blob: 756d411b53fd466257d674e5a38c878f630fb1bf [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Sean Silva706fba52015-08-06 22:56:24 +0000693The argument list is a comma separated sequence of arguments where each
694argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
Rafael Espindola464fe022014-07-30 22:51:54 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Sean Silvaa1190322015-08-06 22:56:48 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000750that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000825with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000831COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000897 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000932 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000933 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000941 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001030 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001037 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001073index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001090of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
Sean Silvaa1190322015-08-06 22:56:48 +00001097A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001111have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001116definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Sean Silvaa1190322015-08-06 22:56:48 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
1222 Transformations that are execution model agnostic may only move or
1223 tranform this call if the final location is control equivalent to its
1224 original position in the program, where control equivalence is defined as
1225 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001226``inlinehint``
1227 This attribute indicates that the source code contained a hint that
1228 inlining this function is desirable (such as the "inline" keyword in
1229 C/C++). It is just a hint; it imposes no requirements on the
1230 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001231``jumptable``
1232 This attribute indicates that the function should be added to a
1233 jump-instruction table at code-generation time, and that all address-taken
1234 references to this function should be replaced with a reference to the
1235 appropriate jump-instruction-table function pointer. Note that this creates
1236 a new pointer for the original function, which means that code that depends
1237 on function-pointer identity can break. So, any function annotated with
1238 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001239``minsize``
1240 This attribute suggests that optimization passes and code generator
1241 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001242 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001243 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001244``naked``
1245 This attribute disables prologue / epilogue emission for the
1246 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001247``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001248 This indicates that the callee function at a call site is not recognized as
1249 a built-in function. LLVM will retain the original call and not replace it
1250 with equivalent code based on the semantics of the built-in function, unless
1251 the call site uses the ``builtin`` attribute. This is valid at call sites
1252 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001253``noduplicate``
1254 This attribute indicates that calls to the function cannot be
1255 duplicated. A call to a ``noduplicate`` function may be moved
1256 within its parent function, but may not be duplicated within
1257 its parent function.
1258
1259 A function containing a ``noduplicate`` call may still
1260 be an inlining candidate, provided that the call is not
1261 duplicated by inlining. That implies that the function has
1262 internal linkage and only has one call site, so the original
1263 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001264``noimplicitfloat``
1265 This attributes disables implicit floating point instructions.
1266``noinline``
1267 This attribute indicates that the inliner should never inline this
1268 function in any situation. This attribute may not be used together
1269 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001270``nonlazybind``
1271 This attribute suppresses lazy symbol binding for the function. This
1272 may make calls to the function faster, at the cost of extra program
1273 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001274``noredzone``
1275 This attribute indicates that the code generator should not use a
1276 red zone, even if the target-specific ABI normally permits it.
1277``noreturn``
1278 This function attribute indicates that the function never returns
1279 normally. This produces undefined behavior at runtime if the
1280 function ever does dynamically return.
1281``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001282 This function attribute indicates that the function never raises an
1283 exception. If the function does raise an exception, its runtime
1284 behavior is undefined. However, functions marked nounwind may still
1285 trap or generate asynchronous exceptions. Exception handling schemes
1286 that are recognized by LLVM to handle asynchronous exceptions, such
1287 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288``optnone``
1289 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291 exception of interprocedural optimization passes.
1292 This attribute cannot be used together with the ``alwaysinline``
1293 attribute; this attribute is also incompatible
1294 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001295
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 This attribute requires the ``noinline`` attribute to be specified on
1297 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001298 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``optsize``
1301 This attribute suggests that optimization passes and code generator
1302 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001303 and otherwise do optimizations specifically to reduce code size as
1304 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001305``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001306 On a function, this attribute indicates that the function computes its
1307 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001308 without dereferencing any pointer arguments or otherwise accessing
1309 any mutable state (e.g. memory, control registers, etc) visible to
1310 caller functions. It does not write through any pointer arguments
1311 (including ``byval`` arguments) and never changes any state visible
1312 to callers. This means that it cannot unwind exceptions by calling
1313 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001314
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001315 On an argument, this attribute indicates that the function does not
1316 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001317 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001318``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001319 On a function, this attribute indicates that the function does not write
1320 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001321 modify any state (e.g. memory, control registers, etc) visible to
1322 caller functions. It may dereference pointer arguments and read
1323 state that may be set in the caller. A readonly function always
1324 returns the same value (or unwinds an exception identically) when
1325 called with the same set of arguments and global state. It cannot
1326 unwind an exception by calling the ``C++`` exception throwing
1327 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001328
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On an argument, this attribute indicates that the function does not write
1330 through this pointer argument, even though it may write to the memory that
1331 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001332``argmemonly``
1333 This attribute indicates that the only memory accesses inside function are
1334 loads and stores from objects pointed to by its pointer-typed arguments,
1335 with arbitrary offsets. Or in other words, all memory operations in the
1336 function can refer to memory only using pointers based on its function
1337 arguments.
1338 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1339 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001340``returns_twice``
1341 This attribute indicates that this function can return twice. The C
1342 ``setjmp`` is an example of such a function. The compiler disables
1343 some optimizations (like tail calls) in the caller of these
1344 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001345``safestack``
1346 This attribute indicates that
1347 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1348 protection is enabled for this function.
1349
1350 If a function that has a ``safestack`` attribute is inlined into a
1351 function that doesn't have a ``safestack`` attribute or which has an
1352 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1353 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001354``sanitize_address``
1355 This attribute indicates that AddressSanitizer checks
1356 (dynamic address safety analysis) are enabled for this function.
1357``sanitize_memory``
1358 This attribute indicates that MemorySanitizer checks (dynamic detection
1359 of accesses to uninitialized memory) are enabled for this function.
1360``sanitize_thread``
1361 This attribute indicates that ThreadSanitizer checks
1362 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001363``ssp``
1364 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001365 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001366 placed on the stack before the local variables that's checked upon
1367 return from the function to see if it has been overwritten. A
1368 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001370
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001371 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1372 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1373 - Calls to alloca() with variable sizes or constant sizes greater than
1374 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378
Sean Silvab084af42012-12-07 10:36:55 +00001379 If a function that has an ``ssp`` attribute is inlined into a
1380 function that doesn't have an ``ssp`` attribute, then the resulting
1381 function will have an ``ssp`` attribute.
1382``sspreq``
1383 This attribute indicates that the function should *always* emit a
1384 stack smashing protector. This overrides the ``ssp`` function
1385 attribute.
1386
Josh Magee24c7f062014-02-01 01:36:16 +00001387 Variables that are identified as requiring a protector will be arranged
1388 on the stack such that they are adjacent to the stack protector guard.
1389 The specific layout rules are:
1390
1391 #. Large arrays and structures containing large arrays
1392 (``>= ssp-buffer-size``) are closest to the stack protector.
1393 #. Small arrays and structures containing small arrays
1394 (``< ssp-buffer-size``) are 2nd closest to the protector.
1395 #. Variables that have had their address taken are 3rd closest to the
1396 protector.
1397
Sean Silvab084af42012-12-07 10:36:55 +00001398 If a function that has an ``sspreq`` attribute is inlined into a
1399 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001400 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1401 an ``sspreq`` attribute.
1402``sspstrong``
1403 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001405 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001406 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001407
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001408 - Arrays of any size and type
1409 - Aggregates containing an array of any size and type.
1410 - Calls to alloca().
1411 - Local variables that have had their address taken.
1412
Josh Magee24c7f062014-02-01 01:36:16 +00001413 Variables that are identified as requiring a protector will be arranged
1414 on the stack such that they are adjacent to the stack protector guard.
1415 The specific layout rules are:
1416
1417 #. Large arrays and structures containing large arrays
1418 (``>= ssp-buffer-size``) are closest to the stack protector.
1419 #. Small arrays and structures containing small arrays
1420 (``< ssp-buffer-size``) are 2nd closest to the protector.
1421 #. Variables that have had their address taken are 3rd closest to the
1422 protector.
1423
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001424 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001425
1426 If a function that has an ``sspstrong`` attribute is inlined into a
1427 function that doesn't have an ``sspstrong`` attribute, then the
1428 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001429``"thunk"``
1430 This attribute indicates that the function will delegate to some other
1431 function with a tail call. The prototype of a thunk should not be used for
1432 optimization purposes. The caller is expected to cast the thunk prototype to
1433 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001434``uwtable``
1435 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001436 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001437 show that no exceptions passes by it. This is normally the case for
1438 the ELF x86-64 abi, but it can be disabled for some compilation
1439 units.
Sean Silvab084af42012-12-07 10:36:55 +00001440
1441.. _moduleasm:
1442
1443Module-Level Inline Assembly
1444----------------------------
1445
1446Modules may contain "module-level inline asm" blocks, which corresponds
1447to the GCC "file scope inline asm" blocks. These blocks are internally
1448concatenated by LLVM and treated as a single unit, but may be separated
1449in the ``.ll`` file if desired. The syntax is very simple:
1450
1451.. code-block:: llvm
1452
1453 module asm "inline asm code goes here"
1454 module asm "more can go here"
1455
1456The strings can contain any character by escaping non-printable
1457characters. The escape sequence used is simply "\\xx" where "xx" is the
1458two digit hex code for the number.
1459
James Y Knightbc832ed2015-07-08 18:08:36 +00001460Note that the assembly string *must* be parseable by LLVM's integrated assembler
1461(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001462
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001463.. _langref_datalayout:
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465Data Layout
1466-----------
1467
1468A module may specify a target specific data layout string that specifies
1469how data is to be laid out in memory. The syntax for the data layout is
1470simply:
1471
1472.. code-block:: llvm
1473
1474 target datalayout = "layout specification"
1475
1476The *layout specification* consists of a list of specifications
1477separated by the minus sign character ('-'). Each specification starts
1478with a letter and may include other information after the letter to
1479define some aspect of the data layout. The specifications accepted are
1480as follows:
1481
1482``E``
1483 Specifies that the target lays out data in big-endian form. That is,
1484 the bits with the most significance have the lowest address
1485 location.
1486``e``
1487 Specifies that the target lays out data in little-endian form. That
1488 is, the bits with the least significance have the lowest address
1489 location.
1490``S<size>``
1491 Specifies the natural alignment of the stack in bits. Alignment
1492 promotion of stack variables is limited to the natural stack
1493 alignment to avoid dynamic stack realignment. The stack alignment
1494 must be a multiple of 8-bits. If omitted, the natural stack
1495 alignment defaults to "unspecified", which does not prevent any
1496 alignment promotions.
1497``p[n]:<size>:<abi>:<pref>``
1498 This specifies the *size* of a pointer and its ``<abi>`` and
1499 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001500 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001501 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001502 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001503``i<size>:<abi>:<pref>``
1504 This specifies the alignment for an integer type of a given bit
1505 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1506``v<size>:<abi>:<pref>``
1507 This specifies the alignment for a vector type of a given bit
1508 ``<size>``.
1509``f<size>:<abi>:<pref>``
1510 This specifies the alignment for a floating point type of a given bit
1511 ``<size>``. Only values of ``<size>`` that are supported by the target
1512 will work. 32 (float) and 64 (double) are supported on all targets; 80
1513 or 128 (different flavors of long double) are also supported on some
1514 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001515``a:<abi>:<pref>``
1516 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001517``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001518 If present, specifies that llvm names are mangled in the output. The
1519 options are
1520
1521 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1522 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1523 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1524 symbols get a ``_`` prefix.
1525 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1526 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001527``n<size1>:<size2>:<size3>...``
1528 This specifies a set of native integer widths for the target CPU in
1529 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1530 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1531 this set are considered to support most general arithmetic operations
1532 efficiently.
1533
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001534On every specification that takes a ``<abi>:<pref>``, specifying the
1535``<pref>`` alignment is optional. If omitted, the preceding ``:``
1536should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1537
Sean Silvab084af42012-12-07 10:36:55 +00001538When constructing the data layout for a given target, LLVM starts with a
1539default set of specifications which are then (possibly) overridden by
1540the specifications in the ``datalayout`` keyword. The default
1541specifications are given in this list:
1542
1543- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001544- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1545- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1546 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001547- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001548- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1549- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1550- ``i16:16:16`` - i16 is 16-bit aligned
1551- ``i32:32:32`` - i32 is 32-bit aligned
1552- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1553 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001554- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001555- ``f32:32:32`` - float is 32-bit aligned
1556- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001557- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001558- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1559- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001560- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001561
1562When LLVM is determining the alignment for a given type, it uses the
1563following rules:
1564
1565#. If the type sought is an exact match for one of the specifications,
1566 that specification is used.
1567#. If no match is found, and the type sought is an integer type, then
1568 the smallest integer type that is larger than the bitwidth of the
1569 sought type is used. If none of the specifications are larger than
1570 the bitwidth then the largest integer type is used. For example,
1571 given the default specifications above, the i7 type will use the
1572 alignment of i8 (next largest) while both i65 and i256 will use the
1573 alignment of i64 (largest specified).
1574#. If no match is found, and the type sought is a vector type, then the
1575 largest vector type that is smaller than the sought vector type will
1576 be used as a fall back. This happens because <128 x double> can be
1577 implemented in terms of 64 <2 x double>, for example.
1578
1579The function of the data layout string may not be what you expect.
1580Notably, this is not a specification from the frontend of what alignment
1581the code generator should use.
1582
1583Instead, if specified, the target data layout is required to match what
1584the ultimate *code generator* expects. This string is used by the
1585mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001586what the ultimate code generator uses. There is no way to generate IR
1587that does not embed this target-specific detail into the IR. If you
1588don't specify the string, the default specifications will be used to
1589generate a Data Layout and the optimization phases will operate
1590accordingly and introduce target specificity into the IR with respect to
1591these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001592
Bill Wendling5cc90842013-10-18 23:41:25 +00001593.. _langref_triple:
1594
1595Target Triple
1596-------------
1597
1598A module may specify a target triple string that describes the target
1599host. The syntax for the target triple is simply:
1600
1601.. code-block:: llvm
1602
1603 target triple = "x86_64-apple-macosx10.7.0"
1604
1605The *target triple* string consists of a series of identifiers delimited
1606by the minus sign character ('-'). The canonical forms are:
1607
1608::
1609
1610 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1611 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1612
1613This information is passed along to the backend so that it generates
1614code for the proper architecture. It's possible to override this on the
1615command line with the ``-mtriple`` command line option.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617.. _pointeraliasing:
1618
1619Pointer Aliasing Rules
1620----------------------
1621
1622Any memory access must be done through a pointer value associated with
1623an address range of the memory access, otherwise the behavior is
1624undefined. Pointer values are associated with address ranges according
1625to the following rules:
1626
1627- A pointer value is associated with the addresses associated with any
1628 value it is *based* on.
1629- An address of a global variable is associated with the address range
1630 of the variable's storage.
1631- The result value of an allocation instruction is associated with the
1632 address range of the allocated storage.
1633- A null pointer in the default address-space is associated with no
1634 address.
1635- An integer constant other than zero or a pointer value returned from
1636 a function not defined within LLVM may be associated with address
1637 ranges allocated through mechanisms other than those provided by
1638 LLVM. Such ranges shall not overlap with any ranges of addresses
1639 allocated by mechanisms provided by LLVM.
1640
1641A pointer value is *based* on another pointer value according to the
1642following rules:
1643
1644- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001645 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001646- The result value of a ``bitcast`` is *based* on the operand of the
1647 ``bitcast``.
1648- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1649 values that contribute (directly or indirectly) to the computation of
1650 the pointer's value.
1651- The "*based* on" relationship is transitive.
1652
1653Note that this definition of *"based"* is intentionally similar to the
1654definition of *"based"* in C99, though it is slightly weaker.
1655
1656LLVM IR does not associate types with memory. The result type of a
1657``load`` merely indicates the size and alignment of the memory from
1658which to load, as well as the interpretation of the value. The first
1659operand type of a ``store`` similarly only indicates the size and
1660alignment of the store.
1661
1662Consequently, type-based alias analysis, aka TBAA, aka
1663``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1664:ref:`Metadata <metadata>` may be used to encode additional information
1665which specialized optimization passes may use to implement type-based
1666alias analysis.
1667
1668.. _volatile:
1669
1670Volatile Memory Accesses
1671------------------------
1672
1673Certain memory accesses, such as :ref:`load <i_load>`'s,
1674:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1675marked ``volatile``. The optimizers must not change the number of
1676volatile operations or change their order of execution relative to other
1677volatile operations. The optimizers *may* change the order of volatile
1678operations relative to non-volatile operations. This is not Java's
1679"volatile" and has no cross-thread synchronization behavior.
1680
Andrew Trick89fc5a62013-01-30 21:19:35 +00001681IR-level volatile loads and stores cannot safely be optimized into
1682llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1683flagged volatile. Likewise, the backend should never split or merge
1684target-legal volatile load/store instructions.
1685
Andrew Trick7e6f9282013-01-31 00:49:39 +00001686.. admonition:: Rationale
1687
1688 Platforms may rely on volatile loads and stores of natively supported
1689 data width to be executed as single instruction. For example, in C
1690 this holds for an l-value of volatile primitive type with native
1691 hardware support, but not necessarily for aggregate types. The
1692 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001693 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001694 do not violate the frontend's contract with the language.
1695
Sean Silvab084af42012-12-07 10:36:55 +00001696.. _memmodel:
1697
1698Memory Model for Concurrent Operations
1699--------------------------------------
1700
1701The LLVM IR does not define any way to start parallel threads of
1702execution or to register signal handlers. Nonetheless, there are
1703platform-specific ways to create them, and we define LLVM IR's behavior
1704in their presence. This model is inspired by the C++0x memory model.
1705
1706For a more informal introduction to this model, see the :doc:`Atomics`.
1707
1708We define a *happens-before* partial order as the least partial order
1709that
1710
1711- Is a superset of single-thread program order, and
1712- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1713 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1714 techniques, like pthread locks, thread creation, thread joining,
1715 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1716 Constraints <ordering>`).
1717
1718Note that program order does not introduce *happens-before* edges
1719between a thread and signals executing inside that thread.
1720
1721Every (defined) read operation (load instructions, memcpy, atomic
1722loads/read-modify-writes, etc.) R reads a series of bytes written by
1723(defined) write operations (store instructions, atomic
1724stores/read-modify-writes, memcpy, etc.). For the purposes of this
1725section, initialized globals are considered to have a write of the
1726initializer which is atomic and happens before any other read or write
1727of the memory in question. For each byte of a read R, R\ :sub:`byte`
1728may see any write to the same byte, except:
1729
1730- If write\ :sub:`1` happens before write\ :sub:`2`, and
1731 write\ :sub:`2` happens before R\ :sub:`byte`, then
1732 R\ :sub:`byte` does not see write\ :sub:`1`.
1733- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1734 R\ :sub:`byte` does not see write\ :sub:`3`.
1735
1736Given that definition, R\ :sub:`byte` is defined as follows:
1737
1738- If R is volatile, the result is target-dependent. (Volatile is
1739 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001740 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001741 like normal memory. It does not generally provide cross-thread
1742 synchronization.)
1743- Otherwise, if there is no write to the same byte that happens before
1744 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1745- Otherwise, if R\ :sub:`byte` may see exactly one write,
1746 R\ :sub:`byte` returns the value written by that write.
1747- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1748 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1749 Memory Ordering Constraints <ordering>` section for additional
1750 constraints on how the choice is made.
1751- Otherwise R\ :sub:`byte` returns ``undef``.
1752
1753R returns the value composed of the series of bytes it read. This
1754implies that some bytes within the value may be ``undef`` **without**
1755the entire value being ``undef``. Note that this only defines the
1756semantics of the operation; it doesn't mean that targets will emit more
1757than one instruction to read the series of bytes.
1758
1759Note that in cases where none of the atomic intrinsics are used, this
1760model places only one restriction on IR transformations on top of what
1761is required for single-threaded execution: introducing a store to a byte
1762which might not otherwise be stored is not allowed in general.
1763(Specifically, in the case where another thread might write to and read
1764from an address, introducing a store can change a load that may see
1765exactly one write into a load that may see multiple writes.)
1766
1767.. _ordering:
1768
1769Atomic Memory Ordering Constraints
1770----------------------------------
1771
1772Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1773:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1774:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001775ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001776the same address they *synchronize with*. These semantics are borrowed
1777from Java and C++0x, but are somewhat more colloquial. If these
1778descriptions aren't precise enough, check those specs (see spec
1779references in the :doc:`atomics guide <Atomics>`).
1780:ref:`fence <i_fence>` instructions treat these orderings somewhat
1781differently since they don't take an address. See that instruction's
1782documentation for details.
1783
1784For a simpler introduction to the ordering constraints, see the
1785:doc:`Atomics`.
1786
1787``unordered``
1788 The set of values that can be read is governed by the happens-before
1789 partial order. A value cannot be read unless some operation wrote
1790 it. This is intended to provide a guarantee strong enough to model
1791 Java's non-volatile shared variables. This ordering cannot be
1792 specified for read-modify-write operations; it is not strong enough
1793 to make them atomic in any interesting way.
1794``monotonic``
1795 In addition to the guarantees of ``unordered``, there is a single
1796 total order for modifications by ``monotonic`` operations on each
1797 address. All modification orders must be compatible with the
1798 happens-before order. There is no guarantee that the modification
1799 orders can be combined to a global total order for the whole program
1800 (and this often will not be possible). The read in an atomic
1801 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1802 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1803 order immediately before the value it writes. If one atomic read
1804 happens before another atomic read of the same address, the later
1805 read must see the same value or a later value in the address's
1806 modification order. This disallows reordering of ``monotonic`` (or
1807 stronger) operations on the same address. If an address is written
1808 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1809 read that address repeatedly, the other threads must eventually see
1810 the write. This corresponds to the C++0x/C1x
1811 ``memory_order_relaxed``.
1812``acquire``
1813 In addition to the guarantees of ``monotonic``, a
1814 *synchronizes-with* edge may be formed with a ``release`` operation.
1815 This is intended to model C++'s ``memory_order_acquire``.
1816``release``
1817 In addition to the guarantees of ``monotonic``, if this operation
1818 writes a value which is subsequently read by an ``acquire``
1819 operation, it *synchronizes-with* that operation. (This isn't a
1820 complete description; see the C++0x definition of a release
1821 sequence.) This corresponds to the C++0x/C1x
1822 ``memory_order_release``.
1823``acq_rel`` (acquire+release)
1824 Acts as both an ``acquire`` and ``release`` operation on its
1825 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1826``seq_cst`` (sequentially consistent)
1827 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001828 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001829 writes), there is a global total order on all
1830 sequentially-consistent operations on all addresses, which is
1831 consistent with the *happens-before* partial order and with the
1832 modification orders of all the affected addresses. Each
1833 sequentially-consistent read sees the last preceding write to the
1834 same address in this global order. This corresponds to the C++0x/C1x
1835 ``memory_order_seq_cst`` and Java volatile.
1836
1837.. _singlethread:
1838
1839If an atomic operation is marked ``singlethread``, it only *synchronizes
1840with* or participates in modification and seq\_cst total orderings with
1841other operations running in the same thread (for example, in signal
1842handlers).
1843
1844.. _fastmath:
1845
1846Fast-Math Flags
1847---------------
1848
1849LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1850:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001851:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1852be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001853
1854``nnan``
1855 No NaNs - Allow optimizations to assume the arguments and result are not
1856 NaN. Such optimizations are required to retain defined behavior over
1857 NaNs, but the value of the result is undefined.
1858
1859``ninf``
1860 No Infs - Allow optimizations to assume the arguments and result are not
1861 +/-Inf. Such optimizations are required to retain defined behavior over
1862 +/-Inf, but the value of the result is undefined.
1863
1864``nsz``
1865 No Signed Zeros - Allow optimizations to treat the sign of a zero
1866 argument or result as insignificant.
1867
1868``arcp``
1869 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1870 argument rather than perform division.
1871
1872``fast``
1873 Fast - Allow algebraically equivalent transformations that may
1874 dramatically change results in floating point (e.g. reassociate). This
1875 flag implies all the others.
1876
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001877.. _uselistorder:
1878
1879Use-list Order Directives
1880-------------------------
1881
1882Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001883order to be recreated. ``<order-indexes>`` is a comma-separated list of
1884indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001885value's use-list is immediately sorted by these indexes.
1886
Sean Silvaa1190322015-08-06 22:56:48 +00001887Use-list directives may appear at function scope or global scope. They are not
1888instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001889function scope, they must appear after the terminator of the final basic block.
1890
1891If basic blocks have their address taken via ``blockaddress()`` expressions,
1892``uselistorder_bb`` can be used to reorder their use-lists from outside their
1893function's scope.
1894
1895:Syntax:
1896
1897::
1898
1899 uselistorder <ty> <value>, { <order-indexes> }
1900 uselistorder_bb @function, %block { <order-indexes> }
1901
1902:Examples:
1903
1904::
1905
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001906 define void @foo(i32 %arg1, i32 %arg2) {
1907 entry:
1908 ; ... instructions ...
1909 bb:
1910 ; ... instructions ...
1911
1912 ; At function scope.
1913 uselistorder i32 %arg1, { 1, 0, 2 }
1914 uselistorder label %bb, { 1, 0 }
1915 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001916
1917 ; At global scope.
1918 uselistorder i32* @global, { 1, 2, 0 }
1919 uselistorder i32 7, { 1, 0 }
1920 uselistorder i32 (i32) @bar, { 1, 0 }
1921 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1922
Sean Silvab084af42012-12-07 10:36:55 +00001923.. _typesystem:
1924
1925Type System
1926===========
1927
1928The LLVM type system is one of the most important features of the
1929intermediate representation. Being typed enables a number of
1930optimizations to be performed on the intermediate representation
1931directly, without having to do extra analyses on the side before the
1932transformation. A strong type system makes it easier to read the
1933generated code and enables novel analyses and transformations that are
1934not feasible to perform on normal three address code representations.
1935
Rafael Espindola08013342013-12-07 19:34:20 +00001936.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001937
Rafael Espindola08013342013-12-07 19:34:20 +00001938Void Type
1939---------
Sean Silvab084af42012-12-07 10:36:55 +00001940
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001941:Overview:
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943
1944The void type does not represent any value and has no size.
1945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Syntax:
1947
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949::
1950
1951 void
Sean Silvab084af42012-12-07 10:36:55 +00001952
1953
Rafael Espindola08013342013-12-07 19:34:20 +00001954.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola08013342013-12-07 19:34:20 +00001956Function Type
1957-------------
Sean Silvab084af42012-12-07 10:36:55 +00001958
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001959:Overview:
1960
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962The function type can be thought of as a function signature. It consists of a
1963return type and a list of formal parameter types. The return type of a function
1964type is a void type or first class type --- except for :ref:`label <t_label>`
1965and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola08013342013-12-07 19:34:20 +00001969::
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola08013342013-12-07 19:34:20 +00001973...where '``<parameter list>``' is a comma-separated list of type
1974specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00001975indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00001976argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00001977handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00001978except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001979
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001980:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001981
Rafael Espindola08013342013-12-07 19:34:20 +00001982+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1983| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1984+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1985| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1986+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1987| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1988+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1989| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1990+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1991
1992.. _t_firstclass:
1993
1994First Class Types
1995-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997The :ref:`first class <t_firstclass>` types are perhaps the most important.
1998Values of these types are the only ones which can be produced by
1999instructions.
2000
Rafael Espindola08013342013-12-07 19:34:20 +00002001.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola08013342013-12-07 19:34:20 +00002003Single Value Types
2004^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002005
Rafael Espindola08013342013-12-07 19:34:20 +00002006These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002007
2008.. _t_integer:
2009
2010Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
2015The integer type is a very simple type that simply specifies an
2016arbitrary bit width for the integer type desired. Any bit width from 1
2017bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021::
2022
2023 iN
2024
2025The number of bits the integer will occupy is specified by the ``N``
2026value.
2027
2028Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002029*********
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031+----------------+------------------------------------------------+
2032| ``i1`` | a single-bit integer. |
2033+----------------+------------------------------------------------+
2034| ``i32`` | a 32-bit integer. |
2035+----------------+------------------------------------------------+
2036| ``i1942652`` | a really big integer of over 1 million bits. |
2037+----------------+------------------------------------------------+
2038
2039.. _t_floating:
2040
2041Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002042""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002043
2044.. list-table::
2045 :header-rows: 1
2046
2047 * - Type
2048 - Description
2049
2050 * - ``half``
2051 - 16-bit floating point value
2052
2053 * - ``float``
2054 - 32-bit floating point value
2055
2056 * - ``double``
2057 - 64-bit floating point value
2058
2059 * - ``fp128``
2060 - 128-bit floating point value (112-bit mantissa)
2061
2062 * - ``x86_fp80``
2063 - 80-bit floating point value (X87)
2064
2065 * - ``ppc_fp128``
2066 - 128-bit floating point value (two 64-bits)
2067
Reid Kleckner9a16d082014-03-05 02:41:37 +00002068X86_mmx Type
2069""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002074machine. The operations allowed on it are quite limited: parameters and
2075return values, load and store, and bitcast. User-specified MMX
2076instructions are represented as intrinsic or asm calls with arguments
2077and/or results of this type. There are no arrays, vectors or constants
2078of this type.
2079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002081
2082::
2083
Reid Kleckner9a16d082014-03-05 02:41:37 +00002084 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002085
Sean Silvab084af42012-12-07 10:36:55 +00002086
Rafael Espindola08013342013-12-07 19:34:20 +00002087.. _t_pointer:
2088
2089Pointer Type
2090""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola08013342013-12-07 19:34:20 +00002094The pointer type is used to specify memory locations. Pointers are
2095commonly used to reference objects in memory.
2096
2097Pointer types may have an optional address space attribute defining the
2098numbered address space where the pointed-to object resides. The default
2099address space is number zero. The semantics of non-zero address spaces
2100are target-specific.
2101
2102Note that LLVM does not permit pointers to void (``void*``) nor does it
2103permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002104
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002105:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002106
2107::
2108
Rafael Espindola08013342013-12-07 19:34:20 +00002109 <type> *
2110
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002111:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002112
2113+-------------------------+--------------------------------------------------------------------------------------------------------------+
2114| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2115+-------------------------+--------------------------------------------------------------------------------------------------------------+
2116| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2117+-------------------------+--------------------------------------------------------------------------------------------------------------+
2118| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2119+-------------------------+--------------------------------------------------------------------------------------------------------------+
2120
2121.. _t_vector:
2122
2123Vector Type
2124"""""""""""
2125
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002126:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002127
2128A vector type is a simple derived type that represents a vector of
2129elements. Vector types are used when multiple primitive data are
2130operated in parallel using a single instruction (SIMD). A vector type
2131requires a size (number of elements) and an underlying primitive data
2132type. Vector types are considered :ref:`first class <t_firstclass>`.
2133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002135
2136::
2137
2138 < <# elements> x <elementtype> >
2139
2140The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002141elementtype may be any integer, floating point or pointer type. Vectors
2142of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002145
2146+-------------------+--------------------------------------------------+
2147| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2148+-------------------+--------------------------------------------------+
2149| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2150+-------------------+--------------------------------------------------+
2151| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2152+-------------------+--------------------------------------------------+
2153| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2154+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156.. _t_label:
2157
2158Label Type
2159^^^^^^^^^^
2160
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002161:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163The label type represents code labels.
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167::
2168
2169 label
2170
David Majnemerb611e3f2015-08-14 05:09:07 +00002171.. _t_token:
2172
2173Token Type
2174^^^^^^^^^^
2175
2176:Overview:
2177
2178The token type is used when a value is associated with an instruction
2179but all uses of the value must not attempt to introspect or obscure it.
2180As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2181:ref:`select <i_select>` of type token.
2182
2183:Syntax:
2184
2185::
2186
2187 token
2188
2189
2190
Sean Silvab084af42012-12-07 10:36:55 +00002191.. _t_metadata:
2192
2193Metadata Type
2194^^^^^^^^^^^^^
2195
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002196:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002197
2198The metadata type represents embedded metadata. No derived types may be
2199created from metadata except for :ref:`function <t_function>` arguments.
2200
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002201:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002202
2203::
2204
2205 metadata
2206
Sean Silvab084af42012-12-07 10:36:55 +00002207.. _t_aggregate:
2208
2209Aggregate Types
2210^^^^^^^^^^^^^^^
2211
2212Aggregate Types are a subset of derived types that can contain multiple
2213member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2214aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2215aggregate types.
2216
2217.. _t_array:
2218
2219Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002220""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002221
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002222:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002223
2224The array type is a very simple derived type that arranges elements
2225sequentially in memory. The array type requires a size (number of
2226elements) and an underlying data type.
2227
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002228:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002229
2230::
2231
2232 [<# elements> x <elementtype>]
2233
2234The number of elements is a constant integer value; ``elementtype`` may
2235be any type with a size.
2236
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002237:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002238
2239+------------------+--------------------------------------+
2240| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2241+------------------+--------------------------------------+
2242| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2243+------------------+--------------------------------------+
2244| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2245+------------------+--------------------------------------+
2246
2247Here are some examples of multidimensional arrays:
2248
2249+-----------------------------+----------------------------------------------------------+
2250| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2251+-----------------------------+----------------------------------------------------------+
2252| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2253+-----------------------------+----------------------------------------------------------+
2254| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2255+-----------------------------+----------------------------------------------------------+
2256
2257There is no restriction on indexing beyond the end of the array implied
2258by a static type (though there are restrictions on indexing beyond the
2259bounds of an allocated object in some cases). This means that
2260single-dimension 'variable sized array' addressing can be implemented in
2261LLVM with a zero length array type. An implementation of 'pascal style
2262arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2263example.
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _t_struct:
2266
2267Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002268""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002271
2272The structure type is used to represent a collection of data members
2273together in memory. The elements of a structure may be any type that has
2274a size.
2275
2276Structures in memory are accessed using '``load``' and '``store``' by
2277getting a pointer to a field with the '``getelementptr``' instruction.
2278Structures in registers are accessed using the '``extractvalue``' and
2279'``insertvalue``' instructions.
2280
2281Structures may optionally be "packed" structures, which indicate that
2282the alignment of the struct is one byte, and that there is no padding
2283between the elements. In non-packed structs, padding between field types
2284is inserted as defined by the DataLayout string in the module, which is
2285required to match what the underlying code generator expects.
2286
2287Structures can either be "literal" or "identified". A literal structure
2288is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2289identified types are always defined at the top level with a name.
2290Literal types are uniqued by their contents and can never be recursive
2291or opaque since there is no way to write one. Identified types can be
2292recursive, can be opaqued, and are never uniqued.
2293
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002294:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002295
2296::
2297
2298 %T1 = type { <type list> } ; Identified normal struct type
2299 %T2 = type <{ <type list> }> ; Identified packed struct type
2300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002302
2303+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2304| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2305+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002306| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002307+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2308| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2309+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2310
2311.. _t_opaque:
2312
2313Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002314""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002316:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002317
2318Opaque structure types are used to represent named structure types that
2319do not have a body specified. This corresponds (for example) to the C
2320notion of a forward declared structure.
2321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002323
2324::
2325
2326 %X = type opaque
2327 %52 = type opaque
2328
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002329:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002330
2331+--------------+-------------------+
2332| ``opaque`` | An opaque type. |
2333+--------------+-------------------+
2334
Sean Silva1703e702014-04-08 21:06:22 +00002335.. _constants:
2336
Sean Silvab084af42012-12-07 10:36:55 +00002337Constants
2338=========
2339
2340LLVM has several different basic types of constants. This section
2341describes them all and their syntax.
2342
2343Simple Constants
2344----------------
2345
2346**Boolean constants**
2347 The two strings '``true``' and '``false``' are both valid constants
2348 of the ``i1`` type.
2349**Integer constants**
2350 Standard integers (such as '4') are constants of the
2351 :ref:`integer <t_integer>` type. Negative numbers may be used with
2352 integer types.
2353**Floating point constants**
2354 Floating point constants use standard decimal notation (e.g.
2355 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2356 hexadecimal notation (see below). The assembler requires the exact
2357 decimal value of a floating-point constant. For example, the
2358 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2359 decimal in binary. Floating point constants must have a :ref:`floating
2360 point <t_floating>` type.
2361**Null pointer constants**
2362 The identifier '``null``' is recognized as a null pointer constant
2363 and must be of :ref:`pointer type <t_pointer>`.
2364
2365The one non-intuitive notation for constants is the hexadecimal form of
2366floating point constants. For example, the form
2367'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2368than) '``double 4.5e+15``'. The only time hexadecimal floating point
2369constants are required (and the only time that they are generated by the
2370disassembler) is when a floating point constant must be emitted but it
2371cannot be represented as a decimal floating point number in a reasonable
2372number of digits. For example, NaN's, infinities, and other special
2373values are represented in their IEEE hexadecimal format so that assembly
2374and disassembly do not cause any bits to change in the constants.
2375
2376When using the hexadecimal form, constants of types half, float, and
2377double are represented using the 16-digit form shown above (which
2378matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002379must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002380precision, respectively. Hexadecimal format is always used for long
2381double, and there are three forms of long double. The 80-bit format used
2382by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2383128-bit format used by PowerPC (two adjacent doubles) is represented by
2384``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002385represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2386will only work if they match the long double format on your target.
2387The IEEE 16-bit format (half precision) is represented by ``0xH``
2388followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2389(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002390
Reid Kleckner9a16d082014-03-05 02:41:37 +00002391There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002392
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002393.. _complexconstants:
2394
Sean Silvab084af42012-12-07 10:36:55 +00002395Complex Constants
2396-----------------
2397
2398Complex constants are a (potentially recursive) combination of simple
2399constants and smaller complex constants.
2400
2401**Structure constants**
2402 Structure constants are represented with notation similar to
2403 structure type definitions (a comma separated list of elements,
2404 surrounded by braces (``{}``)). For example:
2405 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2406 "``@G = external global i32``". Structure constants must have
2407 :ref:`structure type <t_struct>`, and the number and types of elements
2408 must match those specified by the type.
2409**Array constants**
2410 Array constants are represented with notation similar to array type
2411 definitions (a comma separated list of elements, surrounded by
2412 square brackets (``[]``)). For example:
2413 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2414 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002415 match those specified by the type. As a special case, character array
2416 constants may also be represented as a double-quoted string using the ``c``
2417 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002418**Vector constants**
2419 Vector constants are represented with notation similar to vector
2420 type definitions (a comma separated list of elements, surrounded by
2421 less-than/greater-than's (``<>``)). For example:
2422 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2423 must have :ref:`vector type <t_vector>`, and the number and types of
2424 elements must match those specified by the type.
2425**Zero initialization**
2426 The string '``zeroinitializer``' can be used to zero initialize a
2427 value to zero of *any* type, including scalar and
2428 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2429 having to print large zero initializers (e.g. for large arrays) and
2430 is always exactly equivalent to using explicit zero initializers.
2431**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002432 A metadata node is a constant tuple without types. For example:
2433 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002434 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2435 Unlike other typed constants that are meant to be interpreted as part of
2436 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002437 information such as debug info.
2438
2439Global Variable and Function Addresses
2440--------------------------------------
2441
2442The addresses of :ref:`global variables <globalvars>` and
2443:ref:`functions <functionstructure>` are always implicitly valid
2444(link-time) constants. These constants are explicitly referenced when
2445the :ref:`identifier for the global <identifiers>` is used and always have
2446:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2447file:
2448
2449.. code-block:: llvm
2450
2451 @X = global i32 17
2452 @Y = global i32 42
2453 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2454
2455.. _undefvalues:
2456
2457Undefined Values
2458----------------
2459
2460The string '``undef``' can be used anywhere a constant is expected, and
2461indicates that the user of the value may receive an unspecified
2462bit-pattern. Undefined values may be of any type (other than '``label``'
2463or '``void``') and be used anywhere a constant is permitted.
2464
2465Undefined values are useful because they indicate to the compiler that
2466the program is well defined no matter what value is used. This gives the
2467compiler more freedom to optimize. Here are some examples of
2468(potentially surprising) transformations that are valid (in pseudo IR):
2469
2470.. code-block:: llvm
2471
2472 %A = add %X, undef
2473 %B = sub %X, undef
2474 %C = xor %X, undef
2475 Safe:
2476 %A = undef
2477 %B = undef
2478 %C = undef
2479
2480This is safe because all of the output bits are affected by the undef
2481bits. Any output bit can have a zero or one depending on the input bits.
2482
2483.. code-block:: llvm
2484
2485 %A = or %X, undef
2486 %B = and %X, undef
2487 Safe:
2488 %A = -1
2489 %B = 0
2490 Unsafe:
2491 %A = undef
2492 %B = undef
2493
2494These logical operations have bits that are not always affected by the
2495input. For example, if ``%X`` has a zero bit, then the output of the
2496'``and``' operation will always be a zero for that bit, no matter what
2497the corresponding bit from the '``undef``' is. As such, it is unsafe to
2498optimize or assume that the result of the '``and``' is '``undef``'.
2499However, it is safe to assume that all bits of the '``undef``' could be
25000, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2501all the bits of the '``undef``' operand to the '``or``' could be set,
2502allowing the '``or``' to be folded to -1.
2503
2504.. code-block:: llvm
2505
2506 %A = select undef, %X, %Y
2507 %B = select undef, 42, %Y
2508 %C = select %X, %Y, undef
2509 Safe:
2510 %A = %X (or %Y)
2511 %B = 42 (or %Y)
2512 %C = %Y
2513 Unsafe:
2514 %A = undef
2515 %B = undef
2516 %C = undef
2517
2518This set of examples shows that undefined '``select``' (and conditional
2519branch) conditions can go *either way*, but they have to come from one
2520of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2521both known to have a clear low bit, then ``%A`` would have to have a
2522cleared low bit. However, in the ``%C`` example, the optimizer is
2523allowed to assume that the '``undef``' operand could be the same as
2524``%Y``, allowing the whole '``select``' to be eliminated.
2525
2526.. code-block:: llvm
2527
2528 %A = xor undef, undef
2529
2530 %B = undef
2531 %C = xor %B, %B
2532
2533 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002534 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002535 %F = icmp gte %D, 4
2536
2537 Safe:
2538 %A = undef
2539 %B = undef
2540 %C = undef
2541 %D = undef
2542 %E = undef
2543 %F = undef
2544
2545This example points out that two '``undef``' operands are not
2546necessarily the same. This can be surprising to people (and also matches
2547C semantics) where they assume that "``X^X``" is always zero, even if
2548``X`` is undefined. This isn't true for a number of reasons, but the
2549short answer is that an '``undef``' "variable" can arbitrarily change
2550its value over its "live range". This is true because the variable
2551doesn't actually *have a live range*. Instead, the value is logically
2552read from arbitrary registers that happen to be around when needed, so
2553the value is not necessarily consistent over time. In fact, ``%A`` and
2554``%C`` need to have the same semantics or the core LLVM "replace all
2555uses with" concept would not hold.
2556
2557.. code-block:: llvm
2558
2559 %A = fdiv undef, %X
2560 %B = fdiv %X, undef
2561 Safe:
2562 %A = undef
2563 b: unreachable
2564
2565These examples show the crucial difference between an *undefined value*
2566and *undefined behavior*. An undefined value (like '``undef``') is
2567allowed to have an arbitrary bit-pattern. This means that the ``%A``
2568operation can be constant folded to '``undef``', because the '``undef``'
2569could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2570However, in the second example, we can make a more aggressive
2571assumption: because the ``undef`` is allowed to be an arbitrary value,
2572we are allowed to assume that it could be zero. Since a divide by zero
2573has *undefined behavior*, we are allowed to assume that the operation
2574does not execute at all. This allows us to delete the divide and all
2575code after it. Because the undefined operation "can't happen", the
2576optimizer can assume that it occurs in dead code.
2577
2578.. code-block:: llvm
2579
2580 a: store undef -> %X
2581 b: store %X -> undef
2582 Safe:
2583 a: <deleted>
2584 b: unreachable
2585
2586These examples reiterate the ``fdiv`` example: a store *of* an undefined
2587value can be assumed to not have any effect; we can assume that the
2588value is overwritten with bits that happen to match what was already
2589there. However, a store *to* an undefined location could clobber
2590arbitrary memory, therefore, it has undefined behavior.
2591
2592.. _poisonvalues:
2593
2594Poison Values
2595-------------
2596
2597Poison values are similar to :ref:`undef values <undefvalues>`, however
2598they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002599that cannot evoke side effects has nevertheless detected a condition
2600that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602There is currently no way of representing a poison value in the IR; they
2603only exist when produced by operations such as :ref:`add <i_add>` with
2604the ``nsw`` flag.
2605
2606Poison value behavior is defined in terms of value *dependence*:
2607
2608- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2609- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2610 their dynamic predecessor basic block.
2611- Function arguments depend on the corresponding actual argument values
2612 in the dynamic callers of their functions.
2613- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2614 instructions that dynamically transfer control back to them.
2615- :ref:`Invoke <i_invoke>` instructions depend on the
2616 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2617 call instructions that dynamically transfer control back to them.
2618- Non-volatile loads and stores depend on the most recent stores to all
2619 of the referenced memory addresses, following the order in the IR
2620 (including loads and stores implied by intrinsics such as
2621 :ref:`@llvm.memcpy <int_memcpy>`.)
2622- An instruction with externally visible side effects depends on the
2623 most recent preceding instruction with externally visible side
2624 effects, following the order in the IR. (This includes :ref:`volatile
2625 operations <volatile>`.)
2626- An instruction *control-depends* on a :ref:`terminator
2627 instruction <terminators>` if the terminator instruction has
2628 multiple successors and the instruction is always executed when
2629 control transfers to one of the successors, and may not be executed
2630 when control is transferred to another.
2631- Additionally, an instruction also *control-depends* on a terminator
2632 instruction if the set of instructions it otherwise depends on would
2633 be different if the terminator had transferred control to a different
2634 successor.
2635- Dependence is transitive.
2636
Richard Smith32dbdf62014-07-31 04:25:36 +00002637Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2638with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002639on a poison value has undefined behavior.
2640
2641Here are some examples:
2642
2643.. code-block:: llvm
2644
2645 entry:
2646 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2647 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002648 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002649 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2650
2651 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002652 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002653
2654 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2655
2656 %narrowaddr = bitcast i32* @g to i16*
2657 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002658 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2659 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002660
2661 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2662 br i1 %cmp, label %true, label %end ; Branch to either destination.
2663
2664 true:
2665 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2666 ; it has undefined behavior.
2667 br label %end
2668
2669 end:
2670 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2671 ; Both edges into this PHI are
2672 ; control-dependent on %cmp, so this
2673 ; always results in a poison value.
2674
2675 store volatile i32 0, i32* @g ; This would depend on the store in %true
2676 ; if %cmp is true, or the store in %entry
2677 ; otherwise, so this is undefined behavior.
2678
2679 br i1 %cmp, label %second_true, label %second_end
2680 ; The same branch again, but this time the
2681 ; true block doesn't have side effects.
2682
2683 second_true:
2684 ; No side effects!
2685 ret void
2686
2687 second_end:
2688 store volatile i32 0, i32* @g ; This time, the instruction always depends
2689 ; on the store in %end. Also, it is
2690 ; control-equivalent to %end, so this is
2691 ; well-defined (ignoring earlier undefined
2692 ; behavior in this example).
2693
2694.. _blockaddress:
2695
2696Addresses of Basic Blocks
2697-------------------------
2698
2699``blockaddress(@function, %block)``
2700
2701The '``blockaddress``' constant computes the address of the specified
2702basic block in the specified function, and always has an ``i8*`` type.
2703Taking the address of the entry block is illegal.
2704
2705This value only has defined behavior when used as an operand to the
2706':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2707against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002708undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002709no label is equal to the null pointer. This may be passed around as an
2710opaque pointer sized value as long as the bits are not inspected. This
2711allows ``ptrtoint`` and arithmetic to be performed on these values so
2712long as the original value is reconstituted before the ``indirectbr``
2713instruction.
2714
2715Finally, some targets may provide defined semantics when using the value
2716as the operand to an inline assembly, but that is target specific.
2717
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002718.. _constantexprs:
2719
Sean Silvab084af42012-12-07 10:36:55 +00002720Constant Expressions
2721--------------------
2722
2723Constant expressions are used to allow expressions involving other
2724constants to be used as constants. Constant expressions may be of any
2725:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2726that does not have side effects (e.g. load and call are not supported).
2727The following is the syntax for constant expressions:
2728
2729``trunc (CST to TYPE)``
2730 Truncate a constant to another type. The bit size of CST must be
2731 larger than the bit size of TYPE. Both types must be integers.
2732``zext (CST to TYPE)``
2733 Zero extend a constant to another type. The bit size of CST must be
2734 smaller than the bit size of TYPE. Both types must be integers.
2735``sext (CST to TYPE)``
2736 Sign extend a constant to another type. The bit size of CST must be
2737 smaller than the bit size of TYPE. Both types must be integers.
2738``fptrunc (CST to TYPE)``
2739 Truncate a floating point constant to another floating point type.
2740 The size of CST must be larger than the size of TYPE. Both types
2741 must be floating point.
2742``fpext (CST to TYPE)``
2743 Floating point extend a constant to another type. The size of CST
2744 must be smaller or equal to the size of TYPE. Both types must be
2745 floating point.
2746``fptoui (CST to TYPE)``
2747 Convert a floating point constant to the corresponding unsigned
2748 integer constant. TYPE must be a scalar or vector integer type. CST
2749 must be of scalar or vector floating point type. Both CST and TYPE
2750 must be scalars, or vectors of the same number of elements. If the
2751 value won't fit in the integer type, the results are undefined.
2752``fptosi (CST to TYPE)``
2753 Convert a floating point constant to the corresponding signed
2754 integer constant. TYPE must be a scalar or vector integer type. CST
2755 must be of scalar or vector floating point type. Both CST and TYPE
2756 must be scalars, or vectors of the same number of elements. If the
2757 value won't fit in the integer type, the results are undefined.
2758``uitofp (CST to TYPE)``
2759 Convert an unsigned integer constant to the corresponding floating
2760 point constant. TYPE must be a scalar or vector floating point type.
2761 CST must be of scalar or vector integer type. Both CST and TYPE must
2762 be scalars, or vectors of the same number of elements. If the value
2763 won't fit in the floating point type, the results are undefined.
2764``sitofp (CST to TYPE)``
2765 Convert a signed integer constant to the corresponding floating
2766 point constant. TYPE must be a scalar or vector floating point type.
2767 CST must be of scalar or vector integer type. Both CST and TYPE must
2768 be scalars, or vectors of the same number of elements. If the value
2769 won't fit in the floating point type, the results are undefined.
2770``ptrtoint (CST to TYPE)``
2771 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002772 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002773 pointer type. The ``CST`` value is zero extended, truncated, or
2774 unchanged to make it fit in ``TYPE``.
2775``inttoptr (CST to TYPE)``
2776 Convert an integer constant to a pointer constant. TYPE must be a
2777 pointer type. CST must be of integer type. The CST value is zero
2778 extended, truncated, or unchanged to make it fit in a pointer size.
2779 This one is *really* dangerous!
2780``bitcast (CST to TYPE)``
2781 Convert a constant, CST, to another TYPE. The constraints of the
2782 operands are the same as those for the :ref:`bitcast
2783 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002784``addrspacecast (CST to TYPE)``
2785 Convert a constant pointer or constant vector of pointer, CST, to another
2786 TYPE in a different address space. The constraints of the operands are the
2787 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002788``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002789 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2790 constants. As with the :ref:`getelementptr <i_getelementptr>`
2791 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002792 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002793``select (COND, VAL1, VAL2)``
2794 Perform the :ref:`select operation <i_select>` on constants.
2795``icmp COND (VAL1, VAL2)``
2796 Performs the :ref:`icmp operation <i_icmp>` on constants.
2797``fcmp COND (VAL1, VAL2)``
2798 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2799``extractelement (VAL, IDX)``
2800 Perform the :ref:`extractelement operation <i_extractelement>` on
2801 constants.
2802``insertelement (VAL, ELT, IDX)``
2803 Perform the :ref:`insertelement operation <i_insertelement>` on
2804 constants.
2805``shufflevector (VEC1, VEC2, IDXMASK)``
2806 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2807 constants.
2808``extractvalue (VAL, IDX0, IDX1, ...)``
2809 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2810 constants. The index list is interpreted in a similar manner as
2811 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2812 least one index value must be specified.
2813``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2814 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2815 The index list is interpreted in a similar manner as indices in a
2816 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2817 value must be specified.
2818``OPCODE (LHS, RHS)``
2819 Perform the specified operation of the LHS and RHS constants. OPCODE
2820 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2821 binary <bitwiseops>` operations. The constraints on operands are
2822 the same as those for the corresponding instruction (e.g. no bitwise
2823 operations on floating point values are allowed).
2824
2825Other Values
2826============
2827
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002828.. _inlineasmexprs:
2829
Sean Silvab084af42012-12-07 10:36:55 +00002830Inline Assembler Expressions
2831----------------------------
2832
2833LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002834Inline Assembly <moduleasm>`) through the use of a special value. This value
2835represents the inline assembler as a template string (containing the
2836instructions to emit), a list of operand constraints (stored as a string), a
2837flag that indicates whether or not the inline asm expression has side effects,
2838and a flag indicating whether the function containing the asm needs to align its
2839stack conservatively.
2840
2841The template string supports argument substitution of the operands using "``$``"
2842followed by a number, to indicate substitution of the given register/memory
2843location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2844be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2845operand (See :ref:`inline-asm-modifiers`).
2846
2847A literal "``$``" may be included by using "``$$``" in the template. To include
2848other special characters into the output, the usual "``\XX``" escapes may be
2849used, just as in other strings. Note that after template substitution, the
2850resulting assembly string is parsed by LLVM's integrated assembler unless it is
2851disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2852syntax known to LLVM.
2853
2854LLVM's support for inline asm is modeled closely on the requirements of Clang's
2855GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2856modifier codes listed here are similar or identical to those in GCC's inline asm
2857support. However, to be clear, the syntax of the template and constraint strings
2858described here is *not* the same as the syntax accepted by GCC and Clang, and,
2859while most constraint letters are passed through as-is by Clang, some get
2860translated to other codes when converting from the C source to the LLVM
2861assembly.
2862
2863An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002864
2865.. code-block:: llvm
2866
2867 i32 (i32) asm "bswap $0", "=r,r"
2868
2869Inline assembler expressions may **only** be used as the callee operand
2870of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2871Thus, typically we have:
2872
2873.. code-block:: llvm
2874
2875 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2876
2877Inline asms with side effects not visible in the constraint list must be
2878marked as having side effects. This is done through the use of the
2879'``sideeffect``' keyword, like so:
2880
2881.. code-block:: llvm
2882
2883 call void asm sideeffect "eieio", ""()
2884
2885In some cases inline asms will contain code that will not work unless
2886the stack is aligned in some way, such as calls or SSE instructions on
2887x86, yet will not contain code that does that alignment within the asm.
2888The compiler should make conservative assumptions about what the asm
2889might contain and should generate its usual stack alignment code in the
2890prologue if the '``alignstack``' keyword is present:
2891
2892.. code-block:: llvm
2893
2894 call void asm alignstack "eieio", ""()
2895
2896Inline asms also support using non-standard assembly dialects. The
2897assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2898the inline asm is using the Intel dialect. Currently, ATT and Intel are
2899the only supported dialects. An example is:
2900
2901.. code-block:: llvm
2902
2903 call void asm inteldialect "eieio", ""()
2904
2905If multiple keywords appear the '``sideeffect``' keyword must come
2906first, the '``alignstack``' keyword second and the '``inteldialect``'
2907keyword last.
2908
James Y Knightbc832ed2015-07-08 18:08:36 +00002909Inline Asm Constraint String
2910^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2911
2912The constraint list is a comma-separated string, each element containing one or
2913more constraint codes.
2914
2915For each element in the constraint list an appropriate register or memory
2916operand will be chosen, and it will be made available to assembly template
2917string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2918second, etc.
2919
2920There are three different types of constraints, which are distinguished by a
2921prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2922constraints must always be given in that order: outputs first, then inputs, then
2923clobbers. They cannot be intermingled.
2924
2925There are also three different categories of constraint codes:
2926
2927- Register constraint. This is either a register class, or a fixed physical
2928 register. This kind of constraint will allocate a register, and if necessary,
2929 bitcast the argument or result to the appropriate type.
2930- Memory constraint. This kind of constraint is for use with an instruction
2931 taking a memory operand. Different constraints allow for different addressing
2932 modes used by the target.
2933- Immediate value constraint. This kind of constraint is for an integer or other
2934 immediate value which can be rendered directly into an instruction. The
2935 various target-specific constraints allow the selection of a value in the
2936 proper range for the instruction you wish to use it with.
2937
2938Output constraints
2939""""""""""""""""""
2940
2941Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2942indicates that the assembly will write to this operand, and the operand will
2943then be made available as a return value of the ``asm`` expression. Output
2944constraints do not consume an argument from the call instruction. (Except, see
2945below about indirect outputs).
2946
2947Normally, it is expected that no output locations are written to by the assembly
2948expression until *all* of the inputs have been read. As such, LLVM may assign
2949the same register to an output and an input. If this is not safe (e.g. if the
2950assembly contains two instructions, where the first writes to one output, and
2951the second reads an input and writes to a second output), then the "``&``"
2952modifier must be used (e.g. "``=&r``") to specify that the output is an
2953"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2954will not use the same register for any inputs (other than an input tied to this
2955output).
2956
2957Input constraints
2958"""""""""""""""""
2959
2960Input constraints do not have a prefix -- just the constraint codes. Each input
2961constraint will consume one argument from the call instruction. It is not
2962permitted for the asm to write to any input register or memory location (unless
2963that input is tied to an output). Note also that multiple inputs may all be
2964assigned to the same register, if LLVM can determine that they necessarily all
2965contain the same value.
2966
2967Instead of providing a Constraint Code, input constraints may also "tie"
2968themselves to an output constraint, by providing an integer as the constraint
2969string. Tied inputs still consume an argument from the call instruction, and
2970take up a position in the asm template numbering as is usual -- they will simply
2971be constrained to always use the same register as the output they've been tied
2972to. For example, a constraint string of "``=r,0``" says to assign a register for
2973output, and use that register as an input as well (it being the 0'th
2974constraint).
2975
2976It is permitted to tie an input to an "early-clobber" output. In that case, no
2977*other* input may share the same register as the input tied to the early-clobber
2978(even when the other input has the same value).
2979
2980You may only tie an input to an output which has a register constraint, not a
2981memory constraint. Only a single input may be tied to an output.
2982
2983There is also an "interesting" feature which deserves a bit of explanation: if a
2984register class constraint allocates a register which is too small for the value
2985type operand provided as input, the input value will be split into multiple
2986registers, and all of them passed to the inline asm.
2987
2988However, this feature is often not as useful as you might think.
2989
2990Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2991architectures that have instructions which operate on multiple consecutive
2992instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2993SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2994hardware then loads into both the named register, and the next register. This
2995feature of inline asm would not be useful to support that.)
2996
2997A few of the targets provide a template string modifier allowing explicit access
2998to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2999``D``). On such an architecture, you can actually access the second allocated
3000register (yet, still, not any subsequent ones). But, in that case, you're still
3001probably better off simply splitting the value into two separate operands, for
3002clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3003despite existing only for use with this feature, is not really a good idea to
3004use)
3005
3006Indirect inputs and outputs
3007"""""""""""""""""""""""""""
3008
3009Indirect output or input constraints can be specified by the "``*``" modifier
3010(which goes after the "``=``" in case of an output). This indicates that the asm
3011will write to or read from the contents of an *address* provided as an input
3012argument. (Note that in this way, indirect outputs act more like an *input* than
3013an output: just like an input, they consume an argument of the call expression,
3014rather than producing a return value. An indirect output constraint is an
3015"output" only in that the asm is expected to write to the contents of the input
3016memory location, instead of just read from it).
3017
3018This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3019address of a variable as a value.
3020
3021It is also possible to use an indirect *register* constraint, but only on output
3022(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3023value normally, and then, separately emit a store to the address provided as
3024input, after the provided inline asm. (It's not clear what value this
3025functionality provides, compared to writing the store explicitly after the asm
3026statement, and it can only produce worse code, since it bypasses many
3027optimization passes. I would recommend not using it.)
3028
3029
3030Clobber constraints
3031"""""""""""""""""""
3032
3033A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3034consume an input operand, nor generate an output. Clobbers cannot use any of the
3035general constraint code letters -- they may use only explicit register
3036constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3037"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3038memory locations -- not only the memory pointed to by a declared indirect
3039output.
3040
3041
3042Constraint Codes
3043""""""""""""""""
3044After a potential prefix comes constraint code, or codes.
3045
3046A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3047followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3048(e.g. "``{eax}``").
3049
3050The one and two letter constraint codes are typically chosen to be the same as
3051GCC's constraint codes.
3052
3053A single constraint may include one or more than constraint code in it, leaving
3054it up to LLVM to choose which one to use. This is included mainly for
3055compatibility with the translation of GCC inline asm coming from clang.
3056
3057There are two ways to specify alternatives, and either or both may be used in an
3058inline asm constraint list:
3059
30601) Append the codes to each other, making a constraint code set. E.g. "``im``"
3061 or "``{eax}m``". This means "choose any of the options in the set". The
3062 choice of constraint is made independently for each constraint in the
3063 constraint list.
3064
30652) Use "``|``" between constraint code sets, creating alternatives. Every
3066 constraint in the constraint list must have the same number of alternative
3067 sets. With this syntax, the same alternative in *all* of the items in the
3068 constraint list will be chosen together.
3069
3070Putting those together, you might have a two operand constraint string like
3071``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3072operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3073may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3074
3075However, the use of either of the alternatives features is *NOT* recommended, as
3076LLVM is not able to make an intelligent choice about which one to use. (At the
3077point it currently needs to choose, not enough information is available to do so
3078in a smart way.) Thus, it simply tries to make a choice that's most likely to
3079compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3080always choose to use memory, not registers). And, if given multiple registers,
3081or multiple register classes, it will simply choose the first one. (In fact, it
3082doesn't currently even ensure explicitly specified physical registers are
3083unique, so specifying multiple physical registers as alternatives, like
3084``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3085intended.)
3086
3087Supported Constraint Code List
3088""""""""""""""""""""""""""""""
3089
3090The constraint codes are, in general, expected to behave the same way they do in
3091GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3092inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3093and GCC likely indicates a bug in LLVM.
3094
3095Some constraint codes are typically supported by all targets:
3096
3097- ``r``: A register in the target's general purpose register class.
3098- ``m``: A memory address operand. It is target-specific what addressing modes
3099 are supported, typical examples are register, or register + register offset,
3100 or register + immediate offset (of some target-specific size).
3101- ``i``: An integer constant (of target-specific width). Allows either a simple
3102 immediate, or a relocatable value.
3103- ``n``: An integer constant -- *not* including relocatable values.
3104- ``s``: An integer constant, but allowing *only* relocatable values.
3105- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3106 useful to pass a label for an asm branch or call.
3107
3108 .. FIXME: but that surely isn't actually okay to jump out of an asm
3109 block without telling llvm about the control transfer???)
3110
3111- ``{register-name}``: Requires exactly the named physical register.
3112
3113Other constraints are target-specific:
3114
3115AArch64:
3116
3117- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3118- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3119 i.e. 0 to 4095 with optional shift by 12.
3120- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3121 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3122- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3123 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3124- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3125 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3126- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3127 32-bit register. This is a superset of ``K``: in addition to the bitmask
3128 immediate, also allows immediate integers which can be loaded with a single
3129 ``MOVZ`` or ``MOVL`` instruction.
3130- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3131 64-bit register. This is a superset of ``L``.
3132- ``Q``: Memory address operand must be in a single register (no
3133 offsets). (However, LLVM currently does this for the ``m`` constraint as
3134 well.)
3135- ``r``: A 32 or 64-bit integer register (W* or X*).
3136- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3137- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3138
3139AMDGPU:
3140
3141- ``r``: A 32 or 64-bit integer register.
3142- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3143- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3144
3145
3146All ARM modes:
3147
3148- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3149 operand. Treated the same as operand ``m``, at the moment.
3150
3151ARM and ARM's Thumb2 mode:
3152
3153- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3154- ``I``: An immediate integer valid for a data-processing instruction.
3155- ``J``: An immediate integer between -4095 and 4095.
3156- ``K``: An immediate integer whose bitwise inverse is valid for a
3157 data-processing instruction. (Can be used with template modifier "``B``" to
3158 print the inverted value).
3159- ``L``: An immediate integer whose negation is valid for a data-processing
3160 instruction. (Can be used with template modifier "``n``" to print the negated
3161 value).
3162- ``M``: A power of two or a integer between 0 and 32.
3163- ``N``: Invalid immediate constraint.
3164- ``O``: Invalid immediate constraint.
3165- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3166- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3167 as ``r``.
3168- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3169 invalid.
3170- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3171 ``d0-d31``, or ``q0-q15``.
3172- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3173 ``d0-d7``, or ``q0-q3``.
3174- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3175 ``s0-s31``.
3176
3177ARM's Thumb1 mode:
3178
3179- ``I``: An immediate integer between 0 and 255.
3180- ``J``: An immediate integer between -255 and -1.
3181- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3182 some amount.
3183- ``L``: An immediate integer between -7 and 7.
3184- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3185- ``N``: An immediate integer between 0 and 31.
3186- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3187- ``r``: A low 32-bit GPR register (``r0-r7``).
3188- ``l``: A low 32-bit GPR register (``r0-r7``).
3189- ``h``: A high GPR register (``r0-r7``).
3190- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3191 ``d0-d31``, or ``q0-q15``.
3192- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3193 ``d0-d7``, or ``q0-q3``.
3194- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3195 ``s0-s31``.
3196
3197
3198Hexagon:
3199
3200- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3201 at the moment.
3202- ``r``: A 32 or 64-bit register.
3203
3204MSP430:
3205
3206- ``r``: An 8 or 16-bit register.
3207
3208MIPS:
3209
3210- ``I``: An immediate signed 16-bit integer.
3211- ``J``: An immediate integer zero.
3212- ``K``: An immediate unsigned 16-bit integer.
3213- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3214- ``N``: An immediate integer between -65535 and -1.
3215- ``O``: An immediate signed 15-bit integer.
3216- ``P``: An immediate integer between 1 and 65535.
3217- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3218 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3219- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3220 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3221 ``m``.
3222- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3223 ``sc`` instruction on the given subtarget (details vary).
3224- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3225- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003226 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3227 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003228- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3229 ``25``).
3230- ``l``: The ``lo`` register, 32 or 64-bit.
3231- ``x``: Invalid.
3232
3233NVPTX:
3234
3235- ``b``: A 1-bit integer register.
3236- ``c`` or ``h``: A 16-bit integer register.
3237- ``r``: A 32-bit integer register.
3238- ``l`` or ``N``: A 64-bit integer register.
3239- ``f``: A 32-bit float register.
3240- ``d``: A 64-bit float register.
3241
3242
3243PowerPC:
3244
3245- ``I``: An immediate signed 16-bit integer.
3246- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3247- ``K``: An immediate unsigned 16-bit integer.
3248- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3249- ``M``: An immediate integer greater than 31.
3250- ``N``: An immediate integer that is an exact power of 2.
3251- ``O``: The immediate integer constant 0.
3252- ``P``: An immediate integer constant whose negation is a signed 16-bit
3253 constant.
3254- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3255 treated the same as ``m``.
3256- ``r``: A 32 or 64-bit integer register.
3257- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3258 ``R1-R31``).
3259- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3260 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3261- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3262 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3263 altivec vector register (``V0-V31``).
3264
3265 .. FIXME: is this a bug that v accepts QPX registers? I think this
3266 is supposed to only use the altivec vector registers?
3267
3268- ``y``: Condition register (``CR0-CR7``).
3269- ``wc``: An individual CR bit in a CR register.
3270- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3271 register set (overlapping both the floating-point and vector register files).
3272- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3273 set.
3274
3275Sparc:
3276
3277- ``I``: An immediate 13-bit signed integer.
3278- ``r``: A 32-bit integer register.
3279
3280SystemZ:
3281
3282- ``I``: An immediate unsigned 8-bit integer.
3283- ``J``: An immediate unsigned 12-bit integer.
3284- ``K``: An immediate signed 16-bit integer.
3285- ``L``: An immediate signed 20-bit integer.
3286- ``M``: An immediate integer 0x7fffffff.
3287- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3288 ``m``, at the moment.
3289- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3290- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3291 address context evaluates as zero).
3292- ``h``: A 32-bit value in the high part of a 64bit data register
3293 (LLVM-specific)
3294- ``f``: A 32, 64, or 128-bit floating point register.
3295
3296X86:
3297
3298- ``I``: An immediate integer between 0 and 31.
3299- ``J``: An immediate integer between 0 and 64.
3300- ``K``: An immediate signed 8-bit integer.
3301- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3302 0xffffffff.
3303- ``M``: An immediate integer between 0 and 3.
3304- ``N``: An immediate unsigned 8-bit integer.
3305- ``O``: An immediate integer between 0 and 127.
3306- ``e``: An immediate 32-bit signed integer.
3307- ``Z``: An immediate 32-bit unsigned integer.
3308- ``o``, ``v``: Treated the same as ``m``, at the moment.
3309- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3310 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3311 registers, and on X86-64, it is all of the integer registers.
3312- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3313 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3314- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3315- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3316 existed since i386, and can be accessed without the REX prefix.
3317- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3318- ``y``: A 64-bit MMX register, if MMX is enabled.
3319- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3320 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3321 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3322 512-bit vector operand in an AVX512 register, Otherwise, an error.
3323- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3324- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3325 32-bit mode, a 64-bit integer operand will get split into two registers). It
3326 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3327 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3328 you're better off splitting it yourself, before passing it to the asm
3329 statement.
3330
3331XCore:
3332
3333- ``r``: A 32-bit integer register.
3334
3335
3336.. _inline-asm-modifiers:
3337
3338Asm template argument modifiers
3339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3340
3341In the asm template string, modifiers can be used on the operand reference, like
3342"``${0:n}``".
3343
3344The modifiers are, in general, expected to behave the same way they do in
3345GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3346inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3347and GCC likely indicates a bug in LLVM.
3348
3349Target-independent:
3350
Sean Silvaa1190322015-08-06 22:56:48 +00003351- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003352 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3353- ``n``: Negate and print immediate integer constant unadorned, without the
3354 target-specific immediate punctuation (e.g. no ``$`` prefix).
3355- ``l``: Print as an unadorned label, without the target-specific label
3356 punctuation (e.g. no ``$`` prefix).
3357
3358AArch64:
3359
3360- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3361 instead of ``x30``, print ``w30``.
3362- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3363- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3364 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3365 ``v*``.
3366
3367AMDGPU:
3368
3369- ``r``: No effect.
3370
3371ARM:
3372
3373- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3374 register).
3375- ``P``: No effect.
3376- ``q``: No effect.
3377- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3378 as ``d4[1]`` instead of ``s9``)
3379- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3380 prefix.
3381- ``L``: Print the low 16-bits of an immediate integer constant.
3382- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3383 register operands subsequent to the specified one (!), so use carefully.
3384- ``Q``: Print the low-order register of a register-pair, or the low-order
3385 register of a two-register operand.
3386- ``R``: Print the high-order register of a register-pair, or the high-order
3387 register of a two-register operand.
3388- ``H``: Print the second register of a register-pair. (On a big-endian system,
3389 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3390 to ``R``.)
3391
3392 .. FIXME: H doesn't currently support printing the second register
3393 of a two-register operand.
3394
3395- ``e``: Print the low doubleword register of a NEON quad register.
3396- ``f``: Print the high doubleword register of a NEON quad register.
3397- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3398 adornment.
3399
3400Hexagon:
3401
3402- ``L``: Print the second register of a two-register operand. Requires that it
3403 has been allocated consecutively to the first.
3404
3405 .. FIXME: why is it restricted to consecutive ones? And there's
3406 nothing that ensures that happens, is there?
3407
3408- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3409 nothing. Used to print 'addi' vs 'add' instructions.
3410
3411MSP430:
3412
3413No additional modifiers.
3414
3415MIPS:
3416
3417- ``X``: Print an immediate integer as hexadecimal
3418- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3419- ``d``: Print an immediate integer as decimal.
3420- ``m``: Subtract one and print an immediate integer as decimal.
3421- ``z``: Print $0 if an immediate zero, otherwise print normally.
3422- ``L``: Print the low-order register of a two-register operand, or prints the
3423 address of the low-order word of a double-word memory operand.
3424
3425 .. FIXME: L seems to be missing memory operand support.
3426
3427- ``M``: Print the high-order register of a two-register operand, or prints the
3428 address of the high-order word of a double-word memory operand.
3429
3430 .. FIXME: M seems to be missing memory operand support.
3431
3432- ``D``: Print the second register of a two-register operand, or prints the
3433 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3434 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3435 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003436- ``w``: No effect. Provided for compatibility with GCC which requires this
3437 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3438 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003439
3440NVPTX:
3441
3442- ``r``: No effect.
3443
3444PowerPC:
3445
3446- ``L``: Print the second register of a two-register operand. Requires that it
3447 has been allocated consecutively to the first.
3448
3449 .. FIXME: why is it restricted to consecutive ones? And there's
3450 nothing that ensures that happens, is there?
3451
3452- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3453 nothing. Used to print 'addi' vs 'add' instructions.
3454- ``y``: For a memory operand, prints formatter for a two-register X-form
3455 instruction. (Currently always prints ``r0,OPERAND``).
3456- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3457 otherwise. (NOTE: LLVM does not support update form, so this will currently
3458 always print nothing)
3459- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3460 not support indexed form, so this will currently always print nothing)
3461
3462Sparc:
3463
3464- ``r``: No effect.
3465
3466SystemZ:
3467
3468SystemZ implements only ``n``, and does *not* support any of the other
3469target-independent modifiers.
3470
3471X86:
3472
3473- ``c``: Print an unadorned integer or symbol name. (The latter is
3474 target-specific behavior for this typically target-independent modifier).
3475- ``A``: Print a register name with a '``*``' before it.
3476- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3477 operand.
3478- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3479 memory operand.
3480- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3481 operand.
3482- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3483 operand.
3484- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3485 available, otherwise the 32-bit register name; do nothing on a memory operand.
3486- ``n``: Negate and print an unadorned integer, or, for operands other than an
3487 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3488 the operand. (The behavior for relocatable symbol expressions is a
3489 target-specific behavior for this typically target-independent modifier)
3490- ``H``: Print a memory reference with additional offset +8.
3491- ``P``: Print a memory reference or operand for use as the argument of a call
3492 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3493
3494XCore:
3495
3496No additional modifiers.
3497
3498
Sean Silvab084af42012-12-07 10:36:55 +00003499Inline Asm Metadata
3500^^^^^^^^^^^^^^^^^^^
3501
3502The call instructions that wrap inline asm nodes may have a
3503"``!srcloc``" MDNode attached to it that contains a list of constant
3504integers. If present, the code generator will use the integer as the
3505location cookie value when report errors through the ``LLVMContext``
3506error reporting mechanisms. This allows a front-end to correlate backend
3507errors that occur with inline asm back to the source code that produced
3508it. For example:
3509
3510.. code-block:: llvm
3511
3512 call void asm sideeffect "something bad", ""(), !srcloc !42
3513 ...
3514 !42 = !{ i32 1234567 }
3515
3516It is up to the front-end to make sense of the magic numbers it places
3517in the IR. If the MDNode contains multiple constants, the code generator
3518will use the one that corresponds to the line of the asm that the error
3519occurs on.
3520
3521.. _metadata:
3522
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003523Metadata
3524========
Sean Silvab084af42012-12-07 10:36:55 +00003525
3526LLVM IR allows metadata to be attached to instructions in the program
3527that can convey extra information about the code to the optimizers and
3528code generator. One example application of metadata is source-level
3529debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003530
Sean Silvaa1190322015-08-06 22:56:48 +00003531Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003532``call`` instruction, it uses the ``metadata`` type.
3533
3534All metadata are identified in syntax by a exclamation point ('``!``').
3535
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003536.. _metadata-string:
3537
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003538Metadata Nodes and Metadata Strings
3539-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003540
3541A metadata string is a string surrounded by double quotes. It can
3542contain any character by escaping non-printable characters with
3543"``\xx``" where "``xx``" is the two digit hex code. For example:
3544"``!"test\00"``".
3545
3546Metadata nodes are represented with notation similar to structure
3547constants (a comma separated list of elements, surrounded by braces and
3548preceded by an exclamation point). Metadata nodes can have any values as
3549their operand. For example:
3550
3551.. code-block:: llvm
3552
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003553 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003554
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003555Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3556
3557.. code-block:: llvm
3558
3559 !0 = distinct !{!"test\00", i32 10}
3560
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003561``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003562content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003563when metadata operands change.
3564
Sean Silvab084af42012-12-07 10:36:55 +00003565A :ref:`named metadata <namedmetadatastructure>` is a collection of
3566metadata nodes, which can be looked up in the module symbol table. For
3567example:
3568
3569.. code-block:: llvm
3570
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003571 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003572
3573Metadata can be used as function arguments. Here ``llvm.dbg.value``
3574function is using two metadata arguments:
3575
3576.. code-block:: llvm
3577
3578 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3579
3580Metadata can be attached with an instruction. Here metadata ``!21`` is
3581attached to the ``add`` instruction using the ``!dbg`` identifier:
3582
3583.. code-block:: llvm
3584
3585 %indvar.next = add i64 %indvar, 1, !dbg !21
3586
3587More information about specific metadata nodes recognized by the
3588optimizers and code generator is found below.
3589
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003590.. _specialized-metadata:
3591
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003592Specialized Metadata Nodes
3593^^^^^^^^^^^^^^^^^^^^^^^^^^
3594
3595Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003596to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003597order.
3598
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003599These aren't inherently debug info centric, but currently all the specialized
3600metadata nodes are related to debug info.
3601
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003602.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003603
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003604DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003605"""""""""""""
3606
Sean Silvaa1190322015-08-06 22:56:48 +00003607``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003608``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3609tuples containing the debug info to be emitted along with the compile unit,
3610regardless of code optimizations (some nodes are only emitted if there are
3611references to them from instructions).
3612
3613.. code-block:: llvm
3614
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003615 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003616 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3617 splitDebugFilename: "abc.debug", emissionKind: 1,
3618 enums: !2, retainedTypes: !3, subprograms: !4,
3619 globals: !5, imports: !6)
3620
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003621Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003622specific compilation unit. File descriptors are defined using this scope.
3623These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003624keep track of subprograms, global variables, type information, and imported
3625entities (declarations and namespaces).
3626
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003627.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003628
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003629DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003630""""""
3631
Sean Silvaa1190322015-08-06 22:56:48 +00003632``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003633
3634.. code-block:: llvm
3635
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003636 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003637
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003638Files are sometimes used in ``scope:`` fields, and are the only valid target
3639for ``file:`` fields.
3640
Michael Kuperstein605308a2015-05-14 10:58:59 +00003641.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003642
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003643DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003644"""""""""""
3645
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003646``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003647``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003648
3649.. code-block:: llvm
3650
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003651 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003652 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003653 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003654
Sean Silvaa1190322015-08-06 22:56:48 +00003655The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003656following:
3657
3658.. code-block:: llvm
3659
3660 DW_ATE_address = 1
3661 DW_ATE_boolean = 2
3662 DW_ATE_float = 4
3663 DW_ATE_signed = 5
3664 DW_ATE_signed_char = 6
3665 DW_ATE_unsigned = 7
3666 DW_ATE_unsigned_char = 8
3667
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003668.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003669
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003670DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003671""""""""""""""""
3672
Sean Silvaa1190322015-08-06 22:56:48 +00003673``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003674refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003675types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003676represents a function with no return value (such as ``void foo() {}`` in C++).
3677
3678.. code-block:: llvm
3679
3680 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3681 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003682 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003683
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003684.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003685
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003686DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003687"""""""""""""
3688
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003689``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003690qualified types.
3691
3692.. code-block:: llvm
3693
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003694 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003695 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003696 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003697 align: 32)
3698
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003699The following ``tag:`` values are valid:
3700
3701.. code-block:: llvm
3702
3703 DW_TAG_formal_parameter = 5
3704 DW_TAG_member = 13
3705 DW_TAG_pointer_type = 15
3706 DW_TAG_reference_type = 16
3707 DW_TAG_typedef = 22
3708 DW_TAG_ptr_to_member_type = 31
3709 DW_TAG_const_type = 38
3710 DW_TAG_volatile_type = 53
3711 DW_TAG_restrict_type = 55
3712
3713``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003714<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3715is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003716``DW_TAG_formal_parameter`` is used to define a member which is a formal
3717argument of a subprogram.
3718
3719``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3720
3721``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3722``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3723``baseType:``.
3724
3725Note that the ``void *`` type is expressed as a type derived from NULL.
3726
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003727.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003728
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003729DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003730"""""""""""""""
3731
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003732``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003733structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003734
3735If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003736identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003737can refer to composite types indirectly via a :ref:`metadata string
3738<metadata-string>` that matches their identifier.
3739
3740.. code-block:: llvm
3741
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003742 !0 = !DIEnumerator(name: "SixKind", value: 7)
3743 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3744 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3745 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003746 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3747 elements: !{!0, !1, !2})
3748
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003749The following ``tag:`` values are valid:
3750
3751.. code-block:: llvm
3752
3753 DW_TAG_array_type = 1
3754 DW_TAG_class_type = 2
3755 DW_TAG_enumeration_type = 4
3756 DW_TAG_structure_type = 19
3757 DW_TAG_union_type = 23
3758 DW_TAG_subroutine_type = 21
3759 DW_TAG_inheritance = 28
3760
3761
3762For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003763descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003764level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003765array type is a native packed vector.
3766
3767For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003768descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003769value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003770``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003771
3772For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3773``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003774<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003775
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003776.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003777
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003778DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003779""""""""""
3780
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003781``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003782:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783
3784.. code-block:: llvm
3785
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003786 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3787 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3788 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003790.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003793""""""""""""
3794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3796variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003797
3798.. code-block:: llvm
3799
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003800 !0 = !DIEnumerator(name: "SixKind", value: 7)
3801 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3802 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003803
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003804DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003805"""""""""""""""""""""""
3806
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003807``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003808language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003809:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003810
3811.. code-block:: llvm
3812
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003813 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003814
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003816""""""""""""""""""""""""
3817
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003818``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003819language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003820but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003821``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003822:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823
3824.. code-block:: llvm
3825
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003826 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003828DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003829"""""""""""
3830
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003831``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832
3833.. code-block:: llvm
3834
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003835 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003836
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003838""""""""""""""""
3839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841
3842.. code-block:: llvm
3843
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003844 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003845 file: !2, line: 7, type: !3, isLocal: true,
3846 isDefinition: false, variable: i32* @foo,
3847 declaration: !4)
3848
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003849All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003850:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003851
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855""""""""""""
3856
Sean Silvaa1190322015-08-06 22:56:48 +00003857``DISubprogram`` nodes represent functions from the source language. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Sean Silvaa1190322015-08-06 22:56:48 +00003859retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
3862.. code-block:: llvm
3863
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003864 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865 file: !2, line: 7, type: !3, isLocal: true,
3866 isDefinition: false, scopeLine: 8, containingType: !4,
3867 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3868 flags: DIFlagPrototyped, isOptimized: true,
3869 function: void ()* @_Z3foov,
3870 templateParams: !5, declaration: !6, variables: !7)
3871
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003872.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003875""""""""""""""
3876
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003877``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Sean Silvaa1190322015-08-06 22:56:48 +00003878<DISubprogram>`. The line number and column numbers are used to dinstinguish
3879two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003880fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881
3882.. code-block:: llvm
3883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003885
3886Usually lexical blocks are ``distinct`` to prevent node merging based on
3887operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003891DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892""""""""""""""""""
3893
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003895:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896indicate textual inclusion, or the ``discriminator:`` field can be used to
3897discriminate between control flow within a single block in the source language.
3898
3899.. code-block:: llvm
3900
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3902 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3903 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904
Michael Kuperstein605308a2015-05-14 10:58:59 +00003905.. _DILocation:
3906
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003907DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003908""""""""""
3909
Sean Silvaa1190322015-08-06 22:56:48 +00003910``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003911mandatory, and points at an :ref:`DILexicalBlockFile`, an
3912:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003913
3914.. code-block:: llvm
3915
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003917
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003918.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921"""""""""""""""
3922
Sean Silvaa1190322015-08-06 22:56:48 +00003923``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003924the ``arg:`` field is set to non-zero, then this variable is a subprogram
3925parameter, and it will be included in the ``variables:`` field of its
3926:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003927
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928.. code-block:: llvm
3929
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003930 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
3931 type: !3, flags: DIFlagArtificial)
3932 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
3933 type: !3)
3934 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937""""""""""""
3938
Sean Silvaa1190322015-08-06 22:56:48 +00003939``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3941describe how the referenced LLVM variable relates to the source language
3942variable.
3943
3944The current supported vocabulary is limited:
3945
3946- ``DW_OP_deref`` dereferences the working expression.
3947- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3948- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3949 here, respectively) of the variable piece from the working expression.
3950
3951.. code-block:: llvm
3952
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953 !0 = !DIExpression(DW_OP_deref)
3954 !1 = !DIExpression(DW_OP_plus, 3)
3955 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3956 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003959""""""""""""""
3960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962
3963.. code-block:: llvm
3964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966 getter: "getFoo", attributes: 7, type: !2)
3967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969""""""""""""""""
3970
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003971``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972compile unit.
3973
3974.. code-block:: llvm
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977 entity: !1, line: 7)
3978
Sean Silvab084af42012-12-07 10:36:55 +00003979'``tbaa``' Metadata
3980^^^^^^^^^^^^^^^^^^^
3981
3982In LLVM IR, memory does not have types, so LLVM's own type system is not
3983suitable for doing TBAA. Instead, metadata is added to the IR to
3984describe a type system of a higher level language. This can be used to
3985implement typical C/C++ TBAA, but it can also be used to implement
3986custom alias analysis behavior for other languages.
3987
3988The current metadata format is very simple. TBAA metadata nodes have up
3989to three fields, e.g.:
3990
3991.. code-block:: llvm
3992
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003993 !0 = !{ !"an example type tree" }
3994 !1 = !{ !"int", !0 }
3995 !2 = !{ !"float", !0 }
3996 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003997
3998The first field is an identity field. It can be any value, usually a
3999metadata string, which uniquely identifies the type. The most important
4000name in the tree is the name of the root node. Two trees with different
4001root node names are entirely disjoint, even if they have leaves with
4002common names.
4003
4004The second field identifies the type's parent node in the tree, or is
4005null or omitted for a root node. A type is considered to alias all of
4006its descendants and all of its ancestors in the tree. Also, a type is
4007considered to alias all types in other trees, so that bitcode produced
4008from multiple front-ends is handled conservatively.
4009
4010If the third field is present, it's an integer which if equal to 1
4011indicates that the type is "constant" (meaning
4012``pointsToConstantMemory`` should return true; see `other useful
4013AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4014
4015'``tbaa.struct``' Metadata
4016^^^^^^^^^^^^^^^^^^^^^^^^^^
4017
4018The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4019aggregate assignment operations in C and similar languages, however it
4020is defined to copy a contiguous region of memory, which is more than
4021strictly necessary for aggregate types which contain holes due to
4022padding. Also, it doesn't contain any TBAA information about the fields
4023of the aggregate.
4024
4025``!tbaa.struct`` metadata can describe which memory subregions in a
4026memcpy are padding and what the TBAA tags of the struct are.
4027
4028The current metadata format is very simple. ``!tbaa.struct`` metadata
4029nodes are a list of operands which are in conceptual groups of three.
4030For each group of three, the first operand gives the byte offset of a
4031field in bytes, the second gives its size in bytes, and the third gives
4032its tbaa tag. e.g.:
4033
4034.. code-block:: llvm
4035
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004036 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004037
4038This describes a struct with two fields. The first is at offset 0 bytes
4039with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4040and has size 4 bytes and has tbaa tag !2.
4041
4042Note that the fields need not be contiguous. In this example, there is a
40434 byte gap between the two fields. This gap represents padding which
4044does not carry useful data and need not be preserved.
4045
Hal Finkel94146652014-07-24 14:25:39 +00004046'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004048
4049``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4050noalias memory-access sets. This means that some collection of memory access
4051instructions (loads, stores, memory-accessing calls, etc.) that carry
4052``noalias`` metadata can specifically be specified not to alias with some other
4053collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004054Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004055a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004056of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004057subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004058instruction's ``noalias`` list, then the two memory accesses are assumed not to
4059alias.
Hal Finkel94146652014-07-24 14:25:39 +00004060
Hal Finkel029cde62014-07-25 15:50:02 +00004061The metadata identifying each domain is itself a list containing one or two
4062entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00004063string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004064self-reference can be used to create globally unique domain names. A
4065descriptive string may optionally be provided as a second list entry.
4066
4067The metadata identifying each scope is also itself a list containing two or
4068three entries. The first entry is the name of the scope. Note that if the name
4069is a string then it can be combined accross functions and translation units. A
4070self-reference can be used to create globally unique scope names. A metadata
4071reference to the scope's domain is the second entry. A descriptive string may
4072optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004073
4074For example,
4075
4076.. code-block:: llvm
4077
Hal Finkel029cde62014-07-25 15:50:02 +00004078 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004079 !0 = !{!0}
4080 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004081
Hal Finkel029cde62014-07-25 15:50:02 +00004082 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004083 !2 = !{!2, !0}
4084 !3 = !{!3, !0}
4085 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004086
Hal Finkel029cde62014-07-25 15:50:02 +00004087 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004088 !5 = !{!4} ; A list containing only scope !4
4089 !6 = !{!4, !3, !2}
4090 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004091
4092 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004093 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004094 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004095
Hal Finkel029cde62014-07-25 15:50:02 +00004096 ; These two instructions also don't alias (for domain !1, the set of scopes
4097 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004098 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004099 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004100
Adam Nemet0a8416f2015-05-11 08:30:28 +00004101 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004102 ; the !noalias list is not a superset of, or equal to, the scopes in the
4103 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004104 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004105 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004106
Sean Silvab084af42012-12-07 10:36:55 +00004107'``fpmath``' Metadata
4108^^^^^^^^^^^^^^^^^^^^^
4109
4110``fpmath`` metadata may be attached to any instruction of floating point
4111type. It can be used to express the maximum acceptable error in the
4112result of that instruction, in ULPs, thus potentially allowing the
4113compiler to use a more efficient but less accurate method of computing
4114it. ULP is defined as follows:
4115
4116 If ``x`` is a real number that lies between two finite consecutive
4117 floating-point numbers ``a`` and ``b``, without being equal to one
4118 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4119 distance between the two non-equal finite floating-point numbers
4120 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4121
4122The metadata node shall consist of a single positive floating point
4123number representing the maximum relative error, for example:
4124
4125.. code-block:: llvm
4126
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004127 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004128
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004129.. _range-metadata:
4130
Sean Silvab084af42012-12-07 10:36:55 +00004131'``range``' Metadata
4132^^^^^^^^^^^^^^^^^^^^
4133
Jingyue Wu37fcb592014-06-19 16:50:16 +00004134``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4135integer types. It expresses the possible ranges the loaded value or the value
4136returned by the called function at this call site is in. The ranges are
4137represented with a flattened list of integers. The loaded value or the value
4138returned is known to be in the union of the ranges defined by each consecutive
4139pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004140
4141- The type must match the type loaded by the instruction.
4142- The pair ``a,b`` represents the range ``[a,b)``.
4143- Both ``a`` and ``b`` are constants.
4144- The range is allowed to wrap.
4145- The range should not represent the full or empty set. That is,
4146 ``a!=b``.
4147
4148In addition, the pairs must be in signed order of the lower bound and
4149they must be non-contiguous.
4150
4151Examples:
4152
4153.. code-block:: llvm
4154
David Blaikiec7aabbb2015-03-04 22:06:14 +00004155 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4156 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004157 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4158 %d = invoke i8 @bar() to label %cont
4159 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004160 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004161 !0 = !{ i8 0, i8 2 }
4162 !1 = !{ i8 255, i8 2 }
4163 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4164 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004165
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004166'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004167^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004168
4169``unpredictable`` metadata may be attached to any branch or switch
4170instruction. It can be used to express the unpredictability of control
4171flow. Similar to the llvm.expect intrinsic, it may be used to alter
4172optimizations related to compare and branch instructions. The metadata
4173is treated as a boolean value; if it exists, it signals that the branch
4174or switch that it is attached to is completely unpredictable.
4175
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004176'``llvm.loop``'
4177^^^^^^^^^^^^^^^
4178
4179It is sometimes useful to attach information to loop constructs. Currently,
4180loop metadata is implemented as metadata attached to the branch instruction
4181in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004182guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004183specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004184
4185The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004186itself to avoid merging it with any other identifier metadata, e.g.,
4187during module linkage or function inlining. That is, each loop should refer
4188to their own identification metadata even if they reside in separate functions.
4189The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004190constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004191
4192.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004193
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004194 !0 = !{!0}
4195 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004196
Mark Heffernan893752a2014-07-18 19:24:51 +00004197The loop identifier metadata can be used to specify additional
4198per-loop metadata. Any operands after the first operand can be treated
4199as user-defined metadata. For example the ``llvm.loop.unroll.count``
4200suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004201
Paul Redmond5fdf8362013-05-28 20:00:34 +00004202.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004203
Paul Redmond5fdf8362013-05-28 20:00:34 +00004204 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4205 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004206 !0 = !{!0, !1}
4207 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004208
Mark Heffernan9d20e422014-07-21 23:11:03 +00004209'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004211
Mark Heffernan9d20e422014-07-21 23:11:03 +00004212Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4213used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004214vectorization width and interleave count. These metadata should be used in
4215conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004216``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4217optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004218it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004219which contains information about loop-carried memory dependencies can be helpful
4220in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004221
Mark Heffernan9d20e422014-07-21 23:11:03 +00004222'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4224
Mark Heffernan9d20e422014-07-21 23:11:03 +00004225This metadata suggests an interleave count to the loop interleaver.
4226The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004227second operand is an integer specifying the interleave count. For
4228example:
4229
4230.. code-block:: llvm
4231
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004232 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004233
Mark Heffernan9d20e422014-07-21 23:11:03 +00004234Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004235multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004236then the interleave count will be determined automatically.
4237
4238'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004240
4241This metadata selectively enables or disables vectorization for the loop. The
4242first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004243is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000042440 disables vectorization:
4245
4246.. code-block:: llvm
4247
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004248 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4249 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004250
4251'``llvm.loop.vectorize.width``' Metadata
4252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4253
4254This metadata sets the target width of the vectorizer. The first
4255operand is the string ``llvm.loop.vectorize.width`` and the second
4256operand is an integer specifying the width. For example:
4257
4258.. code-block:: llvm
4259
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004260 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004261
4262Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004263vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000042640 or if the loop does not have this metadata the width will be
4265determined automatically.
4266
4267'``llvm.loop.unroll``'
4268^^^^^^^^^^^^^^^^^^^^^^
4269
4270Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4271optimization hints such as the unroll factor. ``llvm.loop.unroll``
4272metadata should be used in conjunction with ``llvm.loop`` loop
4273identification metadata. The ``llvm.loop.unroll`` metadata are only
4274optimization hints and the unrolling will only be performed if the
4275optimizer believes it is safe to do so.
4276
Mark Heffernan893752a2014-07-18 19:24:51 +00004277'``llvm.loop.unroll.count``' Metadata
4278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4279
4280This metadata suggests an unroll factor to the loop unroller. The
4281first operand is the string ``llvm.loop.unroll.count`` and the second
4282operand is a positive integer specifying the unroll factor. For
4283example:
4284
4285.. code-block:: llvm
4286
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004287 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004288
4289If the trip count of the loop is less than the unroll count the loop
4290will be partially unrolled.
4291
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004292'``llvm.loop.unroll.disable``' Metadata
4293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4294
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004295This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004296which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004297
4298.. code-block:: llvm
4299
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004300 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004301
Kevin Qin715b01e2015-03-09 06:14:18 +00004302'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004304
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004305This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004306operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004307
4308.. code-block:: llvm
4309
4310 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4311
Mark Heffernan89391542015-08-10 17:28:08 +00004312'``llvm.loop.unroll.enable``' Metadata
4313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4314
4315This metadata suggests that the loop should be fully unrolled if the trip count
4316is known at compile time and partially unrolled if the trip count is not known
4317at compile time. The metadata has a single operand which is the string
4318``llvm.loop.unroll.enable``. For example:
4319
4320.. code-block:: llvm
4321
4322 !0 = !{!"llvm.loop.unroll.enable"}
4323
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004324'``llvm.loop.unroll.full``' Metadata
4325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4326
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004327This metadata suggests that the loop should be unrolled fully. The
4328metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004329For example:
4330
4331.. code-block:: llvm
4332
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004333 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004334
4335'``llvm.mem``'
4336^^^^^^^^^^^^^^^
4337
4338Metadata types used to annotate memory accesses with information helpful
4339for optimizations are prefixed with ``llvm.mem``.
4340
4341'``llvm.mem.parallel_loop_access``' Metadata
4342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4343
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004344The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4345or metadata containing a list of loop identifiers for nested loops.
4346The metadata is attached to memory accessing instructions and denotes that
4347no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004348with the same loop identifier.
4349
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004350Precisely, given two instructions ``m1`` and ``m2`` that both have the
4351``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4352set of loops associated with that metadata, respectively, then there is no loop
4353carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004354``L2``.
4355
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004356As a special case, if all memory accessing instructions in a loop have
4357``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4358loop has no loop carried memory dependences and is considered to be a parallel
4359loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004360
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004361Note that if not all memory access instructions have such metadata referring to
4362the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004363memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004364safe mechanism, this causes loops that were originally parallel to be considered
4365sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004366insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004367
4368Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004369both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004370metadata types that refer to the same loop identifier metadata.
4371
4372.. code-block:: llvm
4373
4374 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004375 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004376 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004377 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004378 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004379 ...
4380 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004381
4382 for.end:
4383 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004384 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004385
4386It is also possible to have nested parallel loops. In that case the
4387memory accesses refer to a list of loop identifier metadata nodes instead of
4388the loop identifier metadata node directly:
4389
4390.. code-block:: llvm
4391
4392 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004393 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004394 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004395 ...
4396 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004397
4398 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004399 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004400 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004401 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004402 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004403 ...
4404 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004405
4406 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004407 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004408 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004409 ...
4410 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004411
4412 outer.for.end: ; preds = %for.body
4413 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004414 !0 = !{!1, !2} ; a list of loop identifiers
4415 !1 = !{!1} ; an identifier for the inner loop
4416 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004417
Peter Collingbournee6909c82015-02-20 20:30:47 +00004418'``llvm.bitsets``'
4419^^^^^^^^^^^^^^^^^^
4420
4421The ``llvm.bitsets`` global metadata is used to implement
4422:doc:`bitsets <BitSets>`.
4423
Sean Silvab084af42012-12-07 10:36:55 +00004424Module Flags Metadata
4425=====================
4426
4427Information about the module as a whole is difficult to convey to LLVM's
4428subsystems. The LLVM IR isn't sufficient to transmit this information.
4429The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004430this. These flags are in the form of key / value pairs --- much like a
4431dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004432look it up.
4433
4434The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4435Each triplet has the following form:
4436
4437- The first element is a *behavior* flag, which specifies the behavior
4438 when two (or more) modules are merged together, and it encounters two
4439 (or more) metadata with the same ID. The supported behaviors are
4440 described below.
4441- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004442 metadata. Each module may only have one flag entry for each unique ID (not
4443 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004444- The third element is the value of the flag.
4445
4446When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004447``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4448each unique metadata ID string, there will be exactly one entry in the merged
4449modules ``llvm.module.flags`` metadata table, and the value for that entry will
4450be determined by the merge behavior flag, as described below. The only exception
4451is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004452
4453The following behaviors are supported:
4454
4455.. list-table::
4456 :header-rows: 1
4457 :widths: 10 90
4458
4459 * - Value
4460 - Behavior
4461
4462 * - 1
4463 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004464 Emits an error if two values disagree, otherwise the resulting value
4465 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004466
4467 * - 2
4468 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004469 Emits a warning if two values disagree. The result value will be the
4470 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004471
4472 * - 3
4473 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004474 Adds a requirement that another module flag be present and have a
4475 specified value after linking is performed. The value must be a
4476 metadata pair, where the first element of the pair is the ID of the
4477 module flag to be restricted, and the second element of the pair is
4478 the value the module flag should be restricted to. This behavior can
4479 be used to restrict the allowable results (via triggering of an
4480 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004481
4482 * - 4
4483 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004484 Uses the specified value, regardless of the behavior or value of the
4485 other module. If both modules specify **Override**, but the values
4486 differ, an error will be emitted.
4487
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004488 * - 5
4489 - **Append**
4490 Appends the two values, which are required to be metadata nodes.
4491
4492 * - 6
4493 - **AppendUnique**
4494 Appends the two values, which are required to be metadata
4495 nodes. However, duplicate entries in the second list are dropped
4496 during the append operation.
4497
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004498It is an error for a particular unique flag ID to have multiple behaviors,
4499except in the case of **Require** (which adds restrictions on another metadata
4500value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004501
4502An example of module flags:
4503
4504.. code-block:: llvm
4505
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004506 !0 = !{ i32 1, !"foo", i32 1 }
4507 !1 = !{ i32 4, !"bar", i32 37 }
4508 !2 = !{ i32 2, !"qux", i32 42 }
4509 !3 = !{ i32 3, !"qux",
4510 !{
4511 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004512 }
4513 }
4514 !llvm.module.flags = !{ !0, !1, !2, !3 }
4515
4516- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4517 if two or more ``!"foo"`` flags are seen is to emit an error if their
4518 values are not equal.
4519
4520- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4521 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004522 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004523
4524- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4525 behavior if two or more ``!"qux"`` flags are seen is to emit a
4526 warning if their values are not equal.
4527
4528- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4529
4530 ::
4531
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004532 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004533
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004534 The behavior is to emit an error if the ``llvm.module.flags`` does not
4535 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4536 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004537
4538Objective-C Garbage Collection Module Flags Metadata
4539----------------------------------------------------
4540
4541On the Mach-O platform, Objective-C stores metadata about garbage
4542collection in a special section called "image info". The metadata
4543consists of a version number and a bitmask specifying what types of
4544garbage collection are supported (if any) by the file. If two or more
4545modules are linked together their garbage collection metadata needs to
4546be merged rather than appended together.
4547
4548The Objective-C garbage collection module flags metadata consists of the
4549following key-value pairs:
4550
4551.. list-table::
4552 :header-rows: 1
4553 :widths: 30 70
4554
4555 * - Key
4556 - Value
4557
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004558 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004559 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004560
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004561 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004562 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004563 always 0.
4564
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004565 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004566 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004567 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4568 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4569 Objective-C ABI version 2.
4570
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004571 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004572 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004573 not. Valid values are 0, for no garbage collection, and 2, for garbage
4574 collection supported.
4575
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004576 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004577 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004578 If present, its value must be 6. This flag requires that the
4579 ``Objective-C Garbage Collection`` flag have the value 2.
4580
4581Some important flag interactions:
4582
4583- If a module with ``Objective-C Garbage Collection`` set to 0 is
4584 merged with a module with ``Objective-C Garbage Collection`` set to
4585 2, then the resulting module has the
4586 ``Objective-C Garbage Collection`` flag set to 0.
4587- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4588 merged with a module with ``Objective-C GC Only`` set to 6.
4589
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004590Automatic Linker Flags Module Flags Metadata
4591--------------------------------------------
4592
4593Some targets support embedding flags to the linker inside individual object
4594files. Typically this is used in conjunction with language extensions which
4595allow source files to explicitly declare the libraries they depend on, and have
4596these automatically be transmitted to the linker via object files.
4597
4598These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004599using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004600to be ``AppendUnique``, and the value for the key is expected to be a metadata
4601node which should be a list of other metadata nodes, each of which should be a
4602list of metadata strings defining linker options.
4603
4604For example, the following metadata section specifies two separate sets of
4605linker options, presumably to link against ``libz`` and the ``Cocoa``
4606framework::
4607
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004608 !0 = !{ i32 6, !"Linker Options",
4609 !{
4610 !{ !"-lz" },
4611 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004612 !llvm.module.flags = !{ !0 }
4613
4614The metadata encoding as lists of lists of options, as opposed to a collapsed
4615list of options, is chosen so that the IR encoding can use multiple option
4616strings to specify e.g., a single library, while still having that specifier be
4617preserved as an atomic element that can be recognized by a target specific
4618assembly writer or object file emitter.
4619
4620Each individual option is required to be either a valid option for the target's
4621linker, or an option that is reserved by the target specific assembly writer or
4622object file emitter. No other aspect of these options is defined by the IR.
4623
Oliver Stannard5dc29342014-06-20 10:08:11 +00004624C type width Module Flags Metadata
4625----------------------------------
4626
4627The ARM backend emits a section into each generated object file describing the
4628options that it was compiled with (in a compiler-independent way) to prevent
4629linking incompatible objects, and to allow automatic library selection. Some
4630of these options are not visible at the IR level, namely wchar_t width and enum
4631width.
4632
4633To pass this information to the backend, these options are encoded in module
4634flags metadata, using the following key-value pairs:
4635
4636.. list-table::
4637 :header-rows: 1
4638 :widths: 30 70
4639
4640 * - Key
4641 - Value
4642
4643 * - short_wchar
4644 - * 0 --- sizeof(wchar_t) == 4
4645 * 1 --- sizeof(wchar_t) == 2
4646
4647 * - short_enum
4648 - * 0 --- Enums are at least as large as an ``int``.
4649 * 1 --- Enums are stored in the smallest integer type which can
4650 represent all of its values.
4651
4652For example, the following metadata section specifies that the module was
4653compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4654enum is the smallest type which can represent all of its values::
4655
4656 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004657 !0 = !{i32 1, !"short_wchar", i32 1}
4658 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004659
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004660.. _intrinsicglobalvariables:
4661
Sean Silvab084af42012-12-07 10:36:55 +00004662Intrinsic Global Variables
4663==========================
4664
4665LLVM has a number of "magic" global variables that contain data that
4666affect code generation or other IR semantics. These are documented here.
4667All globals of this sort should have a section specified as
4668"``llvm.metadata``". This section and all globals that start with
4669"``llvm.``" are reserved for use by LLVM.
4670
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004671.. _gv_llvmused:
4672
Sean Silvab084af42012-12-07 10:36:55 +00004673The '``llvm.used``' Global Variable
4674-----------------------------------
4675
Rafael Espindola74f2e462013-04-22 14:58:02 +00004676The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004677:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004678pointers to named global variables, functions and aliases which may optionally
4679have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004680use of it is:
4681
4682.. code-block:: llvm
4683
4684 @X = global i8 4
4685 @Y = global i32 123
4686
4687 @llvm.used = appending global [2 x i8*] [
4688 i8* @X,
4689 i8* bitcast (i32* @Y to i8*)
4690 ], section "llvm.metadata"
4691
Rafael Espindola74f2e462013-04-22 14:58:02 +00004692If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4693and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004694symbol that it cannot see (which is why they have to be named). For example, if
4695a variable has internal linkage and no references other than that from the
4696``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4697references from inline asms and other things the compiler cannot "see", and
4698corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004699
4700On some targets, the code generator must emit a directive to the
4701assembler or object file to prevent the assembler and linker from
4702molesting the symbol.
4703
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004704.. _gv_llvmcompilerused:
4705
Sean Silvab084af42012-12-07 10:36:55 +00004706The '``llvm.compiler.used``' Global Variable
4707--------------------------------------------
4708
4709The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4710directive, except that it only prevents the compiler from touching the
4711symbol. On targets that support it, this allows an intelligent linker to
4712optimize references to the symbol without being impeded as it would be
4713by ``@llvm.used``.
4714
4715This is a rare construct that should only be used in rare circumstances,
4716and should not be exposed to source languages.
4717
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004718.. _gv_llvmglobalctors:
4719
Sean Silvab084af42012-12-07 10:36:55 +00004720The '``llvm.global_ctors``' Global Variable
4721-------------------------------------------
4722
4723.. code-block:: llvm
4724
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004725 %0 = type { i32, void ()*, i8* }
4726 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004727
4728The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004729functions, priorities, and an optional associated global or function.
4730The functions referenced by this array will be called in ascending order
4731of priority (i.e. lowest first) when the module is loaded. The order of
4732functions with the same priority is not defined.
4733
4734If the third field is present, non-null, and points to a global variable
4735or function, the initializer function will only run if the associated
4736data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004737
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004738.. _llvmglobaldtors:
4739
Sean Silvab084af42012-12-07 10:36:55 +00004740The '``llvm.global_dtors``' Global Variable
4741-------------------------------------------
4742
4743.. code-block:: llvm
4744
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004745 %0 = type { i32, void ()*, i8* }
4746 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004747
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004748The ``@llvm.global_dtors`` array contains a list of destructor
4749functions, priorities, and an optional associated global or function.
4750The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004751order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004752order of functions with the same priority is not defined.
4753
4754If the third field is present, non-null, and points to a global variable
4755or function, the destructor function will only run if the associated
4756data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004757
4758Instruction Reference
4759=====================
4760
4761The LLVM instruction set consists of several different classifications
4762of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4763instructions <binaryops>`, :ref:`bitwise binary
4764instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4765:ref:`other instructions <otherops>`.
4766
4767.. _terminators:
4768
4769Terminator Instructions
4770-----------------------
4771
4772As mentioned :ref:`previously <functionstructure>`, every basic block in a
4773program ends with a "Terminator" instruction, which indicates which
4774block should be executed after the current block is finished. These
4775terminator instructions typically yield a '``void``' value: they produce
4776control flow, not values (the one exception being the
4777':ref:`invoke <i_invoke>`' instruction).
4778
4779The terminator instructions are: ':ref:`ret <i_ret>`',
4780':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4781':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004782':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4783':ref:`catchendpad <i_catchendpad>`',
4784':ref:`catchret <i_catchret>`',
4785':ref:`cleanupret <i_cleanupret>`',
4786':ref:`terminatepad <i_terminatepad>`',
4787and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004788
4789.. _i_ret:
4790
4791'``ret``' Instruction
4792^^^^^^^^^^^^^^^^^^^^^
4793
4794Syntax:
4795"""""""
4796
4797::
4798
4799 ret <type> <value> ; Return a value from a non-void function
4800 ret void ; Return from void function
4801
4802Overview:
4803"""""""""
4804
4805The '``ret``' instruction is used to return control flow (and optionally
4806a value) from a function back to the caller.
4807
4808There are two forms of the '``ret``' instruction: one that returns a
4809value and then causes control flow, and one that just causes control
4810flow to occur.
4811
4812Arguments:
4813""""""""""
4814
4815The '``ret``' instruction optionally accepts a single argument, the
4816return value. The type of the return value must be a ':ref:`first
4817class <t_firstclass>`' type.
4818
4819A function is not :ref:`well formed <wellformed>` if it it has a non-void
4820return type and contains a '``ret``' instruction with no return value or
4821a return value with a type that does not match its type, or if it has a
4822void return type and contains a '``ret``' instruction with a return
4823value.
4824
4825Semantics:
4826""""""""""
4827
4828When the '``ret``' instruction is executed, control flow returns back to
4829the calling function's context. If the caller is a
4830":ref:`call <i_call>`" instruction, execution continues at the
4831instruction after the call. If the caller was an
4832":ref:`invoke <i_invoke>`" instruction, execution continues at the
4833beginning of the "normal" destination block. If the instruction returns
4834a value, that value shall set the call or invoke instruction's return
4835value.
4836
4837Example:
4838""""""""
4839
4840.. code-block:: llvm
4841
4842 ret i32 5 ; Return an integer value of 5
4843 ret void ; Return from a void function
4844 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4845
4846.. _i_br:
4847
4848'``br``' Instruction
4849^^^^^^^^^^^^^^^^^^^^
4850
4851Syntax:
4852"""""""
4853
4854::
4855
4856 br i1 <cond>, label <iftrue>, label <iffalse>
4857 br label <dest> ; Unconditional branch
4858
4859Overview:
4860"""""""""
4861
4862The '``br``' instruction is used to cause control flow to transfer to a
4863different basic block in the current function. There are two forms of
4864this instruction, corresponding to a conditional branch and an
4865unconditional branch.
4866
4867Arguments:
4868""""""""""
4869
4870The conditional branch form of the '``br``' instruction takes a single
4871'``i1``' value and two '``label``' values. The unconditional form of the
4872'``br``' instruction takes a single '``label``' value as a target.
4873
4874Semantics:
4875""""""""""
4876
4877Upon execution of a conditional '``br``' instruction, the '``i1``'
4878argument is evaluated. If the value is ``true``, control flows to the
4879'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4880to the '``iffalse``' ``label`` argument.
4881
4882Example:
4883""""""""
4884
4885.. code-block:: llvm
4886
4887 Test:
4888 %cond = icmp eq i32 %a, %b
4889 br i1 %cond, label %IfEqual, label %IfUnequal
4890 IfEqual:
4891 ret i32 1
4892 IfUnequal:
4893 ret i32 0
4894
4895.. _i_switch:
4896
4897'``switch``' Instruction
4898^^^^^^^^^^^^^^^^^^^^^^^^
4899
4900Syntax:
4901"""""""
4902
4903::
4904
4905 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4906
4907Overview:
4908"""""""""
4909
4910The '``switch``' instruction is used to transfer control flow to one of
4911several different places. It is a generalization of the '``br``'
4912instruction, allowing a branch to occur to one of many possible
4913destinations.
4914
4915Arguments:
4916""""""""""
4917
4918The '``switch``' instruction uses three parameters: an integer
4919comparison value '``value``', a default '``label``' destination, and an
4920array of pairs of comparison value constants and '``label``'s. The table
4921is not allowed to contain duplicate constant entries.
4922
4923Semantics:
4924""""""""""
4925
4926The ``switch`` instruction specifies a table of values and destinations.
4927When the '``switch``' instruction is executed, this table is searched
4928for the given value. If the value is found, control flow is transferred
4929to the corresponding destination; otherwise, control flow is transferred
4930to the default destination.
4931
4932Implementation:
4933"""""""""""""""
4934
4935Depending on properties of the target machine and the particular
4936``switch`` instruction, this instruction may be code generated in
4937different ways. For example, it could be generated as a series of
4938chained conditional branches or with a lookup table.
4939
4940Example:
4941""""""""
4942
4943.. code-block:: llvm
4944
4945 ; Emulate a conditional br instruction
4946 %Val = zext i1 %value to i32
4947 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4948
4949 ; Emulate an unconditional br instruction
4950 switch i32 0, label %dest [ ]
4951
4952 ; Implement a jump table:
4953 switch i32 %val, label %otherwise [ i32 0, label %onzero
4954 i32 1, label %onone
4955 i32 2, label %ontwo ]
4956
4957.. _i_indirectbr:
4958
4959'``indirectbr``' Instruction
4960^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4961
4962Syntax:
4963"""""""
4964
4965::
4966
4967 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4968
4969Overview:
4970"""""""""
4971
4972The '``indirectbr``' instruction implements an indirect branch to a
4973label within the current function, whose address is specified by
4974"``address``". Address must be derived from a
4975:ref:`blockaddress <blockaddress>` constant.
4976
4977Arguments:
4978""""""""""
4979
4980The '``address``' argument is the address of the label to jump to. The
4981rest of the arguments indicate the full set of possible destinations
4982that the address may point to. Blocks are allowed to occur multiple
4983times in the destination list, though this isn't particularly useful.
4984
4985This destination list is required so that dataflow analysis has an
4986accurate understanding of the CFG.
4987
4988Semantics:
4989""""""""""
4990
4991Control transfers to the block specified in the address argument. All
4992possible destination blocks must be listed in the label list, otherwise
4993this instruction has undefined behavior. This implies that jumps to
4994labels defined in other functions have undefined behavior as well.
4995
4996Implementation:
4997"""""""""""""""
4998
4999This is typically implemented with a jump through a register.
5000
5001Example:
5002""""""""
5003
5004.. code-block:: llvm
5005
5006 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5007
5008.. _i_invoke:
5009
5010'``invoke``' Instruction
5011^^^^^^^^^^^^^^^^^^^^^^^^
5012
5013Syntax:
5014"""""""
5015
5016::
5017
5018 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
5019 to label <normal label> unwind label <exception label>
5020
5021Overview:
5022"""""""""
5023
5024The '``invoke``' instruction causes control to transfer to a specified
5025function, with the possibility of control flow transfer to either the
5026'``normal``' label or the '``exception``' label. If the callee function
5027returns with the "``ret``" instruction, control flow will return to the
5028"normal" label. If the callee (or any indirect callees) returns via the
5029":ref:`resume <i_resume>`" instruction or other exception handling
5030mechanism, control is interrupted and continued at the dynamically
5031nearest "exception" label.
5032
5033The '``exception``' label is a `landing
5034pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5035'``exception``' label is required to have the
5036":ref:`landingpad <i_landingpad>`" instruction, which contains the
5037information about the behavior of the program after unwinding happens,
5038as its first non-PHI instruction. The restrictions on the
5039"``landingpad``" instruction's tightly couples it to the "``invoke``"
5040instruction, so that the important information contained within the
5041"``landingpad``" instruction can't be lost through normal code motion.
5042
5043Arguments:
5044""""""""""
5045
5046This instruction requires several arguments:
5047
5048#. The optional "cconv" marker indicates which :ref:`calling
5049 convention <callingconv>` the call should use. If none is
5050 specified, the call defaults to using C calling conventions.
5051#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5052 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5053 are valid here.
5054#. '``ptr to function ty``': shall be the signature of the pointer to
5055 function value being invoked. In most cases, this is a direct
5056 function invocation, but indirect ``invoke``'s are just as possible,
5057 branching off an arbitrary pointer to function value.
5058#. '``function ptr val``': An LLVM value containing a pointer to a
5059 function to be invoked.
5060#. '``function args``': argument list whose types match the function
5061 signature argument types and parameter attributes. All arguments must
5062 be of :ref:`first class <t_firstclass>` type. If the function signature
5063 indicates the function accepts a variable number of arguments, the
5064 extra arguments can be specified.
5065#. '``normal label``': the label reached when the called function
5066 executes a '``ret``' instruction.
5067#. '``exception label``': the label reached when a callee returns via
5068 the :ref:`resume <i_resume>` instruction or other exception handling
5069 mechanism.
5070#. The optional :ref:`function attributes <fnattrs>` list. Only
5071 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5072 attributes are valid here.
5073
5074Semantics:
5075""""""""""
5076
5077This instruction is designed to operate as a standard '``call``'
5078instruction in most regards. The primary difference is that it
5079establishes an association with a label, which is used by the runtime
5080library to unwind the stack.
5081
5082This instruction is used in languages with destructors to ensure that
5083proper cleanup is performed in the case of either a ``longjmp`` or a
5084thrown exception. Additionally, this is important for implementation of
5085'``catch``' clauses in high-level languages that support them.
5086
5087For the purposes of the SSA form, the definition of the value returned
5088by the '``invoke``' instruction is deemed to occur on the edge from the
5089current block to the "normal" label. If the callee unwinds then no
5090return value is available.
5091
5092Example:
5093""""""""
5094
5095.. code-block:: llvm
5096
5097 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005098 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005099 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005100 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005101
5102.. _i_resume:
5103
5104'``resume``' Instruction
5105^^^^^^^^^^^^^^^^^^^^^^^^
5106
5107Syntax:
5108"""""""
5109
5110::
5111
5112 resume <type> <value>
5113
5114Overview:
5115"""""""""
5116
5117The '``resume``' instruction is a terminator instruction that has no
5118successors.
5119
5120Arguments:
5121""""""""""
5122
5123The '``resume``' instruction requires one argument, which must have the
5124same type as the result of any '``landingpad``' instruction in the same
5125function.
5126
5127Semantics:
5128""""""""""
5129
5130The '``resume``' instruction resumes propagation of an existing
5131(in-flight) exception whose unwinding was interrupted with a
5132:ref:`landingpad <i_landingpad>` instruction.
5133
5134Example:
5135""""""""
5136
5137.. code-block:: llvm
5138
5139 resume { i8*, i32 } %exn
5140
David Majnemer654e1302015-07-31 17:58:14 +00005141.. _i_catchpad:
5142
5143'``catchpad``' Instruction
5144^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5145
5146Syntax:
5147"""""""
5148
5149::
5150
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005151 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005152 to label <normal label> unwind label <exception label>
5153
5154Overview:
5155"""""""""
5156
5157The '``catchpad``' instruction is used by `LLVM's exception handling
5158system <ExceptionHandling.html#overview>`_ to specify that a basic block
5159is a catch block --- one where a personality routine attempts to transfer
5160control to catch an exception.
5161The ``args`` correspond to whatever information the personality
5162routine requires to know if this is an appropriate place to catch the
Sean Silvaa1190322015-08-06 22:56:48 +00005163exception. Control is tranfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005164``catchpad`` is not an appropriate handler for the in-flight exception.
5165The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005166portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5167:ref:`token <t_token>` and is used to match the ``catchpad`` to
5168corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005169
5170Arguments:
5171""""""""""
5172
5173The instruction takes a list of arbitrary values which are interpreted
5174by the :ref:`personality function <personalityfn>`.
5175
5176The ``catchpad`` must be provided a ``normal`` label to transfer control
5177to if the ``catchpad`` matches the exception and an ``exception``
5178label to transfer control to if it doesn't.
5179
5180Semantics:
5181""""""""""
5182
David Majnemer654e1302015-07-31 17:58:14 +00005183When the call stack is being unwound due to an exception being thrown,
5184the exception is compared against the ``args``. If it doesn't match,
5185then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005186As with calling conventions, how the personality function results are
5187represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005188
5189The ``catchpad`` instruction has several restrictions:
5190
5191- A catch block is a basic block which is the unwind destination of
5192 an exceptional instruction.
5193- A catch block must have a '``catchpad``' instruction as its
5194 first non-PHI instruction.
5195- A catch block's ``exception`` edge must refer to a catch block or a
5196 catch-end block.
5197- There can be only one '``catchpad``' instruction within the
5198 catch block.
5199- A basic block that is not a catch block may not include a
5200 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005201- A catch block which has another catch block as a predecessor may not have
5202 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005203- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005204 ``ret`` without first executing a ``catchret`` that consumes the
5205 ``catchpad`` or unwinding through its ``catchendpad``.
5206- It is undefined behavior for control to transfer from a ``catchpad`` to
5207 itself without first executing a ``catchret`` that consumes the
5208 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005209
5210Example:
5211""""""""
5212
5213.. code-block:: llvm
5214
5215 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005216 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005217 to label %int.handler unwind label %terminate
5218
5219.. _i_catchendpad:
5220
5221'``catchendpad``' Instruction
5222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5223
5224Syntax:
5225"""""""
5226
5227::
5228
5229 catchendpad unwind label <nextaction>
5230 catchendpad unwind to caller
5231
5232Overview:
5233"""""""""
5234
5235The '``catchendpad``' instruction is used by `LLVM's exception handling
5236system <ExceptionHandling.html#overview>`_ to communicate to the
5237:ref:`personality function <personalityfn>` which invokes are associated
5238with a chain of :ref:`catchpad <i_catchpad>` instructions.
5239
5240The ``nextaction`` label indicates where control should transfer to if
5241none of the ``catchpad`` instructions are suitable for catching the
5242in-flight exception.
5243
5244If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005245its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005246:ref:`personality function <personalityfn>` will continue processing
5247exception handling actions in the caller.
5248
5249Arguments:
5250""""""""""
5251
5252The instruction optionally takes a label, ``nextaction``, indicating
5253where control should transfer to if none of the preceding
5254``catchpad`` instructions are suitable for the in-flight exception.
5255
5256Semantics:
5257""""""""""
5258
5259When the call stack is being unwound due to an exception being thrown
5260and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005261control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005262present, control is transfered to the caller.
5263
5264The ``catchendpad`` instruction has several restrictions:
5265
5266- A catch-end block is a basic block which is the unwind destination of
5267 an exceptional instruction.
5268- A catch-end block must have a '``catchendpad``' instruction as its
5269 first non-PHI instruction.
5270- There can be only one '``catchendpad``' instruction within the
5271 catch block.
5272- A basic block that is not a catch-end block may not include a
5273 '``catchendpad``' instruction.
5274- Exactly one catch block may unwind to a ``catchendpad``.
5275- The unwind target of invokes between a ``catchpad`` and a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005276 corresponding ``catchret`` must be its ``catchendpad`` or
5277 an inner EH pad.
David Majnemer654e1302015-07-31 17:58:14 +00005278
5279Example:
5280""""""""
5281
5282.. code-block:: llvm
5283
5284 catchendpad unwind label %terminate
5285 catchendpad unwind to caller
5286
5287.. _i_catchret:
5288
5289'``catchret``' Instruction
5290^^^^^^^^^^^^^^^^^^^^^^^^^^
5291
5292Syntax:
5293"""""""
5294
5295::
5296
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005297 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005298
5299Overview:
5300"""""""""
5301
5302The '``catchret``' instruction is a terminator instruction that has a
5303single successor.
5304
5305
5306Arguments:
5307""""""""""
5308
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005309The first argument to a '``catchret``' indicates which ``catchpad`` it
5310exits. It must be a :ref:`catchpad <i_catchpad>`.
5311The second argument to a '``catchret``' specifies where control will
5312transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005313
5314Semantics:
5315""""""""""
5316
5317The '``catchret``' instruction ends the existing (in-flight) exception
5318whose unwinding was interrupted with a
5319:ref:`catchpad <i_catchpad>` instruction.
5320The :ref:`personality function <personalityfn>` gets a chance to execute
5321arbitrary code to, for example, run a C++ destructor.
5322Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005323It may be passed an optional, personality specific, value.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005324It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5325not been executed.
5326It is undefined behavior to execute a ``catchret`` if any ``catchpad`` or
5327``cleanuppad`` has been executed, without subsequently executing a
5328corresponding ``catchret``/``cleanupret`` or unwinding out of the inner
5329pad, following the most recent execution of the ``catchret``'s corresponding
5330``catchpad``.
5331
David Majnemer654e1302015-07-31 17:58:14 +00005332
5333Example:
5334""""""""
5335
5336.. code-block:: llvm
5337
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005338 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005339
5340.. _i_cleanupret:
5341
5342'``cleanupret``' Instruction
5343^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5344
5345Syntax:
5346"""""""
5347
5348::
5349
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005350 cleanupret <value> unwind label <continue>
5351 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005352
5353Overview:
5354"""""""""
5355
5356The '``cleanupret``' instruction is a terminator instruction that has
5357an optional successor.
5358
5359
5360Arguments:
5361""""""""""
5362
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005363The '``cleanupret``' instruction requires one argument, which indicates
5364which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5365It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005366
5367Semantics:
5368""""""""""
5369
5370The '``cleanupret``' instruction indicates to the
5371:ref:`personality function <personalityfn>` that one
5372:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5373It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005374It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5375not been executed.
5376It is undefined behavior to execute a ``cleanupret`` if any ``catchpad`` or
5377``cleanuppad`` has been executed, without subsequently executing a
5378corresponding ``catchret``/``cleanupret`` or unwinding out of the inner pad,
5379following the most recent execution of the ``cleanupret``'s corresponding
5380``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00005381
5382Example:
5383""""""""
5384
5385.. code-block:: llvm
5386
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005387 cleanupret %cleanup unwind to caller
5388 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005389
5390.. _i_terminatepad:
5391
5392'``terminatepad``' Instruction
5393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5394
5395Syntax:
5396"""""""
5397
5398::
5399
5400 terminatepad [<args>*] unwind label <exception label>
5401 terminatepad [<args>*] unwind to caller
5402
5403Overview:
5404"""""""""
5405
5406The '``terminatepad``' instruction is used by `LLVM's exception handling
5407system <ExceptionHandling.html#overview>`_ to specify that a basic block
5408is a terminate block --- one where a personality routine may decide to
5409terminate the program.
5410The ``args`` correspond to whatever information the personality
5411routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005412program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005413personality routine decides not to terminate the program for the
5414in-flight exception.
5415
5416Arguments:
5417""""""""""
5418
5419The instruction takes a list of arbitrary values which are interpreted
5420by the :ref:`personality function <personalityfn>`.
5421
5422The ``terminatepad`` may be given an ``exception`` label to
5423transfer control to if the in-flight exception matches the ``args``.
5424
5425Semantics:
5426""""""""""
5427
5428When the call stack is being unwound due to an exception being thrown,
5429the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005430then control is transfered to the ``exception`` basic block. Otherwise,
5431the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005432the first argument to ``terminatepad`` specifies what function the
5433personality should defer to in order to terminate the program.
5434
5435The ``terminatepad`` instruction has several restrictions:
5436
5437- A terminate block is a basic block which is the unwind destination of
5438 an exceptional instruction.
5439- A terminate block must have a '``terminatepad``' instruction as its
5440 first non-PHI instruction.
5441- There can be only one '``terminatepad``' instruction within the
5442 terminate block.
5443- A basic block that is not a terminate block may not include a
5444 '``terminatepad``' instruction.
5445
5446Example:
5447""""""""
5448
5449.. code-block:: llvm
5450
5451 ;; A terminate block which only permits integers.
5452 terminatepad [i8** @_ZTIi] unwind label %continue
5453
Sean Silvab084af42012-12-07 10:36:55 +00005454.. _i_unreachable:
5455
5456'``unreachable``' Instruction
5457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5458
5459Syntax:
5460"""""""
5461
5462::
5463
5464 unreachable
5465
5466Overview:
5467"""""""""
5468
5469The '``unreachable``' instruction has no defined semantics. This
5470instruction is used to inform the optimizer that a particular portion of
5471the code is not reachable. This can be used to indicate that the code
5472after a no-return function cannot be reached, and other facts.
5473
5474Semantics:
5475""""""""""
5476
5477The '``unreachable``' instruction has no defined semantics.
5478
5479.. _binaryops:
5480
5481Binary Operations
5482-----------------
5483
5484Binary operators are used to do most of the computation in a program.
5485They require two operands of the same type, execute an operation on
5486them, and produce a single value. The operands might represent multiple
5487data, as is the case with the :ref:`vector <t_vector>` data type. The
5488result value has the same type as its operands.
5489
5490There are several different binary operators:
5491
5492.. _i_add:
5493
5494'``add``' Instruction
5495^^^^^^^^^^^^^^^^^^^^^
5496
5497Syntax:
5498"""""""
5499
5500::
5501
Tim Northover675a0962014-06-13 14:24:23 +00005502 <result> = add <ty> <op1>, <op2> ; yields ty:result
5503 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5504 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5505 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005506
5507Overview:
5508"""""""""
5509
5510The '``add``' instruction returns the sum of its two operands.
5511
5512Arguments:
5513""""""""""
5514
5515The two arguments to the '``add``' instruction must be
5516:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5517arguments must have identical types.
5518
5519Semantics:
5520""""""""""
5521
5522The value produced is the integer sum of the two operands.
5523
5524If the sum has unsigned overflow, the result returned is the
5525mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5526the result.
5527
5528Because LLVM integers use a two's complement representation, this
5529instruction is appropriate for both signed and unsigned integers.
5530
5531``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5532respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5533result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5534unsigned and/or signed overflow, respectively, occurs.
5535
5536Example:
5537""""""""
5538
5539.. code-block:: llvm
5540
Tim Northover675a0962014-06-13 14:24:23 +00005541 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005542
5543.. _i_fadd:
5544
5545'``fadd``' Instruction
5546^^^^^^^^^^^^^^^^^^^^^^
5547
5548Syntax:
5549"""""""
5550
5551::
5552
Tim Northover675a0962014-06-13 14:24:23 +00005553 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005554
5555Overview:
5556"""""""""
5557
5558The '``fadd``' instruction returns the sum of its two operands.
5559
5560Arguments:
5561""""""""""
5562
5563The two arguments to the '``fadd``' instruction must be :ref:`floating
5564point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5565Both arguments must have identical types.
5566
5567Semantics:
5568""""""""""
5569
5570The value produced is the floating point sum of the two operands. This
5571instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5572which are optimization hints to enable otherwise unsafe floating point
5573optimizations:
5574
5575Example:
5576""""""""
5577
5578.. code-block:: llvm
5579
Tim Northover675a0962014-06-13 14:24:23 +00005580 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005581
5582'``sub``' Instruction
5583^^^^^^^^^^^^^^^^^^^^^
5584
5585Syntax:
5586"""""""
5587
5588::
5589
Tim Northover675a0962014-06-13 14:24:23 +00005590 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5591 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5592 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5593 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005594
5595Overview:
5596"""""""""
5597
5598The '``sub``' instruction returns the difference of its two operands.
5599
5600Note that the '``sub``' instruction is used to represent the '``neg``'
5601instruction present in most other intermediate representations.
5602
5603Arguments:
5604""""""""""
5605
5606The two arguments to the '``sub``' instruction must be
5607:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5608arguments must have identical types.
5609
5610Semantics:
5611""""""""""
5612
5613The value produced is the integer difference of the two operands.
5614
5615If the difference has unsigned overflow, the result returned is the
5616mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5617the result.
5618
5619Because LLVM integers use a two's complement representation, this
5620instruction is appropriate for both signed and unsigned integers.
5621
5622``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5623respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5624result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5625unsigned and/or signed overflow, respectively, occurs.
5626
5627Example:
5628""""""""
5629
5630.. code-block:: llvm
5631
Tim Northover675a0962014-06-13 14:24:23 +00005632 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5633 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005634
5635.. _i_fsub:
5636
5637'``fsub``' Instruction
5638^^^^^^^^^^^^^^^^^^^^^^
5639
5640Syntax:
5641"""""""
5642
5643::
5644
Tim Northover675a0962014-06-13 14:24:23 +00005645 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005646
5647Overview:
5648"""""""""
5649
5650The '``fsub``' instruction returns the difference of its two operands.
5651
5652Note that the '``fsub``' instruction is used to represent the '``fneg``'
5653instruction present in most other intermediate representations.
5654
5655Arguments:
5656""""""""""
5657
5658The two arguments to the '``fsub``' instruction must be :ref:`floating
5659point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5660Both arguments must have identical types.
5661
5662Semantics:
5663""""""""""
5664
5665The value produced is the floating point difference of the two operands.
5666This instruction can also take any number of :ref:`fast-math
5667flags <fastmath>`, which are optimization hints to enable otherwise
5668unsafe floating point optimizations:
5669
5670Example:
5671""""""""
5672
5673.. code-block:: llvm
5674
Tim Northover675a0962014-06-13 14:24:23 +00005675 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5676 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005677
5678'``mul``' Instruction
5679^^^^^^^^^^^^^^^^^^^^^
5680
5681Syntax:
5682"""""""
5683
5684::
5685
Tim Northover675a0962014-06-13 14:24:23 +00005686 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5687 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5688 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5689 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005690
5691Overview:
5692"""""""""
5693
5694The '``mul``' instruction returns the product of its two operands.
5695
5696Arguments:
5697""""""""""
5698
5699The two arguments to the '``mul``' instruction must be
5700:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5701arguments must have identical types.
5702
5703Semantics:
5704""""""""""
5705
5706The value produced is the integer product of the two operands.
5707
5708If the result of the multiplication has unsigned overflow, the result
5709returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5710bit width of the result.
5711
5712Because LLVM integers use a two's complement representation, and the
5713result is the same width as the operands, this instruction returns the
5714correct result for both signed and unsigned integers. If a full product
5715(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5716sign-extended or zero-extended as appropriate to the width of the full
5717product.
5718
5719``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5720respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5721result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5722unsigned and/or signed overflow, respectively, occurs.
5723
5724Example:
5725""""""""
5726
5727.. code-block:: llvm
5728
Tim Northover675a0962014-06-13 14:24:23 +00005729 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005730
5731.. _i_fmul:
5732
5733'``fmul``' Instruction
5734^^^^^^^^^^^^^^^^^^^^^^
5735
5736Syntax:
5737"""""""
5738
5739::
5740
Tim Northover675a0962014-06-13 14:24:23 +00005741 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005742
5743Overview:
5744"""""""""
5745
5746The '``fmul``' instruction returns the product of its two operands.
5747
5748Arguments:
5749""""""""""
5750
5751The two arguments to the '``fmul``' instruction must be :ref:`floating
5752point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5753Both arguments must have identical types.
5754
5755Semantics:
5756""""""""""
5757
5758The value produced is the floating point product of the two operands.
5759This instruction can also take any number of :ref:`fast-math
5760flags <fastmath>`, which are optimization hints to enable otherwise
5761unsafe floating point optimizations:
5762
5763Example:
5764""""""""
5765
5766.. code-block:: llvm
5767
Tim Northover675a0962014-06-13 14:24:23 +00005768 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005769
5770'``udiv``' Instruction
5771^^^^^^^^^^^^^^^^^^^^^^
5772
5773Syntax:
5774"""""""
5775
5776::
5777
Tim Northover675a0962014-06-13 14:24:23 +00005778 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5779 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005780
5781Overview:
5782"""""""""
5783
5784The '``udiv``' instruction returns the quotient of its two operands.
5785
5786Arguments:
5787""""""""""
5788
5789The two arguments to the '``udiv``' instruction must be
5790:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5791arguments must have identical types.
5792
5793Semantics:
5794""""""""""
5795
5796The value produced is the unsigned integer quotient of the two operands.
5797
5798Note that unsigned integer division and signed integer division are
5799distinct operations; for signed integer division, use '``sdiv``'.
5800
5801Division by zero leads to undefined behavior.
5802
5803If the ``exact`` keyword is present, the result value of the ``udiv`` is
5804a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5805such, "((a udiv exact b) mul b) == a").
5806
5807Example:
5808""""""""
5809
5810.. code-block:: llvm
5811
Tim Northover675a0962014-06-13 14:24:23 +00005812 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005813
5814'``sdiv``' Instruction
5815^^^^^^^^^^^^^^^^^^^^^^
5816
5817Syntax:
5818"""""""
5819
5820::
5821
Tim Northover675a0962014-06-13 14:24:23 +00005822 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5823 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005824
5825Overview:
5826"""""""""
5827
5828The '``sdiv``' instruction returns the quotient of its two operands.
5829
5830Arguments:
5831""""""""""
5832
5833The two arguments to the '``sdiv``' instruction must be
5834:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5835arguments must have identical types.
5836
5837Semantics:
5838""""""""""
5839
5840The value produced is the signed integer quotient of the two operands
5841rounded towards zero.
5842
5843Note that signed integer division and unsigned integer division are
5844distinct operations; for unsigned integer division, use '``udiv``'.
5845
5846Division by zero leads to undefined behavior. Overflow also leads to
5847undefined behavior; this is a rare case, but can occur, for example, by
5848doing a 32-bit division of -2147483648 by -1.
5849
5850If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5851a :ref:`poison value <poisonvalues>` if the result would be rounded.
5852
5853Example:
5854""""""""
5855
5856.. code-block:: llvm
5857
Tim Northover675a0962014-06-13 14:24:23 +00005858 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005859
5860.. _i_fdiv:
5861
5862'``fdiv``' Instruction
5863^^^^^^^^^^^^^^^^^^^^^^
5864
5865Syntax:
5866"""""""
5867
5868::
5869
Tim Northover675a0962014-06-13 14:24:23 +00005870 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005871
5872Overview:
5873"""""""""
5874
5875The '``fdiv``' instruction returns the quotient of its two operands.
5876
5877Arguments:
5878""""""""""
5879
5880The two arguments to the '``fdiv``' instruction must be :ref:`floating
5881point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5882Both arguments must have identical types.
5883
5884Semantics:
5885""""""""""
5886
5887The value produced is the floating point quotient of the two operands.
5888This instruction can also take any number of :ref:`fast-math
5889flags <fastmath>`, which are optimization hints to enable otherwise
5890unsafe floating point optimizations:
5891
5892Example:
5893""""""""
5894
5895.. code-block:: llvm
5896
Tim Northover675a0962014-06-13 14:24:23 +00005897 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005898
5899'``urem``' Instruction
5900^^^^^^^^^^^^^^^^^^^^^^
5901
5902Syntax:
5903"""""""
5904
5905::
5906
Tim Northover675a0962014-06-13 14:24:23 +00005907 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005908
5909Overview:
5910"""""""""
5911
5912The '``urem``' instruction returns the remainder from the unsigned
5913division of its two arguments.
5914
5915Arguments:
5916""""""""""
5917
5918The two arguments to the '``urem``' instruction must be
5919:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5920arguments must have identical types.
5921
5922Semantics:
5923""""""""""
5924
5925This instruction returns the unsigned integer *remainder* of a division.
5926This instruction always performs an unsigned division to get the
5927remainder.
5928
5929Note that unsigned integer remainder and signed integer remainder are
5930distinct operations; for signed integer remainder, use '``srem``'.
5931
5932Taking the remainder of a division by zero leads to undefined behavior.
5933
5934Example:
5935""""""""
5936
5937.. code-block:: llvm
5938
Tim Northover675a0962014-06-13 14:24:23 +00005939 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005940
5941'``srem``' Instruction
5942^^^^^^^^^^^^^^^^^^^^^^
5943
5944Syntax:
5945"""""""
5946
5947::
5948
Tim Northover675a0962014-06-13 14:24:23 +00005949 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005950
5951Overview:
5952"""""""""
5953
5954The '``srem``' instruction returns the remainder from the signed
5955division of its two operands. This instruction can also take
5956:ref:`vector <t_vector>` versions of the values in which case the elements
5957must be integers.
5958
5959Arguments:
5960""""""""""
5961
5962The two arguments to the '``srem``' instruction must be
5963:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5964arguments must have identical types.
5965
5966Semantics:
5967""""""""""
5968
5969This instruction returns the *remainder* of a division (where the result
5970is either zero or has the same sign as the dividend, ``op1``), not the
5971*modulo* operator (where the result is either zero or has the same sign
5972as the divisor, ``op2``) of a value. For more information about the
5973difference, see `The Math
5974Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
5975table of how this is implemented in various languages, please see
5976`Wikipedia: modulo
5977operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
5978
5979Note that signed integer remainder and unsigned integer remainder are
5980distinct operations; for unsigned integer remainder, use '``urem``'.
5981
5982Taking the remainder of a division by zero leads to undefined behavior.
5983Overflow also leads to undefined behavior; this is a rare case, but can
5984occur, for example, by taking the remainder of a 32-bit division of
5985-2147483648 by -1. (The remainder doesn't actually overflow, but this
5986rule lets srem be implemented using instructions that return both the
5987result of the division and the remainder.)
5988
5989Example:
5990""""""""
5991
5992.. code-block:: llvm
5993
Tim Northover675a0962014-06-13 14:24:23 +00005994 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005995
5996.. _i_frem:
5997
5998'``frem``' Instruction
5999^^^^^^^^^^^^^^^^^^^^^^
6000
6001Syntax:
6002"""""""
6003
6004::
6005
Tim Northover675a0962014-06-13 14:24:23 +00006006 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006007
6008Overview:
6009"""""""""
6010
6011The '``frem``' instruction returns the remainder from the division of
6012its two operands.
6013
6014Arguments:
6015""""""""""
6016
6017The two arguments to the '``frem``' instruction must be :ref:`floating
6018point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6019Both arguments must have identical types.
6020
6021Semantics:
6022""""""""""
6023
6024This instruction returns the *remainder* of a division. The remainder
6025has the same sign as the dividend. This instruction can also take any
6026number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6027to enable otherwise unsafe floating point optimizations:
6028
6029Example:
6030""""""""
6031
6032.. code-block:: llvm
6033
Tim Northover675a0962014-06-13 14:24:23 +00006034 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006035
6036.. _bitwiseops:
6037
6038Bitwise Binary Operations
6039-------------------------
6040
6041Bitwise binary operators are used to do various forms of bit-twiddling
6042in a program. They are generally very efficient instructions and can
6043commonly be strength reduced from other instructions. They require two
6044operands of the same type, execute an operation on them, and produce a
6045single value. The resulting value is the same type as its operands.
6046
6047'``shl``' Instruction
6048^^^^^^^^^^^^^^^^^^^^^
6049
6050Syntax:
6051"""""""
6052
6053::
6054
Tim Northover675a0962014-06-13 14:24:23 +00006055 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6056 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6057 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6058 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006059
6060Overview:
6061"""""""""
6062
6063The '``shl``' instruction returns the first operand shifted to the left
6064a specified number of bits.
6065
6066Arguments:
6067""""""""""
6068
6069Both arguments to the '``shl``' instruction must be the same
6070:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6071'``op2``' is treated as an unsigned value.
6072
6073Semantics:
6074""""""""""
6075
6076The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6077where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006078dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006079``op1``, the result is undefined. If the arguments are vectors, each
6080vector element of ``op1`` is shifted by the corresponding shift amount
6081in ``op2``.
6082
6083If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6084value <poisonvalues>` if it shifts out any non-zero bits. If the
6085``nsw`` keyword is present, then the shift produces a :ref:`poison
6086value <poisonvalues>` if it shifts out any bits that disagree with the
6087resultant sign bit. As such, NUW/NSW have the same semantics as they
6088would if the shift were expressed as a mul instruction with the same
6089nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6090
6091Example:
6092""""""""
6093
6094.. code-block:: llvm
6095
Tim Northover675a0962014-06-13 14:24:23 +00006096 <result> = shl i32 4, %var ; yields i32: 4 << %var
6097 <result> = shl i32 4, 2 ; yields i32: 16
6098 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006099 <result> = shl i32 1, 32 ; undefined
6100 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6101
6102'``lshr``' Instruction
6103^^^^^^^^^^^^^^^^^^^^^^
6104
6105Syntax:
6106"""""""
6107
6108::
6109
Tim Northover675a0962014-06-13 14:24:23 +00006110 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6111 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006112
6113Overview:
6114"""""""""
6115
6116The '``lshr``' instruction (logical shift right) returns the first
6117operand shifted to the right a specified number of bits with zero fill.
6118
6119Arguments:
6120""""""""""
6121
6122Both arguments to the '``lshr``' instruction must be the same
6123:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6124'``op2``' is treated as an unsigned value.
6125
6126Semantics:
6127""""""""""
6128
6129This instruction always performs a logical shift right operation. The
6130most significant bits of the result will be filled with zero bits after
6131the shift. If ``op2`` is (statically or dynamically) equal to or larger
6132than the number of bits in ``op1``, the result is undefined. If the
6133arguments are vectors, each vector element of ``op1`` is shifted by the
6134corresponding shift amount in ``op2``.
6135
6136If the ``exact`` keyword is present, the result value of the ``lshr`` is
6137a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6138non-zero.
6139
6140Example:
6141""""""""
6142
6143.. code-block:: llvm
6144
Tim Northover675a0962014-06-13 14:24:23 +00006145 <result> = lshr i32 4, 1 ; yields i32:result = 2
6146 <result> = lshr i32 4, 2 ; yields i32:result = 1
6147 <result> = lshr i8 4, 3 ; yields i8:result = 0
6148 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006149 <result> = lshr i32 1, 32 ; undefined
6150 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6151
6152'``ashr``' Instruction
6153^^^^^^^^^^^^^^^^^^^^^^
6154
6155Syntax:
6156"""""""
6157
6158::
6159
Tim Northover675a0962014-06-13 14:24:23 +00006160 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6161 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006162
6163Overview:
6164"""""""""
6165
6166The '``ashr``' instruction (arithmetic shift right) returns the first
6167operand shifted to the right a specified number of bits with sign
6168extension.
6169
6170Arguments:
6171""""""""""
6172
6173Both arguments to the '``ashr``' instruction must be the same
6174:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6175'``op2``' is treated as an unsigned value.
6176
6177Semantics:
6178""""""""""
6179
6180This instruction always performs an arithmetic shift right operation,
6181The most significant bits of the result will be filled with the sign bit
6182of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6183than the number of bits in ``op1``, the result is undefined. If the
6184arguments are vectors, each vector element of ``op1`` is shifted by the
6185corresponding shift amount in ``op2``.
6186
6187If the ``exact`` keyword is present, the result value of the ``ashr`` is
6188a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6189non-zero.
6190
6191Example:
6192""""""""
6193
6194.. code-block:: llvm
6195
Tim Northover675a0962014-06-13 14:24:23 +00006196 <result> = ashr i32 4, 1 ; yields i32:result = 2
6197 <result> = ashr i32 4, 2 ; yields i32:result = 1
6198 <result> = ashr i8 4, 3 ; yields i8:result = 0
6199 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006200 <result> = ashr i32 1, 32 ; undefined
6201 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6202
6203'``and``' Instruction
6204^^^^^^^^^^^^^^^^^^^^^
6205
6206Syntax:
6207"""""""
6208
6209::
6210
Tim Northover675a0962014-06-13 14:24:23 +00006211 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006212
6213Overview:
6214"""""""""
6215
6216The '``and``' instruction returns the bitwise logical and of its two
6217operands.
6218
6219Arguments:
6220""""""""""
6221
6222The two arguments to the '``and``' instruction must be
6223:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6224arguments must have identical types.
6225
6226Semantics:
6227""""""""""
6228
6229The truth table used for the '``and``' instruction is:
6230
6231+-----+-----+-----+
6232| In0 | In1 | Out |
6233+-----+-----+-----+
6234| 0 | 0 | 0 |
6235+-----+-----+-----+
6236| 0 | 1 | 0 |
6237+-----+-----+-----+
6238| 1 | 0 | 0 |
6239+-----+-----+-----+
6240| 1 | 1 | 1 |
6241+-----+-----+-----+
6242
6243Example:
6244""""""""
6245
6246.. code-block:: llvm
6247
Tim Northover675a0962014-06-13 14:24:23 +00006248 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6249 <result> = and i32 15, 40 ; yields i32:result = 8
6250 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006251
6252'``or``' Instruction
6253^^^^^^^^^^^^^^^^^^^^
6254
6255Syntax:
6256"""""""
6257
6258::
6259
Tim Northover675a0962014-06-13 14:24:23 +00006260 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006261
6262Overview:
6263"""""""""
6264
6265The '``or``' instruction returns the bitwise logical inclusive or of its
6266two operands.
6267
6268Arguments:
6269""""""""""
6270
6271The two arguments to the '``or``' instruction must be
6272:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6273arguments must have identical types.
6274
6275Semantics:
6276""""""""""
6277
6278The truth table used for the '``or``' instruction is:
6279
6280+-----+-----+-----+
6281| In0 | In1 | Out |
6282+-----+-----+-----+
6283| 0 | 0 | 0 |
6284+-----+-----+-----+
6285| 0 | 1 | 1 |
6286+-----+-----+-----+
6287| 1 | 0 | 1 |
6288+-----+-----+-----+
6289| 1 | 1 | 1 |
6290+-----+-----+-----+
6291
6292Example:
6293""""""""
6294
6295::
6296
Tim Northover675a0962014-06-13 14:24:23 +00006297 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6298 <result> = or i32 15, 40 ; yields i32:result = 47
6299 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006300
6301'``xor``' Instruction
6302^^^^^^^^^^^^^^^^^^^^^
6303
6304Syntax:
6305"""""""
6306
6307::
6308
Tim Northover675a0962014-06-13 14:24:23 +00006309 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006310
6311Overview:
6312"""""""""
6313
6314The '``xor``' instruction returns the bitwise logical exclusive or of
6315its two operands. The ``xor`` is used to implement the "one's
6316complement" operation, which is the "~" operator in C.
6317
6318Arguments:
6319""""""""""
6320
6321The two arguments to the '``xor``' instruction must be
6322:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6323arguments must have identical types.
6324
6325Semantics:
6326""""""""""
6327
6328The truth table used for the '``xor``' instruction is:
6329
6330+-----+-----+-----+
6331| In0 | In1 | Out |
6332+-----+-----+-----+
6333| 0 | 0 | 0 |
6334+-----+-----+-----+
6335| 0 | 1 | 1 |
6336+-----+-----+-----+
6337| 1 | 0 | 1 |
6338+-----+-----+-----+
6339| 1 | 1 | 0 |
6340+-----+-----+-----+
6341
6342Example:
6343""""""""
6344
6345.. code-block:: llvm
6346
Tim Northover675a0962014-06-13 14:24:23 +00006347 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6348 <result> = xor i32 15, 40 ; yields i32:result = 39
6349 <result> = xor i32 4, 8 ; yields i32:result = 12
6350 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006351
6352Vector Operations
6353-----------------
6354
6355LLVM supports several instructions to represent vector operations in a
6356target-independent manner. These instructions cover the element-access
6357and vector-specific operations needed to process vectors effectively.
6358While LLVM does directly support these vector operations, many
6359sophisticated algorithms will want to use target-specific intrinsics to
6360take full advantage of a specific target.
6361
6362.. _i_extractelement:
6363
6364'``extractelement``' Instruction
6365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6366
6367Syntax:
6368"""""""
6369
6370::
6371
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006372 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006373
6374Overview:
6375"""""""""
6376
6377The '``extractelement``' instruction extracts a single scalar element
6378from a vector at a specified index.
6379
6380Arguments:
6381""""""""""
6382
6383The first operand of an '``extractelement``' instruction is a value of
6384:ref:`vector <t_vector>` type. The second operand is an index indicating
6385the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006386variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006387
6388Semantics:
6389""""""""""
6390
6391The result is a scalar of the same type as the element type of ``val``.
6392Its value is the value at position ``idx`` of ``val``. If ``idx``
6393exceeds the length of ``val``, the results are undefined.
6394
6395Example:
6396""""""""
6397
6398.. code-block:: llvm
6399
6400 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6401
6402.. _i_insertelement:
6403
6404'``insertelement``' Instruction
6405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6406
6407Syntax:
6408"""""""
6409
6410::
6411
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006412 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006413
6414Overview:
6415"""""""""
6416
6417The '``insertelement``' instruction inserts a scalar element into a
6418vector at a specified index.
6419
6420Arguments:
6421""""""""""
6422
6423The first operand of an '``insertelement``' instruction is a value of
6424:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6425type must equal the element type of the first operand. The third operand
6426is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006427index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006428
6429Semantics:
6430""""""""""
6431
6432The result is a vector of the same type as ``val``. Its element values
6433are those of ``val`` except at position ``idx``, where it gets the value
6434``elt``. If ``idx`` exceeds the length of ``val``, the results are
6435undefined.
6436
6437Example:
6438""""""""
6439
6440.. code-block:: llvm
6441
6442 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6443
6444.. _i_shufflevector:
6445
6446'``shufflevector``' Instruction
6447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6448
6449Syntax:
6450"""""""
6451
6452::
6453
6454 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6455
6456Overview:
6457"""""""""
6458
6459The '``shufflevector``' instruction constructs a permutation of elements
6460from two input vectors, returning a vector with the same element type as
6461the input and length that is the same as the shuffle mask.
6462
6463Arguments:
6464""""""""""
6465
6466The first two operands of a '``shufflevector``' instruction are vectors
6467with the same type. The third argument is a shuffle mask whose element
6468type is always 'i32'. The result of the instruction is a vector whose
6469length is the same as the shuffle mask and whose element type is the
6470same as the element type of the first two operands.
6471
6472The shuffle mask operand is required to be a constant vector with either
6473constant integer or undef values.
6474
6475Semantics:
6476""""""""""
6477
6478The elements of the two input vectors are numbered from left to right
6479across both of the vectors. The shuffle mask operand specifies, for each
6480element of the result vector, which element of the two input vectors the
6481result element gets. The element selector may be undef (meaning "don't
6482care") and the second operand may be undef if performing a shuffle from
6483only one vector.
6484
6485Example:
6486""""""""
6487
6488.. code-block:: llvm
6489
6490 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6491 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6492 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6493 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6494 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6495 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6496 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6497 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6498
6499Aggregate Operations
6500--------------------
6501
6502LLVM supports several instructions for working with
6503:ref:`aggregate <t_aggregate>` values.
6504
6505.. _i_extractvalue:
6506
6507'``extractvalue``' Instruction
6508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6509
6510Syntax:
6511"""""""
6512
6513::
6514
6515 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6516
6517Overview:
6518"""""""""
6519
6520The '``extractvalue``' instruction extracts the value of a member field
6521from an :ref:`aggregate <t_aggregate>` value.
6522
6523Arguments:
6524""""""""""
6525
6526The first operand of an '``extractvalue``' instruction is a value of
6527:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6528constant indices to specify which value to extract in a similar manner
6529as indices in a '``getelementptr``' instruction.
6530
6531The major differences to ``getelementptr`` indexing are:
6532
6533- Since the value being indexed is not a pointer, the first index is
6534 omitted and assumed to be zero.
6535- At least one index must be specified.
6536- Not only struct indices but also array indices must be in bounds.
6537
6538Semantics:
6539""""""""""
6540
6541The result is the value at the position in the aggregate specified by
6542the index operands.
6543
6544Example:
6545""""""""
6546
6547.. code-block:: llvm
6548
6549 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6550
6551.. _i_insertvalue:
6552
6553'``insertvalue``' Instruction
6554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6555
6556Syntax:
6557"""""""
6558
6559::
6560
6561 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6562
6563Overview:
6564"""""""""
6565
6566The '``insertvalue``' instruction inserts a value into a member field in
6567an :ref:`aggregate <t_aggregate>` value.
6568
6569Arguments:
6570""""""""""
6571
6572The first operand of an '``insertvalue``' instruction is a value of
6573:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6574a first-class value to insert. The following operands are constant
6575indices indicating the position at which to insert the value in a
6576similar manner as indices in a '``extractvalue``' instruction. The value
6577to insert must have the same type as the value identified by the
6578indices.
6579
6580Semantics:
6581""""""""""
6582
6583The result is an aggregate of the same type as ``val``. Its value is
6584that of ``val`` except that the value at the position specified by the
6585indices is that of ``elt``.
6586
6587Example:
6588""""""""
6589
6590.. code-block:: llvm
6591
6592 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6593 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006594 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006595
6596.. _memoryops:
6597
6598Memory Access and Addressing Operations
6599---------------------------------------
6600
6601A key design point of an SSA-based representation is how it represents
6602memory. In LLVM, no memory locations are in SSA form, which makes things
6603very simple. This section describes how to read, write, and allocate
6604memory in LLVM.
6605
6606.. _i_alloca:
6607
6608'``alloca``' Instruction
6609^^^^^^^^^^^^^^^^^^^^^^^^
6610
6611Syntax:
6612"""""""
6613
6614::
6615
Tim Northover675a0962014-06-13 14:24:23 +00006616 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006617
6618Overview:
6619"""""""""
6620
6621The '``alloca``' instruction allocates memory on the stack frame of the
6622currently executing function, to be automatically released when this
6623function returns to its caller. The object is always allocated in the
6624generic address space (address space zero).
6625
6626Arguments:
6627""""""""""
6628
6629The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6630bytes of memory on the runtime stack, returning a pointer of the
6631appropriate type to the program. If "NumElements" is specified, it is
6632the number of elements allocated, otherwise "NumElements" is defaulted
6633to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006634allocation is guaranteed to be aligned to at least that boundary. The
6635alignment may not be greater than ``1 << 29``. If not specified, or if
6636zero, the target can choose to align the allocation on any convenient
6637boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006638
6639'``type``' may be any sized type.
6640
6641Semantics:
6642""""""""""
6643
6644Memory is allocated; a pointer is returned. The operation is undefined
6645if there is insufficient stack space for the allocation. '``alloca``'d
6646memory is automatically released when the function returns. The
6647'``alloca``' instruction is commonly used to represent automatic
6648variables that must have an address available. When the function returns
6649(either with the ``ret`` or ``resume`` instructions), the memory is
6650reclaimed. Allocating zero bytes is legal, but the result is undefined.
6651The order in which memory is allocated (ie., which way the stack grows)
6652is not specified.
6653
6654Example:
6655""""""""
6656
6657.. code-block:: llvm
6658
Tim Northover675a0962014-06-13 14:24:23 +00006659 %ptr = alloca i32 ; yields i32*:ptr
6660 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6661 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6662 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006663
6664.. _i_load:
6665
6666'``load``' Instruction
6667^^^^^^^^^^^^^^^^^^^^^^
6668
6669Syntax:
6670"""""""
6671
6672::
6673
Sanjoy Dasf9995472015-05-19 20:10:19 +00006674 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006675 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
6676 !<index> = !{ i32 1 }
6677
6678Overview:
6679"""""""""
6680
6681The '``load``' instruction is used to read from memory.
6682
6683Arguments:
6684""""""""""
6685
Eli Bendersky239a78b2013-04-17 20:17:08 +00006686The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006687from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006688class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6689then the optimizer is not allowed to modify the number or order of
6690execution of this ``load`` with other :ref:`volatile
6691operations <volatile>`.
6692
6693If the ``load`` is marked as ``atomic``, it takes an extra
6694:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6695``release`` and ``acq_rel`` orderings are not valid on ``load``
6696instructions. Atomic loads produce :ref:`defined <memmodel>` results
6697when they may see multiple atomic stores. The type of the pointee must
6698be an integer type whose bit width is a power of two greater than or
6699equal to eight and less than or equal to a target-specific size limit.
6700``align`` must be explicitly specified on atomic loads, and the load has
6701undefined behavior if the alignment is not set to a value which is at
6702least the size in bytes of the pointee. ``!nontemporal`` does not have
6703any defined semantics for atomic loads.
6704
6705The optional constant ``align`` argument specifies the alignment of the
6706operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006707or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006708alignment for the target. It is the responsibility of the code emitter
6709to ensure that the alignment information is correct. Overestimating the
6710alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006711may produce less efficient code. An alignment of 1 is always safe. The
6712maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006713
6714The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006715metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006716``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006717metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006718that this load is not expected to be reused in the cache. The code
6719generator may select special instructions to save cache bandwidth, such
6720as the ``MOVNT`` instruction on x86.
6721
6722The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006723metadata name ``<index>`` corresponding to a metadata node with no
6724entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006725instruction tells the optimizer and code generator that the address
6726operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006727Being invariant does not imply that a location is dereferenceable,
6728but it does imply that once the location is known dereferenceable
6729its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006730
Philip Reamescdb72f32014-10-20 22:40:55 +00006731The optional ``!nonnull`` metadata must reference a single
6732metadata name ``<index>`` corresponding to a metadata node with no
6733entries. The existence of the ``!nonnull`` metadata on the
6734instruction tells the optimizer that the value loaded is known to
Sean Silvaa1190322015-08-06 22:56:48 +00006735never be null. This is analogous to the ''nonnull'' attribute
6736on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006737to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006738
Sanjoy Dasf9995472015-05-19 20:10:19 +00006739The optional ``!dereferenceable`` metadata must reference a single
6740metadata name ``<index>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006741entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006742tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006743The number of bytes known to be dereferenceable is specified by the integer
6744value in the metadata node. This is analogous to the ''dereferenceable''
6745attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006746to loads of a pointer type.
6747
6748The optional ``!dereferenceable_or_null`` metadata must reference a single
6749metadata name ``<index>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006750entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006751instruction tells the optimizer that the value loaded is known to be either
6752dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006753The number of bytes known to be dereferenceable is specified by the integer
6754value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6755attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006756to loads of a pointer type.
6757
Sean Silvab084af42012-12-07 10:36:55 +00006758Semantics:
6759""""""""""
6760
6761The location of memory pointed to is loaded. If the value being loaded
6762is of scalar type then the number of bytes read does not exceed the
6763minimum number of bytes needed to hold all bits of the type. For
6764example, loading an ``i24`` reads at most three bytes. When loading a
6765value of a type like ``i20`` with a size that is not an integral number
6766of bytes, the result is undefined if the value was not originally
6767written using a store of the same type.
6768
6769Examples:
6770"""""""""
6771
6772.. code-block:: llvm
6773
Tim Northover675a0962014-06-13 14:24:23 +00006774 %ptr = alloca i32 ; yields i32*:ptr
6775 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006776 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006777
6778.. _i_store:
6779
6780'``store``' Instruction
6781^^^^^^^^^^^^^^^^^^^^^^^
6782
6783Syntax:
6784"""""""
6785
6786::
6787
Tim Northover675a0962014-06-13 14:24:23 +00006788 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
6789 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006790
6791Overview:
6792"""""""""
6793
6794The '``store``' instruction is used to write to memory.
6795
6796Arguments:
6797""""""""""
6798
Eli Benderskyca380842013-04-17 17:17:20 +00006799There are two arguments to the ``store`` instruction: a value to store
6800and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006801operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006802the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006803then the optimizer is not allowed to modify the number or order of
6804execution of this ``store`` with other :ref:`volatile
6805operations <volatile>`.
6806
6807If the ``store`` is marked as ``atomic``, it takes an extra
6808:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6809``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6810instructions. Atomic loads produce :ref:`defined <memmodel>` results
6811when they may see multiple atomic stores. The type of the pointee must
6812be an integer type whose bit width is a power of two greater than or
6813equal to eight and less than or equal to a target-specific size limit.
6814``align`` must be explicitly specified on atomic stores, and the store
6815has undefined behavior if the alignment is not set to a value which is
6816at least the size in bytes of the pointee. ``!nontemporal`` does not
6817have any defined semantics for atomic stores.
6818
Eli Benderskyca380842013-04-17 17:17:20 +00006819The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006820operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006821or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006822alignment for the target. It is the responsibility of the code emitter
6823to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006824alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006825alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006826safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006827
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006828The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006829name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006830value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006831tells the optimizer and code generator that this load is not expected to
6832be reused in the cache. The code generator may select special
6833instructions to save cache bandwidth, such as the MOVNT instruction on
6834x86.
6835
6836Semantics:
6837""""""""""
6838
Eli Benderskyca380842013-04-17 17:17:20 +00006839The contents of memory are updated to contain ``<value>`` at the
6840location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006841of scalar type then the number of bytes written does not exceed the
6842minimum number of bytes needed to hold all bits of the type. For
6843example, storing an ``i24`` writes at most three bytes. When writing a
6844value of a type like ``i20`` with a size that is not an integral number
6845of bytes, it is unspecified what happens to the extra bits that do not
6846belong to the type, but they will typically be overwritten.
6847
6848Example:
6849""""""""
6850
6851.. code-block:: llvm
6852
Tim Northover675a0962014-06-13 14:24:23 +00006853 %ptr = alloca i32 ; yields i32*:ptr
6854 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00006855 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006856
6857.. _i_fence:
6858
6859'``fence``' Instruction
6860^^^^^^^^^^^^^^^^^^^^^^^
6861
6862Syntax:
6863"""""""
6864
6865::
6866
Tim Northover675a0962014-06-13 14:24:23 +00006867 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006868
6869Overview:
6870"""""""""
6871
6872The '``fence``' instruction is used to introduce happens-before edges
6873between operations.
6874
6875Arguments:
6876""""""""""
6877
6878'``fence``' instructions take an :ref:`ordering <ordering>` argument which
6879defines what *synchronizes-with* edges they add. They can only be given
6880``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
6881
6882Semantics:
6883""""""""""
6884
6885A fence A which has (at least) ``release`` ordering semantics
6886*synchronizes with* a fence B with (at least) ``acquire`` ordering
6887semantics if and only if there exist atomic operations X and Y, both
6888operating on some atomic object M, such that A is sequenced before X, X
6889modifies M (either directly or through some side effect of a sequence
6890headed by X), Y is sequenced before B, and Y observes M. This provides a
6891*happens-before* dependency between A and B. Rather than an explicit
6892``fence``, one (but not both) of the atomic operations X or Y might
6893provide a ``release`` or ``acquire`` (resp.) ordering constraint and
6894still *synchronize-with* the explicit ``fence`` and establish the
6895*happens-before* edge.
6896
6897A ``fence`` which has ``seq_cst`` ordering, in addition to having both
6898``acquire`` and ``release`` semantics specified above, participates in
6899the global program order of other ``seq_cst`` operations and/or fences.
6900
6901The optional ":ref:`singlethread <singlethread>`" argument specifies
6902that the fence only synchronizes with other fences in the same thread.
6903(This is useful for interacting with signal handlers.)
6904
6905Example:
6906""""""""
6907
6908.. code-block:: llvm
6909
Tim Northover675a0962014-06-13 14:24:23 +00006910 fence acquire ; yields void
6911 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006912
6913.. _i_cmpxchg:
6914
6915'``cmpxchg``' Instruction
6916^^^^^^^^^^^^^^^^^^^^^^^^^
6917
6918Syntax:
6919"""""""
6920
6921::
6922
Tim Northover675a0962014-06-13 14:24:23 +00006923 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00006924
6925Overview:
6926"""""""""
6927
6928The '``cmpxchg``' instruction is used to atomically modify memory. It
6929loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00006930equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00006931
6932Arguments:
6933""""""""""
6934
6935There are three arguments to the '``cmpxchg``' instruction: an address
6936to operate on, a value to compare to the value currently be at that
6937address, and a new value to place at that address if the compared values
6938are equal. The type of '<cmp>' must be an integer type whose bit width
6939is a power of two greater than or equal to eight and less than or equal
6940to a target-specific size limit. '<cmp>' and '<new>' must have the same
6941type, and the type of '<pointer>' must be a pointer to that type. If the
6942``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
6943to modify the number or order of execution of this ``cmpxchg`` with
6944other :ref:`volatile operations <volatile>`.
6945
Tim Northovere94a5182014-03-11 10:48:52 +00006946The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00006947``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
6948must be at least ``monotonic``, the ordering constraint on failure must be no
6949stronger than that on success, and the failure ordering cannot be either
6950``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00006951
6952The optional "``singlethread``" argument declares that the ``cmpxchg``
6953is only atomic with respect to code (usually signal handlers) running in
6954the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
6955respect to all other code in the system.
6956
6957The pointer passed into cmpxchg must have alignment greater than or
6958equal to the size in memory of the operand.
6959
6960Semantics:
6961""""""""""
6962
Tim Northover420a2162014-06-13 14:24:07 +00006963The contents of memory at the location specified by the '``<pointer>``' operand
6964is read and compared to '``<cmp>``'; if the read value is the equal, the
6965'``<new>``' is written. The original value at the location is returned, together
6966with a flag indicating success (true) or failure (false).
6967
6968If the cmpxchg operation is marked as ``weak`` then a spurious failure is
6969permitted: the operation may not write ``<new>`` even if the comparison
6970matched.
6971
6972If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
6973if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00006974
Tim Northovere94a5182014-03-11 10:48:52 +00006975A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
6976identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
6977load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00006978
6979Example:
6980""""""""
6981
6982.. code-block:: llvm
6983
6984 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006985 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006986 br label %loop
6987
6988 loop:
6989 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6990 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006991 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006992 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6993 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006994 br i1 %success, label %done, label %loop
6995
6996 done:
6997 ...
6998
6999.. _i_atomicrmw:
7000
7001'``atomicrmw``' Instruction
7002^^^^^^^^^^^^^^^^^^^^^^^^^^^
7003
7004Syntax:
7005"""""""
7006
7007::
7008
Tim Northover675a0962014-06-13 14:24:23 +00007009 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007010
7011Overview:
7012"""""""""
7013
7014The '``atomicrmw``' instruction is used to atomically modify memory.
7015
7016Arguments:
7017""""""""""
7018
7019There are three arguments to the '``atomicrmw``' instruction: an
7020operation to apply, an address whose value to modify, an argument to the
7021operation. The operation must be one of the following keywords:
7022
7023- xchg
7024- add
7025- sub
7026- and
7027- nand
7028- or
7029- xor
7030- max
7031- min
7032- umax
7033- umin
7034
7035The type of '<value>' must be an integer type whose bit width is a power
7036of two greater than or equal to eight and less than or equal to a
7037target-specific size limit. The type of the '``<pointer>``' operand must
7038be a pointer to that type. If the ``atomicrmw`` is marked as
7039``volatile``, then the optimizer is not allowed to modify the number or
7040order of execution of this ``atomicrmw`` with other :ref:`volatile
7041operations <volatile>`.
7042
7043Semantics:
7044""""""""""
7045
7046The contents of memory at the location specified by the '``<pointer>``'
7047operand are atomically read, modified, and written back. The original
7048value at the location is returned. The modification is specified by the
7049operation argument:
7050
7051- xchg: ``*ptr = val``
7052- add: ``*ptr = *ptr + val``
7053- sub: ``*ptr = *ptr - val``
7054- and: ``*ptr = *ptr & val``
7055- nand: ``*ptr = ~(*ptr & val)``
7056- or: ``*ptr = *ptr | val``
7057- xor: ``*ptr = *ptr ^ val``
7058- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7059- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7060- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7061 comparison)
7062- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7063 comparison)
7064
7065Example:
7066""""""""
7067
7068.. code-block:: llvm
7069
Tim Northover675a0962014-06-13 14:24:23 +00007070 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007071
7072.. _i_getelementptr:
7073
7074'``getelementptr``' Instruction
7075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7076
7077Syntax:
7078"""""""
7079
7080::
7081
David Blaikie16a97eb2015-03-04 22:02:58 +00007082 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7083 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7084 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007085
7086Overview:
7087"""""""""
7088
7089The '``getelementptr``' instruction is used to get the address of a
7090subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007091address calculation only and does not access memory. The instruction can also
7092be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007093
7094Arguments:
7095""""""""""
7096
David Blaikie16a97eb2015-03-04 22:02:58 +00007097The first argument is always a type used as the basis for the calculations.
7098The second argument is always a pointer or a vector of pointers, and is the
7099base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007100that indicate which of the elements of the aggregate object are indexed.
7101The interpretation of each index is dependent on the type being indexed
7102into. The first index always indexes the pointer value given as the
7103first argument, the second index indexes a value of the type pointed to
7104(not necessarily the value directly pointed to, since the first index
7105can be non-zero), etc. The first type indexed into must be a pointer
7106value, subsequent types can be arrays, vectors, and structs. Note that
7107subsequent types being indexed into can never be pointers, since that
7108would require loading the pointer before continuing calculation.
7109
7110The type of each index argument depends on the type it is indexing into.
7111When indexing into a (optionally packed) structure, only ``i32`` integer
7112**constants** are allowed (when using a vector of indices they must all
7113be the **same** ``i32`` integer constant). When indexing into an array,
7114pointer or vector, integers of any width are allowed, and they are not
7115required to be constant. These integers are treated as signed values
7116where relevant.
7117
7118For example, let's consider a C code fragment and how it gets compiled
7119to LLVM:
7120
7121.. code-block:: c
7122
7123 struct RT {
7124 char A;
7125 int B[10][20];
7126 char C;
7127 };
7128 struct ST {
7129 int X;
7130 double Y;
7131 struct RT Z;
7132 };
7133
7134 int *foo(struct ST *s) {
7135 return &s[1].Z.B[5][13];
7136 }
7137
7138The LLVM code generated by Clang is:
7139
7140.. code-block:: llvm
7141
7142 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7143 %struct.ST = type { i32, double, %struct.RT }
7144
7145 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7146 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007147 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007148 ret i32* %arrayidx
7149 }
7150
7151Semantics:
7152""""""""""
7153
7154In the example above, the first index is indexing into the
7155'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7156= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7157indexes into the third element of the structure, yielding a
7158'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7159structure. The third index indexes into the second element of the
7160structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7161dimensions of the array are subscripted into, yielding an '``i32``'
7162type. The '``getelementptr``' instruction returns a pointer to this
7163element, thus computing a value of '``i32*``' type.
7164
7165Note that it is perfectly legal to index partially through a structure,
7166returning a pointer to an inner element. Because of this, the LLVM code
7167for the given testcase is equivalent to:
7168
7169.. code-block:: llvm
7170
7171 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007172 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7173 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7174 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7175 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7176 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007177 ret i32* %t5
7178 }
7179
7180If the ``inbounds`` keyword is present, the result value of the
7181``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7182pointer is not an *in bounds* address of an allocated object, or if any
7183of the addresses that would be formed by successive addition of the
7184offsets implied by the indices to the base address with infinitely
7185precise signed arithmetic are not an *in bounds* address of that
7186allocated object. The *in bounds* addresses for an allocated object are
7187all the addresses that point into the object, plus the address one byte
7188past the end. In cases where the base is a vector of pointers the
7189``inbounds`` keyword applies to each of the computations element-wise.
7190
7191If the ``inbounds`` keyword is not present, the offsets are added to the
7192base address with silently-wrapping two's complement arithmetic. If the
7193offsets have a different width from the pointer, they are sign-extended
7194or truncated to the width of the pointer. The result value of the
7195``getelementptr`` may be outside the object pointed to by the base
7196pointer. The result value may not necessarily be used to access memory
7197though, even if it happens to point into allocated storage. See the
7198:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7199information.
7200
7201The getelementptr instruction is often confusing. For some more insight
7202into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7203
7204Example:
7205""""""""
7206
7207.. code-block:: llvm
7208
7209 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007210 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007211 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007212 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007213 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007214 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007215 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007216 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007217
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007218Vector of pointers:
7219"""""""""""""""""""
7220
7221The ``getelementptr`` returns a vector of pointers, instead of a single address,
7222when one or more of its arguments is a vector. In such cases, all vector
7223arguments should have the same number of elements, and every scalar argument
7224will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007225
7226.. code-block:: llvm
7227
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007228 ; All arguments are vectors:
7229 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7230 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007231
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007232 ; Add the same scalar offset to each pointer of a vector:
7233 ; A[i] = ptrs[i] + offset*sizeof(i8)
7234 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007235
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007236 ; Add distinct offsets to the same pointer:
7237 ; A[i] = ptr + offsets[i]*sizeof(i8)
7238 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007239
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007240 ; In all cases described above the type of the result is <4 x i8*>
7241
7242The two following instructions are equivalent:
7243
7244.. code-block:: llvm
7245
7246 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7247 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7248 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7249 <4 x i32> %ind4,
7250 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007251
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007252 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7253 i32 2, i32 1, <4 x i32> %ind4, i64 13
7254
7255Let's look at the C code, where the vector version of ``getelementptr``
7256makes sense:
7257
7258.. code-block:: c
7259
7260 // Let's assume that we vectorize the following loop:
7261 double *A, B; int *C;
7262 for (int i = 0; i < size; ++i) {
7263 A[i] = B[C[i]];
7264 }
7265
7266.. code-block:: llvm
7267
7268 ; get pointers for 8 elements from array B
7269 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7270 ; load 8 elements from array B into A
7271 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7272 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007273
7274Conversion Operations
7275---------------------
7276
7277The instructions in this category are the conversion instructions
7278(casting) which all take a single operand and a type. They perform
7279various bit conversions on the operand.
7280
7281'``trunc .. to``' Instruction
7282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7283
7284Syntax:
7285"""""""
7286
7287::
7288
7289 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7290
7291Overview:
7292"""""""""
7293
7294The '``trunc``' instruction truncates its operand to the type ``ty2``.
7295
7296Arguments:
7297""""""""""
7298
7299The '``trunc``' instruction takes a value to trunc, and a type to trunc
7300it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7301of the same number of integers. The bit size of the ``value`` must be
7302larger than the bit size of the destination type, ``ty2``. Equal sized
7303types are not allowed.
7304
7305Semantics:
7306""""""""""
7307
7308The '``trunc``' instruction truncates the high order bits in ``value``
7309and converts the remaining bits to ``ty2``. Since the source size must
7310be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7311It will always truncate bits.
7312
7313Example:
7314""""""""
7315
7316.. code-block:: llvm
7317
7318 %X = trunc i32 257 to i8 ; yields i8:1
7319 %Y = trunc i32 123 to i1 ; yields i1:true
7320 %Z = trunc i32 122 to i1 ; yields i1:false
7321 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7322
7323'``zext .. to``' Instruction
7324^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7325
7326Syntax:
7327"""""""
7328
7329::
7330
7331 <result> = zext <ty> <value> to <ty2> ; yields ty2
7332
7333Overview:
7334"""""""""
7335
7336The '``zext``' instruction zero extends its operand to type ``ty2``.
7337
7338Arguments:
7339""""""""""
7340
7341The '``zext``' instruction takes a value to cast, and a type to cast it
7342to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7343the same number of integers. The bit size of the ``value`` must be
7344smaller than the bit size of the destination type, ``ty2``.
7345
7346Semantics:
7347""""""""""
7348
7349The ``zext`` fills the high order bits of the ``value`` with zero bits
7350until it reaches the size of the destination type, ``ty2``.
7351
7352When zero extending from i1, the result will always be either 0 or 1.
7353
7354Example:
7355""""""""
7356
7357.. code-block:: llvm
7358
7359 %X = zext i32 257 to i64 ; yields i64:257
7360 %Y = zext i1 true to i32 ; yields i32:1
7361 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7362
7363'``sext .. to``' Instruction
7364^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7365
7366Syntax:
7367"""""""
7368
7369::
7370
7371 <result> = sext <ty> <value> to <ty2> ; yields ty2
7372
7373Overview:
7374"""""""""
7375
7376The '``sext``' sign extends ``value`` to the type ``ty2``.
7377
7378Arguments:
7379""""""""""
7380
7381The '``sext``' instruction takes a value to cast, and a type to cast it
7382to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7383the same number of integers. The bit size of the ``value`` must be
7384smaller than the bit size of the destination type, ``ty2``.
7385
7386Semantics:
7387""""""""""
7388
7389The '``sext``' instruction performs a sign extension by copying the sign
7390bit (highest order bit) of the ``value`` until it reaches the bit size
7391of the type ``ty2``.
7392
7393When sign extending from i1, the extension always results in -1 or 0.
7394
7395Example:
7396""""""""
7397
7398.. code-block:: llvm
7399
7400 %X = sext i8 -1 to i16 ; yields i16 :65535
7401 %Y = sext i1 true to i32 ; yields i32:-1
7402 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7403
7404'``fptrunc .. to``' Instruction
7405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7406
7407Syntax:
7408"""""""
7409
7410::
7411
7412 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7413
7414Overview:
7415"""""""""
7416
7417The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7418
7419Arguments:
7420""""""""""
7421
7422The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7423value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7424The size of ``value`` must be larger than the size of ``ty2``. This
7425implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7426
7427Semantics:
7428""""""""""
7429
7430The '``fptrunc``' instruction truncates a ``value`` from a larger
7431:ref:`floating point <t_floating>` type to a smaller :ref:`floating
7432point <t_floating>` type. If the value cannot fit within the
7433destination type, ``ty2``, then the results are undefined.
7434
7435Example:
7436""""""""
7437
7438.. code-block:: llvm
7439
7440 %X = fptrunc double 123.0 to float ; yields float:123.0
7441 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7442
7443'``fpext .. to``' Instruction
7444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7445
7446Syntax:
7447"""""""
7448
7449::
7450
7451 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7452
7453Overview:
7454"""""""""
7455
7456The '``fpext``' extends a floating point ``value`` to a larger floating
7457point value.
7458
7459Arguments:
7460""""""""""
7461
7462The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7463``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7464to. The source type must be smaller than the destination type.
7465
7466Semantics:
7467""""""""""
7468
7469The '``fpext``' instruction extends the ``value`` from a smaller
7470:ref:`floating point <t_floating>` type to a larger :ref:`floating
7471point <t_floating>` type. The ``fpext`` cannot be used to make a
7472*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7473*no-op cast* for a floating point cast.
7474
7475Example:
7476""""""""
7477
7478.. code-block:: llvm
7479
7480 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7481 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7482
7483'``fptoui .. to``' Instruction
7484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7485
7486Syntax:
7487"""""""
7488
7489::
7490
7491 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7492
7493Overview:
7494"""""""""
7495
7496The '``fptoui``' converts a floating point ``value`` to its unsigned
7497integer equivalent of type ``ty2``.
7498
7499Arguments:
7500""""""""""
7501
7502The '``fptoui``' instruction takes a value to cast, which must be a
7503scalar or vector :ref:`floating point <t_floating>` value, and a type to
7504cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7505``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7506type with the same number of elements as ``ty``
7507
7508Semantics:
7509""""""""""
7510
7511The '``fptoui``' instruction converts its :ref:`floating
7512point <t_floating>` operand into the nearest (rounding towards zero)
7513unsigned integer value. If the value cannot fit in ``ty2``, the results
7514are undefined.
7515
7516Example:
7517""""""""
7518
7519.. code-block:: llvm
7520
7521 %X = fptoui double 123.0 to i32 ; yields i32:123
7522 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7523 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7524
7525'``fptosi .. to``' Instruction
7526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7527
7528Syntax:
7529"""""""
7530
7531::
7532
7533 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7534
7535Overview:
7536"""""""""
7537
7538The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7539``value`` to type ``ty2``.
7540
7541Arguments:
7542""""""""""
7543
7544The '``fptosi``' instruction takes a value to cast, which must be a
7545scalar or vector :ref:`floating point <t_floating>` value, and a type to
7546cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7547``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7548type with the same number of elements as ``ty``
7549
7550Semantics:
7551""""""""""
7552
7553The '``fptosi``' instruction converts its :ref:`floating
7554point <t_floating>` operand into the nearest (rounding towards zero)
7555signed integer value. If the value cannot fit in ``ty2``, the results
7556are undefined.
7557
7558Example:
7559""""""""
7560
7561.. code-block:: llvm
7562
7563 %X = fptosi double -123.0 to i32 ; yields i32:-123
7564 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7565 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7566
7567'``uitofp .. to``' Instruction
7568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7569
7570Syntax:
7571"""""""
7572
7573::
7574
7575 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7576
7577Overview:
7578"""""""""
7579
7580The '``uitofp``' instruction regards ``value`` as an unsigned integer
7581and converts that value to the ``ty2`` type.
7582
7583Arguments:
7584""""""""""
7585
7586The '``uitofp``' instruction takes a value to cast, which must be a
7587scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7588``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7589``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7590type with the same number of elements as ``ty``
7591
7592Semantics:
7593""""""""""
7594
7595The '``uitofp``' instruction interprets its operand as an unsigned
7596integer quantity and converts it to the corresponding floating point
7597value. If the value cannot fit in the floating point value, the results
7598are undefined.
7599
7600Example:
7601""""""""
7602
7603.. code-block:: llvm
7604
7605 %X = uitofp i32 257 to float ; yields float:257.0
7606 %Y = uitofp i8 -1 to double ; yields double:255.0
7607
7608'``sitofp .. to``' Instruction
7609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7610
7611Syntax:
7612"""""""
7613
7614::
7615
7616 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7617
7618Overview:
7619"""""""""
7620
7621The '``sitofp``' instruction regards ``value`` as a signed integer and
7622converts that value to the ``ty2`` type.
7623
7624Arguments:
7625""""""""""
7626
7627The '``sitofp``' instruction takes a value to cast, which must be a
7628scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7629``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7630``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7631type with the same number of elements as ``ty``
7632
7633Semantics:
7634""""""""""
7635
7636The '``sitofp``' instruction interprets its operand as a signed integer
7637quantity and converts it to the corresponding floating point value. If
7638the value cannot fit in the floating point value, the results are
7639undefined.
7640
7641Example:
7642""""""""
7643
7644.. code-block:: llvm
7645
7646 %X = sitofp i32 257 to float ; yields float:257.0
7647 %Y = sitofp i8 -1 to double ; yields double:-1.0
7648
7649.. _i_ptrtoint:
7650
7651'``ptrtoint .. to``' Instruction
7652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7653
7654Syntax:
7655"""""""
7656
7657::
7658
7659 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7660
7661Overview:
7662"""""""""
7663
7664The '``ptrtoint``' instruction converts the pointer or a vector of
7665pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7666
7667Arguments:
7668""""""""""
7669
7670The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007671a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007672type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7673a vector of integers type.
7674
7675Semantics:
7676""""""""""
7677
7678The '``ptrtoint``' instruction converts ``value`` to integer type
7679``ty2`` by interpreting the pointer value as an integer and either
7680truncating or zero extending that value to the size of the integer type.
7681If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7682``value`` is larger than ``ty2`` then a truncation is done. If they are
7683the same size, then nothing is done (*no-op cast*) other than a type
7684change.
7685
7686Example:
7687""""""""
7688
7689.. code-block:: llvm
7690
7691 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7692 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7693 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7694
7695.. _i_inttoptr:
7696
7697'``inttoptr .. to``' Instruction
7698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7699
7700Syntax:
7701"""""""
7702
7703::
7704
7705 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7706
7707Overview:
7708"""""""""
7709
7710The '``inttoptr``' instruction converts an integer ``value`` to a
7711pointer type, ``ty2``.
7712
7713Arguments:
7714""""""""""
7715
7716The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7717cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7718type.
7719
7720Semantics:
7721""""""""""
7722
7723The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7724applying either a zero extension or a truncation depending on the size
7725of the integer ``value``. If ``value`` is larger than the size of a
7726pointer then a truncation is done. If ``value`` is smaller than the size
7727of a pointer then a zero extension is done. If they are the same size,
7728nothing is done (*no-op cast*).
7729
7730Example:
7731""""""""
7732
7733.. code-block:: llvm
7734
7735 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7736 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7737 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7738 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7739
7740.. _i_bitcast:
7741
7742'``bitcast .. to``' Instruction
7743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7744
7745Syntax:
7746"""""""
7747
7748::
7749
7750 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7751
7752Overview:
7753"""""""""
7754
7755The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7756changing any bits.
7757
7758Arguments:
7759""""""""""
7760
7761The '``bitcast``' instruction takes a value to cast, which must be a
7762non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007763also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7764bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007765identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007766also be a pointer of the same size. This instruction supports bitwise
7767conversion of vectors to integers and to vectors of other types (as
7768long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007769
7770Semantics:
7771""""""""""
7772
Matt Arsenault24b49c42013-07-31 17:49:08 +00007773The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7774is always a *no-op cast* because no bits change with this
7775conversion. The conversion is done as if the ``value`` had been stored
7776to memory and read back as type ``ty2``. Pointer (or vector of
7777pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007778pointers) types with the same address space through this instruction.
7779To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7780or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007781
7782Example:
7783""""""""
7784
7785.. code-block:: llvm
7786
7787 %X = bitcast i8 255 to i8 ; yields i8 :-1
7788 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7789 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7790 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7791
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007792.. _i_addrspacecast:
7793
7794'``addrspacecast .. to``' Instruction
7795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7796
7797Syntax:
7798"""""""
7799
7800::
7801
7802 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7803
7804Overview:
7805"""""""""
7806
7807The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7808address space ``n`` to type ``pty2`` in address space ``m``.
7809
7810Arguments:
7811""""""""""
7812
7813The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7814to cast and a pointer type to cast it to, which must have a different
7815address space.
7816
7817Semantics:
7818""""""""""
7819
7820The '``addrspacecast``' instruction converts the pointer value
7821``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007822value modification, depending on the target and the address space
7823pair. Pointer conversions within the same address space must be
7824performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007825conversion is legal then both result and operand refer to the same memory
7826location.
7827
7828Example:
7829""""""""
7830
7831.. code-block:: llvm
7832
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007833 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7834 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7835 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007836
Sean Silvab084af42012-12-07 10:36:55 +00007837.. _otherops:
7838
7839Other Operations
7840----------------
7841
7842The instructions in this category are the "miscellaneous" instructions,
7843which defy better classification.
7844
7845.. _i_icmp:
7846
7847'``icmp``' Instruction
7848^^^^^^^^^^^^^^^^^^^^^^
7849
7850Syntax:
7851"""""""
7852
7853::
7854
Tim Northover675a0962014-06-13 14:24:23 +00007855 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007856
7857Overview:
7858"""""""""
7859
7860The '``icmp``' instruction returns a boolean value or a vector of
7861boolean values based on comparison of its two integer, integer vector,
7862pointer, or pointer vector operands.
7863
7864Arguments:
7865""""""""""
7866
7867The '``icmp``' instruction takes three operands. The first operand is
7868the condition code indicating the kind of comparison to perform. It is
7869not a value, just a keyword. The possible condition code are:
7870
7871#. ``eq``: equal
7872#. ``ne``: not equal
7873#. ``ugt``: unsigned greater than
7874#. ``uge``: unsigned greater or equal
7875#. ``ult``: unsigned less than
7876#. ``ule``: unsigned less or equal
7877#. ``sgt``: signed greater than
7878#. ``sge``: signed greater or equal
7879#. ``slt``: signed less than
7880#. ``sle``: signed less or equal
7881
7882The remaining two arguments must be :ref:`integer <t_integer>` or
7883:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
7884must also be identical types.
7885
7886Semantics:
7887""""""""""
7888
7889The '``icmp``' compares ``op1`` and ``op2`` according to the condition
7890code given as ``cond``. The comparison performed always yields either an
7891:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
7892
7893#. ``eq``: yields ``true`` if the operands are equal, ``false``
7894 otherwise. No sign interpretation is necessary or performed.
7895#. ``ne``: yields ``true`` if the operands are unequal, ``false``
7896 otherwise. No sign interpretation is necessary or performed.
7897#. ``ugt``: interprets the operands as unsigned values and yields
7898 ``true`` if ``op1`` is greater than ``op2``.
7899#. ``uge``: interprets the operands as unsigned values and yields
7900 ``true`` if ``op1`` is greater than or equal to ``op2``.
7901#. ``ult``: interprets the operands as unsigned values and yields
7902 ``true`` if ``op1`` is less than ``op2``.
7903#. ``ule``: interprets the operands as unsigned values and yields
7904 ``true`` if ``op1`` is less than or equal to ``op2``.
7905#. ``sgt``: interprets the operands as signed values and yields ``true``
7906 if ``op1`` is greater than ``op2``.
7907#. ``sge``: interprets the operands as signed values and yields ``true``
7908 if ``op1`` is greater than or equal to ``op2``.
7909#. ``slt``: interprets the operands as signed values and yields ``true``
7910 if ``op1`` is less than ``op2``.
7911#. ``sle``: interprets the operands as signed values and yields ``true``
7912 if ``op1`` is less than or equal to ``op2``.
7913
7914If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
7915are compared as if they were integers.
7916
7917If the operands are integer vectors, then they are compared element by
7918element. The result is an ``i1`` vector with the same number of elements
7919as the values being compared. Otherwise, the result is an ``i1``.
7920
7921Example:
7922""""""""
7923
7924.. code-block:: llvm
7925
7926 <result> = icmp eq i32 4, 5 ; yields: result=false
7927 <result> = icmp ne float* %X, %X ; yields: result=false
7928 <result> = icmp ult i16 4, 5 ; yields: result=true
7929 <result> = icmp sgt i16 4, 5 ; yields: result=false
7930 <result> = icmp ule i16 -4, 5 ; yields: result=false
7931 <result> = icmp sge i16 4, 5 ; yields: result=false
7932
7933Note that the code generator does not yet support vector types with the
7934``icmp`` instruction.
7935
7936.. _i_fcmp:
7937
7938'``fcmp``' Instruction
7939^^^^^^^^^^^^^^^^^^^^^^
7940
7941Syntax:
7942"""""""
7943
7944::
7945
James Molloy88eb5352015-07-10 12:52:00 +00007946 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007947
7948Overview:
7949"""""""""
7950
7951The '``fcmp``' instruction returns a boolean value or vector of boolean
7952values based on comparison of its operands.
7953
7954If the operands are floating point scalars, then the result type is a
7955boolean (:ref:`i1 <t_integer>`).
7956
7957If the operands are floating point vectors, then the result type is a
7958vector of boolean with the same number of elements as the operands being
7959compared.
7960
7961Arguments:
7962""""""""""
7963
7964The '``fcmp``' instruction takes three operands. The first operand is
7965the condition code indicating the kind of comparison to perform. It is
7966not a value, just a keyword. The possible condition code are:
7967
7968#. ``false``: no comparison, always returns false
7969#. ``oeq``: ordered and equal
7970#. ``ogt``: ordered and greater than
7971#. ``oge``: ordered and greater than or equal
7972#. ``olt``: ordered and less than
7973#. ``ole``: ordered and less than or equal
7974#. ``one``: ordered and not equal
7975#. ``ord``: ordered (no nans)
7976#. ``ueq``: unordered or equal
7977#. ``ugt``: unordered or greater than
7978#. ``uge``: unordered or greater than or equal
7979#. ``ult``: unordered or less than
7980#. ``ule``: unordered or less than or equal
7981#. ``une``: unordered or not equal
7982#. ``uno``: unordered (either nans)
7983#. ``true``: no comparison, always returns true
7984
7985*Ordered* means that neither operand is a QNAN while *unordered* means
7986that either operand may be a QNAN.
7987
7988Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
7989point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
7990type. They must have identical types.
7991
7992Semantics:
7993""""""""""
7994
7995The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
7996condition code given as ``cond``. If the operands are vectors, then the
7997vectors are compared element by element. Each comparison performed
7998always yields an :ref:`i1 <t_integer>` result, as follows:
7999
8000#. ``false``: always yields ``false``, regardless of operands.
8001#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8002 is equal to ``op2``.
8003#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8004 is greater than ``op2``.
8005#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8006 is greater than or equal to ``op2``.
8007#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8008 is less than ``op2``.
8009#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8010 is less than or equal to ``op2``.
8011#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8012 is not equal to ``op2``.
8013#. ``ord``: yields ``true`` if both operands are not a QNAN.
8014#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8015 equal to ``op2``.
8016#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8017 greater than ``op2``.
8018#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8019 greater than or equal to ``op2``.
8020#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8021 less than ``op2``.
8022#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8023 less than or equal to ``op2``.
8024#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8025 not equal to ``op2``.
8026#. ``uno``: yields ``true`` if either operand is a QNAN.
8027#. ``true``: always yields ``true``, regardless of operands.
8028
James Molloy88eb5352015-07-10 12:52:00 +00008029The ``fcmp`` instruction can also optionally take any number of
8030:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8031otherwise unsafe floating point optimizations.
8032
8033Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8034only flags that have any effect on its semantics are those that allow
8035assumptions to be made about the values of input arguments; namely
8036``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8037
Sean Silvab084af42012-12-07 10:36:55 +00008038Example:
8039""""""""
8040
8041.. code-block:: llvm
8042
8043 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8044 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8045 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8046 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8047
8048Note that the code generator does not yet support vector types with the
8049``fcmp`` instruction.
8050
8051.. _i_phi:
8052
8053'``phi``' Instruction
8054^^^^^^^^^^^^^^^^^^^^^
8055
8056Syntax:
8057"""""""
8058
8059::
8060
8061 <result> = phi <ty> [ <val0>, <label0>], ...
8062
8063Overview:
8064"""""""""
8065
8066The '``phi``' instruction is used to implement the φ node in the SSA
8067graph representing the function.
8068
8069Arguments:
8070""""""""""
8071
8072The type of the incoming values is specified with the first type field.
8073After this, the '``phi``' instruction takes a list of pairs as
8074arguments, with one pair for each predecessor basic block of the current
8075block. Only values of :ref:`first class <t_firstclass>` type may be used as
8076the value arguments to the PHI node. Only labels may be used as the
8077label arguments.
8078
8079There must be no non-phi instructions between the start of a basic block
8080and the PHI instructions: i.e. PHI instructions must be first in a basic
8081block.
8082
8083For the purposes of the SSA form, the use of each incoming value is
8084deemed to occur on the edge from the corresponding predecessor block to
8085the current block (but after any definition of an '``invoke``'
8086instruction's return value on the same edge).
8087
8088Semantics:
8089""""""""""
8090
8091At runtime, the '``phi``' instruction logically takes on the value
8092specified by the pair corresponding to the predecessor basic block that
8093executed just prior to the current block.
8094
8095Example:
8096""""""""
8097
8098.. code-block:: llvm
8099
8100 Loop: ; Infinite loop that counts from 0 on up...
8101 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8102 %nextindvar = add i32 %indvar, 1
8103 br label %Loop
8104
8105.. _i_select:
8106
8107'``select``' Instruction
8108^^^^^^^^^^^^^^^^^^^^^^^^
8109
8110Syntax:
8111"""""""
8112
8113::
8114
8115 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8116
8117 selty is either i1 or {<N x i1>}
8118
8119Overview:
8120"""""""""
8121
8122The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008123condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008124
8125Arguments:
8126""""""""""
8127
8128The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8129values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008130class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008131
8132Semantics:
8133""""""""""
8134
8135If the condition is an i1 and it evaluates to 1, the instruction returns
8136the first value argument; otherwise, it returns the second value
8137argument.
8138
8139If the condition is a vector of i1, then the value arguments must be
8140vectors of the same size, and the selection is done element by element.
8141
David Majnemer40a0b592015-03-03 22:45:47 +00008142If the condition is an i1 and the value arguments are vectors of the
8143same size, then an entire vector is selected.
8144
Sean Silvab084af42012-12-07 10:36:55 +00008145Example:
8146""""""""
8147
8148.. code-block:: llvm
8149
8150 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8151
8152.. _i_call:
8153
8154'``call``' Instruction
8155^^^^^^^^^^^^^^^^^^^^^^
8156
8157Syntax:
8158"""""""
8159
8160::
8161
Reid Kleckner5772b772014-04-24 20:14:34 +00008162 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00008163
8164Overview:
8165"""""""""
8166
8167The '``call``' instruction represents a simple function call.
8168
8169Arguments:
8170""""""""""
8171
8172This instruction requires several arguments:
8173
Reid Kleckner5772b772014-04-24 20:14:34 +00008174#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008175 should perform tail call optimization. The ``tail`` marker is a hint that
8176 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008177 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008178 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008179
8180 #. The call will not cause unbounded stack growth if it is part of a
8181 recursive cycle in the call graph.
8182 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8183 forwarded in place.
8184
8185 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008186 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008187 rules:
8188
8189 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8190 or a pointer bitcast followed by a ret instruction.
8191 - The ret instruction must return the (possibly bitcasted) value
8192 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008193 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008194 parameters or return types may differ in pointee type, but not
8195 in address space.
8196 - The calling conventions of the caller and callee must match.
8197 - All ABI-impacting function attributes, such as sret, byval, inreg,
8198 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008199 - The callee must be varargs iff the caller is varargs. Bitcasting a
8200 non-varargs function to the appropriate varargs type is legal so
8201 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008202
8203 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8204 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008205
8206 - Caller and callee both have the calling convention ``fastcc``.
8207 - The call is in tail position (ret immediately follows call and ret
8208 uses value of call or is void).
8209 - Option ``-tailcallopt`` is enabled, or
8210 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008211 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008212 met. <CodeGenerator.html#tailcallopt>`_
8213
8214#. The optional "cconv" marker indicates which :ref:`calling
8215 convention <callingconv>` the call should use. If none is
8216 specified, the call defaults to using C calling conventions. The
8217 calling convention of the call must match the calling convention of
8218 the target function, or else the behavior is undefined.
8219#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8220 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8221 are valid here.
8222#. '``ty``': the type of the call instruction itself which is also the
8223 type of the return value. Functions that return no value are marked
8224 ``void``.
8225#. '``fnty``': shall be the signature of the pointer to function value
8226 being invoked. The argument types must match the types implied by
8227 this signature. This type can be omitted if the function is not
8228 varargs and if the function type does not return a pointer to a
8229 function.
8230#. '``fnptrval``': An LLVM value containing a pointer to a function to
8231 be invoked. In most cases, this is a direct function invocation, but
8232 indirect ``call``'s are just as possible, calling an arbitrary pointer
8233 to function value.
8234#. '``function args``': argument list whose types match the function
8235 signature argument types and parameter attributes. All arguments must
8236 be of :ref:`first class <t_firstclass>` type. If the function signature
8237 indicates the function accepts a variable number of arguments, the
8238 extra arguments can be specified.
8239#. The optional :ref:`function attributes <fnattrs>` list. Only
8240 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8241 attributes are valid here.
8242
8243Semantics:
8244""""""""""
8245
8246The '``call``' instruction is used to cause control flow to transfer to
8247a specified function, with its incoming arguments bound to the specified
8248values. Upon a '``ret``' instruction in the called function, control
8249flow continues with the instruction after the function call, and the
8250return value of the function is bound to the result argument.
8251
8252Example:
8253""""""""
8254
8255.. code-block:: llvm
8256
8257 %retval = call i32 @test(i32 %argc)
8258 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8259 %X = tail call i32 @foo() ; yields i32
8260 %Y = tail call fastcc i32 @foo() ; yields i32
8261 call void %foo(i8 97 signext)
8262
8263 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008264 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008265 %gr = extractvalue %struct.A %r, 0 ; yields i32
8266 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8267 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8268 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8269
8270llvm treats calls to some functions with names and arguments that match
8271the standard C99 library as being the C99 library functions, and may
8272perform optimizations or generate code for them under that assumption.
8273This is something we'd like to change in the future to provide better
8274support for freestanding environments and non-C-based languages.
8275
8276.. _i_va_arg:
8277
8278'``va_arg``' Instruction
8279^^^^^^^^^^^^^^^^^^^^^^^^
8280
8281Syntax:
8282"""""""
8283
8284::
8285
8286 <resultval> = va_arg <va_list*> <arglist>, <argty>
8287
8288Overview:
8289"""""""""
8290
8291The '``va_arg``' instruction is used to access arguments passed through
8292the "variable argument" area of a function call. It is used to implement
8293the ``va_arg`` macro in C.
8294
8295Arguments:
8296""""""""""
8297
8298This instruction takes a ``va_list*`` value and the type of the
8299argument. It returns a value of the specified argument type and
8300increments the ``va_list`` to point to the next argument. The actual
8301type of ``va_list`` is target specific.
8302
8303Semantics:
8304""""""""""
8305
8306The '``va_arg``' instruction loads an argument of the specified type
8307from the specified ``va_list`` and causes the ``va_list`` to point to
8308the next argument. For more information, see the variable argument
8309handling :ref:`Intrinsic Functions <int_varargs>`.
8310
8311It is legal for this instruction to be called in a function which does
8312not take a variable number of arguments, for example, the ``vfprintf``
8313function.
8314
8315``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8316function <intrinsics>` because it takes a type as an argument.
8317
8318Example:
8319""""""""
8320
8321See the :ref:`variable argument processing <int_varargs>` section.
8322
8323Note that the code generator does not yet fully support va\_arg on many
8324targets. Also, it does not currently support va\_arg with aggregate
8325types on any target.
8326
8327.. _i_landingpad:
8328
8329'``landingpad``' Instruction
8330^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8331
8332Syntax:
8333"""""""
8334
8335::
8336
David Majnemer7fddecc2015-06-17 20:52:32 +00008337 <resultval> = landingpad <resultty> <clause>+
8338 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008339
8340 <clause> := catch <type> <value>
8341 <clause> := filter <array constant type> <array constant>
8342
8343Overview:
8344"""""""""
8345
8346The '``landingpad``' instruction is used by `LLVM's exception handling
8347system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008348is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008349code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008350defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008351re-entry to the function. The ``resultval`` has the type ``resultty``.
8352
8353Arguments:
8354""""""""""
8355
David Majnemer7fddecc2015-06-17 20:52:32 +00008356The optional
Sean Silvab084af42012-12-07 10:36:55 +00008357``cleanup`` flag indicates that the landing pad block is a cleanup.
8358
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008359A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008360contains the global variable representing the "type" that may be caught
8361or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8362clause takes an array constant as its argument. Use
8363"``[0 x i8**] undef``" for a filter which cannot throw. The
8364'``landingpad``' instruction must contain *at least* one ``clause`` or
8365the ``cleanup`` flag.
8366
8367Semantics:
8368""""""""""
8369
8370The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008371:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008372therefore the "result type" of the ``landingpad`` instruction. As with
8373calling conventions, how the personality function results are
8374represented in LLVM IR is target specific.
8375
8376The clauses are applied in order from top to bottom. If two
8377``landingpad`` instructions are merged together through inlining, the
8378clauses from the calling function are appended to the list of clauses.
8379When the call stack is being unwound due to an exception being thrown,
8380the exception is compared against each ``clause`` in turn. If it doesn't
8381match any of the clauses, and the ``cleanup`` flag is not set, then
8382unwinding continues further up the call stack.
8383
8384The ``landingpad`` instruction has several restrictions:
8385
8386- A landing pad block is a basic block which is the unwind destination
8387 of an '``invoke``' instruction.
8388- A landing pad block must have a '``landingpad``' instruction as its
8389 first non-PHI instruction.
8390- There can be only one '``landingpad``' instruction within the landing
8391 pad block.
8392- A basic block that is not a landing pad block may not include a
8393 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008394
8395Example:
8396""""""""
8397
8398.. code-block:: llvm
8399
8400 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008401 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008402 catch i8** @_ZTIi
8403 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008404 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008405 cleanup
8406 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008407 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008408 catch i8** @_ZTIi
8409 filter [1 x i8**] [@_ZTId]
8410
David Majnemer654e1302015-07-31 17:58:14 +00008411.. _i_cleanuppad:
8412
8413'``cleanuppad``' Instruction
8414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8415
8416Syntax:
8417"""""""
8418
8419::
8420
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008421 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008422
8423Overview:
8424"""""""""
8425
8426The '``cleanuppad``' instruction is used by `LLVM's exception handling
8427system <ExceptionHandling.html#overview>`_ to specify that a basic block
8428is a cleanup block --- one where a personality routine attempts to
8429transfer control to run cleanup actions.
8430The ``args`` correspond to whatever additional
8431information the :ref:`personality function <personalityfn>` requires to
8432execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008433The ``resultval`` has the type :ref:`token <t_token>` and is used to
8434match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
David Majnemer654e1302015-07-31 17:58:14 +00008435
8436Arguments:
8437""""""""""
8438
8439The instruction takes a list of arbitrary values which are interpreted
8440by the :ref:`personality function <personalityfn>`.
8441
8442Semantics:
8443""""""""""
8444
8445The '``cleanuppad``' instruction defines the values which are set by the
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008446:ref:`personality function <personalityfn>` upon re-entry to the function.
8447As with calling conventions, how the personality function results are
David Majnemer654e1302015-07-31 17:58:14 +00008448represented in LLVM IR is target specific.
8449
8450When the call stack is being unwound due to an exception being thrown,
8451the :ref:`personality function <personalityfn>` transfers control to the
8452``cleanuppad`` with the aid of the personality-specific arguments.
8453
8454The ``cleanuppad`` instruction has several restrictions:
8455
8456- A cleanup block is a basic block which is the unwind destination of
8457 an exceptional instruction.
8458- A cleanup block must have a '``cleanuppad``' instruction as its
8459 first non-PHI instruction.
8460- There can be only one '``cleanuppad``' instruction within the
8461 cleanup block.
8462- A basic block that is not a cleanup block may not include a
8463 '``cleanuppad``' instruction.
Joseph Tremoulete82b3b82015-08-23 01:04:12 +00008464- All '``cleanupret``'s which exit a ``cleanuppad`` must have the same
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008465 exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008466- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008467 ``ret`` without first executing a ``cleanupret`` that consumes the
8468 ``cleanuppad`` or unwinding out of the ``cleanuppad``.
8469- It is undefined behavior for control to transfer from a ``cleanuppad`` to
8470 itself without first executing a ``cleanupret`` that consumes the
8471 ``cleanuppad`` or unwinding out of the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008472
8473Example:
8474""""""""
8475
8476.. code-block:: llvm
8477
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008478 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008479
Sean Silvab084af42012-12-07 10:36:55 +00008480.. _intrinsics:
8481
8482Intrinsic Functions
8483===================
8484
8485LLVM supports the notion of an "intrinsic function". These functions
8486have well known names and semantics and are required to follow certain
8487restrictions. Overall, these intrinsics represent an extension mechanism
8488for the LLVM language that does not require changing all of the
8489transformations in LLVM when adding to the language (or the bitcode
8490reader/writer, the parser, etc...).
8491
8492Intrinsic function names must all start with an "``llvm.``" prefix. This
8493prefix is reserved in LLVM for intrinsic names; thus, function names may
8494not begin with this prefix. Intrinsic functions must always be external
8495functions: you cannot define the body of intrinsic functions. Intrinsic
8496functions may only be used in call or invoke instructions: it is illegal
8497to take the address of an intrinsic function. Additionally, because
8498intrinsic functions are part of the LLVM language, it is required if any
8499are added that they be documented here.
8500
8501Some intrinsic functions can be overloaded, i.e., the intrinsic
8502represents a family of functions that perform the same operation but on
8503different data types. Because LLVM can represent over 8 million
8504different integer types, overloading is used commonly to allow an
8505intrinsic function to operate on any integer type. One or more of the
8506argument types or the result type can be overloaded to accept any
8507integer type. Argument types may also be defined as exactly matching a
8508previous argument's type or the result type. This allows an intrinsic
8509function which accepts multiple arguments, but needs all of them to be
8510of the same type, to only be overloaded with respect to a single
8511argument or the result.
8512
8513Overloaded intrinsics will have the names of its overloaded argument
8514types encoded into its function name, each preceded by a period. Only
8515those types which are overloaded result in a name suffix. Arguments
8516whose type is matched against another type do not. For example, the
8517``llvm.ctpop`` function can take an integer of any width and returns an
8518integer of exactly the same integer width. This leads to a family of
8519functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8520``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8521overloaded, and only one type suffix is required. Because the argument's
8522type is matched against the return type, it does not require its own
8523name suffix.
8524
8525To learn how to add an intrinsic function, please see the `Extending
8526LLVM Guide <ExtendingLLVM.html>`_.
8527
8528.. _int_varargs:
8529
8530Variable Argument Handling Intrinsics
8531-------------------------------------
8532
8533Variable argument support is defined in LLVM with the
8534:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8535functions. These functions are related to the similarly named macros
8536defined in the ``<stdarg.h>`` header file.
8537
8538All of these functions operate on arguments that use a target-specific
8539value type "``va_list``". The LLVM assembly language reference manual
8540does not define what this type is, so all transformations should be
8541prepared to handle these functions regardless of the type used.
8542
8543This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8544variable argument handling intrinsic functions are used.
8545
8546.. code-block:: llvm
8547
Tim Northoverab60bb92014-11-02 01:21:51 +00008548 ; This struct is different for every platform. For most platforms,
8549 ; it is merely an i8*.
8550 %struct.va_list = type { i8* }
8551
8552 ; For Unix x86_64 platforms, va_list is the following struct:
8553 ; %struct.va_list = type { i32, i32, i8*, i8* }
8554
Sean Silvab084af42012-12-07 10:36:55 +00008555 define i32 @test(i32 %X, ...) {
8556 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008557 %ap = alloca %struct.va_list
8558 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008559 call void @llvm.va_start(i8* %ap2)
8560
8561 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008562 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008563
8564 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8565 %aq = alloca i8*
8566 %aq2 = bitcast i8** %aq to i8*
8567 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8568 call void @llvm.va_end(i8* %aq2)
8569
8570 ; Stop processing of arguments.
8571 call void @llvm.va_end(i8* %ap2)
8572 ret i32 %tmp
8573 }
8574
8575 declare void @llvm.va_start(i8*)
8576 declare void @llvm.va_copy(i8*, i8*)
8577 declare void @llvm.va_end(i8*)
8578
8579.. _int_va_start:
8580
8581'``llvm.va_start``' Intrinsic
8582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8583
8584Syntax:
8585"""""""
8586
8587::
8588
Nick Lewycky04f6de02013-09-11 22:04:52 +00008589 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008590
8591Overview:
8592"""""""""
8593
8594The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8595subsequent use by ``va_arg``.
8596
8597Arguments:
8598""""""""""
8599
8600The argument is a pointer to a ``va_list`` element to initialize.
8601
8602Semantics:
8603""""""""""
8604
8605The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8606available in C. In a target-dependent way, it initializes the
8607``va_list`` element to which the argument points, so that the next call
8608to ``va_arg`` will produce the first variable argument passed to the
8609function. Unlike the C ``va_start`` macro, this intrinsic does not need
8610to know the last argument of the function as the compiler can figure
8611that out.
8612
8613'``llvm.va_end``' Intrinsic
8614^^^^^^^^^^^^^^^^^^^^^^^^^^^
8615
8616Syntax:
8617"""""""
8618
8619::
8620
8621 declare void @llvm.va_end(i8* <arglist>)
8622
8623Overview:
8624"""""""""
8625
8626The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8627initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8628
8629Arguments:
8630""""""""""
8631
8632The argument is a pointer to a ``va_list`` to destroy.
8633
8634Semantics:
8635""""""""""
8636
8637The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8638available in C. In a target-dependent way, it destroys the ``va_list``
8639element to which the argument points. Calls to
8640:ref:`llvm.va_start <int_va_start>` and
8641:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8642``llvm.va_end``.
8643
8644.. _int_va_copy:
8645
8646'``llvm.va_copy``' Intrinsic
8647^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8648
8649Syntax:
8650"""""""
8651
8652::
8653
8654 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8655
8656Overview:
8657"""""""""
8658
8659The '``llvm.va_copy``' intrinsic copies the current argument position
8660from the source argument list to the destination argument list.
8661
8662Arguments:
8663""""""""""
8664
8665The first argument is a pointer to a ``va_list`` element to initialize.
8666The second argument is a pointer to a ``va_list`` element to copy from.
8667
8668Semantics:
8669""""""""""
8670
8671The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8672available in C. In a target-dependent way, it copies the source
8673``va_list`` element into the destination ``va_list`` element. This
8674intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8675arbitrarily complex and require, for example, memory allocation.
8676
8677Accurate Garbage Collection Intrinsics
8678--------------------------------------
8679
Philip Reamesc5b0f562015-02-25 23:52:06 +00008680LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008681(GC) requires the frontend to generate code containing appropriate intrinsic
8682calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008683intrinsics in a manner which is appropriate for the target collector.
8684
Sean Silvab084af42012-12-07 10:36:55 +00008685These intrinsics allow identification of :ref:`GC roots on the
8686stack <int_gcroot>`, as well as garbage collector implementations that
8687require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008688Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008689these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008690details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008691
Philip Reamesf80bbff2015-02-25 23:45:20 +00008692Experimental Statepoint Intrinsics
8693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8694
8695LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008696collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008697to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008698:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008699differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008700<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008701described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008702
8703.. _int_gcroot:
8704
8705'``llvm.gcroot``' Intrinsic
8706^^^^^^^^^^^^^^^^^^^^^^^^^^^
8707
8708Syntax:
8709"""""""
8710
8711::
8712
8713 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8714
8715Overview:
8716"""""""""
8717
8718The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8719the code generator, and allows some metadata to be associated with it.
8720
8721Arguments:
8722""""""""""
8723
8724The first argument specifies the address of a stack object that contains
8725the root pointer. The second pointer (which must be either a constant or
8726a global value address) contains the meta-data to be associated with the
8727root.
8728
8729Semantics:
8730""""""""""
8731
8732At runtime, a call to this intrinsic stores a null pointer into the
8733"ptrloc" location. At compile-time, the code generator generates
8734information to allow the runtime to find the pointer at GC safe points.
8735The '``llvm.gcroot``' intrinsic may only be used in a function which
8736:ref:`specifies a GC algorithm <gc>`.
8737
8738.. _int_gcread:
8739
8740'``llvm.gcread``' Intrinsic
8741^^^^^^^^^^^^^^^^^^^^^^^^^^^
8742
8743Syntax:
8744"""""""
8745
8746::
8747
8748 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8749
8750Overview:
8751"""""""""
8752
8753The '``llvm.gcread``' intrinsic identifies reads of references from heap
8754locations, allowing garbage collector implementations that require read
8755barriers.
8756
8757Arguments:
8758""""""""""
8759
8760The second argument is the address to read from, which should be an
8761address allocated from the garbage collector. The first object is a
8762pointer to the start of the referenced object, if needed by the language
8763runtime (otherwise null).
8764
8765Semantics:
8766""""""""""
8767
8768The '``llvm.gcread``' intrinsic has the same semantics as a load
8769instruction, but may be replaced with substantially more complex code by
8770the garbage collector runtime, as needed. The '``llvm.gcread``'
8771intrinsic may only be used in a function which :ref:`specifies a GC
8772algorithm <gc>`.
8773
8774.. _int_gcwrite:
8775
8776'``llvm.gcwrite``' Intrinsic
8777^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8778
8779Syntax:
8780"""""""
8781
8782::
8783
8784 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8785
8786Overview:
8787"""""""""
8788
8789The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8790locations, allowing garbage collector implementations that require write
8791barriers (such as generational or reference counting collectors).
8792
8793Arguments:
8794""""""""""
8795
8796The first argument is the reference to store, the second is the start of
8797the object to store it to, and the third is the address of the field of
8798Obj to store to. If the runtime does not require a pointer to the
8799object, Obj may be null.
8800
8801Semantics:
8802""""""""""
8803
8804The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8805instruction, but may be replaced with substantially more complex code by
8806the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8807intrinsic may only be used in a function which :ref:`specifies a GC
8808algorithm <gc>`.
8809
8810Code Generator Intrinsics
8811-------------------------
8812
8813These intrinsics are provided by LLVM to expose special features that
8814may only be implemented with code generator support.
8815
8816'``llvm.returnaddress``' Intrinsic
8817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8818
8819Syntax:
8820"""""""
8821
8822::
8823
8824 declare i8 *@llvm.returnaddress(i32 <level>)
8825
8826Overview:
8827"""""""""
8828
8829The '``llvm.returnaddress``' intrinsic attempts to compute a
8830target-specific value indicating the return address of the current
8831function or one of its callers.
8832
8833Arguments:
8834""""""""""
8835
8836The argument to this intrinsic indicates which function to return the
8837address for. Zero indicates the calling function, one indicates its
8838caller, etc. The argument is **required** to be a constant integer
8839value.
8840
8841Semantics:
8842""""""""""
8843
8844The '``llvm.returnaddress``' intrinsic either returns a pointer
8845indicating the return address of the specified call frame, or zero if it
8846cannot be identified. The value returned by this intrinsic is likely to
8847be incorrect or 0 for arguments other than zero, so it should only be
8848used for debugging purposes.
8849
8850Note that calling this intrinsic does not prevent function inlining or
8851other aggressive transformations, so the value returned may not be that
8852of the obvious source-language caller.
8853
8854'``llvm.frameaddress``' Intrinsic
8855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8856
8857Syntax:
8858"""""""
8859
8860::
8861
8862 declare i8* @llvm.frameaddress(i32 <level>)
8863
8864Overview:
8865"""""""""
8866
8867The '``llvm.frameaddress``' intrinsic attempts to return the
8868target-specific frame pointer value for the specified stack frame.
8869
8870Arguments:
8871""""""""""
8872
8873The argument to this intrinsic indicates which function to return the
8874frame pointer for. Zero indicates the calling function, one indicates
8875its caller, etc. The argument is **required** to be a constant integer
8876value.
8877
8878Semantics:
8879""""""""""
8880
8881The '``llvm.frameaddress``' intrinsic either returns a pointer
8882indicating the frame address of the specified call frame, or zero if it
8883cannot be identified. The value returned by this intrinsic is likely to
8884be incorrect or 0 for arguments other than zero, so it should only be
8885used for debugging purposes.
8886
8887Note that calling this intrinsic does not prevent function inlining or
8888other aggressive transformations, so the value returned may not be that
8889of the obvious source-language caller.
8890
Reid Kleckner60381792015-07-07 22:25:32 +00008891'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00008892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8893
8894Syntax:
8895"""""""
8896
8897::
8898
Reid Kleckner60381792015-07-07 22:25:32 +00008899 declare void @llvm.localescape(...)
8900 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00008901
8902Overview:
8903"""""""""
8904
Reid Kleckner60381792015-07-07 22:25:32 +00008905The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
8906allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008907live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00008908computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00008909
8910Arguments:
8911""""""""""
8912
Reid Kleckner60381792015-07-07 22:25:32 +00008913All arguments to '``llvm.localescape``' must be pointers to static allocas or
8914casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008915once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00008916
Reid Kleckner60381792015-07-07 22:25:32 +00008917The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00008918bitcasted pointer to a function defined in the current module. The code
8919generator cannot determine the frame allocation offset of functions defined in
8920other modules.
8921
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00008922The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
8923call frame that is currently live. The return value of '``llvm.localaddress``'
8924is one way to produce such a value, but various runtimes also expose a suitable
8925pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00008926
Reid Kleckner60381792015-07-07 22:25:32 +00008927The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
8928'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008929
Reid Klecknere9b89312015-01-13 00:48:10 +00008930Semantics:
8931""""""""""
8932
Reid Kleckner60381792015-07-07 22:25:32 +00008933These intrinsics allow a group of functions to share access to a set of local
8934stack allocations of a one parent function. The parent function may call the
8935'``llvm.localescape``' intrinsic once from the function entry block, and the
8936child functions can use '``llvm.localrecover``' to access the escaped allocas.
8937The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
8938the escaped allocas are allocated, which would break attempts to use
8939'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00008940
Renato Golinc7aea402014-05-06 16:51:25 +00008941.. _int_read_register:
8942.. _int_write_register:
8943
8944'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
8945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8946
8947Syntax:
8948"""""""
8949
8950::
8951
8952 declare i32 @llvm.read_register.i32(metadata)
8953 declare i64 @llvm.read_register.i64(metadata)
8954 declare void @llvm.write_register.i32(metadata, i32 @value)
8955 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00008956 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00008957
8958Overview:
8959"""""""""
8960
8961The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
8962provides access to the named register. The register must be valid on
8963the architecture being compiled to. The type needs to be compatible
8964with the register being read.
8965
8966Semantics:
8967""""""""""
8968
8969The '``llvm.read_register``' intrinsic returns the current value of the
8970register, where possible. The '``llvm.write_register``' intrinsic sets
8971the current value of the register, where possible.
8972
8973This is useful to implement named register global variables that need
8974to always be mapped to a specific register, as is common practice on
8975bare-metal programs including OS kernels.
8976
8977The compiler doesn't check for register availability or use of the used
8978register in surrounding code, including inline assembly. Because of that,
8979allocatable registers are not supported.
8980
8981Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00008982architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00008983work is needed to support other registers and even more so, allocatable
8984registers.
8985
Sean Silvab084af42012-12-07 10:36:55 +00008986.. _int_stacksave:
8987
8988'``llvm.stacksave``' Intrinsic
8989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8990
8991Syntax:
8992"""""""
8993
8994::
8995
8996 declare i8* @llvm.stacksave()
8997
8998Overview:
8999"""""""""
9000
9001The '``llvm.stacksave``' intrinsic is used to remember the current state
9002of the function stack, for use with
9003:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9004implementing language features like scoped automatic variable sized
9005arrays in C99.
9006
9007Semantics:
9008""""""""""
9009
9010This intrinsic returns a opaque pointer value that can be passed to
9011:ref:`llvm.stackrestore <int_stackrestore>`. When an
9012``llvm.stackrestore`` intrinsic is executed with a value saved from
9013``llvm.stacksave``, it effectively restores the state of the stack to
9014the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9015practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9016were allocated after the ``llvm.stacksave`` was executed.
9017
9018.. _int_stackrestore:
9019
9020'``llvm.stackrestore``' Intrinsic
9021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9022
9023Syntax:
9024"""""""
9025
9026::
9027
9028 declare void @llvm.stackrestore(i8* %ptr)
9029
9030Overview:
9031"""""""""
9032
9033The '``llvm.stackrestore``' intrinsic is used to restore the state of
9034the function stack to the state it was in when the corresponding
9035:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9036useful for implementing language features like scoped automatic variable
9037sized arrays in C99.
9038
9039Semantics:
9040""""""""""
9041
9042See the description for :ref:`llvm.stacksave <int_stacksave>`.
9043
9044'``llvm.prefetch``' Intrinsic
9045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9046
9047Syntax:
9048"""""""
9049
9050::
9051
9052 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9053
9054Overview:
9055"""""""""
9056
9057The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9058insert a prefetch instruction if supported; otherwise, it is a noop.
9059Prefetches have no effect on the behavior of the program but can change
9060its performance characteristics.
9061
9062Arguments:
9063""""""""""
9064
9065``address`` is the address to be prefetched, ``rw`` is the specifier
9066determining if the fetch should be for a read (0) or write (1), and
9067``locality`` is a temporal locality specifier ranging from (0) - no
9068locality, to (3) - extremely local keep in cache. The ``cache type``
9069specifies whether the prefetch is performed on the data (1) or
9070instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9071arguments must be constant integers.
9072
9073Semantics:
9074""""""""""
9075
9076This intrinsic does not modify the behavior of the program. In
9077particular, prefetches cannot trap and do not produce a value. On
9078targets that support this intrinsic, the prefetch can provide hints to
9079the processor cache for better performance.
9080
9081'``llvm.pcmarker``' Intrinsic
9082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9083
9084Syntax:
9085"""""""
9086
9087::
9088
9089 declare void @llvm.pcmarker(i32 <id>)
9090
9091Overview:
9092"""""""""
9093
9094The '``llvm.pcmarker``' intrinsic is a method to export a Program
9095Counter (PC) in a region of code to simulators and other tools. The
9096method is target specific, but it is expected that the marker will use
9097exported symbols to transmit the PC of the marker. The marker makes no
9098guarantees that it will remain with any specific instruction after
9099optimizations. It is possible that the presence of a marker will inhibit
9100optimizations. The intended use is to be inserted after optimizations to
9101allow correlations of simulation runs.
9102
9103Arguments:
9104""""""""""
9105
9106``id`` is a numerical id identifying the marker.
9107
9108Semantics:
9109""""""""""
9110
9111This intrinsic does not modify the behavior of the program. Backends
9112that do not support this intrinsic may ignore it.
9113
9114'``llvm.readcyclecounter``' Intrinsic
9115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9116
9117Syntax:
9118"""""""
9119
9120::
9121
9122 declare i64 @llvm.readcyclecounter()
9123
9124Overview:
9125"""""""""
9126
9127The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9128counter register (or similar low latency, high accuracy clocks) on those
9129targets that support it. On X86, it should map to RDTSC. On Alpha, it
9130should map to RPCC. As the backing counters overflow quickly (on the
9131order of 9 seconds on alpha), this should only be used for small
9132timings.
9133
9134Semantics:
9135""""""""""
9136
9137When directly supported, reading the cycle counter should not modify any
9138memory. Implementations are allowed to either return a application
9139specific value or a system wide value. On backends without support, this
9140is lowered to a constant 0.
9141
Tim Northoverbc933082013-05-23 19:11:20 +00009142Note that runtime support may be conditional on the privilege-level code is
9143running at and the host platform.
9144
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009145'``llvm.clear_cache``' Intrinsic
9146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9147
9148Syntax:
9149"""""""
9150
9151::
9152
9153 declare void @llvm.clear_cache(i8*, i8*)
9154
9155Overview:
9156"""""""""
9157
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009158The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9159in the specified range to the execution unit of the processor. On
9160targets with non-unified instruction and data cache, the implementation
9161flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009162
9163Semantics:
9164""""""""""
9165
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009166On platforms with coherent instruction and data caches (e.g. x86), this
9167intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009168cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009169instructions or a system call, if cache flushing requires special
9170privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009171
Sean Silvad02bf3e2014-04-07 22:29:53 +00009172The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009173time library.
Renato Golin93010e62014-03-26 14:01:32 +00009174
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009175This instrinsic does *not* empty the instruction pipeline. Modifications
9176of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009177
Justin Bogner61ba2e32014-12-08 18:02:35 +00009178'``llvm.instrprof_increment``' Intrinsic
9179^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9180
9181Syntax:
9182"""""""
9183
9184::
9185
9186 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9187 i32 <num-counters>, i32 <index>)
9188
9189Overview:
9190"""""""""
9191
9192The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9193frontend for use with instrumentation based profiling. These will be
9194lowered by the ``-instrprof`` pass to generate execution counts of a
9195program at runtime.
9196
9197Arguments:
9198""""""""""
9199
9200The first argument is a pointer to a global variable containing the
9201name of the entity being instrumented. This should generally be the
9202(mangled) function name for a set of counters.
9203
9204The second argument is a hash value that can be used by the consumer
9205of the profile data to detect changes to the instrumented source, and
9206the third is the number of counters associated with ``name``. It is an
9207error if ``hash`` or ``num-counters`` differ between two instances of
9208``instrprof_increment`` that refer to the same name.
9209
9210The last argument refers to which of the counters for ``name`` should
9211be incremented. It should be a value between 0 and ``num-counters``.
9212
9213Semantics:
9214""""""""""
9215
9216This intrinsic represents an increment of a profiling counter. It will
9217cause the ``-instrprof`` pass to generate the appropriate data
9218structures and the code to increment the appropriate value, in a
9219format that can be written out by a compiler runtime and consumed via
9220the ``llvm-profdata`` tool.
9221
Sean Silvab084af42012-12-07 10:36:55 +00009222Standard C Library Intrinsics
9223-----------------------------
9224
9225LLVM provides intrinsics for a few important standard C library
9226functions. These intrinsics allow source-language front-ends to pass
9227information about the alignment of the pointer arguments to the code
9228generator, providing opportunity for more efficient code generation.
9229
9230.. _int_memcpy:
9231
9232'``llvm.memcpy``' Intrinsic
9233^^^^^^^^^^^^^^^^^^^^^^^^^^^
9234
9235Syntax:
9236"""""""
9237
9238This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9239integer bit width and for different address spaces. Not all targets
9240support all bit widths however.
9241
9242::
9243
9244 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9245 i32 <len>, i32 <align>, i1 <isvolatile>)
9246 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9247 i64 <len>, i32 <align>, i1 <isvolatile>)
9248
9249Overview:
9250"""""""""
9251
9252The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9253source location to the destination location.
9254
9255Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9256intrinsics do not return a value, takes extra alignment/isvolatile
9257arguments and the pointers can be in specified address spaces.
9258
9259Arguments:
9260""""""""""
9261
9262The first argument is a pointer to the destination, the second is a
9263pointer to the source. The third argument is an integer argument
9264specifying the number of bytes to copy, the fourth argument is the
9265alignment of the source and destination locations, and the fifth is a
9266boolean indicating a volatile access.
9267
9268If the call to this intrinsic has an alignment value that is not 0 or 1,
9269then the caller guarantees that both the source and destination pointers
9270are aligned to that boundary.
9271
9272If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9273a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9274very cleanly specified and it is unwise to depend on it.
9275
9276Semantics:
9277""""""""""
9278
9279The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9280source location to the destination location, which are not allowed to
9281overlap. It copies "len" bytes of memory over. If the argument is known
9282to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009283argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009284
9285'``llvm.memmove``' Intrinsic
9286^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9287
9288Syntax:
9289"""""""
9290
9291This is an overloaded intrinsic. You can use llvm.memmove on any integer
9292bit width and for different address space. Not all targets support all
9293bit widths however.
9294
9295::
9296
9297 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9298 i32 <len>, i32 <align>, i1 <isvolatile>)
9299 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9300 i64 <len>, i32 <align>, i1 <isvolatile>)
9301
9302Overview:
9303"""""""""
9304
9305The '``llvm.memmove.*``' intrinsics move a block of memory from the
9306source location to the destination location. It is similar to the
9307'``llvm.memcpy``' intrinsic but allows the two memory locations to
9308overlap.
9309
9310Note that, unlike the standard libc function, the ``llvm.memmove.*``
9311intrinsics do not return a value, takes extra alignment/isvolatile
9312arguments and the pointers can be in specified address spaces.
9313
9314Arguments:
9315""""""""""
9316
9317The first argument is a pointer to the destination, the second is a
9318pointer to the source. The third argument is an integer argument
9319specifying the number of bytes to copy, the fourth argument is the
9320alignment of the source and destination locations, and the fifth is a
9321boolean indicating a volatile access.
9322
9323If the call to this intrinsic has an alignment value that is not 0 or 1,
9324then the caller guarantees that the source and destination pointers are
9325aligned to that boundary.
9326
9327If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9328is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9329not very cleanly specified and it is unwise to depend on it.
9330
9331Semantics:
9332""""""""""
9333
9334The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9335source location to the destination location, which may overlap. It
9336copies "len" bytes of memory over. If the argument is known to be
9337aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009338otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009339
9340'``llvm.memset.*``' Intrinsics
9341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9342
9343Syntax:
9344"""""""
9345
9346This is an overloaded intrinsic. You can use llvm.memset on any integer
9347bit width and for different address spaces. However, not all targets
9348support all bit widths.
9349
9350::
9351
9352 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9353 i32 <len>, i32 <align>, i1 <isvolatile>)
9354 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9355 i64 <len>, i32 <align>, i1 <isvolatile>)
9356
9357Overview:
9358"""""""""
9359
9360The '``llvm.memset.*``' intrinsics fill a block of memory with a
9361particular byte value.
9362
9363Note that, unlike the standard libc function, the ``llvm.memset``
9364intrinsic does not return a value and takes extra alignment/volatile
9365arguments. Also, the destination can be in an arbitrary address space.
9366
9367Arguments:
9368""""""""""
9369
9370The first argument is a pointer to the destination to fill, the second
9371is the byte value with which to fill it, the third argument is an
9372integer argument specifying the number of bytes to fill, and the fourth
9373argument is the known alignment of the destination location.
9374
9375If the call to this intrinsic has an alignment value that is not 0 or 1,
9376then the caller guarantees that the destination pointer is aligned to
9377that boundary.
9378
9379If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9380a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9381very cleanly specified and it is unwise to depend on it.
9382
9383Semantics:
9384""""""""""
9385
9386The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9387at the destination location. If the argument is known to be aligned to
9388some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009389it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009390
9391'``llvm.sqrt.*``' Intrinsic
9392^^^^^^^^^^^^^^^^^^^^^^^^^^^
9393
9394Syntax:
9395"""""""
9396
9397This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9398floating point or vector of floating point type. Not all targets support
9399all types however.
9400
9401::
9402
9403 declare float @llvm.sqrt.f32(float %Val)
9404 declare double @llvm.sqrt.f64(double %Val)
9405 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9406 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9407 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9408
9409Overview:
9410"""""""""
9411
9412The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9413returning the same value as the libm '``sqrt``' functions would. Unlike
9414``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9415negative numbers other than -0.0 (which allows for better optimization,
9416because there is no need to worry about errno being set).
9417``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9418
9419Arguments:
9420""""""""""
9421
9422The argument and return value are floating point numbers of the same
9423type.
9424
9425Semantics:
9426""""""""""
9427
9428This function returns the sqrt of the specified operand if it is a
9429nonnegative floating point number.
9430
9431'``llvm.powi.*``' Intrinsic
9432^^^^^^^^^^^^^^^^^^^^^^^^^^^
9433
9434Syntax:
9435"""""""
9436
9437This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9438floating point or vector of floating point type. Not all targets support
9439all types however.
9440
9441::
9442
9443 declare float @llvm.powi.f32(float %Val, i32 %power)
9444 declare double @llvm.powi.f64(double %Val, i32 %power)
9445 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9446 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9447 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9448
9449Overview:
9450"""""""""
9451
9452The '``llvm.powi.*``' intrinsics return the first operand raised to the
9453specified (positive or negative) power. The order of evaluation of
9454multiplications is not defined. When a vector of floating point type is
9455used, the second argument remains a scalar integer value.
9456
9457Arguments:
9458""""""""""
9459
9460The second argument is an integer power, and the first is a value to
9461raise to that power.
9462
9463Semantics:
9464""""""""""
9465
9466This function returns the first value raised to the second power with an
9467unspecified sequence of rounding operations.
9468
9469'``llvm.sin.*``' Intrinsic
9470^^^^^^^^^^^^^^^^^^^^^^^^^^
9471
9472Syntax:
9473"""""""
9474
9475This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9476floating point or vector of floating point type. Not all targets support
9477all types however.
9478
9479::
9480
9481 declare float @llvm.sin.f32(float %Val)
9482 declare double @llvm.sin.f64(double %Val)
9483 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9484 declare fp128 @llvm.sin.f128(fp128 %Val)
9485 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9486
9487Overview:
9488"""""""""
9489
9490The '``llvm.sin.*``' intrinsics return the sine of the operand.
9491
9492Arguments:
9493""""""""""
9494
9495The argument and return value are floating point numbers of the same
9496type.
9497
9498Semantics:
9499""""""""""
9500
9501This function returns the sine of the specified operand, returning the
9502same values as the libm ``sin`` functions would, and handles error
9503conditions in the same way.
9504
9505'``llvm.cos.*``' Intrinsic
9506^^^^^^^^^^^^^^^^^^^^^^^^^^
9507
9508Syntax:
9509"""""""
9510
9511This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9512floating point or vector of floating point type. Not all targets support
9513all types however.
9514
9515::
9516
9517 declare float @llvm.cos.f32(float %Val)
9518 declare double @llvm.cos.f64(double %Val)
9519 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9520 declare fp128 @llvm.cos.f128(fp128 %Val)
9521 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9522
9523Overview:
9524"""""""""
9525
9526The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9527
9528Arguments:
9529""""""""""
9530
9531The argument and return value are floating point numbers of the same
9532type.
9533
9534Semantics:
9535""""""""""
9536
9537This function returns the cosine of the specified operand, returning the
9538same values as the libm ``cos`` functions would, and handles error
9539conditions in the same way.
9540
9541'``llvm.pow.*``' Intrinsic
9542^^^^^^^^^^^^^^^^^^^^^^^^^^
9543
9544Syntax:
9545"""""""
9546
9547This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9548floating point or vector of floating point type. Not all targets support
9549all types however.
9550
9551::
9552
9553 declare float @llvm.pow.f32(float %Val, float %Power)
9554 declare double @llvm.pow.f64(double %Val, double %Power)
9555 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9556 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9557 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9558
9559Overview:
9560"""""""""
9561
9562The '``llvm.pow.*``' intrinsics return the first operand raised to the
9563specified (positive or negative) power.
9564
9565Arguments:
9566""""""""""
9567
9568The second argument is a floating point power, and the first is a value
9569to raise to that power.
9570
9571Semantics:
9572""""""""""
9573
9574This function returns the first value raised to the second power,
9575returning the same values as the libm ``pow`` functions would, and
9576handles error conditions in the same way.
9577
9578'``llvm.exp.*``' Intrinsic
9579^^^^^^^^^^^^^^^^^^^^^^^^^^
9580
9581Syntax:
9582"""""""
9583
9584This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9585floating point or vector of floating point type. Not all targets support
9586all types however.
9587
9588::
9589
9590 declare float @llvm.exp.f32(float %Val)
9591 declare double @llvm.exp.f64(double %Val)
9592 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9593 declare fp128 @llvm.exp.f128(fp128 %Val)
9594 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9595
9596Overview:
9597"""""""""
9598
9599The '``llvm.exp.*``' intrinsics perform the exp function.
9600
9601Arguments:
9602""""""""""
9603
9604The argument and return value are floating point numbers of the same
9605type.
9606
9607Semantics:
9608""""""""""
9609
9610This function returns the same values as the libm ``exp`` functions
9611would, and handles error conditions in the same way.
9612
9613'``llvm.exp2.*``' Intrinsic
9614^^^^^^^^^^^^^^^^^^^^^^^^^^^
9615
9616Syntax:
9617"""""""
9618
9619This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9620floating point or vector of floating point type. Not all targets support
9621all types however.
9622
9623::
9624
9625 declare float @llvm.exp2.f32(float %Val)
9626 declare double @llvm.exp2.f64(double %Val)
9627 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9628 declare fp128 @llvm.exp2.f128(fp128 %Val)
9629 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9630
9631Overview:
9632"""""""""
9633
9634The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9635
9636Arguments:
9637""""""""""
9638
9639The argument and return value are floating point numbers of the same
9640type.
9641
9642Semantics:
9643""""""""""
9644
9645This function returns the same values as the libm ``exp2`` functions
9646would, and handles error conditions in the same way.
9647
9648'``llvm.log.*``' Intrinsic
9649^^^^^^^^^^^^^^^^^^^^^^^^^^
9650
9651Syntax:
9652"""""""
9653
9654This is an overloaded intrinsic. You can use ``llvm.log`` on any
9655floating point or vector of floating point type. Not all targets support
9656all types however.
9657
9658::
9659
9660 declare float @llvm.log.f32(float %Val)
9661 declare double @llvm.log.f64(double %Val)
9662 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9663 declare fp128 @llvm.log.f128(fp128 %Val)
9664 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9665
9666Overview:
9667"""""""""
9668
9669The '``llvm.log.*``' intrinsics perform the log function.
9670
9671Arguments:
9672""""""""""
9673
9674The argument and return value are floating point numbers of the same
9675type.
9676
9677Semantics:
9678""""""""""
9679
9680This function returns the same values as the libm ``log`` functions
9681would, and handles error conditions in the same way.
9682
9683'``llvm.log10.*``' Intrinsic
9684^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9685
9686Syntax:
9687"""""""
9688
9689This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9690floating point or vector of floating point type. Not all targets support
9691all types however.
9692
9693::
9694
9695 declare float @llvm.log10.f32(float %Val)
9696 declare double @llvm.log10.f64(double %Val)
9697 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9698 declare fp128 @llvm.log10.f128(fp128 %Val)
9699 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9700
9701Overview:
9702"""""""""
9703
9704The '``llvm.log10.*``' intrinsics perform the log10 function.
9705
9706Arguments:
9707""""""""""
9708
9709The argument and return value are floating point numbers of the same
9710type.
9711
9712Semantics:
9713""""""""""
9714
9715This function returns the same values as the libm ``log10`` functions
9716would, and handles error conditions in the same way.
9717
9718'``llvm.log2.*``' Intrinsic
9719^^^^^^^^^^^^^^^^^^^^^^^^^^^
9720
9721Syntax:
9722"""""""
9723
9724This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9725floating point or vector of floating point type. Not all targets support
9726all types however.
9727
9728::
9729
9730 declare float @llvm.log2.f32(float %Val)
9731 declare double @llvm.log2.f64(double %Val)
9732 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9733 declare fp128 @llvm.log2.f128(fp128 %Val)
9734 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9735
9736Overview:
9737"""""""""
9738
9739The '``llvm.log2.*``' intrinsics perform the log2 function.
9740
9741Arguments:
9742""""""""""
9743
9744The argument and return value are floating point numbers of the same
9745type.
9746
9747Semantics:
9748""""""""""
9749
9750This function returns the same values as the libm ``log2`` functions
9751would, and handles error conditions in the same way.
9752
9753'``llvm.fma.*``' Intrinsic
9754^^^^^^^^^^^^^^^^^^^^^^^^^^
9755
9756Syntax:
9757"""""""
9758
9759This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9760floating point or vector of floating point type. Not all targets support
9761all types however.
9762
9763::
9764
9765 declare float @llvm.fma.f32(float %a, float %b, float %c)
9766 declare double @llvm.fma.f64(double %a, double %b, double %c)
9767 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9768 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9769 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9770
9771Overview:
9772"""""""""
9773
9774The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9775operation.
9776
9777Arguments:
9778""""""""""
9779
9780The argument and return value are floating point numbers of the same
9781type.
9782
9783Semantics:
9784""""""""""
9785
9786This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009787would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009788
9789'``llvm.fabs.*``' Intrinsic
9790^^^^^^^^^^^^^^^^^^^^^^^^^^^
9791
9792Syntax:
9793"""""""
9794
9795This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9796floating point or vector of floating point type. Not all targets support
9797all types however.
9798
9799::
9800
9801 declare float @llvm.fabs.f32(float %Val)
9802 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009803 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009804 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009805 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009806
9807Overview:
9808"""""""""
9809
9810The '``llvm.fabs.*``' intrinsics return the absolute value of the
9811operand.
9812
9813Arguments:
9814""""""""""
9815
9816The argument and return value are floating point numbers of the same
9817type.
9818
9819Semantics:
9820""""""""""
9821
9822This function returns the same values as the libm ``fabs`` functions
9823would, and handles error conditions in the same way.
9824
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009825'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009827
9828Syntax:
9829"""""""
9830
9831This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9832floating point or vector of floating point type. Not all targets support
9833all types however.
9834
9835::
9836
Matt Arsenault64313c92014-10-22 18:25:02 +00009837 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9838 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9839 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9840 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9841 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009842
9843Overview:
9844"""""""""
9845
9846The '``llvm.minnum.*``' intrinsics return the minimum of the two
9847arguments.
9848
9849
9850Arguments:
9851""""""""""
9852
9853The arguments and return value are floating point numbers of the same
9854type.
9855
9856Semantics:
9857""""""""""
9858
9859Follows the IEEE-754 semantics for minNum, which also match for libm's
9860fmin.
9861
9862If either operand is a NaN, returns the other non-NaN operand. Returns
9863NaN only if both operands are NaN. If the operands compare equal,
9864returns a value that compares equal to both operands. This means that
9865fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9866
9867'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009869
9870Syntax:
9871"""""""
9872
9873This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
9874floating point or vector of floating point type. Not all targets support
9875all types however.
9876
9877::
9878
Matt Arsenault64313c92014-10-22 18:25:02 +00009879 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
9880 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
9881 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9882 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
9883 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009884
9885Overview:
9886"""""""""
9887
9888The '``llvm.maxnum.*``' intrinsics return the maximum of the two
9889arguments.
9890
9891
9892Arguments:
9893""""""""""
9894
9895The arguments and return value are floating point numbers of the same
9896type.
9897
9898Semantics:
9899""""""""""
9900Follows the IEEE-754 semantics for maxNum, which also match for libm's
9901fmax.
9902
9903If either operand is a NaN, returns the other non-NaN operand. Returns
9904NaN only if both operands are NaN. If the operands compare equal,
9905returns a value that compares equal to both operands. This means that
9906fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9907
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00009908'``llvm.copysign.*``' Intrinsic
9909^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9910
9911Syntax:
9912"""""""
9913
9914This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
9915floating point or vector of floating point type. Not all targets support
9916all types however.
9917
9918::
9919
9920 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
9921 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
9922 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
9923 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
9924 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
9925
9926Overview:
9927"""""""""
9928
9929The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
9930first operand and the sign of the second operand.
9931
9932Arguments:
9933""""""""""
9934
9935The arguments and return value are floating point numbers of the same
9936type.
9937
9938Semantics:
9939""""""""""
9940
9941This function returns the same values as the libm ``copysign``
9942functions would, and handles error conditions in the same way.
9943
Sean Silvab084af42012-12-07 10:36:55 +00009944'``llvm.floor.*``' Intrinsic
9945^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9946
9947Syntax:
9948"""""""
9949
9950This is an overloaded intrinsic. You can use ``llvm.floor`` on any
9951floating point or vector of floating point type. Not all targets support
9952all types however.
9953
9954::
9955
9956 declare float @llvm.floor.f32(float %Val)
9957 declare double @llvm.floor.f64(double %Val)
9958 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
9959 declare fp128 @llvm.floor.f128(fp128 %Val)
9960 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
9961
9962Overview:
9963"""""""""
9964
9965The '``llvm.floor.*``' intrinsics return the floor of the operand.
9966
9967Arguments:
9968""""""""""
9969
9970The argument and return value are floating point numbers of the same
9971type.
9972
9973Semantics:
9974""""""""""
9975
9976This function returns the same values as the libm ``floor`` functions
9977would, and handles error conditions in the same way.
9978
9979'``llvm.ceil.*``' Intrinsic
9980^^^^^^^^^^^^^^^^^^^^^^^^^^^
9981
9982Syntax:
9983"""""""
9984
9985This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
9986floating point or vector of floating point type. Not all targets support
9987all types however.
9988
9989::
9990
9991 declare float @llvm.ceil.f32(float %Val)
9992 declare double @llvm.ceil.f64(double %Val)
9993 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
9994 declare fp128 @llvm.ceil.f128(fp128 %Val)
9995 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
9996
9997Overview:
9998"""""""""
9999
10000The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10001
10002Arguments:
10003""""""""""
10004
10005The argument and return value are floating point numbers of the same
10006type.
10007
10008Semantics:
10009""""""""""
10010
10011This function returns the same values as the libm ``ceil`` functions
10012would, and handles error conditions in the same way.
10013
10014'``llvm.trunc.*``' Intrinsic
10015^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10016
10017Syntax:
10018"""""""
10019
10020This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10021floating point or vector of floating point type. Not all targets support
10022all types however.
10023
10024::
10025
10026 declare float @llvm.trunc.f32(float %Val)
10027 declare double @llvm.trunc.f64(double %Val)
10028 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10029 declare fp128 @llvm.trunc.f128(fp128 %Val)
10030 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10031
10032Overview:
10033"""""""""
10034
10035The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10036nearest integer not larger in magnitude than the operand.
10037
10038Arguments:
10039""""""""""
10040
10041The argument and return value are floating point numbers of the same
10042type.
10043
10044Semantics:
10045""""""""""
10046
10047This function returns the same values as the libm ``trunc`` functions
10048would, and handles error conditions in the same way.
10049
10050'``llvm.rint.*``' Intrinsic
10051^^^^^^^^^^^^^^^^^^^^^^^^^^^
10052
10053Syntax:
10054"""""""
10055
10056This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10057floating point or vector of floating point type. Not all targets support
10058all types however.
10059
10060::
10061
10062 declare float @llvm.rint.f32(float %Val)
10063 declare double @llvm.rint.f64(double %Val)
10064 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10065 declare fp128 @llvm.rint.f128(fp128 %Val)
10066 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10067
10068Overview:
10069"""""""""
10070
10071The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10072nearest integer. It may raise an inexact floating-point exception if the
10073operand isn't an integer.
10074
10075Arguments:
10076""""""""""
10077
10078The argument and return value are floating point numbers of the same
10079type.
10080
10081Semantics:
10082""""""""""
10083
10084This function returns the same values as the libm ``rint`` functions
10085would, and handles error conditions in the same way.
10086
10087'``llvm.nearbyint.*``' Intrinsic
10088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10089
10090Syntax:
10091"""""""
10092
10093This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10094floating point or vector of floating point type. Not all targets support
10095all types however.
10096
10097::
10098
10099 declare float @llvm.nearbyint.f32(float %Val)
10100 declare double @llvm.nearbyint.f64(double %Val)
10101 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10102 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10103 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10104
10105Overview:
10106"""""""""
10107
10108The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10109nearest integer.
10110
10111Arguments:
10112""""""""""
10113
10114The argument and return value are floating point numbers of the same
10115type.
10116
10117Semantics:
10118""""""""""
10119
10120This function returns the same values as the libm ``nearbyint``
10121functions would, and handles error conditions in the same way.
10122
Hal Finkel171817e2013-08-07 22:49:12 +000010123'``llvm.round.*``' Intrinsic
10124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10125
10126Syntax:
10127"""""""
10128
10129This is an overloaded intrinsic. You can use ``llvm.round`` on any
10130floating point or vector of floating point type. Not all targets support
10131all types however.
10132
10133::
10134
10135 declare float @llvm.round.f32(float %Val)
10136 declare double @llvm.round.f64(double %Val)
10137 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10138 declare fp128 @llvm.round.f128(fp128 %Val)
10139 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10140
10141Overview:
10142"""""""""
10143
10144The '``llvm.round.*``' intrinsics returns the operand rounded to the
10145nearest integer.
10146
10147Arguments:
10148""""""""""
10149
10150The argument and return value are floating point numbers of the same
10151type.
10152
10153Semantics:
10154""""""""""
10155
10156This function returns the same values as the libm ``round``
10157functions would, and handles error conditions in the same way.
10158
Sean Silvab084af42012-12-07 10:36:55 +000010159Bit Manipulation Intrinsics
10160---------------------------
10161
10162LLVM provides intrinsics for a few important bit manipulation
10163operations. These allow efficient code generation for some algorithms.
10164
10165'``llvm.bswap.*``' Intrinsics
10166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10167
10168Syntax:
10169"""""""
10170
10171This is an overloaded intrinsic function. You can use bswap on any
10172integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10173
10174::
10175
10176 declare i16 @llvm.bswap.i16(i16 <id>)
10177 declare i32 @llvm.bswap.i32(i32 <id>)
10178 declare i64 @llvm.bswap.i64(i64 <id>)
10179
10180Overview:
10181"""""""""
10182
10183The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10184values with an even number of bytes (positive multiple of 16 bits).
10185These are useful for performing operations on data that is not in the
10186target's native byte order.
10187
10188Semantics:
10189""""""""""
10190
10191The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10192and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10193intrinsic returns an i32 value that has the four bytes of the input i32
10194swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10195returned i32 will have its bytes in 3, 2, 1, 0 order. The
10196``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10197concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10198respectively).
10199
10200'``llvm.ctpop.*``' Intrinsic
10201^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10202
10203Syntax:
10204"""""""
10205
10206This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10207bit width, or on any vector with integer elements. Not all targets
10208support all bit widths or vector types, however.
10209
10210::
10211
10212 declare i8 @llvm.ctpop.i8(i8 <src>)
10213 declare i16 @llvm.ctpop.i16(i16 <src>)
10214 declare i32 @llvm.ctpop.i32(i32 <src>)
10215 declare i64 @llvm.ctpop.i64(i64 <src>)
10216 declare i256 @llvm.ctpop.i256(i256 <src>)
10217 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10218
10219Overview:
10220"""""""""
10221
10222The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10223in a value.
10224
10225Arguments:
10226""""""""""
10227
10228The only argument is the value to be counted. The argument may be of any
10229integer type, or a vector with integer elements. The return type must
10230match the argument type.
10231
10232Semantics:
10233""""""""""
10234
10235The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10236each element of a vector.
10237
10238'``llvm.ctlz.*``' Intrinsic
10239^^^^^^^^^^^^^^^^^^^^^^^^^^^
10240
10241Syntax:
10242"""""""
10243
10244This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10245integer bit width, or any vector whose elements are integers. Not all
10246targets support all bit widths or vector types, however.
10247
10248::
10249
10250 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10251 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10252 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10253 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10254 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10255 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10256
10257Overview:
10258"""""""""
10259
10260The '``llvm.ctlz``' family of intrinsic functions counts the number of
10261leading zeros in a variable.
10262
10263Arguments:
10264""""""""""
10265
10266The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010267any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010268type must match the first argument type.
10269
10270The second argument must be a constant and is a flag to indicate whether
10271the intrinsic should ensure that a zero as the first argument produces a
10272defined result. Historically some architectures did not provide a
10273defined result for zero values as efficiently, and many algorithms are
10274now predicated on avoiding zero-value inputs.
10275
10276Semantics:
10277""""""""""
10278
10279The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10280zeros in a variable, or within each element of the vector. If
10281``src == 0`` then the result is the size in bits of the type of ``src``
10282if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10283``llvm.ctlz(i32 2) = 30``.
10284
10285'``llvm.cttz.*``' Intrinsic
10286^^^^^^^^^^^^^^^^^^^^^^^^^^^
10287
10288Syntax:
10289"""""""
10290
10291This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10292integer bit width, or any vector of integer elements. Not all targets
10293support all bit widths or vector types, however.
10294
10295::
10296
10297 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10298 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10299 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10300 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10301 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10302 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10303
10304Overview:
10305"""""""""
10306
10307The '``llvm.cttz``' family of intrinsic functions counts the number of
10308trailing zeros.
10309
10310Arguments:
10311""""""""""
10312
10313The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010314any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010315type must match the first argument type.
10316
10317The second argument must be a constant and is a flag to indicate whether
10318the intrinsic should ensure that a zero as the first argument produces a
10319defined result. Historically some architectures did not provide a
10320defined result for zero values as efficiently, and many algorithms are
10321now predicated on avoiding zero-value inputs.
10322
10323Semantics:
10324""""""""""
10325
10326The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10327zeros in a variable, or within each element of a vector. If ``src == 0``
10328then the result is the size in bits of the type of ``src`` if
10329``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10330``llvm.cttz(2) = 1``.
10331
Philip Reames34843ae2015-03-05 05:55:55 +000010332.. _int_overflow:
10333
Sean Silvab084af42012-12-07 10:36:55 +000010334Arithmetic with Overflow Intrinsics
10335-----------------------------------
10336
10337LLVM provides intrinsics for some arithmetic with overflow operations.
10338
10339'``llvm.sadd.with.overflow.*``' Intrinsics
10340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10341
10342Syntax:
10343"""""""
10344
10345This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10346on any integer bit width.
10347
10348::
10349
10350 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10351 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10352 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10353
10354Overview:
10355"""""""""
10356
10357The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10358a signed addition of the two arguments, and indicate whether an overflow
10359occurred during the signed summation.
10360
10361Arguments:
10362""""""""""
10363
10364The arguments (%a and %b) and the first element of the result structure
10365may be of integer types of any bit width, but they must have the same
10366bit width. The second element of the result structure must be of type
10367``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10368addition.
10369
10370Semantics:
10371""""""""""
10372
10373The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010374a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010375first element of which is the signed summation, and the second element
10376of which is a bit specifying if the signed summation resulted in an
10377overflow.
10378
10379Examples:
10380"""""""""
10381
10382.. code-block:: llvm
10383
10384 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10385 %sum = extractvalue {i32, i1} %res, 0
10386 %obit = extractvalue {i32, i1} %res, 1
10387 br i1 %obit, label %overflow, label %normal
10388
10389'``llvm.uadd.with.overflow.*``' Intrinsics
10390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10391
10392Syntax:
10393"""""""
10394
10395This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10396on any integer bit width.
10397
10398::
10399
10400 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10401 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10402 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10403
10404Overview:
10405"""""""""
10406
10407The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10408an unsigned addition of the two arguments, and indicate whether a carry
10409occurred during the unsigned summation.
10410
10411Arguments:
10412""""""""""
10413
10414The arguments (%a and %b) and the first element of the result structure
10415may be of integer types of any bit width, but they must have the same
10416bit width. The second element of the result structure must be of type
10417``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10418addition.
10419
10420Semantics:
10421""""""""""
10422
10423The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010424an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010425first element of which is the sum, and the second element of which is a
10426bit specifying if the unsigned summation resulted in a carry.
10427
10428Examples:
10429"""""""""
10430
10431.. code-block:: llvm
10432
10433 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10434 %sum = extractvalue {i32, i1} %res, 0
10435 %obit = extractvalue {i32, i1} %res, 1
10436 br i1 %obit, label %carry, label %normal
10437
10438'``llvm.ssub.with.overflow.*``' Intrinsics
10439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10440
10441Syntax:
10442"""""""
10443
10444This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10445on any integer bit width.
10446
10447::
10448
10449 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10450 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10451 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10452
10453Overview:
10454"""""""""
10455
10456The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10457a signed subtraction of the two arguments, and indicate whether an
10458overflow occurred during the signed subtraction.
10459
10460Arguments:
10461""""""""""
10462
10463The arguments (%a and %b) and the first element of the result structure
10464may be of integer types of any bit width, but they must have the same
10465bit width. The second element of the result structure must be of type
10466``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10467subtraction.
10468
10469Semantics:
10470""""""""""
10471
10472The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010473a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010474first element of which is the subtraction, and the second element of
10475which is a bit specifying if the signed subtraction resulted in an
10476overflow.
10477
10478Examples:
10479"""""""""
10480
10481.. code-block:: llvm
10482
10483 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10484 %sum = extractvalue {i32, i1} %res, 0
10485 %obit = extractvalue {i32, i1} %res, 1
10486 br i1 %obit, label %overflow, label %normal
10487
10488'``llvm.usub.with.overflow.*``' Intrinsics
10489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10490
10491Syntax:
10492"""""""
10493
10494This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10495on any integer bit width.
10496
10497::
10498
10499 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10500 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10501 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10502
10503Overview:
10504"""""""""
10505
10506The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10507an unsigned subtraction of the two arguments, and indicate whether an
10508overflow occurred during the unsigned subtraction.
10509
10510Arguments:
10511""""""""""
10512
10513The arguments (%a and %b) and the first element of the result structure
10514may be of integer types of any bit width, but they must have the same
10515bit width. The second element of the result structure must be of type
10516``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10517subtraction.
10518
10519Semantics:
10520""""""""""
10521
10522The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010523an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010524the first element of which is the subtraction, and the second element of
10525which is a bit specifying if the unsigned subtraction resulted in an
10526overflow.
10527
10528Examples:
10529"""""""""
10530
10531.. code-block:: llvm
10532
10533 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10534 %sum = extractvalue {i32, i1} %res, 0
10535 %obit = extractvalue {i32, i1} %res, 1
10536 br i1 %obit, label %overflow, label %normal
10537
10538'``llvm.smul.with.overflow.*``' Intrinsics
10539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10540
10541Syntax:
10542"""""""
10543
10544This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10545on any integer bit width.
10546
10547::
10548
10549 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10550 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10551 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10552
10553Overview:
10554"""""""""
10555
10556The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10557a signed multiplication of the two arguments, and indicate whether an
10558overflow occurred during the signed multiplication.
10559
10560Arguments:
10561""""""""""
10562
10563The arguments (%a and %b) and the first element of the result structure
10564may be of integer types of any bit width, but they must have the same
10565bit width. The second element of the result structure must be of type
10566``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10567multiplication.
10568
10569Semantics:
10570""""""""""
10571
10572The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010573a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010574the first element of which is the multiplication, and the second element
10575of which is a bit specifying if the signed multiplication resulted in an
10576overflow.
10577
10578Examples:
10579"""""""""
10580
10581.. code-block:: llvm
10582
10583 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10584 %sum = extractvalue {i32, i1} %res, 0
10585 %obit = extractvalue {i32, i1} %res, 1
10586 br i1 %obit, label %overflow, label %normal
10587
10588'``llvm.umul.with.overflow.*``' Intrinsics
10589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10590
10591Syntax:
10592"""""""
10593
10594This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10595on any integer bit width.
10596
10597::
10598
10599 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10600 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10601 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10602
10603Overview:
10604"""""""""
10605
10606The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10607a unsigned multiplication of the two arguments, and indicate whether an
10608overflow occurred during the unsigned multiplication.
10609
10610Arguments:
10611""""""""""
10612
10613The arguments (%a and %b) and the first element of the result structure
10614may be of integer types of any bit width, but they must have the same
10615bit width. The second element of the result structure must be of type
10616``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10617multiplication.
10618
10619Semantics:
10620""""""""""
10621
10622The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010623an unsigned multiplication of the two arguments. They return a structure ---
10624the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010625element of which is a bit specifying if the unsigned multiplication
10626resulted in an overflow.
10627
10628Examples:
10629"""""""""
10630
10631.. code-block:: llvm
10632
10633 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10634 %sum = extractvalue {i32, i1} %res, 0
10635 %obit = extractvalue {i32, i1} %res, 1
10636 br i1 %obit, label %overflow, label %normal
10637
10638Specialised Arithmetic Intrinsics
10639---------------------------------
10640
Owen Anderson1056a922015-07-11 07:01:27 +000010641'``llvm.canonicalize.*``' Intrinsic
10642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10643
10644Syntax:
10645"""""""
10646
10647::
10648
10649 declare float @llvm.canonicalize.f32(float %a)
10650 declare double @llvm.canonicalize.f64(double %b)
10651
10652Overview:
10653"""""""""
10654
10655The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010656encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010657implementing certain numeric primitives such as frexp. The canonical encoding is
10658defined by IEEE-754-2008 to be:
10659
10660::
10661
10662 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010663 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010664 numbers, infinities, and NaNs, especially in decimal formats.
10665
10666This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010667conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010668according to section 6.2.
10669
10670Examples of non-canonical encodings:
10671
Sean Silvaa1190322015-08-06 22:56:48 +000010672- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010673 converted to a canonical representation per hardware-specific protocol.
10674- Many normal decimal floating point numbers have non-canonical alternative
10675 encodings.
10676- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10677 These are treated as non-canonical encodings of zero and with be flushed to
10678 a zero of the same sign by this operation.
10679
10680Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10681default exception handling must signal an invalid exception, and produce a
10682quiet NaN result.
10683
10684This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010685that the compiler does not constant fold the operation. Likewise, division by
106861.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010687-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10688
Sean Silvaa1190322015-08-06 22:56:48 +000010689``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010690
10691- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10692- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10693 to ``(x == y)``
10694
10695Additionally, the sign of zero must be conserved:
10696``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10697
10698The payload bits of a NaN must be conserved, with two exceptions.
10699First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010700must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010701usual methods.
10702
10703The canonicalization operation may be optimized away if:
10704
Sean Silvaa1190322015-08-06 22:56:48 +000010705- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010706 floating-point operation that is required by the standard to be canonical.
10707- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010708 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010709
Sean Silvab084af42012-12-07 10:36:55 +000010710'``llvm.fmuladd.*``' Intrinsic
10711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10712
10713Syntax:
10714"""""""
10715
10716::
10717
10718 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10719 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10720
10721Overview:
10722"""""""""
10723
10724The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010725expressions that can be fused if the code generator determines that (a) the
10726target instruction set has support for a fused operation, and (b) that the
10727fused operation is more efficient than the equivalent, separate pair of mul
10728and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010729
10730Arguments:
10731""""""""""
10732
10733The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10734multiplicands, a and b, and an addend c.
10735
10736Semantics:
10737""""""""""
10738
10739The expression:
10740
10741::
10742
10743 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10744
10745is equivalent to the expression a \* b + c, except that rounding will
10746not be performed between the multiplication and addition steps if the
10747code generator fuses the operations. Fusion is not guaranteed, even if
10748the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010749corresponding llvm.fma.\* intrinsic function should be used
10750instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010751
10752Examples:
10753"""""""""
10754
10755.. code-block:: llvm
10756
Tim Northover675a0962014-06-13 14:24:23 +000010757 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010758
James Molloy7395a812015-07-16 15:22:46 +000010759
10760'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10762
10763Syntax:
10764"""""""
10765This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10766
10767.. code-block:: llvm
10768
10769 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10770
10771
10772Overview:
10773"""""""""
10774
Mohammad Shahid18715532015-08-21 05:31:07 +000010775The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference of
10776the two operands, treating them both as unsigned integers.
James Molloy7395a812015-07-16 15:22:46 +000010777
Mohammad Shahid18715532015-08-21 05:31:07 +000010778The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
10779the two operands, treating them both as signed integers.
James Molloy7395a812015-07-16 15:22:46 +000010780
10781.. note::
10782
10783 These intrinsics are primarily used during the code generation stage of compilation.
10784 They are generated by compiler passes such as the Loop and SLP vectorizers.it is not
10785 recommended for users to create them manually.
10786
10787Arguments:
10788""""""""""
10789
10790Both intrinsics take two integer of the same bitwidth.
10791
10792Semantics:
10793""""""""""
10794
10795The expression::
10796
10797 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10798
10799is equivalent to::
10800
10801 %sub = sub <4 x i32> %a, %b
10802 %ispos = icmp ugt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10803 %neg = sub <4 x i32> zeroinitializer, %sub
10804 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10805
10806Similarly the expression::
10807
10808 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10809
10810is equivalent to::
10811
10812 %sub = sub nsw <4 x i32> %a, %b
10813 %ispos = icmp sgt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10814 %neg = sub nsw <4 x i32> zeroinitializer, %sub
10815 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10816
10817
Sean Silvab084af42012-12-07 10:36:55 +000010818Half Precision Floating Point Intrinsics
10819----------------------------------------
10820
10821For most target platforms, half precision floating point is a
10822storage-only format. This means that it is a dense encoding (in memory)
10823but does not support computation in the format.
10824
10825This means that code must first load the half-precision floating point
10826value as an i16, then convert it to float with
10827:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10828then be performed on the float value (including extending to double
10829etc). To store the value back to memory, it is first converted to float
10830if needed, then converted to i16 with
10831:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10832i16 value.
10833
10834.. _int_convert_to_fp16:
10835
10836'``llvm.convert.to.fp16``' Intrinsic
10837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10838
10839Syntax:
10840"""""""
10841
10842::
10843
Tim Northoverfd7e4242014-07-17 10:51:23 +000010844 declare i16 @llvm.convert.to.fp16.f32(float %a)
10845 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010846
10847Overview:
10848"""""""""
10849
Tim Northoverfd7e4242014-07-17 10:51:23 +000010850The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10851conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000010852
10853Arguments:
10854""""""""""
10855
10856The intrinsic function contains single argument - the value to be
10857converted.
10858
10859Semantics:
10860""""""""""
10861
Tim Northoverfd7e4242014-07-17 10:51:23 +000010862The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10863conventional floating point format to half precision floating point format. The
10864return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000010865
10866Examples:
10867"""""""""
10868
10869.. code-block:: llvm
10870
Tim Northoverfd7e4242014-07-17 10:51:23 +000010871 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000010872 store i16 %res, i16* @x, align 2
10873
10874.. _int_convert_from_fp16:
10875
10876'``llvm.convert.from.fp16``' Intrinsic
10877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10878
10879Syntax:
10880"""""""
10881
10882::
10883
Tim Northoverfd7e4242014-07-17 10:51:23 +000010884 declare float @llvm.convert.from.fp16.f32(i16 %a)
10885 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010886
10887Overview:
10888"""""""""
10889
10890The '``llvm.convert.from.fp16``' intrinsic function performs a
10891conversion from half precision floating point format to single precision
10892floating point format.
10893
10894Arguments:
10895""""""""""
10896
10897The intrinsic function contains single argument - the value to be
10898converted.
10899
10900Semantics:
10901""""""""""
10902
10903The '``llvm.convert.from.fp16``' intrinsic function performs a
10904conversion from half single precision floating point format to single
10905precision floating point format. The input half-float value is
10906represented by an ``i16`` value.
10907
10908Examples:
10909"""""""""
10910
10911.. code-block:: llvm
10912
David Blaikiec7aabbb2015-03-04 22:06:14 +000010913 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000010914 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010915
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000010916.. _dbg_intrinsics:
10917
Sean Silvab084af42012-12-07 10:36:55 +000010918Debugger Intrinsics
10919-------------------
10920
10921The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
10922prefix), are described in the `LLVM Source Level
10923Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
10924document.
10925
10926Exception Handling Intrinsics
10927-----------------------------
10928
10929The LLVM exception handling intrinsics (which all start with
10930``llvm.eh.`` prefix), are described in the `LLVM Exception
10931Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
10932
10933.. _int_trampoline:
10934
10935Trampoline Intrinsics
10936---------------------
10937
10938These intrinsics make it possible to excise one parameter, marked with
10939the :ref:`nest <nest>` attribute, from a function. The result is a
10940callable function pointer lacking the nest parameter - the caller does
10941not need to provide a value for it. Instead, the value to use is stored
10942in advance in a "trampoline", a block of memory usually allocated on the
10943stack, which also contains code to splice the nest value into the
10944argument list. This is used to implement the GCC nested function address
10945extension.
10946
10947For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
10948then the resulting function pointer has signature ``i32 (i32, i32)*``.
10949It can be created as follows:
10950
10951.. code-block:: llvm
10952
10953 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000010954 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000010955 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
10956 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
10957 %fp = bitcast i8* %p to i32 (i32, i32)*
10958
10959The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
10960``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
10961
10962.. _int_it:
10963
10964'``llvm.init.trampoline``' Intrinsic
10965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10966
10967Syntax:
10968"""""""
10969
10970::
10971
10972 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
10973
10974Overview:
10975"""""""""
10976
10977This fills the memory pointed to by ``tramp`` with executable code,
10978turning it into a trampoline.
10979
10980Arguments:
10981""""""""""
10982
10983The ``llvm.init.trampoline`` intrinsic takes three arguments, all
10984pointers. The ``tramp`` argument must point to a sufficiently large and
10985sufficiently aligned block of memory; this memory is written to by the
10986intrinsic. Note that the size and the alignment are target-specific -
10987LLVM currently provides no portable way of determining them, so a
10988front-end that generates this intrinsic needs to have some
10989target-specific knowledge. The ``func`` argument must hold a function
10990bitcast to an ``i8*``.
10991
10992Semantics:
10993""""""""""
10994
10995The block of memory pointed to by ``tramp`` is filled with target
10996dependent code, turning it into a function. Then ``tramp`` needs to be
10997passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
10998be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
10999function's signature is the same as that of ``func`` with any arguments
11000marked with the ``nest`` attribute removed. At most one such ``nest``
11001argument is allowed, and it must be of pointer type. Calling the new
11002function is equivalent to calling ``func`` with the same argument list,
11003but with ``nval`` used for the missing ``nest`` argument. If, after
11004calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11005modified, then the effect of any later call to the returned function
11006pointer is undefined.
11007
11008.. _int_at:
11009
11010'``llvm.adjust.trampoline``' Intrinsic
11011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11012
11013Syntax:
11014"""""""
11015
11016::
11017
11018 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11019
11020Overview:
11021"""""""""
11022
11023This performs any required machine-specific adjustment to the address of
11024a trampoline (passed as ``tramp``).
11025
11026Arguments:
11027""""""""""
11028
11029``tramp`` must point to a block of memory which already has trampoline
11030code filled in by a previous call to
11031:ref:`llvm.init.trampoline <int_it>`.
11032
11033Semantics:
11034""""""""""
11035
11036On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011037different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011038intrinsic returns the executable address corresponding to ``tramp``
11039after performing the required machine specific adjustments. The pointer
11040returned can then be :ref:`bitcast and executed <int_trampoline>`.
11041
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011042.. _int_mload_mstore:
11043
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011044Masked Vector Load and Store Intrinsics
11045---------------------------------------
11046
11047LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11048
11049.. _int_mload:
11050
11051'``llvm.masked.load.*``' Intrinsics
11052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11053
11054Syntax:
11055"""""""
11056This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11057
11058::
11059
11060 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11061 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11062
11063Overview:
11064"""""""""
11065
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011066Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011067
11068
11069Arguments:
11070""""""""""
11071
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011072The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011073
11074
11075Semantics:
11076""""""""""
11077
11078The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11079The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11080
11081
11082::
11083
11084 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011085
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011086 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011087 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011088 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011089
11090.. _int_mstore:
11091
11092'``llvm.masked.store.*``' Intrinsics
11093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11094
11095Syntax:
11096"""""""
11097This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11098
11099::
11100
11101 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11102 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11103
11104Overview:
11105"""""""""
11106
11107Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11108
11109Arguments:
11110""""""""""
11111
11112The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11113
11114
11115Semantics:
11116""""""""""
11117
11118The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11119The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11120
11121::
11122
11123 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011124
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011125 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011126 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011127 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11128 store <16 x float> %res, <16 x float>* %ptr, align 4
11129
11130
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011131Masked Vector Gather and Scatter Intrinsics
11132-------------------------------------------
11133
11134LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11135
11136.. _int_mgather:
11137
11138'``llvm.masked.gather.*``' Intrinsics
11139^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11140
11141Syntax:
11142"""""""
11143This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11144
11145::
11146
11147 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11148 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11149
11150Overview:
11151"""""""""
11152
11153Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11154
11155
11156Arguments:
11157""""""""""
11158
11159The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11160
11161
11162Semantics:
11163""""""""""
11164
11165The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11166The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11167
11168
11169::
11170
11171 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11172
11173 ;; The gather with all-true mask is equivalent to the following instruction sequence
11174 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11175 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11176 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11177 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11178
11179 %val0 = load double, double* %ptr0, align 8
11180 %val1 = load double, double* %ptr1, align 8
11181 %val2 = load double, double* %ptr2, align 8
11182 %val3 = load double, double* %ptr3, align 8
11183
11184 %vec0 = insertelement <4 x double>undef, %val0, 0
11185 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11186 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11187 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11188
11189.. _int_mscatter:
11190
11191'``llvm.masked.scatter.*``' Intrinsics
11192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11193
11194Syntax:
11195"""""""
11196This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11197
11198::
11199
11200 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11201 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11202
11203Overview:
11204"""""""""
11205
11206Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11207
11208Arguments:
11209""""""""""
11210
11211The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11212
11213
11214Semantics:
11215""""""""""
11216
11217The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11218
11219::
11220
11221 ;; This instruction unconditionaly stores data vector in multiple addresses
11222 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11223
11224 ;; It is equivalent to a list of scalar stores
11225 %val0 = extractelement <8 x i32> %value, i32 0
11226 %val1 = extractelement <8 x i32> %value, i32 1
11227 ..
11228 %val7 = extractelement <8 x i32> %value, i32 7
11229 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11230 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11231 ..
11232 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11233 ;; Note: the order of the following stores is important when they overlap:
11234 store i32 %val0, i32* %ptr0, align 4
11235 store i32 %val1, i32* %ptr1, align 4
11236 ..
11237 store i32 %val7, i32* %ptr7, align 4
11238
11239
Sean Silvab084af42012-12-07 10:36:55 +000011240Memory Use Markers
11241------------------
11242
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011243This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011244memory objects and ranges where variables are immutable.
11245
Reid Klecknera534a382013-12-19 02:14:12 +000011246.. _int_lifestart:
11247
Sean Silvab084af42012-12-07 10:36:55 +000011248'``llvm.lifetime.start``' Intrinsic
11249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11250
11251Syntax:
11252"""""""
11253
11254::
11255
11256 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11257
11258Overview:
11259"""""""""
11260
11261The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11262object's lifetime.
11263
11264Arguments:
11265""""""""""
11266
11267The first argument is a constant integer representing the size of the
11268object, or -1 if it is variable sized. The second argument is a pointer
11269to the object.
11270
11271Semantics:
11272""""""""""
11273
11274This intrinsic indicates that before this point in the code, the value
11275of the memory pointed to by ``ptr`` is dead. This means that it is known
11276to never be used and has an undefined value. A load from the pointer
11277that precedes this intrinsic can be replaced with ``'undef'``.
11278
Reid Klecknera534a382013-12-19 02:14:12 +000011279.. _int_lifeend:
11280
Sean Silvab084af42012-12-07 10:36:55 +000011281'``llvm.lifetime.end``' Intrinsic
11282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11283
11284Syntax:
11285"""""""
11286
11287::
11288
11289 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11290
11291Overview:
11292"""""""""
11293
11294The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11295object's lifetime.
11296
11297Arguments:
11298""""""""""
11299
11300The first argument is a constant integer representing the size of the
11301object, or -1 if it is variable sized. The second argument is a pointer
11302to the object.
11303
11304Semantics:
11305""""""""""
11306
11307This intrinsic indicates that after this point in the code, the value of
11308the memory pointed to by ``ptr`` is dead. This means that it is known to
11309never be used and has an undefined value. Any stores into the memory
11310object following this intrinsic may be removed as dead.
11311
11312'``llvm.invariant.start``' Intrinsic
11313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11314
11315Syntax:
11316"""""""
11317
11318::
11319
11320 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11321
11322Overview:
11323"""""""""
11324
11325The '``llvm.invariant.start``' intrinsic specifies that the contents of
11326a memory object will not change.
11327
11328Arguments:
11329""""""""""
11330
11331The first argument is a constant integer representing the size of the
11332object, or -1 if it is variable sized. The second argument is a pointer
11333to the object.
11334
11335Semantics:
11336""""""""""
11337
11338This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11339the return value, the referenced memory location is constant and
11340unchanging.
11341
11342'``llvm.invariant.end``' Intrinsic
11343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11344
11345Syntax:
11346"""""""
11347
11348::
11349
11350 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11351
11352Overview:
11353"""""""""
11354
11355The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11356memory object are mutable.
11357
11358Arguments:
11359""""""""""
11360
11361The first argument is the matching ``llvm.invariant.start`` intrinsic.
11362The second argument is a constant integer representing the size of the
11363object, or -1 if it is variable sized and the third argument is a
11364pointer to the object.
11365
11366Semantics:
11367""""""""""
11368
11369This intrinsic indicates that the memory is mutable again.
11370
11371General Intrinsics
11372------------------
11373
11374This class of intrinsics is designed to be generic and has no specific
11375purpose.
11376
11377'``llvm.var.annotation``' Intrinsic
11378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11379
11380Syntax:
11381"""""""
11382
11383::
11384
11385 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11386
11387Overview:
11388"""""""""
11389
11390The '``llvm.var.annotation``' intrinsic.
11391
11392Arguments:
11393""""""""""
11394
11395The first argument is a pointer to a value, the second is a pointer to a
11396global string, the third is a pointer to a global string which is the
11397source file name, and the last argument is the line number.
11398
11399Semantics:
11400""""""""""
11401
11402This intrinsic allows annotation of local variables with arbitrary
11403strings. This can be useful for special purpose optimizations that want
11404to look for these annotations. These have no other defined use; they are
11405ignored by code generation and optimization.
11406
Michael Gottesman88d18832013-03-26 00:34:27 +000011407'``llvm.ptr.annotation.*``' Intrinsic
11408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11409
11410Syntax:
11411"""""""
11412
11413This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11414pointer to an integer of any width. *NOTE* you must specify an address space for
11415the pointer. The identifier for the default address space is the integer
11416'``0``'.
11417
11418::
11419
11420 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11421 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11422 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11423 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11424 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11425
11426Overview:
11427"""""""""
11428
11429The '``llvm.ptr.annotation``' intrinsic.
11430
11431Arguments:
11432""""""""""
11433
11434The first argument is a pointer to an integer value of arbitrary bitwidth
11435(result of some expression), the second is a pointer to a global string, the
11436third is a pointer to a global string which is the source file name, and the
11437last argument is the line number. It returns the value of the first argument.
11438
11439Semantics:
11440""""""""""
11441
11442This intrinsic allows annotation of a pointer to an integer with arbitrary
11443strings. This can be useful for special purpose optimizations that want to look
11444for these annotations. These have no other defined use; they are ignored by code
11445generation and optimization.
11446
Sean Silvab084af42012-12-07 10:36:55 +000011447'``llvm.annotation.*``' Intrinsic
11448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11449
11450Syntax:
11451"""""""
11452
11453This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11454any integer bit width.
11455
11456::
11457
11458 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11459 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11460 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11461 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11462 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11463
11464Overview:
11465"""""""""
11466
11467The '``llvm.annotation``' intrinsic.
11468
11469Arguments:
11470""""""""""
11471
11472The first argument is an integer value (result of some expression), the
11473second is a pointer to a global string, the third is a pointer to a
11474global string which is the source file name, and the last argument is
11475the line number. It returns the value of the first argument.
11476
11477Semantics:
11478""""""""""
11479
11480This intrinsic allows annotations to be put on arbitrary expressions
11481with arbitrary strings. This can be useful for special purpose
11482optimizations that want to look for these annotations. These have no
11483other defined use; they are ignored by code generation and optimization.
11484
11485'``llvm.trap``' Intrinsic
11486^^^^^^^^^^^^^^^^^^^^^^^^^
11487
11488Syntax:
11489"""""""
11490
11491::
11492
11493 declare void @llvm.trap() noreturn nounwind
11494
11495Overview:
11496"""""""""
11497
11498The '``llvm.trap``' intrinsic.
11499
11500Arguments:
11501""""""""""
11502
11503None.
11504
11505Semantics:
11506""""""""""
11507
11508This intrinsic is lowered to the target dependent trap instruction. If
11509the target does not have a trap instruction, this intrinsic will be
11510lowered to a call of the ``abort()`` function.
11511
11512'``llvm.debugtrap``' Intrinsic
11513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11514
11515Syntax:
11516"""""""
11517
11518::
11519
11520 declare void @llvm.debugtrap() nounwind
11521
11522Overview:
11523"""""""""
11524
11525The '``llvm.debugtrap``' intrinsic.
11526
11527Arguments:
11528""""""""""
11529
11530None.
11531
11532Semantics:
11533""""""""""
11534
11535This intrinsic is lowered to code which is intended to cause an
11536execution trap with the intention of requesting the attention of a
11537debugger.
11538
11539'``llvm.stackprotector``' Intrinsic
11540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11541
11542Syntax:
11543"""""""
11544
11545::
11546
11547 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11548
11549Overview:
11550"""""""""
11551
11552The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11553onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11554is placed on the stack before local variables.
11555
11556Arguments:
11557""""""""""
11558
11559The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11560The first argument is the value loaded from the stack guard
11561``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11562enough space to hold the value of the guard.
11563
11564Semantics:
11565""""""""""
11566
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011567This intrinsic causes the prologue/epilogue inserter to force the position of
11568the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11569to ensure that if a local variable on the stack is overwritten, it will destroy
11570the value of the guard. When the function exits, the guard on the stack is
11571checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11572different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11573calling the ``__stack_chk_fail()`` function.
11574
11575'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011577
11578Syntax:
11579"""""""
11580
11581::
11582
11583 declare void @llvm.stackprotectorcheck(i8** <guard>)
11584
11585Overview:
11586"""""""""
11587
11588The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011589created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011590``__stack_chk_fail()`` function.
11591
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011592Arguments:
11593""""""""""
11594
11595The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11596the variable ``@__stack_chk_guard``.
11597
11598Semantics:
11599""""""""""
11600
11601This intrinsic is provided to perform the stack protector check by comparing
11602``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11603values do not match call the ``__stack_chk_fail()`` function.
11604
11605The reason to provide this as an IR level intrinsic instead of implementing it
11606via other IR operations is that in order to perform this operation at the IR
11607level without an intrinsic, one would need to create additional basic blocks to
11608handle the success/failure cases. This makes it difficult to stop the stack
11609protector check from disrupting sibling tail calls in Codegen. With this
11610intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011611codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011612
Sean Silvab084af42012-12-07 10:36:55 +000011613'``llvm.objectsize``' Intrinsic
11614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11615
11616Syntax:
11617"""""""
11618
11619::
11620
11621 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11622 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11623
11624Overview:
11625"""""""""
11626
11627The ``llvm.objectsize`` intrinsic is designed to provide information to
11628the optimizers to determine at compile time whether a) an operation
11629(like memcpy) will overflow a buffer that corresponds to an object, or
11630b) that a runtime check for overflow isn't necessary. An object in this
11631context means an allocation of a specific class, structure, array, or
11632other object.
11633
11634Arguments:
11635""""""""""
11636
11637The ``llvm.objectsize`` intrinsic takes two arguments. The first
11638argument is a pointer to or into the ``object``. The second argument is
11639a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11640or -1 (if false) when the object size is unknown. The second argument
11641only accepts constants.
11642
11643Semantics:
11644""""""""""
11645
11646The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11647the size of the object concerned. If the size cannot be determined at
11648compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11649on the ``min`` argument).
11650
11651'``llvm.expect``' Intrinsic
11652^^^^^^^^^^^^^^^^^^^^^^^^^^^
11653
11654Syntax:
11655"""""""
11656
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011657This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11658integer bit width.
11659
Sean Silvab084af42012-12-07 10:36:55 +000011660::
11661
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011662 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011663 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11664 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11665
11666Overview:
11667"""""""""
11668
11669The ``llvm.expect`` intrinsic provides information about expected (the
11670most probable) value of ``val``, which can be used by optimizers.
11671
11672Arguments:
11673""""""""""
11674
11675The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11676a value. The second argument is an expected value, this needs to be a
11677constant value, variables are not allowed.
11678
11679Semantics:
11680""""""""""
11681
11682This intrinsic is lowered to the ``val``.
11683
Philip Reamese0e90832015-04-26 22:23:12 +000011684.. _int_assume:
11685
Hal Finkel93046912014-07-25 21:13:35 +000011686'``llvm.assume``' Intrinsic
11687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11688
11689Syntax:
11690"""""""
11691
11692::
11693
11694 declare void @llvm.assume(i1 %cond)
11695
11696Overview:
11697"""""""""
11698
11699The ``llvm.assume`` allows the optimizer to assume that the provided
11700condition is true. This information can then be used in simplifying other parts
11701of the code.
11702
11703Arguments:
11704""""""""""
11705
11706The condition which the optimizer may assume is always true.
11707
11708Semantics:
11709""""""""""
11710
11711The intrinsic allows the optimizer to assume that the provided condition is
11712always true whenever the control flow reaches the intrinsic call. No code is
11713generated for this intrinsic, and instructions that contribute only to the
11714provided condition are not used for code generation. If the condition is
11715violated during execution, the behavior is undefined.
11716
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011717Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011718used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11719only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011720if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011721sufficient overall improvement in code quality. For this reason,
11722``llvm.assume`` should not be used to document basic mathematical invariants
11723that the optimizer can otherwise deduce or facts that are of little use to the
11724optimizer.
11725
Peter Collingbournee6909c82015-02-20 20:30:47 +000011726.. _bitset.test:
11727
11728'``llvm.bitset.test``' Intrinsic
11729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11730
11731Syntax:
11732"""""""
11733
11734::
11735
11736 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11737
11738
11739Arguments:
11740""""""""""
11741
11742The first argument is a pointer to be tested. The second argument is a
11743metadata string containing the name of a :doc:`bitset <BitSets>`.
11744
11745Overview:
11746"""""""""
11747
11748The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11749member of the given bitset.
11750
Sean Silvab084af42012-12-07 10:36:55 +000011751'``llvm.donothing``' Intrinsic
11752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11753
11754Syntax:
11755"""""""
11756
11757::
11758
11759 declare void @llvm.donothing() nounwind readnone
11760
11761Overview:
11762"""""""""
11763
Juergen Ributzkac9161192014-10-23 22:36:13 +000011764The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11765two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11766with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011767
11768Arguments:
11769""""""""""
11770
11771None.
11772
11773Semantics:
11774""""""""""
11775
11776This intrinsic does nothing, and it's removed by optimizers and ignored
11777by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011778
11779Stack Map Intrinsics
11780--------------------
11781
11782LLVM provides experimental intrinsics to support runtime patching
11783mechanisms commonly desired in dynamic language JITs. These intrinsics
11784are described in :doc:`StackMaps`.