", attributes: 7, type: !2)
3967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969""""""""""""""""
3970
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003971``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972compile unit.
3973
3974.. code-block:: llvm
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977 entity: !1, line: 7)
3978
Sean Silvab084af42012-12-07 10:36:55 +00003979'``tbaa``' Metadata
3980^^^^^^^^^^^^^^^^^^^
3981
3982In LLVM IR, memory does not have types, so LLVM's own type system is not
3983suitable for doing TBAA. Instead, metadata is added to the IR to
3984describe a type system of a higher level language. This can be used to
3985implement typical C/C++ TBAA, but it can also be used to implement
3986custom alias analysis behavior for other languages.
3987
3988The current metadata format is very simple. TBAA metadata nodes have up
3989to three fields, e.g.:
3990
3991.. code-block:: llvm
3992
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003993 !0 = !{ !"an example type tree" }
3994 !1 = !{ !"int", !0 }
3995 !2 = !{ !"float", !0 }
3996 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003997
3998The first field is an identity field. It can be any value, usually a
3999metadata string, which uniquely identifies the type. The most important
4000name in the tree is the name of the root node. Two trees with different
4001root node names are entirely disjoint, even if they have leaves with
4002common names.
4003
4004The second field identifies the type's parent node in the tree, or is
4005null or omitted for a root node. A type is considered to alias all of
4006its descendants and all of its ancestors in the tree. Also, a type is
4007considered to alias all types in other trees, so that bitcode produced
4008from multiple front-ends is handled conservatively.
4009
4010If the third field is present, it's an integer which if equal to 1
4011indicates that the type is "constant" (meaning
4012``pointsToConstantMemory`` should return true; see `other useful
4013AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4014
4015'``tbaa.struct``' Metadata
4016^^^^^^^^^^^^^^^^^^^^^^^^^^
4017
4018The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4019aggregate assignment operations in C and similar languages, however it
4020is defined to copy a contiguous region of memory, which is more than
4021strictly necessary for aggregate types which contain holes due to
4022padding. Also, it doesn't contain any TBAA information about the fields
4023of the aggregate.
4024
4025``!tbaa.struct`` metadata can describe which memory subregions in a
4026memcpy are padding and what the TBAA tags of the struct are.
4027
4028The current metadata format is very simple. ``!tbaa.struct`` metadata
4029nodes are a list of operands which are in conceptual groups of three.
4030For each group of three, the first operand gives the byte offset of a
4031field in bytes, the second gives its size in bytes, and the third gives
4032its tbaa tag. e.g.:
4033
4034.. code-block:: llvm
4035
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004036 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004037
4038This describes a struct with two fields. The first is at offset 0 bytes
4039with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4040and has size 4 bytes and has tbaa tag !2.
4041
4042Note that the fields need not be contiguous. In this example, there is a
40434 byte gap between the two fields. This gap represents padding which
4044does not carry useful data and need not be preserved.
4045
Hal Finkel94146652014-07-24 14:25:39 +00004046'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004048
4049``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4050noalias memory-access sets. This means that some collection of memory access
4051instructions (loads, stores, memory-accessing calls, etc.) that carry
4052``noalias`` metadata can specifically be specified not to alias with some other
4053collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004054Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004055a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004056of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004057subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004058instruction's ``noalias`` list, then the two memory accesses are assumed not to
4059alias.
Hal Finkel94146652014-07-24 14:25:39 +00004060
Hal Finkel029cde62014-07-25 15:50:02 +00004061The metadata identifying each domain is itself a list containing one or two
4062entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00004063string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004064self-reference can be used to create globally unique domain names. A
4065descriptive string may optionally be provided as a second list entry.
4066
4067The metadata identifying each scope is also itself a list containing two or
4068three entries. The first entry is the name of the scope. Note that if the name
4069is a string then it can be combined accross functions and translation units. A
4070self-reference can be used to create globally unique scope names. A metadata
4071reference to the scope's domain is the second entry. A descriptive string may
4072optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004073
4074For example,
4075
4076.. code-block:: llvm
4077
Hal Finkel029cde62014-07-25 15:50:02 +00004078 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004079 !0 = !{!0}
4080 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004081
Hal Finkel029cde62014-07-25 15:50:02 +00004082 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004083 !2 = !{!2, !0}
4084 !3 = !{!3, !0}
4085 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004086
Hal Finkel029cde62014-07-25 15:50:02 +00004087 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004088 !5 = !{!4} ; A list containing only scope !4
4089 !6 = !{!4, !3, !2}
4090 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004091
4092 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004093 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004094 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004095
Hal Finkel029cde62014-07-25 15:50:02 +00004096 ; These two instructions also don't alias (for domain !1, the set of scopes
4097 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004098 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004099 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004100
Adam Nemet0a8416f2015-05-11 08:30:28 +00004101 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004102 ; the !noalias list is not a superset of, or equal to, the scopes in the
4103 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004104 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004105 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004106
Sean Silvab084af42012-12-07 10:36:55 +00004107'``fpmath``' Metadata
4108^^^^^^^^^^^^^^^^^^^^^
4109
4110``fpmath`` metadata may be attached to any instruction of floating point
4111type. It can be used to express the maximum acceptable error in the
4112result of that instruction, in ULPs, thus potentially allowing the
4113compiler to use a more efficient but less accurate method of computing
4114it. ULP is defined as follows:
4115
4116 If ``x`` is a real number that lies between two finite consecutive
4117 floating-point numbers ``a`` and ``b``, without being equal to one
4118 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4119 distance between the two non-equal finite floating-point numbers
4120 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4121
4122The metadata node shall consist of a single positive floating point
4123number representing the maximum relative error, for example:
4124
4125.. code-block:: llvm
4126
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004127 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004128
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004129.. _range-metadata:
4130
Sean Silvab084af42012-12-07 10:36:55 +00004131'``range``' Metadata
4132^^^^^^^^^^^^^^^^^^^^
4133
Jingyue Wu37fcb592014-06-19 16:50:16 +00004134``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4135integer types. It expresses the possible ranges the loaded value or the value
4136returned by the called function at this call site is in. The ranges are
4137represented with a flattened list of integers. The loaded value or the value
4138returned is known to be in the union of the ranges defined by each consecutive
4139pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004140
4141- The type must match the type loaded by the instruction.
4142- The pair ``a,b`` represents the range ``[a,b)``.
4143- Both ``a`` and ``b`` are constants.
4144- The range is allowed to wrap.
4145- The range should not represent the full or empty set. That is,
4146 ``a!=b``.
4147
4148In addition, the pairs must be in signed order of the lower bound and
4149they must be non-contiguous.
4150
4151Examples:
4152
4153.. code-block:: llvm
4154
David Blaikiec7aabbb2015-03-04 22:06:14 +00004155 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4156 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004157 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4158 %d = invoke i8 @bar() to label %cont
4159 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004160 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004161 !0 = !{ i8 0, i8 2 }
4162 !1 = !{ i8 255, i8 2 }
4163 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4164 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004165
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004166'``llvm.loop``'
4167^^^^^^^^^^^^^^^
4168
4169It is sometimes useful to attach information to loop constructs. Currently,
4170loop metadata is implemented as metadata attached to the branch instruction
4171in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004172guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004173specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004174
4175The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004176itself to avoid merging it with any other identifier metadata, e.g.,
4177during module linkage or function inlining. That is, each loop should refer
4178to their own identification metadata even if they reside in separate functions.
4179The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004180constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004181
4182.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004183
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004184 !0 = !{!0}
4185 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004186
Mark Heffernan893752a2014-07-18 19:24:51 +00004187The loop identifier metadata can be used to specify additional
4188per-loop metadata. Any operands after the first operand can be treated
4189as user-defined metadata. For example the ``llvm.loop.unroll.count``
4190suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004191
Paul Redmond5fdf8362013-05-28 20:00:34 +00004192.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004193
Paul Redmond5fdf8362013-05-28 20:00:34 +00004194 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4195 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004196 !0 = !{!0, !1}
4197 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004198
Mark Heffernan9d20e422014-07-21 23:11:03 +00004199'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004201
Mark Heffernan9d20e422014-07-21 23:11:03 +00004202Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4203used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004204vectorization width and interleave count. These metadata should be used in
4205conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004206``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4207optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004208it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004209which contains information about loop-carried memory dependencies can be helpful
4210in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004211
Mark Heffernan9d20e422014-07-21 23:11:03 +00004212'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4214
Mark Heffernan9d20e422014-07-21 23:11:03 +00004215This metadata suggests an interleave count to the loop interleaver.
4216The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004217second operand is an integer specifying the interleave count. For
4218example:
4219
4220.. code-block:: llvm
4221
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004222 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004223
Mark Heffernan9d20e422014-07-21 23:11:03 +00004224Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004225multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004226then the interleave count will be determined automatically.
4227
4228'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004230
4231This metadata selectively enables or disables vectorization for the loop. The
4232first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004233is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000042340 disables vectorization:
4235
4236.. code-block:: llvm
4237
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004238 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4239 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004240
4241'``llvm.loop.vectorize.width``' Metadata
4242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4243
4244This metadata sets the target width of the vectorizer. The first
4245operand is the string ``llvm.loop.vectorize.width`` and the second
4246operand is an integer specifying the width. For example:
4247
4248.. code-block:: llvm
4249
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004250 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004251
4252Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004253vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000042540 or if the loop does not have this metadata the width will be
4255determined automatically.
4256
4257'``llvm.loop.unroll``'
4258^^^^^^^^^^^^^^^^^^^^^^
4259
4260Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4261optimization hints such as the unroll factor. ``llvm.loop.unroll``
4262metadata should be used in conjunction with ``llvm.loop`` loop
4263identification metadata. The ``llvm.loop.unroll`` metadata are only
4264optimization hints and the unrolling will only be performed if the
4265optimizer believes it is safe to do so.
4266
Mark Heffernan893752a2014-07-18 19:24:51 +00004267'``llvm.loop.unroll.count``' Metadata
4268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4269
4270This metadata suggests an unroll factor to the loop unroller. The
4271first operand is the string ``llvm.loop.unroll.count`` and the second
4272operand is a positive integer specifying the unroll factor. For
4273example:
4274
4275.. code-block:: llvm
4276
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004277 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004278
4279If the trip count of the loop is less than the unroll count the loop
4280will be partially unrolled.
4281
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004282'``llvm.loop.unroll.disable``' Metadata
4283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4284
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004285This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004286which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004287
4288.. code-block:: llvm
4289
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004290 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004291
Kevin Qin715b01e2015-03-09 06:14:18 +00004292'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004294
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004295This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004296operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004297
4298.. code-block:: llvm
4299
4300 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4301
Mark Heffernan89391542015-08-10 17:28:08 +00004302'``llvm.loop.unroll.enable``' Metadata
4303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4304
4305This metadata suggests that the loop should be fully unrolled if the trip count
4306is known at compile time and partially unrolled if the trip count is not known
4307at compile time. The metadata has a single operand which is the string
4308``llvm.loop.unroll.enable``. For example:
4309
4310.. code-block:: llvm
4311
4312 !0 = !{!"llvm.loop.unroll.enable"}
4313
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004314'``llvm.loop.unroll.full``' Metadata
4315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4316
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004317This metadata suggests that the loop should be unrolled fully. The
4318metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004319For example:
4320
4321.. code-block:: llvm
4322
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004323 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004324
4325'``llvm.mem``'
4326^^^^^^^^^^^^^^^
4327
4328Metadata types used to annotate memory accesses with information helpful
4329for optimizations are prefixed with ``llvm.mem``.
4330
4331'``llvm.mem.parallel_loop_access``' Metadata
4332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4333
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004334The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4335or metadata containing a list of loop identifiers for nested loops.
4336The metadata is attached to memory accessing instructions and denotes that
4337no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004338with the same loop identifier.
4339
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004340Precisely, given two instructions ``m1`` and ``m2`` that both have the
4341``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4342set of loops associated with that metadata, respectively, then there is no loop
4343carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004344``L2``.
4345
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004346As a special case, if all memory accessing instructions in a loop have
4347``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4348loop has no loop carried memory dependences and is considered to be a parallel
4349loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004350
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004351Note that if not all memory access instructions have such metadata referring to
4352the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004353memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004354safe mechanism, this causes loops that were originally parallel to be considered
4355sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004356insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004357
4358Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004359both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004360metadata types that refer to the same loop identifier metadata.
4361
4362.. code-block:: llvm
4363
4364 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004365 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004366 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004367 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004368 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004369 ...
4370 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004371
4372 for.end:
4373 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004374 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004375
4376It is also possible to have nested parallel loops. In that case the
4377memory accesses refer to a list of loop identifier metadata nodes instead of
4378the loop identifier metadata node directly:
4379
4380.. code-block:: llvm
4381
4382 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004383 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004384 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004385 ...
4386 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004387
4388 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004389 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004390 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004391 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004392 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004393 ...
4394 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004395
4396 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004397 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004398 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004399 ...
4400 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004401
4402 outer.for.end: ; preds = %for.body
4403 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004404 !0 = !{!1, !2} ; a list of loop identifiers
4405 !1 = !{!1} ; an identifier for the inner loop
4406 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004407
Peter Collingbournee6909c82015-02-20 20:30:47 +00004408'``llvm.bitsets``'
4409^^^^^^^^^^^^^^^^^^
4410
4411The ``llvm.bitsets`` global metadata is used to implement
4412:doc:`bitsets <BitSets>`.
4413
Sean Silvab084af42012-12-07 10:36:55 +00004414Module Flags Metadata
4415=====================
4416
4417Information about the module as a whole is difficult to convey to LLVM's
4418subsystems. The LLVM IR isn't sufficient to transmit this information.
4419The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004420this. These flags are in the form of key / value pairs --- much like a
4421dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004422look it up.
4423
4424The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4425Each triplet has the following form:
4426
4427- The first element is a *behavior* flag, which specifies the behavior
4428 when two (or more) modules are merged together, and it encounters two
4429 (or more) metadata with the same ID. The supported behaviors are
4430 described below.
4431- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004432 metadata. Each module may only have one flag entry for each unique ID (not
4433 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004434- The third element is the value of the flag.
4435
4436When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004437``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4438each unique metadata ID string, there will be exactly one entry in the merged
4439modules ``llvm.module.flags`` metadata table, and the value for that entry will
4440be determined by the merge behavior flag, as described below. The only exception
4441is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004442
4443The following behaviors are supported:
4444
4445.. list-table::
4446 :header-rows: 1
4447 :widths: 10 90
4448
4449 * - Value
4450 - Behavior
4451
4452 * - 1
4453 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004454 Emits an error if two values disagree, otherwise the resulting value
4455 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004456
4457 * - 2
4458 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004459 Emits a warning if two values disagree. The result value will be the
4460 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004461
4462 * - 3
4463 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004464 Adds a requirement that another module flag be present and have a
4465 specified value after linking is performed. The value must be a
4466 metadata pair, where the first element of the pair is the ID of the
4467 module flag to be restricted, and the second element of the pair is
4468 the value the module flag should be restricted to. This behavior can
4469 be used to restrict the allowable results (via triggering of an
4470 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004471
4472 * - 4
4473 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004474 Uses the specified value, regardless of the behavior or value of the
4475 other module. If both modules specify **Override**, but the values
4476 differ, an error will be emitted.
4477
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004478 * - 5
4479 - **Append**
4480 Appends the two values, which are required to be metadata nodes.
4481
4482 * - 6
4483 - **AppendUnique**
4484 Appends the two values, which are required to be metadata
4485 nodes. However, duplicate entries in the second list are dropped
4486 during the append operation.
4487
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004488It is an error for a particular unique flag ID to have multiple behaviors,
4489except in the case of **Require** (which adds restrictions on another metadata
4490value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004491
4492An example of module flags:
4493
4494.. code-block:: llvm
4495
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004496 !0 = !{ i32 1, !"foo", i32 1 }
4497 !1 = !{ i32 4, !"bar", i32 37 }
4498 !2 = !{ i32 2, !"qux", i32 42 }
4499 !3 = !{ i32 3, !"qux",
4500 !{
4501 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004502 }
4503 }
4504 !llvm.module.flags = !{ !0, !1, !2, !3 }
4505
4506- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4507 if two or more ``!"foo"`` flags are seen is to emit an error if their
4508 values are not equal.
4509
4510- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4511 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004512 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004513
4514- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4515 behavior if two or more ``!"qux"`` flags are seen is to emit a
4516 warning if their values are not equal.
4517
4518- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4519
4520 ::
4521
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004522 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004523
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004524 The behavior is to emit an error if the ``llvm.module.flags`` does not
4525 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4526 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004527
4528Objective-C Garbage Collection Module Flags Metadata
4529----------------------------------------------------
4530
4531On the Mach-O platform, Objective-C stores metadata about garbage
4532collection in a special section called "image info". The metadata
4533consists of a version number and a bitmask specifying what types of
4534garbage collection are supported (if any) by the file. If two or more
4535modules are linked together their garbage collection metadata needs to
4536be merged rather than appended together.
4537
4538The Objective-C garbage collection module flags metadata consists of the
4539following key-value pairs:
4540
4541.. list-table::
4542 :header-rows: 1
4543 :widths: 30 70
4544
4545 * - Key
4546 - Value
4547
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004548 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004549 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004550
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004551 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004552 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004553 always 0.
4554
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004555 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004556 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004557 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4558 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4559 Objective-C ABI version 2.
4560
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004561 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004562 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004563 not. Valid values are 0, for no garbage collection, and 2, for garbage
4564 collection supported.
4565
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004566 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004567 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004568 If present, its value must be 6. This flag requires that the
4569 ``Objective-C Garbage Collection`` flag have the value 2.
4570
4571Some important flag interactions:
4572
4573- If a module with ``Objective-C Garbage Collection`` set to 0 is
4574 merged with a module with ``Objective-C Garbage Collection`` set to
4575 2, then the resulting module has the
4576 ``Objective-C Garbage Collection`` flag set to 0.
4577- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4578 merged with a module with ``Objective-C GC Only`` set to 6.
4579
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004580Automatic Linker Flags Module Flags Metadata
4581--------------------------------------------
4582
4583Some targets support embedding flags to the linker inside individual object
4584files. Typically this is used in conjunction with language extensions which
4585allow source files to explicitly declare the libraries they depend on, and have
4586these automatically be transmitted to the linker via object files.
4587
4588These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004589using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004590to be ``AppendUnique``, and the value for the key is expected to be a metadata
4591node which should be a list of other metadata nodes, each of which should be a
4592list of metadata strings defining linker options.
4593
4594For example, the following metadata section specifies two separate sets of
4595linker options, presumably to link against ``libz`` and the ``Cocoa``
4596framework::
4597
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004598 !0 = !{ i32 6, !"Linker Options",
4599 !{
4600 !{ !"-lz" },
4601 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004602 !llvm.module.flags = !{ !0 }
4603
4604The metadata encoding as lists of lists of options, as opposed to a collapsed
4605list of options, is chosen so that the IR encoding can use multiple option
4606strings to specify e.g., a single library, while still having that specifier be
4607preserved as an atomic element that can be recognized by a target specific
4608assembly writer or object file emitter.
4609
4610Each individual option is required to be either a valid option for the target's
4611linker, or an option that is reserved by the target specific assembly writer or
4612object file emitter. No other aspect of these options is defined by the IR.
4613
Oliver Stannard5dc29342014-06-20 10:08:11 +00004614C type width Module Flags Metadata
4615----------------------------------
4616
4617The ARM backend emits a section into each generated object file describing the
4618options that it was compiled with (in a compiler-independent way) to prevent
4619linking incompatible objects, and to allow automatic library selection. Some
4620of these options are not visible at the IR level, namely wchar_t width and enum
4621width.
4622
4623To pass this information to the backend, these options are encoded in module
4624flags metadata, using the following key-value pairs:
4625
4626.. list-table::
4627 :header-rows: 1
4628 :widths: 30 70
4629
4630 * - Key
4631 - Value
4632
4633 * - short_wchar
4634 - * 0 --- sizeof(wchar_t) == 4
4635 * 1 --- sizeof(wchar_t) == 2
4636
4637 * - short_enum
4638 - * 0 --- Enums are at least as large as an ``int``.
4639 * 1 --- Enums are stored in the smallest integer type which can
4640 represent all of its values.
4641
4642For example, the following metadata section specifies that the module was
4643compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4644enum is the smallest type which can represent all of its values::
4645
4646 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004647 !0 = !{i32 1, !"short_wchar", i32 1}
4648 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004649
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004650.. _intrinsicglobalvariables:
4651
Sean Silvab084af42012-12-07 10:36:55 +00004652Intrinsic Global Variables
4653==========================
4654
4655LLVM has a number of "magic" global variables that contain data that
4656affect code generation or other IR semantics. These are documented here.
4657All globals of this sort should have a section specified as
4658"``llvm.metadata``". This section and all globals that start with
4659"``llvm.``" are reserved for use by LLVM.
4660
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004661.. _gv_llvmused:
4662
Sean Silvab084af42012-12-07 10:36:55 +00004663The '``llvm.used``' Global Variable
4664-----------------------------------
4665
Rafael Espindola74f2e462013-04-22 14:58:02 +00004666The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004667:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004668pointers to named global variables, functions and aliases which may optionally
4669have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004670use of it is:
4671
4672.. code-block:: llvm
4673
4674 @X = global i8 4
4675 @Y = global i32 123
4676
4677 @llvm.used = appending global [2 x i8*] [
4678 i8* @X,
4679 i8* bitcast (i32* @Y to i8*)
4680 ], section "llvm.metadata"
4681
Rafael Espindola74f2e462013-04-22 14:58:02 +00004682If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4683and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004684symbol that it cannot see (which is why they have to be named). For example, if
4685a variable has internal linkage and no references other than that from the
4686``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4687references from inline asms and other things the compiler cannot "see", and
4688corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004689
4690On some targets, the code generator must emit a directive to the
4691assembler or object file to prevent the assembler and linker from
4692molesting the symbol.
4693
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004694.. _gv_llvmcompilerused:
4695
Sean Silvab084af42012-12-07 10:36:55 +00004696The '``llvm.compiler.used``' Global Variable
4697--------------------------------------------
4698
4699The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4700directive, except that it only prevents the compiler from touching the
4701symbol. On targets that support it, this allows an intelligent linker to
4702optimize references to the symbol without being impeded as it would be
4703by ``@llvm.used``.
4704
4705This is a rare construct that should only be used in rare circumstances,
4706and should not be exposed to source languages.
4707
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004708.. _gv_llvmglobalctors:
4709
Sean Silvab084af42012-12-07 10:36:55 +00004710The '``llvm.global_ctors``' Global Variable
4711-------------------------------------------
4712
4713.. code-block:: llvm
4714
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004715 %0 = type { i32, void ()*, i8* }
4716 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004717
4718The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004719functions, priorities, and an optional associated global or function.
4720The functions referenced by this array will be called in ascending order
4721of priority (i.e. lowest first) when the module is loaded. The order of
4722functions with the same priority is not defined.
4723
4724If the third field is present, non-null, and points to a global variable
4725or function, the initializer function will only run if the associated
4726data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004727
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004728.. _llvmglobaldtors:
4729
Sean Silvab084af42012-12-07 10:36:55 +00004730The '``llvm.global_dtors``' Global Variable
4731-------------------------------------------
4732
4733.. code-block:: llvm
4734
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004735 %0 = type { i32, void ()*, i8* }
4736 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004737
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004738The ``@llvm.global_dtors`` array contains a list of destructor
4739functions, priorities, and an optional associated global or function.
4740The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004741order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004742order of functions with the same priority is not defined.
4743
4744If the third field is present, non-null, and points to a global variable
4745or function, the destructor function will only run if the associated
4746data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004747
4748Instruction Reference
4749=====================
4750
4751The LLVM instruction set consists of several different classifications
4752of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4753instructions <binaryops>`, :ref:`bitwise binary
4754instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4755:ref:`other instructions <otherops>`.
4756
4757.. _terminators:
4758
4759Terminator Instructions
4760-----------------------
4761
4762As mentioned :ref:`previously <functionstructure>`, every basic block in a
4763program ends with a "Terminator" instruction, which indicates which
4764block should be executed after the current block is finished. These
4765terminator instructions typically yield a '``void``' value: they produce
4766control flow, not values (the one exception being the
4767':ref:`invoke <i_invoke>`' instruction).
4768
4769The terminator instructions are: ':ref:`ret <i_ret>`',
4770':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4771':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004772':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4773':ref:`catchendpad <i_catchendpad>`',
4774':ref:`catchret <i_catchret>`',
4775':ref:`cleanupret <i_cleanupret>`',
4776':ref:`terminatepad <i_terminatepad>`',
4777and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004778
4779.. _i_ret:
4780
4781'``ret``' Instruction
4782^^^^^^^^^^^^^^^^^^^^^
4783
4784Syntax:
4785"""""""
4786
4787::
4788
4789 ret <type> <value> ; Return a value from a non-void function
4790 ret void ; Return from void function
4791
4792Overview:
4793"""""""""
4794
4795The '``ret``' instruction is used to return control flow (and optionally
4796a value) from a function back to the caller.
4797
4798There are two forms of the '``ret``' instruction: one that returns a
4799value and then causes control flow, and one that just causes control
4800flow to occur.
4801
4802Arguments:
4803""""""""""
4804
4805The '``ret``' instruction optionally accepts a single argument, the
4806return value. The type of the return value must be a ':ref:`first
4807class <t_firstclass>`' type.
4808
4809A function is not :ref:`well formed <wellformed>` if it it has a non-void
4810return type and contains a '``ret``' instruction with no return value or
4811a return value with a type that does not match its type, or if it has a
4812void return type and contains a '``ret``' instruction with a return
4813value.
4814
4815Semantics:
4816""""""""""
4817
4818When the '``ret``' instruction is executed, control flow returns back to
4819the calling function's context. If the caller is a
4820":ref:`call <i_call>`" instruction, execution continues at the
4821instruction after the call. If the caller was an
4822":ref:`invoke <i_invoke>`" instruction, execution continues at the
4823beginning of the "normal" destination block. If the instruction returns
4824a value, that value shall set the call or invoke instruction's return
4825value.
4826
4827Example:
4828""""""""
4829
4830.. code-block:: llvm
4831
4832 ret i32 5 ; Return an integer value of 5
4833 ret void ; Return from a void function
4834 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4835
4836.. _i_br:
4837
4838'``br``' Instruction
4839^^^^^^^^^^^^^^^^^^^^
4840
4841Syntax:
4842"""""""
4843
4844::
4845
4846 br i1 <cond>, label <iftrue>, label <iffalse>
4847 br label <dest> ; Unconditional branch
4848
4849Overview:
4850"""""""""
4851
4852The '``br``' instruction is used to cause control flow to transfer to a
4853different basic block in the current function. There are two forms of
4854this instruction, corresponding to a conditional branch and an
4855unconditional branch.
4856
4857Arguments:
4858""""""""""
4859
4860The conditional branch form of the '``br``' instruction takes a single
4861'``i1``' value and two '``label``' values. The unconditional form of the
4862'``br``' instruction takes a single '``label``' value as a target.
4863
4864Semantics:
4865""""""""""
4866
4867Upon execution of a conditional '``br``' instruction, the '``i1``'
4868argument is evaluated. If the value is ``true``, control flows to the
4869'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4870to the '``iffalse``' ``label`` argument.
4871
4872Example:
4873""""""""
4874
4875.. code-block:: llvm
4876
4877 Test:
4878 %cond = icmp eq i32 %a, %b
4879 br i1 %cond, label %IfEqual, label %IfUnequal
4880 IfEqual:
4881 ret i32 1
4882 IfUnequal:
4883 ret i32 0
4884
4885.. _i_switch:
4886
4887'``switch``' Instruction
4888^^^^^^^^^^^^^^^^^^^^^^^^
4889
4890Syntax:
4891"""""""
4892
4893::
4894
4895 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4896
4897Overview:
4898"""""""""
4899
4900The '``switch``' instruction is used to transfer control flow to one of
4901several different places. It is a generalization of the '``br``'
4902instruction, allowing a branch to occur to one of many possible
4903destinations.
4904
4905Arguments:
4906""""""""""
4907
4908The '``switch``' instruction uses three parameters: an integer
4909comparison value '``value``', a default '``label``' destination, and an
4910array of pairs of comparison value constants and '``label``'s. The table
4911is not allowed to contain duplicate constant entries.
4912
4913Semantics:
4914""""""""""
4915
4916The ``switch`` instruction specifies a table of values and destinations.
4917When the '``switch``' instruction is executed, this table is searched
4918for the given value. If the value is found, control flow is transferred
4919to the corresponding destination; otherwise, control flow is transferred
4920to the default destination.
4921
4922Implementation:
4923"""""""""""""""
4924
4925Depending on properties of the target machine and the particular
4926``switch`` instruction, this instruction may be code generated in
4927different ways. For example, it could be generated as a series of
4928chained conditional branches or with a lookup table.
4929
4930Example:
4931""""""""
4932
4933.. code-block:: llvm
4934
4935 ; Emulate a conditional br instruction
4936 %Val = zext i1 %value to i32
4937 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4938
4939 ; Emulate an unconditional br instruction
4940 switch i32 0, label %dest [ ]
4941
4942 ; Implement a jump table:
4943 switch i32 %val, label %otherwise [ i32 0, label %onzero
4944 i32 1, label %onone
4945 i32 2, label %ontwo ]
4946
4947.. _i_indirectbr:
4948
4949'``indirectbr``' Instruction
4950^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4951
4952Syntax:
4953"""""""
4954
4955::
4956
4957 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4958
4959Overview:
4960"""""""""
4961
4962The '``indirectbr``' instruction implements an indirect branch to a
4963label within the current function, whose address is specified by
4964"``address``". Address must be derived from a
4965:ref:`blockaddress <blockaddress>` constant.
4966
4967Arguments:
4968""""""""""
4969
4970The '``address``' argument is the address of the label to jump to. The
4971rest of the arguments indicate the full set of possible destinations
4972that the address may point to. Blocks are allowed to occur multiple
4973times in the destination list, though this isn't particularly useful.
4974
4975This destination list is required so that dataflow analysis has an
4976accurate understanding of the CFG.
4977
4978Semantics:
4979""""""""""
4980
4981Control transfers to the block specified in the address argument. All
4982possible destination blocks must be listed in the label list, otherwise
4983this instruction has undefined behavior. This implies that jumps to
4984labels defined in other functions have undefined behavior as well.
4985
4986Implementation:
4987"""""""""""""""
4988
4989This is typically implemented with a jump through a register.
4990
4991Example:
4992""""""""
4993
4994.. code-block:: llvm
4995
4996 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4997
4998.. _i_invoke:
4999
5000'``invoke``' Instruction
5001^^^^^^^^^^^^^^^^^^^^^^^^
5002
5003Syntax:
5004"""""""
5005
5006::
5007
5008 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
5009 to label <normal label> unwind label <exception label>
5010
5011Overview:
5012"""""""""
5013
5014The '``invoke``' instruction causes control to transfer to a specified
5015function, with the possibility of control flow transfer to either the
5016'``normal``' label or the '``exception``' label. If the callee function
5017returns with the "``ret``" instruction, control flow will return to the
5018"normal" label. If the callee (or any indirect callees) returns via the
5019":ref:`resume <i_resume>`" instruction or other exception handling
5020mechanism, control is interrupted and continued at the dynamically
5021nearest "exception" label.
5022
5023The '``exception``' label is a `landing
5024pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5025'``exception``' label is required to have the
5026":ref:`landingpad <i_landingpad>`" instruction, which contains the
5027information about the behavior of the program after unwinding happens,
5028as its first non-PHI instruction. The restrictions on the
5029"``landingpad``" instruction's tightly couples it to the "``invoke``"
5030instruction, so that the important information contained within the
5031"``landingpad``" instruction can't be lost through normal code motion.
5032
5033Arguments:
5034""""""""""
5035
5036This instruction requires several arguments:
5037
5038#. The optional "cconv" marker indicates which :ref:`calling
5039 convention <callingconv>` the call should use. If none is
5040 specified, the call defaults to using C calling conventions.
5041#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5042 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5043 are valid here.
5044#. '``ptr to function ty``': shall be the signature of the pointer to
5045 function value being invoked. In most cases, this is a direct
5046 function invocation, but indirect ``invoke``'s are just as possible,
5047 branching off an arbitrary pointer to function value.
5048#. '``function ptr val``': An LLVM value containing a pointer to a
5049 function to be invoked.
5050#. '``function args``': argument list whose types match the function
5051 signature argument types and parameter attributes. All arguments must
5052 be of :ref:`first class <t_firstclass>` type. If the function signature
5053 indicates the function accepts a variable number of arguments, the
5054 extra arguments can be specified.
5055#. '``normal label``': the label reached when the called function
5056 executes a '``ret``' instruction.
5057#. '``exception label``': the label reached when a callee returns via
5058 the :ref:`resume <i_resume>` instruction or other exception handling
5059 mechanism.
5060#. The optional :ref:`function attributes <fnattrs>` list. Only
5061 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5062 attributes are valid here.
5063
5064Semantics:
5065""""""""""
5066
5067This instruction is designed to operate as a standard '``call``'
5068instruction in most regards. The primary difference is that it
5069establishes an association with a label, which is used by the runtime
5070library to unwind the stack.
5071
5072This instruction is used in languages with destructors to ensure that
5073proper cleanup is performed in the case of either a ``longjmp`` or a
5074thrown exception. Additionally, this is important for implementation of
5075'``catch``' clauses in high-level languages that support them.
5076
5077For the purposes of the SSA form, the definition of the value returned
5078by the '``invoke``' instruction is deemed to occur on the edge from the
5079current block to the "normal" label. If the callee unwinds then no
5080return value is available.
5081
5082Example:
5083""""""""
5084
5085.. code-block:: llvm
5086
5087 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005088 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005089 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005090 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005091
5092.. _i_resume:
5093
5094'``resume``' Instruction
5095^^^^^^^^^^^^^^^^^^^^^^^^
5096
5097Syntax:
5098"""""""
5099
5100::
5101
5102 resume <type> <value>
5103
5104Overview:
5105"""""""""
5106
5107The '``resume``' instruction is a terminator instruction that has no
5108successors.
5109
5110Arguments:
5111""""""""""
5112
5113The '``resume``' instruction requires one argument, which must have the
5114same type as the result of any '``landingpad``' instruction in the same
5115function.
5116
5117Semantics:
5118""""""""""
5119
5120The '``resume``' instruction resumes propagation of an existing
5121(in-flight) exception whose unwinding was interrupted with a
5122:ref:`landingpad <i_landingpad>` instruction.
5123
5124Example:
5125""""""""
5126
5127.. code-block:: llvm
5128
5129 resume { i8*, i32 } %exn
5130
David Majnemer654e1302015-07-31 17:58:14 +00005131.. _i_catchpad:
5132
5133'``catchpad``' Instruction
5134^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5135
5136Syntax:
5137"""""""
5138
5139::
5140
5141 <resultval> = catchpad <resultty> [<args>*]
5142 to label <normal label> unwind label <exception label>
5143
5144Overview:
5145"""""""""
5146
5147The '``catchpad``' instruction is used by `LLVM's exception handling
5148system <ExceptionHandling.html#overview>`_ to specify that a basic block
5149is a catch block --- one where a personality routine attempts to transfer
5150control to catch an exception.
5151The ``args`` correspond to whatever information the personality
5152routine requires to know if this is an appropriate place to catch the
Sean Silvaa1190322015-08-06 22:56:48 +00005153exception. Control is tranfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005154``catchpad`` is not an appropriate handler for the in-flight exception.
5155The ``normal`` label should contain the code found in the ``catch``
5156portion of a ``try``/``catch`` sequence. It defines values supplied by
5157the :ref:`personality function <personalityfn>` upon re-entry to the
5158function. The ``resultval`` has the type ``resultty``.
5159
5160Arguments:
5161""""""""""
5162
5163The instruction takes a list of arbitrary values which are interpreted
5164by the :ref:`personality function <personalityfn>`.
5165
5166The ``catchpad`` must be provided a ``normal`` label to transfer control
5167to if the ``catchpad`` matches the exception and an ``exception``
5168label to transfer control to if it doesn't.
5169
5170Semantics:
5171""""""""""
5172
5173The '``catchpad``' instruction defines the values which are set by the
5174:ref:`personality function <personalityfn>` upon re-entry to the function, and
5175therefore the "result type" of the ``catchpad`` instruction. As with
5176calling conventions, how the personality function results are
5177represented in LLVM IR is target specific.
5178
5179When the call stack is being unwound due to an exception being thrown,
5180the exception is compared against the ``args``. If it doesn't match,
5181then control is transfered to the ``exception`` basic block.
5182
5183The ``catchpad`` instruction has several restrictions:
5184
5185- A catch block is a basic block which is the unwind destination of
5186 an exceptional instruction.
5187- A catch block must have a '``catchpad``' instruction as its
5188 first non-PHI instruction.
5189- A catch block's ``exception`` edge must refer to a catch block or a
5190 catch-end block.
5191- There can be only one '``catchpad``' instruction within the
5192 catch block.
5193- A basic block that is not a catch block may not include a
5194 '``catchpad``' instruction.
5195- It is undefined behavior for control to transfer from a ``catchpad`` to a
5196 ``cleanupret`` without first executing a ``catchret`` and a subsequent
5197 ``cleanuppad``.
5198- It is undefined behavior for control to transfer from a ``catchpad`` to a
5199 ``ret`` without first executing a ``catchret``.
5200
5201Example:
5202""""""""
5203
5204.. code-block:: llvm
5205
5206 ;; A catch block which can catch an integer.
5207 %res = catchpad { i8*, i32 } [i8** @_ZTIi]
5208 to label %int.handler unwind label %terminate
5209
5210.. _i_catchendpad:
5211
5212'``catchendpad``' Instruction
5213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5214
5215Syntax:
5216"""""""
5217
5218::
5219
5220 catchendpad unwind label <nextaction>
5221 catchendpad unwind to caller
5222
5223Overview:
5224"""""""""
5225
5226The '``catchendpad``' instruction is used by `LLVM's exception handling
5227system <ExceptionHandling.html#overview>`_ to communicate to the
5228:ref:`personality function <personalityfn>` which invokes are associated
5229with a chain of :ref:`catchpad <i_catchpad>` instructions.
5230
5231The ``nextaction`` label indicates where control should transfer to if
5232none of the ``catchpad`` instructions are suitable for catching the
5233in-flight exception.
5234
5235If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005236its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005237:ref:`personality function <personalityfn>` will continue processing
5238exception handling actions in the caller.
5239
5240Arguments:
5241""""""""""
5242
5243The instruction optionally takes a label, ``nextaction``, indicating
5244where control should transfer to if none of the preceding
5245``catchpad`` instructions are suitable for the in-flight exception.
5246
5247Semantics:
5248""""""""""
5249
5250When the call stack is being unwound due to an exception being thrown
5251and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005252control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005253present, control is transfered to the caller.
5254
5255The ``catchendpad`` instruction has several restrictions:
5256
5257- A catch-end block is a basic block which is the unwind destination of
5258 an exceptional instruction.
5259- A catch-end block must have a '``catchendpad``' instruction as its
5260 first non-PHI instruction.
5261- There can be only one '``catchendpad``' instruction within the
5262 catch block.
5263- A basic block that is not a catch-end block may not include a
5264 '``catchendpad``' instruction.
5265- Exactly one catch block may unwind to a ``catchendpad``.
5266- The unwind target of invokes between a ``catchpad`` and a
5267 corresponding ``catchret`` must be its ``catchendpad``.
5268
5269Example:
5270""""""""
5271
5272.. code-block:: llvm
5273
5274 catchendpad unwind label %terminate
5275 catchendpad unwind to caller
5276
5277.. _i_catchret:
5278
5279'``catchret``' Instruction
5280^^^^^^^^^^^^^^^^^^^^^^^^^^
5281
5282Syntax:
5283"""""""
5284
5285::
5286
David Majnemer0bc0eef2015-08-15 02:46:08 +00005287 catchret <type> <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005288
5289Overview:
5290"""""""""
5291
5292The '``catchret``' instruction is a terminator instruction that has a
5293single successor.
5294
5295
5296Arguments:
5297""""""""""
5298
5299The '``catchret``' instruction requires one argument which specifies
5300where control will transfer to next.
5301
5302Semantics:
5303""""""""""
5304
5305The '``catchret``' instruction ends the existing (in-flight) exception
5306whose unwinding was interrupted with a
5307:ref:`catchpad <i_catchpad>` instruction.
5308The :ref:`personality function <personalityfn>` gets a chance to execute
5309arbitrary code to, for example, run a C++ destructor.
5310Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005311It may be passed an optional, personality specific, value.
David Majnemer654e1302015-07-31 17:58:14 +00005312
5313Example:
5314""""""""
5315
5316.. code-block:: llvm
5317
5318 catchret label %continue
5319
5320.. _i_cleanupret:
5321
5322'``cleanupret``' Instruction
5323^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5324
5325Syntax:
5326"""""""
5327
5328::
5329
5330 cleanupret <type> <value> unwind label <continue>
5331 cleanupret <type> <value> unwind to caller
5332
5333Overview:
5334"""""""""
5335
5336The '``cleanupret``' instruction is a terminator instruction that has
5337an optional successor.
5338
5339
5340Arguments:
5341""""""""""
5342
5343The '``cleanupret``' instruction requires one argument, which must have the
5344same type as the result of any '``cleanuppad``' instruction in the same
Sean Silvaa1190322015-08-06 22:56:48 +00005345function. It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005346
5347Semantics:
5348""""""""""
5349
5350The '``cleanupret``' instruction indicates to the
5351:ref:`personality function <personalityfn>` that one
5352:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5353It transfers control to ``continue`` or unwinds out of the function.
5354
5355Example:
5356""""""""
5357
5358.. code-block:: llvm
5359
5360 cleanupret void unwind to caller
5361 cleanupret { i8*, i32 } %exn unwind label %continue
5362
5363.. _i_terminatepad:
5364
5365'``terminatepad``' Instruction
5366^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5367
5368Syntax:
5369"""""""
5370
5371::
5372
5373 terminatepad [<args>*] unwind label <exception label>
5374 terminatepad [<args>*] unwind to caller
5375
5376Overview:
5377"""""""""
5378
5379The '``terminatepad``' instruction is used by `LLVM's exception handling
5380system <ExceptionHandling.html#overview>`_ to specify that a basic block
5381is a terminate block --- one where a personality routine may decide to
5382terminate the program.
5383The ``args`` correspond to whatever information the personality
5384routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005385program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005386personality routine decides not to terminate the program for the
5387in-flight exception.
5388
5389Arguments:
5390""""""""""
5391
5392The instruction takes a list of arbitrary values which are interpreted
5393by the :ref:`personality function <personalityfn>`.
5394
5395The ``terminatepad`` may be given an ``exception`` label to
5396transfer control to if the in-flight exception matches the ``args``.
5397
5398Semantics:
5399""""""""""
5400
5401When the call stack is being unwound due to an exception being thrown,
5402the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005403then control is transfered to the ``exception`` basic block. Otherwise,
5404the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005405the first argument to ``terminatepad`` specifies what function the
5406personality should defer to in order to terminate the program.
5407
5408The ``terminatepad`` instruction has several restrictions:
5409
5410- A terminate block is a basic block which is the unwind destination of
5411 an exceptional instruction.
5412- A terminate block must have a '``terminatepad``' instruction as its
5413 first non-PHI instruction.
5414- There can be only one '``terminatepad``' instruction within the
5415 terminate block.
5416- A basic block that is not a terminate block may not include a
5417 '``terminatepad``' instruction.
5418
5419Example:
5420""""""""
5421
5422.. code-block:: llvm
5423
5424 ;; A terminate block which only permits integers.
5425 terminatepad [i8** @_ZTIi] unwind label %continue
5426
Sean Silvab084af42012-12-07 10:36:55 +00005427.. _i_unreachable:
5428
5429'``unreachable``' Instruction
5430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5431
5432Syntax:
5433"""""""
5434
5435::
5436
5437 unreachable
5438
5439Overview:
5440"""""""""
5441
5442The '``unreachable``' instruction has no defined semantics. This
5443instruction is used to inform the optimizer that a particular portion of
5444the code is not reachable. This can be used to indicate that the code
5445after a no-return function cannot be reached, and other facts.
5446
5447Semantics:
5448""""""""""
5449
5450The '``unreachable``' instruction has no defined semantics.
5451
5452.. _binaryops:
5453
5454Binary Operations
5455-----------------
5456
5457Binary operators are used to do most of the computation in a program.
5458They require two operands of the same type, execute an operation on
5459them, and produce a single value. The operands might represent multiple
5460data, as is the case with the :ref:`vector <t_vector>` data type. The
5461result value has the same type as its operands.
5462
5463There are several different binary operators:
5464
5465.. _i_add:
5466
5467'``add``' Instruction
5468^^^^^^^^^^^^^^^^^^^^^
5469
5470Syntax:
5471"""""""
5472
5473::
5474
Tim Northover675a0962014-06-13 14:24:23 +00005475 <result> = add <ty> <op1>, <op2> ; yields ty:result
5476 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5477 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5478 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005479
5480Overview:
5481"""""""""
5482
5483The '``add``' instruction returns the sum of its two operands.
5484
5485Arguments:
5486""""""""""
5487
5488The two arguments to the '``add``' instruction must be
5489:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5490arguments must have identical types.
5491
5492Semantics:
5493""""""""""
5494
5495The value produced is the integer sum of the two operands.
5496
5497If the sum has unsigned overflow, the result returned is the
5498mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5499the result.
5500
5501Because LLVM integers use a two's complement representation, this
5502instruction is appropriate for both signed and unsigned integers.
5503
5504``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5505respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5506result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5507unsigned and/or signed overflow, respectively, occurs.
5508
5509Example:
5510""""""""
5511
5512.. code-block:: llvm
5513
Tim Northover675a0962014-06-13 14:24:23 +00005514 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005515
5516.. _i_fadd:
5517
5518'``fadd``' Instruction
5519^^^^^^^^^^^^^^^^^^^^^^
5520
5521Syntax:
5522"""""""
5523
5524::
5525
Tim Northover675a0962014-06-13 14:24:23 +00005526 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005527
5528Overview:
5529"""""""""
5530
5531The '``fadd``' instruction returns the sum of its two operands.
5532
5533Arguments:
5534""""""""""
5535
5536The two arguments to the '``fadd``' instruction must be :ref:`floating
5537point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5538Both arguments must have identical types.
5539
5540Semantics:
5541""""""""""
5542
5543The value produced is the floating point sum of the two operands. This
5544instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5545which are optimization hints to enable otherwise unsafe floating point
5546optimizations:
5547
5548Example:
5549""""""""
5550
5551.. code-block:: llvm
5552
Tim Northover675a0962014-06-13 14:24:23 +00005553 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005554
5555'``sub``' Instruction
5556^^^^^^^^^^^^^^^^^^^^^
5557
5558Syntax:
5559"""""""
5560
5561::
5562
Tim Northover675a0962014-06-13 14:24:23 +00005563 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5564 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5565 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5566 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005567
5568Overview:
5569"""""""""
5570
5571The '``sub``' instruction returns the difference of its two operands.
5572
5573Note that the '``sub``' instruction is used to represent the '``neg``'
5574instruction present in most other intermediate representations.
5575
5576Arguments:
5577""""""""""
5578
5579The two arguments to the '``sub``' instruction must be
5580:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5581arguments must have identical types.
5582
5583Semantics:
5584""""""""""
5585
5586The value produced is the integer difference of the two operands.
5587
5588If the difference has unsigned overflow, the result returned is the
5589mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5590the result.
5591
5592Because LLVM integers use a two's complement representation, this
5593instruction is appropriate for both signed and unsigned integers.
5594
5595``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5596respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5597result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5598unsigned and/or signed overflow, respectively, occurs.
5599
5600Example:
5601""""""""
5602
5603.. code-block:: llvm
5604
Tim Northover675a0962014-06-13 14:24:23 +00005605 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5606 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005607
5608.. _i_fsub:
5609
5610'``fsub``' Instruction
5611^^^^^^^^^^^^^^^^^^^^^^
5612
5613Syntax:
5614"""""""
5615
5616::
5617
Tim Northover675a0962014-06-13 14:24:23 +00005618 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005619
5620Overview:
5621"""""""""
5622
5623The '``fsub``' instruction returns the difference of its two operands.
5624
5625Note that the '``fsub``' instruction is used to represent the '``fneg``'
5626instruction present in most other intermediate representations.
5627
5628Arguments:
5629""""""""""
5630
5631The two arguments to the '``fsub``' instruction must be :ref:`floating
5632point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5633Both arguments must have identical types.
5634
5635Semantics:
5636""""""""""
5637
5638The value produced is the floating point difference of the two operands.
5639This instruction can also take any number of :ref:`fast-math
5640flags <fastmath>`, which are optimization hints to enable otherwise
5641unsafe floating point optimizations:
5642
5643Example:
5644""""""""
5645
5646.. code-block:: llvm
5647
Tim Northover675a0962014-06-13 14:24:23 +00005648 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5649 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005650
5651'``mul``' Instruction
5652^^^^^^^^^^^^^^^^^^^^^
5653
5654Syntax:
5655"""""""
5656
5657::
5658
Tim Northover675a0962014-06-13 14:24:23 +00005659 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5660 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5661 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5662 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005663
5664Overview:
5665"""""""""
5666
5667The '``mul``' instruction returns the product of its two operands.
5668
5669Arguments:
5670""""""""""
5671
5672The two arguments to the '``mul``' instruction must be
5673:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5674arguments must have identical types.
5675
5676Semantics:
5677""""""""""
5678
5679The value produced is the integer product of the two operands.
5680
5681If the result of the multiplication has unsigned overflow, the result
5682returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5683bit width of the result.
5684
5685Because LLVM integers use a two's complement representation, and the
5686result is the same width as the operands, this instruction returns the
5687correct result for both signed and unsigned integers. If a full product
5688(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5689sign-extended or zero-extended as appropriate to the width of the full
5690product.
5691
5692``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5693respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5694result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5695unsigned and/or signed overflow, respectively, occurs.
5696
5697Example:
5698""""""""
5699
5700.. code-block:: llvm
5701
Tim Northover675a0962014-06-13 14:24:23 +00005702 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005703
5704.. _i_fmul:
5705
5706'``fmul``' Instruction
5707^^^^^^^^^^^^^^^^^^^^^^
5708
5709Syntax:
5710"""""""
5711
5712::
5713
Tim Northover675a0962014-06-13 14:24:23 +00005714 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005715
5716Overview:
5717"""""""""
5718
5719The '``fmul``' instruction returns the product of its two operands.
5720
5721Arguments:
5722""""""""""
5723
5724The two arguments to the '``fmul``' instruction must be :ref:`floating
5725point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5726Both arguments must have identical types.
5727
5728Semantics:
5729""""""""""
5730
5731The value produced is the floating point product of the two operands.
5732This instruction can also take any number of :ref:`fast-math
5733flags <fastmath>`, which are optimization hints to enable otherwise
5734unsafe floating point optimizations:
5735
5736Example:
5737""""""""
5738
5739.. code-block:: llvm
5740
Tim Northover675a0962014-06-13 14:24:23 +00005741 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005742
5743'``udiv``' Instruction
5744^^^^^^^^^^^^^^^^^^^^^^
5745
5746Syntax:
5747"""""""
5748
5749::
5750
Tim Northover675a0962014-06-13 14:24:23 +00005751 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5752 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005753
5754Overview:
5755"""""""""
5756
5757The '``udiv``' instruction returns the quotient of its two operands.
5758
5759Arguments:
5760""""""""""
5761
5762The two arguments to the '``udiv``' instruction must be
5763:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5764arguments must have identical types.
5765
5766Semantics:
5767""""""""""
5768
5769The value produced is the unsigned integer quotient of the two operands.
5770
5771Note that unsigned integer division and signed integer division are
5772distinct operations; for signed integer division, use '``sdiv``'.
5773
5774Division by zero leads to undefined behavior.
5775
5776If the ``exact`` keyword is present, the result value of the ``udiv`` is
5777a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5778such, "((a udiv exact b) mul b) == a").
5779
5780Example:
5781""""""""
5782
5783.. code-block:: llvm
5784
Tim Northover675a0962014-06-13 14:24:23 +00005785 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005786
5787'``sdiv``' Instruction
5788^^^^^^^^^^^^^^^^^^^^^^
5789
5790Syntax:
5791"""""""
5792
5793::
5794
Tim Northover675a0962014-06-13 14:24:23 +00005795 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5796 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005797
5798Overview:
5799"""""""""
5800
5801The '``sdiv``' instruction returns the quotient of its two operands.
5802
5803Arguments:
5804""""""""""
5805
5806The two arguments to the '``sdiv``' instruction must be
5807:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5808arguments must have identical types.
5809
5810Semantics:
5811""""""""""
5812
5813The value produced is the signed integer quotient of the two operands
5814rounded towards zero.
5815
5816Note that signed integer division and unsigned integer division are
5817distinct operations; for unsigned integer division, use '``udiv``'.
5818
5819Division by zero leads to undefined behavior. Overflow also leads to
5820undefined behavior; this is a rare case, but can occur, for example, by
5821doing a 32-bit division of -2147483648 by -1.
5822
5823If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5824a :ref:`poison value <poisonvalues>` if the result would be rounded.
5825
5826Example:
5827""""""""
5828
5829.. code-block:: llvm
5830
Tim Northover675a0962014-06-13 14:24:23 +00005831 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005832
5833.. _i_fdiv:
5834
5835'``fdiv``' Instruction
5836^^^^^^^^^^^^^^^^^^^^^^
5837
5838Syntax:
5839"""""""
5840
5841::
5842
Tim Northover675a0962014-06-13 14:24:23 +00005843 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005844
5845Overview:
5846"""""""""
5847
5848The '``fdiv``' instruction returns the quotient of its two operands.
5849
5850Arguments:
5851""""""""""
5852
5853The two arguments to the '``fdiv``' instruction must be :ref:`floating
5854point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5855Both arguments must have identical types.
5856
5857Semantics:
5858""""""""""
5859
5860The value produced is the floating point quotient of the two operands.
5861This instruction can also take any number of :ref:`fast-math
5862flags <fastmath>`, which are optimization hints to enable otherwise
5863unsafe floating point optimizations:
5864
5865Example:
5866""""""""
5867
5868.. code-block:: llvm
5869
Tim Northover675a0962014-06-13 14:24:23 +00005870 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005871
5872'``urem``' Instruction
5873^^^^^^^^^^^^^^^^^^^^^^
5874
5875Syntax:
5876"""""""
5877
5878::
5879
Tim Northover675a0962014-06-13 14:24:23 +00005880 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005881
5882Overview:
5883"""""""""
5884
5885The '``urem``' instruction returns the remainder from the unsigned
5886division of its two arguments.
5887
5888Arguments:
5889""""""""""
5890
5891The two arguments to the '``urem``' instruction must be
5892:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5893arguments must have identical types.
5894
5895Semantics:
5896""""""""""
5897
5898This instruction returns the unsigned integer *remainder* of a division.
5899This instruction always performs an unsigned division to get the
5900remainder.
5901
5902Note that unsigned integer remainder and signed integer remainder are
5903distinct operations; for signed integer remainder, use '``srem``'.
5904
5905Taking the remainder of a division by zero leads to undefined behavior.
5906
5907Example:
5908""""""""
5909
5910.. code-block:: llvm
5911
Tim Northover675a0962014-06-13 14:24:23 +00005912 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005913
5914'``srem``' Instruction
5915^^^^^^^^^^^^^^^^^^^^^^
5916
5917Syntax:
5918"""""""
5919
5920::
5921
Tim Northover675a0962014-06-13 14:24:23 +00005922 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005923
5924Overview:
5925"""""""""
5926
5927The '``srem``' instruction returns the remainder from the signed
5928division of its two operands. This instruction can also take
5929:ref:`vector <t_vector>` versions of the values in which case the elements
5930must be integers.
5931
5932Arguments:
5933""""""""""
5934
5935The two arguments to the '``srem``' instruction must be
5936:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5937arguments must have identical types.
5938
5939Semantics:
5940""""""""""
5941
5942This instruction returns the *remainder* of a division (where the result
5943is either zero or has the same sign as the dividend, ``op1``), not the
5944*modulo* operator (where the result is either zero or has the same sign
5945as the divisor, ``op2``) of a value. For more information about the
5946difference, see `The Math
5947Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
5948table of how this is implemented in various languages, please see
5949`Wikipedia: modulo
5950operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
5951
5952Note that signed integer remainder and unsigned integer remainder are
5953distinct operations; for unsigned integer remainder, use '``urem``'.
5954
5955Taking the remainder of a division by zero leads to undefined behavior.
5956Overflow also leads to undefined behavior; this is a rare case, but can
5957occur, for example, by taking the remainder of a 32-bit division of
5958-2147483648 by -1. (The remainder doesn't actually overflow, but this
5959rule lets srem be implemented using instructions that return both the
5960result of the division and the remainder.)
5961
5962Example:
5963""""""""
5964
5965.. code-block:: llvm
5966
Tim Northover675a0962014-06-13 14:24:23 +00005967 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005968
5969.. _i_frem:
5970
5971'``frem``' Instruction
5972^^^^^^^^^^^^^^^^^^^^^^
5973
5974Syntax:
5975"""""""
5976
5977::
5978
Tim Northover675a0962014-06-13 14:24:23 +00005979 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005980
5981Overview:
5982"""""""""
5983
5984The '``frem``' instruction returns the remainder from the division of
5985its two operands.
5986
5987Arguments:
5988""""""""""
5989
5990The two arguments to the '``frem``' instruction must be :ref:`floating
5991point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5992Both arguments must have identical types.
5993
5994Semantics:
5995""""""""""
5996
5997This instruction returns the *remainder* of a division. The remainder
5998has the same sign as the dividend. This instruction can also take any
5999number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6000to enable otherwise unsafe floating point optimizations:
6001
6002Example:
6003""""""""
6004
6005.. code-block:: llvm
6006
Tim Northover675a0962014-06-13 14:24:23 +00006007 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006008
6009.. _bitwiseops:
6010
6011Bitwise Binary Operations
6012-------------------------
6013
6014Bitwise binary operators are used to do various forms of bit-twiddling
6015in a program. They are generally very efficient instructions and can
6016commonly be strength reduced from other instructions. They require two
6017operands of the same type, execute an operation on them, and produce a
6018single value. The resulting value is the same type as its operands.
6019
6020'``shl``' Instruction
6021^^^^^^^^^^^^^^^^^^^^^
6022
6023Syntax:
6024"""""""
6025
6026::
6027
Tim Northover675a0962014-06-13 14:24:23 +00006028 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6029 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6030 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6031 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006032
6033Overview:
6034"""""""""
6035
6036The '``shl``' instruction returns the first operand shifted to the left
6037a specified number of bits.
6038
6039Arguments:
6040""""""""""
6041
6042Both arguments to the '``shl``' instruction must be the same
6043:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6044'``op2``' is treated as an unsigned value.
6045
6046Semantics:
6047""""""""""
6048
6049The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6050where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006051dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006052``op1``, the result is undefined. If the arguments are vectors, each
6053vector element of ``op1`` is shifted by the corresponding shift amount
6054in ``op2``.
6055
6056If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6057value <poisonvalues>` if it shifts out any non-zero bits. If the
6058``nsw`` keyword is present, then the shift produces a :ref:`poison
6059value <poisonvalues>` if it shifts out any bits that disagree with the
6060resultant sign bit. As such, NUW/NSW have the same semantics as they
6061would if the shift were expressed as a mul instruction with the same
6062nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6063
6064Example:
6065""""""""
6066
6067.. code-block:: llvm
6068
Tim Northover675a0962014-06-13 14:24:23 +00006069 <result> = shl i32 4, %var ; yields i32: 4 << %var
6070 <result> = shl i32 4, 2 ; yields i32: 16
6071 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006072 <result> = shl i32 1, 32 ; undefined
6073 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6074
6075'``lshr``' Instruction
6076^^^^^^^^^^^^^^^^^^^^^^
6077
6078Syntax:
6079"""""""
6080
6081::
6082
Tim Northover675a0962014-06-13 14:24:23 +00006083 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6084 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006085
6086Overview:
6087"""""""""
6088
6089The '``lshr``' instruction (logical shift right) returns the first
6090operand shifted to the right a specified number of bits with zero fill.
6091
6092Arguments:
6093""""""""""
6094
6095Both arguments to the '``lshr``' instruction must be the same
6096:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6097'``op2``' is treated as an unsigned value.
6098
6099Semantics:
6100""""""""""
6101
6102This instruction always performs a logical shift right operation. The
6103most significant bits of the result will be filled with zero bits after
6104the shift. If ``op2`` is (statically or dynamically) equal to or larger
6105than the number of bits in ``op1``, the result is undefined. If the
6106arguments are vectors, each vector element of ``op1`` is shifted by the
6107corresponding shift amount in ``op2``.
6108
6109If the ``exact`` keyword is present, the result value of the ``lshr`` is
6110a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6111non-zero.
6112
6113Example:
6114""""""""
6115
6116.. code-block:: llvm
6117
Tim Northover675a0962014-06-13 14:24:23 +00006118 <result> = lshr i32 4, 1 ; yields i32:result = 2
6119 <result> = lshr i32 4, 2 ; yields i32:result = 1
6120 <result> = lshr i8 4, 3 ; yields i8:result = 0
6121 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006122 <result> = lshr i32 1, 32 ; undefined
6123 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6124
6125'``ashr``' Instruction
6126^^^^^^^^^^^^^^^^^^^^^^
6127
6128Syntax:
6129"""""""
6130
6131::
6132
Tim Northover675a0962014-06-13 14:24:23 +00006133 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6134 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006135
6136Overview:
6137"""""""""
6138
6139The '``ashr``' instruction (arithmetic shift right) returns the first
6140operand shifted to the right a specified number of bits with sign
6141extension.
6142
6143Arguments:
6144""""""""""
6145
6146Both arguments to the '``ashr``' instruction must be the same
6147:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6148'``op2``' is treated as an unsigned value.
6149
6150Semantics:
6151""""""""""
6152
6153This instruction always performs an arithmetic shift right operation,
6154The most significant bits of the result will be filled with the sign bit
6155of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6156than the number of bits in ``op1``, the result is undefined. If the
6157arguments are vectors, each vector element of ``op1`` is shifted by the
6158corresponding shift amount in ``op2``.
6159
6160If the ``exact`` keyword is present, the result value of the ``ashr`` is
6161a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6162non-zero.
6163
6164Example:
6165""""""""
6166
6167.. code-block:: llvm
6168
Tim Northover675a0962014-06-13 14:24:23 +00006169 <result> = ashr i32 4, 1 ; yields i32:result = 2
6170 <result> = ashr i32 4, 2 ; yields i32:result = 1
6171 <result> = ashr i8 4, 3 ; yields i8:result = 0
6172 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006173 <result> = ashr i32 1, 32 ; undefined
6174 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6175
6176'``and``' Instruction
6177^^^^^^^^^^^^^^^^^^^^^
6178
6179Syntax:
6180"""""""
6181
6182::
6183
Tim Northover675a0962014-06-13 14:24:23 +00006184 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006185
6186Overview:
6187"""""""""
6188
6189The '``and``' instruction returns the bitwise logical and of its two
6190operands.
6191
6192Arguments:
6193""""""""""
6194
6195The two arguments to the '``and``' instruction must be
6196:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6197arguments must have identical types.
6198
6199Semantics:
6200""""""""""
6201
6202The truth table used for the '``and``' instruction is:
6203
6204+-----+-----+-----+
6205| In0 | In1 | Out |
6206+-----+-----+-----+
6207| 0 | 0 | 0 |
6208+-----+-----+-----+
6209| 0 | 1 | 0 |
6210+-----+-----+-----+
6211| 1 | 0 | 0 |
6212+-----+-----+-----+
6213| 1 | 1 | 1 |
6214+-----+-----+-----+
6215
6216Example:
6217""""""""
6218
6219.. code-block:: llvm
6220
Tim Northover675a0962014-06-13 14:24:23 +00006221 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6222 <result> = and i32 15, 40 ; yields i32:result = 8
6223 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006224
6225'``or``' Instruction
6226^^^^^^^^^^^^^^^^^^^^
6227
6228Syntax:
6229"""""""
6230
6231::
6232
Tim Northover675a0962014-06-13 14:24:23 +00006233 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006234
6235Overview:
6236"""""""""
6237
6238The '``or``' instruction returns the bitwise logical inclusive or of its
6239two operands.
6240
6241Arguments:
6242""""""""""
6243
6244The two arguments to the '``or``' instruction must be
6245:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6246arguments must have identical types.
6247
6248Semantics:
6249""""""""""
6250
6251The truth table used for the '``or``' instruction is:
6252
6253+-----+-----+-----+
6254| In0 | In1 | Out |
6255+-----+-----+-----+
6256| 0 | 0 | 0 |
6257+-----+-----+-----+
6258| 0 | 1 | 1 |
6259+-----+-----+-----+
6260| 1 | 0 | 1 |
6261+-----+-----+-----+
6262| 1 | 1 | 1 |
6263+-----+-----+-----+
6264
6265Example:
6266""""""""
6267
6268::
6269
Tim Northover675a0962014-06-13 14:24:23 +00006270 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6271 <result> = or i32 15, 40 ; yields i32:result = 47
6272 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006273
6274'``xor``' Instruction
6275^^^^^^^^^^^^^^^^^^^^^
6276
6277Syntax:
6278"""""""
6279
6280::
6281
Tim Northover675a0962014-06-13 14:24:23 +00006282 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006283
6284Overview:
6285"""""""""
6286
6287The '``xor``' instruction returns the bitwise logical exclusive or of
6288its two operands. The ``xor`` is used to implement the "one's
6289complement" operation, which is the "~" operator in C.
6290
6291Arguments:
6292""""""""""
6293
6294The two arguments to the '``xor``' instruction must be
6295:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6296arguments must have identical types.
6297
6298Semantics:
6299""""""""""
6300
6301The truth table used for the '``xor``' instruction is:
6302
6303+-----+-----+-----+
6304| In0 | In1 | Out |
6305+-----+-----+-----+
6306| 0 | 0 | 0 |
6307+-----+-----+-----+
6308| 0 | 1 | 1 |
6309+-----+-----+-----+
6310| 1 | 0 | 1 |
6311+-----+-----+-----+
6312| 1 | 1 | 0 |
6313+-----+-----+-----+
6314
6315Example:
6316""""""""
6317
6318.. code-block:: llvm
6319
Tim Northover675a0962014-06-13 14:24:23 +00006320 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6321 <result> = xor i32 15, 40 ; yields i32:result = 39
6322 <result> = xor i32 4, 8 ; yields i32:result = 12
6323 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006324
6325Vector Operations
6326-----------------
6327
6328LLVM supports several instructions to represent vector operations in a
6329target-independent manner. These instructions cover the element-access
6330and vector-specific operations needed to process vectors effectively.
6331While LLVM does directly support these vector operations, many
6332sophisticated algorithms will want to use target-specific intrinsics to
6333take full advantage of a specific target.
6334
6335.. _i_extractelement:
6336
6337'``extractelement``' Instruction
6338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6339
6340Syntax:
6341"""""""
6342
6343::
6344
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006345 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006346
6347Overview:
6348"""""""""
6349
6350The '``extractelement``' instruction extracts a single scalar element
6351from a vector at a specified index.
6352
6353Arguments:
6354""""""""""
6355
6356The first operand of an '``extractelement``' instruction is a value of
6357:ref:`vector <t_vector>` type. The second operand is an index indicating
6358the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006359variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006360
6361Semantics:
6362""""""""""
6363
6364The result is a scalar of the same type as the element type of ``val``.
6365Its value is the value at position ``idx`` of ``val``. If ``idx``
6366exceeds the length of ``val``, the results are undefined.
6367
6368Example:
6369""""""""
6370
6371.. code-block:: llvm
6372
6373 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6374
6375.. _i_insertelement:
6376
6377'``insertelement``' Instruction
6378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6379
6380Syntax:
6381"""""""
6382
6383::
6384
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006385 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006386
6387Overview:
6388"""""""""
6389
6390The '``insertelement``' instruction inserts a scalar element into a
6391vector at a specified index.
6392
6393Arguments:
6394""""""""""
6395
6396The first operand of an '``insertelement``' instruction is a value of
6397:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6398type must equal the element type of the first operand. The third operand
6399is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006400index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006401
6402Semantics:
6403""""""""""
6404
6405The result is a vector of the same type as ``val``. Its element values
6406are those of ``val`` except at position ``idx``, where it gets the value
6407``elt``. If ``idx`` exceeds the length of ``val``, the results are
6408undefined.
6409
6410Example:
6411""""""""
6412
6413.. code-block:: llvm
6414
6415 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6416
6417.. _i_shufflevector:
6418
6419'``shufflevector``' Instruction
6420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6421
6422Syntax:
6423"""""""
6424
6425::
6426
6427 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6428
6429Overview:
6430"""""""""
6431
6432The '``shufflevector``' instruction constructs a permutation of elements
6433from two input vectors, returning a vector with the same element type as
6434the input and length that is the same as the shuffle mask.
6435
6436Arguments:
6437""""""""""
6438
6439The first two operands of a '``shufflevector``' instruction are vectors
6440with the same type. The third argument is a shuffle mask whose element
6441type is always 'i32'. The result of the instruction is a vector whose
6442length is the same as the shuffle mask and whose element type is the
6443same as the element type of the first two operands.
6444
6445The shuffle mask operand is required to be a constant vector with either
6446constant integer or undef values.
6447
6448Semantics:
6449""""""""""
6450
6451The elements of the two input vectors are numbered from left to right
6452across both of the vectors. The shuffle mask operand specifies, for each
6453element of the result vector, which element of the two input vectors the
6454result element gets. The element selector may be undef (meaning "don't
6455care") and the second operand may be undef if performing a shuffle from
6456only one vector.
6457
6458Example:
6459""""""""
6460
6461.. code-block:: llvm
6462
6463 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6464 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6465 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6466 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6467 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6468 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6469 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6470 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6471
6472Aggregate Operations
6473--------------------
6474
6475LLVM supports several instructions for working with
6476:ref:`aggregate <t_aggregate>` values.
6477
6478.. _i_extractvalue:
6479
6480'``extractvalue``' Instruction
6481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6482
6483Syntax:
6484"""""""
6485
6486::
6487
6488 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6489
6490Overview:
6491"""""""""
6492
6493The '``extractvalue``' instruction extracts the value of a member field
6494from an :ref:`aggregate <t_aggregate>` value.
6495
6496Arguments:
6497""""""""""
6498
6499The first operand of an '``extractvalue``' instruction is a value of
6500:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6501constant indices to specify which value to extract in a similar manner
6502as indices in a '``getelementptr``' instruction.
6503
6504The major differences to ``getelementptr`` indexing are:
6505
6506- Since the value being indexed is not a pointer, the first index is
6507 omitted and assumed to be zero.
6508- At least one index must be specified.
6509- Not only struct indices but also array indices must be in bounds.
6510
6511Semantics:
6512""""""""""
6513
6514The result is the value at the position in the aggregate specified by
6515the index operands.
6516
6517Example:
6518""""""""
6519
6520.. code-block:: llvm
6521
6522 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6523
6524.. _i_insertvalue:
6525
6526'``insertvalue``' Instruction
6527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6528
6529Syntax:
6530"""""""
6531
6532::
6533
6534 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6535
6536Overview:
6537"""""""""
6538
6539The '``insertvalue``' instruction inserts a value into a member field in
6540an :ref:`aggregate <t_aggregate>` value.
6541
6542Arguments:
6543""""""""""
6544
6545The first operand of an '``insertvalue``' instruction is a value of
6546:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6547a first-class value to insert. The following operands are constant
6548indices indicating the position at which to insert the value in a
6549similar manner as indices in a '``extractvalue``' instruction. The value
6550to insert must have the same type as the value identified by the
6551indices.
6552
6553Semantics:
6554""""""""""
6555
6556The result is an aggregate of the same type as ``val``. Its value is
6557that of ``val`` except that the value at the position specified by the
6558indices is that of ``elt``.
6559
6560Example:
6561""""""""
6562
6563.. code-block:: llvm
6564
6565 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6566 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006567 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006568
6569.. _memoryops:
6570
6571Memory Access and Addressing Operations
6572---------------------------------------
6573
6574A key design point of an SSA-based representation is how it represents
6575memory. In LLVM, no memory locations are in SSA form, which makes things
6576very simple. This section describes how to read, write, and allocate
6577memory in LLVM.
6578
6579.. _i_alloca:
6580
6581'``alloca``' Instruction
6582^^^^^^^^^^^^^^^^^^^^^^^^
6583
6584Syntax:
6585"""""""
6586
6587::
6588
Tim Northover675a0962014-06-13 14:24:23 +00006589 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006590
6591Overview:
6592"""""""""
6593
6594The '``alloca``' instruction allocates memory on the stack frame of the
6595currently executing function, to be automatically released when this
6596function returns to its caller. The object is always allocated in the
6597generic address space (address space zero).
6598
6599Arguments:
6600""""""""""
6601
6602The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6603bytes of memory on the runtime stack, returning a pointer of the
6604appropriate type to the program. If "NumElements" is specified, it is
6605the number of elements allocated, otherwise "NumElements" is defaulted
6606to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006607allocation is guaranteed to be aligned to at least that boundary. The
6608alignment may not be greater than ``1 << 29``. If not specified, or if
6609zero, the target can choose to align the allocation on any convenient
6610boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006611
6612'``type``' may be any sized type.
6613
6614Semantics:
6615""""""""""
6616
6617Memory is allocated; a pointer is returned. The operation is undefined
6618if there is insufficient stack space for the allocation. '``alloca``'d
6619memory is automatically released when the function returns. The
6620'``alloca``' instruction is commonly used to represent automatic
6621variables that must have an address available. When the function returns
6622(either with the ``ret`` or ``resume`` instructions), the memory is
6623reclaimed. Allocating zero bytes is legal, but the result is undefined.
6624The order in which memory is allocated (ie., which way the stack grows)
6625is not specified.
6626
6627Example:
6628""""""""
6629
6630.. code-block:: llvm
6631
Tim Northover675a0962014-06-13 14:24:23 +00006632 %ptr = alloca i32 ; yields i32*:ptr
6633 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6634 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6635 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006636
6637.. _i_load:
6638
6639'``load``' Instruction
6640^^^^^^^^^^^^^^^^^^^^^^
6641
6642Syntax:
6643"""""""
6644
6645::
6646
Sanjoy Dasf9995472015-05-19 20:10:19 +00006647 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006648 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
6649 !<index> = !{ i32 1 }
6650
6651Overview:
6652"""""""""
6653
6654The '``load``' instruction is used to read from memory.
6655
6656Arguments:
6657""""""""""
6658
Eli Bendersky239a78b2013-04-17 20:17:08 +00006659The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006660from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006661class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6662then the optimizer is not allowed to modify the number or order of
6663execution of this ``load`` with other :ref:`volatile
6664operations <volatile>`.
6665
6666If the ``load`` is marked as ``atomic``, it takes an extra
6667:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6668``release`` and ``acq_rel`` orderings are not valid on ``load``
6669instructions. Atomic loads produce :ref:`defined <memmodel>` results
6670when they may see multiple atomic stores. The type of the pointee must
6671be an integer type whose bit width is a power of two greater than or
6672equal to eight and less than or equal to a target-specific size limit.
6673``align`` must be explicitly specified on atomic loads, and the load has
6674undefined behavior if the alignment is not set to a value which is at
6675least the size in bytes of the pointee. ``!nontemporal`` does not have
6676any defined semantics for atomic loads.
6677
6678The optional constant ``align`` argument specifies the alignment of the
6679operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006680or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006681alignment for the target. It is the responsibility of the code emitter
6682to ensure that the alignment information is correct. Overestimating the
6683alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006684may produce less efficient code. An alignment of 1 is always safe. The
6685maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006686
6687The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006688metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006689``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006690metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006691that this load is not expected to be reused in the cache. The code
6692generator may select special instructions to save cache bandwidth, such
6693as the ``MOVNT`` instruction on x86.
6694
6695The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006696metadata name ``<index>`` corresponding to a metadata node with no
6697entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006698instruction tells the optimizer and code generator that the address
6699operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006700Being invariant does not imply that a location is dereferenceable,
6701but it does imply that once the location is known dereferenceable
6702its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006703
Philip Reamescdb72f32014-10-20 22:40:55 +00006704The optional ``!nonnull`` metadata must reference a single
6705metadata name ``<index>`` corresponding to a metadata node with no
6706entries. The existence of the ``!nonnull`` metadata on the
6707instruction tells the optimizer that the value loaded is known to
Sean Silvaa1190322015-08-06 22:56:48 +00006708never be null. This is analogous to the ''nonnull'' attribute
6709on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006710to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006711
Sanjoy Dasf9995472015-05-19 20:10:19 +00006712The optional ``!dereferenceable`` metadata must reference a single
6713metadata name ``<index>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006714entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006715tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006716The number of bytes known to be dereferenceable is specified by the integer
6717value in the metadata node. This is analogous to the ''dereferenceable''
6718attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006719to loads of a pointer type.
6720
6721The optional ``!dereferenceable_or_null`` metadata must reference a single
6722metadata name ``<index>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006723entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006724instruction tells the optimizer that the value loaded is known to be either
6725dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006726The number of bytes known to be dereferenceable is specified by the integer
6727value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6728attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006729to loads of a pointer type.
6730
Sean Silvab084af42012-12-07 10:36:55 +00006731Semantics:
6732""""""""""
6733
6734The location of memory pointed to is loaded. If the value being loaded
6735is of scalar type then the number of bytes read does not exceed the
6736minimum number of bytes needed to hold all bits of the type. For
6737example, loading an ``i24`` reads at most three bytes. When loading a
6738value of a type like ``i20`` with a size that is not an integral number
6739of bytes, the result is undefined if the value was not originally
6740written using a store of the same type.
6741
6742Examples:
6743"""""""""
6744
6745.. code-block:: llvm
6746
Tim Northover675a0962014-06-13 14:24:23 +00006747 %ptr = alloca i32 ; yields i32*:ptr
6748 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006749 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006750
6751.. _i_store:
6752
6753'``store``' Instruction
6754^^^^^^^^^^^^^^^^^^^^^^^
6755
6756Syntax:
6757"""""""
6758
6759::
6760
Tim Northover675a0962014-06-13 14:24:23 +00006761 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
6762 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006763
6764Overview:
6765"""""""""
6766
6767The '``store``' instruction is used to write to memory.
6768
6769Arguments:
6770""""""""""
6771
Eli Benderskyca380842013-04-17 17:17:20 +00006772There are two arguments to the ``store`` instruction: a value to store
6773and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006774operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006775the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006776then the optimizer is not allowed to modify the number or order of
6777execution of this ``store`` with other :ref:`volatile
6778operations <volatile>`.
6779
6780If the ``store`` is marked as ``atomic``, it takes an extra
6781:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6782``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6783instructions. Atomic loads produce :ref:`defined <memmodel>` results
6784when they may see multiple atomic stores. The type of the pointee must
6785be an integer type whose bit width is a power of two greater than or
6786equal to eight and less than or equal to a target-specific size limit.
6787``align`` must be explicitly specified on atomic stores, and the store
6788has undefined behavior if the alignment is not set to a value which is
6789at least the size in bytes of the pointee. ``!nontemporal`` does not
6790have any defined semantics for atomic stores.
6791
Eli Benderskyca380842013-04-17 17:17:20 +00006792The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006793operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006794or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006795alignment for the target. It is the responsibility of the code emitter
6796to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006797alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006798alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006799safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006800
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006801The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006802name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006803value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006804tells the optimizer and code generator that this load is not expected to
6805be reused in the cache. The code generator may select special
6806instructions to save cache bandwidth, such as the MOVNT instruction on
6807x86.
6808
6809Semantics:
6810""""""""""
6811
Eli Benderskyca380842013-04-17 17:17:20 +00006812The contents of memory are updated to contain ``<value>`` at the
6813location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006814of scalar type then the number of bytes written does not exceed the
6815minimum number of bytes needed to hold all bits of the type. For
6816example, storing an ``i24`` writes at most three bytes. When writing a
6817value of a type like ``i20`` with a size that is not an integral number
6818of bytes, it is unspecified what happens to the extra bits that do not
6819belong to the type, but they will typically be overwritten.
6820
6821Example:
6822""""""""
6823
6824.. code-block:: llvm
6825
Tim Northover675a0962014-06-13 14:24:23 +00006826 %ptr = alloca i32 ; yields i32*:ptr
6827 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00006828 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006829
6830.. _i_fence:
6831
6832'``fence``' Instruction
6833^^^^^^^^^^^^^^^^^^^^^^^
6834
6835Syntax:
6836"""""""
6837
6838::
6839
Tim Northover675a0962014-06-13 14:24:23 +00006840 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006841
6842Overview:
6843"""""""""
6844
6845The '``fence``' instruction is used to introduce happens-before edges
6846between operations.
6847
6848Arguments:
6849""""""""""
6850
6851'``fence``' instructions take an :ref:`ordering <ordering>` argument which
6852defines what *synchronizes-with* edges they add. They can only be given
6853``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
6854
6855Semantics:
6856""""""""""
6857
6858A fence A which has (at least) ``release`` ordering semantics
6859*synchronizes with* a fence B with (at least) ``acquire`` ordering
6860semantics if and only if there exist atomic operations X and Y, both
6861operating on some atomic object M, such that A is sequenced before X, X
6862modifies M (either directly or through some side effect of a sequence
6863headed by X), Y is sequenced before B, and Y observes M. This provides a
6864*happens-before* dependency between A and B. Rather than an explicit
6865``fence``, one (but not both) of the atomic operations X or Y might
6866provide a ``release`` or ``acquire`` (resp.) ordering constraint and
6867still *synchronize-with* the explicit ``fence`` and establish the
6868*happens-before* edge.
6869
6870A ``fence`` which has ``seq_cst`` ordering, in addition to having both
6871``acquire`` and ``release`` semantics specified above, participates in
6872the global program order of other ``seq_cst`` operations and/or fences.
6873
6874The optional ":ref:`singlethread <singlethread>`" argument specifies
6875that the fence only synchronizes with other fences in the same thread.
6876(This is useful for interacting with signal handlers.)
6877
6878Example:
6879""""""""
6880
6881.. code-block:: llvm
6882
Tim Northover675a0962014-06-13 14:24:23 +00006883 fence acquire ; yields void
6884 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006885
6886.. _i_cmpxchg:
6887
6888'``cmpxchg``' Instruction
6889^^^^^^^^^^^^^^^^^^^^^^^^^
6890
6891Syntax:
6892"""""""
6893
6894::
6895
Tim Northover675a0962014-06-13 14:24:23 +00006896 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00006897
6898Overview:
6899"""""""""
6900
6901The '``cmpxchg``' instruction is used to atomically modify memory. It
6902loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00006903equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00006904
6905Arguments:
6906""""""""""
6907
6908There are three arguments to the '``cmpxchg``' instruction: an address
6909to operate on, a value to compare to the value currently be at that
6910address, and a new value to place at that address if the compared values
6911are equal. The type of '<cmp>' must be an integer type whose bit width
6912is a power of two greater than or equal to eight and less than or equal
6913to a target-specific size limit. '<cmp>' and '<new>' must have the same
6914type, and the type of '<pointer>' must be a pointer to that type. If the
6915``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
6916to modify the number or order of execution of this ``cmpxchg`` with
6917other :ref:`volatile operations <volatile>`.
6918
Tim Northovere94a5182014-03-11 10:48:52 +00006919The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00006920``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
6921must be at least ``monotonic``, the ordering constraint on failure must be no
6922stronger than that on success, and the failure ordering cannot be either
6923``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00006924
6925The optional "``singlethread``" argument declares that the ``cmpxchg``
6926is only atomic with respect to code (usually signal handlers) running in
6927the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
6928respect to all other code in the system.
6929
6930The pointer passed into cmpxchg must have alignment greater than or
6931equal to the size in memory of the operand.
6932
6933Semantics:
6934""""""""""
6935
Tim Northover420a2162014-06-13 14:24:07 +00006936The contents of memory at the location specified by the '``<pointer>``' operand
6937is read and compared to '``<cmp>``'; if the read value is the equal, the
6938'``<new>``' is written. The original value at the location is returned, together
6939with a flag indicating success (true) or failure (false).
6940
6941If the cmpxchg operation is marked as ``weak`` then a spurious failure is
6942permitted: the operation may not write ``<new>`` even if the comparison
6943matched.
6944
6945If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
6946if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00006947
Tim Northovere94a5182014-03-11 10:48:52 +00006948A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
6949identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
6950load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00006951
6952Example:
6953""""""""
6954
6955.. code-block:: llvm
6956
6957 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006958 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006959 br label %loop
6960
6961 loop:
6962 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6963 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006964 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006965 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6966 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006967 br i1 %success, label %done, label %loop
6968
6969 done:
6970 ...
6971
6972.. _i_atomicrmw:
6973
6974'``atomicrmw``' Instruction
6975^^^^^^^^^^^^^^^^^^^^^^^^^^^
6976
6977Syntax:
6978"""""""
6979
6980::
6981
Tim Northover675a0962014-06-13 14:24:23 +00006982 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00006983
6984Overview:
6985"""""""""
6986
6987The '``atomicrmw``' instruction is used to atomically modify memory.
6988
6989Arguments:
6990""""""""""
6991
6992There are three arguments to the '``atomicrmw``' instruction: an
6993operation to apply, an address whose value to modify, an argument to the
6994operation. The operation must be one of the following keywords:
6995
6996- xchg
6997- add
6998- sub
6999- and
7000- nand
7001- or
7002- xor
7003- max
7004- min
7005- umax
7006- umin
7007
7008The type of '<value>' must be an integer type whose bit width is a power
7009of two greater than or equal to eight and less than or equal to a
7010target-specific size limit. The type of the '``<pointer>``' operand must
7011be a pointer to that type. If the ``atomicrmw`` is marked as
7012``volatile``, then the optimizer is not allowed to modify the number or
7013order of execution of this ``atomicrmw`` with other :ref:`volatile
7014operations <volatile>`.
7015
7016Semantics:
7017""""""""""
7018
7019The contents of memory at the location specified by the '``<pointer>``'
7020operand are atomically read, modified, and written back. The original
7021value at the location is returned. The modification is specified by the
7022operation argument:
7023
7024- xchg: ``*ptr = val``
7025- add: ``*ptr = *ptr + val``
7026- sub: ``*ptr = *ptr - val``
7027- and: ``*ptr = *ptr & val``
7028- nand: ``*ptr = ~(*ptr & val)``
7029- or: ``*ptr = *ptr | val``
7030- xor: ``*ptr = *ptr ^ val``
7031- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7032- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7033- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7034 comparison)
7035- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7036 comparison)
7037
7038Example:
7039""""""""
7040
7041.. code-block:: llvm
7042
Tim Northover675a0962014-06-13 14:24:23 +00007043 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007044
7045.. _i_getelementptr:
7046
7047'``getelementptr``' Instruction
7048^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7049
7050Syntax:
7051"""""""
7052
7053::
7054
David Blaikie16a97eb2015-03-04 22:02:58 +00007055 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7056 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7057 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007058
7059Overview:
7060"""""""""
7061
7062The '``getelementptr``' instruction is used to get the address of a
7063subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007064address calculation only and does not access memory. The instruction can also
7065be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007066
7067Arguments:
7068""""""""""
7069
David Blaikie16a97eb2015-03-04 22:02:58 +00007070The first argument is always a type used as the basis for the calculations.
7071The second argument is always a pointer or a vector of pointers, and is the
7072base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007073that indicate which of the elements of the aggregate object are indexed.
7074The interpretation of each index is dependent on the type being indexed
7075into. The first index always indexes the pointer value given as the
7076first argument, the second index indexes a value of the type pointed to
7077(not necessarily the value directly pointed to, since the first index
7078can be non-zero), etc. The first type indexed into must be a pointer
7079value, subsequent types can be arrays, vectors, and structs. Note that
7080subsequent types being indexed into can never be pointers, since that
7081would require loading the pointer before continuing calculation.
7082
7083The type of each index argument depends on the type it is indexing into.
7084When indexing into a (optionally packed) structure, only ``i32`` integer
7085**constants** are allowed (when using a vector of indices they must all
7086be the **same** ``i32`` integer constant). When indexing into an array,
7087pointer or vector, integers of any width are allowed, and they are not
7088required to be constant. These integers are treated as signed values
7089where relevant.
7090
7091For example, let's consider a C code fragment and how it gets compiled
7092to LLVM:
7093
7094.. code-block:: c
7095
7096 struct RT {
7097 char A;
7098 int B[10][20];
7099 char C;
7100 };
7101 struct ST {
7102 int X;
7103 double Y;
7104 struct RT Z;
7105 };
7106
7107 int *foo(struct ST *s) {
7108 return &s[1].Z.B[5][13];
7109 }
7110
7111The LLVM code generated by Clang is:
7112
7113.. code-block:: llvm
7114
7115 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7116 %struct.ST = type { i32, double, %struct.RT }
7117
7118 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7119 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007120 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007121 ret i32* %arrayidx
7122 }
7123
7124Semantics:
7125""""""""""
7126
7127In the example above, the first index is indexing into the
7128'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7129= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7130indexes into the third element of the structure, yielding a
7131'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7132structure. The third index indexes into the second element of the
7133structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7134dimensions of the array are subscripted into, yielding an '``i32``'
7135type. The '``getelementptr``' instruction returns a pointer to this
7136element, thus computing a value of '``i32*``' type.
7137
7138Note that it is perfectly legal to index partially through a structure,
7139returning a pointer to an inner element. Because of this, the LLVM code
7140for the given testcase is equivalent to:
7141
7142.. code-block:: llvm
7143
7144 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007145 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7146 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7147 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7148 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7149 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007150 ret i32* %t5
7151 }
7152
7153If the ``inbounds`` keyword is present, the result value of the
7154``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7155pointer is not an *in bounds* address of an allocated object, or if any
7156of the addresses that would be formed by successive addition of the
7157offsets implied by the indices to the base address with infinitely
7158precise signed arithmetic are not an *in bounds* address of that
7159allocated object. The *in bounds* addresses for an allocated object are
7160all the addresses that point into the object, plus the address one byte
7161past the end. In cases where the base is a vector of pointers the
7162``inbounds`` keyword applies to each of the computations element-wise.
7163
7164If the ``inbounds`` keyword is not present, the offsets are added to the
7165base address with silently-wrapping two's complement arithmetic. If the
7166offsets have a different width from the pointer, they are sign-extended
7167or truncated to the width of the pointer. The result value of the
7168``getelementptr`` may be outside the object pointed to by the base
7169pointer. The result value may not necessarily be used to access memory
7170though, even if it happens to point into allocated storage. See the
7171:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7172information.
7173
7174The getelementptr instruction is often confusing. For some more insight
7175into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7176
7177Example:
7178""""""""
7179
7180.. code-block:: llvm
7181
7182 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007183 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007184 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007185 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007186 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007187 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007188 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007189 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007190
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007191Vector of pointers:
7192"""""""""""""""""""
7193
7194The ``getelementptr`` returns a vector of pointers, instead of a single address,
7195when one or more of its arguments is a vector. In such cases, all vector
7196arguments should have the same number of elements, and every scalar argument
7197will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007198
7199.. code-block:: llvm
7200
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007201 ; All arguments are vectors:
7202 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7203 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007204
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007205 ; Add the same scalar offset to each pointer of a vector:
7206 ; A[i] = ptrs[i] + offset*sizeof(i8)
7207 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007208
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007209 ; Add distinct offsets to the same pointer:
7210 ; A[i] = ptr + offsets[i]*sizeof(i8)
7211 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007212
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007213 ; In all cases described above the type of the result is <4 x i8*>
7214
7215The two following instructions are equivalent:
7216
7217.. code-block:: llvm
7218
7219 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7220 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7221 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7222 <4 x i32> %ind4,
7223 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007224
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007225 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7226 i32 2, i32 1, <4 x i32> %ind4, i64 13
7227
7228Let's look at the C code, where the vector version of ``getelementptr``
7229makes sense:
7230
7231.. code-block:: c
7232
7233 // Let's assume that we vectorize the following loop:
7234 double *A, B; int *C;
7235 for (int i = 0; i < size; ++i) {
7236 A[i] = B[C[i]];
7237 }
7238
7239.. code-block:: llvm
7240
7241 ; get pointers for 8 elements from array B
7242 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7243 ; load 8 elements from array B into A
7244 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7245 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007246
7247Conversion Operations
7248---------------------
7249
7250The instructions in this category are the conversion instructions
7251(casting) which all take a single operand and a type. They perform
7252various bit conversions on the operand.
7253
7254'``trunc .. to``' Instruction
7255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7256
7257Syntax:
7258"""""""
7259
7260::
7261
7262 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7263
7264Overview:
7265"""""""""
7266
7267The '``trunc``' instruction truncates its operand to the type ``ty2``.
7268
7269Arguments:
7270""""""""""
7271
7272The '``trunc``' instruction takes a value to trunc, and a type to trunc
7273it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7274of the same number of integers. The bit size of the ``value`` must be
7275larger than the bit size of the destination type, ``ty2``. Equal sized
7276types are not allowed.
7277
7278Semantics:
7279""""""""""
7280
7281The '``trunc``' instruction truncates the high order bits in ``value``
7282and converts the remaining bits to ``ty2``. Since the source size must
7283be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7284It will always truncate bits.
7285
7286Example:
7287""""""""
7288
7289.. code-block:: llvm
7290
7291 %X = trunc i32 257 to i8 ; yields i8:1
7292 %Y = trunc i32 123 to i1 ; yields i1:true
7293 %Z = trunc i32 122 to i1 ; yields i1:false
7294 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7295
7296'``zext .. to``' Instruction
7297^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7298
7299Syntax:
7300"""""""
7301
7302::
7303
7304 <result> = zext <ty> <value> to <ty2> ; yields ty2
7305
7306Overview:
7307"""""""""
7308
7309The '``zext``' instruction zero extends its operand to type ``ty2``.
7310
7311Arguments:
7312""""""""""
7313
7314The '``zext``' instruction takes a value to cast, and a type to cast it
7315to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7316the same number of integers. The bit size of the ``value`` must be
7317smaller than the bit size of the destination type, ``ty2``.
7318
7319Semantics:
7320""""""""""
7321
7322The ``zext`` fills the high order bits of the ``value`` with zero bits
7323until it reaches the size of the destination type, ``ty2``.
7324
7325When zero extending from i1, the result will always be either 0 or 1.
7326
7327Example:
7328""""""""
7329
7330.. code-block:: llvm
7331
7332 %X = zext i32 257 to i64 ; yields i64:257
7333 %Y = zext i1 true to i32 ; yields i32:1
7334 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7335
7336'``sext .. to``' Instruction
7337^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7338
7339Syntax:
7340"""""""
7341
7342::
7343
7344 <result> = sext <ty> <value> to <ty2> ; yields ty2
7345
7346Overview:
7347"""""""""
7348
7349The '``sext``' sign extends ``value`` to the type ``ty2``.
7350
7351Arguments:
7352""""""""""
7353
7354The '``sext``' instruction takes a value to cast, and a type to cast it
7355to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7356the same number of integers. The bit size of the ``value`` must be
7357smaller than the bit size of the destination type, ``ty2``.
7358
7359Semantics:
7360""""""""""
7361
7362The '``sext``' instruction performs a sign extension by copying the sign
7363bit (highest order bit) of the ``value`` until it reaches the bit size
7364of the type ``ty2``.
7365
7366When sign extending from i1, the extension always results in -1 or 0.
7367
7368Example:
7369""""""""
7370
7371.. code-block:: llvm
7372
7373 %X = sext i8 -1 to i16 ; yields i16 :65535
7374 %Y = sext i1 true to i32 ; yields i32:-1
7375 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7376
7377'``fptrunc .. to``' Instruction
7378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7379
7380Syntax:
7381"""""""
7382
7383::
7384
7385 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7386
7387Overview:
7388"""""""""
7389
7390The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7391
7392Arguments:
7393""""""""""
7394
7395The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7396value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7397The size of ``value`` must be larger than the size of ``ty2``. This
7398implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7399
7400Semantics:
7401""""""""""
7402
7403The '``fptrunc``' instruction truncates a ``value`` from a larger
7404:ref:`floating point <t_floating>` type to a smaller :ref:`floating
7405point <t_floating>` type. If the value cannot fit within the
7406destination type, ``ty2``, then the results are undefined.
7407
7408Example:
7409""""""""
7410
7411.. code-block:: llvm
7412
7413 %X = fptrunc double 123.0 to float ; yields float:123.0
7414 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7415
7416'``fpext .. to``' Instruction
7417^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7418
7419Syntax:
7420"""""""
7421
7422::
7423
7424 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7425
7426Overview:
7427"""""""""
7428
7429The '``fpext``' extends a floating point ``value`` to a larger floating
7430point value.
7431
7432Arguments:
7433""""""""""
7434
7435The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7436``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7437to. The source type must be smaller than the destination type.
7438
7439Semantics:
7440""""""""""
7441
7442The '``fpext``' instruction extends the ``value`` from a smaller
7443:ref:`floating point <t_floating>` type to a larger :ref:`floating
7444point <t_floating>` type. The ``fpext`` cannot be used to make a
7445*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7446*no-op cast* for a floating point cast.
7447
7448Example:
7449""""""""
7450
7451.. code-block:: llvm
7452
7453 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7454 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7455
7456'``fptoui .. to``' Instruction
7457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7458
7459Syntax:
7460"""""""
7461
7462::
7463
7464 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7465
7466Overview:
7467"""""""""
7468
7469The '``fptoui``' converts a floating point ``value`` to its unsigned
7470integer equivalent of type ``ty2``.
7471
7472Arguments:
7473""""""""""
7474
7475The '``fptoui``' instruction takes a value to cast, which must be a
7476scalar or vector :ref:`floating point <t_floating>` value, and a type to
7477cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7478``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7479type with the same number of elements as ``ty``
7480
7481Semantics:
7482""""""""""
7483
7484The '``fptoui``' instruction converts its :ref:`floating
7485point <t_floating>` operand into the nearest (rounding towards zero)
7486unsigned integer value. If the value cannot fit in ``ty2``, the results
7487are undefined.
7488
7489Example:
7490""""""""
7491
7492.. code-block:: llvm
7493
7494 %X = fptoui double 123.0 to i32 ; yields i32:123
7495 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7496 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7497
7498'``fptosi .. to``' Instruction
7499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7500
7501Syntax:
7502"""""""
7503
7504::
7505
7506 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7507
7508Overview:
7509"""""""""
7510
7511The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7512``value`` to type ``ty2``.
7513
7514Arguments:
7515""""""""""
7516
7517The '``fptosi``' instruction takes a value to cast, which must be a
7518scalar or vector :ref:`floating point <t_floating>` value, and a type to
7519cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7520``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7521type with the same number of elements as ``ty``
7522
7523Semantics:
7524""""""""""
7525
7526The '``fptosi``' instruction converts its :ref:`floating
7527point <t_floating>` operand into the nearest (rounding towards zero)
7528signed integer value. If the value cannot fit in ``ty2``, the results
7529are undefined.
7530
7531Example:
7532""""""""
7533
7534.. code-block:: llvm
7535
7536 %X = fptosi double -123.0 to i32 ; yields i32:-123
7537 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7538 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7539
7540'``uitofp .. to``' Instruction
7541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7542
7543Syntax:
7544"""""""
7545
7546::
7547
7548 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7549
7550Overview:
7551"""""""""
7552
7553The '``uitofp``' instruction regards ``value`` as an unsigned integer
7554and converts that value to the ``ty2`` type.
7555
7556Arguments:
7557""""""""""
7558
7559The '``uitofp``' instruction takes a value to cast, which must be a
7560scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7561``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7562``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7563type with the same number of elements as ``ty``
7564
7565Semantics:
7566""""""""""
7567
7568The '``uitofp``' instruction interprets its operand as an unsigned
7569integer quantity and converts it to the corresponding floating point
7570value. If the value cannot fit in the floating point value, the results
7571are undefined.
7572
7573Example:
7574""""""""
7575
7576.. code-block:: llvm
7577
7578 %X = uitofp i32 257 to float ; yields float:257.0
7579 %Y = uitofp i8 -1 to double ; yields double:255.0
7580
7581'``sitofp .. to``' Instruction
7582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7583
7584Syntax:
7585"""""""
7586
7587::
7588
7589 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7590
7591Overview:
7592"""""""""
7593
7594The '``sitofp``' instruction regards ``value`` as a signed integer and
7595converts that value to the ``ty2`` type.
7596
7597Arguments:
7598""""""""""
7599
7600The '``sitofp``' instruction takes a value to cast, which must be a
7601scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7602``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7603``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7604type with the same number of elements as ``ty``
7605
7606Semantics:
7607""""""""""
7608
7609The '``sitofp``' instruction interprets its operand as a signed integer
7610quantity and converts it to the corresponding floating point value. If
7611the value cannot fit in the floating point value, the results are
7612undefined.
7613
7614Example:
7615""""""""
7616
7617.. code-block:: llvm
7618
7619 %X = sitofp i32 257 to float ; yields float:257.0
7620 %Y = sitofp i8 -1 to double ; yields double:-1.0
7621
7622.. _i_ptrtoint:
7623
7624'``ptrtoint .. to``' Instruction
7625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7626
7627Syntax:
7628"""""""
7629
7630::
7631
7632 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7633
7634Overview:
7635"""""""""
7636
7637The '``ptrtoint``' instruction converts the pointer or a vector of
7638pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7639
7640Arguments:
7641""""""""""
7642
7643The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007644a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007645type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7646a vector of integers type.
7647
7648Semantics:
7649""""""""""
7650
7651The '``ptrtoint``' instruction converts ``value`` to integer type
7652``ty2`` by interpreting the pointer value as an integer and either
7653truncating or zero extending that value to the size of the integer type.
7654If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7655``value`` is larger than ``ty2`` then a truncation is done. If they are
7656the same size, then nothing is done (*no-op cast*) other than a type
7657change.
7658
7659Example:
7660""""""""
7661
7662.. code-block:: llvm
7663
7664 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7665 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7666 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7667
7668.. _i_inttoptr:
7669
7670'``inttoptr .. to``' Instruction
7671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7672
7673Syntax:
7674"""""""
7675
7676::
7677
7678 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7679
7680Overview:
7681"""""""""
7682
7683The '``inttoptr``' instruction converts an integer ``value`` to a
7684pointer type, ``ty2``.
7685
7686Arguments:
7687""""""""""
7688
7689The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7690cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7691type.
7692
7693Semantics:
7694""""""""""
7695
7696The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7697applying either a zero extension or a truncation depending on the size
7698of the integer ``value``. If ``value`` is larger than the size of a
7699pointer then a truncation is done. If ``value`` is smaller than the size
7700of a pointer then a zero extension is done. If they are the same size,
7701nothing is done (*no-op cast*).
7702
7703Example:
7704""""""""
7705
7706.. code-block:: llvm
7707
7708 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7709 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7710 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7711 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7712
7713.. _i_bitcast:
7714
7715'``bitcast .. to``' Instruction
7716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7717
7718Syntax:
7719"""""""
7720
7721::
7722
7723 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7724
7725Overview:
7726"""""""""
7727
7728The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7729changing any bits.
7730
7731Arguments:
7732""""""""""
7733
7734The '``bitcast``' instruction takes a value to cast, which must be a
7735non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007736also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7737bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007738identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007739also be a pointer of the same size. This instruction supports bitwise
7740conversion of vectors to integers and to vectors of other types (as
7741long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007742
7743Semantics:
7744""""""""""
7745
Matt Arsenault24b49c42013-07-31 17:49:08 +00007746The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7747is always a *no-op cast* because no bits change with this
7748conversion. The conversion is done as if the ``value`` had been stored
7749to memory and read back as type ``ty2``. Pointer (or vector of
7750pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007751pointers) types with the same address space through this instruction.
7752To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7753or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007754
7755Example:
7756""""""""
7757
7758.. code-block:: llvm
7759
7760 %X = bitcast i8 255 to i8 ; yields i8 :-1
7761 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7762 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7763 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7764
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007765.. _i_addrspacecast:
7766
7767'``addrspacecast .. to``' Instruction
7768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7769
7770Syntax:
7771"""""""
7772
7773::
7774
7775 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7776
7777Overview:
7778"""""""""
7779
7780The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7781address space ``n`` to type ``pty2`` in address space ``m``.
7782
7783Arguments:
7784""""""""""
7785
7786The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7787to cast and a pointer type to cast it to, which must have a different
7788address space.
7789
7790Semantics:
7791""""""""""
7792
7793The '``addrspacecast``' instruction converts the pointer value
7794``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007795value modification, depending on the target and the address space
7796pair. Pointer conversions within the same address space must be
7797performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007798conversion is legal then both result and operand refer to the same memory
7799location.
7800
7801Example:
7802""""""""
7803
7804.. code-block:: llvm
7805
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007806 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7807 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7808 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007809
Sean Silvab084af42012-12-07 10:36:55 +00007810.. _otherops:
7811
7812Other Operations
7813----------------
7814
7815The instructions in this category are the "miscellaneous" instructions,
7816which defy better classification.
7817
7818.. _i_icmp:
7819
7820'``icmp``' Instruction
7821^^^^^^^^^^^^^^^^^^^^^^
7822
7823Syntax:
7824"""""""
7825
7826::
7827
Tim Northover675a0962014-06-13 14:24:23 +00007828 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007829
7830Overview:
7831"""""""""
7832
7833The '``icmp``' instruction returns a boolean value or a vector of
7834boolean values based on comparison of its two integer, integer vector,
7835pointer, or pointer vector operands.
7836
7837Arguments:
7838""""""""""
7839
7840The '``icmp``' instruction takes three operands. The first operand is
7841the condition code indicating the kind of comparison to perform. It is
7842not a value, just a keyword. The possible condition code are:
7843
7844#. ``eq``: equal
7845#. ``ne``: not equal
7846#. ``ugt``: unsigned greater than
7847#. ``uge``: unsigned greater or equal
7848#. ``ult``: unsigned less than
7849#. ``ule``: unsigned less or equal
7850#. ``sgt``: signed greater than
7851#. ``sge``: signed greater or equal
7852#. ``slt``: signed less than
7853#. ``sle``: signed less or equal
7854
7855The remaining two arguments must be :ref:`integer <t_integer>` or
7856:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
7857must also be identical types.
7858
7859Semantics:
7860""""""""""
7861
7862The '``icmp``' compares ``op1`` and ``op2`` according to the condition
7863code given as ``cond``. The comparison performed always yields either an
7864:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
7865
7866#. ``eq``: yields ``true`` if the operands are equal, ``false``
7867 otherwise. No sign interpretation is necessary or performed.
7868#. ``ne``: yields ``true`` if the operands are unequal, ``false``
7869 otherwise. No sign interpretation is necessary or performed.
7870#. ``ugt``: interprets the operands as unsigned values and yields
7871 ``true`` if ``op1`` is greater than ``op2``.
7872#. ``uge``: interprets the operands as unsigned values and yields
7873 ``true`` if ``op1`` is greater than or equal to ``op2``.
7874#. ``ult``: interprets the operands as unsigned values and yields
7875 ``true`` if ``op1`` is less than ``op2``.
7876#. ``ule``: interprets the operands as unsigned values and yields
7877 ``true`` if ``op1`` is less than or equal to ``op2``.
7878#. ``sgt``: interprets the operands as signed values and yields ``true``
7879 if ``op1`` is greater than ``op2``.
7880#. ``sge``: interprets the operands as signed values and yields ``true``
7881 if ``op1`` is greater than or equal to ``op2``.
7882#. ``slt``: interprets the operands as signed values and yields ``true``
7883 if ``op1`` is less than ``op2``.
7884#. ``sle``: interprets the operands as signed values and yields ``true``
7885 if ``op1`` is less than or equal to ``op2``.
7886
7887If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
7888are compared as if they were integers.
7889
7890If the operands are integer vectors, then they are compared element by
7891element. The result is an ``i1`` vector with the same number of elements
7892as the values being compared. Otherwise, the result is an ``i1``.
7893
7894Example:
7895""""""""
7896
7897.. code-block:: llvm
7898
7899 <result> = icmp eq i32 4, 5 ; yields: result=false
7900 <result> = icmp ne float* %X, %X ; yields: result=false
7901 <result> = icmp ult i16 4, 5 ; yields: result=true
7902 <result> = icmp sgt i16 4, 5 ; yields: result=false
7903 <result> = icmp ule i16 -4, 5 ; yields: result=false
7904 <result> = icmp sge i16 4, 5 ; yields: result=false
7905
7906Note that the code generator does not yet support vector types with the
7907``icmp`` instruction.
7908
7909.. _i_fcmp:
7910
7911'``fcmp``' Instruction
7912^^^^^^^^^^^^^^^^^^^^^^
7913
7914Syntax:
7915"""""""
7916
7917::
7918
James Molloy88eb5352015-07-10 12:52:00 +00007919 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007920
7921Overview:
7922"""""""""
7923
7924The '``fcmp``' instruction returns a boolean value or vector of boolean
7925values based on comparison of its operands.
7926
7927If the operands are floating point scalars, then the result type is a
7928boolean (:ref:`i1 <t_integer>`).
7929
7930If the operands are floating point vectors, then the result type is a
7931vector of boolean with the same number of elements as the operands being
7932compared.
7933
7934Arguments:
7935""""""""""
7936
7937The '``fcmp``' instruction takes three operands. The first operand is
7938the condition code indicating the kind of comparison to perform. It is
7939not a value, just a keyword. The possible condition code are:
7940
7941#. ``false``: no comparison, always returns false
7942#. ``oeq``: ordered and equal
7943#. ``ogt``: ordered and greater than
7944#. ``oge``: ordered and greater than or equal
7945#. ``olt``: ordered and less than
7946#. ``ole``: ordered and less than or equal
7947#. ``one``: ordered and not equal
7948#. ``ord``: ordered (no nans)
7949#. ``ueq``: unordered or equal
7950#. ``ugt``: unordered or greater than
7951#. ``uge``: unordered or greater than or equal
7952#. ``ult``: unordered or less than
7953#. ``ule``: unordered or less than or equal
7954#. ``une``: unordered or not equal
7955#. ``uno``: unordered (either nans)
7956#. ``true``: no comparison, always returns true
7957
7958*Ordered* means that neither operand is a QNAN while *unordered* means
7959that either operand may be a QNAN.
7960
7961Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
7962point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
7963type. They must have identical types.
7964
7965Semantics:
7966""""""""""
7967
7968The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
7969condition code given as ``cond``. If the operands are vectors, then the
7970vectors are compared element by element. Each comparison performed
7971always yields an :ref:`i1 <t_integer>` result, as follows:
7972
7973#. ``false``: always yields ``false``, regardless of operands.
7974#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
7975 is equal to ``op2``.
7976#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
7977 is greater than ``op2``.
7978#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
7979 is greater than or equal to ``op2``.
7980#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
7981 is less than ``op2``.
7982#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
7983 is less than or equal to ``op2``.
7984#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
7985 is not equal to ``op2``.
7986#. ``ord``: yields ``true`` if both operands are not a QNAN.
7987#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
7988 equal to ``op2``.
7989#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
7990 greater than ``op2``.
7991#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
7992 greater than or equal to ``op2``.
7993#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
7994 less than ``op2``.
7995#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
7996 less than or equal to ``op2``.
7997#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
7998 not equal to ``op2``.
7999#. ``uno``: yields ``true`` if either operand is a QNAN.
8000#. ``true``: always yields ``true``, regardless of operands.
8001
James Molloy88eb5352015-07-10 12:52:00 +00008002The ``fcmp`` instruction can also optionally take any number of
8003:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8004otherwise unsafe floating point optimizations.
8005
8006Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8007only flags that have any effect on its semantics are those that allow
8008assumptions to be made about the values of input arguments; namely
8009``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8010
Sean Silvab084af42012-12-07 10:36:55 +00008011Example:
8012""""""""
8013
8014.. code-block:: llvm
8015
8016 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8017 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8018 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8019 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8020
8021Note that the code generator does not yet support vector types with the
8022``fcmp`` instruction.
8023
8024.. _i_phi:
8025
8026'``phi``' Instruction
8027^^^^^^^^^^^^^^^^^^^^^
8028
8029Syntax:
8030"""""""
8031
8032::
8033
8034 <result> = phi <ty> [ <val0>, <label0>], ...
8035
8036Overview:
8037"""""""""
8038
8039The '``phi``' instruction is used to implement the φ node in the SSA
8040graph representing the function.
8041
8042Arguments:
8043""""""""""
8044
8045The type of the incoming values is specified with the first type field.
8046After this, the '``phi``' instruction takes a list of pairs as
8047arguments, with one pair for each predecessor basic block of the current
8048block. Only values of :ref:`first class <t_firstclass>` type may be used as
8049the value arguments to the PHI node. Only labels may be used as the
8050label arguments.
8051
8052There must be no non-phi instructions between the start of a basic block
8053and the PHI instructions: i.e. PHI instructions must be first in a basic
8054block.
8055
8056For the purposes of the SSA form, the use of each incoming value is
8057deemed to occur on the edge from the corresponding predecessor block to
8058the current block (but after any definition of an '``invoke``'
8059instruction's return value on the same edge).
8060
8061Semantics:
8062""""""""""
8063
8064At runtime, the '``phi``' instruction logically takes on the value
8065specified by the pair corresponding to the predecessor basic block that
8066executed just prior to the current block.
8067
8068Example:
8069""""""""
8070
8071.. code-block:: llvm
8072
8073 Loop: ; Infinite loop that counts from 0 on up...
8074 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8075 %nextindvar = add i32 %indvar, 1
8076 br label %Loop
8077
8078.. _i_select:
8079
8080'``select``' Instruction
8081^^^^^^^^^^^^^^^^^^^^^^^^
8082
8083Syntax:
8084"""""""
8085
8086::
8087
8088 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8089
8090 selty is either i1 or {<N x i1>}
8091
8092Overview:
8093"""""""""
8094
8095The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008096condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008097
8098Arguments:
8099""""""""""
8100
8101The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8102values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008103class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008104
8105Semantics:
8106""""""""""
8107
8108If the condition is an i1 and it evaluates to 1, the instruction returns
8109the first value argument; otherwise, it returns the second value
8110argument.
8111
8112If the condition is a vector of i1, then the value arguments must be
8113vectors of the same size, and the selection is done element by element.
8114
David Majnemer40a0b592015-03-03 22:45:47 +00008115If the condition is an i1 and the value arguments are vectors of the
8116same size, then an entire vector is selected.
8117
Sean Silvab084af42012-12-07 10:36:55 +00008118Example:
8119""""""""
8120
8121.. code-block:: llvm
8122
8123 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8124
8125.. _i_call:
8126
8127'``call``' Instruction
8128^^^^^^^^^^^^^^^^^^^^^^
8129
8130Syntax:
8131"""""""
8132
8133::
8134
Reid Kleckner5772b772014-04-24 20:14:34 +00008135 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00008136
8137Overview:
8138"""""""""
8139
8140The '``call``' instruction represents a simple function call.
8141
8142Arguments:
8143""""""""""
8144
8145This instruction requires several arguments:
8146
Reid Kleckner5772b772014-04-24 20:14:34 +00008147#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008148 should perform tail call optimization. The ``tail`` marker is a hint that
8149 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008150 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008151 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008152
8153 #. The call will not cause unbounded stack growth if it is part of a
8154 recursive cycle in the call graph.
8155 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8156 forwarded in place.
8157
8158 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008159 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008160 rules:
8161
8162 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8163 or a pointer bitcast followed by a ret instruction.
8164 - The ret instruction must return the (possibly bitcasted) value
8165 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008166 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008167 parameters or return types may differ in pointee type, but not
8168 in address space.
8169 - The calling conventions of the caller and callee must match.
8170 - All ABI-impacting function attributes, such as sret, byval, inreg,
8171 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008172 - The callee must be varargs iff the caller is varargs. Bitcasting a
8173 non-varargs function to the appropriate varargs type is legal so
8174 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008175
8176 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8177 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008178
8179 - Caller and callee both have the calling convention ``fastcc``.
8180 - The call is in tail position (ret immediately follows call and ret
8181 uses value of call or is void).
8182 - Option ``-tailcallopt`` is enabled, or
8183 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008184 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008185 met. <CodeGenerator.html#tailcallopt>`_
8186
8187#. The optional "cconv" marker indicates which :ref:`calling
8188 convention <callingconv>` the call should use. If none is
8189 specified, the call defaults to using C calling conventions. The
8190 calling convention of the call must match the calling convention of
8191 the target function, or else the behavior is undefined.
8192#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8193 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8194 are valid here.
8195#. '``ty``': the type of the call instruction itself which is also the
8196 type of the return value. Functions that return no value are marked
8197 ``void``.
8198#. '``fnty``': shall be the signature of the pointer to function value
8199 being invoked. The argument types must match the types implied by
8200 this signature. This type can be omitted if the function is not
8201 varargs and if the function type does not return a pointer to a
8202 function.
8203#. '``fnptrval``': An LLVM value containing a pointer to a function to
8204 be invoked. In most cases, this is a direct function invocation, but
8205 indirect ``call``'s are just as possible, calling an arbitrary pointer
8206 to function value.
8207#. '``function args``': argument list whose types match the function
8208 signature argument types and parameter attributes. All arguments must
8209 be of :ref:`first class <t_firstclass>` type. If the function signature
8210 indicates the function accepts a variable number of arguments, the
8211 extra arguments can be specified.
8212#. The optional :ref:`function attributes <fnattrs>` list. Only
8213 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8214 attributes are valid here.
8215
8216Semantics:
8217""""""""""
8218
8219The '``call``' instruction is used to cause control flow to transfer to
8220a specified function, with its incoming arguments bound to the specified
8221values. Upon a '``ret``' instruction in the called function, control
8222flow continues with the instruction after the function call, and the
8223return value of the function is bound to the result argument.
8224
8225Example:
8226""""""""
8227
8228.. code-block:: llvm
8229
8230 %retval = call i32 @test(i32 %argc)
8231 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8232 %X = tail call i32 @foo() ; yields i32
8233 %Y = tail call fastcc i32 @foo() ; yields i32
8234 call void %foo(i8 97 signext)
8235
8236 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008237 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008238 %gr = extractvalue %struct.A %r, 0 ; yields i32
8239 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8240 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8241 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8242
8243llvm treats calls to some functions with names and arguments that match
8244the standard C99 library as being the C99 library functions, and may
8245perform optimizations or generate code for them under that assumption.
8246This is something we'd like to change in the future to provide better
8247support for freestanding environments and non-C-based languages.
8248
8249.. _i_va_arg:
8250
8251'``va_arg``' Instruction
8252^^^^^^^^^^^^^^^^^^^^^^^^
8253
8254Syntax:
8255"""""""
8256
8257::
8258
8259 <resultval> = va_arg <va_list*> <arglist>, <argty>
8260
8261Overview:
8262"""""""""
8263
8264The '``va_arg``' instruction is used to access arguments passed through
8265the "variable argument" area of a function call. It is used to implement
8266the ``va_arg`` macro in C.
8267
8268Arguments:
8269""""""""""
8270
8271This instruction takes a ``va_list*`` value and the type of the
8272argument. It returns a value of the specified argument type and
8273increments the ``va_list`` to point to the next argument. The actual
8274type of ``va_list`` is target specific.
8275
8276Semantics:
8277""""""""""
8278
8279The '``va_arg``' instruction loads an argument of the specified type
8280from the specified ``va_list`` and causes the ``va_list`` to point to
8281the next argument. For more information, see the variable argument
8282handling :ref:`Intrinsic Functions <int_varargs>`.
8283
8284It is legal for this instruction to be called in a function which does
8285not take a variable number of arguments, for example, the ``vfprintf``
8286function.
8287
8288``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8289function <intrinsics>` because it takes a type as an argument.
8290
8291Example:
8292""""""""
8293
8294See the :ref:`variable argument processing <int_varargs>` section.
8295
8296Note that the code generator does not yet fully support va\_arg on many
8297targets. Also, it does not currently support va\_arg with aggregate
8298types on any target.
8299
8300.. _i_landingpad:
8301
8302'``landingpad``' Instruction
8303^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8304
8305Syntax:
8306"""""""
8307
8308::
8309
David Majnemer7fddecc2015-06-17 20:52:32 +00008310 <resultval> = landingpad <resultty> <clause>+
8311 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008312
8313 <clause> := catch <type> <value>
8314 <clause> := filter <array constant type> <array constant>
8315
8316Overview:
8317"""""""""
8318
8319The '``landingpad``' instruction is used by `LLVM's exception handling
8320system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008321is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008322code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008323defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008324re-entry to the function. The ``resultval`` has the type ``resultty``.
8325
8326Arguments:
8327""""""""""
8328
David Majnemer7fddecc2015-06-17 20:52:32 +00008329The optional
Sean Silvab084af42012-12-07 10:36:55 +00008330``cleanup`` flag indicates that the landing pad block is a cleanup.
8331
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008332A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008333contains the global variable representing the "type" that may be caught
8334or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8335clause takes an array constant as its argument. Use
8336"``[0 x i8**] undef``" for a filter which cannot throw. The
8337'``landingpad``' instruction must contain *at least* one ``clause`` or
8338the ``cleanup`` flag.
8339
8340Semantics:
8341""""""""""
8342
8343The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008344:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008345therefore the "result type" of the ``landingpad`` instruction. As with
8346calling conventions, how the personality function results are
8347represented in LLVM IR is target specific.
8348
8349The clauses are applied in order from top to bottom. If two
8350``landingpad`` instructions are merged together through inlining, the
8351clauses from the calling function are appended to the list of clauses.
8352When the call stack is being unwound due to an exception being thrown,
8353the exception is compared against each ``clause`` in turn. If it doesn't
8354match any of the clauses, and the ``cleanup`` flag is not set, then
8355unwinding continues further up the call stack.
8356
8357The ``landingpad`` instruction has several restrictions:
8358
8359- A landing pad block is a basic block which is the unwind destination
8360 of an '``invoke``' instruction.
8361- A landing pad block must have a '``landingpad``' instruction as its
8362 first non-PHI instruction.
8363- There can be only one '``landingpad``' instruction within the landing
8364 pad block.
8365- A basic block that is not a landing pad block may not include a
8366 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008367
8368Example:
8369""""""""
8370
8371.. code-block:: llvm
8372
8373 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008374 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008375 catch i8** @_ZTIi
8376 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008377 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008378 cleanup
8379 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008380 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008381 catch i8** @_ZTIi
8382 filter [1 x i8**] [@_ZTId]
8383
David Majnemer654e1302015-07-31 17:58:14 +00008384.. _i_cleanuppad:
8385
8386'``cleanuppad``' Instruction
8387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8388
8389Syntax:
8390"""""""
8391
8392::
8393
8394 <resultval> = cleanuppad <resultty> [<args>*]
8395
8396Overview:
8397"""""""""
8398
8399The '``cleanuppad``' instruction is used by `LLVM's exception handling
8400system <ExceptionHandling.html#overview>`_ to specify that a basic block
8401is a cleanup block --- one where a personality routine attempts to
8402transfer control to run cleanup actions.
8403The ``args`` correspond to whatever additional
8404information the :ref:`personality function <personalityfn>` requires to
8405execute the cleanup.
8406The ``resultval`` has the type ``resultty``.
8407
8408Arguments:
8409""""""""""
8410
8411The instruction takes a list of arbitrary values which are interpreted
8412by the :ref:`personality function <personalityfn>`.
8413
8414Semantics:
8415""""""""""
8416
8417The '``cleanuppad``' instruction defines the values which are set by the
8418:ref:`personality function <personalityfn>` upon re-entry to the function, and
8419therefore the "result type" of the ``cleanuppad`` instruction. As with
8420calling conventions, how the personality function results are
8421represented in LLVM IR is target specific.
8422
8423When the call stack is being unwound due to an exception being thrown,
8424the :ref:`personality function <personalityfn>` transfers control to the
8425``cleanuppad`` with the aid of the personality-specific arguments.
8426
8427The ``cleanuppad`` instruction has several restrictions:
8428
8429- A cleanup block is a basic block which is the unwind destination of
8430 an exceptional instruction.
8431- A cleanup block must have a '``cleanuppad``' instruction as its
8432 first non-PHI instruction.
8433- There can be only one '``cleanuppad``' instruction within the
8434 cleanup block.
8435- A basic block that is not a cleanup block may not include a
8436 '``cleanuppad``' instruction.
8437- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
8438 ``catchret`` without first executing a ``cleanupret`` and a subsequent
8439 ``catchpad``.
8440- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
8441 ``ret`` without first executing a ``cleanupret``.
8442
8443Example:
8444""""""""
8445
8446.. code-block:: llvm
8447
8448 %res = cleanuppad { i8*, i32 } [label %nextaction]
8449
Sean Silvab084af42012-12-07 10:36:55 +00008450.. _intrinsics:
8451
8452Intrinsic Functions
8453===================
8454
8455LLVM supports the notion of an "intrinsic function". These functions
8456have well known names and semantics and are required to follow certain
8457restrictions. Overall, these intrinsics represent an extension mechanism
8458for the LLVM language that does not require changing all of the
8459transformations in LLVM when adding to the language (or the bitcode
8460reader/writer, the parser, etc...).
8461
8462Intrinsic function names must all start with an "``llvm.``" prefix. This
8463prefix is reserved in LLVM for intrinsic names; thus, function names may
8464not begin with this prefix. Intrinsic functions must always be external
8465functions: you cannot define the body of intrinsic functions. Intrinsic
8466functions may only be used in call or invoke instructions: it is illegal
8467to take the address of an intrinsic function. Additionally, because
8468intrinsic functions are part of the LLVM language, it is required if any
8469are added that they be documented here.
8470
8471Some intrinsic functions can be overloaded, i.e., the intrinsic
8472represents a family of functions that perform the same operation but on
8473different data types. Because LLVM can represent over 8 million
8474different integer types, overloading is used commonly to allow an
8475intrinsic function to operate on any integer type. One or more of the
8476argument types or the result type can be overloaded to accept any
8477integer type. Argument types may also be defined as exactly matching a
8478previous argument's type or the result type. This allows an intrinsic
8479function which accepts multiple arguments, but needs all of them to be
8480of the same type, to only be overloaded with respect to a single
8481argument or the result.
8482
8483Overloaded intrinsics will have the names of its overloaded argument
8484types encoded into its function name, each preceded by a period. Only
8485those types which are overloaded result in a name suffix. Arguments
8486whose type is matched against another type do not. For example, the
8487``llvm.ctpop`` function can take an integer of any width and returns an
8488integer of exactly the same integer width. This leads to a family of
8489functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8490``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8491overloaded, and only one type suffix is required. Because the argument's
8492type is matched against the return type, it does not require its own
8493name suffix.
8494
8495To learn how to add an intrinsic function, please see the `Extending
8496LLVM Guide <ExtendingLLVM.html>`_.
8497
8498.. _int_varargs:
8499
8500Variable Argument Handling Intrinsics
8501-------------------------------------
8502
8503Variable argument support is defined in LLVM with the
8504:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8505functions. These functions are related to the similarly named macros
8506defined in the ``<stdarg.h>`` header file.
8507
8508All of these functions operate on arguments that use a target-specific
8509value type "``va_list``". The LLVM assembly language reference manual
8510does not define what this type is, so all transformations should be
8511prepared to handle these functions regardless of the type used.
8512
8513This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8514variable argument handling intrinsic functions are used.
8515
8516.. code-block:: llvm
8517
Tim Northoverab60bb92014-11-02 01:21:51 +00008518 ; This struct is different for every platform. For most platforms,
8519 ; it is merely an i8*.
8520 %struct.va_list = type { i8* }
8521
8522 ; For Unix x86_64 platforms, va_list is the following struct:
8523 ; %struct.va_list = type { i32, i32, i8*, i8* }
8524
Sean Silvab084af42012-12-07 10:36:55 +00008525 define i32 @test(i32 %X, ...) {
8526 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008527 %ap = alloca %struct.va_list
8528 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008529 call void @llvm.va_start(i8* %ap2)
8530
8531 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008532 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008533
8534 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8535 %aq = alloca i8*
8536 %aq2 = bitcast i8** %aq to i8*
8537 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8538 call void @llvm.va_end(i8* %aq2)
8539
8540 ; Stop processing of arguments.
8541 call void @llvm.va_end(i8* %ap2)
8542 ret i32 %tmp
8543 }
8544
8545 declare void @llvm.va_start(i8*)
8546 declare void @llvm.va_copy(i8*, i8*)
8547 declare void @llvm.va_end(i8*)
8548
8549.. _int_va_start:
8550
8551'``llvm.va_start``' Intrinsic
8552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8553
8554Syntax:
8555"""""""
8556
8557::
8558
Nick Lewycky04f6de02013-09-11 22:04:52 +00008559 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008560
8561Overview:
8562"""""""""
8563
8564The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8565subsequent use by ``va_arg``.
8566
8567Arguments:
8568""""""""""
8569
8570The argument is a pointer to a ``va_list`` element to initialize.
8571
8572Semantics:
8573""""""""""
8574
8575The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8576available in C. In a target-dependent way, it initializes the
8577``va_list`` element to which the argument points, so that the next call
8578to ``va_arg`` will produce the first variable argument passed to the
8579function. Unlike the C ``va_start`` macro, this intrinsic does not need
8580to know the last argument of the function as the compiler can figure
8581that out.
8582
8583'``llvm.va_end``' Intrinsic
8584^^^^^^^^^^^^^^^^^^^^^^^^^^^
8585
8586Syntax:
8587"""""""
8588
8589::
8590
8591 declare void @llvm.va_end(i8* <arglist>)
8592
8593Overview:
8594"""""""""
8595
8596The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8597initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8598
8599Arguments:
8600""""""""""
8601
8602The argument is a pointer to a ``va_list`` to destroy.
8603
8604Semantics:
8605""""""""""
8606
8607The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8608available in C. In a target-dependent way, it destroys the ``va_list``
8609element to which the argument points. Calls to
8610:ref:`llvm.va_start <int_va_start>` and
8611:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8612``llvm.va_end``.
8613
8614.. _int_va_copy:
8615
8616'``llvm.va_copy``' Intrinsic
8617^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8618
8619Syntax:
8620"""""""
8621
8622::
8623
8624 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8625
8626Overview:
8627"""""""""
8628
8629The '``llvm.va_copy``' intrinsic copies the current argument position
8630from the source argument list to the destination argument list.
8631
8632Arguments:
8633""""""""""
8634
8635The first argument is a pointer to a ``va_list`` element to initialize.
8636The second argument is a pointer to a ``va_list`` element to copy from.
8637
8638Semantics:
8639""""""""""
8640
8641The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8642available in C. In a target-dependent way, it copies the source
8643``va_list`` element into the destination ``va_list`` element. This
8644intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8645arbitrarily complex and require, for example, memory allocation.
8646
8647Accurate Garbage Collection Intrinsics
8648--------------------------------------
8649
Philip Reamesc5b0f562015-02-25 23:52:06 +00008650LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008651(GC) requires the frontend to generate code containing appropriate intrinsic
8652calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008653intrinsics in a manner which is appropriate for the target collector.
8654
Sean Silvab084af42012-12-07 10:36:55 +00008655These intrinsics allow identification of :ref:`GC roots on the
8656stack <int_gcroot>`, as well as garbage collector implementations that
8657require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008658Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008659these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008660details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008661
Philip Reamesf80bbff2015-02-25 23:45:20 +00008662Experimental Statepoint Intrinsics
8663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8664
8665LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008666collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008667to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008668:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008669differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008670<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008671described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008672
8673.. _int_gcroot:
8674
8675'``llvm.gcroot``' Intrinsic
8676^^^^^^^^^^^^^^^^^^^^^^^^^^^
8677
8678Syntax:
8679"""""""
8680
8681::
8682
8683 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8684
8685Overview:
8686"""""""""
8687
8688The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8689the code generator, and allows some metadata to be associated with it.
8690
8691Arguments:
8692""""""""""
8693
8694The first argument specifies the address of a stack object that contains
8695the root pointer. The second pointer (which must be either a constant or
8696a global value address) contains the meta-data to be associated with the
8697root.
8698
8699Semantics:
8700""""""""""
8701
8702At runtime, a call to this intrinsic stores a null pointer into the
8703"ptrloc" location. At compile-time, the code generator generates
8704information to allow the runtime to find the pointer at GC safe points.
8705The '``llvm.gcroot``' intrinsic may only be used in a function which
8706:ref:`specifies a GC algorithm <gc>`.
8707
8708.. _int_gcread:
8709
8710'``llvm.gcread``' Intrinsic
8711^^^^^^^^^^^^^^^^^^^^^^^^^^^
8712
8713Syntax:
8714"""""""
8715
8716::
8717
8718 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8719
8720Overview:
8721"""""""""
8722
8723The '``llvm.gcread``' intrinsic identifies reads of references from heap
8724locations, allowing garbage collector implementations that require read
8725barriers.
8726
8727Arguments:
8728""""""""""
8729
8730The second argument is the address to read from, which should be an
8731address allocated from the garbage collector. The first object is a
8732pointer to the start of the referenced object, if needed by the language
8733runtime (otherwise null).
8734
8735Semantics:
8736""""""""""
8737
8738The '``llvm.gcread``' intrinsic has the same semantics as a load
8739instruction, but may be replaced with substantially more complex code by
8740the garbage collector runtime, as needed. The '``llvm.gcread``'
8741intrinsic may only be used in a function which :ref:`specifies a GC
8742algorithm <gc>`.
8743
8744.. _int_gcwrite:
8745
8746'``llvm.gcwrite``' Intrinsic
8747^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8748
8749Syntax:
8750"""""""
8751
8752::
8753
8754 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8755
8756Overview:
8757"""""""""
8758
8759The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8760locations, allowing garbage collector implementations that require write
8761barriers (such as generational or reference counting collectors).
8762
8763Arguments:
8764""""""""""
8765
8766The first argument is the reference to store, the second is the start of
8767the object to store it to, and the third is the address of the field of
8768Obj to store to. If the runtime does not require a pointer to the
8769object, Obj may be null.
8770
8771Semantics:
8772""""""""""
8773
8774The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8775instruction, but may be replaced with substantially more complex code by
8776the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8777intrinsic may only be used in a function which :ref:`specifies a GC
8778algorithm <gc>`.
8779
8780Code Generator Intrinsics
8781-------------------------
8782
8783These intrinsics are provided by LLVM to expose special features that
8784may only be implemented with code generator support.
8785
8786'``llvm.returnaddress``' Intrinsic
8787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8788
8789Syntax:
8790"""""""
8791
8792::
8793
8794 declare i8 *@llvm.returnaddress(i32 <level>)
8795
8796Overview:
8797"""""""""
8798
8799The '``llvm.returnaddress``' intrinsic attempts to compute a
8800target-specific value indicating the return address of the current
8801function or one of its callers.
8802
8803Arguments:
8804""""""""""
8805
8806The argument to this intrinsic indicates which function to return the
8807address for. Zero indicates the calling function, one indicates its
8808caller, etc. The argument is **required** to be a constant integer
8809value.
8810
8811Semantics:
8812""""""""""
8813
8814The '``llvm.returnaddress``' intrinsic either returns a pointer
8815indicating the return address of the specified call frame, or zero if it
8816cannot be identified. The value returned by this intrinsic is likely to
8817be incorrect or 0 for arguments other than zero, so it should only be
8818used for debugging purposes.
8819
8820Note that calling this intrinsic does not prevent function inlining or
8821other aggressive transformations, so the value returned may not be that
8822of the obvious source-language caller.
8823
8824'``llvm.frameaddress``' Intrinsic
8825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8826
8827Syntax:
8828"""""""
8829
8830::
8831
8832 declare i8* @llvm.frameaddress(i32 <level>)
8833
8834Overview:
8835"""""""""
8836
8837The '``llvm.frameaddress``' intrinsic attempts to return the
8838target-specific frame pointer value for the specified stack frame.
8839
8840Arguments:
8841""""""""""
8842
8843The argument to this intrinsic indicates which function to return the
8844frame pointer for. Zero indicates the calling function, one indicates
8845its caller, etc. The argument is **required** to be a constant integer
8846value.
8847
8848Semantics:
8849""""""""""
8850
8851The '``llvm.frameaddress``' intrinsic either returns a pointer
8852indicating the frame address of the specified call frame, or zero if it
8853cannot be identified. The value returned by this intrinsic is likely to
8854be incorrect or 0 for arguments other than zero, so it should only be
8855used for debugging purposes.
8856
8857Note that calling this intrinsic does not prevent function inlining or
8858other aggressive transformations, so the value returned may not be that
8859of the obvious source-language caller.
8860
Reid Kleckner60381792015-07-07 22:25:32 +00008861'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00008862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8863
8864Syntax:
8865"""""""
8866
8867::
8868
Reid Kleckner60381792015-07-07 22:25:32 +00008869 declare void @llvm.localescape(...)
8870 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00008871
8872Overview:
8873"""""""""
8874
Reid Kleckner60381792015-07-07 22:25:32 +00008875The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
8876allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008877live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00008878computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00008879
8880Arguments:
8881""""""""""
8882
Reid Kleckner60381792015-07-07 22:25:32 +00008883All arguments to '``llvm.localescape``' must be pointers to static allocas or
8884casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008885once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00008886
Reid Kleckner60381792015-07-07 22:25:32 +00008887The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00008888bitcasted pointer to a function defined in the current module. The code
8889generator cannot determine the frame allocation offset of functions defined in
8890other modules.
8891
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00008892The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
8893call frame that is currently live. The return value of '``llvm.localaddress``'
8894is one way to produce such a value, but various runtimes also expose a suitable
8895pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00008896
Reid Kleckner60381792015-07-07 22:25:32 +00008897The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
8898'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008899
Reid Klecknere9b89312015-01-13 00:48:10 +00008900Semantics:
8901""""""""""
8902
Reid Kleckner60381792015-07-07 22:25:32 +00008903These intrinsics allow a group of functions to share access to a set of local
8904stack allocations of a one parent function. The parent function may call the
8905'``llvm.localescape``' intrinsic once from the function entry block, and the
8906child functions can use '``llvm.localrecover``' to access the escaped allocas.
8907The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
8908the escaped allocas are allocated, which would break attempts to use
8909'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00008910
Renato Golinc7aea402014-05-06 16:51:25 +00008911.. _int_read_register:
8912.. _int_write_register:
8913
8914'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
8915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8916
8917Syntax:
8918"""""""
8919
8920::
8921
8922 declare i32 @llvm.read_register.i32(metadata)
8923 declare i64 @llvm.read_register.i64(metadata)
8924 declare void @llvm.write_register.i32(metadata, i32 @value)
8925 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00008926 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00008927
8928Overview:
8929"""""""""
8930
8931The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
8932provides access to the named register. The register must be valid on
8933the architecture being compiled to. The type needs to be compatible
8934with the register being read.
8935
8936Semantics:
8937""""""""""
8938
8939The '``llvm.read_register``' intrinsic returns the current value of the
8940register, where possible. The '``llvm.write_register``' intrinsic sets
8941the current value of the register, where possible.
8942
8943This is useful to implement named register global variables that need
8944to always be mapped to a specific register, as is common practice on
8945bare-metal programs including OS kernels.
8946
8947The compiler doesn't check for register availability or use of the used
8948register in surrounding code, including inline assembly. Because of that,
8949allocatable registers are not supported.
8950
8951Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00008952architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00008953work is needed to support other registers and even more so, allocatable
8954registers.
8955
Sean Silvab084af42012-12-07 10:36:55 +00008956.. _int_stacksave:
8957
8958'``llvm.stacksave``' Intrinsic
8959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8960
8961Syntax:
8962"""""""
8963
8964::
8965
8966 declare i8* @llvm.stacksave()
8967
8968Overview:
8969"""""""""
8970
8971The '``llvm.stacksave``' intrinsic is used to remember the current state
8972of the function stack, for use with
8973:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
8974implementing language features like scoped automatic variable sized
8975arrays in C99.
8976
8977Semantics:
8978""""""""""
8979
8980This intrinsic returns a opaque pointer value that can be passed to
8981:ref:`llvm.stackrestore <int_stackrestore>`. When an
8982``llvm.stackrestore`` intrinsic is executed with a value saved from
8983``llvm.stacksave``, it effectively restores the state of the stack to
8984the state it was in when the ``llvm.stacksave`` intrinsic executed. In
8985practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
8986were allocated after the ``llvm.stacksave`` was executed.
8987
8988.. _int_stackrestore:
8989
8990'``llvm.stackrestore``' Intrinsic
8991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8992
8993Syntax:
8994"""""""
8995
8996::
8997
8998 declare void @llvm.stackrestore(i8* %ptr)
8999
9000Overview:
9001"""""""""
9002
9003The '``llvm.stackrestore``' intrinsic is used to restore the state of
9004the function stack to the state it was in when the corresponding
9005:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9006useful for implementing language features like scoped automatic variable
9007sized arrays in C99.
9008
9009Semantics:
9010""""""""""
9011
9012See the description for :ref:`llvm.stacksave <int_stacksave>`.
9013
9014'``llvm.prefetch``' Intrinsic
9015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9016
9017Syntax:
9018"""""""
9019
9020::
9021
9022 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9023
9024Overview:
9025"""""""""
9026
9027The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9028insert a prefetch instruction if supported; otherwise, it is a noop.
9029Prefetches have no effect on the behavior of the program but can change
9030its performance characteristics.
9031
9032Arguments:
9033""""""""""
9034
9035``address`` is the address to be prefetched, ``rw`` is the specifier
9036determining if the fetch should be for a read (0) or write (1), and
9037``locality`` is a temporal locality specifier ranging from (0) - no
9038locality, to (3) - extremely local keep in cache. The ``cache type``
9039specifies whether the prefetch is performed on the data (1) or
9040instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9041arguments must be constant integers.
9042
9043Semantics:
9044""""""""""
9045
9046This intrinsic does not modify the behavior of the program. In
9047particular, prefetches cannot trap and do not produce a value. On
9048targets that support this intrinsic, the prefetch can provide hints to
9049the processor cache for better performance.
9050
9051'``llvm.pcmarker``' Intrinsic
9052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9053
9054Syntax:
9055"""""""
9056
9057::
9058
9059 declare void @llvm.pcmarker(i32 <id>)
9060
9061Overview:
9062"""""""""
9063
9064The '``llvm.pcmarker``' intrinsic is a method to export a Program
9065Counter (PC) in a region of code to simulators and other tools. The
9066method is target specific, but it is expected that the marker will use
9067exported symbols to transmit the PC of the marker. The marker makes no
9068guarantees that it will remain with any specific instruction after
9069optimizations. It is possible that the presence of a marker will inhibit
9070optimizations. The intended use is to be inserted after optimizations to
9071allow correlations of simulation runs.
9072
9073Arguments:
9074""""""""""
9075
9076``id`` is a numerical id identifying the marker.
9077
9078Semantics:
9079""""""""""
9080
9081This intrinsic does not modify the behavior of the program. Backends
9082that do not support this intrinsic may ignore it.
9083
9084'``llvm.readcyclecounter``' Intrinsic
9085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9086
9087Syntax:
9088"""""""
9089
9090::
9091
9092 declare i64 @llvm.readcyclecounter()
9093
9094Overview:
9095"""""""""
9096
9097The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9098counter register (or similar low latency, high accuracy clocks) on those
9099targets that support it. On X86, it should map to RDTSC. On Alpha, it
9100should map to RPCC. As the backing counters overflow quickly (on the
9101order of 9 seconds on alpha), this should only be used for small
9102timings.
9103
9104Semantics:
9105""""""""""
9106
9107When directly supported, reading the cycle counter should not modify any
9108memory. Implementations are allowed to either return a application
9109specific value or a system wide value. On backends without support, this
9110is lowered to a constant 0.
9111
Tim Northoverbc933082013-05-23 19:11:20 +00009112Note that runtime support may be conditional on the privilege-level code is
9113running at and the host platform.
9114
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009115'``llvm.clear_cache``' Intrinsic
9116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9117
9118Syntax:
9119"""""""
9120
9121::
9122
9123 declare void @llvm.clear_cache(i8*, i8*)
9124
9125Overview:
9126"""""""""
9127
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009128The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9129in the specified range to the execution unit of the processor. On
9130targets with non-unified instruction and data cache, the implementation
9131flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009132
9133Semantics:
9134""""""""""
9135
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009136On platforms with coherent instruction and data caches (e.g. x86), this
9137intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009138cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009139instructions or a system call, if cache flushing requires special
9140privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009141
Sean Silvad02bf3e2014-04-07 22:29:53 +00009142The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009143time library.
Renato Golin93010e62014-03-26 14:01:32 +00009144
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009145This instrinsic does *not* empty the instruction pipeline. Modifications
9146of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009147
Justin Bogner61ba2e32014-12-08 18:02:35 +00009148'``llvm.instrprof_increment``' Intrinsic
9149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9150
9151Syntax:
9152"""""""
9153
9154::
9155
9156 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9157 i32 <num-counters>, i32 <index>)
9158
9159Overview:
9160"""""""""
9161
9162The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9163frontend for use with instrumentation based profiling. These will be
9164lowered by the ``-instrprof`` pass to generate execution counts of a
9165program at runtime.
9166
9167Arguments:
9168""""""""""
9169
9170The first argument is a pointer to a global variable containing the
9171name of the entity being instrumented. This should generally be the
9172(mangled) function name for a set of counters.
9173
9174The second argument is a hash value that can be used by the consumer
9175of the profile data to detect changes to the instrumented source, and
9176the third is the number of counters associated with ``name``. It is an
9177error if ``hash`` or ``num-counters`` differ between two instances of
9178``instrprof_increment`` that refer to the same name.
9179
9180The last argument refers to which of the counters for ``name`` should
9181be incremented. It should be a value between 0 and ``num-counters``.
9182
9183Semantics:
9184""""""""""
9185
9186This intrinsic represents an increment of a profiling counter. It will
9187cause the ``-instrprof`` pass to generate the appropriate data
9188structures and the code to increment the appropriate value, in a
9189format that can be written out by a compiler runtime and consumed via
9190the ``llvm-profdata`` tool.
9191
Sean Silvab084af42012-12-07 10:36:55 +00009192Standard C Library Intrinsics
9193-----------------------------
9194
9195LLVM provides intrinsics for a few important standard C library
9196functions. These intrinsics allow source-language front-ends to pass
9197information about the alignment of the pointer arguments to the code
9198generator, providing opportunity for more efficient code generation.
9199
9200.. _int_memcpy:
9201
9202'``llvm.memcpy``' Intrinsic
9203^^^^^^^^^^^^^^^^^^^^^^^^^^^
9204
9205Syntax:
9206"""""""
9207
9208This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9209integer bit width and for different address spaces. Not all targets
9210support all bit widths however.
9211
9212::
9213
9214 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9215 i32 <len>, i32 <align>, i1 <isvolatile>)
9216 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9217 i64 <len>, i32 <align>, i1 <isvolatile>)
9218
9219Overview:
9220"""""""""
9221
9222The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9223source location to the destination location.
9224
9225Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9226intrinsics do not return a value, takes extra alignment/isvolatile
9227arguments and the pointers can be in specified address spaces.
9228
9229Arguments:
9230""""""""""
9231
9232The first argument is a pointer to the destination, the second is a
9233pointer to the source. The third argument is an integer argument
9234specifying the number of bytes to copy, the fourth argument is the
9235alignment of the source and destination locations, and the fifth is a
9236boolean indicating a volatile access.
9237
9238If the call to this intrinsic has an alignment value that is not 0 or 1,
9239then the caller guarantees that both the source and destination pointers
9240are aligned to that boundary.
9241
9242If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9243a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9244very cleanly specified and it is unwise to depend on it.
9245
9246Semantics:
9247""""""""""
9248
9249The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9250source location to the destination location, which are not allowed to
9251overlap. It copies "len" bytes of memory over. If the argument is known
9252to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009253argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009254
9255'``llvm.memmove``' Intrinsic
9256^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9257
9258Syntax:
9259"""""""
9260
9261This is an overloaded intrinsic. You can use llvm.memmove on any integer
9262bit width and for different address space. Not all targets support all
9263bit widths however.
9264
9265::
9266
9267 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9268 i32 <len>, i32 <align>, i1 <isvolatile>)
9269 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9270 i64 <len>, i32 <align>, i1 <isvolatile>)
9271
9272Overview:
9273"""""""""
9274
9275The '``llvm.memmove.*``' intrinsics move a block of memory from the
9276source location to the destination location. It is similar to the
9277'``llvm.memcpy``' intrinsic but allows the two memory locations to
9278overlap.
9279
9280Note that, unlike the standard libc function, the ``llvm.memmove.*``
9281intrinsics do not return a value, takes extra alignment/isvolatile
9282arguments and the pointers can be in specified address spaces.
9283
9284Arguments:
9285""""""""""
9286
9287The first argument is a pointer to the destination, the second is a
9288pointer to the source. The third argument is an integer argument
9289specifying the number of bytes to copy, the fourth argument is the
9290alignment of the source and destination locations, and the fifth is a
9291boolean indicating a volatile access.
9292
9293If the call to this intrinsic has an alignment value that is not 0 or 1,
9294then the caller guarantees that the source and destination pointers are
9295aligned to that boundary.
9296
9297If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9298is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9299not very cleanly specified and it is unwise to depend on it.
9300
9301Semantics:
9302""""""""""
9303
9304The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9305source location to the destination location, which may overlap. It
9306copies "len" bytes of memory over. If the argument is known to be
9307aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009308otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009309
9310'``llvm.memset.*``' Intrinsics
9311^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9312
9313Syntax:
9314"""""""
9315
9316This is an overloaded intrinsic. You can use llvm.memset on any integer
9317bit width and for different address spaces. However, not all targets
9318support all bit widths.
9319
9320::
9321
9322 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9323 i32 <len>, i32 <align>, i1 <isvolatile>)
9324 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9325 i64 <len>, i32 <align>, i1 <isvolatile>)
9326
9327Overview:
9328"""""""""
9329
9330The '``llvm.memset.*``' intrinsics fill a block of memory with a
9331particular byte value.
9332
9333Note that, unlike the standard libc function, the ``llvm.memset``
9334intrinsic does not return a value and takes extra alignment/volatile
9335arguments. Also, the destination can be in an arbitrary address space.
9336
9337Arguments:
9338""""""""""
9339
9340The first argument is a pointer to the destination to fill, the second
9341is the byte value with which to fill it, the third argument is an
9342integer argument specifying the number of bytes to fill, and the fourth
9343argument is the known alignment of the destination location.
9344
9345If the call to this intrinsic has an alignment value that is not 0 or 1,
9346then the caller guarantees that the destination pointer is aligned to
9347that boundary.
9348
9349If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9350a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9351very cleanly specified and it is unwise to depend on it.
9352
9353Semantics:
9354""""""""""
9355
9356The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9357at the destination location. If the argument is known to be aligned to
9358some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009359it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009360
9361'``llvm.sqrt.*``' Intrinsic
9362^^^^^^^^^^^^^^^^^^^^^^^^^^^
9363
9364Syntax:
9365"""""""
9366
9367This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9368floating point or vector of floating point type. Not all targets support
9369all types however.
9370
9371::
9372
9373 declare float @llvm.sqrt.f32(float %Val)
9374 declare double @llvm.sqrt.f64(double %Val)
9375 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9376 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9377 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9378
9379Overview:
9380"""""""""
9381
9382The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9383returning the same value as the libm '``sqrt``' functions would. Unlike
9384``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9385negative numbers other than -0.0 (which allows for better optimization,
9386because there is no need to worry about errno being set).
9387``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9388
9389Arguments:
9390""""""""""
9391
9392The argument and return value are floating point numbers of the same
9393type.
9394
9395Semantics:
9396""""""""""
9397
9398This function returns the sqrt of the specified operand if it is a
9399nonnegative floating point number.
9400
9401'``llvm.powi.*``' Intrinsic
9402^^^^^^^^^^^^^^^^^^^^^^^^^^^
9403
9404Syntax:
9405"""""""
9406
9407This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9408floating point or vector of floating point type. Not all targets support
9409all types however.
9410
9411::
9412
9413 declare float @llvm.powi.f32(float %Val, i32 %power)
9414 declare double @llvm.powi.f64(double %Val, i32 %power)
9415 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9416 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9417 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9418
9419Overview:
9420"""""""""
9421
9422The '``llvm.powi.*``' intrinsics return the first operand raised to the
9423specified (positive or negative) power. The order of evaluation of
9424multiplications is not defined. When a vector of floating point type is
9425used, the second argument remains a scalar integer value.
9426
9427Arguments:
9428""""""""""
9429
9430The second argument is an integer power, and the first is a value to
9431raise to that power.
9432
9433Semantics:
9434""""""""""
9435
9436This function returns the first value raised to the second power with an
9437unspecified sequence of rounding operations.
9438
9439'``llvm.sin.*``' Intrinsic
9440^^^^^^^^^^^^^^^^^^^^^^^^^^
9441
9442Syntax:
9443"""""""
9444
9445This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9446floating point or vector of floating point type. Not all targets support
9447all types however.
9448
9449::
9450
9451 declare float @llvm.sin.f32(float %Val)
9452 declare double @llvm.sin.f64(double %Val)
9453 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9454 declare fp128 @llvm.sin.f128(fp128 %Val)
9455 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9456
9457Overview:
9458"""""""""
9459
9460The '``llvm.sin.*``' intrinsics return the sine of the operand.
9461
9462Arguments:
9463""""""""""
9464
9465The argument and return value are floating point numbers of the same
9466type.
9467
9468Semantics:
9469""""""""""
9470
9471This function returns the sine of the specified operand, returning the
9472same values as the libm ``sin`` functions would, and handles error
9473conditions in the same way.
9474
9475'``llvm.cos.*``' Intrinsic
9476^^^^^^^^^^^^^^^^^^^^^^^^^^
9477
9478Syntax:
9479"""""""
9480
9481This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9482floating point or vector of floating point type. Not all targets support
9483all types however.
9484
9485::
9486
9487 declare float @llvm.cos.f32(float %Val)
9488 declare double @llvm.cos.f64(double %Val)
9489 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9490 declare fp128 @llvm.cos.f128(fp128 %Val)
9491 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9492
9493Overview:
9494"""""""""
9495
9496The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9497
9498Arguments:
9499""""""""""
9500
9501The argument and return value are floating point numbers of the same
9502type.
9503
9504Semantics:
9505""""""""""
9506
9507This function returns the cosine of the specified operand, returning the
9508same values as the libm ``cos`` functions would, and handles error
9509conditions in the same way.
9510
9511'``llvm.pow.*``' Intrinsic
9512^^^^^^^^^^^^^^^^^^^^^^^^^^
9513
9514Syntax:
9515"""""""
9516
9517This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9518floating point or vector of floating point type. Not all targets support
9519all types however.
9520
9521::
9522
9523 declare float @llvm.pow.f32(float %Val, float %Power)
9524 declare double @llvm.pow.f64(double %Val, double %Power)
9525 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9526 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9527 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9528
9529Overview:
9530"""""""""
9531
9532The '``llvm.pow.*``' intrinsics return the first operand raised to the
9533specified (positive or negative) power.
9534
9535Arguments:
9536""""""""""
9537
9538The second argument is a floating point power, and the first is a value
9539to raise to that power.
9540
9541Semantics:
9542""""""""""
9543
9544This function returns the first value raised to the second power,
9545returning the same values as the libm ``pow`` functions would, and
9546handles error conditions in the same way.
9547
9548'``llvm.exp.*``' Intrinsic
9549^^^^^^^^^^^^^^^^^^^^^^^^^^
9550
9551Syntax:
9552"""""""
9553
9554This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9555floating point or vector of floating point type. Not all targets support
9556all types however.
9557
9558::
9559
9560 declare float @llvm.exp.f32(float %Val)
9561 declare double @llvm.exp.f64(double %Val)
9562 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9563 declare fp128 @llvm.exp.f128(fp128 %Val)
9564 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9565
9566Overview:
9567"""""""""
9568
9569The '``llvm.exp.*``' intrinsics perform the exp function.
9570
9571Arguments:
9572""""""""""
9573
9574The argument and return value are floating point numbers of the same
9575type.
9576
9577Semantics:
9578""""""""""
9579
9580This function returns the same values as the libm ``exp`` functions
9581would, and handles error conditions in the same way.
9582
9583'``llvm.exp2.*``' Intrinsic
9584^^^^^^^^^^^^^^^^^^^^^^^^^^^
9585
9586Syntax:
9587"""""""
9588
9589This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9590floating point or vector of floating point type. Not all targets support
9591all types however.
9592
9593::
9594
9595 declare float @llvm.exp2.f32(float %Val)
9596 declare double @llvm.exp2.f64(double %Val)
9597 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9598 declare fp128 @llvm.exp2.f128(fp128 %Val)
9599 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9600
9601Overview:
9602"""""""""
9603
9604The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9605
9606Arguments:
9607""""""""""
9608
9609The argument and return value are floating point numbers of the same
9610type.
9611
9612Semantics:
9613""""""""""
9614
9615This function returns the same values as the libm ``exp2`` functions
9616would, and handles error conditions in the same way.
9617
9618'``llvm.log.*``' Intrinsic
9619^^^^^^^^^^^^^^^^^^^^^^^^^^
9620
9621Syntax:
9622"""""""
9623
9624This is an overloaded intrinsic. You can use ``llvm.log`` on any
9625floating point or vector of floating point type. Not all targets support
9626all types however.
9627
9628::
9629
9630 declare float @llvm.log.f32(float %Val)
9631 declare double @llvm.log.f64(double %Val)
9632 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9633 declare fp128 @llvm.log.f128(fp128 %Val)
9634 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9635
9636Overview:
9637"""""""""
9638
9639The '``llvm.log.*``' intrinsics perform the log function.
9640
9641Arguments:
9642""""""""""
9643
9644The argument and return value are floating point numbers of the same
9645type.
9646
9647Semantics:
9648""""""""""
9649
9650This function returns the same values as the libm ``log`` functions
9651would, and handles error conditions in the same way.
9652
9653'``llvm.log10.*``' Intrinsic
9654^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9655
9656Syntax:
9657"""""""
9658
9659This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9660floating point or vector of floating point type. Not all targets support
9661all types however.
9662
9663::
9664
9665 declare float @llvm.log10.f32(float %Val)
9666 declare double @llvm.log10.f64(double %Val)
9667 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9668 declare fp128 @llvm.log10.f128(fp128 %Val)
9669 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9670
9671Overview:
9672"""""""""
9673
9674The '``llvm.log10.*``' intrinsics perform the log10 function.
9675
9676Arguments:
9677""""""""""
9678
9679The argument and return value are floating point numbers of the same
9680type.
9681
9682Semantics:
9683""""""""""
9684
9685This function returns the same values as the libm ``log10`` functions
9686would, and handles error conditions in the same way.
9687
9688'``llvm.log2.*``' Intrinsic
9689^^^^^^^^^^^^^^^^^^^^^^^^^^^
9690
9691Syntax:
9692"""""""
9693
9694This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9695floating point or vector of floating point type. Not all targets support
9696all types however.
9697
9698::
9699
9700 declare float @llvm.log2.f32(float %Val)
9701 declare double @llvm.log2.f64(double %Val)
9702 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9703 declare fp128 @llvm.log2.f128(fp128 %Val)
9704 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9705
9706Overview:
9707"""""""""
9708
9709The '``llvm.log2.*``' intrinsics perform the log2 function.
9710
9711Arguments:
9712""""""""""
9713
9714The argument and return value are floating point numbers of the same
9715type.
9716
9717Semantics:
9718""""""""""
9719
9720This function returns the same values as the libm ``log2`` functions
9721would, and handles error conditions in the same way.
9722
9723'``llvm.fma.*``' Intrinsic
9724^^^^^^^^^^^^^^^^^^^^^^^^^^
9725
9726Syntax:
9727"""""""
9728
9729This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9730floating point or vector of floating point type. Not all targets support
9731all types however.
9732
9733::
9734
9735 declare float @llvm.fma.f32(float %a, float %b, float %c)
9736 declare double @llvm.fma.f64(double %a, double %b, double %c)
9737 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9738 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9739 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9740
9741Overview:
9742"""""""""
9743
9744The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9745operation.
9746
9747Arguments:
9748""""""""""
9749
9750The argument and return value are floating point numbers of the same
9751type.
9752
9753Semantics:
9754""""""""""
9755
9756This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009757would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009758
9759'``llvm.fabs.*``' Intrinsic
9760^^^^^^^^^^^^^^^^^^^^^^^^^^^
9761
9762Syntax:
9763"""""""
9764
9765This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9766floating point or vector of floating point type. Not all targets support
9767all types however.
9768
9769::
9770
9771 declare float @llvm.fabs.f32(float %Val)
9772 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009773 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009774 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009775 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009776
9777Overview:
9778"""""""""
9779
9780The '``llvm.fabs.*``' intrinsics return the absolute value of the
9781operand.
9782
9783Arguments:
9784""""""""""
9785
9786The argument and return value are floating point numbers of the same
9787type.
9788
9789Semantics:
9790""""""""""
9791
9792This function returns the same values as the libm ``fabs`` functions
9793would, and handles error conditions in the same way.
9794
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009795'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009797
9798Syntax:
9799"""""""
9800
9801This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9802floating point or vector of floating point type. Not all targets support
9803all types however.
9804
9805::
9806
Matt Arsenault64313c92014-10-22 18:25:02 +00009807 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9808 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9809 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9810 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9811 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009812
9813Overview:
9814"""""""""
9815
9816The '``llvm.minnum.*``' intrinsics return the minimum of the two
9817arguments.
9818
9819
9820Arguments:
9821""""""""""
9822
9823The arguments and return value are floating point numbers of the same
9824type.
9825
9826Semantics:
9827""""""""""
9828
9829Follows the IEEE-754 semantics for minNum, which also match for libm's
9830fmin.
9831
9832If either operand is a NaN, returns the other non-NaN operand. Returns
9833NaN only if both operands are NaN. If the operands compare equal,
9834returns a value that compares equal to both operands. This means that
9835fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9836
9837'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009839
9840Syntax:
9841"""""""
9842
9843This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
9844floating point or vector of floating point type. Not all targets support
9845all types however.
9846
9847::
9848
Matt Arsenault64313c92014-10-22 18:25:02 +00009849 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
9850 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
9851 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9852 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
9853 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009854
9855Overview:
9856"""""""""
9857
9858The '``llvm.maxnum.*``' intrinsics return the maximum of the two
9859arguments.
9860
9861
9862Arguments:
9863""""""""""
9864
9865The arguments and return value are floating point numbers of the same
9866type.
9867
9868Semantics:
9869""""""""""
9870Follows the IEEE-754 semantics for maxNum, which also match for libm's
9871fmax.
9872
9873If either operand is a NaN, returns the other non-NaN operand. Returns
9874NaN only if both operands are NaN. If the operands compare equal,
9875returns a value that compares equal to both operands. This means that
9876fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9877
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00009878'``llvm.copysign.*``' Intrinsic
9879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9880
9881Syntax:
9882"""""""
9883
9884This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
9885floating point or vector of floating point type. Not all targets support
9886all types however.
9887
9888::
9889
9890 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
9891 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
9892 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
9893 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
9894 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
9895
9896Overview:
9897"""""""""
9898
9899The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
9900first operand and the sign of the second operand.
9901
9902Arguments:
9903""""""""""
9904
9905The arguments and return value are floating point numbers of the same
9906type.
9907
9908Semantics:
9909""""""""""
9910
9911This function returns the same values as the libm ``copysign``
9912functions would, and handles error conditions in the same way.
9913
Sean Silvab084af42012-12-07 10:36:55 +00009914'``llvm.floor.*``' Intrinsic
9915^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9916
9917Syntax:
9918"""""""
9919
9920This is an overloaded intrinsic. You can use ``llvm.floor`` on any
9921floating point or vector of floating point type. Not all targets support
9922all types however.
9923
9924::
9925
9926 declare float @llvm.floor.f32(float %Val)
9927 declare double @llvm.floor.f64(double %Val)
9928 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
9929 declare fp128 @llvm.floor.f128(fp128 %Val)
9930 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
9931
9932Overview:
9933"""""""""
9934
9935The '``llvm.floor.*``' intrinsics return the floor of the operand.
9936
9937Arguments:
9938""""""""""
9939
9940The argument and return value are floating point numbers of the same
9941type.
9942
9943Semantics:
9944""""""""""
9945
9946This function returns the same values as the libm ``floor`` functions
9947would, and handles error conditions in the same way.
9948
9949'``llvm.ceil.*``' Intrinsic
9950^^^^^^^^^^^^^^^^^^^^^^^^^^^
9951
9952Syntax:
9953"""""""
9954
9955This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
9956floating point or vector of floating point type. Not all targets support
9957all types however.
9958
9959::
9960
9961 declare float @llvm.ceil.f32(float %Val)
9962 declare double @llvm.ceil.f64(double %Val)
9963 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
9964 declare fp128 @llvm.ceil.f128(fp128 %Val)
9965 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
9966
9967Overview:
9968"""""""""
9969
9970The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
9971
9972Arguments:
9973""""""""""
9974
9975The argument and return value are floating point numbers of the same
9976type.
9977
9978Semantics:
9979""""""""""
9980
9981This function returns the same values as the libm ``ceil`` functions
9982would, and handles error conditions in the same way.
9983
9984'``llvm.trunc.*``' Intrinsic
9985^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9986
9987Syntax:
9988"""""""
9989
9990This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
9991floating point or vector of floating point type. Not all targets support
9992all types however.
9993
9994::
9995
9996 declare float @llvm.trunc.f32(float %Val)
9997 declare double @llvm.trunc.f64(double %Val)
9998 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
9999 declare fp128 @llvm.trunc.f128(fp128 %Val)
10000 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10001
10002Overview:
10003"""""""""
10004
10005The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10006nearest integer not larger in magnitude than the operand.
10007
10008Arguments:
10009""""""""""
10010
10011The argument and return value are floating point numbers of the same
10012type.
10013
10014Semantics:
10015""""""""""
10016
10017This function returns the same values as the libm ``trunc`` functions
10018would, and handles error conditions in the same way.
10019
10020'``llvm.rint.*``' Intrinsic
10021^^^^^^^^^^^^^^^^^^^^^^^^^^^
10022
10023Syntax:
10024"""""""
10025
10026This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10027floating point or vector of floating point type. Not all targets support
10028all types however.
10029
10030::
10031
10032 declare float @llvm.rint.f32(float %Val)
10033 declare double @llvm.rint.f64(double %Val)
10034 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10035 declare fp128 @llvm.rint.f128(fp128 %Val)
10036 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10037
10038Overview:
10039"""""""""
10040
10041The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10042nearest integer. It may raise an inexact floating-point exception if the
10043operand isn't an integer.
10044
10045Arguments:
10046""""""""""
10047
10048The argument and return value are floating point numbers of the same
10049type.
10050
10051Semantics:
10052""""""""""
10053
10054This function returns the same values as the libm ``rint`` functions
10055would, and handles error conditions in the same way.
10056
10057'``llvm.nearbyint.*``' Intrinsic
10058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10059
10060Syntax:
10061"""""""
10062
10063This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10064floating point or vector of floating point type. Not all targets support
10065all types however.
10066
10067::
10068
10069 declare float @llvm.nearbyint.f32(float %Val)
10070 declare double @llvm.nearbyint.f64(double %Val)
10071 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10072 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10073 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10074
10075Overview:
10076"""""""""
10077
10078The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10079nearest integer.
10080
10081Arguments:
10082""""""""""
10083
10084The argument and return value are floating point numbers of the same
10085type.
10086
10087Semantics:
10088""""""""""
10089
10090This function returns the same values as the libm ``nearbyint``
10091functions would, and handles error conditions in the same way.
10092
Hal Finkel171817e2013-08-07 22:49:12 +000010093'``llvm.round.*``' Intrinsic
10094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10095
10096Syntax:
10097"""""""
10098
10099This is an overloaded intrinsic. You can use ``llvm.round`` on any
10100floating point or vector of floating point type. Not all targets support
10101all types however.
10102
10103::
10104
10105 declare float @llvm.round.f32(float %Val)
10106 declare double @llvm.round.f64(double %Val)
10107 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10108 declare fp128 @llvm.round.f128(fp128 %Val)
10109 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10110
10111Overview:
10112"""""""""
10113
10114The '``llvm.round.*``' intrinsics returns the operand rounded to the
10115nearest integer.
10116
10117Arguments:
10118""""""""""
10119
10120The argument and return value are floating point numbers of the same
10121type.
10122
10123Semantics:
10124""""""""""
10125
10126This function returns the same values as the libm ``round``
10127functions would, and handles error conditions in the same way.
10128
Sean Silvab084af42012-12-07 10:36:55 +000010129Bit Manipulation Intrinsics
10130---------------------------
10131
10132LLVM provides intrinsics for a few important bit manipulation
10133operations. These allow efficient code generation for some algorithms.
10134
10135'``llvm.bswap.*``' Intrinsics
10136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10137
10138Syntax:
10139"""""""
10140
10141This is an overloaded intrinsic function. You can use bswap on any
10142integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10143
10144::
10145
10146 declare i16 @llvm.bswap.i16(i16 <id>)
10147 declare i32 @llvm.bswap.i32(i32 <id>)
10148 declare i64 @llvm.bswap.i64(i64 <id>)
10149
10150Overview:
10151"""""""""
10152
10153The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10154values with an even number of bytes (positive multiple of 16 bits).
10155These are useful for performing operations on data that is not in the
10156target's native byte order.
10157
10158Semantics:
10159""""""""""
10160
10161The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10162and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10163intrinsic returns an i32 value that has the four bytes of the input i32
10164swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10165returned i32 will have its bytes in 3, 2, 1, 0 order. The
10166``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10167concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10168respectively).
10169
10170'``llvm.ctpop.*``' Intrinsic
10171^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10172
10173Syntax:
10174"""""""
10175
10176This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10177bit width, or on any vector with integer elements. Not all targets
10178support all bit widths or vector types, however.
10179
10180::
10181
10182 declare i8 @llvm.ctpop.i8(i8 <src>)
10183 declare i16 @llvm.ctpop.i16(i16 <src>)
10184 declare i32 @llvm.ctpop.i32(i32 <src>)
10185 declare i64 @llvm.ctpop.i64(i64 <src>)
10186 declare i256 @llvm.ctpop.i256(i256 <src>)
10187 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10188
10189Overview:
10190"""""""""
10191
10192The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10193in a value.
10194
10195Arguments:
10196""""""""""
10197
10198The only argument is the value to be counted. The argument may be of any
10199integer type, or a vector with integer elements. The return type must
10200match the argument type.
10201
10202Semantics:
10203""""""""""
10204
10205The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10206each element of a vector.
10207
10208'``llvm.ctlz.*``' Intrinsic
10209^^^^^^^^^^^^^^^^^^^^^^^^^^^
10210
10211Syntax:
10212"""""""
10213
10214This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10215integer bit width, or any vector whose elements are integers. Not all
10216targets support all bit widths or vector types, however.
10217
10218::
10219
10220 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10221 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10222 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10223 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10224 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10225 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10226
10227Overview:
10228"""""""""
10229
10230The '``llvm.ctlz``' family of intrinsic functions counts the number of
10231leading zeros in a variable.
10232
10233Arguments:
10234""""""""""
10235
10236The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010237any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010238type must match the first argument type.
10239
10240The second argument must be a constant and is a flag to indicate whether
10241the intrinsic should ensure that a zero as the first argument produces a
10242defined result. Historically some architectures did not provide a
10243defined result for zero values as efficiently, and many algorithms are
10244now predicated on avoiding zero-value inputs.
10245
10246Semantics:
10247""""""""""
10248
10249The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10250zeros in a variable, or within each element of the vector. If
10251``src == 0`` then the result is the size in bits of the type of ``src``
10252if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10253``llvm.ctlz(i32 2) = 30``.
10254
10255'``llvm.cttz.*``' Intrinsic
10256^^^^^^^^^^^^^^^^^^^^^^^^^^^
10257
10258Syntax:
10259"""""""
10260
10261This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10262integer bit width, or any vector of integer elements. Not all targets
10263support all bit widths or vector types, however.
10264
10265::
10266
10267 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10268 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10269 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10270 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10271 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10272 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10273
10274Overview:
10275"""""""""
10276
10277The '``llvm.cttz``' family of intrinsic functions counts the number of
10278trailing zeros.
10279
10280Arguments:
10281""""""""""
10282
10283The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010284any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010285type must match the first argument type.
10286
10287The second argument must be a constant and is a flag to indicate whether
10288the intrinsic should ensure that a zero as the first argument produces a
10289defined result. Historically some architectures did not provide a
10290defined result for zero values as efficiently, and many algorithms are
10291now predicated on avoiding zero-value inputs.
10292
10293Semantics:
10294""""""""""
10295
10296The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10297zeros in a variable, or within each element of a vector. If ``src == 0``
10298then the result is the size in bits of the type of ``src`` if
10299``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10300``llvm.cttz(2) = 1``.
10301
Philip Reames34843ae2015-03-05 05:55:55 +000010302.. _int_overflow:
10303
Sean Silvab084af42012-12-07 10:36:55 +000010304Arithmetic with Overflow Intrinsics
10305-----------------------------------
10306
10307LLVM provides intrinsics for some arithmetic with overflow operations.
10308
10309'``llvm.sadd.with.overflow.*``' Intrinsics
10310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10311
10312Syntax:
10313"""""""
10314
10315This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10316on any integer bit width.
10317
10318::
10319
10320 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10321 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10322 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10323
10324Overview:
10325"""""""""
10326
10327The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10328a signed addition of the two arguments, and indicate whether an overflow
10329occurred during the signed summation.
10330
10331Arguments:
10332""""""""""
10333
10334The arguments (%a and %b) and the first element of the result structure
10335may be of integer types of any bit width, but they must have the same
10336bit width. The second element of the result structure must be of type
10337``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10338addition.
10339
10340Semantics:
10341""""""""""
10342
10343The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010344a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010345first element of which is the signed summation, and the second element
10346of which is a bit specifying if the signed summation resulted in an
10347overflow.
10348
10349Examples:
10350"""""""""
10351
10352.. code-block:: llvm
10353
10354 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10355 %sum = extractvalue {i32, i1} %res, 0
10356 %obit = extractvalue {i32, i1} %res, 1
10357 br i1 %obit, label %overflow, label %normal
10358
10359'``llvm.uadd.with.overflow.*``' Intrinsics
10360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10361
10362Syntax:
10363"""""""
10364
10365This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10366on any integer bit width.
10367
10368::
10369
10370 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10371 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10372 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10373
10374Overview:
10375"""""""""
10376
10377The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10378an unsigned addition of the two arguments, and indicate whether a carry
10379occurred during the unsigned summation.
10380
10381Arguments:
10382""""""""""
10383
10384The arguments (%a and %b) and the first element of the result structure
10385may be of integer types of any bit width, but they must have the same
10386bit width. The second element of the result structure must be of type
10387``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10388addition.
10389
10390Semantics:
10391""""""""""
10392
10393The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010394an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010395first element of which is the sum, and the second element of which is a
10396bit specifying if the unsigned summation resulted in a carry.
10397
10398Examples:
10399"""""""""
10400
10401.. code-block:: llvm
10402
10403 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10404 %sum = extractvalue {i32, i1} %res, 0
10405 %obit = extractvalue {i32, i1} %res, 1
10406 br i1 %obit, label %carry, label %normal
10407
10408'``llvm.ssub.with.overflow.*``' Intrinsics
10409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10410
10411Syntax:
10412"""""""
10413
10414This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10415on any integer bit width.
10416
10417::
10418
10419 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10420 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10421 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10422
10423Overview:
10424"""""""""
10425
10426The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10427a signed subtraction of the two arguments, and indicate whether an
10428overflow occurred during the signed subtraction.
10429
10430Arguments:
10431""""""""""
10432
10433The arguments (%a and %b) and the first element of the result structure
10434may be of integer types of any bit width, but they must have the same
10435bit width. The second element of the result structure must be of type
10436``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10437subtraction.
10438
10439Semantics:
10440""""""""""
10441
10442The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010443a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010444first element of which is the subtraction, and the second element of
10445which is a bit specifying if the signed subtraction resulted in an
10446overflow.
10447
10448Examples:
10449"""""""""
10450
10451.. code-block:: llvm
10452
10453 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10454 %sum = extractvalue {i32, i1} %res, 0
10455 %obit = extractvalue {i32, i1} %res, 1
10456 br i1 %obit, label %overflow, label %normal
10457
10458'``llvm.usub.with.overflow.*``' Intrinsics
10459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10460
10461Syntax:
10462"""""""
10463
10464This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10465on any integer bit width.
10466
10467::
10468
10469 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10470 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10471 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10472
10473Overview:
10474"""""""""
10475
10476The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10477an unsigned subtraction of the two arguments, and indicate whether an
10478overflow occurred during the unsigned subtraction.
10479
10480Arguments:
10481""""""""""
10482
10483The arguments (%a and %b) and the first element of the result structure
10484may be of integer types of any bit width, but they must have the same
10485bit width. The second element of the result structure must be of type
10486``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10487subtraction.
10488
10489Semantics:
10490""""""""""
10491
10492The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010493an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010494the first element of which is the subtraction, and the second element of
10495which is a bit specifying if the unsigned subtraction resulted in an
10496overflow.
10497
10498Examples:
10499"""""""""
10500
10501.. code-block:: llvm
10502
10503 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10504 %sum = extractvalue {i32, i1} %res, 0
10505 %obit = extractvalue {i32, i1} %res, 1
10506 br i1 %obit, label %overflow, label %normal
10507
10508'``llvm.smul.with.overflow.*``' Intrinsics
10509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10510
10511Syntax:
10512"""""""
10513
10514This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10515on any integer bit width.
10516
10517::
10518
10519 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10520 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10521 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10522
10523Overview:
10524"""""""""
10525
10526The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10527a signed multiplication of the two arguments, and indicate whether an
10528overflow occurred during the signed multiplication.
10529
10530Arguments:
10531""""""""""
10532
10533The arguments (%a and %b) and the first element of the result structure
10534may be of integer types of any bit width, but they must have the same
10535bit width. The second element of the result structure must be of type
10536``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10537multiplication.
10538
10539Semantics:
10540""""""""""
10541
10542The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010543a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010544the first element of which is the multiplication, and the second element
10545of which is a bit specifying if the signed multiplication resulted in an
10546overflow.
10547
10548Examples:
10549"""""""""
10550
10551.. code-block:: llvm
10552
10553 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10554 %sum = extractvalue {i32, i1} %res, 0
10555 %obit = extractvalue {i32, i1} %res, 1
10556 br i1 %obit, label %overflow, label %normal
10557
10558'``llvm.umul.with.overflow.*``' Intrinsics
10559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10560
10561Syntax:
10562"""""""
10563
10564This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10565on any integer bit width.
10566
10567::
10568
10569 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10570 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10571 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10572
10573Overview:
10574"""""""""
10575
10576The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10577a unsigned multiplication of the two arguments, and indicate whether an
10578overflow occurred during the unsigned multiplication.
10579
10580Arguments:
10581""""""""""
10582
10583The arguments (%a and %b) and the first element of the result structure
10584may be of integer types of any bit width, but they must have the same
10585bit width. The second element of the result structure must be of type
10586``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10587multiplication.
10588
10589Semantics:
10590""""""""""
10591
10592The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010593an unsigned multiplication of the two arguments. They return a structure ---
10594the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010595element of which is a bit specifying if the unsigned multiplication
10596resulted in an overflow.
10597
10598Examples:
10599"""""""""
10600
10601.. code-block:: llvm
10602
10603 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10604 %sum = extractvalue {i32, i1} %res, 0
10605 %obit = extractvalue {i32, i1} %res, 1
10606 br i1 %obit, label %overflow, label %normal
10607
10608Specialised Arithmetic Intrinsics
10609---------------------------------
10610
Owen Anderson1056a922015-07-11 07:01:27 +000010611'``llvm.canonicalize.*``' Intrinsic
10612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10613
10614Syntax:
10615"""""""
10616
10617::
10618
10619 declare float @llvm.canonicalize.f32(float %a)
10620 declare double @llvm.canonicalize.f64(double %b)
10621
10622Overview:
10623"""""""""
10624
10625The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010626encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010627implementing certain numeric primitives such as frexp. The canonical encoding is
10628defined by IEEE-754-2008 to be:
10629
10630::
10631
10632 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010633 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010634 numbers, infinities, and NaNs, especially in decimal formats.
10635
10636This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010637conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010638according to section 6.2.
10639
10640Examples of non-canonical encodings:
10641
Sean Silvaa1190322015-08-06 22:56:48 +000010642- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010643 converted to a canonical representation per hardware-specific protocol.
10644- Many normal decimal floating point numbers have non-canonical alternative
10645 encodings.
10646- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10647 These are treated as non-canonical encodings of zero and with be flushed to
10648 a zero of the same sign by this operation.
10649
10650Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10651default exception handling must signal an invalid exception, and produce a
10652quiet NaN result.
10653
10654This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010655that the compiler does not constant fold the operation. Likewise, division by
106561.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010657-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10658
Sean Silvaa1190322015-08-06 22:56:48 +000010659``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010660
10661- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10662- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10663 to ``(x == y)``
10664
10665Additionally, the sign of zero must be conserved:
10666``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10667
10668The payload bits of a NaN must be conserved, with two exceptions.
10669First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010670must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010671usual methods.
10672
10673The canonicalization operation may be optimized away if:
10674
Sean Silvaa1190322015-08-06 22:56:48 +000010675- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010676 floating-point operation that is required by the standard to be canonical.
10677- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010678 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010679
Sean Silvab084af42012-12-07 10:36:55 +000010680'``llvm.fmuladd.*``' Intrinsic
10681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10682
10683Syntax:
10684"""""""
10685
10686::
10687
10688 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10689 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10690
10691Overview:
10692"""""""""
10693
10694The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010695expressions that can be fused if the code generator determines that (a) the
10696target instruction set has support for a fused operation, and (b) that the
10697fused operation is more efficient than the equivalent, separate pair of mul
10698and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010699
10700Arguments:
10701""""""""""
10702
10703The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10704multiplicands, a and b, and an addend c.
10705
10706Semantics:
10707""""""""""
10708
10709The expression:
10710
10711::
10712
10713 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10714
10715is equivalent to the expression a \* b + c, except that rounding will
10716not be performed between the multiplication and addition steps if the
10717code generator fuses the operations. Fusion is not guaranteed, even if
10718the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010719corresponding llvm.fma.\* intrinsic function should be used
10720instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010721
10722Examples:
10723"""""""""
10724
10725.. code-block:: llvm
10726
Tim Northover675a0962014-06-13 14:24:23 +000010727 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010728
James Molloy7395a812015-07-16 15:22:46 +000010729
10730'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10732
10733Syntax:
10734"""""""
10735This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10736
10737.. code-block:: llvm
10738
10739 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10740
10741
10742Overview:
10743"""""""""
10744
Mohammad Shahid18715532015-08-21 05:31:07 +000010745The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference of
10746the two operands, treating them both as unsigned integers.
James Molloy7395a812015-07-16 15:22:46 +000010747
Mohammad Shahid18715532015-08-21 05:31:07 +000010748The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
10749the two operands, treating them both as signed integers.
James Molloy7395a812015-07-16 15:22:46 +000010750
10751.. note::
10752
10753 These intrinsics are primarily used during the code generation stage of compilation.
10754 They are generated by compiler passes such as the Loop and SLP vectorizers.it is not
10755 recommended for users to create them manually.
10756
10757Arguments:
10758""""""""""
10759
10760Both intrinsics take two integer of the same bitwidth.
10761
10762Semantics:
10763""""""""""
10764
10765The expression::
10766
10767 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10768
10769is equivalent to::
10770
10771 %sub = sub <4 x i32> %a, %b
10772 %ispos = icmp ugt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10773 %neg = sub <4 x i32> zeroinitializer, %sub
10774 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10775
10776Similarly the expression::
10777
10778 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10779
10780is equivalent to::
10781
10782 %sub = sub nsw <4 x i32> %a, %b
10783 %ispos = icmp sgt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10784 %neg = sub nsw <4 x i32> zeroinitializer, %sub
10785 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10786
10787
Sean Silvab084af42012-12-07 10:36:55 +000010788Half Precision Floating Point Intrinsics
10789----------------------------------------
10790
10791For most target platforms, half precision floating point is a
10792storage-only format. This means that it is a dense encoding (in memory)
10793but does not support computation in the format.
10794
10795This means that code must first load the half-precision floating point
10796value as an i16, then convert it to float with
10797:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10798then be performed on the float value (including extending to double
10799etc). To store the value back to memory, it is first converted to float
10800if needed, then converted to i16 with
10801:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10802i16 value.
10803
10804.. _int_convert_to_fp16:
10805
10806'``llvm.convert.to.fp16``' Intrinsic
10807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10808
10809Syntax:
10810"""""""
10811
10812::
10813
Tim Northoverfd7e4242014-07-17 10:51:23 +000010814 declare i16 @llvm.convert.to.fp16.f32(float %a)
10815 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010816
10817Overview:
10818"""""""""
10819
Tim Northoverfd7e4242014-07-17 10:51:23 +000010820The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10821conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000010822
10823Arguments:
10824""""""""""
10825
10826The intrinsic function contains single argument - the value to be
10827converted.
10828
10829Semantics:
10830""""""""""
10831
Tim Northoverfd7e4242014-07-17 10:51:23 +000010832The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10833conventional floating point format to half precision floating point format. The
10834return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000010835
10836Examples:
10837"""""""""
10838
10839.. code-block:: llvm
10840
Tim Northoverfd7e4242014-07-17 10:51:23 +000010841 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000010842 store i16 %res, i16* @x, align 2
10843
10844.. _int_convert_from_fp16:
10845
10846'``llvm.convert.from.fp16``' Intrinsic
10847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10848
10849Syntax:
10850"""""""
10851
10852::
10853
Tim Northoverfd7e4242014-07-17 10:51:23 +000010854 declare float @llvm.convert.from.fp16.f32(i16 %a)
10855 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010856
10857Overview:
10858"""""""""
10859
10860The '``llvm.convert.from.fp16``' intrinsic function performs a
10861conversion from half precision floating point format to single precision
10862floating point format.
10863
10864Arguments:
10865""""""""""
10866
10867The intrinsic function contains single argument - the value to be
10868converted.
10869
10870Semantics:
10871""""""""""
10872
10873The '``llvm.convert.from.fp16``' intrinsic function performs a
10874conversion from half single precision floating point format to single
10875precision floating point format. The input half-float value is
10876represented by an ``i16`` value.
10877
10878Examples:
10879"""""""""
10880
10881.. code-block:: llvm
10882
David Blaikiec7aabbb2015-03-04 22:06:14 +000010883 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000010884 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010885
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000010886.. _dbg_intrinsics:
10887
Sean Silvab084af42012-12-07 10:36:55 +000010888Debugger Intrinsics
10889-------------------
10890
10891The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
10892prefix), are described in the `LLVM Source Level
10893Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
10894document.
10895
10896Exception Handling Intrinsics
10897-----------------------------
10898
10899The LLVM exception handling intrinsics (which all start with
10900``llvm.eh.`` prefix), are described in the `LLVM Exception
10901Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
10902
10903.. _int_trampoline:
10904
10905Trampoline Intrinsics
10906---------------------
10907
10908These intrinsics make it possible to excise one parameter, marked with
10909the :ref:`nest <nest>` attribute, from a function. The result is a
10910callable function pointer lacking the nest parameter - the caller does
10911not need to provide a value for it. Instead, the value to use is stored
10912in advance in a "trampoline", a block of memory usually allocated on the
10913stack, which also contains code to splice the nest value into the
10914argument list. This is used to implement the GCC nested function address
10915extension.
10916
10917For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
10918then the resulting function pointer has signature ``i32 (i32, i32)*``.
10919It can be created as follows:
10920
10921.. code-block:: llvm
10922
10923 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000010924 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000010925 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
10926 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
10927 %fp = bitcast i8* %p to i32 (i32, i32)*
10928
10929The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
10930``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
10931
10932.. _int_it:
10933
10934'``llvm.init.trampoline``' Intrinsic
10935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10936
10937Syntax:
10938"""""""
10939
10940::
10941
10942 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
10943
10944Overview:
10945"""""""""
10946
10947This fills the memory pointed to by ``tramp`` with executable code,
10948turning it into a trampoline.
10949
10950Arguments:
10951""""""""""
10952
10953The ``llvm.init.trampoline`` intrinsic takes three arguments, all
10954pointers. The ``tramp`` argument must point to a sufficiently large and
10955sufficiently aligned block of memory; this memory is written to by the
10956intrinsic. Note that the size and the alignment are target-specific -
10957LLVM currently provides no portable way of determining them, so a
10958front-end that generates this intrinsic needs to have some
10959target-specific knowledge. The ``func`` argument must hold a function
10960bitcast to an ``i8*``.
10961
10962Semantics:
10963""""""""""
10964
10965The block of memory pointed to by ``tramp`` is filled with target
10966dependent code, turning it into a function. Then ``tramp`` needs to be
10967passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
10968be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
10969function's signature is the same as that of ``func`` with any arguments
10970marked with the ``nest`` attribute removed. At most one such ``nest``
10971argument is allowed, and it must be of pointer type. Calling the new
10972function is equivalent to calling ``func`` with the same argument list,
10973but with ``nval`` used for the missing ``nest`` argument. If, after
10974calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
10975modified, then the effect of any later call to the returned function
10976pointer is undefined.
10977
10978.. _int_at:
10979
10980'``llvm.adjust.trampoline``' Intrinsic
10981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10982
10983Syntax:
10984"""""""
10985
10986::
10987
10988 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
10989
10990Overview:
10991"""""""""
10992
10993This performs any required machine-specific adjustment to the address of
10994a trampoline (passed as ``tramp``).
10995
10996Arguments:
10997""""""""""
10998
10999``tramp`` must point to a block of memory which already has trampoline
11000code filled in by a previous call to
11001:ref:`llvm.init.trampoline <int_it>`.
11002
11003Semantics:
11004""""""""""
11005
11006On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011007different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011008intrinsic returns the executable address corresponding to ``tramp``
11009after performing the required machine specific adjustments. The pointer
11010returned can then be :ref:`bitcast and executed <int_trampoline>`.
11011
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011012.. _int_mload_mstore:
11013
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011014Masked Vector Load and Store Intrinsics
11015---------------------------------------
11016
11017LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11018
11019.. _int_mload:
11020
11021'``llvm.masked.load.*``' Intrinsics
11022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11023
11024Syntax:
11025"""""""
11026This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11027
11028::
11029
11030 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11031 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11032
11033Overview:
11034"""""""""
11035
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011036Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011037
11038
11039Arguments:
11040""""""""""
11041
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011042The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011043
11044
11045Semantics:
11046""""""""""
11047
11048The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11049The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11050
11051
11052::
11053
11054 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011055
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011056 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011057 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011058 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011059
11060.. _int_mstore:
11061
11062'``llvm.masked.store.*``' Intrinsics
11063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11064
11065Syntax:
11066"""""""
11067This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11068
11069::
11070
11071 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11072 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11073
11074Overview:
11075"""""""""
11076
11077Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11078
11079Arguments:
11080""""""""""
11081
11082The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11083
11084
11085Semantics:
11086""""""""""
11087
11088The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11089The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11090
11091::
11092
11093 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011094
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011095 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011096 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011097 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11098 store <16 x float> %res, <16 x float>* %ptr, align 4
11099
11100
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011101Masked Vector Gather and Scatter Intrinsics
11102-------------------------------------------
11103
11104LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11105
11106.. _int_mgather:
11107
11108'``llvm.masked.gather.*``' Intrinsics
11109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11110
11111Syntax:
11112"""""""
11113This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11114
11115::
11116
11117 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11118 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11119
11120Overview:
11121"""""""""
11122
11123Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11124
11125
11126Arguments:
11127""""""""""
11128
11129The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11130
11131
11132Semantics:
11133""""""""""
11134
11135The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11136The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11137
11138
11139::
11140
11141 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11142
11143 ;; The gather with all-true mask is equivalent to the following instruction sequence
11144 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11145 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11146 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11147 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11148
11149 %val0 = load double, double* %ptr0, align 8
11150 %val1 = load double, double* %ptr1, align 8
11151 %val2 = load double, double* %ptr2, align 8
11152 %val3 = load double, double* %ptr3, align 8
11153
11154 %vec0 = insertelement <4 x double>undef, %val0, 0
11155 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11156 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11157 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11158
11159.. _int_mscatter:
11160
11161'``llvm.masked.scatter.*``' Intrinsics
11162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11163
11164Syntax:
11165"""""""
11166This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11167
11168::
11169
11170 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11171 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11172
11173Overview:
11174"""""""""
11175
11176Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11177
11178Arguments:
11179""""""""""
11180
11181The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11182
11183
11184Semantics:
11185""""""""""
11186
11187The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11188
11189::
11190
11191 ;; This instruction unconditionaly stores data vector in multiple addresses
11192 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11193
11194 ;; It is equivalent to a list of scalar stores
11195 %val0 = extractelement <8 x i32> %value, i32 0
11196 %val1 = extractelement <8 x i32> %value, i32 1
11197 ..
11198 %val7 = extractelement <8 x i32> %value, i32 7
11199 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11200 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11201 ..
11202 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11203 ;; Note: the order of the following stores is important when they overlap:
11204 store i32 %val0, i32* %ptr0, align 4
11205 store i32 %val1, i32* %ptr1, align 4
11206 ..
11207 store i32 %val7, i32* %ptr7, align 4
11208
11209
Sean Silvab084af42012-12-07 10:36:55 +000011210Memory Use Markers
11211------------------
11212
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011213This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011214memory objects and ranges where variables are immutable.
11215
Reid Klecknera534a382013-12-19 02:14:12 +000011216.. _int_lifestart:
11217
Sean Silvab084af42012-12-07 10:36:55 +000011218'``llvm.lifetime.start``' Intrinsic
11219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11220
11221Syntax:
11222"""""""
11223
11224::
11225
11226 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11227
11228Overview:
11229"""""""""
11230
11231The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11232object's lifetime.
11233
11234Arguments:
11235""""""""""
11236
11237The first argument is a constant integer representing the size of the
11238object, or -1 if it is variable sized. The second argument is a pointer
11239to the object.
11240
11241Semantics:
11242""""""""""
11243
11244This intrinsic indicates that before this point in the code, the value
11245of the memory pointed to by ``ptr`` is dead. This means that it is known
11246to never be used and has an undefined value. A load from the pointer
11247that precedes this intrinsic can be replaced with ``'undef'``.
11248
Reid Klecknera534a382013-12-19 02:14:12 +000011249.. _int_lifeend:
11250
Sean Silvab084af42012-12-07 10:36:55 +000011251'``llvm.lifetime.end``' Intrinsic
11252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11253
11254Syntax:
11255"""""""
11256
11257::
11258
11259 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11260
11261Overview:
11262"""""""""
11263
11264The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11265object's lifetime.
11266
11267Arguments:
11268""""""""""
11269
11270The first argument is a constant integer representing the size of the
11271object, or -1 if it is variable sized. The second argument is a pointer
11272to the object.
11273
11274Semantics:
11275""""""""""
11276
11277This intrinsic indicates that after this point in the code, the value of
11278the memory pointed to by ``ptr`` is dead. This means that it is known to
11279never be used and has an undefined value. Any stores into the memory
11280object following this intrinsic may be removed as dead.
11281
11282'``llvm.invariant.start``' Intrinsic
11283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11284
11285Syntax:
11286"""""""
11287
11288::
11289
11290 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11291
11292Overview:
11293"""""""""
11294
11295The '``llvm.invariant.start``' intrinsic specifies that the contents of
11296a memory object will not change.
11297
11298Arguments:
11299""""""""""
11300
11301The first argument is a constant integer representing the size of the
11302object, or -1 if it is variable sized. The second argument is a pointer
11303to the object.
11304
11305Semantics:
11306""""""""""
11307
11308This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11309the return value, the referenced memory location is constant and
11310unchanging.
11311
11312'``llvm.invariant.end``' Intrinsic
11313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11314
11315Syntax:
11316"""""""
11317
11318::
11319
11320 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11321
11322Overview:
11323"""""""""
11324
11325The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11326memory object are mutable.
11327
11328Arguments:
11329""""""""""
11330
11331The first argument is the matching ``llvm.invariant.start`` intrinsic.
11332The second argument is a constant integer representing the size of the
11333object, or -1 if it is variable sized and the third argument is a
11334pointer to the object.
11335
11336Semantics:
11337""""""""""
11338
11339This intrinsic indicates that the memory is mutable again.
11340
11341General Intrinsics
11342------------------
11343
11344This class of intrinsics is designed to be generic and has no specific
11345purpose.
11346
11347'``llvm.var.annotation``' Intrinsic
11348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11349
11350Syntax:
11351"""""""
11352
11353::
11354
11355 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11356
11357Overview:
11358"""""""""
11359
11360The '``llvm.var.annotation``' intrinsic.
11361
11362Arguments:
11363""""""""""
11364
11365The first argument is a pointer to a value, the second is a pointer to a
11366global string, the third is a pointer to a global string which is the
11367source file name, and the last argument is the line number.
11368
11369Semantics:
11370""""""""""
11371
11372This intrinsic allows annotation of local variables with arbitrary
11373strings. This can be useful for special purpose optimizations that want
11374to look for these annotations. These have no other defined use; they are
11375ignored by code generation and optimization.
11376
Michael Gottesman88d18832013-03-26 00:34:27 +000011377'``llvm.ptr.annotation.*``' Intrinsic
11378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11379
11380Syntax:
11381"""""""
11382
11383This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11384pointer to an integer of any width. *NOTE* you must specify an address space for
11385the pointer. The identifier for the default address space is the integer
11386'``0``'.
11387
11388::
11389
11390 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11391 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11392 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11393 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11394 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11395
11396Overview:
11397"""""""""
11398
11399The '``llvm.ptr.annotation``' intrinsic.
11400
11401Arguments:
11402""""""""""
11403
11404The first argument is a pointer to an integer value of arbitrary bitwidth
11405(result of some expression), the second is a pointer to a global string, the
11406third is a pointer to a global string which is the source file name, and the
11407last argument is the line number. It returns the value of the first argument.
11408
11409Semantics:
11410""""""""""
11411
11412This intrinsic allows annotation of a pointer to an integer with arbitrary
11413strings. This can be useful for special purpose optimizations that want to look
11414for these annotations. These have no other defined use; they are ignored by code
11415generation and optimization.
11416
Sean Silvab084af42012-12-07 10:36:55 +000011417'``llvm.annotation.*``' Intrinsic
11418^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11419
11420Syntax:
11421"""""""
11422
11423This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11424any integer bit width.
11425
11426::
11427
11428 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11429 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11430 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11431 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11432 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11433
11434Overview:
11435"""""""""
11436
11437The '``llvm.annotation``' intrinsic.
11438
11439Arguments:
11440""""""""""
11441
11442The first argument is an integer value (result of some expression), the
11443second is a pointer to a global string, the third is a pointer to a
11444global string which is the source file name, and the last argument is
11445the line number. It returns the value of the first argument.
11446
11447Semantics:
11448""""""""""
11449
11450This intrinsic allows annotations to be put on arbitrary expressions
11451with arbitrary strings. This can be useful for special purpose
11452optimizations that want to look for these annotations. These have no
11453other defined use; they are ignored by code generation and optimization.
11454
11455'``llvm.trap``' Intrinsic
11456^^^^^^^^^^^^^^^^^^^^^^^^^
11457
11458Syntax:
11459"""""""
11460
11461::
11462
11463 declare void @llvm.trap() noreturn nounwind
11464
11465Overview:
11466"""""""""
11467
11468The '``llvm.trap``' intrinsic.
11469
11470Arguments:
11471""""""""""
11472
11473None.
11474
11475Semantics:
11476""""""""""
11477
11478This intrinsic is lowered to the target dependent trap instruction. If
11479the target does not have a trap instruction, this intrinsic will be
11480lowered to a call of the ``abort()`` function.
11481
11482'``llvm.debugtrap``' Intrinsic
11483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11484
11485Syntax:
11486"""""""
11487
11488::
11489
11490 declare void @llvm.debugtrap() nounwind
11491
11492Overview:
11493"""""""""
11494
11495The '``llvm.debugtrap``' intrinsic.
11496
11497Arguments:
11498""""""""""
11499
11500None.
11501
11502Semantics:
11503""""""""""
11504
11505This intrinsic is lowered to code which is intended to cause an
11506execution trap with the intention of requesting the attention of a
11507debugger.
11508
11509'``llvm.stackprotector``' Intrinsic
11510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11511
11512Syntax:
11513"""""""
11514
11515::
11516
11517 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11518
11519Overview:
11520"""""""""
11521
11522The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11523onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11524is placed on the stack before local variables.
11525
11526Arguments:
11527""""""""""
11528
11529The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11530The first argument is the value loaded from the stack guard
11531``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11532enough space to hold the value of the guard.
11533
11534Semantics:
11535""""""""""
11536
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011537This intrinsic causes the prologue/epilogue inserter to force the position of
11538the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11539to ensure that if a local variable on the stack is overwritten, it will destroy
11540the value of the guard. When the function exits, the guard on the stack is
11541checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11542different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11543calling the ``__stack_chk_fail()`` function.
11544
11545'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011547
11548Syntax:
11549"""""""
11550
11551::
11552
11553 declare void @llvm.stackprotectorcheck(i8** <guard>)
11554
11555Overview:
11556"""""""""
11557
11558The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011559created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011560``__stack_chk_fail()`` function.
11561
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011562Arguments:
11563""""""""""
11564
11565The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11566the variable ``@__stack_chk_guard``.
11567
11568Semantics:
11569""""""""""
11570
11571This intrinsic is provided to perform the stack protector check by comparing
11572``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11573values do not match call the ``__stack_chk_fail()`` function.
11574
11575The reason to provide this as an IR level intrinsic instead of implementing it
11576via other IR operations is that in order to perform this operation at the IR
11577level without an intrinsic, one would need to create additional basic blocks to
11578handle the success/failure cases. This makes it difficult to stop the stack
11579protector check from disrupting sibling tail calls in Codegen. With this
11580intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011581codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011582
Sean Silvab084af42012-12-07 10:36:55 +000011583'``llvm.objectsize``' Intrinsic
11584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11585
11586Syntax:
11587"""""""
11588
11589::
11590
11591 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11592 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11593
11594Overview:
11595"""""""""
11596
11597The ``llvm.objectsize`` intrinsic is designed to provide information to
11598the optimizers to determine at compile time whether a) an operation
11599(like memcpy) will overflow a buffer that corresponds to an object, or
11600b) that a runtime check for overflow isn't necessary. An object in this
11601context means an allocation of a specific class, structure, array, or
11602other object.
11603
11604Arguments:
11605""""""""""
11606
11607The ``llvm.objectsize`` intrinsic takes two arguments. The first
11608argument is a pointer to or into the ``object``. The second argument is
11609a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11610or -1 (if false) when the object size is unknown. The second argument
11611only accepts constants.
11612
11613Semantics:
11614""""""""""
11615
11616The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11617the size of the object concerned. If the size cannot be determined at
11618compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11619on the ``min`` argument).
11620
11621'``llvm.expect``' Intrinsic
11622^^^^^^^^^^^^^^^^^^^^^^^^^^^
11623
11624Syntax:
11625"""""""
11626
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011627This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11628integer bit width.
11629
Sean Silvab084af42012-12-07 10:36:55 +000011630::
11631
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011632 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011633 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11634 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11635
11636Overview:
11637"""""""""
11638
11639The ``llvm.expect`` intrinsic provides information about expected (the
11640most probable) value of ``val``, which can be used by optimizers.
11641
11642Arguments:
11643""""""""""
11644
11645The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11646a value. The second argument is an expected value, this needs to be a
11647constant value, variables are not allowed.
11648
11649Semantics:
11650""""""""""
11651
11652This intrinsic is lowered to the ``val``.
11653
Philip Reamese0e90832015-04-26 22:23:12 +000011654.. _int_assume:
11655
Hal Finkel93046912014-07-25 21:13:35 +000011656'``llvm.assume``' Intrinsic
11657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11658
11659Syntax:
11660"""""""
11661
11662::
11663
11664 declare void @llvm.assume(i1 %cond)
11665
11666Overview:
11667"""""""""
11668
11669The ``llvm.assume`` allows the optimizer to assume that the provided
11670condition is true. This information can then be used in simplifying other parts
11671of the code.
11672
11673Arguments:
11674""""""""""
11675
11676The condition which the optimizer may assume is always true.
11677
11678Semantics:
11679""""""""""
11680
11681The intrinsic allows the optimizer to assume that the provided condition is
11682always true whenever the control flow reaches the intrinsic call. No code is
11683generated for this intrinsic, and instructions that contribute only to the
11684provided condition are not used for code generation. If the condition is
11685violated during execution, the behavior is undefined.
11686
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011687Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011688used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11689only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011690if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011691sufficient overall improvement in code quality. For this reason,
11692``llvm.assume`` should not be used to document basic mathematical invariants
11693that the optimizer can otherwise deduce or facts that are of little use to the
11694optimizer.
11695
Peter Collingbournee6909c82015-02-20 20:30:47 +000011696.. _bitset.test:
11697
11698'``llvm.bitset.test``' Intrinsic
11699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11700
11701Syntax:
11702"""""""
11703
11704::
11705
11706 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11707
11708
11709Arguments:
11710""""""""""
11711
11712The first argument is a pointer to be tested. The second argument is a
11713metadata string containing the name of a :doc:`bitset <BitSets>`.
11714
11715Overview:
11716"""""""""
11717
11718The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11719member of the given bitset.
11720
Sean Silvab084af42012-12-07 10:36:55 +000011721'``llvm.donothing``' Intrinsic
11722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11723
11724Syntax:
11725"""""""
11726
11727::
11728
11729 declare void @llvm.donothing() nounwind readnone
11730
11731Overview:
11732"""""""""
11733
Juergen Ributzkac9161192014-10-23 22:36:13 +000011734The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11735two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11736with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011737
11738Arguments:
11739""""""""""
11740
11741None.
11742
11743Semantics:
11744""""""""""
11745
11746This intrinsic does nothing, and it's removed by optimizers and ignored
11747by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011748
11749Stack Map Intrinsics
11750--------------------
11751
11752LLVM provides experimental intrinsics to support runtime patching
11753mechanisms commonly desired in dynamic language JITs. These intrinsics
11754are described in :doc:`StackMaps`.