blob: fd41eb99bed392bb3f2b945e8c8f57338f91197a [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Sean Silva706fba52015-08-06 22:56:24 +0000693The argument list is a comma separated sequence of arguments where each
694argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
Rafael Espindola464fe022014-07-30 22:51:54 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Sean Silvaa1190322015-08-06 22:56:48 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000750that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000825with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000831COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000897 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000932 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000933 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000941 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001030 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001037 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001073index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001090of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
Sean Silvaa1190322015-08-06 22:56:48 +00001097A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001111have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001116definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Sean Silvaa1190322015-08-06 22:56:48 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
1222 Transformations that are execution model agnostic may only move or
1223 tranform this call if the final location is control equivalent to its
1224 original position in the program, where control equivalence is defined as
1225 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001226``inlinehint``
1227 This attribute indicates that the source code contained a hint that
1228 inlining this function is desirable (such as the "inline" keyword in
1229 C/C++). It is just a hint; it imposes no requirements on the
1230 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001231``jumptable``
1232 This attribute indicates that the function should be added to a
1233 jump-instruction table at code-generation time, and that all address-taken
1234 references to this function should be replaced with a reference to the
1235 appropriate jump-instruction-table function pointer. Note that this creates
1236 a new pointer for the original function, which means that code that depends
1237 on function-pointer identity can break. So, any function annotated with
1238 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001239``minsize``
1240 This attribute suggests that optimization passes and code generator
1241 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001242 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001243 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001244``naked``
1245 This attribute disables prologue / epilogue emission for the
1246 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001247``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001248 This indicates that the callee function at a call site is not recognized as
1249 a built-in function. LLVM will retain the original call and not replace it
1250 with equivalent code based on the semantics of the built-in function, unless
1251 the call site uses the ``builtin`` attribute. This is valid at call sites
1252 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001253``noduplicate``
1254 This attribute indicates that calls to the function cannot be
1255 duplicated. A call to a ``noduplicate`` function may be moved
1256 within its parent function, but may not be duplicated within
1257 its parent function.
1258
1259 A function containing a ``noduplicate`` call may still
1260 be an inlining candidate, provided that the call is not
1261 duplicated by inlining. That implies that the function has
1262 internal linkage and only has one call site, so the original
1263 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001264``noimplicitfloat``
1265 This attributes disables implicit floating point instructions.
1266``noinline``
1267 This attribute indicates that the inliner should never inline this
1268 function in any situation. This attribute may not be used together
1269 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001270``nonlazybind``
1271 This attribute suppresses lazy symbol binding for the function. This
1272 may make calls to the function faster, at the cost of extra program
1273 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001274``noredzone``
1275 This attribute indicates that the code generator should not use a
1276 red zone, even if the target-specific ABI normally permits it.
1277``noreturn``
1278 This function attribute indicates that the function never returns
1279 normally. This produces undefined behavior at runtime if the
1280 function ever does dynamically return.
1281``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001282 This function attribute indicates that the function never raises an
1283 exception. If the function does raise an exception, its runtime
1284 behavior is undefined. However, functions marked nounwind may still
1285 trap or generate asynchronous exceptions. Exception handling schemes
1286 that are recognized by LLVM to handle asynchronous exceptions, such
1287 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288``optnone``
1289 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291 exception of interprocedural optimization passes.
1292 This attribute cannot be used together with the ``alwaysinline``
1293 attribute; this attribute is also incompatible
1294 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001295
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 This attribute requires the ``noinline`` attribute to be specified on
1297 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001298 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``optsize``
1301 This attribute suggests that optimization passes and code generator
1302 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001303 and otherwise do optimizations specifically to reduce code size as
1304 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001305``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001306 On a function, this attribute indicates that the function computes its
1307 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001308 without dereferencing any pointer arguments or otherwise accessing
1309 any mutable state (e.g. memory, control registers, etc) visible to
1310 caller functions. It does not write through any pointer arguments
1311 (including ``byval`` arguments) and never changes any state visible
1312 to callers. This means that it cannot unwind exceptions by calling
1313 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001314
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001315 On an argument, this attribute indicates that the function does not
1316 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001317 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001318``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001319 On a function, this attribute indicates that the function does not write
1320 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001321 modify any state (e.g. memory, control registers, etc) visible to
1322 caller functions. It may dereference pointer arguments and read
1323 state that may be set in the caller. A readonly function always
1324 returns the same value (or unwinds an exception identically) when
1325 called with the same set of arguments and global state. It cannot
1326 unwind an exception by calling the ``C++`` exception throwing
1327 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001328
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On an argument, this attribute indicates that the function does not write
1330 through this pointer argument, even though it may write to the memory that
1331 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001332``argmemonly``
1333 This attribute indicates that the only memory accesses inside function are
1334 loads and stores from objects pointed to by its pointer-typed arguments,
1335 with arbitrary offsets. Or in other words, all memory operations in the
1336 function can refer to memory only using pointers based on its function
1337 arguments.
1338 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1339 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001340``returns_twice``
1341 This attribute indicates that this function can return twice. The C
1342 ``setjmp`` is an example of such a function. The compiler disables
1343 some optimizations (like tail calls) in the caller of these
1344 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001345``safestack``
1346 This attribute indicates that
1347 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1348 protection is enabled for this function.
1349
1350 If a function that has a ``safestack`` attribute is inlined into a
1351 function that doesn't have a ``safestack`` attribute or which has an
1352 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1353 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001354``sanitize_address``
1355 This attribute indicates that AddressSanitizer checks
1356 (dynamic address safety analysis) are enabled for this function.
1357``sanitize_memory``
1358 This attribute indicates that MemorySanitizer checks (dynamic detection
1359 of accesses to uninitialized memory) are enabled for this function.
1360``sanitize_thread``
1361 This attribute indicates that ThreadSanitizer checks
1362 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001363``ssp``
1364 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001365 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001366 placed on the stack before the local variables that's checked upon
1367 return from the function to see if it has been overwritten. A
1368 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001370
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001371 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1372 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1373 - Calls to alloca() with variable sizes or constant sizes greater than
1374 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378
Sean Silvab084af42012-12-07 10:36:55 +00001379 If a function that has an ``ssp`` attribute is inlined into a
1380 function that doesn't have an ``ssp`` attribute, then the resulting
1381 function will have an ``ssp`` attribute.
1382``sspreq``
1383 This attribute indicates that the function should *always* emit a
1384 stack smashing protector. This overrides the ``ssp`` function
1385 attribute.
1386
Josh Magee24c7f062014-02-01 01:36:16 +00001387 Variables that are identified as requiring a protector will be arranged
1388 on the stack such that they are adjacent to the stack protector guard.
1389 The specific layout rules are:
1390
1391 #. Large arrays and structures containing large arrays
1392 (``>= ssp-buffer-size``) are closest to the stack protector.
1393 #. Small arrays and structures containing small arrays
1394 (``< ssp-buffer-size``) are 2nd closest to the protector.
1395 #. Variables that have had their address taken are 3rd closest to the
1396 protector.
1397
Sean Silvab084af42012-12-07 10:36:55 +00001398 If a function that has an ``sspreq`` attribute is inlined into a
1399 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001400 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1401 an ``sspreq`` attribute.
1402``sspstrong``
1403 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001405 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001406 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001407
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001408 - Arrays of any size and type
1409 - Aggregates containing an array of any size and type.
1410 - Calls to alloca().
1411 - Local variables that have had their address taken.
1412
Josh Magee24c7f062014-02-01 01:36:16 +00001413 Variables that are identified as requiring a protector will be arranged
1414 on the stack such that they are adjacent to the stack protector guard.
1415 The specific layout rules are:
1416
1417 #. Large arrays and structures containing large arrays
1418 (``>= ssp-buffer-size``) are closest to the stack protector.
1419 #. Small arrays and structures containing small arrays
1420 (``< ssp-buffer-size``) are 2nd closest to the protector.
1421 #. Variables that have had their address taken are 3rd closest to the
1422 protector.
1423
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001424 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001425
1426 If a function that has an ``sspstrong`` attribute is inlined into a
1427 function that doesn't have an ``sspstrong`` attribute, then the
1428 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001429``"thunk"``
1430 This attribute indicates that the function will delegate to some other
1431 function with a tail call. The prototype of a thunk should not be used for
1432 optimization purposes. The caller is expected to cast the thunk prototype to
1433 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001434``uwtable``
1435 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001436 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001437 show that no exceptions passes by it. This is normally the case for
1438 the ELF x86-64 abi, but it can be disabled for some compilation
1439 units.
Sean Silvab084af42012-12-07 10:36:55 +00001440
1441.. _moduleasm:
1442
1443Module-Level Inline Assembly
1444----------------------------
1445
1446Modules may contain "module-level inline asm" blocks, which corresponds
1447to the GCC "file scope inline asm" blocks. These blocks are internally
1448concatenated by LLVM and treated as a single unit, but may be separated
1449in the ``.ll`` file if desired. The syntax is very simple:
1450
1451.. code-block:: llvm
1452
1453 module asm "inline asm code goes here"
1454 module asm "more can go here"
1455
1456The strings can contain any character by escaping non-printable
1457characters. The escape sequence used is simply "\\xx" where "xx" is the
1458two digit hex code for the number.
1459
James Y Knightbc832ed2015-07-08 18:08:36 +00001460Note that the assembly string *must* be parseable by LLVM's integrated assembler
1461(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001462
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001463.. _langref_datalayout:
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465Data Layout
1466-----------
1467
1468A module may specify a target specific data layout string that specifies
1469how data is to be laid out in memory. The syntax for the data layout is
1470simply:
1471
1472.. code-block:: llvm
1473
1474 target datalayout = "layout specification"
1475
1476The *layout specification* consists of a list of specifications
1477separated by the minus sign character ('-'). Each specification starts
1478with a letter and may include other information after the letter to
1479define some aspect of the data layout. The specifications accepted are
1480as follows:
1481
1482``E``
1483 Specifies that the target lays out data in big-endian form. That is,
1484 the bits with the most significance have the lowest address
1485 location.
1486``e``
1487 Specifies that the target lays out data in little-endian form. That
1488 is, the bits with the least significance have the lowest address
1489 location.
1490``S<size>``
1491 Specifies the natural alignment of the stack in bits. Alignment
1492 promotion of stack variables is limited to the natural stack
1493 alignment to avoid dynamic stack realignment. The stack alignment
1494 must be a multiple of 8-bits. If omitted, the natural stack
1495 alignment defaults to "unspecified", which does not prevent any
1496 alignment promotions.
1497``p[n]:<size>:<abi>:<pref>``
1498 This specifies the *size* of a pointer and its ``<abi>`` and
1499 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001500 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001501 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001502 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001503``i<size>:<abi>:<pref>``
1504 This specifies the alignment for an integer type of a given bit
1505 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1506``v<size>:<abi>:<pref>``
1507 This specifies the alignment for a vector type of a given bit
1508 ``<size>``.
1509``f<size>:<abi>:<pref>``
1510 This specifies the alignment for a floating point type of a given bit
1511 ``<size>``. Only values of ``<size>`` that are supported by the target
1512 will work. 32 (float) and 64 (double) are supported on all targets; 80
1513 or 128 (different flavors of long double) are also supported on some
1514 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001515``a:<abi>:<pref>``
1516 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001517``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001518 If present, specifies that llvm names are mangled in the output. The
1519 options are
1520
1521 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1522 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1523 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1524 symbols get a ``_`` prefix.
1525 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1526 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001527``n<size1>:<size2>:<size3>...``
1528 This specifies a set of native integer widths for the target CPU in
1529 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1530 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1531 this set are considered to support most general arithmetic operations
1532 efficiently.
1533
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001534On every specification that takes a ``<abi>:<pref>``, specifying the
1535``<pref>`` alignment is optional. If omitted, the preceding ``:``
1536should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1537
Sean Silvab084af42012-12-07 10:36:55 +00001538When constructing the data layout for a given target, LLVM starts with a
1539default set of specifications which are then (possibly) overridden by
1540the specifications in the ``datalayout`` keyword. The default
1541specifications are given in this list:
1542
1543- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001544- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1545- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1546 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001547- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001548- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1549- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1550- ``i16:16:16`` - i16 is 16-bit aligned
1551- ``i32:32:32`` - i32 is 32-bit aligned
1552- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1553 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001554- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001555- ``f32:32:32`` - float is 32-bit aligned
1556- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001557- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001558- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1559- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001560- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001561
1562When LLVM is determining the alignment for a given type, it uses the
1563following rules:
1564
1565#. If the type sought is an exact match for one of the specifications,
1566 that specification is used.
1567#. If no match is found, and the type sought is an integer type, then
1568 the smallest integer type that is larger than the bitwidth of the
1569 sought type is used. If none of the specifications are larger than
1570 the bitwidth then the largest integer type is used. For example,
1571 given the default specifications above, the i7 type will use the
1572 alignment of i8 (next largest) while both i65 and i256 will use the
1573 alignment of i64 (largest specified).
1574#. If no match is found, and the type sought is a vector type, then the
1575 largest vector type that is smaller than the sought vector type will
1576 be used as a fall back. This happens because <128 x double> can be
1577 implemented in terms of 64 <2 x double>, for example.
1578
1579The function of the data layout string may not be what you expect.
1580Notably, this is not a specification from the frontend of what alignment
1581the code generator should use.
1582
1583Instead, if specified, the target data layout is required to match what
1584the ultimate *code generator* expects. This string is used by the
1585mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001586what the ultimate code generator uses. There is no way to generate IR
1587that does not embed this target-specific detail into the IR. If you
1588don't specify the string, the default specifications will be used to
1589generate a Data Layout and the optimization phases will operate
1590accordingly and introduce target specificity into the IR with respect to
1591these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001592
Bill Wendling5cc90842013-10-18 23:41:25 +00001593.. _langref_triple:
1594
1595Target Triple
1596-------------
1597
1598A module may specify a target triple string that describes the target
1599host. The syntax for the target triple is simply:
1600
1601.. code-block:: llvm
1602
1603 target triple = "x86_64-apple-macosx10.7.0"
1604
1605The *target triple* string consists of a series of identifiers delimited
1606by the minus sign character ('-'). The canonical forms are:
1607
1608::
1609
1610 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1611 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1612
1613This information is passed along to the backend so that it generates
1614code for the proper architecture. It's possible to override this on the
1615command line with the ``-mtriple`` command line option.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617.. _pointeraliasing:
1618
1619Pointer Aliasing Rules
1620----------------------
1621
1622Any memory access must be done through a pointer value associated with
1623an address range of the memory access, otherwise the behavior is
1624undefined. Pointer values are associated with address ranges according
1625to the following rules:
1626
1627- A pointer value is associated with the addresses associated with any
1628 value it is *based* on.
1629- An address of a global variable is associated with the address range
1630 of the variable's storage.
1631- The result value of an allocation instruction is associated with the
1632 address range of the allocated storage.
1633- A null pointer in the default address-space is associated with no
1634 address.
1635- An integer constant other than zero or a pointer value returned from
1636 a function not defined within LLVM may be associated with address
1637 ranges allocated through mechanisms other than those provided by
1638 LLVM. Such ranges shall not overlap with any ranges of addresses
1639 allocated by mechanisms provided by LLVM.
1640
1641A pointer value is *based* on another pointer value according to the
1642following rules:
1643
1644- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001645 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001646- The result value of a ``bitcast`` is *based* on the operand of the
1647 ``bitcast``.
1648- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1649 values that contribute (directly or indirectly) to the computation of
1650 the pointer's value.
1651- The "*based* on" relationship is transitive.
1652
1653Note that this definition of *"based"* is intentionally similar to the
1654definition of *"based"* in C99, though it is slightly weaker.
1655
1656LLVM IR does not associate types with memory. The result type of a
1657``load`` merely indicates the size and alignment of the memory from
1658which to load, as well as the interpretation of the value. The first
1659operand type of a ``store`` similarly only indicates the size and
1660alignment of the store.
1661
1662Consequently, type-based alias analysis, aka TBAA, aka
1663``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1664:ref:`Metadata <metadata>` may be used to encode additional information
1665which specialized optimization passes may use to implement type-based
1666alias analysis.
1667
1668.. _volatile:
1669
1670Volatile Memory Accesses
1671------------------------
1672
1673Certain memory accesses, such as :ref:`load <i_load>`'s,
1674:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1675marked ``volatile``. The optimizers must not change the number of
1676volatile operations or change their order of execution relative to other
1677volatile operations. The optimizers *may* change the order of volatile
1678operations relative to non-volatile operations. This is not Java's
1679"volatile" and has no cross-thread synchronization behavior.
1680
Andrew Trick89fc5a62013-01-30 21:19:35 +00001681IR-level volatile loads and stores cannot safely be optimized into
1682llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1683flagged volatile. Likewise, the backend should never split or merge
1684target-legal volatile load/store instructions.
1685
Andrew Trick7e6f9282013-01-31 00:49:39 +00001686.. admonition:: Rationale
1687
1688 Platforms may rely on volatile loads and stores of natively supported
1689 data width to be executed as single instruction. For example, in C
1690 this holds for an l-value of volatile primitive type with native
1691 hardware support, but not necessarily for aggregate types. The
1692 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001693 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001694 do not violate the frontend's contract with the language.
1695
Sean Silvab084af42012-12-07 10:36:55 +00001696.. _memmodel:
1697
1698Memory Model for Concurrent Operations
1699--------------------------------------
1700
1701The LLVM IR does not define any way to start parallel threads of
1702execution or to register signal handlers. Nonetheless, there are
1703platform-specific ways to create them, and we define LLVM IR's behavior
1704in their presence. This model is inspired by the C++0x memory model.
1705
1706For a more informal introduction to this model, see the :doc:`Atomics`.
1707
1708We define a *happens-before* partial order as the least partial order
1709that
1710
1711- Is a superset of single-thread program order, and
1712- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1713 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1714 techniques, like pthread locks, thread creation, thread joining,
1715 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1716 Constraints <ordering>`).
1717
1718Note that program order does not introduce *happens-before* edges
1719between a thread and signals executing inside that thread.
1720
1721Every (defined) read operation (load instructions, memcpy, atomic
1722loads/read-modify-writes, etc.) R reads a series of bytes written by
1723(defined) write operations (store instructions, atomic
1724stores/read-modify-writes, memcpy, etc.). For the purposes of this
1725section, initialized globals are considered to have a write of the
1726initializer which is atomic and happens before any other read or write
1727of the memory in question. For each byte of a read R, R\ :sub:`byte`
1728may see any write to the same byte, except:
1729
1730- If write\ :sub:`1` happens before write\ :sub:`2`, and
1731 write\ :sub:`2` happens before R\ :sub:`byte`, then
1732 R\ :sub:`byte` does not see write\ :sub:`1`.
1733- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1734 R\ :sub:`byte` does not see write\ :sub:`3`.
1735
1736Given that definition, R\ :sub:`byte` is defined as follows:
1737
1738- If R is volatile, the result is target-dependent. (Volatile is
1739 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001740 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001741 like normal memory. It does not generally provide cross-thread
1742 synchronization.)
1743- Otherwise, if there is no write to the same byte that happens before
1744 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1745- Otherwise, if R\ :sub:`byte` may see exactly one write,
1746 R\ :sub:`byte` returns the value written by that write.
1747- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1748 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1749 Memory Ordering Constraints <ordering>` section for additional
1750 constraints on how the choice is made.
1751- Otherwise R\ :sub:`byte` returns ``undef``.
1752
1753R returns the value composed of the series of bytes it read. This
1754implies that some bytes within the value may be ``undef`` **without**
1755the entire value being ``undef``. Note that this only defines the
1756semantics of the operation; it doesn't mean that targets will emit more
1757than one instruction to read the series of bytes.
1758
1759Note that in cases where none of the atomic intrinsics are used, this
1760model places only one restriction on IR transformations on top of what
1761is required for single-threaded execution: introducing a store to a byte
1762which might not otherwise be stored is not allowed in general.
1763(Specifically, in the case where another thread might write to and read
1764from an address, introducing a store can change a load that may see
1765exactly one write into a load that may see multiple writes.)
1766
1767.. _ordering:
1768
1769Atomic Memory Ordering Constraints
1770----------------------------------
1771
1772Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1773:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1774:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001775ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001776the same address they *synchronize with*. These semantics are borrowed
1777from Java and C++0x, but are somewhat more colloquial. If these
1778descriptions aren't precise enough, check those specs (see spec
1779references in the :doc:`atomics guide <Atomics>`).
1780:ref:`fence <i_fence>` instructions treat these orderings somewhat
1781differently since they don't take an address. See that instruction's
1782documentation for details.
1783
1784For a simpler introduction to the ordering constraints, see the
1785:doc:`Atomics`.
1786
1787``unordered``
1788 The set of values that can be read is governed by the happens-before
1789 partial order. A value cannot be read unless some operation wrote
1790 it. This is intended to provide a guarantee strong enough to model
1791 Java's non-volatile shared variables. This ordering cannot be
1792 specified for read-modify-write operations; it is not strong enough
1793 to make them atomic in any interesting way.
1794``monotonic``
1795 In addition to the guarantees of ``unordered``, there is a single
1796 total order for modifications by ``monotonic`` operations on each
1797 address. All modification orders must be compatible with the
1798 happens-before order. There is no guarantee that the modification
1799 orders can be combined to a global total order for the whole program
1800 (and this often will not be possible). The read in an atomic
1801 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1802 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1803 order immediately before the value it writes. If one atomic read
1804 happens before another atomic read of the same address, the later
1805 read must see the same value or a later value in the address's
1806 modification order. This disallows reordering of ``monotonic`` (or
1807 stronger) operations on the same address. If an address is written
1808 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1809 read that address repeatedly, the other threads must eventually see
1810 the write. This corresponds to the C++0x/C1x
1811 ``memory_order_relaxed``.
1812``acquire``
1813 In addition to the guarantees of ``monotonic``, a
1814 *synchronizes-with* edge may be formed with a ``release`` operation.
1815 This is intended to model C++'s ``memory_order_acquire``.
1816``release``
1817 In addition to the guarantees of ``monotonic``, if this operation
1818 writes a value which is subsequently read by an ``acquire``
1819 operation, it *synchronizes-with* that operation. (This isn't a
1820 complete description; see the C++0x definition of a release
1821 sequence.) This corresponds to the C++0x/C1x
1822 ``memory_order_release``.
1823``acq_rel`` (acquire+release)
1824 Acts as both an ``acquire`` and ``release`` operation on its
1825 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1826``seq_cst`` (sequentially consistent)
1827 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001828 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001829 writes), there is a global total order on all
1830 sequentially-consistent operations on all addresses, which is
1831 consistent with the *happens-before* partial order and with the
1832 modification orders of all the affected addresses. Each
1833 sequentially-consistent read sees the last preceding write to the
1834 same address in this global order. This corresponds to the C++0x/C1x
1835 ``memory_order_seq_cst`` and Java volatile.
1836
1837.. _singlethread:
1838
1839If an atomic operation is marked ``singlethread``, it only *synchronizes
1840with* or participates in modification and seq\_cst total orderings with
1841other operations running in the same thread (for example, in signal
1842handlers).
1843
1844.. _fastmath:
1845
1846Fast-Math Flags
1847---------------
1848
1849LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1850:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001851:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1852be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001853
1854``nnan``
1855 No NaNs - Allow optimizations to assume the arguments and result are not
1856 NaN. Such optimizations are required to retain defined behavior over
1857 NaNs, but the value of the result is undefined.
1858
1859``ninf``
1860 No Infs - Allow optimizations to assume the arguments and result are not
1861 +/-Inf. Such optimizations are required to retain defined behavior over
1862 +/-Inf, but the value of the result is undefined.
1863
1864``nsz``
1865 No Signed Zeros - Allow optimizations to treat the sign of a zero
1866 argument or result as insignificant.
1867
1868``arcp``
1869 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1870 argument rather than perform division.
1871
1872``fast``
1873 Fast - Allow algebraically equivalent transformations that may
1874 dramatically change results in floating point (e.g. reassociate). This
1875 flag implies all the others.
1876
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001877.. _uselistorder:
1878
1879Use-list Order Directives
1880-------------------------
1881
1882Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001883order to be recreated. ``<order-indexes>`` is a comma-separated list of
1884indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001885value's use-list is immediately sorted by these indexes.
1886
Sean Silvaa1190322015-08-06 22:56:48 +00001887Use-list directives may appear at function scope or global scope. They are not
1888instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001889function scope, they must appear after the terminator of the final basic block.
1890
1891If basic blocks have their address taken via ``blockaddress()`` expressions,
1892``uselistorder_bb`` can be used to reorder their use-lists from outside their
1893function's scope.
1894
1895:Syntax:
1896
1897::
1898
1899 uselistorder <ty> <value>, { <order-indexes> }
1900 uselistorder_bb @function, %block { <order-indexes> }
1901
1902:Examples:
1903
1904::
1905
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001906 define void @foo(i32 %arg1, i32 %arg2) {
1907 entry:
1908 ; ... instructions ...
1909 bb:
1910 ; ... instructions ...
1911
1912 ; At function scope.
1913 uselistorder i32 %arg1, { 1, 0, 2 }
1914 uselistorder label %bb, { 1, 0 }
1915 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001916
1917 ; At global scope.
1918 uselistorder i32* @global, { 1, 2, 0 }
1919 uselistorder i32 7, { 1, 0 }
1920 uselistorder i32 (i32) @bar, { 1, 0 }
1921 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1922
Sean Silvab084af42012-12-07 10:36:55 +00001923.. _typesystem:
1924
1925Type System
1926===========
1927
1928The LLVM type system is one of the most important features of the
1929intermediate representation. Being typed enables a number of
1930optimizations to be performed on the intermediate representation
1931directly, without having to do extra analyses on the side before the
1932transformation. A strong type system makes it easier to read the
1933generated code and enables novel analyses and transformations that are
1934not feasible to perform on normal three address code representations.
1935
Rafael Espindola08013342013-12-07 19:34:20 +00001936.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001937
Rafael Espindola08013342013-12-07 19:34:20 +00001938Void Type
1939---------
Sean Silvab084af42012-12-07 10:36:55 +00001940
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001941:Overview:
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943
1944The void type does not represent any value and has no size.
1945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Syntax:
1947
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949::
1950
1951 void
Sean Silvab084af42012-12-07 10:36:55 +00001952
1953
Rafael Espindola08013342013-12-07 19:34:20 +00001954.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola08013342013-12-07 19:34:20 +00001956Function Type
1957-------------
Sean Silvab084af42012-12-07 10:36:55 +00001958
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001959:Overview:
1960
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962The function type can be thought of as a function signature. It consists of a
1963return type and a list of formal parameter types. The return type of a function
1964type is a void type or first class type --- except for :ref:`label <t_label>`
1965and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola08013342013-12-07 19:34:20 +00001969::
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola08013342013-12-07 19:34:20 +00001973...where '``<parameter list>``' is a comma-separated list of type
1974specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00001975indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00001976argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00001977handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00001978except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001979
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001980:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001981
Rafael Espindola08013342013-12-07 19:34:20 +00001982+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1983| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1984+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1985| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1986+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1987| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1988+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1989| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1990+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1991
1992.. _t_firstclass:
1993
1994First Class Types
1995-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997The :ref:`first class <t_firstclass>` types are perhaps the most important.
1998Values of these types are the only ones which can be produced by
1999instructions.
2000
Rafael Espindola08013342013-12-07 19:34:20 +00002001.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola08013342013-12-07 19:34:20 +00002003Single Value Types
2004^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002005
Rafael Espindola08013342013-12-07 19:34:20 +00002006These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002007
2008.. _t_integer:
2009
2010Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
2015The integer type is a very simple type that simply specifies an
2016arbitrary bit width for the integer type desired. Any bit width from 1
2017bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021::
2022
2023 iN
2024
2025The number of bits the integer will occupy is specified by the ``N``
2026value.
2027
2028Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002029*********
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031+----------------+------------------------------------------------+
2032| ``i1`` | a single-bit integer. |
2033+----------------+------------------------------------------------+
2034| ``i32`` | a 32-bit integer. |
2035+----------------+------------------------------------------------+
2036| ``i1942652`` | a really big integer of over 1 million bits. |
2037+----------------+------------------------------------------------+
2038
2039.. _t_floating:
2040
2041Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002042""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002043
2044.. list-table::
2045 :header-rows: 1
2046
2047 * - Type
2048 - Description
2049
2050 * - ``half``
2051 - 16-bit floating point value
2052
2053 * - ``float``
2054 - 32-bit floating point value
2055
2056 * - ``double``
2057 - 64-bit floating point value
2058
2059 * - ``fp128``
2060 - 128-bit floating point value (112-bit mantissa)
2061
2062 * - ``x86_fp80``
2063 - 80-bit floating point value (X87)
2064
2065 * - ``ppc_fp128``
2066 - 128-bit floating point value (two 64-bits)
2067
Reid Kleckner9a16d082014-03-05 02:41:37 +00002068X86_mmx Type
2069""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002074machine. The operations allowed on it are quite limited: parameters and
2075return values, load and store, and bitcast. User-specified MMX
2076instructions are represented as intrinsic or asm calls with arguments
2077and/or results of this type. There are no arrays, vectors or constants
2078of this type.
2079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002081
2082::
2083
Reid Kleckner9a16d082014-03-05 02:41:37 +00002084 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002085
Sean Silvab084af42012-12-07 10:36:55 +00002086
Rafael Espindola08013342013-12-07 19:34:20 +00002087.. _t_pointer:
2088
2089Pointer Type
2090""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola08013342013-12-07 19:34:20 +00002094The pointer type is used to specify memory locations. Pointers are
2095commonly used to reference objects in memory.
2096
2097Pointer types may have an optional address space attribute defining the
2098numbered address space where the pointed-to object resides. The default
2099address space is number zero. The semantics of non-zero address spaces
2100are target-specific.
2101
2102Note that LLVM does not permit pointers to void (``void*``) nor does it
2103permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002104
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002105:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002106
2107::
2108
Rafael Espindola08013342013-12-07 19:34:20 +00002109 <type> *
2110
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002111:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002112
2113+-------------------------+--------------------------------------------------------------------------------------------------------------+
2114| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2115+-------------------------+--------------------------------------------------------------------------------------------------------------+
2116| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2117+-------------------------+--------------------------------------------------------------------------------------------------------------+
2118| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2119+-------------------------+--------------------------------------------------------------------------------------------------------------+
2120
2121.. _t_vector:
2122
2123Vector Type
2124"""""""""""
2125
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002126:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002127
2128A vector type is a simple derived type that represents a vector of
2129elements. Vector types are used when multiple primitive data are
2130operated in parallel using a single instruction (SIMD). A vector type
2131requires a size (number of elements) and an underlying primitive data
2132type. Vector types are considered :ref:`first class <t_firstclass>`.
2133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002135
2136::
2137
2138 < <# elements> x <elementtype> >
2139
2140The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002141elementtype may be any integer, floating point or pointer type. Vectors
2142of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002145
2146+-------------------+--------------------------------------------------+
2147| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2148+-------------------+--------------------------------------------------+
2149| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2150+-------------------+--------------------------------------------------+
2151| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2152+-------------------+--------------------------------------------------+
2153| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2154+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156.. _t_label:
2157
2158Label Type
2159^^^^^^^^^^
2160
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002161:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163The label type represents code labels.
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167::
2168
2169 label
2170
David Majnemerb611e3f2015-08-14 05:09:07 +00002171.. _t_token:
2172
2173Token Type
2174^^^^^^^^^^
2175
2176:Overview:
2177
2178The token type is used when a value is associated with an instruction
2179but all uses of the value must not attempt to introspect or obscure it.
2180As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2181:ref:`select <i_select>` of type token.
2182
2183:Syntax:
2184
2185::
2186
2187 token
2188
2189
2190
Sean Silvab084af42012-12-07 10:36:55 +00002191.. _t_metadata:
2192
2193Metadata Type
2194^^^^^^^^^^^^^
2195
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002196:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002197
2198The metadata type represents embedded metadata. No derived types may be
2199created from metadata except for :ref:`function <t_function>` arguments.
2200
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002201:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002202
2203::
2204
2205 metadata
2206
Sean Silvab084af42012-12-07 10:36:55 +00002207.. _t_aggregate:
2208
2209Aggregate Types
2210^^^^^^^^^^^^^^^
2211
2212Aggregate Types are a subset of derived types that can contain multiple
2213member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2214aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2215aggregate types.
2216
2217.. _t_array:
2218
2219Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002220""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002221
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002222:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002223
2224The array type is a very simple derived type that arranges elements
2225sequentially in memory. The array type requires a size (number of
2226elements) and an underlying data type.
2227
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002228:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002229
2230::
2231
2232 [<# elements> x <elementtype>]
2233
2234The number of elements is a constant integer value; ``elementtype`` may
2235be any type with a size.
2236
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002237:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002238
2239+------------------+--------------------------------------+
2240| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2241+------------------+--------------------------------------+
2242| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2243+------------------+--------------------------------------+
2244| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2245+------------------+--------------------------------------+
2246
2247Here are some examples of multidimensional arrays:
2248
2249+-----------------------------+----------------------------------------------------------+
2250| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2251+-----------------------------+----------------------------------------------------------+
2252| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2253+-----------------------------+----------------------------------------------------------+
2254| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2255+-----------------------------+----------------------------------------------------------+
2256
2257There is no restriction on indexing beyond the end of the array implied
2258by a static type (though there are restrictions on indexing beyond the
2259bounds of an allocated object in some cases). This means that
2260single-dimension 'variable sized array' addressing can be implemented in
2261LLVM with a zero length array type. An implementation of 'pascal style
2262arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2263example.
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _t_struct:
2266
2267Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002268""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002271
2272The structure type is used to represent a collection of data members
2273together in memory. The elements of a structure may be any type that has
2274a size.
2275
2276Structures in memory are accessed using '``load``' and '``store``' by
2277getting a pointer to a field with the '``getelementptr``' instruction.
2278Structures in registers are accessed using the '``extractvalue``' and
2279'``insertvalue``' instructions.
2280
2281Structures may optionally be "packed" structures, which indicate that
2282the alignment of the struct is one byte, and that there is no padding
2283between the elements. In non-packed structs, padding between field types
2284is inserted as defined by the DataLayout string in the module, which is
2285required to match what the underlying code generator expects.
2286
2287Structures can either be "literal" or "identified". A literal structure
2288is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2289identified types are always defined at the top level with a name.
2290Literal types are uniqued by their contents and can never be recursive
2291or opaque since there is no way to write one. Identified types can be
2292recursive, can be opaqued, and are never uniqued.
2293
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002294:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002295
2296::
2297
2298 %T1 = type { <type list> } ; Identified normal struct type
2299 %T2 = type <{ <type list> }> ; Identified packed struct type
2300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002302
2303+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2304| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2305+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002306| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002307+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2308| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2309+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2310
2311.. _t_opaque:
2312
2313Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002314""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002316:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002317
2318Opaque structure types are used to represent named structure types that
2319do not have a body specified. This corresponds (for example) to the C
2320notion of a forward declared structure.
2321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002323
2324::
2325
2326 %X = type opaque
2327 %52 = type opaque
2328
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002329:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002330
2331+--------------+-------------------+
2332| ``opaque`` | An opaque type. |
2333+--------------+-------------------+
2334
Sean Silva1703e702014-04-08 21:06:22 +00002335.. _constants:
2336
Sean Silvab084af42012-12-07 10:36:55 +00002337Constants
2338=========
2339
2340LLVM has several different basic types of constants. This section
2341describes them all and their syntax.
2342
2343Simple Constants
2344----------------
2345
2346**Boolean constants**
2347 The two strings '``true``' and '``false``' are both valid constants
2348 of the ``i1`` type.
2349**Integer constants**
2350 Standard integers (such as '4') are constants of the
2351 :ref:`integer <t_integer>` type. Negative numbers may be used with
2352 integer types.
2353**Floating point constants**
2354 Floating point constants use standard decimal notation (e.g.
2355 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2356 hexadecimal notation (see below). The assembler requires the exact
2357 decimal value of a floating-point constant. For example, the
2358 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2359 decimal in binary. Floating point constants must have a :ref:`floating
2360 point <t_floating>` type.
2361**Null pointer constants**
2362 The identifier '``null``' is recognized as a null pointer constant
2363 and must be of :ref:`pointer type <t_pointer>`.
2364
2365The one non-intuitive notation for constants is the hexadecimal form of
2366floating point constants. For example, the form
2367'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2368than) '``double 4.5e+15``'. The only time hexadecimal floating point
2369constants are required (and the only time that they are generated by the
2370disassembler) is when a floating point constant must be emitted but it
2371cannot be represented as a decimal floating point number in a reasonable
2372number of digits. For example, NaN's, infinities, and other special
2373values are represented in their IEEE hexadecimal format so that assembly
2374and disassembly do not cause any bits to change in the constants.
2375
2376When using the hexadecimal form, constants of types half, float, and
2377double are represented using the 16-digit form shown above (which
2378matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002379must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002380precision, respectively. Hexadecimal format is always used for long
2381double, and there are three forms of long double. The 80-bit format used
2382by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2383128-bit format used by PowerPC (two adjacent doubles) is represented by
2384``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002385represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2386will only work if they match the long double format on your target.
2387The IEEE 16-bit format (half precision) is represented by ``0xH``
2388followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2389(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002390
Reid Kleckner9a16d082014-03-05 02:41:37 +00002391There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002392
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002393.. _complexconstants:
2394
Sean Silvab084af42012-12-07 10:36:55 +00002395Complex Constants
2396-----------------
2397
2398Complex constants are a (potentially recursive) combination of simple
2399constants and smaller complex constants.
2400
2401**Structure constants**
2402 Structure constants are represented with notation similar to
2403 structure type definitions (a comma separated list of elements,
2404 surrounded by braces (``{}``)). For example:
2405 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2406 "``@G = external global i32``". Structure constants must have
2407 :ref:`structure type <t_struct>`, and the number and types of elements
2408 must match those specified by the type.
2409**Array constants**
2410 Array constants are represented with notation similar to array type
2411 definitions (a comma separated list of elements, surrounded by
2412 square brackets (``[]``)). For example:
2413 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2414 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002415 match those specified by the type. As a special case, character array
2416 constants may also be represented as a double-quoted string using the ``c``
2417 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002418**Vector constants**
2419 Vector constants are represented with notation similar to vector
2420 type definitions (a comma separated list of elements, surrounded by
2421 less-than/greater-than's (``<>``)). For example:
2422 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2423 must have :ref:`vector type <t_vector>`, and the number and types of
2424 elements must match those specified by the type.
2425**Zero initialization**
2426 The string '``zeroinitializer``' can be used to zero initialize a
2427 value to zero of *any* type, including scalar and
2428 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2429 having to print large zero initializers (e.g. for large arrays) and
2430 is always exactly equivalent to using explicit zero initializers.
2431**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002432 A metadata node is a constant tuple without types. For example:
2433 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002434 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2435 Unlike other typed constants that are meant to be interpreted as part of
2436 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002437 information such as debug info.
2438
2439Global Variable and Function Addresses
2440--------------------------------------
2441
2442The addresses of :ref:`global variables <globalvars>` and
2443:ref:`functions <functionstructure>` are always implicitly valid
2444(link-time) constants. These constants are explicitly referenced when
2445the :ref:`identifier for the global <identifiers>` is used and always have
2446:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2447file:
2448
2449.. code-block:: llvm
2450
2451 @X = global i32 17
2452 @Y = global i32 42
2453 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2454
2455.. _undefvalues:
2456
2457Undefined Values
2458----------------
2459
2460The string '``undef``' can be used anywhere a constant is expected, and
2461indicates that the user of the value may receive an unspecified
2462bit-pattern. Undefined values may be of any type (other than '``label``'
2463or '``void``') and be used anywhere a constant is permitted.
2464
2465Undefined values are useful because they indicate to the compiler that
2466the program is well defined no matter what value is used. This gives the
2467compiler more freedom to optimize. Here are some examples of
2468(potentially surprising) transformations that are valid (in pseudo IR):
2469
2470.. code-block:: llvm
2471
2472 %A = add %X, undef
2473 %B = sub %X, undef
2474 %C = xor %X, undef
2475 Safe:
2476 %A = undef
2477 %B = undef
2478 %C = undef
2479
2480This is safe because all of the output bits are affected by the undef
2481bits. Any output bit can have a zero or one depending on the input bits.
2482
2483.. code-block:: llvm
2484
2485 %A = or %X, undef
2486 %B = and %X, undef
2487 Safe:
2488 %A = -1
2489 %B = 0
2490 Unsafe:
2491 %A = undef
2492 %B = undef
2493
2494These logical operations have bits that are not always affected by the
2495input. For example, if ``%X`` has a zero bit, then the output of the
2496'``and``' operation will always be a zero for that bit, no matter what
2497the corresponding bit from the '``undef``' is. As such, it is unsafe to
2498optimize or assume that the result of the '``and``' is '``undef``'.
2499However, it is safe to assume that all bits of the '``undef``' could be
25000, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2501all the bits of the '``undef``' operand to the '``or``' could be set,
2502allowing the '``or``' to be folded to -1.
2503
2504.. code-block:: llvm
2505
2506 %A = select undef, %X, %Y
2507 %B = select undef, 42, %Y
2508 %C = select %X, %Y, undef
2509 Safe:
2510 %A = %X (or %Y)
2511 %B = 42 (or %Y)
2512 %C = %Y
2513 Unsafe:
2514 %A = undef
2515 %B = undef
2516 %C = undef
2517
2518This set of examples shows that undefined '``select``' (and conditional
2519branch) conditions can go *either way*, but they have to come from one
2520of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2521both known to have a clear low bit, then ``%A`` would have to have a
2522cleared low bit. However, in the ``%C`` example, the optimizer is
2523allowed to assume that the '``undef``' operand could be the same as
2524``%Y``, allowing the whole '``select``' to be eliminated.
2525
2526.. code-block:: llvm
2527
2528 %A = xor undef, undef
2529
2530 %B = undef
2531 %C = xor %B, %B
2532
2533 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002534 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002535 %F = icmp gte %D, 4
2536
2537 Safe:
2538 %A = undef
2539 %B = undef
2540 %C = undef
2541 %D = undef
2542 %E = undef
2543 %F = undef
2544
2545This example points out that two '``undef``' operands are not
2546necessarily the same. This can be surprising to people (and also matches
2547C semantics) where they assume that "``X^X``" is always zero, even if
2548``X`` is undefined. This isn't true for a number of reasons, but the
2549short answer is that an '``undef``' "variable" can arbitrarily change
2550its value over its "live range". This is true because the variable
2551doesn't actually *have a live range*. Instead, the value is logically
2552read from arbitrary registers that happen to be around when needed, so
2553the value is not necessarily consistent over time. In fact, ``%A`` and
2554``%C`` need to have the same semantics or the core LLVM "replace all
2555uses with" concept would not hold.
2556
2557.. code-block:: llvm
2558
2559 %A = fdiv undef, %X
2560 %B = fdiv %X, undef
2561 Safe:
2562 %A = undef
2563 b: unreachable
2564
2565These examples show the crucial difference between an *undefined value*
2566and *undefined behavior*. An undefined value (like '``undef``') is
2567allowed to have an arbitrary bit-pattern. This means that the ``%A``
2568operation can be constant folded to '``undef``', because the '``undef``'
2569could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2570However, in the second example, we can make a more aggressive
2571assumption: because the ``undef`` is allowed to be an arbitrary value,
2572we are allowed to assume that it could be zero. Since a divide by zero
2573has *undefined behavior*, we are allowed to assume that the operation
2574does not execute at all. This allows us to delete the divide and all
2575code after it. Because the undefined operation "can't happen", the
2576optimizer can assume that it occurs in dead code.
2577
2578.. code-block:: llvm
2579
2580 a: store undef -> %X
2581 b: store %X -> undef
2582 Safe:
2583 a: <deleted>
2584 b: unreachable
2585
2586These examples reiterate the ``fdiv`` example: a store *of* an undefined
2587value can be assumed to not have any effect; we can assume that the
2588value is overwritten with bits that happen to match what was already
2589there. However, a store *to* an undefined location could clobber
2590arbitrary memory, therefore, it has undefined behavior.
2591
2592.. _poisonvalues:
2593
2594Poison Values
2595-------------
2596
2597Poison values are similar to :ref:`undef values <undefvalues>`, however
2598they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002599that cannot evoke side effects has nevertheless detected a condition
2600that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602There is currently no way of representing a poison value in the IR; they
2603only exist when produced by operations such as :ref:`add <i_add>` with
2604the ``nsw`` flag.
2605
2606Poison value behavior is defined in terms of value *dependence*:
2607
2608- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2609- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2610 their dynamic predecessor basic block.
2611- Function arguments depend on the corresponding actual argument values
2612 in the dynamic callers of their functions.
2613- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2614 instructions that dynamically transfer control back to them.
2615- :ref:`Invoke <i_invoke>` instructions depend on the
2616 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2617 call instructions that dynamically transfer control back to them.
2618- Non-volatile loads and stores depend on the most recent stores to all
2619 of the referenced memory addresses, following the order in the IR
2620 (including loads and stores implied by intrinsics such as
2621 :ref:`@llvm.memcpy <int_memcpy>`.)
2622- An instruction with externally visible side effects depends on the
2623 most recent preceding instruction with externally visible side
2624 effects, following the order in the IR. (This includes :ref:`volatile
2625 operations <volatile>`.)
2626- An instruction *control-depends* on a :ref:`terminator
2627 instruction <terminators>` if the terminator instruction has
2628 multiple successors and the instruction is always executed when
2629 control transfers to one of the successors, and may not be executed
2630 when control is transferred to another.
2631- Additionally, an instruction also *control-depends* on a terminator
2632 instruction if the set of instructions it otherwise depends on would
2633 be different if the terminator had transferred control to a different
2634 successor.
2635- Dependence is transitive.
2636
Richard Smith32dbdf62014-07-31 04:25:36 +00002637Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2638with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002639on a poison value has undefined behavior.
2640
2641Here are some examples:
2642
2643.. code-block:: llvm
2644
2645 entry:
2646 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2647 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002648 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002649 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2650
2651 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002652 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002653
2654 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2655
2656 %narrowaddr = bitcast i32* @g to i16*
2657 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002658 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2659 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002660
2661 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2662 br i1 %cmp, label %true, label %end ; Branch to either destination.
2663
2664 true:
2665 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2666 ; it has undefined behavior.
2667 br label %end
2668
2669 end:
2670 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2671 ; Both edges into this PHI are
2672 ; control-dependent on %cmp, so this
2673 ; always results in a poison value.
2674
2675 store volatile i32 0, i32* @g ; This would depend on the store in %true
2676 ; if %cmp is true, or the store in %entry
2677 ; otherwise, so this is undefined behavior.
2678
2679 br i1 %cmp, label %second_true, label %second_end
2680 ; The same branch again, but this time the
2681 ; true block doesn't have side effects.
2682
2683 second_true:
2684 ; No side effects!
2685 ret void
2686
2687 second_end:
2688 store volatile i32 0, i32* @g ; This time, the instruction always depends
2689 ; on the store in %end. Also, it is
2690 ; control-equivalent to %end, so this is
2691 ; well-defined (ignoring earlier undefined
2692 ; behavior in this example).
2693
2694.. _blockaddress:
2695
2696Addresses of Basic Blocks
2697-------------------------
2698
2699``blockaddress(@function, %block)``
2700
2701The '``blockaddress``' constant computes the address of the specified
2702basic block in the specified function, and always has an ``i8*`` type.
2703Taking the address of the entry block is illegal.
2704
2705This value only has defined behavior when used as an operand to the
2706':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2707against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002708undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002709no label is equal to the null pointer. This may be passed around as an
2710opaque pointer sized value as long as the bits are not inspected. This
2711allows ``ptrtoint`` and arithmetic to be performed on these values so
2712long as the original value is reconstituted before the ``indirectbr``
2713instruction.
2714
2715Finally, some targets may provide defined semantics when using the value
2716as the operand to an inline assembly, but that is target specific.
2717
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002718.. _constantexprs:
2719
Sean Silvab084af42012-12-07 10:36:55 +00002720Constant Expressions
2721--------------------
2722
2723Constant expressions are used to allow expressions involving other
2724constants to be used as constants. Constant expressions may be of any
2725:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2726that does not have side effects (e.g. load and call are not supported).
2727The following is the syntax for constant expressions:
2728
2729``trunc (CST to TYPE)``
2730 Truncate a constant to another type. The bit size of CST must be
2731 larger than the bit size of TYPE. Both types must be integers.
2732``zext (CST to TYPE)``
2733 Zero extend a constant to another type. The bit size of CST must be
2734 smaller than the bit size of TYPE. Both types must be integers.
2735``sext (CST to TYPE)``
2736 Sign extend a constant to another type. The bit size of CST must be
2737 smaller than the bit size of TYPE. Both types must be integers.
2738``fptrunc (CST to TYPE)``
2739 Truncate a floating point constant to another floating point type.
2740 The size of CST must be larger than the size of TYPE. Both types
2741 must be floating point.
2742``fpext (CST to TYPE)``
2743 Floating point extend a constant to another type. The size of CST
2744 must be smaller or equal to the size of TYPE. Both types must be
2745 floating point.
2746``fptoui (CST to TYPE)``
2747 Convert a floating point constant to the corresponding unsigned
2748 integer constant. TYPE must be a scalar or vector integer type. CST
2749 must be of scalar or vector floating point type. Both CST and TYPE
2750 must be scalars, or vectors of the same number of elements. If the
2751 value won't fit in the integer type, the results are undefined.
2752``fptosi (CST to TYPE)``
2753 Convert a floating point constant to the corresponding signed
2754 integer constant. TYPE must be a scalar or vector integer type. CST
2755 must be of scalar or vector floating point type. Both CST and TYPE
2756 must be scalars, or vectors of the same number of elements. If the
2757 value won't fit in the integer type, the results are undefined.
2758``uitofp (CST to TYPE)``
2759 Convert an unsigned integer constant to the corresponding floating
2760 point constant. TYPE must be a scalar or vector floating point type.
2761 CST must be of scalar or vector integer type. Both CST and TYPE must
2762 be scalars, or vectors of the same number of elements. If the value
2763 won't fit in the floating point type, the results are undefined.
2764``sitofp (CST to TYPE)``
2765 Convert a signed integer constant to the corresponding floating
2766 point constant. TYPE must be a scalar or vector floating point type.
2767 CST must be of scalar or vector integer type. Both CST and TYPE must
2768 be scalars, or vectors of the same number of elements. If the value
2769 won't fit in the floating point type, the results are undefined.
2770``ptrtoint (CST to TYPE)``
2771 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002772 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002773 pointer type. The ``CST`` value is zero extended, truncated, or
2774 unchanged to make it fit in ``TYPE``.
2775``inttoptr (CST to TYPE)``
2776 Convert an integer constant to a pointer constant. TYPE must be a
2777 pointer type. CST must be of integer type. The CST value is zero
2778 extended, truncated, or unchanged to make it fit in a pointer size.
2779 This one is *really* dangerous!
2780``bitcast (CST to TYPE)``
2781 Convert a constant, CST, to another TYPE. The constraints of the
2782 operands are the same as those for the :ref:`bitcast
2783 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002784``addrspacecast (CST to TYPE)``
2785 Convert a constant pointer or constant vector of pointer, CST, to another
2786 TYPE in a different address space. The constraints of the operands are the
2787 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002788``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002789 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2790 constants. As with the :ref:`getelementptr <i_getelementptr>`
2791 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002792 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002793``select (COND, VAL1, VAL2)``
2794 Perform the :ref:`select operation <i_select>` on constants.
2795``icmp COND (VAL1, VAL2)``
2796 Performs the :ref:`icmp operation <i_icmp>` on constants.
2797``fcmp COND (VAL1, VAL2)``
2798 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2799``extractelement (VAL, IDX)``
2800 Perform the :ref:`extractelement operation <i_extractelement>` on
2801 constants.
2802``insertelement (VAL, ELT, IDX)``
2803 Perform the :ref:`insertelement operation <i_insertelement>` on
2804 constants.
2805``shufflevector (VEC1, VEC2, IDXMASK)``
2806 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2807 constants.
2808``extractvalue (VAL, IDX0, IDX1, ...)``
2809 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2810 constants. The index list is interpreted in a similar manner as
2811 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2812 least one index value must be specified.
2813``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2814 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2815 The index list is interpreted in a similar manner as indices in a
2816 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2817 value must be specified.
2818``OPCODE (LHS, RHS)``
2819 Perform the specified operation of the LHS and RHS constants. OPCODE
2820 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2821 binary <bitwiseops>` operations. The constraints on operands are
2822 the same as those for the corresponding instruction (e.g. no bitwise
2823 operations on floating point values are allowed).
2824
2825Other Values
2826============
2827
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002828.. _inlineasmexprs:
2829
Sean Silvab084af42012-12-07 10:36:55 +00002830Inline Assembler Expressions
2831----------------------------
2832
2833LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002834Inline Assembly <moduleasm>`) through the use of a special value. This value
2835represents the inline assembler as a template string (containing the
2836instructions to emit), a list of operand constraints (stored as a string), a
2837flag that indicates whether or not the inline asm expression has side effects,
2838and a flag indicating whether the function containing the asm needs to align its
2839stack conservatively.
2840
2841The template string supports argument substitution of the operands using "``$``"
2842followed by a number, to indicate substitution of the given register/memory
2843location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2844be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2845operand (See :ref:`inline-asm-modifiers`).
2846
2847A literal "``$``" may be included by using "``$$``" in the template. To include
2848other special characters into the output, the usual "``\XX``" escapes may be
2849used, just as in other strings. Note that after template substitution, the
2850resulting assembly string is parsed by LLVM's integrated assembler unless it is
2851disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2852syntax known to LLVM.
2853
2854LLVM's support for inline asm is modeled closely on the requirements of Clang's
2855GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2856modifier codes listed here are similar or identical to those in GCC's inline asm
2857support. However, to be clear, the syntax of the template and constraint strings
2858described here is *not* the same as the syntax accepted by GCC and Clang, and,
2859while most constraint letters are passed through as-is by Clang, some get
2860translated to other codes when converting from the C source to the LLVM
2861assembly.
2862
2863An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002864
2865.. code-block:: llvm
2866
2867 i32 (i32) asm "bswap $0", "=r,r"
2868
2869Inline assembler expressions may **only** be used as the callee operand
2870of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2871Thus, typically we have:
2872
2873.. code-block:: llvm
2874
2875 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2876
2877Inline asms with side effects not visible in the constraint list must be
2878marked as having side effects. This is done through the use of the
2879'``sideeffect``' keyword, like so:
2880
2881.. code-block:: llvm
2882
2883 call void asm sideeffect "eieio", ""()
2884
2885In some cases inline asms will contain code that will not work unless
2886the stack is aligned in some way, such as calls or SSE instructions on
2887x86, yet will not contain code that does that alignment within the asm.
2888The compiler should make conservative assumptions about what the asm
2889might contain and should generate its usual stack alignment code in the
2890prologue if the '``alignstack``' keyword is present:
2891
2892.. code-block:: llvm
2893
2894 call void asm alignstack "eieio", ""()
2895
2896Inline asms also support using non-standard assembly dialects. The
2897assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2898the inline asm is using the Intel dialect. Currently, ATT and Intel are
2899the only supported dialects. An example is:
2900
2901.. code-block:: llvm
2902
2903 call void asm inteldialect "eieio", ""()
2904
2905If multiple keywords appear the '``sideeffect``' keyword must come
2906first, the '``alignstack``' keyword second and the '``inteldialect``'
2907keyword last.
2908
James Y Knightbc832ed2015-07-08 18:08:36 +00002909Inline Asm Constraint String
2910^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2911
2912The constraint list is a comma-separated string, each element containing one or
2913more constraint codes.
2914
2915For each element in the constraint list an appropriate register or memory
2916operand will be chosen, and it will be made available to assembly template
2917string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2918second, etc.
2919
2920There are three different types of constraints, which are distinguished by a
2921prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2922constraints must always be given in that order: outputs first, then inputs, then
2923clobbers. They cannot be intermingled.
2924
2925There are also three different categories of constraint codes:
2926
2927- Register constraint. This is either a register class, or a fixed physical
2928 register. This kind of constraint will allocate a register, and if necessary,
2929 bitcast the argument or result to the appropriate type.
2930- Memory constraint. This kind of constraint is for use with an instruction
2931 taking a memory operand. Different constraints allow for different addressing
2932 modes used by the target.
2933- Immediate value constraint. This kind of constraint is for an integer or other
2934 immediate value which can be rendered directly into an instruction. The
2935 various target-specific constraints allow the selection of a value in the
2936 proper range for the instruction you wish to use it with.
2937
2938Output constraints
2939""""""""""""""""""
2940
2941Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2942indicates that the assembly will write to this operand, and the operand will
2943then be made available as a return value of the ``asm`` expression. Output
2944constraints do not consume an argument from the call instruction. (Except, see
2945below about indirect outputs).
2946
2947Normally, it is expected that no output locations are written to by the assembly
2948expression until *all* of the inputs have been read. As such, LLVM may assign
2949the same register to an output and an input. If this is not safe (e.g. if the
2950assembly contains two instructions, where the first writes to one output, and
2951the second reads an input and writes to a second output), then the "``&``"
2952modifier must be used (e.g. "``=&r``") to specify that the output is an
2953"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2954will not use the same register for any inputs (other than an input tied to this
2955output).
2956
2957Input constraints
2958"""""""""""""""""
2959
2960Input constraints do not have a prefix -- just the constraint codes. Each input
2961constraint will consume one argument from the call instruction. It is not
2962permitted for the asm to write to any input register or memory location (unless
2963that input is tied to an output). Note also that multiple inputs may all be
2964assigned to the same register, if LLVM can determine that they necessarily all
2965contain the same value.
2966
2967Instead of providing a Constraint Code, input constraints may also "tie"
2968themselves to an output constraint, by providing an integer as the constraint
2969string. Tied inputs still consume an argument from the call instruction, and
2970take up a position in the asm template numbering as is usual -- they will simply
2971be constrained to always use the same register as the output they've been tied
2972to. For example, a constraint string of "``=r,0``" says to assign a register for
2973output, and use that register as an input as well (it being the 0'th
2974constraint).
2975
2976It is permitted to tie an input to an "early-clobber" output. In that case, no
2977*other* input may share the same register as the input tied to the early-clobber
2978(even when the other input has the same value).
2979
2980You may only tie an input to an output which has a register constraint, not a
2981memory constraint. Only a single input may be tied to an output.
2982
2983There is also an "interesting" feature which deserves a bit of explanation: if a
2984register class constraint allocates a register which is too small for the value
2985type operand provided as input, the input value will be split into multiple
2986registers, and all of them passed to the inline asm.
2987
2988However, this feature is often not as useful as you might think.
2989
2990Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2991architectures that have instructions which operate on multiple consecutive
2992instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2993SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2994hardware then loads into both the named register, and the next register. This
2995feature of inline asm would not be useful to support that.)
2996
2997A few of the targets provide a template string modifier allowing explicit access
2998to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2999``D``). On such an architecture, you can actually access the second allocated
3000register (yet, still, not any subsequent ones). But, in that case, you're still
3001probably better off simply splitting the value into two separate operands, for
3002clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3003despite existing only for use with this feature, is not really a good idea to
3004use)
3005
3006Indirect inputs and outputs
3007"""""""""""""""""""""""""""
3008
3009Indirect output or input constraints can be specified by the "``*``" modifier
3010(which goes after the "``=``" in case of an output). This indicates that the asm
3011will write to or read from the contents of an *address* provided as an input
3012argument. (Note that in this way, indirect outputs act more like an *input* than
3013an output: just like an input, they consume an argument of the call expression,
3014rather than producing a return value. An indirect output constraint is an
3015"output" only in that the asm is expected to write to the contents of the input
3016memory location, instead of just read from it).
3017
3018This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3019address of a variable as a value.
3020
3021It is also possible to use an indirect *register* constraint, but only on output
3022(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3023value normally, and then, separately emit a store to the address provided as
3024input, after the provided inline asm. (It's not clear what value this
3025functionality provides, compared to writing the store explicitly after the asm
3026statement, and it can only produce worse code, since it bypasses many
3027optimization passes. I would recommend not using it.)
3028
3029
3030Clobber constraints
3031"""""""""""""""""""
3032
3033A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3034consume an input operand, nor generate an output. Clobbers cannot use any of the
3035general constraint code letters -- they may use only explicit register
3036constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3037"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3038memory locations -- not only the memory pointed to by a declared indirect
3039output.
3040
3041
3042Constraint Codes
3043""""""""""""""""
3044After a potential prefix comes constraint code, or codes.
3045
3046A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3047followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3048(e.g. "``{eax}``").
3049
3050The one and two letter constraint codes are typically chosen to be the same as
3051GCC's constraint codes.
3052
3053A single constraint may include one or more than constraint code in it, leaving
3054it up to LLVM to choose which one to use. This is included mainly for
3055compatibility with the translation of GCC inline asm coming from clang.
3056
3057There are two ways to specify alternatives, and either or both may be used in an
3058inline asm constraint list:
3059
30601) Append the codes to each other, making a constraint code set. E.g. "``im``"
3061 or "``{eax}m``". This means "choose any of the options in the set". The
3062 choice of constraint is made independently for each constraint in the
3063 constraint list.
3064
30652) Use "``|``" between constraint code sets, creating alternatives. Every
3066 constraint in the constraint list must have the same number of alternative
3067 sets. With this syntax, the same alternative in *all* of the items in the
3068 constraint list will be chosen together.
3069
3070Putting those together, you might have a two operand constraint string like
3071``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3072operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3073may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3074
3075However, the use of either of the alternatives features is *NOT* recommended, as
3076LLVM is not able to make an intelligent choice about which one to use. (At the
3077point it currently needs to choose, not enough information is available to do so
3078in a smart way.) Thus, it simply tries to make a choice that's most likely to
3079compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3080always choose to use memory, not registers). And, if given multiple registers,
3081or multiple register classes, it will simply choose the first one. (In fact, it
3082doesn't currently even ensure explicitly specified physical registers are
3083unique, so specifying multiple physical registers as alternatives, like
3084``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3085intended.)
3086
3087Supported Constraint Code List
3088""""""""""""""""""""""""""""""
3089
3090The constraint codes are, in general, expected to behave the same way they do in
3091GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3092inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3093and GCC likely indicates a bug in LLVM.
3094
3095Some constraint codes are typically supported by all targets:
3096
3097- ``r``: A register in the target's general purpose register class.
3098- ``m``: A memory address operand. It is target-specific what addressing modes
3099 are supported, typical examples are register, or register + register offset,
3100 or register + immediate offset (of some target-specific size).
3101- ``i``: An integer constant (of target-specific width). Allows either a simple
3102 immediate, or a relocatable value.
3103- ``n``: An integer constant -- *not* including relocatable values.
3104- ``s``: An integer constant, but allowing *only* relocatable values.
3105- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3106 useful to pass a label for an asm branch or call.
3107
3108 .. FIXME: but that surely isn't actually okay to jump out of an asm
3109 block without telling llvm about the control transfer???)
3110
3111- ``{register-name}``: Requires exactly the named physical register.
3112
3113Other constraints are target-specific:
3114
3115AArch64:
3116
3117- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3118- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3119 i.e. 0 to 4095 with optional shift by 12.
3120- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3121 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3122- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3123 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3124- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3125 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3126- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3127 32-bit register. This is a superset of ``K``: in addition to the bitmask
3128 immediate, also allows immediate integers which can be loaded with a single
3129 ``MOVZ`` or ``MOVL`` instruction.
3130- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3131 64-bit register. This is a superset of ``L``.
3132- ``Q``: Memory address operand must be in a single register (no
3133 offsets). (However, LLVM currently does this for the ``m`` constraint as
3134 well.)
3135- ``r``: A 32 or 64-bit integer register (W* or X*).
3136- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3137- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3138
3139AMDGPU:
3140
3141- ``r``: A 32 or 64-bit integer register.
3142- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3143- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3144
3145
3146All ARM modes:
3147
3148- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3149 operand. Treated the same as operand ``m``, at the moment.
3150
3151ARM and ARM's Thumb2 mode:
3152
3153- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3154- ``I``: An immediate integer valid for a data-processing instruction.
3155- ``J``: An immediate integer between -4095 and 4095.
3156- ``K``: An immediate integer whose bitwise inverse is valid for a
3157 data-processing instruction. (Can be used with template modifier "``B``" to
3158 print the inverted value).
3159- ``L``: An immediate integer whose negation is valid for a data-processing
3160 instruction. (Can be used with template modifier "``n``" to print the negated
3161 value).
3162- ``M``: A power of two or a integer between 0 and 32.
3163- ``N``: Invalid immediate constraint.
3164- ``O``: Invalid immediate constraint.
3165- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3166- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3167 as ``r``.
3168- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3169 invalid.
3170- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3171 ``d0-d31``, or ``q0-q15``.
3172- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3173 ``d0-d7``, or ``q0-q3``.
3174- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3175 ``s0-s31``.
3176
3177ARM's Thumb1 mode:
3178
3179- ``I``: An immediate integer between 0 and 255.
3180- ``J``: An immediate integer between -255 and -1.
3181- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3182 some amount.
3183- ``L``: An immediate integer between -7 and 7.
3184- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3185- ``N``: An immediate integer between 0 and 31.
3186- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3187- ``r``: A low 32-bit GPR register (``r0-r7``).
3188- ``l``: A low 32-bit GPR register (``r0-r7``).
3189- ``h``: A high GPR register (``r0-r7``).
3190- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3191 ``d0-d31``, or ``q0-q15``.
3192- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3193 ``d0-d7``, or ``q0-q3``.
3194- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3195 ``s0-s31``.
3196
3197
3198Hexagon:
3199
3200- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3201 at the moment.
3202- ``r``: A 32 or 64-bit register.
3203
3204MSP430:
3205
3206- ``r``: An 8 or 16-bit register.
3207
3208MIPS:
3209
3210- ``I``: An immediate signed 16-bit integer.
3211- ``J``: An immediate integer zero.
3212- ``K``: An immediate unsigned 16-bit integer.
3213- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3214- ``N``: An immediate integer between -65535 and -1.
3215- ``O``: An immediate signed 15-bit integer.
3216- ``P``: An immediate integer between 1 and 65535.
3217- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3218 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3219- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3220 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3221 ``m``.
3222- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3223 ``sc`` instruction on the given subtarget (details vary).
3224- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3225- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003226 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3227 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003228- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3229 ``25``).
3230- ``l``: The ``lo`` register, 32 or 64-bit.
3231- ``x``: Invalid.
3232
3233NVPTX:
3234
3235- ``b``: A 1-bit integer register.
3236- ``c`` or ``h``: A 16-bit integer register.
3237- ``r``: A 32-bit integer register.
3238- ``l`` or ``N``: A 64-bit integer register.
3239- ``f``: A 32-bit float register.
3240- ``d``: A 64-bit float register.
3241
3242
3243PowerPC:
3244
3245- ``I``: An immediate signed 16-bit integer.
3246- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3247- ``K``: An immediate unsigned 16-bit integer.
3248- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3249- ``M``: An immediate integer greater than 31.
3250- ``N``: An immediate integer that is an exact power of 2.
3251- ``O``: The immediate integer constant 0.
3252- ``P``: An immediate integer constant whose negation is a signed 16-bit
3253 constant.
3254- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3255 treated the same as ``m``.
3256- ``r``: A 32 or 64-bit integer register.
3257- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3258 ``R1-R31``).
3259- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3260 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3261- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3262 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3263 altivec vector register (``V0-V31``).
3264
3265 .. FIXME: is this a bug that v accepts QPX registers? I think this
3266 is supposed to only use the altivec vector registers?
3267
3268- ``y``: Condition register (``CR0-CR7``).
3269- ``wc``: An individual CR bit in a CR register.
3270- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3271 register set (overlapping both the floating-point and vector register files).
3272- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3273 set.
3274
3275Sparc:
3276
3277- ``I``: An immediate 13-bit signed integer.
3278- ``r``: A 32-bit integer register.
3279
3280SystemZ:
3281
3282- ``I``: An immediate unsigned 8-bit integer.
3283- ``J``: An immediate unsigned 12-bit integer.
3284- ``K``: An immediate signed 16-bit integer.
3285- ``L``: An immediate signed 20-bit integer.
3286- ``M``: An immediate integer 0x7fffffff.
3287- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3288 ``m``, at the moment.
3289- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3290- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3291 address context evaluates as zero).
3292- ``h``: A 32-bit value in the high part of a 64bit data register
3293 (LLVM-specific)
3294- ``f``: A 32, 64, or 128-bit floating point register.
3295
3296X86:
3297
3298- ``I``: An immediate integer between 0 and 31.
3299- ``J``: An immediate integer between 0 and 64.
3300- ``K``: An immediate signed 8-bit integer.
3301- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3302 0xffffffff.
3303- ``M``: An immediate integer between 0 and 3.
3304- ``N``: An immediate unsigned 8-bit integer.
3305- ``O``: An immediate integer between 0 and 127.
3306- ``e``: An immediate 32-bit signed integer.
3307- ``Z``: An immediate 32-bit unsigned integer.
3308- ``o``, ``v``: Treated the same as ``m``, at the moment.
3309- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3310 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3311 registers, and on X86-64, it is all of the integer registers.
3312- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3313 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3314- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3315- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3316 existed since i386, and can be accessed without the REX prefix.
3317- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3318- ``y``: A 64-bit MMX register, if MMX is enabled.
3319- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3320 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3321 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3322 512-bit vector operand in an AVX512 register, Otherwise, an error.
3323- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3324- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3325 32-bit mode, a 64-bit integer operand will get split into two registers). It
3326 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3327 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3328 you're better off splitting it yourself, before passing it to the asm
3329 statement.
3330
3331XCore:
3332
3333- ``r``: A 32-bit integer register.
3334
3335
3336.. _inline-asm-modifiers:
3337
3338Asm template argument modifiers
3339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3340
3341In the asm template string, modifiers can be used on the operand reference, like
3342"``${0:n}``".
3343
3344The modifiers are, in general, expected to behave the same way they do in
3345GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3346inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3347and GCC likely indicates a bug in LLVM.
3348
3349Target-independent:
3350
Sean Silvaa1190322015-08-06 22:56:48 +00003351- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003352 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3353- ``n``: Negate and print immediate integer constant unadorned, without the
3354 target-specific immediate punctuation (e.g. no ``$`` prefix).
3355- ``l``: Print as an unadorned label, without the target-specific label
3356 punctuation (e.g. no ``$`` prefix).
3357
3358AArch64:
3359
3360- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3361 instead of ``x30``, print ``w30``.
3362- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3363- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3364 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3365 ``v*``.
3366
3367AMDGPU:
3368
3369- ``r``: No effect.
3370
3371ARM:
3372
3373- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3374 register).
3375- ``P``: No effect.
3376- ``q``: No effect.
3377- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3378 as ``d4[1]`` instead of ``s9``)
3379- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3380 prefix.
3381- ``L``: Print the low 16-bits of an immediate integer constant.
3382- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3383 register operands subsequent to the specified one (!), so use carefully.
3384- ``Q``: Print the low-order register of a register-pair, or the low-order
3385 register of a two-register operand.
3386- ``R``: Print the high-order register of a register-pair, or the high-order
3387 register of a two-register operand.
3388- ``H``: Print the second register of a register-pair. (On a big-endian system,
3389 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3390 to ``R``.)
3391
3392 .. FIXME: H doesn't currently support printing the second register
3393 of a two-register operand.
3394
3395- ``e``: Print the low doubleword register of a NEON quad register.
3396- ``f``: Print the high doubleword register of a NEON quad register.
3397- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3398 adornment.
3399
3400Hexagon:
3401
3402- ``L``: Print the second register of a two-register operand. Requires that it
3403 has been allocated consecutively to the first.
3404
3405 .. FIXME: why is it restricted to consecutive ones? And there's
3406 nothing that ensures that happens, is there?
3407
3408- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3409 nothing. Used to print 'addi' vs 'add' instructions.
3410
3411MSP430:
3412
3413No additional modifiers.
3414
3415MIPS:
3416
3417- ``X``: Print an immediate integer as hexadecimal
3418- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3419- ``d``: Print an immediate integer as decimal.
3420- ``m``: Subtract one and print an immediate integer as decimal.
3421- ``z``: Print $0 if an immediate zero, otherwise print normally.
3422- ``L``: Print the low-order register of a two-register operand, or prints the
3423 address of the low-order word of a double-word memory operand.
3424
3425 .. FIXME: L seems to be missing memory operand support.
3426
3427- ``M``: Print the high-order register of a two-register operand, or prints the
3428 address of the high-order word of a double-word memory operand.
3429
3430 .. FIXME: M seems to be missing memory operand support.
3431
3432- ``D``: Print the second register of a two-register operand, or prints the
3433 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3434 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3435 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003436- ``w``: No effect. Provided for compatibility with GCC which requires this
3437 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3438 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003439
3440NVPTX:
3441
3442- ``r``: No effect.
3443
3444PowerPC:
3445
3446- ``L``: Print the second register of a two-register operand. Requires that it
3447 has been allocated consecutively to the first.
3448
3449 .. FIXME: why is it restricted to consecutive ones? And there's
3450 nothing that ensures that happens, is there?
3451
3452- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3453 nothing. Used to print 'addi' vs 'add' instructions.
3454- ``y``: For a memory operand, prints formatter for a two-register X-form
3455 instruction. (Currently always prints ``r0,OPERAND``).
3456- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3457 otherwise. (NOTE: LLVM does not support update form, so this will currently
3458 always print nothing)
3459- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3460 not support indexed form, so this will currently always print nothing)
3461
3462Sparc:
3463
3464- ``r``: No effect.
3465
3466SystemZ:
3467
3468SystemZ implements only ``n``, and does *not* support any of the other
3469target-independent modifiers.
3470
3471X86:
3472
3473- ``c``: Print an unadorned integer or symbol name. (The latter is
3474 target-specific behavior for this typically target-independent modifier).
3475- ``A``: Print a register name with a '``*``' before it.
3476- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3477 operand.
3478- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3479 memory operand.
3480- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3481 operand.
3482- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3483 operand.
3484- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3485 available, otherwise the 32-bit register name; do nothing on a memory operand.
3486- ``n``: Negate and print an unadorned integer, or, for operands other than an
3487 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3488 the operand. (The behavior for relocatable symbol expressions is a
3489 target-specific behavior for this typically target-independent modifier)
3490- ``H``: Print a memory reference with additional offset +8.
3491- ``P``: Print a memory reference or operand for use as the argument of a call
3492 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3493
3494XCore:
3495
3496No additional modifiers.
3497
3498
Sean Silvab084af42012-12-07 10:36:55 +00003499Inline Asm Metadata
3500^^^^^^^^^^^^^^^^^^^
3501
3502The call instructions that wrap inline asm nodes may have a
3503"``!srcloc``" MDNode attached to it that contains a list of constant
3504integers. If present, the code generator will use the integer as the
3505location cookie value when report errors through the ``LLVMContext``
3506error reporting mechanisms. This allows a front-end to correlate backend
3507errors that occur with inline asm back to the source code that produced
3508it. For example:
3509
3510.. code-block:: llvm
3511
3512 call void asm sideeffect "something bad", ""(), !srcloc !42
3513 ...
3514 !42 = !{ i32 1234567 }
3515
3516It is up to the front-end to make sense of the magic numbers it places
3517in the IR. If the MDNode contains multiple constants, the code generator
3518will use the one that corresponds to the line of the asm that the error
3519occurs on.
3520
3521.. _metadata:
3522
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003523Metadata
3524========
Sean Silvab084af42012-12-07 10:36:55 +00003525
3526LLVM IR allows metadata to be attached to instructions in the program
3527that can convey extra information about the code to the optimizers and
3528code generator. One example application of metadata is source-level
3529debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003530
Sean Silvaa1190322015-08-06 22:56:48 +00003531Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003532``call`` instruction, it uses the ``metadata`` type.
3533
3534All metadata are identified in syntax by a exclamation point ('``!``').
3535
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003536.. _metadata-string:
3537
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003538Metadata Nodes and Metadata Strings
3539-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003540
3541A metadata string is a string surrounded by double quotes. It can
3542contain any character by escaping non-printable characters with
3543"``\xx``" where "``xx``" is the two digit hex code. For example:
3544"``!"test\00"``".
3545
3546Metadata nodes are represented with notation similar to structure
3547constants (a comma separated list of elements, surrounded by braces and
3548preceded by an exclamation point). Metadata nodes can have any values as
3549their operand. For example:
3550
3551.. code-block:: llvm
3552
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003553 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003554
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003555Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3556
3557.. code-block:: llvm
3558
3559 !0 = distinct !{!"test\00", i32 10}
3560
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003561``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003562content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003563when metadata operands change.
3564
Sean Silvab084af42012-12-07 10:36:55 +00003565A :ref:`named metadata <namedmetadatastructure>` is a collection of
3566metadata nodes, which can be looked up in the module symbol table. For
3567example:
3568
3569.. code-block:: llvm
3570
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003571 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003572
3573Metadata can be used as function arguments. Here ``llvm.dbg.value``
3574function is using two metadata arguments:
3575
3576.. code-block:: llvm
3577
3578 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3579
3580Metadata can be attached with an instruction. Here metadata ``!21`` is
3581attached to the ``add`` instruction using the ``!dbg`` identifier:
3582
3583.. code-block:: llvm
3584
3585 %indvar.next = add i64 %indvar, 1, !dbg !21
3586
3587More information about specific metadata nodes recognized by the
3588optimizers and code generator is found below.
3589
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003590.. _specialized-metadata:
3591
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003592Specialized Metadata Nodes
3593^^^^^^^^^^^^^^^^^^^^^^^^^^
3594
3595Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003596to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003597order.
3598
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003599These aren't inherently debug info centric, but currently all the specialized
3600metadata nodes are related to debug info.
3601
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003602.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003603
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003604DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003605"""""""""""""
3606
Sean Silvaa1190322015-08-06 22:56:48 +00003607``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003608``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3609tuples containing the debug info to be emitted along with the compile unit,
3610regardless of code optimizations (some nodes are only emitted if there are
3611references to them from instructions).
3612
3613.. code-block:: llvm
3614
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003615 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003616 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3617 splitDebugFilename: "abc.debug", emissionKind: 1,
3618 enums: !2, retainedTypes: !3, subprograms: !4,
3619 globals: !5, imports: !6)
3620
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003621Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003622specific compilation unit. File descriptors are defined using this scope.
3623These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003624keep track of subprograms, global variables, type information, and imported
3625entities (declarations and namespaces).
3626
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003627.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003628
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003629DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003630""""""
3631
Sean Silvaa1190322015-08-06 22:56:48 +00003632``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003633
3634.. code-block:: llvm
3635
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003636 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003637
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003638Files are sometimes used in ``scope:`` fields, and are the only valid target
3639for ``file:`` fields.
3640
Michael Kuperstein605308a2015-05-14 10:58:59 +00003641.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003642
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003643DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003644"""""""""""
3645
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003646``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003647``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003648
3649.. code-block:: llvm
3650
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003651 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003652 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003653 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003654
Sean Silvaa1190322015-08-06 22:56:48 +00003655The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003656following:
3657
3658.. code-block:: llvm
3659
3660 DW_ATE_address = 1
3661 DW_ATE_boolean = 2
3662 DW_ATE_float = 4
3663 DW_ATE_signed = 5
3664 DW_ATE_signed_char = 6
3665 DW_ATE_unsigned = 7
3666 DW_ATE_unsigned_char = 8
3667
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003668.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003669
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003670DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003671""""""""""""""""
3672
Sean Silvaa1190322015-08-06 22:56:48 +00003673``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003674refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003675types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003676represents a function with no return value (such as ``void foo() {}`` in C++).
3677
3678.. code-block:: llvm
3679
3680 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3681 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003682 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003683
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003684.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003685
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003686DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003687"""""""""""""
3688
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003689``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003690qualified types.
3691
3692.. code-block:: llvm
3693
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003694 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003695 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003696 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003697 align: 32)
3698
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003699The following ``tag:`` values are valid:
3700
3701.. code-block:: llvm
3702
3703 DW_TAG_formal_parameter = 5
3704 DW_TAG_member = 13
3705 DW_TAG_pointer_type = 15
3706 DW_TAG_reference_type = 16
3707 DW_TAG_typedef = 22
3708 DW_TAG_ptr_to_member_type = 31
3709 DW_TAG_const_type = 38
3710 DW_TAG_volatile_type = 53
3711 DW_TAG_restrict_type = 55
3712
3713``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003714<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3715is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003716``DW_TAG_formal_parameter`` is used to define a member which is a formal
3717argument of a subprogram.
3718
3719``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3720
3721``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3722``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3723``baseType:``.
3724
3725Note that the ``void *`` type is expressed as a type derived from NULL.
3726
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003727.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003728
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003729DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003730"""""""""""""""
3731
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003732``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003733structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003734
3735If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003736identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003737can refer to composite types indirectly via a :ref:`metadata string
3738<metadata-string>` that matches their identifier.
3739
3740.. code-block:: llvm
3741
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003742 !0 = !DIEnumerator(name: "SixKind", value: 7)
3743 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3744 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3745 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003746 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3747 elements: !{!0, !1, !2})
3748
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003749The following ``tag:`` values are valid:
3750
3751.. code-block:: llvm
3752
3753 DW_TAG_array_type = 1
3754 DW_TAG_class_type = 2
3755 DW_TAG_enumeration_type = 4
3756 DW_TAG_structure_type = 19
3757 DW_TAG_union_type = 23
3758 DW_TAG_subroutine_type = 21
3759 DW_TAG_inheritance = 28
3760
3761
3762For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003763descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003764level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003765array type is a native packed vector.
3766
3767For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003768descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003769value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003770``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003771
3772For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3773``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003774<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003775
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003776.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003777
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003778DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003779""""""""""
3780
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003781``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003782:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783
3784.. code-block:: llvm
3785
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003786 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3787 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3788 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003790.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003793""""""""""""
3794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3796variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003797
3798.. code-block:: llvm
3799
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003800 !0 = !DIEnumerator(name: "SixKind", value: 7)
3801 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3802 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003803
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003804DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003805"""""""""""""""""""""""
3806
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003807``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003808language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003809:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003810
3811.. code-block:: llvm
3812
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003813 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003814
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003816""""""""""""""""""""""""
3817
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003818``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003819language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003820but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003821``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003822:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823
3824.. code-block:: llvm
3825
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003826 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003828DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003829"""""""""""
3830
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003831``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832
3833.. code-block:: llvm
3834
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003835 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003836
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003838""""""""""""""""
3839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841
3842.. code-block:: llvm
3843
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003844 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003845 file: !2, line: 7, type: !3, isLocal: true,
3846 isDefinition: false, variable: i32* @foo,
3847 declaration: !4)
3848
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003849All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003850:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003851
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855""""""""""""
3856
Sean Silvaa1190322015-08-06 22:56:48 +00003857``DISubprogram`` nodes represent functions from the source language. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Sean Silvaa1190322015-08-06 22:56:48 +00003859retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
3862.. code-block:: llvm
3863
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003864 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865 file: !2, line: 7, type: !3, isLocal: true,
3866 isDefinition: false, scopeLine: 8, containingType: !4,
3867 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3868 flags: DIFlagPrototyped, isOptimized: true,
3869 function: void ()* @_Z3foov,
3870 templateParams: !5, declaration: !6, variables: !7)
3871
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003872.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003875""""""""""""""
3876
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003877``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Sean Silvaa1190322015-08-06 22:56:48 +00003878<DISubprogram>`. The line number and column numbers are used to dinstinguish
3879two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003880fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881
3882.. code-block:: llvm
3883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003885
3886Usually lexical blocks are ``distinct`` to prevent node merging based on
3887operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003891DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892""""""""""""""""""
3893
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003895:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896indicate textual inclusion, or the ``discriminator:`` field can be used to
3897discriminate between control flow within a single block in the source language.
3898
3899.. code-block:: llvm
3900
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3902 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3903 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904
Michael Kuperstein605308a2015-05-14 10:58:59 +00003905.. _DILocation:
3906
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003907DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003908""""""""""
3909
Sean Silvaa1190322015-08-06 22:56:48 +00003910``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003911mandatory, and points at an :ref:`DILexicalBlockFile`, an
3912:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003913
3914.. code-block:: llvm
3915
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003917
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003918.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921"""""""""""""""
3922
Sean Silvaa1190322015-08-06 22:56:48 +00003923``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003924the ``arg:`` field is set to non-zero, then this variable is a subprogram
3925parameter, and it will be included in the ``variables:`` field of its
3926:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003927
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928.. code-block:: llvm
3929
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003930 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
3931 type: !3, flags: DIFlagArtificial)
3932 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
3933 type: !3)
3934 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937""""""""""""
3938
Sean Silvaa1190322015-08-06 22:56:48 +00003939``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3941describe how the referenced LLVM variable relates to the source language
3942variable.
3943
3944The current supported vocabulary is limited:
3945
3946- ``DW_OP_deref`` dereferences the working expression.
3947- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3948- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3949 here, respectively) of the variable piece from the working expression.
3950
3951.. code-block:: llvm
3952
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953 !0 = !DIExpression(DW_OP_deref)
3954 !1 = !DIExpression(DW_OP_plus, 3)
3955 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3956 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003959""""""""""""""
3960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962
3963.. code-block:: llvm
3964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966 getter: "getFoo", attributes: 7, type: !2)
3967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969""""""""""""""""
3970
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003971``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972compile unit.
3973
3974.. code-block:: llvm
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977 entity: !1, line: 7)
3978
Sean Silvab084af42012-12-07 10:36:55 +00003979'``tbaa``' Metadata
3980^^^^^^^^^^^^^^^^^^^
3981
3982In LLVM IR, memory does not have types, so LLVM's own type system is not
3983suitable for doing TBAA. Instead, metadata is added to the IR to
3984describe a type system of a higher level language. This can be used to
3985implement typical C/C++ TBAA, but it can also be used to implement
3986custom alias analysis behavior for other languages.
3987
3988The current metadata format is very simple. TBAA metadata nodes have up
3989to three fields, e.g.:
3990
3991.. code-block:: llvm
3992
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003993 !0 = !{ !"an example type tree" }
3994 !1 = !{ !"int", !0 }
3995 !2 = !{ !"float", !0 }
3996 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003997
3998The first field is an identity field. It can be any value, usually a
3999metadata string, which uniquely identifies the type. The most important
4000name in the tree is the name of the root node. Two trees with different
4001root node names are entirely disjoint, even if they have leaves with
4002common names.
4003
4004The second field identifies the type's parent node in the tree, or is
4005null or omitted for a root node. A type is considered to alias all of
4006its descendants and all of its ancestors in the tree. Also, a type is
4007considered to alias all types in other trees, so that bitcode produced
4008from multiple front-ends is handled conservatively.
4009
4010If the third field is present, it's an integer which if equal to 1
4011indicates that the type is "constant" (meaning
4012``pointsToConstantMemory`` should return true; see `other useful
4013AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4014
4015'``tbaa.struct``' Metadata
4016^^^^^^^^^^^^^^^^^^^^^^^^^^
4017
4018The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4019aggregate assignment operations in C and similar languages, however it
4020is defined to copy a contiguous region of memory, which is more than
4021strictly necessary for aggregate types which contain holes due to
4022padding. Also, it doesn't contain any TBAA information about the fields
4023of the aggregate.
4024
4025``!tbaa.struct`` metadata can describe which memory subregions in a
4026memcpy are padding and what the TBAA tags of the struct are.
4027
4028The current metadata format is very simple. ``!tbaa.struct`` metadata
4029nodes are a list of operands which are in conceptual groups of three.
4030For each group of three, the first operand gives the byte offset of a
4031field in bytes, the second gives its size in bytes, and the third gives
4032its tbaa tag. e.g.:
4033
4034.. code-block:: llvm
4035
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004036 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004037
4038This describes a struct with two fields. The first is at offset 0 bytes
4039with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4040and has size 4 bytes and has tbaa tag !2.
4041
4042Note that the fields need not be contiguous. In this example, there is a
40434 byte gap between the two fields. This gap represents padding which
4044does not carry useful data and need not be preserved.
4045
Hal Finkel94146652014-07-24 14:25:39 +00004046'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004048
4049``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4050noalias memory-access sets. This means that some collection of memory access
4051instructions (loads, stores, memory-accessing calls, etc.) that carry
4052``noalias`` metadata can specifically be specified not to alias with some other
4053collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004054Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004055a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004056of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004057subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004058instruction's ``noalias`` list, then the two memory accesses are assumed not to
4059alias.
Hal Finkel94146652014-07-24 14:25:39 +00004060
Hal Finkel029cde62014-07-25 15:50:02 +00004061The metadata identifying each domain is itself a list containing one or two
4062entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00004063string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004064self-reference can be used to create globally unique domain names. A
4065descriptive string may optionally be provided as a second list entry.
4066
4067The metadata identifying each scope is also itself a list containing two or
4068three entries. The first entry is the name of the scope. Note that if the name
4069is a string then it can be combined accross functions and translation units. A
4070self-reference can be used to create globally unique scope names. A metadata
4071reference to the scope's domain is the second entry. A descriptive string may
4072optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004073
4074For example,
4075
4076.. code-block:: llvm
4077
Hal Finkel029cde62014-07-25 15:50:02 +00004078 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004079 !0 = !{!0}
4080 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004081
Hal Finkel029cde62014-07-25 15:50:02 +00004082 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004083 !2 = !{!2, !0}
4084 !3 = !{!3, !0}
4085 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004086
Hal Finkel029cde62014-07-25 15:50:02 +00004087 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004088 !5 = !{!4} ; A list containing only scope !4
4089 !6 = !{!4, !3, !2}
4090 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004091
4092 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004093 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004094 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004095
Hal Finkel029cde62014-07-25 15:50:02 +00004096 ; These two instructions also don't alias (for domain !1, the set of scopes
4097 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004098 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004099 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004100
Adam Nemet0a8416f2015-05-11 08:30:28 +00004101 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004102 ; the !noalias list is not a superset of, or equal to, the scopes in the
4103 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004104 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004105 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004106
Sean Silvab084af42012-12-07 10:36:55 +00004107'``fpmath``' Metadata
4108^^^^^^^^^^^^^^^^^^^^^
4109
4110``fpmath`` metadata may be attached to any instruction of floating point
4111type. It can be used to express the maximum acceptable error in the
4112result of that instruction, in ULPs, thus potentially allowing the
4113compiler to use a more efficient but less accurate method of computing
4114it. ULP is defined as follows:
4115
4116 If ``x`` is a real number that lies between two finite consecutive
4117 floating-point numbers ``a`` and ``b``, without being equal to one
4118 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4119 distance between the two non-equal finite floating-point numbers
4120 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4121
4122The metadata node shall consist of a single positive floating point
4123number representing the maximum relative error, for example:
4124
4125.. code-block:: llvm
4126
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004127 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004128
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004129.. _range-metadata:
4130
Sean Silvab084af42012-12-07 10:36:55 +00004131'``range``' Metadata
4132^^^^^^^^^^^^^^^^^^^^
4133
Jingyue Wu37fcb592014-06-19 16:50:16 +00004134``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4135integer types. It expresses the possible ranges the loaded value or the value
4136returned by the called function at this call site is in. The ranges are
4137represented with a flattened list of integers. The loaded value or the value
4138returned is known to be in the union of the ranges defined by each consecutive
4139pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004140
4141- The type must match the type loaded by the instruction.
4142- The pair ``a,b`` represents the range ``[a,b)``.
4143- Both ``a`` and ``b`` are constants.
4144- The range is allowed to wrap.
4145- The range should not represent the full or empty set. That is,
4146 ``a!=b``.
4147
4148In addition, the pairs must be in signed order of the lower bound and
4149they must be non-contiguous.
4150
4151Examples:
4152
4153.. code-block:: llvm
4154
David Blaikiec7aabbb2015-03-04 22:06:14 +00004155 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4156 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004157 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4158 %d = invoke i8 @bar() to label %cont
4159 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004160 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004161 !0 = !{ i8 0, i8 2 }
4162 !1 = !{ i8 255, i8 2 }
4163 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4164 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004165
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004166'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004167^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004168
4169``unpredictable`` metadata may be attached to any branch or switch
4170instruction. It can be used to express the unpredictability of control
4171flow. Similar to the llvm.expect intrinsic, it may be used to alter
4172optimizations related to compare and branch instructions. The metadata
4173is treated as a boolean value; if it exists, it signals that the branch
4174or switch that it is attached to is completely unpredictable.
4175
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004176'``llvm.loop``'
4177^^^^^^^^^^^^^^^
4178
4179It is sometimes useful to attach information to loop constructs. Currently,
4180loop metadata is implemented as metadata attached to the branch instruction
4181in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004182guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004183specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004184
4185The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004186itself to avoid merging it with any other identifier metadata, e.g.,
4187during module linkage or function inlining. That is, each loop should refer
4188to their own identification metadata even if they reside in separate functions.
4189The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004190constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004191
4192.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004193
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004194 !0 = !{!0}
4195 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004196
Mark Heffernan893752a2014-07-18 19:24:51 +00004197The loop identifier metadata can be used to specify additional
4198per-loop metadata. Any operands after the first operand can be treated
4199as user-defined metadata. For example the ``llvm.loop.unroll.count``
4200suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004201
Paul Redmond5fdf8362013-05-28 20:00:34 +00004202.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004203
Paul Redmond5fdf8362013-05-28 20:00:34 +00004204 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4205 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004206 !0 = !{!0, !1}
4207 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004208
Mark Heffernan9d20e422014-07-21 23:11:03 +00004209'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004211
Mark Heffernan9d20e422014-07-21 23:11:03 +00004212Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4213used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004214vectorization width and interleave count. These metadata should be used in
4215conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004216``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4217optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004218it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004219which contains information about loop-carried memory dependencies can be helpful
4220in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004221
Mark Heffernan9d20e422014-07-21 23:11:03 +00004222'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4224
Mark Heffernan9d20e422014-07-21 23:11:03 +00004225This metadata suggests an interleave count to the loop interleaver.
4226The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004227second operand is an integer specifying the interleave count. For
4228example:
4229
4230.. code-block:: llvm
4231
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004232 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004233
Mark Heffernan9d20e422014-07-21 23:11:03 +00004234Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004235multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004236then the interleave count will be determined automatically.
4237
4238'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004240
4241This metadata selectively enables or disables vectorization for the loop. The
4242first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004243is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000042440 disables vectorization:
4245
4246.. code-block:: llvm
4247
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004248 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4249 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004250
4251'``llvm.loop.vectorize.width``' Metadata
4252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4253
4254This metadata sets the target width of the vectorizer. The first
4255operand is the string ``llvm.loop.vectorize.width`` and the second
4256operand is an integer specifying the width. For example:
4257
4258.. code-block:: llvm
4259
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004260 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004261
4262Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004263vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000042640 or if the loop does not have this metadata the width will be
4265determined automatically.
4266
4267'``llvm.loop.unroll``'
4268^^^^^^^^^^^^^^^^^^^^^^
4269
4270Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4271optimization hints such as the unroll factor. ``llvm.loop.unroll``
4272metadata should be used in conjunction with ``llvm.loop`` loop
4273identification metadata. The ``llvm.loop.unroll`` metadata are only
4274optimization hints and the unrolling will only be performed if the
4275optimizer believes it is safe to do so.
4276
Mark Heffernan893752a2014-07-18 19:24:51 +00004277'``llvm.loop.unroll.count``' Metadata
4278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4279
4280This metadata suggests an unroll factor to the loop unroller. The
4281first operand is the string ``llvm.loop.unroll.count`` and the second
4282operand is a positive integer specifying the unroll factor. For
4283example:
4284
4285.. code-block:: llvm
4286
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004287 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004288
4289If the trip count of the loop is less than the unroll count the loop
4290will be partially unrolled.
4291
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004292'``llvm.loop.unroll.disable``' Metadata
4293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4294
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004295This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004296which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004297
4298.. code-block:: llvm
4299
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004300 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004301
Kevin Qin715b01e2015-03-09 06:14:18 +00004302'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004304
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004305This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004306operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004307
4308.. code-block:: llvm
4309
4310 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4311
Mark Heffernan89391542015-08-10 17:28:08 +00004312'``llvm.loop.unroll.enable``' Metadata
4313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4314
4315This metadata suggests that the loop should be fully unrolled if the trip count
4316is known at compile time and partially unrolled if the trip count is not known
4317at compile time. The metadata has a single operand which is the string
4318``llvm.loop.unroll.enable``. For example:
4319
4320.. code-block:: llvm
4321
4322 !0 = !{!"llvm.loop.unroll.enable"}
4323
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004324'``llvm.loop.unroll.full``' Metadata
4325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4326
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004327This metadata suggests that the loop should be unrolled fully. The
4328metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004329For example:
4330
4331.. code-block:: llvm
4332
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004333 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004334
4335'``llvm.mem``'
4336^^^^^^^^^^^^^^^
4337
4338Metadata types used to annotate memory accesses with information helpful
4339for optimizations are prefixed with ``llvm.mem``.
4340
4341'``llvm.mem.parallel_loop_access``' Metadata
4342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4343
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004344The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4345or metadata containing a list of loop identifiers for nested loops.
4346The metadata is attached to memory accessing instructions and denotes that
4347no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004348with the same loop identifier.
4349
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004350Precisely, given two instructions ``m1`` and ``m2`` that both have the
4351``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4352set of loops associated with that metadata, respectively, then there is no loop
4353carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004354``L2``.
4355
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004356As a special case, if all memory accessing instructions in a loop have
4357``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4358loop has no loop carried memory dependences and is considered to be a parallel
4359loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004360
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004361Note that if not all memory access instructions have such metadata referring to
4362the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004363memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004364safe mechanism, this causes loops that were originally parallel to be considered
4365sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004366insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004367
4368Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004369both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004370metadata types that refer to the same loop identifier metadata.
4371
4372.. code-block:: llvm
4373
4374 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004375 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004376 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004377 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004378 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004379 ...
4380 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004381
4382 for.end:
4383 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004384 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004385
4386It is also possible to have nested parallel loops. In that case the
4387memory accesses refer to a list of loop identifier metadata nodes instead of
4388the loop identifier metadata node directly:
4389
4390.. code-block:: llvm
4391
4392 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004393 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004394 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004395 ...
4396 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004397
4398 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004399 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004400 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004401 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004402 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004403 ...
4404 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004405
4406 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004407 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004408 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004409 ...
4410 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004411
4412 outer.for.end: ; preds = %for.body
4413 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004414 !0 = !{!1, !2} ; a list of loop identifiers
4415 !1 = !{!1} ; an identifier for the inner loop
4416 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004417
Peter Collingbournee6909c82015-02-20 20:30:47 +00004418'``llvm.bitsets``'
4419^^^^^^^^^^^^^^^^^^
4420
4421The ``llvm.bitsets`` global metadata is used to implement
4422:doc:`bitsets <BitSets>`.
4423
Sean Silvab084af42012-12-07 10:36:55 +00004424Module Flags Metadata
4425=====================
4426
4427Information about the module as a whole is difficult to convey to LLVM's
4428subsystems. The LLVM IR isn't sufficient to transmit this information.
4429The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004430this. These flags are in the form of key / value pairs --- much like a
4431dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004432look it up.
4433
4434The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4435Each triplet has the following form:
4436
4437- The first element is a *behavior* flag, which specifies the behavior
4438 when two (or more) modules are merged together, and it encounters two
4439 (or more) metadata with the same ID. The supported behaviors are
4440 described below.
4441- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004442 metadata. Each module may only have one flag entry for each unique ID (not
4443 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004444- The third element is the value of the flag.
4445
4446When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004447``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4448each unique metadata ID string, there will be exactly one entry in the merged
4449modules ``llvm.module.flags`` metadata table, and the value for that entry will
4450be determined by the merge behavior flag, as described below. The only exception
4451is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004452
4453The following behaviors are supported:
4454
4455.. list-table::
4456 :header-rows: 1
4457 :widths: 10 90
4458
4459 * - Value
4460 - Behavior
4461
4462 * - 1
4463 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004464 Emits an error if two values disagree, otherwise the resulting value
4465 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004466
4467 * - 2
4468 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004469 Emits a warning if two values disagree. The result value will be the
4470 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004471
4472 * - 3
4473 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004474 Adds a requirement that another module flag be present and have a
4475 specified value after linking is performed. The value must be a
4476 metadata pair, where the first element of the pair is the ID of the
4477 module flag to be restricted, and the second element of the pair is
4478 the value the module flag should be restricted to. This behavior can
4479 be used to restrict the allowable results (via triggering of an
4480 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004481
4482 * - 4
4483 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004484 Uses the specified value, regardless of the behavior or value of the
4485 other module. If both modules specify **Override**, but the values
4486 differ, an error will be emitted.
4487
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004488 * - 5
4489 - **Append**
4490 Appends the two values, which are required to be metadata nodes.
4491
4492 * - 6
4493 - **AppendUnique**
4494 Appends the two values, which are required to be metadata
4495 nodes. However, duplicate entries in the second list are dropped
4496 during the append operation.
4497
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004498It is an error for a particular unique flag ID to have multiple behaviors,
4499except in the case of **Require** (which adds restrictions on another metadata
4500value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004501
4502An example of module flags:
4503
4504.. code-block:: llvm
4505
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004506 !0 = !{ i32 1, !"foo", i32 1 }
4507 !1 = !{ i32 4, !"bar", i32 37 }
4508 !2 = !{ i32 2, !"qux", i32 42 }
4509 !3 = !{ i32 3, !"qux",
4510 !{
4511 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004512 }
4513 }
4514 !llvm.module.flags = !{ !0, !1, !2, !3 }
4515
4516- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4517 if two or more ``!"foo"`` flags are seen is to emit an error if their
4518 values are not equal.
4519
4520- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4521 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004522 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004523
4524- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4525 behavior if two or more ``!"qux"`` flags are seen is to emit a
4526 warning if their values are not equal.
4527
4528- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4529
4530 ::
4531
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004532 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004533
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004534 The behavior is to emit an error if the ``llvm.module.flags`` does not
4535 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4536 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004537
4538Objective-C Garbage Collection Module Flags Metadata
4539----------------------------------------------------
4540
4541On the Mach-O platform, Objective-C stores metadata about garbage
4542collection in a special section called "image info". The metadata
4543consists of a version number and a bitmask specifying what types of
4544garbage collection are supported (if any) by the file. If two or more
4545modules are linked together their garbage collection metadata needs to
4546be merged rather than appended together.
4547
4548The Objective-C garbage collection module flags metadata consists of the
4549following key-value pairs:
4550
4551.. list-table::
4552 :header-rows: 1
4553 :widths: 30 70
4554
4555 * - Key
4556 - Value
4557
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004558 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004559 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004560
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004561 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004562 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004563 always 0.
4564
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004565 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004566 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004567 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4568 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4569 Objective-C ABI version 2.
4570
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004571 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004572 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004573 not. Valid values are 0, for no garbage collection, and 2, for garbage
4574 collection supported.
4575
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004576 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004577 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004578 If present, its value must be 6. This flag requires that the
4579 ``Objective-C Garbage Collection`` flag have the value 2.
4580
4581Some important flag interactions:
4582
4583- If a module with ``Objective-C Garbage Collection`` set to 0 is
4584 merged with a module with ``Objective-C Garbage Collection`` set to
4585 2, then the resulting module has the
4586 ``Objective-C Garbage Collection`` flag set to 0.
4587- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4588 merged with a module with ``Objective-C GC Only`` set to 6.
4589
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004590Automatic Linker Flags Module Flags Metadata
4591--------------------------------------------
4592
4593Some targets support embedding flags to the linker inside individual object
4594files. Typically this is used in conjunction with language extensions which
4595allow source files to explicitly declare the libraries they depend on, and have
4596these automatically be transmitted to the linker via object files.
4597
4598These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004599using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004600to be ``AppendUnique``, and the value for the key is expected to be a metadata
4601node which should be a list of other metadata nodes, each of which should be a
4602list of metadata strings defining linker options.
4603
4604For example, the following metadata section specifies two separate sets of
4605linker options, presumably to link against ``libz`` and the ``Cocoa``
4606framework::
4607
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004608 !0 = !{ i32 6, !"Linker Options",
4609 !{
4610 !{ !"-lz" },
4611 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004612 !llvm.module.flags = !{ !0 }
4613
4614The metadata encoding as lists of lists of options, as opposed to a collapsed
4615list of options, is chosen so that the IR encoding can use multiple option
4616strings to specify e.g., a single library, while still having that specifier be
4617preserved as an atomic element that can be recognized by a target specific
4618assembly writer or object file emitter.
4619
4620Each individual option is required to be either a valid option for the target's
4621linker, or an option that is reserved by the target specific assembly writer or
4622object file emitter. No other aspect of these options is defined by the IR.
4623
Oliver Stannard5dc29342014-06-20 10:08:11 +00004624C type width Module Flags Metadata
4625----------------------------------
4626
4627The ARM backend emits a section into each generated object file describing the
4628options that it was compiled with (in a compiler-independent way) to prevent
4629linking incompatible objects, and to allow automatic library selection. Some
4630of these options are not visible at the IR level, namely wchar_t width and enum
4631width.
4632
4633To pass this information to the backend, these options are encoded in module
4634flags metadata, using the following key-value pairs:
4635
4636.. list-table::
4637 :header-rows: 1
4638 :widths: 30 70
4639
4640 * - Key
4641 - Value
4642
4643 * - short_wchar
4644 - * 0 --- sizeof(wchar_t) == 4
4645 * 1 --- sizeof(wchar_t) == 2
4646
4647 * - short_enum
4648 - * 0 --- Enums are at least as large as an ``int``.
4649 * 1 --- Enums are stored in the smallest integer type which can
4650 represent all of its values.
4651
4652For example, the following metadata section specifies that the module was
4653compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4654enum is the smallest type which can represent all of its values::
4655
4656 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004657 !0 = !{i32 1, !"short_wchar", i32 1}
4658 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004659
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004660.. _intrinsicglobalvariables:
4661
Sean Silvab084af42012-12-07 10:36:55 +00004662Intrinsic Global Variables
4663==========================
4664
4665LLVM has a number of "magic" global variables that contain data that
4666affect code generation or other IR semantics. These are documented here.
4667All globals of this sort should have a section specified as
4668"``llvm.metadata``". This section and all globals that start with
4669"``llvm.``" are reserved for use by LLVM.
4670
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004671.. _gv_llvmused:
4672
Sean Silvab084af42012-12-07 10:36:55 +00004673The '``llvm.used``' Global Variable
4674-----------------------------------
4675
Rafael Espindola74f2e462013-04-22 14:58:02 +00004676The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004677:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004678pointers to named global variables, functions and aliases which may optionally
4679have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004680use of it is:
4681
4682.. code-block:: llvm
4683
4684 @X = global i8 4
4685 @Y = global i32 123
4686
4687 @llvm.used = appending global [2 x i8*] [
4688 i8* @X,
4689 i8* bitcast (i32* @Y to i8*)
4690 ], section "llvm.metadata"
4691
Rafael Espindola74f2e462013-04-22 14:58:02 +00004692If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4693and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004694symbol that it cannot see (which is why they have to be named). For example, if
4695a variable has internal linkage and no references other than that from the
4696``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4697references from inline asms and other things the compiler cannot "see", and
4698corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004699
4700On some targets, the code generator must emit a directive to the
4701assembler or object file to prevent the assembler and linker from
4702molesting the symbol.
4703
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004704.. _gv_llvmcompilerused:
4705
Sean Silvab084af42012-12-07 10:36:55 +00004706The '``llvm.compiler.used``' Global Variable
4707--------------------------------------------
4708
4709The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4710directive, except that it only prevents the compiler from touching the
4711symbol. On targets that support it, this allows an intelligent linker to
4712optimize references to the symbol without being impeded as it would be
4713by ``@llvm.used``.
4714
4715This is a rare construct that should only be used in rare circumstances,
4716and should not be exposed to source languages.
4717
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004718.. _gv_llvmglobalctors:
4719
Sean Silvab084af42012-12-07 10:36:55 +00004720The '``llvm.global_ctors``' Global Variable
4721-------------------------------------------
4722
4723.. code-block:: llvm
4724
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004725 %0 = type { i32, void ()*, i8* }
4726 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004727
4728The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004729functions, priorities, and an optional associated global or function.
4730The functions referenced by this array will be called in ascending order
4731of priority (i.e. lowest first) when the module is loaded. The order of
4732functions with the same priority is not defined.
4733
4734If the third field is present, non-null, and points to a global variable
4735or function, the initializer function will only run if the associated
4736data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004737
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004738.. _llvmglobaldtors:
4739
Sean Silvab084af42012-12-07 10:36:55 +00004740The '``llvm.global_dtors``' Global Variable
4741-------------------------------------------
4742
4743.. code-block:: llvm
4744
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004745 %0 = type { i32, void ()*, i8* }
4746 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004747
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004748The ``@llvm.global_dtors`` array contains a list of destructor
4749functions, priorities, and an optional associated global or function.
4750The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004751order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004752order of functions with the same priority is not defined.
4753
4754If the third field is present, non-null, and points to a global variable
4755or function, the destructor function will only run if the associated
4756data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004757
4758Instruction Reference
4759=====================
4760
4761The LLVM instruction set consists of several different classifications
4762of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4763instructions <binaryops>`, :ref:`bitwise binary
4764instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4765:ref:`other instructions <otherops>`.
4766
4767.. _terminators:
4768
4769Terminator Instructions
4770-----------------------
4771
4772As mentioned :ref:`previously <functionstructure>`, every basic block in a
4773program ends with a "Terminator" instruction, which indicates which
4774block should be executed after the current block is finished. These
4775terminator instructions typically yield a '``void``' value: they produce
4776control flow, not values (the one exception being the
4777':ref:`invoke <i_invoke>`' instruction).
4778
4779The terminator instructions are: ':ref:`ret <i_ret>`',
4780':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4781':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004782':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4783':ref:`catchendpad <i_catchendpad>`',
4784':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004785':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004786':ref:`cleanupret <i_cleanupret>`',
4787':ref:`terminatepad <i_terminatepad>`',
4788and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004789
4790.. _i_ret:
4791
4792'``ret``' Instruction
4793^^^^^^^^^^^^^^^^^^^^^
4794
4795Syntax:
4796"""""""
4797
4798::
4799
4800 ret <type> <value> ; Return a value from a non-void function
4801 ret void ; Return from void function
4802
4803Overview:
4804"""""""""
4805
4806The '``ret``' instruction is used to return control flow (and optionally
4807a value) from a function back to the caller.
4808
4809There are two forms of the '``ret``' instruction: one that returns a
4810value and then causes control flow, and one that just causes control
4811flow to occur.
4812
4813Arguments:
4814""""""""""
4815
4816The '``ret``' instruction optionally accepts a single argument, the
4817return value. The type of the return value must be a ':ref:`first
4818class <t_firstclass>`' type.
4819
4820A function is not :ref:`well formed <wellformed>` if it it has a non-void
4821return type and contains a '``ret``' instruction with no return value or
4822a return value with a type that does not match its type, or if it has a
4823void return type and contains a '``ret``' instruction with a return
4824value.
4825
4826Semantics:
4827""""""""""
4828
4829When the '``ret``' instruction is executed, control flow returns back to
4830the calling function's context. If the caller is a
4831":ref:`call <i_call>`" instruction, execution continues at the
4832instruction after the call. If the caller was an
4833":ref:`invoke <i_invoke>`" instruction, execution continues at the
4834beginning of the "normal" destination block. If the instruction returns
4835a value, that value shall set the call or invoke instruction's return
4836value.
4837
4838Example:
4839""""""""
4840
4841.. code-block:: llvm
4842
4843 ret i32 5 ; Return an integer value of 5
4844 ret void ; Return from a void function
4845 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4846
4847.. _i_br:
4848
4849'``br``' Instruction
4850^^^^^^^^^^^^^^^^^^^^
4851
4852Syntax:
4853"""""""
4854
4855::
4856
4857 br i1 <cond>, label <iftrue>, label <iffalse>
4858 br label <dest> ; Unconditional branch
4859
4860Overview:
4861"""""""""
4862
4863The '``br``' instruction is used to cause control flow to transfer to a
4864different basic block in the current function. There are two forms of
4865this instruction, corresponding to a conditional branch and an
4866unconditional branch.
4867
4868Arguments:
4869""""""""""
4870
4871The conditional branch form of the '``br``' instruction takes a single
4872'``i1``' value and two '``label``' values. The unconditional form of the
4873'``br``' instruction takes a single '``label``' value as a target.
4874
4875Semantics:
4876""""""""""
4877
4878Upon execution of a conditional '``br``' instruction, the '``i1``'
4879argument is evaluated. If the value is ``true``, control flows to the
4880'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4881to the '``iffalse``' ``label`` argument.
4882
4883Example:
4884""""""""
4885
4886.. code-block:: llvm
4887
4888 Test:
4889 %cond = icmp eq i32 %a, %b
4890 br i1 %cond, label %IfEqual, label %IfUnequal
4891 IfEqual:
4892 ret i32 1
4893 IfUnequal:
4894 ret i32 0
4895
4896.. _i_switch:
4897
4898'``switch``' Instruction
4899^^^^^^^^^^^^^^^^^^^^^^^^
4900
4901Syntax:
4902"""""""
4903
4904::
4905
4906 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4907
4908Overview:
4909"""""""""
4910
4911The '``switch``' instruction is used to transfer control flow to one of
4912several different places. It is a generalization of the '``br``'
4913instruction, allowing a branch to occur to one of many possible
4914destinations.
4915
4916Arguments:
4917""""""""""
4918
4919The '``switch``' instruction uses three parameters: an integer
4920comparison value '``value``', a default '``label``' destination, and an
4921array of pairs of comparison value constants and '``label``'s. The table
4922is not allowed to contain duplicate constant entries.
4923
4924Semantics:
4925""""""""""
4926
4927The ``switch`` instruction specifies a table of values and destinations.
4928When the '``switch``' instruction is executed, this table is searched
4929for the given value. If the value is found, control flow is transferred
4930to the corresponding destination; otherwise, control flow is transferred
4931to the default destination.
4932
4933Implementation:
4934"""""""""""""""
4935
4936Depending on properties of the target machine and the particular
4937``switch`` instruction, this instruction may be code generated in
4938different ways. For example, it could be generated as a series of
4939chained conditional branches or with a lookup table.
4940
4941Example:
4942""""""""
4943
4944.. code-block:: llvm
4945
4946 ; Emulate a conditional br instruction
4947 %Val = zext i1 %value to i32
4948 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4949
4950 ; Emulate an unconditional br instruction
4951 switch i32 0, label %dest [ ]
4952
4953 ; Implement a jump table:
4954 switch i32 %val, label %otherwise [ i32 0, label %onzero
4955 i32 1, label %onone
4956 i32 2, label %ontwo ]
4957
4958.. _i_indirectbr:
4959
4960'``indirectbr``' Instruction
4961^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4962
4963Syntax:
4964"""""""
4965
4966::
4967
4968 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4969
4970Overview:
4971"""""""""
4972
4973The '``indirectbr``' instruction implements an indirect branch to a
4974label within the current function, whose address is specified by
4975"``address``". Address must be derived from a
4976:ref:`blockaddress <blockaddress>` constant.
4977
4978Arguments:
4979""""""""""
4980
4981The '``address``' argument is the address of the label to jump to. The
4982rest of the arguments indicate the full set of possible destinations
4983that the address may point to. Blocks are allowed to occur multiple
4984times in the destination list, though this isn't particularly useful.
4985
4986This destination list is required so that dataflow analysis has an
4987accurate understanding of the CFG.
4988
4989Semantics:
4990""""""""""
4991
4992Control transfers to the block specified in the address argument. All
4993possible destination blocks must be listed in the label list, otherwise
4994this instruction has undefined behavior. This implies that jumps to
4995labels defined in other functions have undefined behavior as well.
4996
4997Implementation:
4998"""""""""""""""
4999
5000This is typically implemented with a jump through a register.
5001
5002Example:
5003""""""""
5004
5005.. code-block:: llvm
5006
5007 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5008
5009.. _i_invoke:
5010
5011'``invoke``' Instruction
5012^^^^^^^^^^^^^^^^^^^^^^^^
5013
5014Syntax:
5015"""""""
5016
5017::
5018
5019 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
5020 to label <normal label> unwind label <exception label>
5021
5022Overview:
5023"""""""""
5024
5025The '``invoke``' instruction causes control to transfer to a specified
5026function, with the possibility of control flow transfer to either the
5027'``normal``' label or the '``exception``' label. If the callee function
5028returns with the "``ret``" instruction, control flow will return to the
5029"normal" label. If the callee (or any indirect callees) returns via the
5030":ref:`resume <i_resume>`" instruction or other exception handling
5031mechanism, control is interrupted and continued at the dynamically
5032nearest "exception" label.
5033
5034The '``exception``' label is a `landing
5035pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5036'``exception``' label is required to have the
5037":ref:`landingpad <i_landingpad>`" instruction, which contains the
5038information about the behavior of the program after unwinding happens,
5039as its first non-PHI instruction. The restrictions on the
5040"``landingpad``" instruction's tightly couples it to the "``invoke``"
5041instruction, so that the important information contained within the
5042"``landingpad``" instruction can't be lost through normal code motion.
5043
5044Arguments:
5045""""""""""
5046
5047This instruction requires several arguments:
5048
5049#. The optional "cconv" marker indicates which :ref:`calling
5050 convention <callingconv>` the call should use. If none is
5051 specified, the call defaults to using C calling conventions.
5052#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5053 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5054 are valid here.
5055#. '``ptr to function ty``': shall be the signature of the pointer to
5056 function value being invoked. In most cases, this is a direct
5057 function invocation, but indirect ``invoke``'s are just as possible,
5058 branching off an arbitrary pointer to function value.
5059#. '``function ptr val``': An LLVM value containing a pointer to a
5060 function to be invoked.
5061#. '``function args``': argument list whose types match the function
5062 signature argument types and parameter attributes. All arguments must
5063 be of :ref:`first class <t_firstclass>` type. If the function signature
5064 indicates the function accepts a variable number of arguments, the
5065 extra arguments can be specified.
5066#. '``normal label``': the label reached when the called function
5067 executes a '``ret``' instruction.
5068#. '``exception label``': the label reached when a callee returns via
5069 the :ref:`resume <i_resume>` instruction or other exception handling
5070 mechanism.
5071#. The optional :ref:`function attributes <fnattrs>` list. Only
5072 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5073 attributes are valid here.
5074
5075Semantics:
5076""""""""""
5077
5078This instruction is designed to operate as a standard '``call``'
5079instruction in most regards. The primary difference is that it
5080establishes an association with a label, which is used by the runtime
5081library to unwind the stack.
5082
5083This instruction is used in languages with destructors to ensure that
5084proper cleanup is performed in the case of either a ``longjmp`` or a
5085thrown exception. Additionally, this is important for implementation of
5086'``catch``' clauses in high-level languages that support them.
5087
5088For the purposes of the SSA form, the definition of the value returned
5089by the '``invoke``' instruction is deemed to occur on the edge from the
5090current block to the "normal" label. If the callee unwinds then no
5091return value is available.
5092
5093Example:
5094""""""""
5095
5096.. code-block:: llvm
5097
5098 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005099 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005100 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005101 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005102
5103.. _i_resume:
5104
5105'``resume``' Instruction
5106^^^^^^^^^^^^^^^^^^^^^^^^
5107
5108Syntax:
5109"""""""
5110
5111::
5112
5113 resume <type> <value>
5114
5115Overview:
5116"""""""""
5117
5118The '``resume``' instruction is a terminator instruction that has no
5119successors.
5120
5121Arguments:
5122""""""""""
5123
5124The '``resume``' instruction requires one argument, which must have the
5125same type as the result of any '``landingpad``' instruction in the same
5126function.
5127
5128Semantics:
5129""""""""""
5130
5131The '``resume``' instruction resumes propagation of an existing
5132(in-flight) exception whose unwinding was interrupted with a
5133:ref:`landingpad <i_landingpad>` instruction.
5134
5135Example:
5136""""""""
5137
5138.. code-block:: llvm
5139
5140 resume { i8*, i32 } %exn
5141
David Majnemer654e1302015-07-31 17:58:14 +00005142.. _i_catchpad:
5143
5144'``catchpad``' Instruction
5145^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5146
5147Syntax:
5148"""""""
5149
5150::
5151
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005152 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005153 to label <normal label> unwind label <exception label>
5154
5155Overview:
5156"""""""""
5157
5158The '``catchpad``' instruction is used by `LLVM's exception handling
5159system <ExceptionHandling.html#overview>`_ to specify that a basic block
5160is a catch block --- one where a personality routine attempts to transfer
5161control to catch an exception.
5162The ``args`` correspond to whatever information the personality
5163routine requires to know if this is an appropriate place to catch the
Sean Silvaa1190322015-08-06 22:56:48 +00005164exception. Control is tranfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005165``catchpad`` is not an appropriate handler for the in-flight exception.
5166The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005167portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5168:ref:`token <t_token>` and is used to match the ``catchpad`` to
5169corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005170
5171Arguments:
5172""""""""""
5173
5174The instruction takes a list of arbitrary values which are interpreted
5175by the :ref:`personality function <personalityfn>`.
5176
5177The ``catchpad`` must be provided a ``normal`` label to transfer control
5178to if the ``catchpad`` matches the exception and an ``exception``
5179label to transfer control to if it doesn't.
5180
5181Semantics:
5182""""""""""
5183
David Majnemer654e1302015-07-31 17:58:14 +00005184When the call stack is being unwound due to an exception being thrown,
5185the exception is compared against the ``args``. If it doesn't match,
5186then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005187As with calling conventions, how the personality function results are
5188represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005189
5190The ``catchpad`` instruction has several restrictions:
5191
5192- A catch block is a basic block which is the unwind destination of
5193 an exceptional instruction.
5194- A catch block must have a '``catchpad``' instruction as its
5195 first non-PHI instruction.
5196- A catch block's ``exception`` edge must refer to a catch block or a
5197 catch-end block.
5198- There can be only one '``catchpad``' instruction within the
5199 catch block.
5200- A basic block that is not a catch block may not include a
5201 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005202- A catch block which has another catch block as a predecessor may not have
5203 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005204- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005205 ``ret`` without first executing a ``catchret`` that consumes the
5206 ``catchpad`` or unwinding through its ``catchendpad``.
5207- It is undefined behavior for control to transfer from a ``catchpad`` to
5208 itself without first executing a ``catchret`` that consumes the
5209 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005210
5211Example:
5212""""""""
5213
5214.. code-block:: llvm
5215
5216 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005217 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005218 to label %int.handler unwind label %terminate
5219
5220.. _i_catchendpad:
5221
5222'``catchendpad``' Instruction
5223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5224
5225Syntax:
5226"""""""
5227
5228::
5229
5230 catchendpad unwind label <nextaction>
5231 catchendpad unwind to caller
5232
5233Overview:
5234"""""""""
5235
5236The '``catchendpad``' instruction is used by `LLVM's exception handling
5237system <ExceptionHandling.html#overview>`_ to communicate to the
5238:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005239with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5240exception out of a catch handler is represented by unwinding through its
5241``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5242do not handle an exception is also represented by unwinding through their
5243``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005244
5245The ``nextaction`` label indicates where control should transfer to if
5246none of the ``catchpad`` instructions are suitable for catching the
5247in-flight exception.
5248
5249If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005250its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005251:ref:`personality function <personalityfn>` will continue processing
5252exception handling actions in the caller.
5253
5254Arguments:
5255""""""""""
5256
5257The instruction optionally takes a label, ``nextaction``, indicating
5258where control should transfer to if none of the preceding
5259``catchpad`` instructions are suitable for the in-flight exception.
5260
5261Semantics:
5262""""""""""
5263
5264When the call stack is being unwound due to an exception being thrown
5265and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005266control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005267present, control is transfered to the caller.
5268
5269The ``catchendpad`` instruction has several restrictions:
5270
5271- A catch-end block is a basic block which is the unwind destination of
5272 an exceptional instruction.
5273- A catch-end block must have a '``catchendpad``' instruction as its
5274 first non-PHI instruction.
5275- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005276 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005277- A basic block that is not a catch-end block may not include a
5278 '``catchendpad``' instruction.
5279- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005280- It is undefined behavior to execute a ``catchendpad`` if none of the
5281 '``catchpad``'s chained to it have been executed.
5282- It is undefined behavior to execute a ``catchendpad`` twice without an
5283 intervening execution of one or more of the '``catchpad``'s chained to it.
5284- It is undefined behavior to execute a ``catchendpad`` if, after the most
5285 recent execution of the normal successor edge of any ``catchpad`` chained
5286 to it, some ``catchret`` consuming that ``catchpad`` has already been
5287 executed.
5288- It is undefined behavior to execute a ``catchendpad`` if, after the most
5289 recent execution of the normal successor edge of any ``catchpad`` chained
5290 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5291 not had a corresponding
5292 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005293
5294Example:
5295""""""""
5296
5297.. code-block:: llvm
5298
5299 catchendpad unwind label %terminate
5300 catchendpad unwind to caller
5301
5302.. _i_catchret:
5303
5304'``catchret``' Instruction
5305^^^^^^^^^^^^^^^^^^^^^^^^^^
5306
5307Syntax:
5308"""""""
5309
5310::
5311
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005312 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005313
5314Overview:
5315"""""""""
5316
5317The '``catchret``' instruction is a terminator instruction that has a
5318single successor.
5319
5320
5321Arguments:
5322""""""""""
5323
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005324The first argument to a '``catchret``' indicates which ``catchpad`` it
5325exits. It must be a :ref:`catchpad <i_catchpad>`.
5326The second argument to a '``catchret``' specifies where control will
5327transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005328
5329Semantics:
5330""""""""""
5331
5332The '``catchret``' instruction ends the existing (in-flight) exception
5333whose unwinding was interrupted with a
5334:ref:`catchpad <i_catchpad>` instruction.
5335The :ref:`personality function <personalityfn>` gets a chance to execute
5336arbitrary code to, for example, run a C++ destructor.
5337Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005338It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005339
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005340It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5341not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005342
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005343It is undefined behavior to execute a ``catchret`` if, after the most recent
5344execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5345to the same ``catchpad`` has already been executed.
5346
5347It is undefined behavior to execute a ``catchret`` if, after the most recent
5348execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5349been executed but has not had a corresponding
5350``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005351
5352Example:
5353""""""""
5354
5355.. code-block:: llvm
5356
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005357 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005358
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005359.. _i_cleanupendpad:
5360
5361'``cleanupendpad``' Instruction
5362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5363
5364Syntax:
5365"""""""
5366
5367::
5368
5369 cleanupendpad <value> unwind label <nextaction>
5370 cleanupendpad <value> unwind to caller
5371
5372Overview:
5373"""""""""
5374
5375The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5376system <ExceptionHandling.html#overview>`_ to communicate to the
5377:ref:`personality function <personalityfn>` which invokes are associated
5378with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5379out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5380
5381The ``nextaction`` label indicates where control should unwind to next, in the
5382event that a cleanup is exited by means of an(other) exception being raised.
5383
5384If a ``nextaction`` label is not present, the instruction unwinds out of
5385its parent function. The
5386:ref:`personality function <personalityfn>` will continue processing
5387exception handling actions in the caller.
5388
5389Arguments:
5390""""""""""
5391
5392The '``cleanupendpad``' instruction requires one argument, which indicates
5393which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5394It also has an optional successor, ``nextaction``, indicating where control
5395should transfer to.
5396
5397Semantics:
5398""""""""""
5399
5400When and exception propagates to a ``cleanupendpad``, control is transfered to
5401``nextaction`` if it is present. If it is not present, control is transfered to
5402the caller.
5403
5404The ``cleanupendpad`` instruction has several restrictions:
5405
5406- A cleanup-end block is a basic block which is the unwind destination of
5407 an exceptional instruction.
5408- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5409 first non-PHI instruction.
5410- There can be only one '``cleanupendpad``' instruction within the
5411 cleanup-end block.
5412- A basic block that is not a cleanup-end block may not include a
5413 '``cleanupendpad``' instruction.
5414- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5415 has not been executed.
5416- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5417 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5418 consuming the same ``cleanuppad`` has already been executed.
5419- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5420 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5421 ``catchpad`` has been executed but has not had a corresponding
5422 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5423
5424Example:
5425""""""""
5426
5427.. code-block:: llvm
5428
5429 cleanupendpad %cleanup unwind label %terminate
5430 cleanupendpad %cleanup unwind to caller
5431
David Majnemer654e1302015-07-31 17:58:14 +00005432.. _i_cleanupret:
5433
5434'``cleanupret``' Instruction
5435^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5436
5437Syntax:
5438"""""""
5439
5440::
5441
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005442 cleanupret <value> unwind label <continue>
5443 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005444
5445Overview:
5446"""""""""
5447
5448The '``cleanupret``' instruction is a terminator instruction that has
5449an optional successor.
5450
5451
5452Arguments:
5453""""""""""
5454
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005455The '``cleanupret``' instruction requires one argument, which indicates
5456which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5457It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005458
5459Semantics:
5460""""""""""
5461
5462The '``cleanupret``' instruction indicates to the
5463:ref:`personality function <personalityfn>` that one
5464:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5465It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005466
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005467It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5468not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005469
5470It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5471execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5472consuming the same ``cleanuppad`` has already been executed.
5473
5474It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5475execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5476been executed but has not had a corresponding
5477``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005478
5479Example:
5480""""""""
5481
5482.. code-block:: llvm
5483
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005484 cleanupret %cleanup unwind to caller
5485 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005486
5487.. _i_terminatepad:
5488
5489'``terminatepad``' Instruction
5490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5491
5492Syntax:
5493"""""""
5494
5495::
5496
5497 terminatepad [<args>*] unwind label <exception label>
5498 terminatepad [<args>*] unwind to caller
5499
5500Overview:
5501"""""""""
5502
5503The '``terminatepad``' instruction is used by `LLVM's exception handling
5504system <ExceptionHandling.html#overview>`_ to specify that a basic block
5505is a terminate block --- one where a personality routine may decide to
5506terminate the program.
5507The ``args`` correspond to whatever information the personality
5508routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005509program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005510personality routine decides not to terminate the program for the
5511in-flight exception.
5512
5513Arguments:
5514""""""""""
5515
5516The instruction takes a list of arbitrary values which are interpreted
5517by the :ref:`personality function <personalityfn>`.
5518
5519The ``terminatepad`` may be given an ``exception`` label to
5520transfer control to if the in-flight exception matches the ``args``.
5521
5522Semantics:
5523""""""""""
5524
5525When the call stack is being unwound due to an exception being thrown,
5526the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005527then control is transfered to the ``exception`` basic block. Otherwise,
5528the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005529the first argument to ``terminatepad`` specifies what function the
5530personality should defer to in order to terminate the program.
5531
5532The ``terminatepad`` instruction has several restrictions:
5533
5534- A terminate block is a basic block which is the unwind destination of
5535 an exceptional instruction.
5536- A terminate block must have a '``terminatepad``' instruction as its
5537 first non-PHI instruction.
5538- There can be only one '``terminatepad``' instruction within the
5539 terminate block.
5540- A basic block that is not a terminate block may not include a
5541 '``terminatepad``' instruction.
5542
5543Example:
5544""""""""
5545
5546.. code-block:: llvm
5547
5548 ;; A terminate block which only permits integers.
5549 terminatepad [i8** @_ZTIi] unwind label %continue
5550
Sean Silvab084af42012-12-07 10:36:55 +00005551.. _i_unreachable:
5552
5553'``unreachable``' Instruction
5554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5555
5556Syntax:
5557"""""""
5558
5559::
5560
5561 unreachable
5562
5563Overview:
5564"""""""""
5565
5566The '``unreachable``' instruction has no defined semantics. This
5567instruction is used to inform the optimizer that a particular portion of
5568the code is not reachable. This can be used to indicate that the code
5569after a no-return function cannot be reached, and other facts.
5570
5571Semantics:
5572""""""""""
5573
5574The '``unreachable``' instruction has no defined semantics.
5575
5576.. _binaryops:
5577
5578Binary Operations
5579-----------------
5580
5581Binary operators are used to do most of the computation in a program.
5582They require two operands of the same type, execute an operation on
5583them, and produce a single value. The operands might represent multiple
5584data, as is the case with the :ref:`vector <t_vector>` data type. The
5585result value has the same type as its operands.
5586
5587There are several different binary operators:
5588
5589.. _i_add:
5590
5591'``add``' Instruction
5592^^^^^^^^^^^^^^^^^^^^^
5593
5594Syntax:
5595"""""""
5596
5597::
5598
Tim Northover675a0962014-06-13 14:24:23 +00005599 <result> = add <ty> <op1>, <op2> ; yields ty:result
5600 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5601 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5602 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005603
5604Overview:
5605"""""""""
5606
5607The '``add``' instruction returns the sum of its two operands.
5608
5609Arguments:
5610""""""""""
5611
5612The two arguments to the '``add``' instruction must be
5613:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5614arguments must have identical types.
5615
5616Semantics:
5617""""""""""
5618
5619The value produced is the integer sum of the two operands.
5620
5621If the sum has unsigned overflow, the result returned is the
5622mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5623the result.
5624
5625Because LLVM integers use a two's complement representation, this
5626instruction is appropriate for both signed and unsigned integers.
5627
5628``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5629respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5630result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5631unsigned and/or signed overflow, respectively, occurs.
5632
5633Example:
5634""""""""
5635
5636.. code-block:: llvm
5637
Tim Northover675a0962014-06-13 14:24:23 +00005638 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005639
5640.. _i_fadd:
5641
5642'``fadd``' Instruction
5643^^^^^^^^^^^^^^^^^^^^^^
5644
5645Syntax:
5646"""""""
5647
5648::
5649
Tim Northover675a0962014-06-13 14:24:23 +00005650 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005651
5652Overview:
5653"""""""""
5654
5655The '``fadd``' instruction returns the sum of its two operands.
5656
5657Arguments:
5658""""""""""
5659
5660The two arguments to the '``fadd``' instruction must be :ref:`floating
5661point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5662Both arguments must have identical types.
5663
5664Semantics:
5665""""""""""
5666
5667The value produced is the floating point sum of the two operands. This
5668instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5669which are optimization hints to enable otherwise unsafe floating point
5670optimizations:
5671
5672Example:
5673""""""""
5674
5675.. code-block:: llvm
5676
Tim Northover675a0962014-06-13 14:24:23 +00005677 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005678
5679'``sub``' Instruction
5680^^^^^^^^^^^^^^^^^^^^^
5681
5682Syntax:
5683"""""""
5684
5685::
5686
Tim Northover675a0962014-06-13 14:24:23 +00005687 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5688 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5689 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5690 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005691
5692Overview:
5693"""""""""
5694
5695The '``sub``' instruction returns the difference of its two operands.
5696
5697Note that the '``sub``' instruction is used to represent the '``neg``'
5698instruction present in most other intermediate representations.
5699
5700Arguments:
5701""""""""""
5702
5703The two arguments to the '``sub``' instruction must be
5704:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5705arguments must have identical types.
5706
5707Semantics:
5708""""""""""
5709
5710The value produced is the integer difference of the two operands.
5711
5712If the difference has unsigned overflow, the result returned is the
5713mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5714the result.
5715
5716Because LLVM integers use a two's complement representation, this
5717instruction is appropriate for both signed and unsigned integers.
5718
5719``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5720respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5721result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5722unsigned and/or signed overflow, respectively, occurs.
5723
5724Example:
5725""""""""
5726
5727.. code-block:: llvm
5728
Tim Northover675a0962014-06-13 14:24:23 +00005729 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5730 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005731
5732.. _i_fsub:
5733
5734'``fsub``' Instruction
5735^^^^^^^^^^^^^^^^^^^^^^
5736
5737Syntax:
5738"""""""
5739
5740::
5741
Tim Northover675a0962014-06-13 14:24:23 +00005742 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005743
5744Overview:
5745"""""""""
5746
5747The '``fsub``' instruction returns the difference of its two operands.
5748
5749Note that the '``fsub``' instruction is used to represent the '``fneg``'
5750instruction present in most other intermediate representations.
5751
5752Arguments:
5753""""""""""
5754
5755The two arguments to the '``fsub``' instruction must be :ref:`floating
5756point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5757Both arguments must have identical types.
5758
5759Semantics:
5760""""""""""
5761
5762The value produced is the floating point difference of the two operands.
5763This instruction can also take any number of :ref:`fast-math
5764flags <fastmath>`, which are optimization hints to enable otherwise
5765unsafe floating point optimizations:
5766
5767Example:
5768""""""""
5769
5770.. code-block:: llvm
5771
Tim Northover675a0962014-06-13 14:24:23 +00005772 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5773 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005774
5775'``mul``' Instruction
5776^^^^^^^^^^^^^^^^^^^^^
5777
5778Syntax:
5779"""""""
5780
5781::
5782
Tim Northover675a0962014-06-13 14:24:23 +00005783 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5784 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5785 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5786 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005787
5788Overview:
5789"""""""""
5790
5791The '``mul``' instruction returns the product of its two operands.
5792
5793Arguments:
5794""""""""""
5795
5796The two arguments to the '``mul``' instruction must be
5797:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5798arguments must have identical types.
5799
5800Semantics:
5801""""""""""
5802
5803The value produced is the integer product of the two operands.
5804
5805If the result of the multiplication has unsigned overflow, the result
5806returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5807bit width of the result.
5808
5809Because LLVM integers use a two's complement representation, and the
5810result is the same width as the operands, this instruction returns the
5811correct result for both signed and unsigned integers. If a full product
5812(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5813sign-extended or zero-extended as appropriate to the width of the full
5814product.
5815
5816``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5817respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5818result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5819unsigned and/or signed overflow, respectively, occurs.
5820
5821Example:
5822""""""""
5823
5824.. code-block:: llvm
5825
Tim Northover675a0962014-06-13 14:24:23 +00005826 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005827
5828.. _i_fmul:
5829
5830'``fmul``' Instruction
5831^^^^^^^^^^^^^^^^^^^^^^
5832
5833Syntax:
5834"""""""
5835
5836::
5837
Tim Northover675a0962014-06-13 14:24:23 +00005838 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005839
5840Overview:
5841"""""""""
5842
5843The '``fmul``' instruction returns the product of its two operands.
5844
5845Arguments:
5846""""""""""
5847
5848The two arguments to the '``fmul``' instruction must be :ref:`floating
5849point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5850Both arguments must have identical types.
5851
5852Semantics:
5853""""""""""
5854
5855The value produced is the floating point product of the two operands.
5856This instruction can also take any number of :ref:`fast-math
5857flags <fastmath>`, which are optimization hints to enable otherwise
5858unsafe floating point optimizations:
5859
5860Example:
5861""""""""
5862
5863.. code-block:: llvm
5864
Tim Northover675a0962014-06-13 14:24:23 +00005865 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005866
5867'``udiv``' Instruction
5868^^^^^^^^^^^^^^^^^^^^^^
5869
5870Syntax:
5871"""""""
5872
5873::
5874
Tim Northover675a0962014-06-13 14:24:23 +00005875 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5876 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005877
5878Overview:
5879"""""""""
5880
5881The '``udiv``' instruction returns the quotient of its two operands.
5882
5883Arguments:
5884""""""""""
5885
5886The two arguments to the '``udiv``' instruction must be
5887:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5888arguments must have identical types.
5889
5890Semantics:
5891""""""""""
5892
5893The value produced is the unsigned integer quotient of the two operands.
5894
5895Note that unsigned integer division and signed integer division are
5896distinct operations; for signed integer division, use '``sdiv``'.
5897
5898Division by zero leads to undefined behavior.
5899
5900If the ``exact`` keyword is present, the result value of the ``udiv`` is
5901a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5902such, "((a udiv exact b) mul b) == a").
5903
5904Example:
5905""""""""
5906
5907.. code-block:: llvm
5908
Tim Northover675a0962014-06-13 14:24:23 +00005909 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005910
5911'``sdiv``' Instruction
5912^^^^^^^^^^^^^^^^^^^^^^
5913
5914Syntax:
5915"""""""
5916
5917::
5918
Tim Northover675a0962014-06-13 14:24:23 +00005919 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5920 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005921
5922Overview:
5923"""""""""
5924
5925The '``sdiv``' instruction returns the quotient of its two operands.
5926
5927Arguments:
5928""""""""""
5929
5930The two arguments to the '``sdiv``' instruction must be
5931:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5932arguments must have identical types.
5933
5934Semantics:
5935""""""""""
5936
5937The value produced is the signed integer quotient of the two operands
5938rounded towards zero.
5939
5940Note that signed integer division and unsigned integer division are
5941distinct operations; for unsigned integer division, use '``udiv``'.
5942
5943Division by zero leads to undefined behavior. Overflow also leads to
5944undefined behavior; this is a rare case, but can occur, for example, by
5945doing a 32-bit division of -2147483648 by -1.
5946
5947If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5948a :ref:`poison value <poisonvalues>` if the result would be rounded.
5949
5950Example:
5951""""""""
5952
5953.. code-block:: llvm
5954
Tim Northover675a0962014-06-13 14:24:23 +00005955 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005956
5957.. _i_fdiv:
5958
5959'``fdiv``' Instruction
5960^^^^^^^^^^^^^^^^^^^^^^
5961
5962Syntax:
5963"""""""
5964
5965::
5966
Tim Northover675a0962014-06-13 14:24:23 +00005967 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005968
5969Overview:
5970"""""""""
5971
5972The '``fdiv``' instruction returns the quotient of its two operands.
5973
5974Arguments:
5975""""""""""
5976
5977The two arguments to the '``fdiv``' instruction must be :ref:`floating
5978point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5979Both arguments must have identical types.
5980
5981Semantics:
5982""""""""""
5983
5984The value produced is the floating point quotient of the two operands.
5985This instruction can also take any number of :ref:`fast-math
5986flags <fastmath>`, which are optimization hints to enable otherwise
5987unsafe floating point optimizations:
5988
5989Example:
5990""""""""
5991
5992.. code-block:: llvm
5993
Tim Northover675a0962014-06-13 14:24:23 +00005994 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005995
5996'``urem``' Instruction
5997^^^^^^^^^^^^^^^^^^^^^^
5998
5999Syntax:
6000"""""""
6001
6002::
6003
Tim Northover675a0962014-06-13 14:24:23 +00006004 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006005
6006Overview:
6007"""""""""
6008
6009The '``urem``' instruction returns the remainder from the unsigned
6010division of its two arguments.
6011
6012Arguments:
6013""""""""""
6014
6015The two arguments to the '``urem``' instruction must be
6016:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6017arguments must have identical types.
6018
6019Semantics:
6020""""""""""
6021
6022This instruction returns the unsigned integer *remainder* of a division.
6023This instruction always performs an unsigned division to get the
6024remainder.
6025
6026Note that unsigned integer remainder and signed integer remainder are
6027distinct operations; for signed integer remainder, use '``srem``'.
6028
6029Taking the remainder of a division by zero leads to undefined behavior.
6030
6031Example:
6032""""""""
6033
6034.. code-block:: llvm
6035
Tim Northover675a0962014-06-13 14:24:23 +00006036 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006037
6038'``srem``' Instruction
6039^^^^^^^^^^^^^^^^^^^^^^
6040
6041Syntax:
6042"""""""
6043
6044::
6045
Tim Northover675a0962014-06-13 14:24:23 +00006046 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006047
6048Overview:
6049"""""""""
6050
6051The '``srem``' instruction returns the remainder from the signed
6052division of its two operands. This instruction can also take
6053:ref:`vector <t_vector>` versions of the values in which case the elements
6054must be integers.
6055
6056Arguments:
6057""""""""""
6058
6059The two arguments to the '``srem``' instruction must be
6060:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6061arguments must have identical types.
6062
6063Semantics:
6064""""""""""
6065
6066This instruction returns the *remainder* of a division (where the result
6067is either zero or has the same sign as the dividend, ``op1``), not the
6068*modulo* operator (where the result is either zero or has the same sign
6069as the divisor, ``op2``) of a value. For more information about the
6070difference, see `The Math
6071Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6072table of how this is implemented in various languages, please see
6073`Wikipedia: modulo
6074operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6075
6076Note that signed integer remainder and unsigned integer remainder are
6077distinct operations; for unsigned integer remainder, use '``urem``'.
6078
6079Taking the remainder of a division by zero leads to undefined behavior.
6080Overflow also leads to undefined behavior; this is a rare case, but can
6081occur, for example, by taking the remainder of a 32-bit division of
6082-2147483648 by -1. (The remainder doesn't actually overflow, but this
6083rule lets srem be implemented using instructions that return both the
6084result of the division and the remainder.)
6085
6086Example:
6087""""""""
6088
6089.. code-block:: llvm
6090
Tim Northover675a0962014-06-13 14:24:23 +00006091 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006092
6093.. _i_frem:
6094
6095'``frem``' Instruction
6096^^^^^^^^^^^^^^^^^^^^^^
6097
6098Syntax:
6099"""""""
6100
6101::
6102
Tim Northover675a0962014-06-13 14:24:23 +00006103 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006104
6105Overview:
6106"""""""""
6107
6108The '``frem``' instruction returns the remainder from the division of
6109its two operands.
6110
6111Arguments:
6112""""""""""
6113
6114The two arguments to the '``frem``' instruction must be :ref:`floating
6115point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6116Both arguments must have identical types.
6117
6118Semantics:
6119""""""""""
6120
6121This instruction returns the *remainder* of a division. The remainder
6122has the same sign as the dividend. This instruction can also take any
6123number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6124to enable otherwise unsafe floating point optimizations:
6125
6126Example:
6127""""""""
6128
6129.. code-block:: llvm
6130
Tim Northover675a0962014-06-13 14:24:23 +00006131 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006132
6133.. _bitwiseops:
6134
6135Bitwise Binary Operations
6136-------------------------
6137
6138Bitwise binary operators are used to do various forms of bit-twiddling
6139in a program. They are generally very efficient instructions and can
6140commonly be strength reduced from other instructions. They require two
6141operands of the same type, execute an operation on them, and produce a
6142single value. The resulting value is the same type as its operands.
6143
6144'``shl``' Instruction
6145^^^^^^^^^^^^^^^^^^^^^
6146
6147Syntax:
6148"""""""
6149
6150::
6151
Tim Northover675a0962014-06-13 14:24:23 +00006152 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6153 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6154 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6155 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006156
6157Overview:
6158"""""""""
6159
6160The '``shl``' instruction returns the first operand shifted to the left
6161a specified number of bits.
6162
6163Arguments:
6164""""""""""
6165
6166Both arguments to the '``shl``' instruction must be the same
6167:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6168'``op2``' is treated as an unsigned value.
6169
6170Semantics:
6171""""""""""
6172
6173The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6174where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006175dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006176``op1``, the result is undefined. If the arguments are vectors, each
6177vector element of ``op1`` is shifted by the corresponding shift amount
6178in ``op2``.
6179
6180If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6181value <poisonvalues>` if it shifts out any non-zero bits. If the
6182``nsw`` keyword is present, then the shift produces a :ref:`poison
6183value <poisonvalues>` if it shifts out any bits that disagree with the
6184resultant sign bit. As such, NUW/NSW have the same semantics as they
6185would if the shift were expressed as a mul instruction with the same
6186nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6187
6188Example:
6189""""""""
6190
6191.. code-block:: llvm
6192
Tim Northover675a0962014-06-13 14:24:23 +00006193 <result> = shl i32 4, %var ; yields i32: 4 << %var
6194 <result> = shl i32 4, 2 ; yields i32: 16
6195 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006196 <result> = shl i32 1, 32 ; undefined
6197 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6198
6199'``lshr``' Instruction
6200^^^^^^^^^^^^^^^^^^^^^^
6201
6202Syntax:
6203"""""""
6204
6205::
6206
Tim Northover675a0962014-06-13 14:24:23 +00006207 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6208 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006209
6210Overview:
6211"""""""""
6212
6213The '``lshr``' instruction (logical shift right) returns the first
6214operand shifted to the right a specified number of bits with zero fill.
6215
6216Arguments:
6217""""""""""
6218
6219Both arguments to the '``lshr``' instruction must be the same
6220:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6221'``op2``' is treated as an unsigned value.
6222
6223Semantics:
6224""""""""""
6225
6226This instruction always performs a logical shift right operation. The
6227most significant bits of the result will be filled with zero bits after
6228the shift. If ``op2`` is (statically or dynamically) equal to or larger
6229than the number of bits in ``op1``, the result is undefined. If the
6230arguments are vectors, each vector element of ``op1`` is shifted by the
6231corresponding shift amount in ``op2``.
6232
6233If the ``exact`` keyword is present, the result value of the ``lshr`` is
6234a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6235non-zero.
6236
6237Example:
6238""""""""
6239
6240.. code-block:: llvm
6241
Tim Northover675a0962014-06-13 14:24:23 +00006242 <result> = lshr i32 4, 1 ; yields i32:result = 2
6243 <result> = lshr i32 4, 2 ; yields i32:result = 1
6244 <result> = lshr i8 4, 3 ; yields i8:result = 0
6245 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006246 <result> = lshr i32 1, 32 ; undefined
6247 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6248
6249'``ashr``' Instruction
6250^^^^^^^^^^^^^^^^^^^^^^
6251
6252Syntax:
6253"""""""
6254
6255::
6256
Tim Northover675a0962014-06-13 14:24:23 +00006257 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6258 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006259
6260Overview:
6261"""""""""
6262
6263The '``ashr``' instruction (arithmetic shift right) returns the first
6264operand shifted to the right a specified number of bits with sign
6265extension.
6266
6267Arguments:
6268""""""""""
6269
6270Both arguments to the '``ashr``' instruction must be the same
6271:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6272'``op2``' is treated as an unsigned value.
6273
6274Semantics:
6275""""""""""
6276
6277This instruction always performs an arithmetic shift right operation,
6278The most significant bits of the result will be filled with the sign bit
6279of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6280than the number of bits in ``op1``, the result is undefined. If the
6281arguments are vectors, each vector element of ``op1`` is shifted by the
6282corresponding shift amount in ``op2``.
6283
6284If the ``exact`` keyword is present, the result value of the ``ashr`` is
6285a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6286non-zero.
6287
6288Example:
6289""""""""
6290
6291.. code-block:: llvm
6292
Tim Northover675a0962014-06-13 14:24:23 +00006293 <result> = ashr i32 4, 1 ; yields i32:result = 2
6294 <result> = ashr i32 4, 2 ; yields i32:result = 1
6295 <result> = ashr i8 4, 3 ; yields i8:result = 0
6296 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006297 <result> = ashr i32 1, 32 ; undefined
6298 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6299
6300'``and``' Instruction
6301^^^^^^^^^^^^^^^^^^^^^
6302
6303Syntax:
6304"""""""
6305
6306::
6307
Tim Northover675a0962014-06-13 14:24:23 +00006308 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006309
6310Overview:
6311"""""""""
6312
6313The '``and``' instruction returns the bitwise logical and of its two
6314operands.
6315
6316Arguments:
6317""""""""""
6318
6319The two arguments to the '``and``' instruction must be
6320:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6321arguments must have identical types.
6322
6323Semantics:
6324""""""""""
6325
6326The truth table used for the '``and``' instruction is:
6327
6328+-----+-----+-----+
6329| In0 | In1 | Out |
6330+-----+-----+-----+
6331| 0 | 0 | 0 |
6332+-----+-----+-----+
6333| 0 | 1 | 0 |
6334+-----+-----+-----+
6335| 1 | 0 | 0 |
6336+-----+-----+-----+
6337| 1 | 1 | 1 |
6338+-----+-----+-----+
6339
6340Example:
6341""""""""
6342
6343.. code-block:: llvm
6344
Tim Northover675a0962014-06-13 14:24:23 +00006345 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6346 <result> = and i32 15, 40 ; yields i32:result = 8
6347 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006348
6349'``or``' Instruction
6350^^^^^^^^^^^^^^^^^^^^
6351
6352Syntax:
6353"""""""
6354
6355::
6356
Tim Northover675a0962014-06-13 14:24:23 +00006357 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006358
6359Overview:
6360"""""""""
6361
6362The '``or``' instruction returns the bitwise logical inclusive or of its
6363two operands.
6364
6365Arguments:
6366""""""""""
6367
6368The two arguments to the '``or``' instruction must be
6369:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6370arguments must have identical types.
6371
6372Semantics:
6373""""""""""
6374
6375The truth table used for the '``or``' instruction is:
6376
6377+-----+-----+-----+
6378| In0 | In1 | Out |
6379+-----+-----+-----+
6380| 0 | 0 | 0 |
6381+-----+-----+-----+
6382| 0 | 1 | 1 |
6383+-----+-----+-----+
6384| 1 | 0 | 1 |
6385+-----+-----+-----+
6386| 1 | 1 | 1 |
6387+-----+-----+-----+
6388
6389Example:
6390""""""""
6391
6392::
6393
Tim Northover675a0962014-06-13 14:24:23 +00006394 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6395 <result> = or i32 15, 40 ; yields i32:result = 47
6396 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006397
6398'``xor``' Instruction
6399^^^^^^^^^^^^^^^^^^^^^
6400
6401Syntax:
6402"""""""
6403
6404::
6405
Tim Northover675a0962014-06-13 14:24:23 +00006406 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006407
6408Overview:
6409"""""""""
6410
6411The '``xor``' instruction returns the bitwise logical exclusive or of
6412its two operands. The ``xor`` is used to implement the "one's
6413complement" operation, which is the "~" operator in C.
6414
6415Arguments:
6416""""""""""
6417
6418The two arguments to the '``xor``' instruction must be
6419:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6420arguments must have identical types.
6421
6422Semantics:
6423""""""""""
6424
6425The truth table used for the '``xor``' instruction is:
6426
6427+-----+-----+-----+
6428| In0 | In1 | Out |
6429+-----+-----+-----+
6430| 0 | 0 | 0 |
6431+-----+-----+-----+
6432| 0 | 1 | 1 |
6433+-----+-----+-----+
6434| 1 | 0 | 1 |
6435+-----+-----+-----+
6436| 1 | 1 | 0 |
6437+-----+-----+-----+
6438
6439Example:
6440""""""""
6441
6442.. code-block:: llvm
6443
Tim Northover675a0962014-06-13 14:24:23 +00006444 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6445 <result> = xor i32 15, 40 ; yields i32:result = 39
6446 <result> = xor i32 4, 8 ; yields i32:result = 12
6447 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006448
6449Vector Operations
6450-----------------
6451
6452LLVM supports several instructions to represent vector operations in a
6453target-independent manner. These instructions cover the element-access
6454and vector-specific operations needed to process vectors effectively.
6455While LLVM does directly support these vector operations, many
6456sophisticated algorithms will want to use target-specific intrinsics to
6457take full advantage of a specific target.
6458
6459.. _i_extractelement:
6460
6461'``extractelement``' Instruction
6462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6463
6464Syntax:
6465"""""""
6466
6467::
6468
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006469 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006470
6471Overview:
6472"""""""""
6473
6474The '``extractelement``' instruction extracts a single scalar element
6475from a vector at a specified index.
6476
6477Arguments:
6478""""""""""
6479
6480The first operand of an '``extractelement``' instruction is a value of
6481:ref:`vector <t_vector>` type. The second operand is an index indicating
6482the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006483variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006484
6485Semantics:
6486""""""""""
6487
6488The result is a scalar of the same type as the element type of ``val``.
6489Its value is the value at position ``idx`` of ``val``. If ``idx``
6490exceeds the length of ``val``, the results are undefined.
6491
6492Example:
6493""""""""
6494
6495.. code-block:: llvm
6496
6497 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6498
6499.. _i_insertelement:
6500
6501'``insertelement``' Instruction
6502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6503
6504Syntax:
6505"""""""
6506
6507::
6508
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006509 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006510
6511Overview:
6512"""""""""
6513
6514The '``insertelement``' instruction inserts a scalar element into a
6515vector at a specified index.
6516
6517Arguments:
6518""""""""""
6519
6520The first operand of an '``insertelement``' instruction is a value of
6521:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6522type must equal the element type of the first operand. The third operand
6523is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006524index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006525
6526Semantics:
6527""""""""""
6528
6529The result is a vector of the same type as ``val``. Its element values
6530are those of ``val`` except at position ``idx``, where it gets the value
6531``elt``. If ``idx`` exceeds the length of ``val``, the results are
6532undefined.
6533
6534Example:
6535""""""""
6536
6537.. code-block:: llvm
6538
6539 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6540
6541.. _i_shufflevector:
6542
6543'``shufflevector``' Instruction
6544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6545
6546Syntax:
6547"""""""
6548
6549::
6550
6551 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6552
6553Overview:
6554"""""""""
6555
6556The '``shufflevector``' instruction constructs a permutation of elements
6557from two input vectors, returning a vector with the same element type as
6558the input and length that is the same as the shuffle mask.
6559
6560Arguments:
6561""""""""""
6562
6563The first two operands of a '``shufflevector``' instruction are vectors
6564with the same type. The third argument is a shuffle mask whose element
6565type is always 'i32'. The result of the instruction is a vector whose
6566length is the same as the shuffle mask and whose element type is the
6567same as the element type of the first two operands.
6568
6569The shuffle mask operand is required to be a constant vector with either
6570constant integer or undef values.
6571
6572Semantics:
6573""""""""""
6574
6575The elements of the two input vectors are numbered from left to right
6576across both of the vectors. The shuffle mask operand specifies, for each
6577element of the result vector, which element of the two input vectors the
6578result element gets. The element selector may be undef (meaning "don't
6579care") and the second operand may be undef if performing a shuffle from
6580only one vector.
6581
6582Example:
6583""""""""
6584
6585.. code-block:: llvm
6586
6587 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6588 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6589 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6590 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6591 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6592 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6593 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6594 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6595
6596Aggregate Operations
6597--------------------
6598
6599LLVM supports several instructions for working with
6600:ref:`aggregate <t_aggregate>` values.
6601
6602.. _i_extractvalue:
6603
6604'``extractvalue``' Instruction
6605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6606
6607Syntax:
6608"""""""
6609
6610::
6611
6612 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6613
6614Overview:
6615"""""""""
6616
6617The '``extractvalue``' instruction extracts the value of a member field
6618from an :ref:`aggregate <t_aggregate>` value.
6619
6620Arguments:
6621""""""""""
6622
6623The first operand of an '``extractvalue``' instruction is a value of
6624:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6625constant indices to specify which value to extract in a similar manner
6626as indices in a '``getelementptr``' instruction.
6627
6628The major differences to ``getelementptr`` indexing are:
6629
6630- Since the value being indexed is not a pointer, the first index is
6631 omitted and assumed to be zero.
6632- At least one index must be specified.
6633- Not only struct indices but also array indices must be in bounds.
6634
6635Semantics:
6636""""""""""
6637
6638The result is the value at the position in the aggregate specified by
6639the index operands.
6640
6641Example:
6642""""""""
6643
6644.. code-block:: llvm
6645
6646 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6647
6648.. _i_insertvalue:
6649
6650'``insertvalue``' Instruction
6651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6652
6653Syntax:
6654"""""""
6655
6656::
6657
6658 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6659
6660Overview:
6661"""""""""
6662
6663The '``insertvalue``' instruction inserts a value into a member field in
6664an :ref:`aggregate <t_aggregate>` value.
6665
6666Arguments:
6667""""""""""
6668
6669The first operand of an '``insertvalue``' instruction is a value of
6670:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6671a first-class value to insert. The following operands are constant
6672indices indicating the position at which to insert the value in a
6673similar manner as indices in a '``extractvalue``' instruction. The value
6674to insert must have the same type as the value identified by the
6675indices.
6676
6677Semantics:
6678""""""""""
6679
6680The result is an aggregate of the same type as ``val``. Its value is
6681that of ``val`` except that the value at the position specified by the
6682indices is that of ``elt``.
6683
6684Example:
6685""""""""
6686
6687.. code-block:: llvm
6688
6689 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6690 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006691 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006692
6693.. _memoryops:
6694
6695Memory Access and Addressing Operations
6696---------------------------------------
6697
6698A key design point of an SSA-based representation is how it represents
6699memory. In LLVM, no memory locations are in SSA form, which makes things
6700very simple. This section describes how to read, write, and allocate
6701memory in LLVM.
6702
6703.. _i_alloca:
6704
6705'``alloca``' Instruction
6706^^^^^^^^^^^^^^^^^^^^^^^^
6707
6708Syntax:
6709"""""""
6710
6711::
6712
Tim Northover675a0962014-06-13 14:24:23 +00006713 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006714
6715Overview:
6716"""""""""
6717
6718The '``alloca``' instruction allocates memory on the stack frame of the
6719currently executing function, to be automatically released when this
6720function returns to its caller. The object is always allocated in the
6721generic address space (address space zero).
6722
6723Arguments:
6724""""""""""
6725
6726The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6727bytes of memory on the runtime stack, returning a pointer of the
6728appropriate type to the program. If "NumElements" is specified, it is
6729the number of elements allocated, otherwise "NumElements" is defaulted
6730to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006731allocation is guaranteed to be aligned to at least that boundary. The
6732alignment may not be greater than ``1 << 29``. If not specified, or if
6733zero, the target can choose to align the allocation on any convenient
6734boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006735
6736'``type``' may be any sized type.
6737
6738Semantics:
6739""""""""""
6740
6741Memory is allocated; a pointer is returned. The operation is undefined
6742if there is insufficient stack space for the allocation. '``alloca``'d
6743memory is automatically released when the function returns. The
6744'``alloca``' instruction is commonly used to represent automatic
6745variables that must have an address available. When the function returns
6746(either with the ``ret`` or ``resume`` instructions), the memory is
6747reclaimed. Allocating zero bytes is legal, but the result is undefined.
6748The order in which memory is allocated (ie., which way the stack grows)
6749is not specified.
6750
6751Example:
6752""""""""
6753
6754.. code-block:: llvm
6755
Tim Northover675a0962014-06-13 14:24:23 +00006756 %ptr = alloca i32 ; yields i32*:ptr
6757 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6758 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6759 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006760
6761.. _i_load:
6762
6763'``load``' Instruction
6764^^^^^^^^^^^^^^^^^^^^^^
6765
6766Syntax:
6767"""""""
6768
6769::
6770
Sanjoy Dasf9995472015-05-19 20:10:19 +00006771 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006772 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
6773 !<index> = !{ i32 1 }
6774
6775Overview:
6776"""""""""
6777
6778The '``load``' instruction is used to read from memory.
6779
6780Arguments:
6781""""""""""
6782
Eli Bendersky239a78b2013-04-17 20:17:08 +00006783The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006784from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006785class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6786then the optimizer is not allowed to modify the number or order of
6787execution of this ``load`` with other :ref:`volatile
6788operations <volatile>`.
6789
6790If the ``load`` is marked as ``atomic``, it takes an extra
6791:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6792``release`` and ``acq_rel`` orderings are not valid on ``load``
6793instructions. Atomic loads produce :ref:`defined <memmodel>` results
6794when they may see multiple atomic stores. The type of the pointee must
6795be an integer type whose bit width is a power of two greater than or
6796equal to eight and less than or equal to a target-specific size limit.
6797``align`` must be explicitly specified on atomic loads, and the load has
6798undefined behavior if the alignment is not set to a value which is at
6799least the size in bytes of the pointee. ``!nontemporal`` does not have
6800any defined semantics for atomic loads.
6801
6802The optional constant ``align`` argument specifies the alignment of the
6803operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006804or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006805alignment for the target. It is the responsibility of the code emitter
6806to ensure that the alignment information is correct. Overestimating the
6807alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006808may produce less efficient code. An alignment of 1 is always safe. The
6809maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006810
6811The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006812metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006813``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006814metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006815that this load is not expected to be reused in the cache. The code
6816generator may select special instructions to save cache bandwidth, such
6817as the ``MOVNT`` instruction on x86.
6818
6819The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006820metadata name ``<index>`` corresponding to a metadata node with no
6821entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006822instruction tells the optimizer and code generator that the address
6823operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006824Being invariant does not imply that a location is dereferenceable,
6825but it does imply that once the location is known dereferenceable
6826its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006827
Philip Reamescdb72f32014-10-20 22:40:55 +00006828The optional ``!nonnull`` metadata must reference a single
6829metadata name ``<index>`` corresponding to a metadata node with no
6830entries. The existence of the ``!nonnull`` metadata on the
6831instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006832never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006833on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006834to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006835
Sanjoy Dasf9995472015-05-19 20:10:19 +00006836The optional ``!dereferenceable`` metadata must reference a single
6837metadata name ``<index>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006838entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006839tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006840The number of bytes known to be dereferenceable is specified by the integer
6841value in the metadata node. This is analogous to the ''dereferenceable''
6842attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006843to loads of a pointer type.
6844
6845The optional ``!dereferenceable_or_null`` metadata must reference a single
6846metadata name ``<index>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006847entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006848instruction tells the optimizer that the value loaded is known to be either
6849dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006850The number of bytes known to be dereferenceable is specified by the integer
6851value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6852attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006853to loads of a pointer type.
6854
Sean Silvab084af42012-12-07 10:36:55 +00006855Semantics:
6856""""""""""
6857
6858The location of memory pointed to is loaded. If the value being loaded
6859is of scalar type then the number of bytes read does not exceed the
6860minimum number of bytes needed to hold all bits of the type. For
6861example, loading an ``i24`` reads at most three bytes. When loading a
6862value of a type like ``i20`` with a size that is not an integral number
6863of bytes, the result is undefined if the value was not originally
6864written using a store of the same type.
6865
6866Examples:
6867"""""""""
6868
6869.. code-block:: llvm
6870
Tim Northover675a0962014-06-13 14:24:23 +00006871 %ptr = alloca i32 ; yields i32*:ptr
6872 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006873 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006874
6875.. _i_store:
6876
6877'``store``' Instruction
6878^^^^^^^^^^^^^^^^^^^^^^^
6879
6880Syntax:
6881"""""""
6882
6883::
6884
Tim Northover675a0962014-06-13 14:24:23 +00006885 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
6886 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006887
6888Overview:
6889"""""""""
6890
6891The '``store``' instruction is used to write to memory.
6892
6893Arguments:
6894""""""""""
6895
Eli Benderskyca380842013-04-17 17:17:20 +00006896There are two arguments to the ``store`` instruction: a value to store
6897and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006898operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006899the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006900then the optimizer is not allowed to modify the number or order of
6901execution of this ``store`` with other :ref:`volatile
6902operations <volatile>`.
6903
6904If the ``store`` is marked as ``atomic``, it takes an extra
6905:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6906``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6907instructions. Atomic loads produce :ref:`defined <memmodel>` results
6908when they may see multiple atomic stores. The type of the pointee must
6909be an integer type whose bit width is a power of two greater than or
6910equal to eight and less than or equal to a target-specific size limit.
6911``align`` must be explicitly specified on atomic stores, and the store
6912has undefined behavior if the alignment is not set to a value which is
6913at least the size in bytes of the pointee. ``!nontemporal`` does not
6914have any defined semantics for atomic stores.
6915
Eli Benderskyca380842013-04-17 17:17:20 +00006916The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006917operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006918or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006919alignment for the target. It is the responsibility of the code emitter
6920to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006921alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006922alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006923safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006924
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006925The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006926name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006927value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006928tells the optimizer and code generator that this load is not expected to
6929be reused in the cache. The code generator may select special
6930instructions to save cache bandwidth, such as the MOVNT instruction on
6931x86.
6932
6933Semantics:
6934""""""""""
6935
Eli Benderskyca380842013-04-17 17:17:20 +00006936The contents of memory are updated to contain ``<value>`` at the
6937location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006938of scalar type then the number of bytes written does not exceed the
6939minimum number of bytes needed to hold all bits of the type. For
6940example, storing an ``i24`` writes at most three bytes. When writing a
6941value of a type like ``i20`` with a size that is not an integral number
6942of bytes, it is unspecified what happens to the extra bits that do not
6943belong to the type, but they will typically be overwritten.
6944
6945Example:
6946""""""""
6947
6948.. code-block:: llvm
6949
Tim Northover675a0962014-06-13 14:24:23 +00006950 %ptr = alloca i32 ; yields i32*:ptr
6951 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00006952 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006953
6954.. _i_fence:
6955
6956'``fence``' Instruction
6957^^^^^^^^^^^^^^^^^^^^^^^
6958
6959Syntax:
6960"""""""
6961
6962::
6963
Tim Northover675a0962014-06-13 14:24:23 +00006964 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006965
6966Overview:
6967"""""""""
6968
6969The '``fence``' instruction is used to introduce happens-before edges
6970between operations.
6971
6972Arguments:
6973""""""""""
6974
6975'``fence``' instructions take an :ref:`ordering <ordering>` argument which
6976defines what *synchronizes-with* edges they add. They can only be given
6977``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
6978
6979Semantics:
6980""""""""""
6981
6982A fence A which has (at least) ``release`` ordering semantics
6983*synchronizes with* a fence B with (at least) ``acquire`` ordering
6984semantics if and only if there exist atomic operations X and Y, both
6985operating on some atomic object M, such that A is sequenced before X, X
6986modifies M (either directly or through some side effect of a sequence
6987headed by X), Y is sequenced before B, and Y observes M. This provides a
6988*happens-before* dependency between A and B. Rather than an explicit
6989``fence``, one (but not both) of the atomic operations X or Y might
6990provide a ``release`` or ``acquire`` (resp.) ordering constraint and
6991still *synchronize-with* the explicit ``fence`` and establish the
6992*happens-before* edge.
6993
6994A ``fence`` which has ``seq_cst`` ordering, in addition to having both
6995``acquire`` and ``release`` semantics specified above, participates in
6996the global program order of other ``seq_cst`` operations and/or fences.
6997
6998The optional ":ref:`singlethread <singlethread>`" argument specifies
6999that the fence only synchronizes with other fences in the same thread.
7000(This is useful for interacting with signal handlers.)
7001
7002Example:
7003""""""""
7004
7005.. code-block:: llvm
7006
Tim Northover675a0962014-06-13 14:24:23 +00007007 fence acquire ; yields void
7008 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007009
7010.. _i_cmpxchg:
7011
7012'``cmpxchg``' Instruction
7013^^^^^^^^^^^^^^^^^^^^^^^^^
7014
7015Syntax:
7016"""""""
7017
7018::
7019
Tim Northover675a0962014-06-13 14:24:23 +00007020 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007021
7022Overview:
7023"""""""""
7024
7025The '``cmpxchg``' instruction is used to atomically modify memory. It
7026loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007027equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007028
7029Arguments:
7030""""""""""
7031
7032There are three arguments to the '``cmpxchg``' instruction: an address
7033to operate on, a value to compare to the value currently be at that
7034address, and a new value to place at that address if the compared values
7035are equal. The type of '<cmp>' must be an integer type whose bit width
7036is a power of two greater than or equal to eight and less than or equal
7037to a target-specific size limit. '<cmp>' and '<new>' must have the same
7038type, and the type of '<pointer>' must be a pointer to that type. If the
7039``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7040to modify the number or order of execution of this ``cmpxchg`` with
7041other :ref:`volatile operations <volatile>`.
7042
Tim Northovere94a5182014-03-11 10:48:52 +00007043The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007044``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7045must be at least ``monotonic``, the ordering constraint on failure must be no
7046stronger than that on success, and the failure ordering cannot be either
7047``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007048
7049The optional "``singlethread``" argument declares that the ``cmpxchg``
7050is only atomic with respect to code (usually signal handlers) running in
7051the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7052respect to all other code in the system.
7053
7054The pointer passed into cmpxchg must have alignment greater than or
7055equal to the size in memory of the operand.
7056
7057Semantics:
7058""""""""""
7059
Tim Northover420a2162014-06-13 14:24:07 +00007060The contents of memory at the location specified by the '``<pointer>``' operand
7061is read and compared to '``<cmp>``'; if the read value is the equal, the
7062'``<new>``' is written. The original value at the location is returned, together
7063with a flag indicating success (true) or failure (false).
7064
7065If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7066permitted: the operation may not write ``<new>`` even if the comparison
7067matched.
7068
7069If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7070if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007071
Tim Northovere94a5182014-03-11 10:48:52 +00007072A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7073identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7074load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007075
7076Example:
7077""""""""
7078
7079.. code-block:: llvm
7080
7081 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007082 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007083 br label %loop
7084
7085 loop:
7086 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7087 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007088 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007089 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7090 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007091 br i1 %success, label %done, label %loop
7092
7093 done:
7094 ...
7095
7096.. _i_atomicrmw:
7097
7098'``atomicrmw``' Instruction
7099^^^^^^^^^^^^^^^^^^^^^^^^^^^
7100
7101Syntax:
7102"""""""
7103
7104::
7105
Tim Northover675a0962014-06-13 14:24:23 +00007106 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007107
7108Overview:
7109"""""""""
7110
7111The '``atomicrmw``' instruction is used to atomically modify memory.
7112
7113Arguments:
7114""""""""""
7115
7116There are three arguments to the '``atomicrmw``' instruction: an
7117operation to apply, an address whose value to modify, an argument to the
7118operation. The operation must be one of the following keywords:
7119
7120- xchg
7121- add
7122- sub
7123- and
7124- nand
7125- or
7126- xor
7127- max
7128- min
7129- umax
7130- umin
7131
7132The type of '<value>' must be an integer type whose bit width is a power
7133of two greater than or equal to eight and less than or equal to a
7134target-specific size limit. The type of the '``<pointer>``' operand must
7135be a pointer to that type. If the ``atomicrmw`` is marked as
7136``volatile``, then the optimizer is not allowed to modify the number or
7137order of execution of this ``atomicrmw`` with other :ref:`volatile
7138operations <volatile>`.
7139
7140Semantics:
7141""""""""""
7142
7143The contents of memory at the location specified by the '``<pointer>``'
7144operand are atomically read, modified, and written back. The original
7145value at the location is returned. The modification is specified by the
7146operation argument:
7147
7148- xchg: ``*ptr = val``
7149- add: ``*ptr = *ptr + val``
7150- sub: ``*ptr = *ptr - val``
7151- and: ``*ptr = *ptr & val``
7152- nand: ``*ptr = ~(*ptr & val)``
7153- or: ``*ptr = *ptr | val``
7154- xor: ``*ptr = *ptr ^ val``
7155- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7156- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7157- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7158 comparison)
7159- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7160 comparison)
7161
7162Example:
7163""""""""
7164
7165.. code-block:: llvm
7166
Tim Northover675a0962014-06-13 14:24:23 +00007167 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007168
7169.. _i_getelementptr:
7170
7171'``getelementptr``' Instruction
7172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7173
7174Syntax:
7175"""""""
7176
7177::
7178
David Blaikie16a97eb2015-03-04 22:02:58 +00007179 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7180 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7181 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007182
7183Overview:
7184"""""""""
7185
7186The '``getelementptr``' instruction is used to get the address of a
7187subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007188address calculation only and does not access memory. The instruction can also
7189be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007190
7191Arguments:
7192""""""""""
7193
David Blaikie16a97eb2015-03-04 22:02:58 +00007194The first argument is always a type used as the basis for the calculations.
7195The second argument is always a pointer or a vector of pointers, and is the
7196base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007197that indicate which of the elements of the aggregate object are indexed.
7198The interpretation of each index is dependent on the type being indexed
7199into. The first index always indexes the pointer value given as the
7200first argument, the second index indexes a value of the type pointed to
7201(not necessarily the value directly pointed to, since the first index
7202can be non-zero), etc. The first type indexed into must be a pointer
7203value, subsequent types can be arrays, vectors, and structs. Note that
7204subsequent types being indexed into can never be pointers, since that
7205would require loading the pointer before continuing calculation.
7206
7207The type of each index argument depends on the type it is indexing into.
7208When indexing into a (optionally packed) structure, only ``i32`` integer
7209**constants** are allowed (when using a vector of indices they must all
7210be the **same** ``i32`` integer constant). When indexing into an array,
7211pointer or vector, integers of any width are allowed, and they are not
7212required to be constant. These integers are treated as signed values
7213where relevant.
7214
7215For example, let's consider a C code fragment and how it gets compiled
7216to LLVM:
7217
7218.. code-block:: c
7219
7220 struct RT {
7221 char A;
7222 int B[10][20];
7223 char C;
7224 };
7225 struct ST {
7226 int X;
7227 double Y;
7228 struct RT Z;
7229 };
7230
7231 int *foo(struct ST *s) {
7232 return &s[1].Z.B[5][13];
7233 }
7234
7235The LLVM code generated by Clang is:
7236
7237.. code-block:: llvm
7238
7239 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7240 %struct.ST = type { i32, double, %struct.RT }
7241
7242 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7243 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007244 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007245 ret i32* %arrayidx
7246 }
7247
7248Semantics:
7249""""""""""
7250
7251In the example above, the first index is indexing into the
7252'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7253= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7254indexes into the third element of the structure, yielding a
7255'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7256structure. The third index indexes into the second element of the
7257structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7258dimensions of the array are subscripted into, yielding an '``i32``'
7259type. The '``getelementptr``' instruction returns a pointer to this
7260element, thus computing a value of '``i32*``' type.
7261
7262Note that it is perfectly legal to index partially through a structure,
7263returning a pointer to an inner element. Because of this, the LLVM code
7264for the given testcase is equivalent to:
7265
7266.. code-block:: llvm
7267
7268 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007269 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7270 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7271 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7272 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7273 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007274 ret i32* %t5
7275 }
7276
7277If the ``inbounds`` keyword is present, the result value of the
7278``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7279pointer is not an *in bounds* address of an allocated object, or if any
7280of the addresses that would be formed by successive addition of the
7281offsets implied by the indices to the base address with infinitely
7282precise signed arithmetic are not an *in bounds* address of that
7283allocated object. The *in bounds* addresses for an allocated object are
7284all the addresses that point into the object, plus the address one byte
7285past the end. In cases where the base is a vector of pointers the
7286``inbounds`` keyword applies to each of the computations element-wise.
7287
7288If the ``inbounds`` keyword is not present, the offsets are added to the
7289base address with silently-wrapping two's complement arithmetic. If the
7290offsets have a different width from the pointer, they are sign-extended
7291or truncated to the width of the pointer. The result value of the
7292``getelementptr`` may be outside the object pointed to by the base
7293pointer. The result value may not necessarily be used to access memory
7294though, even if it happens to point into allocated storage. See the
7295:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7296information.
7297
7298The getelementptr instruction is often confusing. For some more insight
7299into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7300
7301Example:
7302""""""""
7303
7304.. code-block:: llvm
7305
7306 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007307 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007308 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007309 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007310 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007311 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007312 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007313 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007314
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007315Vector of pointers:
7316"""""""""""""""""""
7317
7318The ``getelementptr`` returns a vector of pointers, instead of a single address,
7319when one or more of its arguments is a vector. In such cases, all vector
7320arguments should have the same number of elements, and every scalar argument
7321will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007322
7323.. code-block:: llvm
7324
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007325 ; All arguments are vectors:
7326 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7327 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007328
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007329 ; Add the same scalar offset to each pointer of a vector:
7330 ; A[i] = ptrs[i] + offset*sizeof(i8)
7331 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007332
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007333 ; Add distinct offsets to the same pointer:
7334 ; A[i] = ptr + offsets[i]*sizeof(i8)
7335 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007336
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007337 ; In all cases described above the type of the result is <4 x i8*>
7338
7339The two following instructions are equivalent:
7340
7341.. code-block:: llvm
7342
7343 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7344 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7345 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7346 <4 x i32> %ind4,
7347 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007348
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007349 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7350 i32 2, i32 1, <4 x i32> %ind4, i64 13
7351
7352Let's look at the C code, where the vector version of ``getelementptr``
7353makes sense:
7354
7355.. code-block:: c
7356
7357 // Let's assume that we vectorize the following loop:
7358 double *A, B; int *C;
7359 for (int i = 0; i < size; ++i) {
7360 A[i] = B[C[i]];
7361 }
7362
7363.. code-block:: llvm
7364
7365 ; get pointers for 8 elements from array B
7366 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7367 ; load 8 elements from array B into A
7368 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7369 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007370
7371Conversion Operations
7372---------------------
7373
7374The instructions in this category are the conversion instructions
7375(casting) which all take a single operand and a type. They perform
7376various bit conversions on the operand.
7377
7378'``trunc .. to``' Instruction
7379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7380
7381Syntax:
7382"""""""
7383
7384::
7385
7386 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7387
7388Overview:
7389"""""""""
7390
7391The '``trunc``' instruction truncates its operand to the type ``ty2``.
7392
7393Arguments:
7394""""""""""
7395
7396The '``trunc``' instruction takes a value to trunc, and a type to trunc
7397it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7398of the same number of integers. The bit size of the ``value`` must be
7399larger than the bit size of the destination type, ``ty2``. Equal sized
7400types are not allowed.
7401
7402Semantics:
7403""""""""""
7404
7405The '``trunc``' instruction truncates the high order bits in ``value``
7406and converts the remaining bits to ``ty2``. Since the source size must
7407be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7408It will always truncate bits.
7409
7410Example:
7411""""""""
7412
7413.. code-block:: llvm
7414
7415 %X = trunc i32 257 to i8 ; yields i8:1
7416 %Y = trunc i32 123 to i1 ; yields i1:true
7417 %Z = trunc i32 122 to i1 ; yields i1:false
7418 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7419
7420'``zext .. to``' Instruction
7421^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7422
7423Syntax:
7424"""""""
7425
7426::
7427
7428 <result> = zext <ty> <value> to <ty2> ; yields ty2
7429
7430Overview:
7431"""""""""
7432
7433The '``zext``' instruction zero extends its operand to type ``ty2``.
7434
7435Arguments:
7436""""""""""
7437
7438The '``zext``' instruction takes a value to cast, and a type to cast it
7439to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7440the same number of integers. The bit size of the ``value`` must be
7441smaller than the bit size of the destination type, ``ty2``.
7442
7443Semantics:
7444""""""""""
7445
7446The ``zext`` fills the high order bits of the ``value`` with zero bits
7447until it reaches the size of the destination type, ``ty2``.
7448
7449When zero extending from i1, the result will always be either 0 or 1.
7450
7451Example:
7452""""""""
7453
7454.. code-block:: llvm
7455
7456 %X = zext i32 257 to i64 ; yields i64:257
7457 %Y = zext i1 true to i32 ; yields i32:1
7458 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7459
7460'``sext .. to``' Instruction
7461^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7462
7463Syntax:
7464"""""""
7465
7466::
7467
7468 <result> = sext <ty> <value> to <ty2> ; yields ty2
7469
7470Overview:
7471"""""""""
7472
7473The '``sext``' sign extends ``value`` to the type ``ty2``.
7474
7475Arguments:
7476""""""""""
7477
7478The '``sext``' instruction takes a value to cast, and a type to cast it
7479to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7480the same number of integers. The bit size of the ``value`` must be
7481smaller than the bit size of the destination type, ``ty2``.
7482
7483Semantics:
7484""""""""""
7485
7486The '``sext``' instruction performs a sign extension by copying the sign
7487bit (highest order bit) of the ``value`` until it reaches the bit size
7488of the type ``ty2``.
7489
7490When sign extending from i1, the extension always results in -1 or 0.
7491
7492Example:
7493""""""""
7494
7495.. code-block:: llvm
7496
7497 %X = sext i8 -1 to i16 ; yields i16 :65535
7498 %Y = sext i1 true to i32 ; yields i32:-1
7499 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7500
7501'``fptrunc .. to``' Instruction
7502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7503
7504Syntax:
7505"""""""
7506
7507::
7508
7509 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7510
7511Overview:
7512"""""""""
7513
7514The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7515
7516Arguments:
7517""""""""""
7518
7519The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7520value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7521The size of ``value`` must be larger than the size of ``ty2``. This
7522implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7523
7524Semantics:
7525""""""""""
7526
Dan Liew50456fb2015-09-03 18:43:56 +00007527The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007528:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007529point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7530destination type, ``ty2``, then the results are undefined. If the cast produces
7531an inexact result, how rounding is performed (e.g. truncation, also known as
7532round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007533
7534Example:
7535""""""""
7536
7537.. code-block:: llvm
7538
7539 %X = fptrunc double 123.0 to float ; yields float:123.0
7540 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7541
7542'``fpext .. to``' Instruction
7543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7544
7545Syntax:
7546"""""""
7547
7548::
7549
7550 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7551
7552Overview:
7553"""""""""
7554
7555The '``fpext``' extends a floating point ``value`` to a larger floating
7556point value.
7557
7558Arguments:
7559""""""""""
7560
7561The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7562``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7563to. The source type must be smaller than the destination type.
7564
7565Semantics:
7566""""""""""
7567
7568The '``fpext``' instruction extends the ``value`` from a smaller
7569:ref:`floating point <t_floating>` type to a larger :ref:`floating
7570point <t_floating>` type. The ``fpext`` cannot be used to make a
7571*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7572*no-op cast* for a floating point cast.
7573
7574Example:
7575""""""""
7576
7577.. code-block:: llvm
7578
7579 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7580 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7581
7582'``fptoui .. to``' Instruction
7583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7584
7585Syntax:
7586"""""""
7587
7588::
7589
7590 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7591
7592Overview:
7593"""""""""
7594
7595The '``fptoui``' converts a floating point ``value`` to its unsigned
7596integer equivalent of type ``ty2``.
7597
7598Arguments:
7599""""""""""
7600
7601The '``fptoui``' instruction takes a value to cast, which must be a
7602scalar or vector :ref:`floating point <t_floating>` value, and a type to
7603cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7604``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7605type with the same number of elements as ``ty``
7606
7607Semantics:
7608""""""""""
7609
7610The '``fptoui``' instruction converts its :ref:`floating
7611point <t_floating>` operand into the nearest (rounding towards zero)
7612unsigned integer value. If the value cannot fit in ``ty2``, the results
7613are undefined.
7614
7615Example:
7616""""""""
7617
7618.. code-block:: llvm
7619
7620 %X = fptoui double 123.0 to i32 ; yields i32:123
7621 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7622 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7623
7624'``fptosi .. to``' Instruction
7625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7626
7627Syntax:
7628"""""""
7629
7630::
7631
7632 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7633
7634Overview:
7635"""""""""
7636
7637The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7638``value`` to type ``ty2``.
7639
7640Arguments:
7641""""""""""
7642
7643The '``fptosi``' instruction takes a value to cast, which must be a
7644scalar or vector :ref:`floating point <t_floating>` value, and a type to
7645cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7646``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7647type with the same number of elements as ``ty``
7648
7649Semantics:
7650""""""""""
7651
7652The '``fptosi``' instruction converts its :ref:`floating
7653point <t_floating>` operand into the nearest (rounding towards zero)
7654signed integer value. If the value cannot fit in ``ty2``, the results
7655are undefined.
7656
7657Example:
7658""""""""
7659
7660.. code-block:: llvm
7661
7662 %X = fptosi double -123.0 to i32 ; yields i32:-123
7663 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7664 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7665
7666'``uitofp .. to``' Instruction
7667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7668
7669Syntax:
7670"""""""
7671
7672::
7673
7674 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7675
7676Overview:
7677"""""""""
7678
7679The '``uitofp``' instruction regards ``value`` as an unsigned integer
7680and converts that value to the ``ty2`` type.
7681
7682Arguments:
7683""""""""""
7684
7685The '``uitofp``' instruction takes a value to cast, which must be a
7686scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7687``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7688``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7689type with the same number of elements as ``ty``
7690
7691Semantics:
7692""""""""""
7693
7694The '``uitofp``' instruction interprets its operand as an unsigned
7695integer quantity and converts it to the corresponding floating point
7696value. If the value cannot fit in the floating point value, the results
7697are undefined.
7698
7699Example:
7700""""""""
7701
7702.. code-block:: llvm
7703
7704 %X = uitofp i32 257 to float ; yields float:257.0
7705 %Y = uitofp i8 -1 to double ; yields double:255.0
7706
7707'``sitofp .. to``' Instruction
7708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7709
7710Syntax:
7711"""""""
7712
7713::
7714
7715 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7716
7717Overview:
7718"""""""""
7719
7720The '``sitofp``' instruction regards ``value`` as a signed integer and
7721converts that value to the ``ty2`` type.
7722
7723Arguments:
7724""""""""""
7725
7726The '``sitofp``' instruction takes a value to cast, which must be a
7727scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7728``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7729``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7730type with the same number of elements as ``ty``
7731
7732Semantics:
7733""""""""""
7734
7735The '``sitofp``' instruction interprets its operand as a signed integer
7736quantity and converts it to the corresponding floating point value. If
7737the value cannot fit in the floating point value, the results are
7738undefined.
7739
7740Example:
7741""""""""
7742
7743.. code-block:: llvm
7744
7745 %X = sitofp i32 257 to float ; yields float:257.0
7746 %Y = sitofp i8 -1 to double ; yields double:-1.0
7747
7748.. _i_ptrtoint:
7749
7750'``ptrtoint .. to``' Instruction
7751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7752
7753Syntax:
7754"""""""
7755
7756::
7757
7758 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7759
7760Overview:
7761"""""""""
7762
7763The '``ptrtoint``' instruction converts the pointer or a vector of
7764pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7765
7766Arguments:
7767""""""""""
7768
7769The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007770a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007771type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7772a vector of integers type.
7773
7774Semantics:
7775""""""""""
7776
7777The '``ptrtoint``' instruction converts ``value`` to integer type
7778``ty2`` by interpreting the pointer value as an integer and either
7779truncating or zero extending that value to the size of the integer type.
7780If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7781``value`` is larger than ``ty2`` then a truncation is done. If they are
7782the same size, then nothing is done (*no-op cast*) other than a type
7783change.
7784
7785Example:
7786""""""""
7787
7788.. code-block:: llvm
7789
7790 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7791 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7792 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7793
7794.. _i_inttoptr:
7795
7796'``inttoptr .. to``' Instruction
7797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7798
7799Syntax:
7800"""""""
7801
7802::
7803
7804 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7805
7806Overview:
7807"""""""""
7808
7809The '``inttoptr``' instruction converts an integer ``value`` to a
7810pointer type, ``ty2``.
7811
7812Arguments:
7813""""""""""
7814
7815The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7816cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7817type.
7818
7819Semantics:
7820""""""""""
7821
7822The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7823applying either a zero extension or a truncation depending on the size
7824of the integer ``value``. If ``value`` is larger than the size of a
7825pointer then a truncation is done. If ``value`` is smaller than the size
7826of a pointer then a zero extension is done. If they are the same size,
7827nothing is done (*no-op cast*).
7828
7829Example:
7830""""""""
7831
7832.. code-block:: llvm
7833
7834 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7835 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7836 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7837 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7838
7839.. _i_bitcast:
7840
7841'``bitcast .. to``' Instruction
7842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7843
7844Syntax:
7845"""""""
7846
7847::
7848
7849 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7850
7851Overview:
7852"""""""""
7853
7854The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7855changing any bits.
7856
7857Arguments:
7858""""""""""
7859
7860The '``bitcast``' instruction takes a value to cast, which must be a
7861non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007862also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7863bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007864identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007865also be a pointer of the same size. This instruction supports bitwise
7866conversion of vectors to integers and to vectors of other types (as
7867long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007868
7869Semantics:
7870""""""""""
7871
Matt Arsenault24b49c42013-07-31 17:49:08 +00007872The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7873is always a *no-op cast* because no bits change with this
7874conversion. The conversion is done as if the ``value`` had been stored
7875to memory and read back as type ``ty2``. Pointer (or vector of
7876pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007877pointers) types with the same address space through this instruction.
7878To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7879or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007880
7881Example:
7882""""""""
7883
7884.. code-block:: llvm
7885
7886 %X = bitcast i8 255 to i8 ; yields i8 :-1
7887 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7888 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7889 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7890
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007891.. _i_addrspacecast:
7892
7893'``addrspacecast .. to``' Instruction
7894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7895
7896Syntax:
7897"""""""
7898
7899::
7900
7901 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7902
7903Overview:
7904"""""""""
7905
7906The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7907address space ``n`` to type ``pty2`` in address space ``m``.
7908
7909Arguments:
7910""""""""""
7911
7912The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7913to cast and a pointer type to cast it to, which must have a different
7914address space.
7915
7916Semantics:
7917""""""""""
7918
7919The '``addrspacecast``' instruction converts the pointer value
7920``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007921value modification, depending on the target and the address space
7922pair. Pointer conversions within the same address space must be
7923performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007924conversion is legal then both result and operand refer to the same memory
7925location.
7926
7927Example:
7928""""""""
7929
7930.. code-block:: llvm
7931
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007932 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7933 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7934 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007935
Sean Silvab084af42012-12-07 10:36:55 +00007936.. _otherops:
7937
7938Other Operations
7939----------------
7940
7941The instructions in this category are the "miscellaneous" instructions,
7942which defy better classification.
7943
7944.. _i_icmp:
7945
7946'``icmp``' Instruction
7947^^^^^^^^^^^^^^^^^^^^^^
7948
7949Syntax:
7950"""""""
7951
7952::
7953
Tim Northover675a0962014-06-13 14:24:23 +00007954 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007955
7956Overview:
7957"""""""""
7958
7959The '``icmp``' instruction returns a boolean value or a vector of
7960boolean values based on comparison of its two integer, integer vector,
7961pointer, or pointer vector operands.
7962
7963Arguments:
7964""""""""""
7965
7966The '``icmp``' instruction takes three operands. The first operand is
7967the condition code indicating the kind of comparison to perform. It is
7968not a value, just a keyword. The possible condition code are:
7969
7970#. ``eq``: equal
7971#. ``ne``: not equal
7972#. ``ugt``: unsigned greater than
7973#. ``uge``: unsigned greater or equal
7974#. ``ult``: unsigned less than
7975#. ``ule``: unsigned less or equal
7976#. ``sgt``: signed greater than
7977#. ``sge``: signed greater or equal
7978#. ``slt``: signed less than
7979#. ``sle``: signed less or equal
7980
7981The remaining two arguments must be :ref:`integer <t_integer>` or
7982:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
7983must also be identical types.
7984
7985Semantics:
7986""""""""""
7987
7988The '``icmp``' compares ``op1`` and ``op2`` according to the condition
7989code given as ``cond``. The comparison performed always yields either an
7990:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
7991
7992#. ``eq``: yields ``true`` if the operands are equal, ``false``
7993 otherwise. No sign interpretation is necessary or performed.
7994#. ``ne``: yields ``true`` if the operands are unequal, ``false``
7995 otherwise. No sign interpretation is necessary or performed.
7996#. ``ugt``: interprets the operands as unsigned values and yields
7997 ``true`` if ``op1`` is greater than ``op2``.
7998#. ``uge``: interprets the operands as unsigned values and yields
7999 ``true`` if ``op1`` is greater than or equal to ``op2``.
8000#. ``ult``: interprets the operands as unsigned values and yields
8001 ``true`` if ``op1`` is less than ``op2``.
8002#. ``ule``: interprets the operands as unsigned values and yields
8003 ``true`` if ``op1`` is less than or equal to ``op2``.
8004#. ``sgt``: interprets the operands as signed values and yields ``true``
8005 if ``op1`` is greater than ``op2``.
8006#. ``sge``: interprets the operands as signed values and yields ``true``
8007 if ``op1`` is greater than or equal to ``op2``.
8008#. ``slt``: interprets the operands as signed values and yields ``true``
8009 if ``op1`` is less than ``op2``.
8010#. ``sle``: interprets the operands as signed values and yields ``true``
8011 if ``op1`` is less than or equal to ``op2``.
8012
8013If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8014are compared as if they were integers.
8015
8016If the operands are integer vectors, then they are compared element by
8017element. The result is an ``i1`` vector with the same number of elements
8018as the values being compared. Otherwise, the result is an ``i1``.
8019
8020Example:
8021""""""""
8022
8023.. code-block:: llvm
8024
8025 <result> = icmp eq i32 4, 5 ; yields: result=false
8026 <result> = icmp ne float* %X, %X ; yields: result=false
8027 <result> = icmp ult i16 4, 5 ; yields: result=true
8028 <result> = icmp sgt i16 4, 5 ; yields: result=false
8029 <result> = icmp ule i16 -4, 5 ; yields: result=false
8030 <result> = icmp sge i16 4, 5 ; yields: result=false
8031
8032Note that the code generator does not yet support vector types with the
8033``icmp`` instruction.
8034
8035.. _i_fcmp:
8036
8037'``fcmp``' Instruction
8038^^^^^^^^^^^^^^^^^^^^^^
8039
8040Syntax:
8041"""""""
8042
8043::
8044
James Molloy88eb5352015-07-10 12:52:00 +00008045 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008046
8047Overview:
8048"""""""""
8049
8050The '``fcmp``' instruction returns a boolean value or vector of boolean
8051values based on comparison of its operands.
8052
8053If the operands are floating point scalars, then the result type is a
8054boolean (:ref:`i1 <t_integer>`).
8055
8056If the operands are floating point vectors, then the result type is a
8057vector of boolean with the same number of elements as the operands being
8058compared.
8059
8060Arguments:
8061""""""""""
8062
8063The '``fcmp``' instruction takes three operands. The first operand is
8064the condition code indicating the kind of comparison to perform. It is
8065not a value, just a keyword. The possible condition code are:
8066
8067#. ``false``: no comparison, always returns false
8068#. ``oeq``: ordered and equal
8069#. ``ogt``: ordered and greater than
8070#. ``oge``: ordered and greater than or equal
8071#. ``olt``: ordered and less than
8072#. ``ole``: ordered and less than or equal
8073#. ``one``: ordered and not equal
8074#. ``ord``: ordered (no nans)
8075#. ``ueq``: unordered or equal
8076#. ``ugt``: unordered or greater than
8077#. ``uge``: unordered or greater than or equal
8078#. ``ult``: unordered or less than
8079#. ``ule``: unordered or less than or equal
8080#. ``une``: unordered or not equal
8081#. ``uno``: unordered (either nans)
8082#. ``true``: no comparison, always returns true
8083
8084*Ordered* means that neither operand is a QNAN while *unordered* means
8085that either operand may be a QNAN.
8086
8087Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8088point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8089type. They must have identical types.
8090
8091Semantics:
8092""""""""""
8093
8094The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8095condition code given as ``cond``. If the operands are vectors, then the
8096vectors are compared element by element. Each comparison performed
8097always yields an :ref:`i1 <t_integer>` result, as follows:
8098
8099#. ``false``: always yields ``false``, regardless of operands.
8100#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8101 is equal to ``op2``.
8102#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8103 is greater than ``op2``.
8104#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8105 is greater than or equal to ``op2``.
8106#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8107 is less than ``op2``.
8108#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8109 is less than or equal to ``op2``.
8110#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8111 is not equal to ``op2``.
8112#. ``ord``: yields ``true`` if both operands are not a QNAN.
8113#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8114 equal to ``op2``.
8115#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8116 greater than ``op2``.
8117#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8118 greater than or equal to ``op2``.
8119#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8120 less than ``op2``.
8121#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8122 less than or equal to ``op2``.
8123#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8124 not equal to ``op2``.
8125#. ``uno``: yields ``true`` if either operand is a QNAN.
8126#. ``true``: always yields ``true``, regardless of operands.
8127
James Molloy88eb5352015-07-10 12:52:00 +00008128The ``fcmp`` instruction can also optionally take any number of
8129:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8130otherwise unsafe floating point optimizations.
8131
8132Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8133only flags that have any effect on its semantics are those that allow
8134assumptions to be made about the values of input arguments; namely
8135``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8136
Sean Silvab084af42012-12-07 10:36:55 +00008137Example:
8138""""""""
8139
8140.. code-block:: llvm
8141
8142 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8143 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8144 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8145 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8146
8147Note that the code generator does not yet support vector types with the
8148``fcmp`` instruction.
8149
8150.. _i_phi:
8151
8152'``phi``' Instruction
8153^^^^^^^^^^^^^^^^^^^^^
8154
8155Syntax:
8156"""""""
8157
8158::
8159
8160 <result> = phi <ty> [ <val0>, <label0>], ...
8161
8162Overview:
8163"""""""""
8164
8165The '``phi``' instruction is used to implement the φ node in the SSA
8166graph representing the function.
8167
8168Arguments:
8169""""""""""
8170
8171The type of the incoming values is specified with the first type field.
8172After this, the '``phi``' instruction takes a list of pairs as
8173arguments, with one pair for each predecessor basic block of the current
8174block. Only values of :ref:`first class <t_firstclass>` type may be used as
8175the value arguments to the PHI node. Only labels may be used as the
8176label arguments.
8177
8178There must be no non-phi instructions between the start of a basic block
8179and the PHI instructions: i.e. PHI instructions must be first in a basic
8180block.
8181
8182For the purposes of the SSA form, the use of each incoming value is
8183deemed to occur on the edge from the corresponding predecessor block to
8184the current block (but after any definition of an '``invoke``'
8185instruction's return value on the same edge).
8186
8187Semantics:
8188""""""""""
8189
8190At runtime, the '``phi``' instruction logically takes on the value
8191specified by the pair corresponding to the predecessor basic block that
8192executed just prior to the current block.
8193
8194Example:
8195""""""""
8196
8197.. code-block:: llvm
8198
8199 Loop: ; Infinite loop that counts from 0 on up...
8200 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8201 %nextindvar = add i32 %indvar, 1
8202 br label %Loop
8203
8204.. _i_select:
8205
8206'``select``' Instruction
8207^^^^^^^^^^^^^^^^^^^^^^^^
8208
8209Syntax:
8210"""""""
8211
8212::
8213
8214 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8215
8216 selty is either i1 or {<N x i1>}
8217
8218Overview:
8219"""""""""
8220
8221The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008222condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008223
8224Arguments:
8225""""""""""
8226
8227The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8228values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008229class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008230
8231Semantics:
8232""""""""""
8233
8234If the condition is an i1 and it evaluates to 1, the instruction returns
8235the first value argument; otherwise, it returns the second value
8236argument.
8237
8238If the condition is a vector of i1, then the value arguments must be
8239vectors of the same size, and the selection is done element by element.
8240
David Majnemer40a0b592015-03-03 22:45:47 +00008241If the condition is an i1 and the value arguments are vectors of the
8242same size, then an entire vector is selected.
8243
Sean Silvab084af42012-12-07 10:36:55 +00008244Example:
8245""""""""
8246
8247.. code-block:: llvm
8248
8249 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8250
8251.. _i_call:
8252
8253'``call``' Instruction
8254^^^^^^^^^^^^^^^^^^^^^^
8255
8256Syntax:
8257"""""""
8258
8259::
8260
Reid Kleckner5772b772014-04-24 20:14:34 +00008261 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00008262
8263Overview:
8264"""""""""
8265
8266The '``call``' instruction represents a simple function call.
8267
8268Arguments:
8269""""""""""
8270
8271This instruction requires several arguments:
8272
Reid Kleckner5772b772014-04-24 20:14:34 +00008273#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008274 should perform tail call optimization. The ``tail`` marker is a hint that
8275 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008276 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008277 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008278
8279 #. The call will not cause unbounded stack growth if it is part of a
8280 recursive cycle in the call graph.
8281 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8282 forwarded in place.
8283
8284 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008285 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008286 rules:
8287
8288 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8289 or a pointer bitcast followed by a ret instruction.
8290 - The ret instruction must return the (possibly bitcasted) value
8291 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008292 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008293 parameters or return types may differ in pointee type, but not
8294 in address space.
8295 - The calling conventions of the caller and callee must match.
8296 - All ABI-impacting function attributes, such as sret, byval, inreg,
8297 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008298 - The callee must be varargs iff the caller is varargs. Bitcasting a
8299 non-varargs function to the appropriate varargs type is legal so
8300 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008301
8302 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8303 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008304
8305 - Caller and callee both have the calling convention ``fastcc``.
8306 - The call is in tail position (ret immediately follows call and ret
8307 uses value of call or is void).
8308 - Option ``-tailcallopt`` is enabled, or
8309 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008310 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008311 met. <CodeGenerator.html#tailcallopt>`_
8312
8313#. The optional "cconv" marker indicates which :ref:`calling
8314 convention <callingconv>` the call should use. If none is
8315 specified, the call defaults to using C calling conventions. The
8316 calling convention of the call must match the calling convention of
8317 the target function, or else the behavior is undefined.
8318#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8319 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8320 are valid here.
8321#. '``ty``': the type of the call instruction itself which is also the
8322 type of the return value. Functions that return no value are marked
8323 ``void``.
8324#. '``fnty``': shall be the signature of the pointer to function value
8325 being invoked. The argument types must match the types implied by
8326 this signature. This type can be omitted if the function is not
8327 varargs and if the function type does not return a pointer to a
8328 function.
8329#. '``fnptrval``': An LLVM value containing a pointer to a function to
8330 be invoked. In most cases, this is a direct function invocation, but
8331 indirect ``call``'s are just as possible, calling an arbitrary pointer
8332 to function value.
8333#. '``function args``': argument list whose types match the function
8334 signature argument types and parameter attributes. All arguments must
8335 be of :ref:`first class <t_firstclass>` type. If the function signature
8336 indicates the function accepts a variable number of arguments, the
8337 extra arguments can be specified.
8338#. The optional :ref:`function attributes <fnattrs>` list. Only
8339 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8340 attributes are valid here.
8341
8342Semantics:
8343""""""""""
8344
8345The '``call``' instruction is used to cause control flow to transfer to
8346a specified function, with its incoming arguments bound to the specified
8347values. Upon a '``ret``' instruction in the called function, control
8348flow continues with the instruction after the function call, and the
8349return value of the function is bound to the result argument.
8350
8351Example:
8352""""""""
8353
8354.. code-block:: llvm
8355
8356 %retval = call i32 @test(i32 %argc)
8357 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8358 %X = tail call i32 @foo() ; yields i32
8359 %Y = tail call fastcc i32 @foo() ; yields i32
8360 call void %foo(i8 97 signext)
8361
8362 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008363 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008364 %gr = extractvalue %struct.A %r, 0 ; yields i32
8365 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8366 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8367 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8368
8369llvm treats calls to some functions with names and arguments that match
8370the standard C99 library as being the C99 library functions, and may
8371perform optimizations or generate code for them under that assumption.
8372This is something we'd like to change in the future to provide better
8373support for freestanding environments and non-C-based languages.
8374
8375.. _i_va_arg:
8376
8377'``va_arg``' Instruction
8378^^^^^^^^^^^^^^^^^^^^^^^^
8379
8380Syntax:
8381"""""""
8382
8383::
8384
8385 <resultval> = va_arg <va_list*> <arglist>, <argty>
8386
8387Overview:
8388"""""""""
8389
8390The '``va_arg``' instruction is used to access arguments passed through
8391the "variable argument" area of a function call. It is used to implement
8392the ``va_arg`` macro in C.
8393
8394Arguments:
8395""""""""""
8396
8397This instruction takes a ``va_list*`` value and the type of the
8398argument. It returns a value of the specified argument type and
8399increments the ``va_list`` to point to the next argument. The actual
8400type of ``va_list`` is target specific.
8401
8402Semantics:
8403""""""""""
8404
8405The '``va_arg``' instruction loads an argument of the specified type
8406from the specified ``va_list`` and causes the ``va_list`` to point to
8407the next argument. For more information, see the variable argument
8408handling :ref:`Intrinsic Functions <int_varargs>`.
8409
8410It is legal for this instruction to be called in a function which does
8411not take a variable number of arguments, for example, the ``vfprintf``
8412function.
8413
8414``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8415function <intrinsics>` because it takes a type as an argument.
8416
8417Example:
8418""""""""
8419
8420See the :ref:`variable argument processing <int_varargs>` section.
8421
8422Note that the code generator does not yet fully support va\_arg on many
8423targets. Also, it does not currently support va\_arg with aggregate
8424types on any target.
8425
8426.. _i_landingpad:
8427
8428'``landingpad``' Instruction
8429^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8430
8431Syntax:
8432"""""""
8433
8434::
8435
David Majnemer7fddecc2015-06-17 20:52:32 +00008436 <resultval> = landingpad <resultty> <clause>+
8437 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008438
8439 <clause> := catch <type> <value>
8440 <clause> := filter <array constant type> <array constant>
8441
8442Overview:
8443"""""""""
8444
8445The '``landingpad``' instruction is used by `LLVM's exception handling
8446system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008447is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008448code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008449defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008450re-entry to the function. The ``resultval`` has the type ``resultty``.
8451
8452Arguments:
8453""""""""""
8454
David Majnemer7fddecc2015-06-17 20:52:32 +00008455The optional
Sean Silvab084af42012-12-07 10:36:55 +00008456``cleanup`` flag indicates that the landing pad block is a cleanup.
8457
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008458A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008459contains the global variable representing the "type" that may be caught
8460or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8461clause takes an array constant as its argument. Use
8462"``[0 x i8**] undef``" for a filter which cannot throw. The
8463'``landingpad``' instruction must contain *at least* one ``clause`` or
8464the ``cleanup`` flag.
8465
8466Semantics:
8467""""""""""
8468
8469The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008470:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008471therefore the "result type" of the ``landingpad`` instruction. As with
8472calling conventions, how the personality function results are
8473represented in LLVM IR is target specific.
8474
8475The clauses are applied in order from top to bottom. If two
8476``landingpad`` instructions are merged together through inlining, the
8477clauses from the calling function are appended to the list of clauses.
8478When the call stack is being unwound due to an exception being thrown,
8479the exception is compared against each ``clause`` in turn. If it doesn't
8480match any of the clauses, and the ``cleanup`` flag is not set, then
8481unwinding continues further up the call stack.
8482
8483The ``landingpad`` instruction has several restrictions:
8484
8485- A landing pad block is a basic block which is the unwind destination
8486 of an '``invoke``' instruction.
8487- A landing pad block must have a '``landingpad``' instruction as its
8488 first non-PHI instruction.
8489- There can be only one '``landingpad``' instruction within the landing
8490 pad block.
8491- A basic block that is not a landing pad block may not include a
8492 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008493
8494Example:
8495""""""""
8496
8497.. code-block:: llvm
8498
8499 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008500 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008501 catch i8** @_ZTIi
8502 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008503 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008504 cleanup
8505 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008506 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008507 catch i8** @_ZTIi
8508 filter [1 x i8**] [@_ZTId]
8509
David Majnemer654e1302015-07-31 17:58:14 +00008510.. _i_cleanuppad:
8511
8512'``cleanuppad``' Instruction
8513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8514
8515Syntax:
8516"""""""
8517
8518::
8519
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008520 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008521
8522Overview:
8523"""""""""
8524
8525The '``cleanuppad``' instruction is used by `LLVM's exception handling
8526system <ExceptionHandling.html#overview>`_ to specify that a basic block
8527is a cleanup block --- one where a personality routine attempts to
8528transfer control to run cleanup actions.
8529The ``args`` correspond to whatever additional
8530information the :ref:`personality function <personalityfn>` requires to
8531execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008532The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008533match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8534and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008535
8536Arguments:
8537""""""""""
8538
8539The instruction takes a list of arbitrary values which are interpreted
8540by the :ref:`personality function <personalityfn>`.
8541
8542Semantics:
8543""""""""""
8544
David Majnemer654e1302015-07-31 17:58:14 +00008545When the call stack is being unwound due to an exception being thrown,
8546the :ref:`personality function <personalityfn>` transfers control to the
8547``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008548As with calling conventions, how the personality function results are
8549represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008550
8551The ``cleanuppad`` instruction has several restrictions:
8552
8553- A cleanup block is a basic block which is the unwind destination of
8554 an exceptional instruction.
8555- A cleanup block must have a '``cleanuppad``' instruction as its
8556 first non-PHI instruction.
8557- There can be only one '``cleanuppad``' instruction within the
8558 cleanup block.
8559- A basic block that is not a cleanup block may not include a
8560 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008561- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8562 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008563- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008564 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8565 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008566- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008567 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8568 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008569
8570Example:
8571""""""""
8572
8573.. code-block:: llvm
8574
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008575 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008576
Sean Silvab084af42012-12-07 10:36:55 +00008577.. _intrinsics:
8578
8579Intrinsic Functions
8580===================
8581
8582LLVM supports the notion of an "intrinsic function". These functions
8583have well known names and semantics and are required to follow certain
8584restrictions. Overall, these intrinsics represent an extension mechanism
8585for the LLVM language that does not require changing all of the
8586transformations in LLVM when adding to the language (or the bitcode
8587reader/writer, the parser, etc...).
8588
8589Intrinsic function names must all start with an "``llvm.``" prefix. This
8590prefix is reserved in LLVM for intrinsic names; thus, function names may
8591not begin with this prefix. Intrinsic functions must always be external
8592functions: you cannot define the body of intrinsic functions. Intrinsic
8593functions may only be used in call or invoke instructions: it is illegal
8594to take the address of an intrinsic function. Additionally, because
8595intrinsic functions are part of the LLVM language, it is required if any
8596are added that they be documented here.
8597
8598Some intrinsic functions can be overloaded, i.e., the intrinsic
8599represents a family of functions that perform the same operation but on
8600different data types. Because LLVM can represent over 8 million
8601different integer types, overloading is used commonly to allow an
8602intrinsic function to operate on any integer type. One or more of the
8603argument types or the result type can be overloaded to accept any
8604integer type. Argument types may also be defined as exactly matching a
8605previous argument's type or the result type. This allows an intrinsic
8606function which accepts multiple arguments, but needs all of them to be
8607of the same type, to only be overloaded with respect to a single
8608argument or the result.
8609
8610Overloaded intrinsics will have the names of its overloaded argument
8611types encoded into its function name, each preceded by a period. Only
8612those types which are overloaded result in a name suffix. Arguments
8613whose type is matched against another type do not. For example, the
8614``llvm.ctpop`` function can take an integer of any width and returns an
8615integer of exactly the same integer width. This leads to a family of
8616functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8617``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8618overloaded, and only one type suffix is required. Because the argument's
8619type is matched against the return type, it does not require its own
8620name suffix.
8621
8622To learn how to add an intrinsic function, please see the `Extending
8623LLVM Guide <ExtendingLLVM.html>`_.
8624
8625.. _int_varargs:
8626
8627Variable Argument Handling Intrinsics
8628-------------------------------------
8629
8630Variable argument support is defined in LLVM with the
8631:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8632functions. These functions are related to the similarly named macros
8633defined in the ``<stdarg.h>`` header file.
8634
8635All of these functions operate on arguments that use a target-specific
8636value type "``va_list``". The LLVM assembly language reference manual
8637does not define what this type is, so all transformations should be
8638prepared to handle these functions regardless of the type used.
8639
8640This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8641variable argument handling intrinsic functions are used.
8642
8643.. code-block:: llvm
8644
Tim Northoverab60bb92014-11-02 01:21:51 +00008645 ; This struct is different for every platform. For most platforms,
8646 ; it is merely an i8*.
8647 %struct.va_list = type { i8* }
8648
8649 ; For Unix x86_64 platforms, va_list is the following struct:
8650 ; %struct.va_list = type { i32, i32, i8*, i8* }
8651
Sean Silvab084af42012-12-07 10:36:55 +00008652 define i32 @test(i32 %X, ...) {
8653 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008654 %ap = alloca %struct.va_list
8655 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008656 call void @llvm.va_start(i8* %ap2)
8657
8658 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008659 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008660
8661 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8662 %aq = alloca i8*
8663 %aq2 = bitcast i8** %aq to i8*
8664 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8665 call void @llvm.va_end(i8* %aq2)
8666
8667 ; Stop processing of arguments.
8668 call void @llvm.va_end(i8* %ap2)
8669 ret i32 %tmp
8670 }
8671
8672 declare void @llvm.va_start(i8*)
8673 declare void @llvm.va_copy(i8*, i8*)
8674 declare void @llvm.va_end(i8*)
8675
8676.. _int_va_start:
8677
8678'``llvm.va_start``' Intrinsic
8679^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8680
8681Syntax:
8682"""""""
8683
8684::
8685
Nick Lewycky04f6de02013-09-11 22:04:52 +00008686 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008687
8688Overview:
8689"""""""""
8690
8691The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8692subsequent use by ``va_arg``.
8693
8694Arguments:
8695""""""""""
8696
8697The argument is a pointer to a ``va_list`` element to initialize.
8698
8699Semantics:
8700""""""""""
8701
8702The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8703available in C. In a target-dependent way, it initializes the
8704``va_list`` element to which the argument points, so that the next call
8705to ``va_arg`` will produce the first variable argument passed to the
8706function. Unlike the C ``va_start`` macro, this intrinsic does not need
8707to know the last argument of the function as the compiler can figure
8708that out.
8709
8710'``llvm.va_end``' Intrinsic
8711^^^^^^^^^^^^^^^^^^^^^^^^^^^
8712
8713Syntax:
8714"""""""
8715
8716::
8717
8718 declare void @llvm.va_end(i8* <arglist>)
8719
8720Overview:
8721"""""""""
8722
8723The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8724initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8725
8726Arguments:
8727""""""""""
8728
8729The argument is a pointer to a ``va_list`` to destroy.
8730
8731Semantics:
8732""""""""""
8733
8734The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8735available in C. In a target-dependent way, it destroys the ``va_list``
8736element to which the argument points. Calls to
8737:ref:`llvm.va_start <int_va_start>` and
8738:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8739``llvm.va_end``.
8740
8741.. _int_va_copy:
8742
8743'``llvm.va_copy``' Intrinsic
8744^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8745
8746Syntax:
8747"""""""
8748
8749::
8750
8751 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8752
8753Overview:
8754"""""""""
8755
8756The '``llvm.va_copy``' intrinsic copies the current argument position
8757from the source argument list to the destination argument list.
8758
8759Arguments:
8760""""""""""
8761
8762The first argument is a pointer to a ``va_list`` element to initialize.
8763The second argument is a pointer to a ``va_list`` element to copy from.
8764
8765Semantics:
8766""""""""""
8767
8768The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8769available in C. In a target-dependent way, it copies the source
8770``va_list`` element into the destination ``va_list`` element. This
8771intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8772arbitrarily complex and require, for example, memory allocation.
8773
8774Accurate Garbage Collection Intrinsics
8775--------------------------------------
8776
Philip Reamesc5b0f562015-02-25 23:52:06 +00008777LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008778(GC) requires the frontend to generate code containing appropriate intrinsic
8779calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008780intrinsics in a manner which is appropriate for the target collector.
8781
Sean Silvab084af42012-12-07 10:36:55 +00008782These intrinsics allow identification of :ref:`GC roots on the
8783stack <int_gcroot>`, as well as garbage collector implementations that
8784require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008785Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008786these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008787details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008788
Philip Reamesf80bbff2015-02-25 23:45:20 +00008789Experimental Statepoint Intrinsics
8790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8791
8792LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008793collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008794to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008795:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008796differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008797<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008798described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008799
8800.. _int_gcroot:
8801
8802'``llvm.gcroot``' Intrinsic
8803^^^^^^^^^^^^^^^^^^^^^^^^^^^
8804
8805Syntax:
8806"""""""
8807
8808::
8809
8810 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8811
8812Overview:
8813"""""""""
8814
8815The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8816the code generator, and allows some metadata to be associated with it.
8817
8818Arguments:
8819""""""""""
8820
8821The first argument specifies the address of a stack object that contains
8822the root pointer. The second pointer (which must be either a constant or
8823a global value address) contains the meta-data to be associated with the
8824root.
8825
8826Semantics:
8827""""""""""
8828
8829At runtime, a call to this intrinsic stores a null pointer into the
8830"ptrloc" location. At compile-time, the code generator generates
8831information to allow the runtime to find the pointer at GC safe points.
8832The '``llvm.gcroot``' intrinsic may only be used in a function which
8833:ref:`specifies a GC algorithm <gc>`.
8834
8835.. _int_gcread:
8836
8837'``llvm.gcread``' Intrinsic
8838^^^^^^^^^^^^^^^^^^^^^^^^^^^
8839
8840Syntax:
8841"""""""
8842
8843::
8844
8845 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8846
8847Overview:
8848"""""""""
8849
8850The '``llvm.gcread``' intrinsic identifies reads of references from heap
8851locations, allowing garbage collector implementations that require read
8852barriers.
8853
8854Arguments:
8855""""""""""
8856
8857The second argument is the address to read from, which should be an
8858address allocated from the garbage collector. The first object is a
8859pointer to the start of the referenced object, if needed by the language
8860runtime (otherwise null).
8861
8862Semantics:
8863""""""""""
8864
8865The '``llvm.gcread``' intrinsic has the same semantics as a load
8866instruction, but may be replaced with substantially more complex code by
8867the garbage collector runtime, as needed. The '``llvm.gcread``'
8868intrinsic may only be used in a function which :ref:`specifies a GC
8869algorithm <gc>`.
8870
8871.. _int_gcwrite:
8872
8873'``llvm.gcwrite``' Intrinsic
8874^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8875
8876Syntax:
8877"""""""
8878
8879::
8880
8881 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8882
8883Overview:
8884"""""""""
8885
8886The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8887locations, allowing garbage collector implementations that require write
8888barriers (such as generational or reference counting collectors).
8889
8890Arguments:
8891""""""""""
8892
8893The first argument is the reference to store, the second is the start of
8894the object to store it to, and the third is the address of the field of
8895Obj to store to. If the runtime does not require a pointer to the
8896object, Obj may be null.
8897
8898Semantics:
8899""""""""""
8900
8901The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8902instruction, but may be replaced with substantially more complex code by
8903the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8904intrinsic may only be used in a function which :ref:`specifies a GC
8905algorithm <gc>`.
8906
8907Code Generator Intrinsics
8908-------------------------
8909
8910These intrinsics are provided by LLVM to expose special features that
8911may only be implemented with code generator support.
8912
8913'``llvm.returnaddress``' Intrinsic
8914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8915
8916Syntax:
8917"""""""
8918
8919::
8920
8921 declare i8 *@llvm.returnaddress(i32 <level>)
8922
8923Overview:
8924"""""""""
8925
8926The '``llvm.returnaddress``' intrinsic attempts to compute a
8927target-specific value indicating the return address of the current
8928function or one of its callers.
8929
8930Arguments:
8931""""""""""
8932
8933The argument to this intrinsic indicates which function to return the
8934address for. Zero indicates the calling function, one indicates its
8935caller, etc. The argument is **required** to be a constant integer
8936value.
8937
8938Semantics:
8939""""""""""
8940
8941The '``llvm.returnaddress``' intrinsic either returns a pointer
8942indicating the return address of the specified call frame, or zero if it
8943cannot be identified. The value returned by this intrinsic is likely to
8944be incorrect or 0 for arguments other than zero, so it should only be
8945used for debugging purposes.
8946
8947Note that calling this intrinsic does not prevent function inlining or
8948other aggressive transformations, so the value returned may not be that
8949of the obvious source-language caller.
8950
8951'``llvm.frameaddress``' Intrinsic
8952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8953
8954Syntax:
8955"""""""
8956
8957::
8958
8959 declare i8* @llvm.frameaddress(i32 <level>)
8960
8961Overview:
8962"""""""""
8963
8964The '``llvm.frameaddress``' intrinsic attempts to return the
8965target-specific frame pointer value for the specified stack frame.
8966
8967Arguments:
8968""""""""""
8969
8970The argument to this intrinsic indicates which function to return the
8971frame pointer for. Zero indicates the calling function, one indicates
8972its caller, etc. The argument is **required** to be a constant integer
8973value.
8974
8975Semantics:
8976""""""""""
8977
8978The '``llvm.frameaddress``' intrinsic either returns a pointer
8979indicating the frame address of the specified call frame, or zero if it
8980cannot be identified. The value returned by this intrinsic is likely to
8981be incorrect or 0 for arguments other than zero, so it should only be
8982used for debugging purposes.
8983
8984Note that calling this intrinsic does not prevent function inlining or
8985other aggressive transformations, so the value returned may not be that
8986of the obvious source-language caller.
8987
Reid Kleckner60381792015-07-07 22:25:32 +00008988'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00008989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8990
8991Syntax:
8992"""""""
8993
8994::
8995
Reid Kleckner60381792015-07-07 22:25:32 +00008996 declare void @llvm.localescape(...)
8997 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00008998
8999Overview:
9000"""""""""
9001
Reid Kleckner60381792015-07-07 22:25:32 +00009002The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9003allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009004live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009005computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009006
9007Arguments:
9008""""""""""
9009
Reid Kleckner60381792015-07-07 22:25:32 +00009010All arguments to '``llvm.localescape``' must be pointers to static allocas or
9011casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009012once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009013
Reid Kleckner60381792015-07-07 22:25:32 +00009014The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009015bitcasted pointer to a function defined in the current module. The code
9016generator cannot determine the frame allocation offset of functions defined in
9017other modules.
9018
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009019The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9020call frame that is currently live. The return value of '``llvm.localaddress``'
9021is one way to produce such a value, but various runtimes also expose a suitable
9022pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009023
Reid Kleckner60381792015-07-07 22:25:32 +00009024The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9025'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009026
Reid Klecknere9b89312015-01-13 00:48:10 +00009027Semantics:
9028""""""""""
9029
Reid Kleckner60381792015-07-07 22:25:32 +00009030These intrinsics allow a group of functions to share access to a set of local
9031stack allocations of a one parent function. The parent function may call the
9032'``llvm.localescape``' intrinsic once from the function entry block, and the
9033child functions can use '``llvm.localrecover``' to access the escaped allocas.
9034The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9035the escaped allocas are allocated, which would break attempts to use
9036'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009037
Renato Golinc7aea402014-05-06 16:51:25 +00009038.. _int_read_register:
9039.. _int_write_register:
9040
9041'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9043
9044Syntax:
9045"""""""
9046
9047::
9048
9049 declare i32 @llvm.read_register.i32(metadata)
9050 declare i64 @llvm.read_register.i64(metadata)
9051 declare void @llvm.write_register.i32(metadata, i32 @value)
9052 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009053 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009054
9055Overview:
9056"""""""""
9057
9058The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9059provides access to the named register. The register must be valid on
9060the architecture being compiled to. The type needs to be compatible
9061with the register being read.
9062
9063Semantics:
9064""""""""""
9065
9066The '``llvm.read_register``' intrinsic returns the current value of the
9067register, where possible. The '``llvm.write_register``' intrinsic sets
9068the current value of the register, where possible.
9069
9070This is useful to implement named register global variables that need
9071to always be mapped to a specific register, as is common practice on
9072bare-metal programs including OS kernels.
9073
9074The compiler doesn't check for register availability or use of the used
9075register in surrounding code, including inline assembly. Because of that,
9076allocatable registers are not supported.
9077
9078Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009079architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009080work is needed to support other registers and even more so, allocatable
9081registers.
9082
Sean Silvab084af42012-12-07 10:36:55 +00009083.. _int_stacksave:
9084
9085'``llvm.stacksave``' Intrinsic
9086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9087
9088Syntax:
9089"""""""
9090
9091::
9092
9093 declare i8* @llvm.stacksave()
9094
9095Overview:
9096"""""""""
9097
9098The '``llvm.stacksave``' intrinsic is used to remember the current state
9099of the function stack, for use with
9100:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9101implementing language features like scoped automatic variable sized
9102arrays in C99.
9103
9104Semantics:
9105""""""""""
9106
9107This intrinsic returns a opaque pointer value that can be passed to
9108:ref:`llvm.stackrestore <int_stackrestore>`. When an
9109``llvm.stackrestore`` intrinsic is executed with a value saved from
9110``llvm.stacksave``, it effectively restores the state of the stack to
9111the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9112practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9113were allocated after the ``llvm.stacksave`` was executed.
9114
9115.. _int_stackrestore:
9116
9117'``llvm.stackrestore``' Intrinsic
9118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9119
9120Syntax:
9121"""""""
9122
9123::
9124
9125 declare void @llvm.stackrestore(i8* %ptr)
9126
9127Overview:
9128"""""""""
9129
9130The '``llvm.stackrestore``' intrinsic is used to restore the state of
9131the function stack to the state it was in when the corresponding
9132:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9133useful for implementing language features like scoped automatic variable
9134sized arrays in C99.
9135
9136Semantics:
9137""""""""""
9138
9139See the description for :ref:`llvm.stacksave <int_stacksave>`.
9140
9141'``llvm.prefetch``' Intrinsic
9142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9143
9144Syntax:
9145"""""""
9146
9147::
9148
9149 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9150
9151Overview:
9152"""""""""
9153
9154The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9155insert a prefetch instruction if supported; otherwise, it is a noop.
9156Prefetches have no effect on the behavior of the program but can change
9157its performance characteristics.
9158
9159Arguments:
9160""""""""""
9161
9162``address`` is the address to be prefetched, ``rw`` is the specifier
9163determining if the fetch should be for a read (0) or write (1), and
9164``locality`` is a temporal locality specifier ranging from (0) - no
9165locality, to (3) - extremely local keep in cache. The ``cache type``
9166specifies whether the prefetch is performed on the data (1) or
9167instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9168arguments must be constant integers.
9169
9170Semantics:
9171""""""""""
9172
9173This intrinsic does not modify the behavior of the program. In
9174particular, prefetches cannot trap and do not produce a value. On
9175targets that support this intrinsic, the prefetch can provide hints to
9176the processor cache for better performance.
9177
9178'``llvm.pcmarker``' Intrinsic
9179^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9180
9181Syntax:
9182"""""""
9183
9184::
9185
9186 declare void @llvm.pcmarker(i32 <id>)
9187
9188Overview:
9189"""""""""
9190
9191The '``llvm.pcmarker``' intrinsic is a method to export a Program
9192Counter (PC) in a region of code to simulators and other tools. The
9193method is target specific, but it is expected that the marker will use
9194exported symbols to transmit the PC of the marker. The marker makes no
9195guarantees that it will remain with any specific instruction after
9196optimizations. It is possible that the presence of a marker will inhibit
9197optimizations. The intended use is to be inserted after optimizations to
9198allow correlations of simulation runs.
9199
9200Arguments:
9201""""""""""
9202
9203``id`` is a numerical id identifying the marker.
9204
9205Semantics:
9206""""""""""
9207
9208This intrinsic does not modify the behavior of the program. Backends
9209that do not support this intrinsic may ignore it.
9210
9211'``llvm.readcyclecounter``' Intrinsic
9212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9213
9214Syntax:
9215"""""""
9216
9217::
9218
9219 declare i64 @llvm.readcyclecounter()
9220
9221Overview:
9222"""""""""
9223
9224The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9225counter register (or similar low latency, high accuracy clocks) on those
9226targets that support it. On X86, it should map to RDTSC. On Alpha, it
9227should map to RPCC. As the backing counters overflow quickly (on the
9228order of 9 seconds on alpha), this should only be used for small
9229timings.
9230
9231Semantics:
9232""""""""""
9233
9234When directly supported, reading the cycle counter should not modify any
9235memory. Implementations are allowed to either return a application
9236specific value or a system wide value. On backends without support, this
9237is lowered to a constant 0.
9238
Tim Northoverbc933082013-05-23 19:11:20 +00009239Note that runtime support may be conditional on the privilege-level code is
9240running at and the host platform.
9241
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009242'``llvm.clear_cache``' Intrinsic
9243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9244
9245Syntax:
9246"""""""
9247
9248::
9249
9250 declare void @llvm.clear_cache(i8*, i8*)
9251
9252Overview:
9253"""""""""
9254
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009255The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9256in the specified range to the execution unit of the processor. On
9257targets with non-unified instruction and data cache, the implementation
9258flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009259
9260Semantics:
9261""""""""""
9262
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009263On platforms with coherent instruction and data caches (e.g. x86), this
9264intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009265cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009266instructions or a system call, if cache flushing requires special
9267privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009268
Sean Silvad02bf3e2014-04-07 22:29:53 +00009269The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009270time library.
Renato Golin93010e62014-03-26 14:01:32 +00009271
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009272This instrinsic does *not* empty the instruction pipeline. Modifications
9273of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009274
Justin Bogner61ba2e32014-12-08 18:02:35 +00009275'``llvm.instrprof_increment``' Intrinsic
9276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9277
9278Syntax:
9279"""""""
9280
9281::
9282
9283 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9284 i32 <num-counters>, i32 <index>)
9285
9286Overview:
9287"""""""""
9288
9289The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9290frontend for use with instrumentation based profiling. These will be
9291lowered by the ``-instrprof`` pass to generate execution counts of a
9292program at runtime.
9293
9294Arguments:
9295""""""""""
9296
9297The first argument is a pointer to a global variable containing the
9298name of the entity being instrumented. This should generally be the
9299(mangled) function name for a set of counters.
9300
9301The second argument is a hash value that can be used by the consumer
9302of the profile data to detect changes to the instrumented source, and
9303the third is the number of counters associated with ``name``. It is an
9304error if ``hash`` or ``num-counters`` differ between two instances of
9305``instrprof_increment`` that refer to the same name.
9306
9307The last argument refers to which of the counters for ``name`` should
9308be incremented. It should be a value between 0 and ``num-counters``.
9309
9310Semantics:
9311""""""""""
9312
9313This intrinsic represents an increment of a profiling counter. It will
9314cause the ``-instrprof`` pass to generate the appropriate data
9315structures and the code to increment the appropriate value, in a
9316format that can be written out by a compiler runtime and consumed via
9317the ``llvm-profdata`` tool.
9318
Sean Silvab084af42012-12-07 10:36:55 +00009319Standard C Library Intrinsics
9320-----------------------------
9321
9322LLVM provides intrinsics for a few important standard C library
9323functions. These intrinsics allow source-language front-ends to pass
9324information about the alignment of the pointer arguments to the code
9325generator, providing opportunity for more efficient code generation.
9326
9327.. _int_memcpy:
9328
9329'``llvm.memcpy``' Intrinsic
9330^^^^^^^^^^^^^^^^^^^^^^^^^^^
9331
9332Syntax:
9333"""""""
9334
9335This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9336integer bit width and for different address spaces. Not all targets
9337support all bit widths however.
9338
9339::
9340
9341 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9342 i32 <len>, i32 <align>, i1 <isvolatile>)
9343 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9344 i64 <len>, i32 <align>, i1 <isvolatile>)
9345
9346Overview:
9347"""""""""
9348
9349The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9350source location to the destination location.
9351
9352Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9353intrinsics do not return a value, takes extra alignment/isvolatile
9354arguments and the pointers can be in specified address spaces.
9355
9356Arguments:
9357""""""""""
9358
9359The first argument is a pointer to the destination, the second is a
9360pointer to the source. The third argument is an integer argument
9361specifying the number of bytes to copy, the fourth argument is the
9362alignment of the source and destination locations, and the fifth is a
9363boolean indicating a volatile access.
9364
9365If the call to this intrinsic has an alignment value that is not 0 or 1,
9366then the caller guarantees that both the source and destination pointers
9367are aligned to that boundary.
9368
9369If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9370a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9371very cleanly specified and it is unwise to depend on it.
9372
9373Semantics:
9374""""""""""
9375
9376The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9377source location to the destination location, which are not allowed to
9378overlap. It copies "len" bytes of memory over. If the argument is known
9379to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009380argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009381
9382'``llvm.memmove``' Intrinsic
9383^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9384
9385Syntax:
9386"""""""
9387
9388This is an overloaded intrinsic. You can use llvm.memmove on any integer
9389bit width and for different address space. Not all targets support all
9390bit widths however.
9391
9392::
9393
9394 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9395 i32 <len>, i32 <align>, i1 <isvolatile>)
9396 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9397 i64 <len>, i32 <align>, i1 <isvolatile>)
9398
9399Overview:
9400"""""""""
9401
9402The '``llvm.memmove.*``' intrinsics move a block of memory from the
9403source location to the destination location. It is similar to the
9404'``llvm.memcpy``' intrinsic but allows the two memory locations to
9405overlap.
9406
9407Note that, unlike the standard libc function, the ``llvm.memmove.*``
9408intrinsics do not return a value, takes extra alignment/isvolatile
9409arguments and the pointers can be in specified address spaces.
9410
9411Arguments:
9412""""""""""
9413
9414The first argument is a pointer to the destination, the second is a
9415pointer to the source. The third argument is an integer argument
9416specifying the number of bytes to copy, the fourth argument is the
9417alignment of the source and destination locations, and the fifth is a
9418boolean indicating a volatile access.
9419
9420If the call to this intrinsic has an alignment value that is not 0 or 1,
9421then the caller guarantees that the source and destination pointers are
9422aligned to that boundary.
9423
9424If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9425is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9426not very cleanly specified and it is unwise to depend on it.
9427
9428Semantics:
9429""""""""""
9430
9431The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9432source location to the destination location, which may overlap. It
9433copies "len" bytes of memory over. If the argument is known to be
9434aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009435otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009436
9437'``llvm.memset.*``' Intrinsics
9438^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9439
9440Syntax:
9441"""""""
9442
9443This is an overloaded intrinsic. You can use llvm.memset on any integer
9444bit width and for different address spaces. However, not all targets
9445support all bit widths.
9446
9447::
9448
9449 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9450 i32 <len>, i32 <align>, i1 <isvolatile>)
9451 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9452 i64 <len>, i32 <align>, i1 <isvolatile>)
9453
9454Overview:
9455"""""""""
9456
9457The '``llvm.memset.*``' intrinsics fill a block of memory with a
9458particular byte value.
9459
9460Note that, unlike the standard libc function, the ``llvm.memset``
9461intrinsic does not return a value and takes extra alignment/volatile
9462arguments. Also, the destination can be in an arbitrary address space.
9463
9464Arguments:
9465""""""""""
9466
9467The first argument is a pointer to the destination to fill, the second
9468is the byte value with which to fill it, the third argument is an
9469integer argument specifying the number of bytes to fill, and the fourth
9470argument is the known alignment of the destination location.
9471
9472If the call to this intrinsic has an alignment value that is not 0 or 1,
9473then the caller guarantees that the destination pointer is aligned to
9474that boundary.
9475
9476If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9477a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9478very cleanly specified and it is unwise to depend on it.
9479
9480Semantics:
9481""""""""""
9482
9483The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9484at the destination location. If the argument is known to be aligned to
9485some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009486it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009487
9488'``llvm.sqrt.*``' Intrinsic
9489^^^^^^^^^^^^^^^^^^^^^^^^^^^
9490
9491Syntax:
9492"""""""
9493
9494This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9495floating point or vector of floating point type. Not all targets support
9496all types however.
9497
9498::
9499
9500 declare float @llvm.sqrt.f32(float %Val)
9501 declare double @llvm.sqrt.f64(double %Val)
9502 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9503 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9504 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9505
9506Overview:
9507"""""""""
9508
9509The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9510returning the same value as the libm '``sqrt``' functions would. Unlike
9511``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9512negative numbers other than -0.0 (which allows for better optimization,
9513because there is no need to worry about errno being set).
9514``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9515
9516Arguments:
9517""""""""""
9518
9519The argument and return value are floating point numbers of the same
9520type.
9521
9522Semantics:
9523""""""""""
9524
9525This function returns the sqrt of the specified operand if it is a
9526nonnegative floating point number.
9527
9528'``llvm.powi.*``' Intrinsic
9529^^^^^^^^^^^^^^^^^^^^^^^^^^^
9530
9531Syntax:
9532"""""""
9533
9534This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9535floating point or vector of floating point type. Not all targets support
9536all types however.
9537
9538::
9539
9540 declare float @llvm.powi.f32(float %Val, i32 %power)
9541 declare double @llvm.powi.f64(double %Val, i32 %power)
9542 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9543 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9544 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9545
9546Overview:
9547"""""""""
9548
9549The '``llvm.powi.*``' intrinsics return the first operand raised to the
9550specified (positive or negative) power. The order of evaluation of
9551multiplications is not defined. When a vector of floating point type is
9552used, the second argument remains a scalar integer value.
9553
9554Arguments:
9555""""""""""
9556
9557The second argument is an integer power, and the first is a value to
9558raise to that power.
9559
9560Semantics:
9561""""""""""
9562
9563This function returns the first value raised to the second power with an
9564unspecified sequence of rounding operations.
9565
9566'``llvm.sin.*``' Intrinsic
9567^^^^^^^^^^^^^^^^^^^^^^^^^^
9568
9569Syntax:
9570"""""""
9571
9572This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9573floating point or vector of floating point type. Not all targets support
9574all types however.
9575
9576::
9577
9578 declare float @llvm.sin.f32(float %Val)
9579 declare double @llvm.sin.f64(double %Val)
9580 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9581 declare fp128 @llvm.sin.f128(fp128 %Val)
9582 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9583
9584Overview:
9585"""""""""
9586
9587The '``llvm.sin.*``' intrinsics return the sine of the operand.
9588
9589Arguments:
9590""""""""""
9591
9592The argument and return value are floating point numbers of the same
9593type.
9594
9595Semantics:
9596""""""""""
9597
9598This function returns the sine of the specified operand, returning the
9599same values as the libm ``sin`` functions would, and handles error
9600conditions in the same way.
9601
9602'``llvm.cos.*``' Intrinsic
9603^^^^^^^^^^^^^^^^^^^^^^^^^^
9604
9605Syntax:
9606"""""""
9607
9608This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9609floating point or vector of floating point type. Not all targets support
9610all types however.
9611
9612::
9613
9614 declare float @llvm.cos.f32(float %Val)
9615 declare double @llvm.cos.f64(double %Val)
9616 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9617 declare fp128 @llvm.cos.f128(fp128 %Val)
9618 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9619
9620Overview:
9621"""""""""
9622
9623The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9624
9625Arguments:
9626""""""""""
9627
9628The argument and return value are floating point numbers of the same
9629type.
9630
9631Semantics:
9632""""""""""
9633
9634This function returns the cosine of the specified operand, returning the
9635same values as the libm ``cos`` functions would, and handles error
9636conditions in the same way.
9637
9638'``llvm.pow.*``' Intrinsic
9639^^^^^^^^^^^^^^^^^^^^^^^^^^
9640
9641Syntax:
9642"""""""
9643
9644This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9645floating point or vector of floating point type. Not all targets support
9646all types however.
9647
9648::
9649
9650 declare float @llvm.pow.f32(float %Val, float %Power)
9651 declare double @llvm.pow.f64(double %Val, double %Power)
9652 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9653 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9654 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9655
9656Overview:
9657"""""""""
9658
9659The '``llvm.pow.*``' intrinsics return the first operand raised to the
9660specified (positive or negative) power.
9661
9662Arguments:
9663""""""""""
9664
9665The second argument is a floating point power, and the first is a value
9666to raise to that power.
9667
9668Semantics:
9669""""""""""
9670
9671This function returns the first value raised to the second power,
9672returning the same values as the libm ``pow`` functions would, and
9673handles error conditions in the same way.
9674
9675'``llvm.exp.*``' Intrinsic
9676^^^^^^^^^^^^^^^^^^^^^^^^^^
9677
9678Syntax:
9679"""""""
9680
9681This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9682floating point or vector of floating point type. Not all targets support
9683all types however.
9684
9685::
9686
9687 declare float @llvm.exp.f32(float %Val)
9688 declare double @llvm.exp.f64(double %Val)
9689 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9690 declare fp128 @llvm.exp.f128(fp128 %Val)
9691 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9692
9693Overview:
9694"""""""""
9695
9696The '``llvm.exp.*``' intrinsics perform the exp function.
9697
9698Arguments:
9699""""""""""
9700
9701The argument and return value are floating point numbers of the same
9702type.
9703
9704Semantics:
9705""""""""""
9706
9707This function returns the same values as the libm ``exp`` functions
9708would, and handles error conditions in the same way.
9709
9710'``llvm.exp2.*``' Intrinsic
9711^^^^^^^^^^^^^^^^^^^^^^^^^^^
9712
9713Syntax:
9714"""""""
9715
9716This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9717floating point or vector of floating point type. Not all targets support
9718all types however.
9719
9720::
9721
9722 declare float @llvm.exp2.f32(float %Val)
9723 declare double @llvm.exp2.f64(double %Val)
9724 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9725 declare fp128 @llvm.exp2.f128(fp128 %Val)
9726 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9727
9728Overview:
9729"""""""""
9730
9731The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9732
9733Arguments:
9734""""""""""
9735
9736The argument and return value are floating point numbers of the same
9737type.
9738
9739Semantics:
9740""""""""""
9741
9742This function returns the same values as the libm ``exp2`` functions
9743would, and handles error conditions in the same way.
9744
9745'``llvm.log.*``' Intrinsic
9746^^^^^^^^^^^^^^^^^^^^^^^^^^
9747
9748Syntax:
9749"""""""
9750
9751This is an overloaded intrinsic. You can use ``llvm.log`` on any
9752floating point or vector of floating point type. Not all targets support
9753all types however.
9754
9755::
9756
9757 declare float @llvm.log.f32(float %Val)
9758 declare double @llvm.log.f64(double %Val)
9759 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9760 declare fp128 @llvm.log.f128(fp128 %Val)
9761 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9762
9763Overview:
9764"""""""""
9765
9766The '``llvm.log.*``' intrinsics perform the log function.
9767
9768Arguments:
9769""""""""""
9770
9771The argument and return value are floating point numbers of the same
9772type.
9773
9774Semantics:
9775""""""""""
9776
9777This function returns the same values as the libm ``log`` functions
9778would, and handles error conditions in the same way.
9779
9780'``llvm.log10.*``' Intrinsic
9781^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9782
9783Syntax:
9784"""""""
9785
9786This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9787floating point or vector of floating point type. Not all targets support
9788all types however.
9789
9790::
9791
9792 declare float @llvm.log10.f32(float %Val)
9793 declare double @llvm.log10.f64(double %Val)
9794 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9795 declare fp128 @llvm.log10.f128(fp128 %Val)
9796 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9797
9798Overview:
9799"""""""""
9800
9801The '``llvm.log10.*``' intrinsics perform the log10 function.
9802
9803Arguments:
9804""""""""""
9805
9806The argument and return value are floating point numbers of the same
9807type.
9808
9809Semantics:
9810""""""""""
9811
9812This function returns the same values as the libm ``log10`` functions
9813would, and handles error conditions in the same way.
9814
9815'``llvm.log2.*``' Intrinsic
9816^^^^^^^^^^^^^^^^^^^^^^^^^^^
9817
9818Syntax:
9819"""""""
9820
9821This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9822floating point or vector of floating point type. Not all targets support
9823all types however.
9824
9825::
9826
9827 declare float @llvm.log2.f32(float %Val)
9828 declare double @llvm.log2.f64(double %Val)
9829 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9830 declare fp128 @llvm.log2.f128(fp128 %Val)
9831 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9832
9833Overview:
9834"""""""""
9835
9836The '``llvm.log2.*``' intrinsics perform the log2 function.
9837
9838Arguments:
9839""""""""""
9840
9841The argument and return value are floating point numbers of the same
9842type.
9843
9844Semantics:
9845""""""""""
9846
9847This function returns the same values as the libm ``log2`` functions
9848would, and handles error conditions in the same way.
9849
9850'``llvm.fma.*``' Intrinsic
9851^^^^^^^^^^^^^^^^^^^^^^^^^^
9852
9853Syntax:
9854"""""""
9855
9856This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9857floating point or vector of floating point type. Not all targets support
9858all types however.
9859
9860::
9861
9862 declare float @llvm.fma.f32(float %a, float %b, float %c)
9863 declare double @llvm.fma.f64(double %a, double %b, double %c)
9864 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9865 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9866 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9867
9868Overview:
9869"""""""""
9870
9871The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9872operation.
9873
9874Arguments:
9875""""""""""
9876
9877The argument and return value are floating point numbers of the same
9878type.
9879
9880Semantics:
9881""""""""""
9882
9883This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009884would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009885
9886'``llvm.fabs.*``' Intrinsic
9887^^^^^^^^^^^^^^^^^^^^^^^^^^^
9888
9889Syntax:
9890"""""""
9891
9892This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9893floating point or vector of floating point type. Not all targets support
9894all types however.
9895
9896::
9897
9898 declare float @llvm.fabs.f32(float %Val)
9899 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009900 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009901 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009902 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009903
9904Overview:
9905"""""""""
9906
9907The '``llvm.fabs.*``' intrinsics return the absolute value of the
9908operand.
9909
9910Arguments:
9911""""""""""
9912
9913The argument and return value are floating point numbers of the same
9914type.
9915
9916Semantics:
9917""""""""""
9918
9919This function returns the same values as the libm ``fabs`` functions
9920would, and handles error conditions in the same way.
9921
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009922'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009924
9925Syntax:
9926"""""""
9927
9928This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9929floating point or vector of floating point type. Not all targets support
9930all types however.
9931
9932::
9933
Matt Arsenault64313c92014-10-22 18:25:02 +00009934 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9935 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9936 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9937 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9938 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009939
9940Overview:
9941"""""""""
9942
9943The '``llvm.minnum.*``' intrinsics return the minimum of the two
9944arguments.
9945
9946
9947Arguments:
9948""""""""""
9949
9950The arguments and return value are floating point numbers of the same
9951type.
9952
9953Semantics:
9954""""""""""
9955
9956Follows the IEEE-754 semantics for minNum, which also match for libm's
9957fmin.
9958
9959If either operand is a NaN, returns the other non-NaN operand. Returns
9960NaN only if both operands are NaN. If the operands compare equal,
9961returns a value that compares equal to both operands. This means that
9962fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9963
9964'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009966
9967Syntax:
9968"""""""
9969
9970This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
9971floating point or vector of floating point type. Not all targets support
9972all types however.
9973
9974::
9975
Matt Arsenault64313c92014-10-22 18:25:02 +00009976 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
9977 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
9978 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9979 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
9980 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009981
9982Overview:
9983"""""""""
9984
9985The '``llvm.maxnum.*``' intrinsics return the maximum of the two
9986arguments.
9987
9988
9989Arguments:
9990""""""""""
9991
9992The arguments and return value are floating point numbers of the same
9993type.
9994
9995Semantics:
9996""""""""""
9997Follows the IEEE-754 semantics for maxNum, which also match for libm's
9998fmax.
9999
10000If either operand is a NaN, returns the other non-NaN operand. Returns
10001NaN only if both operands are NaN. If the operands compare equal,
10002returns a value that compares equal to both operands. This means that
10003fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10004
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010005'``llvm.copysign.*``' Intrinsic
10006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10007
10008Syntax:
10009"""""""
10010
10011This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10012floating point or vector of floating point type. Not all targets support
10013all types however.
10014
10015::
10016
10017 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10018 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10019 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10020 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10021 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10022
10023Overview:
10024"""""""""
10025
10026The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10027first operand and the sign of the second operand.
10028
10029Arguments:
10030""""""""""
10031
10032The arguments and return value are floating point numbers of the same
10033type.
10034
10035Semantics:
10036""""""""""
10037
10038This function returns the same values as the libm ``copysign``
10039functions would, and handles error conditions in the same way.
10040
Sean Silvab084af42012-12-07 10:36:55 +000010041'``llvm.floor.*``' Intrinsic
10042^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10043
10044Syntax:
10045"""""""
10046
10047This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10048floating point or vector of floating point type. Not all targets support
10049all types however.
10050
10051::
10052
10053 declare float @llvm.floor.f32(float %Val)
10054 declare double @llvm.floor.f64(double %Val)
10055 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10056 declare fp128 @llvm.floor.f128(fp128 %Val)
10057 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10058
10059Overview:
10060"""""""""
10061
10062The '``llvm.floor.*``' intrinsics return the floor of the operand.
10063
10064Arguments:
10065""""""""""
10066
10067The argument and return value are floating point numbers of the same
10068type.
10069
10070Semantics:
10071""""""""""
10072
10073This function returns the same values as the libm ``floor`` functions
10074would, and handles error conditions in the same way.
10075
10076'``llvm.ceil.*``' Intrinsic
10077^^^^^^^^^^^^^^^^^^^^^^^^^^^
10078
10079Syntax:
10080"""""""
10081
10082This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10083floating point or vector of floating point type. Not all targets support
10084all types however.
10085
10086::
10087
10088 declare float @llvm.ceil.f32(float %Val)
10089 declare double @llvm.ceil.f64(double %Val)
10090 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10091 declare fp128 @llvm.ceil.f128(fp128 %Val)
10092 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10093
10094Overview:
10095"""""""""
10096
10097The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10098
10099Arguments:
10100""""""""""
10101
10102The argument and return value are floating point numbers of the same
10103type.
10104
10105Semantics:
10106""""""""""
10107
10108This function returns the same values as the libm ``ceil`` functions
10109would, and handles error conditions in the same way.
10110
10111'``llvm.trunc.*``' Intrinsic
10112^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10113
10114Syntax:
10115"""""""
10116
10117This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10118floating point or vector of floating point type. Not all targets support
10119all types however.
10120
10121::
10122
10123 declare float @llvm.trunc.f32(float %Val)
10124 declare double @llvm.trunc.f64(double %Val)
10125 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10126 declare fp128 @llvm.trunc.f128(fp128 %Val)
10127 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10128
10129Overview:
10130"""""""""
10131
10132The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10133nearest integer not larger in magnitude than the operand.
10134
10135Arguments:
10136""""""""""
10137
10138The argument and return value are floating point numbers of the same
10139type.
10140
10141Semantics:
10142""""""""""
10143
10144This function returns the same values as the libm ``trunc`` functions
10145would, and handles error conditions in the same way.
10146
10147'``llvm.rint.*``' Intrinsic
10148^^^^^^^^^^^^^^^^^^^^^^^^^^^
10149
10150Syntax:
10151"""""""
10152
10153This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10154floating point or vector of floating point type. Not all targets support
10155all types however.
10156
10157::
10158
10159 declare float @llvm.rint.f32(float %Val)
10160 declare double @llvm.rint.f64(double %Val)
10161 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10162 declare fp128 @llvm.rint.f128(fp128 %Val)
10163 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10164
10165Overview:
10166"""""""""
10167
10168The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10169nearest integer. It may raise an inexact floating-point exception if the
10170operand isn't an integer.
10171
10172Arguments:
10173""""""""""
10174
10175The argument and return value are floating point numbers of the same
10176type.
10177
10178Semantics:
10179""""""""""
10180
10181This function returns the same values as the libm ``rint`` functions
10182would, and handles error conditions in the same way.
10183
10184'``llvm.nearbyint.*``' Intrinsic
10185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10186
10187Syntax:
10188"""""""
10189
10190This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10191floating point or vector of floating point type. Not all targets support
10192all types however.
10193
10194::
10195
10196 declare float @llvm.nearbyint.f32(float %Val)
10197 declare double @llvm.nearbyint.f64(double %Val)
10198 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10199 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10200 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10201
10202Overview:
10203"""""""""
10204
10205The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10206nearest integer.
10207
10208Arguments:
10209""""""""""
10210
10211The argument and return value are floating point numbers of the same
10212type.
10213
10214Semantics:
10215""""""""""
10216
10217This function returns the same values as the libm ``nearbyint``
10218functions would, and handles error conditions in the same way.
10219
Hal Finkel171817e2013-08-07 22:49:12 +000010220'``llvm.round.*``' Intrinsic
10221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10222
10223Syntax:
10224"""""""
10225
10226This is an overloaded intrinsic. You can use ``llvm.round`` on any
10227floating point or vector of floating point type. Not all targets support
10228all types however.
10229
10230::
10231
10232 declare float @llvm.round.f32(float %Val)
10233 declare double @llvm.round.f64(double %Val)
10234 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10235 declare fp128 @llvm.round.f128(fp128 %Val)
10236 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10237
10238Overview:
10239"""""""""
10240
10241The '``llvm.round.*``' intrinsics returns the operand rounded to the
10242nearest integer.
10243
10244Arguments:
10245""""""""""
10246
10247The argument and return value are floating point numbers of the same
10248type.
10249
10250Semantics:
10251""""""""""
10252
10253This function returns the same values as the libm ``round``
10254functions would, and handles error conditions in the same way.
10255
Sean Silvab084af42012-12-07 10:36:55 +000010256Bit Manipulation Intrinsics
10257---------------------------
10258
10259LLVM provides intrinsics for a few important bit manipulation
10260operations. These allow efficient code generation for some algorithms.
10261
10262'``llvm.bswap.*``' Intrinsics
10263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10264
10265Syntax:
10266"""""""
10267
10268This is an overloaded intrinsic function. You can use bswap on any
10269integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10270
10271::
10272
10273 declare i16 @llvm.bswap.i16(i16 <id>)
10274 declare i32 @llvm.bswap.i32(i32 <id>)
10275 declare i64 @llvm.bswap.i64(i64 <id>)
10276
10277Overview:
10278"""""""""
10279
10280The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10281values with an even number of bytes (positive multiple of 16 bits).
10282These are useful for performing operations on data that is not in the
10283target's native byte order.
10284
10285Semantics:
10286""""""""""
10287
10288The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10289and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10290intrinsic returns an i32 value that has the four bytes of the input i32
10291swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10292returned i32 will have its bytes in 3, 2, 1, 0 order. The
10293``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10294concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10295respectively).
10296
10297'``llvm.ctpop.*``' Intrinsic
10298^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10299
10300Syntax:
10301"""""""
10302
10303This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10304bit width, or on any vector with integer elements. Not all targets
10305support all bit widths or vector types, however.
10306
10307::
10308
10309 declare i8 @llvm.ctpop.i8(i8 <src>)
10310 declare i16 @llvm.ctpop.i16(i16 <src>)
10311 declare i32 @llvm.ctpop.i32(i32 <src>)
10312 declare i64 @llvm.ctpop.i64(i64 <src>)
10313 declare i256 @llvm.ctpop.i256(i256 <src>)
10314 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10315
10316Overview:
10317"""""""""
10318
10319The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10320in a value.
10321
10322Arguments:
10323""""""""""
10324
10325The only argument is the value to be counted. The argument may be of any
10326integer type, or a vector with integer elements. The return type must
10327match the argument type.
10328
10329Semantics:
10330""""""""""
10331
10332The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10333each element of a vector.
10334
10335'``llvm.ctlz.*``' Intrinsic
10336^^^^^^^^^^^^^^^^^^^^^^^^^^^
10337
10338Syntax:
10339"""""""
10340
10341This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10342integer bit width, or any vector whose elements are integers. Not all
10343targets support all bit widths or vector types, however.
10344
10345::
10346
10347 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10348 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10349 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10350 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10351 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10352 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10353
10354Overview:
10355"""""""""
10356
10357The '``llvm.ctlz``' family of intrinsic functions counts the number of
10358leading zeros in a variable.
10359
10360Arguments:
10361""""""""""
10362
10363The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010364any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010365type must match the first argument type.
10366
10367The second argument must be a constant and is a flag to indicate whether
10368the intrinsic should ensure that a zero as the first argument produces a
10369defined result. Historically some architectures did not provide a
10370defined result for zero values as efficiently, and many algorithms are
10371now predicated on avoiding zero-value inputs.
10372
10373Semantics:
10374""""""""""
10375
10376The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10377zeros in a variable, or within each element of the vector. If
10378``src == 0`` then the result is the size in bits of the type of ``src``
10379if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10380``llvm.ctlz(i32 2) = 30``.
10381
10382'``llvm.cttz.*``' Intrinsic
10383^^^^^^^^^^^^^^^^^^^^^^^^^^^
10384
10385Syntax:
10386"""""""
10387
10388This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10389integer bit width, or any vector of integer elements. Not all targets
10390support all bit widths or vector types, however.
10391
10392::
10393
10394 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10395 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10396 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10397 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10398 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10399 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10400
10401Overview:
10402"""""""""
10403
10404The '``llvm.cttz``' family of intrinsic functions counts the number of
10405trailing zeros.
10406
10407Arguments:
10408""""""""""
10409
10410The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010411any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010412type must match the first argument type.
10413
10414The second argument must be a constant and is a flag to indicate whether
10415the intrinsic should ensure that a zero as the first argument produces a
10416defined result. Historically some architectures did not provide a
10417defined result for zero values as efficiently, and many algorithms are
10418now predicated on avoiding zero-value inputs.
10419
10420Semantics:
10421""""""""""
10422
10423The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10424zeros in a variable, or within each element of a vector. If ``src == 0``
10425then the result is the size in bits of the type of ``src`` if
10426``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10427``llvm.cttz(2) = 1``.
10428
Philip Reames34843ae2015-03-05 05:55:55 +000010429.. _int_overflow:
10430
Sean Silvab084af42012-12-07 10:36:55 +000010431Arithmetic with Overflow Intrinsics
10432-----------------------------------
10433
10434LLVM provides intrinsics for some arithmetic with overflow operations.
10435
10436'``llvm.sadd.with.overflow.*``' Intrinsics
10437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10438
10439Syntax:
10440"""""""
10441
10442This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10443on any integer bit width.
10444
10445::
10446
10447 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10448 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10449 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10450
10451Overview:
10452"""""""""
10453
10454The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10455a signed addition of the two arguments, and indicate whether an overflow
10456occurred during the signed summation.
10457
10458Arguments:
10459""""""""""
10460
10461The arguments (%a and %b) and the first element of the result structure
10462may be of integer types of any bit width, but they must have the same
10463bit width. The second element of the result structure must be of type
10464``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10465addition.
10466
10467Semantics:
10468""""""""""
10469
10470The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010471a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010472first element of which is the signed summation, and the second element
10473of which is a bit specifying if the signed summation resulted in an
10474overflow.
10475
10476Examples:
10477"""""""""
10478
10479.. code-block:: llvm
10480
10481 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10482 %sum = extractvalue {i32, i1} %res, 0
10483 %obit = extractvalue {i32, i1} %res, 1
10484 br i1 %obit, label %overflow, label %normal
10485
10486'``llvm.uadd.with.overflow.*``' Intrinsics
10487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10488
10489Syntax:
10490"""""""
10491
10492This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10493on any integer bit width.
10494
10495::
10496
10497 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10498 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10499 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10500
10501Overview:
10502"""""""""
10503
10504The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10505an unsigned addition of the two arguments, and indicate whether a carry
10506occurred during the unsigned summation.
10507
10508Arguments:
10509""""""""""
10510
10511The arguments (%a and %b) and the first element of the result structure
10512may be of integer types of any bit width, but they must have the same
10513bit width. The second element of the result structure must be of type
10514``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10515addition.
10516
10517Semantics:
10518""""""""""
10519
10520The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010521an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010522first element of which is the sum, and the second element of which is a
10523bit specifying if the unsigned summation resulted in a carry.
10524
10525Examples:
10526"""""""""
10527
10528.. code-block:: llvm
10529
10530 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10531 %sum = extractvalue {i32, i1} %res, 0
10532 %obit = extractvalue {i32, i1} %res, 1
10533 br i1 %obit, label %carry, label %normal
10534
10535'``llvm.ssub.with.overflow.*``' Intrinsics
10536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10537
10538Syntax:
10539"""""""
10540
10541This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10542on any integer bit width.
10543
10544::
10545
10546 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10547 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10548 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10549
10550Overview:
10551"""""""""
10552
10553The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10554a signed subtraction of the two arguments, and indicate whether an
10555overflow occurred during the signed subtraction.
10556
10557Arguments:
10558""""""""""
10559
10560The arguments (%a and %b) and the first element of the result structure
10561may be of integer types of any bit width, but they must have the same
10562bit width. The second element of the result structure must be of type
10563``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10564subtraction.
10565
10566Semantics:
10567""""""""""
10568
10569The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010570a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010571first element of which is the subtraction, and the second element of
10572which is a bit specifying if the signed subtraction resulted in an
10573overflow.
10574
10575Examples:
10576"""""""""
10577
10578.. code-block:: llvm
10579
10580 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10581 %sum = extractvalue {i32, i1} %res, 0
10582 %obit = extractvalue {i32, i1} %res, 1
10583 br i1 %obit, label %overflow, label %normal
10584
10585'``llvm.usub.with.overflow.*``' Intrinsics
10586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10587
10588Syntax:
10589"""""""
10590
10591This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10592on any integer bit width.
10593
10594::
10595
10596 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10597 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10598 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10599
10600Overview:
10601"""""""""
10602
10603The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10604an unsigned subtraction of the two arguments, and indicate whether an
10605overflow occurred during the unsigned subtraction.
10606
10607Arguments:
10608""""""""""
10609
10610The arguments (%a and %b) and the first element of the result structure
10611may be of integer types of any bit width, but they must have the same
10612bit width. The second element of the result structure must be of type
10613``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10614subtraction.
10615
10616Semantics:
10617""""""""""
10618
10619The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010620an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010621the first element of which is the subtraction, and the second element of
10622which is a bit specifying if the unsigned subtraction resulted in an
10623overflow.
10624
10625Examples:
10626"""""""""
10627
10628.. code-block:: llvm
10629
10630 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10631 %sum = extractvalue {i32, i1} %res, 0
10632 %obit = extractvalue {i32, i1} %res, 1
10633 br i1 %obit, label %overflow, label %normal
10634
10635'``llvm.smul.with.overflow.*``' Intrinsics
10636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10637
10638Syntax:
10639"""""""
10640
10641This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10642on any integer bit width.
10643
10644::
10645
10646 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10647 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10648 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10649
10650Overview:
10651"""""""""
10652
10653The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10654a signed multiplication of the two arguments, and indicate whether an
10655overflow occurred during the signed multiplication.
10656
10657Arguments:
10658""""""""""
10659
10660The arguments (%a and %b) and the first element of the result structure
10661may be of integer types of any bit width, but they must have the same
10662bit width. The second element of the result structure must be of type
10663``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10664multiplication.
10665
10666Semantics:
10667""""""""""
10668
10669The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010670a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010671the first element of which is the multiplication, and the second element
10672of which is a bit specifying if the signed multiplication resulted in an
10673overflow.
10674
10675Examples:
10676"""""""""
10677
10678.. code-block:: llvm
10679
10680 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10681 %sum = extractvalue {i32, i1} %res, 0
10682 %obit = extractvalue {i32, i1} %res, 1
10683 br i1 %obit, label %overflow, label %normal
10684
10685'``llvm.umul.with.overflow.*``' Intrinsics
10686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10687
10688Syntax:
10689"""""""
10690
10691This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10692on any integer bit width.
10693
10694::
10695
10696 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10697 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10698 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10699
10700Overview:
10701"""""""""
10702
10703The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10704a unsigned multiplication of the two arguments, and indicate whether an
10705overflow occurred during the unsigned multiplication.
10706
10707Arguments:
10708""""""""""
10709
10710The arguments (%a and %b) and the first element of the result structure
10711may be of integer types of any bit width, but they must have the same
10712bit width. The second element of the result structure must be of type
10713``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10714multiplication.
10715
10716Semantics:
10717""""""""""
10718
10719The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010720an unsigned multiplication of the two arguments. They return a structure ---
10721the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010722element of which is a bit specifying if the unsigned multiplication
10723resulted in an overflow.
10724
10725Examples:
10726"""""""""
10727
10728.. code-block:: llvm
10729
10730 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10731 %sum = extractvalue {i32, i1} %res, 0
10732 %obit = extractvalue {i32, i1} %res, 1
10733 br i1 %obit, label %overflow, label %normal
10734
10735Specialised Arithmetic Intrinsics
10736---------------------------------
10737
Owen Anderson1056a922015-07-11 07:01:27 +000010738'``llvm.canonicalize.*``' Intrinsic
10739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10740
10741Syntax:
10742"""""""
10743
10744::
10745
10746 declare float @llvm.canonicalize.f32(float %a)
10747 declare double @llvm.canonicalize.f64(double %b)
10748
10749Overview:
10750"""""""""
10751
10752The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010753encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010754implementing certain numeric primitives such as frexp. The canonical encoding is
10755defined by IEEE-754-2008 to be:
10756
10757::
10758
10759 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010760 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010761 numbers, infinities, and NaNs, especially in decimal formats.
10762
10763This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010764conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010765according to section 6.2.
10766
10767Examples of non-canonical encodings:
10768
Sean Silvaa1190322015-08-06 22:56:48 +000010769- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010770 converted to a canonical representation per hardware-specific protocol.
10771- Many normal decimal floating point numbers have non-canonical alternative
10772 encodings.
10773- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10774 These are treated as non-canonical encodings of zero and with be flushed to
10775 a zero of the same sign by this operation.
10776
10777Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10778default exception handling must signal an invalid exception, and produce a
10779quiet NaN result.
10780
10781This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010782that the compiler does not constant fold the operation. Likewise, division by
107831.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010784-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10785
Sean Silvaa1190322015-08-06 22:56:48 +000010786``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010787
10788- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10789- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10790 to ``(x == y)``
10791
10792Additionally, the sign of zero must be conserved:
10793``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10794
10795The payload bits of a NaN must be conserved, with two exceptions.
10796First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010797must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010798usual methods.
10799
10800The canonicalization operation may be optimized away if:
10801
Sean Silvaa1190322015-08-06 22:56:48 +000010802- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010803 floating-point operation that is required by the standard to be canonical.
10804- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010805 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010806
Sean Silvab084af42012-12-07 10:36:55 +000010807'``llvm.fmuladd.*``' Intrinsic
10808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10809
10810Syntax:
10811"""""""
10812
10813::
10814
10815 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10816 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10817
10818Overview:
10819"""""""""
10820
10821The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010822expressions that can be fused if the code generator determines that (a) the
10823target instruction set has support for a fused operation, and (b) that the
10824fused operation is more efficient than the equivalent, separate pair of mul
10825and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010826
10827Arguments:
10828""""""""""
10829
10830The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10831multiplicands, a and b, and an addend c.
10832
10833Semantics:
10834""""""""""
10835
10836The expression:
10837
10838::
10839
10840 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10841
10842is equivalent to the expression a \* b + c, except that rounding will
10843not be performed between the multiplication and addition steps if the
10844code generator fuses the operations. Fusion is not guaranteed, even if
10845the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010846corresponding llvm.fma.\* intrinsic function should be used
10847instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010848
10849Examples:
10850"""""""""
10851
10852.. code-block:: llvm
10853
Tim Northover675a0962014-06-13 14:24:23 +000010854 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010855
James Molloy7395a812015-07-16 15:22:46 +000010856
10857'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10859
10860Syntax:
10861"""""""
10862This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10863
10864.. code-block:: llvm
10865
10866 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10867
10868
10869Overview:
10870"""""""""
10871
Mohammad Shahid18715532015-08-21 05:31:07 +000010872The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference of
10873the two operands, treating them both as unsigned integers.
James Molloy7395a812015-07-16 15:22:46 +000010874
Mohammad Shahid18715532015-08-21 05:31:07 +000010875The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
10876the two operands, treating them both as signed integers.
James Molloy7395a812015-07-16 15:22:46 +000010877
10878.. note::
10879
10880 These intrinsics are primarily used during the code generation stage of compilation.
10881 They are generated by compiler passes such as the Loop and SLP vectorizers.it is not
10882 recommended for users to create them manually.
10883
10884Arguments:
10885""""""""""
10886
10887Both intrinsics take two integer of the same bitwidth.
10888
10889Semantics:
10890""""""""""
10891
10892The expression::
10893
10894 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10895
10896is equivalent to::
10897
10898 %sub = sub <4 x i32> %a, %b
10899 %ispos = icmp ugt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10900 %neg = sub <4 x i32> zeroinitializer, %sub
10901 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10902
10903Similarly the expression::
10904
10905 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10906
10907is equivalent to::
10908
10909 %sub = sub nsw <4 x i32> %a, %b
10910 %ispos = icmp sgt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10911 %neg = sub nsw <4 x i32> zeroinitializer, %sub
10912 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10913
10914
Sean Silvab084af42012-12-07 10:36:55 +000010915Half Precision Floating Point Intrinsics
10916----------------------------------------
10917
10918For most target platforms, half precision floating point is a
10919storage-only format. This means that it is a dense encoding (in memory)
10920but does not support computation in the format.
10921
10922This means that code must first load the half-precision floating point
10923value as an i16, then convert it to float with
10924:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10925then be performed on the float value (including extending to double
10926etc). To store the value back to memory, it is first converted to float
10927if needed, then converted to i16 with
10928:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10929i16 value.
10930
10931.. _int_convert_to_fp16:
10932
10933'``llvm.convert.to.fp16``' Intrinsic
10934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10935
10936Syntax:
10937"""""""
10938
10939::
10940
Tim Northoverfd7e4242014-07-17 10:51:23 +000010941 declare i16 @llvm.convert.to.fp16.f32(float %a)
10942 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010943
10944Overview:
10945"""""""""
10946
Tim Northoverfd7e4242014-07-17 10:51:23 +000010947The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10948conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000010949
10950Arguments:
10951""""""""""
10952
10953The intrinsic function contains single argument - the value to be
10954converted.
10955
10956Semantics:
10957""""""""""
10958
Tim Northoverfd7e4242014-07-17 10:51:23 +000010959The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10960conventional floating point format to half precision floating point format. The
10961return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000010962
10963Examples:
10964"""""""""
10965
10966.. code-block:: llvm
10967
Tim Northoverfd7e4242014-07-17 10:51:23 +000010968 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000010969 store i16 %res, i16* @x, align 2
10970
10971.. _int_convert_from_fp16:
10972
10973'``llvm.convert.from.fp16``' Intrinsic
10974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10975
10976Syntax:
10977"""""""
10978
10979::
10980
Tim Northoverfd7e4242014-07-17 10:51:23 +000010981 declare float @llvm.convert.from.fp16.f32(i16 %a)
10982 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010983
10984Overview:
10985"""""""""
10986
10987The '``llvm.convert.from.fp16``' intrinsic function performs a
10988conversion from half precision floating point format to single precision
10989floating point format.
10990
10991Arguments:
10992""""""""""
10993
10994The intrinsic function contains single argument - the value to be
10995converted.
10996
10997Semantics:
10998""""""""""
10999
11000The '``llvm.convert.from.fp16``' intrinsic function performs a
11001conversion from half single precision floating point format to single
11002precision floating point format. The input half-float value is
11003represented by an ``i16`` value.
11004
11005Examples:
11006"""""""""
11007
11008.. code-block:: llvm
11009
David Blaikiec7aabbb2015-03-04 22:06:14 +000011010 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011011 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011012
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011013.. _dbg_intrinsics:
11014
Sean Silvab084af42012-12-07 10:36:55 +000011015Debugger Intrinsics
11016-------------------
11017
11018The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11019prefix), are described in the `LLVM Source Level
11020Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11021document.
11022
11023Exception Handling Intrinsics
11024-----------------------------
11025
11026The LLVM exception handling intrinsics (which all start with
11027``llvm.eh.`` prefix), are described in the `LLVM Exception
11028Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11029
11030.. _int_trampoline:
11031
11032Trampoline Intrinsics
11033---------------------
11034
11035These intrinsics make it possible to excise one parameter, marked with
11036the :ref:`nest <nest>` attribute, from a function. The result is a
11037callable function pointer lacking the nest parameter - the caller does
11038not need to provide a value for it. Instead, the value to use is stored
11039in advance in a "trampoline", a block of memory usually allocated on the
11040stack, which also contains code to splice the nest value into the
11041argument list. This is used to implement the GCC nested function address
11042extension.
11043
11044For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11045then the resulting function pointer has signature ``i32 (i32, i32)*``.
11046It can be created as follows:
11047
11048.. code-block:: llvm
11049
11050 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011051 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011052 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11053 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11054 %fp = bitcast i8* %p to i32 (i32, i32)*
11055
11056The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11057``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11058
11059.. _int_it:
11060
11061'``llvm.init.trampoline``' Intrinsic
11062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11063
11064Syntax:
11065"""""""
11066
11067::
11068
11069 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11070
11071Overview:
11072"""""""""
11073
11074This fills the memory pointed to by ``tramp`` with executable code,
11075turning it into a trampoline.
11076
11077Arguments:
11078""""""""""
11079
11080The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11081pointers. The ``tramp`` argument must point to a sufficiently large and
11082sufficiently aligned block of memory; this memory is written to by the
11083intrinsic. Note that the size and the alignment are target-specific -
11084LLVM currently provides no portable way of determining them, so a
11085front-end that generates this intrinsic needs to have some
11086target-specific knowledge. The ``func`` argument must hold a function
11087bitcast to an ``i8*``.
11088
11089Semantics:
11090""""""""""
11091
11092The block of memory pointed to by ``tramp`` is filled with target
11093dependent code, turning it into a function. Then ``tramp`` needs to be
11094passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11095be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11096function's signature is the same as that of ``func`` with any arguments
11097marked with the ``nest`` attribute removed. At most one such ``nest``
11098argument is allowed, and it must be of pointer type. Calling the new
11099function is equivalent to calling ``func`` with the same argument list,
11100but with ``nval`` used for the missing ``nest`` argument. If, after
11101calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11102modified, then the effect of any later call to the returned function
11103pointer is undefined.
11104
11105.. _int_at:
11106
11107'``llvm.adjust.trampoline``' Intrinsic
11108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11109
11110Syntax:
11111"""""""
11112
11113::
11114
11115 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11116
11117Overview:
11118"""""""""
11119
11120This performs any required machine-specific adjustment to the address of
11121a trampoline (passed as ``tramp``).
11122
11123Arguments:
11124""""""""""
11125
11126``tramp`` must point to a block of memory which already has trampoline
11127code filled in by a previous call to
11128:ref:`llvm.init.trampoline <int_it>`.
11129
11130Semantics:
11131""""""""""
11132
11133On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011134different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011135intrinsic returns the executable address corresponding to ``tramp``
11136after performing the required machine specific adjustments. The pointer
11137returned can then be :ref:`bitcast and executed <int_trampoline>`.
11138
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011139.. _int_mload_mstore:
11140
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011141Masked Vector Load and Store Intrinsics
11142---------------------------------------
11143
11144LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11145
11146.. _int_mload:
11147
11148'``llvm.masked.load.*``' Intrinsics
11149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11150
11151Syntax:
11152"""""""
11153This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11154
11155::
11156
11157 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11158 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11159
11160Overview:
11161"""""""""
11162
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011163Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011164
11165
11166Arguments:
11167""""""""""
11168
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011169The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011170
11171
11172Semantics:
11173""""""""""
11174
11175The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11176The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11177
11178
11179::
11180
11181 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011182
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011183 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011184 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011185 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011186
11187.. _int_mstore:
11188
11189'``llvm.masked.store.*``' Intrinsics
11190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11191
11192Syntax:
11193"""""""
11194This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11195
11196::
11197
11198 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11199 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11200
11201Overview:
11202"""""""""
11203
11204Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11205
11206Arguments:
11207""""""""""
11208
11209The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11210
11211
11212Semantics:
11213""""""""""
11214
11215The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11216The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11217
11218::
11219
11220 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011221
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011222 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011223 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011224 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11225 store <16 x float> %res, <16 x float>* %ptr, align 4
11226
11227
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011228Masked Vector Gather and Scatter Intrinsics
11229-------------------------------------------
11230
11231LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11232
11233.. _int_mgather:
11234
11235'``llvm.masked.gather.*``' Intrinsics
11236^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11237
11238Syntax:
11239"""""""
11240This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11241
11242::
11243
11244 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11245 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11246
11247Overview:
11248"""""""""
11249
11250Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11251
11252
11253Arguments:
11254""""""""""
11255
11256The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11257
11258
11259Semantics:
11260""""""""""
11261
11262The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11263The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11264
11265
11266::
11267
11268 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11269
11270 ;; The gather with all-true mask is equivalent to the following instruction sequence
11271 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11272 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11273 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11274 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11275
11276 %val0 = load double, double* %ptr0, align 8
11277 %val1 = load double, double* %ptr1, align 8
11278 %val2 = load double, double* %ptr2, align 8
11279 %val3 = load double, double* %ptr3, align 8
11280
11281 %vec0 = insertelement <4 x double>undef, %val0, 0
11282 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11283 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11284 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11285
11286.. _int_mscatter:
11287
11288'``llvm.masked.scatter.*``' Intrinsics
11289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11290
11291Syntax:
11292"""""""
11293This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11294
11295::
11296
11297 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11298 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11299
11300Overview:
11301"""""""""
11302
11303Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11304
11305Arguments:
11306""""""""""
11307
11308The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11309
11310
11311Semantics:
11312""""""""""
11313
11314The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11315
11316::
11317
11318 ;; This instruction unconditionaly stores data vector in multiple addresses
11319 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11320
11321 ;; It is equivalent to a list of scalar stores
11322 %val0 = extractelement <8 x i32> %value, i32 0
11323 %val1 = extractelement <8 x i32> %value, i32 1
11324 ..
11325 %val7 = extractelement <8 x i32> %value, i32 7
11326 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11327 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11328 ..
11329 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11330 ;; Note: the order of the following stores is important when they overlap:
11331 store i32 %val0, i32* %ptr0, align 4
11332 store i32 %val1, i32* %ptr1, align 4
11333 ..
11334 store i32 %val7, i32* %ptr7, align 4
11335
11336
Sean Silvab084af42012-12-07 10:36:55 +000011337Memory Use Markers
11338------------------
11339
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011340This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011341memory objects and ranges where variables are immutable.
11342
Reid Klecknera534a382013-12-19 02:14:12 +000011343.. _int_lifestart:
11344
Sean Silvab084af42012-12-07 10:36:55 +000011345'``llvm.lifetime.start``' Intrinsic
11346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11347
11348Syntax:
11349"""""""
11350
11351::
11352
11353 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11354
11355Overview:
11356"""""""""
11357
11358The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11359object's lifetime.
11360
11361Arguments:
11362""""""""""
11363
11364The first argument is a constant integer representing the size of the
11365object, or -1 if it is variable sized. The second argument is a pointer
11366to the object.
11367
11368Semantics:
11369""""""""""
11370
11371This intrinsic indicates that before this point in the code, the value
11372of the memory pointed to by ``ptr`` is dead. This means that it is known
11373to never be used and has an undefined value. A load from the pointer
11374that precedes this intrinsic can be replaced with ``'undef'``.
11375
Reid Klecknera534a382013-12-19 02:14:12 +000011376.. _int_lifeend:
11377
Sean Silvab084af42012-12-07 10:36:55 +000011378'``llvm.lifetime.end``' Intrinsic
11379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11380
11381Syntax:
11382"""""""
11383
11384::
11385
11386 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11387
11388Overview:
11389"""""""""
11390
11391The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11392object's lifetime.
11393
11394Arguments:
11395""""""""""
11396
11397The first argument is a constant integer representing the size of the
11398object, or -1 if it is variable sized. The second argument is a pointer
11399to the object.
11400
11401Semantics:
11402""""""""""
11403
11404This intrinsic indicates that after this point in the code, the value of
11405the memory pointed to by ``ptr`` is dead. This means that it is known to
11406never be used and has an undefined value. Any stores into the memory
11407object following this intrinsic may be removed as dead.
11408
11409'``llvm.invariant.start``' Intrinsic
11410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11411
11412Syntax:
11413"""""""
11414
11415::
11416
11417 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11418
11419Overview:
11420"""""""""
11421
11422The '``llvm.invariant.start``' intrinsic specifies that the contents of
11423a memory object will not change.
11424
11425Arguments:
11426""""""""""
11427
11428The first argument is a constant integer representing the size of the
11429object, or -1 if it is variable sized. The second argument is a pointer
11430to the object.
11431
11432Semantics:
11433""""""""""
11434
11435This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11436the return value, the referenced memory location is constant and
11437unchanging.
11438
11439'``llvm.invariant.end``' Intrinsic
11440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11441
11442Syntax:
11443"""""""
11444
11445::
11446
11447 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11448
11449Overview:
11450"""""""""
11451
11452The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11453memory object are mutable.
11454
11455Arguments:
11456""""""""""
11457
11458The first argument is the matching ``llvm.invariant.start`` intrinsic.
11459The second argument is a constant integer representing the size of the
11460object, or -1 if it is variable sized and the third argument is a
11461pointer to the object.
11462
11463Semantics:
11464""""""""""
11465
11466This intrinsic indicates that the memory is mutable again.
11467
11468General Intrinsics
11469------------------
11470
11471This class of intrinsics is designed to be generic and has no specific
11472purpose.
11473
11474'``llvm.var.annotation``' Intrinsic
11475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11476
11477Syntax:
11478"""""""
11479
11480::
11481
11482 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11483
11484Overview:
11485"""""""""
11486
11487The '``llvm.var.annotation``' intrinsic.
11488
11489Arguments:
11490""""""""""
11491
11492The first argument is a pointer to a value, the second is a pointer to a
11493global string, the third is a pointer to a global string which is the
11494source file name, and the last argument is the line number.
11495
11496Semantics:
11497""""""""""
11498
11499This intrinsic allows annotation of local variables with arbitrary
11500strings. This can be useful for special purpose optimizations that want
11501to look for these annotations. These have no other defined use; they are
11502ignored by code generation and optimization.
11503
Michael Gottesman88d18832013-03-26 00:34:27 +000011504'``llvm.ptr.annotation.*``' Intrinsic
11505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11506
11507Syntax:
11508"""""""
11509
11510This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11511pointer to an integer of any width. *NOTE* you must specify an address space for
11512the pointer. The identifier for the default address space is the integer
11513'``0``'.
11514
11515::
11516
11517 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11518 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11519 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11520 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11521 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11522
11523Overview:
11524"""""""""
11525
11526The '``llvm.ptr.annotation``' intrinsic.
11527
11528Arguments:
11529""""""""""
11530
11531The first argument is a pointer to an integer value of arbitrary bitwidth
11532(result of some expression), the second is a pointer to a global string, the
11533third is a pointer to a global string which is the source file name, and the
11534last argument is the line number. It returns the value of the first argument.
11535
11536Semantics:
11537""""""""""
11538
11539This intrinsic allows annotation of a pointer to an integer with arbitrary
11540strings. This can be useful for special purpose optimizations that want to look
11541for these annotations. These have no other defined use; they are ignored by code
11542generation and optimization.
11543
Sean Silvab084af42012-12-07 10:36:55 +000011544'``llvm.annotation.*``' Intrinsic
11545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11546
11547Syntax:
11548"""""""
11549
11550This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11551any integer bit width.
11552
11553::
11554
11555 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11556 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11557 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11558 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11559 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11560
11561Overview:
11562"""""""""
11563
11564The '``llvm.annotation``' intrinsic.
11565
11566Arguments:
11567""""""""""
11568
11569The first argument is an integer value (result of some expression), the
11570second is a pointer to a global string, the third is a pointer to a
11571global string which is the source file name, and the last argument is
11572the line number. It returns the value of the first argument.
11573
11574Semantics:
11575""""""""""
11576
11577This intrinsic allows annotations to be put on arbitrary expressions
11578with arbitrary strings. This can be useful for special purpose
11579optimizations that want to look for these annotations. These have no
11580other defined use; they are ignored by code generation and optimization.
11581
11582'``llvm.trap``' Intrinsic
11583^^^^^^^^^^^^^^^^^^^^^^^^^
11584
11585Syntax:
11586"""""""
11587
11588::
11589
11590 declare void @llvm.trap() noreturn nounwind
11591
11592Overview:
11593"""""""""
11594
11595The '``llvm.trap``' intrinsic.
11596
11597Arguments:
11598""""""""""
11599
11600None.
11601
11602Semantics:
11603""""""""""
11604
11605This intrinsic is lowered to the target dependent trap instruction. If
11606the target does not have a trap instruction, this intrinsic will be
11607lowered to a call of the ``abort()`` function.
11608
11609'``llvm.debugtrap``' Intrinsic
11610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11611
11612Syntax:
11613"""""""
11614
11615::
11616
11617 declare void @llvm.debugtrap() nounwind
11618
11619Overview:
11620"""""""""
11621
11622The '``llvm.debugtrap``' intrinsic.
11623
11624Arguments:
11625""""""""""
11626
11627None.
11628
11629Semantics:
11630""""""""""
11631
11632This intrinsic is lowered to code which is intended to cause an
11633execution trap with the intention of requesting the attention of a
11634debugger.
11635
11636'``llvm.stackprotector``' Intrinsic
11637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11638
11639Syntax:
11640"""""""
11641
11642::
11643
11644 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11645
11646Overview:
11647"""""""""
11648
11649The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11650onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11651is placed on the stack before local variables.
11652
11653Arguments:
11654""""""""""
11655
11656The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11657The first argument is the value loaded from the stack guard
11658``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11659enough space to hold the value of the guard.
11660
11661Semantics:
11662""""""""""
11663
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011664This intrinsic causes the prologue/epilogue inserter to force the position of
11665the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11666to ensure that if a local variable on the stack is overwritten, it will destroy
11667the value of the guard. When the function exits, the guard on the stack is
11668checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11669different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11670calling the ``__stack_chk_fail()`` function.
11671
11672'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011673^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011674
11675Syntax:
11676"""""""
11677
11678::
11679
11680 declare void @llvm.stackprotectorcheck(i8** <guard>)
11681
11682Overview:
11683"""""""""
11684
11685The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011686created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011687``__stack_chk_fail()`` function.
11688
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011689Arguments:
11690""""""""""
11691
11692The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11693the variable ``@__stack_chk_guard``.
11694
11695Semantics:
11696""""""""""
11697
11698This intrinsic is provided to perform the stack protector check by comparing
11699``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11700values do not match call the ``__stack_chk_fail()`` function.
11701
11702The reason to provide this as an IR level intrinsic instead of implementing it
11703via other IR operations is that in order to perform this operation at the IR
11704level without an intrinsic, one would need to create additional basic blocks to
11705handle the success/failure cases. This makes it difficult to stop the stack
11706protector check from disrupting sibling tail calls in Codegen. With this
11707intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011708codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011709
Sean Silvab084af42012-12-07 10:36:55 +000011710'``llvm.objectsize``' Intrinsic
11711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11712
11713Syntax:
11714"""""""
11715
11716::
11717
11718 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11719 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11720
11721Overview:
11722"""""""""
11723
11724The ``llvm.objectsize`` intrinsic is designed to provide information to
11725the optimizers to determine at compile time whether a) an operation
11726(like memcpy) will overflow a buffer that corresponds to an object, or
11727b) that a runtime check for overflow isn't necessary. An object in this
11728context means an allocation of a specific class, structure, array, or
11729other object.
11730
11731Arguments:
11732""""""""""
11733
11734The ``llvm.objectsize`` intrinsic takes two arguments. The first
11735argument is a pointer to or into the ``object``. The second argument is
11736a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11737or -1 (if false) when the object size is unknown. The second argument
11738only accepts constants.
11739
11740Semantics:
11741""""""""""
11742
11743The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11744the size of the object concerned. If the size cannot be determined at
11745compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11746on the ``min`` argument).
11747
11748'``llvm.expect``' Intrinsic
11749^^^^^^^^^^^^^^^^^^^^^^^^^^^
11750
11751Syntax:
11752"""""""
11753
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011754This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11755integer bit width.
11756
Sean Silvab084af42012-12-07 10:36:55 +000011757::
11758
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011759 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011760 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11761 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11762
11763Overview:
11764"""""""""
11765
11766The ``llvm.expect`` intrinsic provides information about expected (the
11767most probable) value of ``val``, which can be used by optimizers.
11768
11769Arguments:
11770""""""""""
11771
11772The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11773a value. The second argument is an expected value, this needs to be a
11774constant value, variables are not allowed.
11775
11776Semantics:
11777""""""""""
11778
11779This intrinsic is lowered to the ``val``.
11780
Philip Reamese0e90832015-04-26 22:23:12 +000011781.. _int_assume:
11782
Hal Finkel93046912014-07-25 21:13:35 +000011783'``llvm.assume``' Intrinsic
11784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11785
11786Syntax:
11787"""""""
11788
11789::
11790
11791 declare void @llvm.assume(i1 %cond)
11792
11793Overview:
11794"""""""""
11795
11796The ``llvm.assume`` allows the optimizer to assume that the provided
11797condition is true. This information can then be used in simplifying other parts
11798of the code.
11799
11800Arguments:
11801""""""""""
11802
11803The condition which the optimizer may assume is always true.
11804
11805Semantics:
11806""""""""""
11807
11808The intrinsic allows the optimizer to assume that the provided condition is
11809always true whenever the control flow reaches the intrinsic call. No code is
11810generated for this intrinsic, and instructions that contribute only to the
11811provided condition are not used for code generation. If the condition is
11812violated during execution, the behavior is undefined.
11813
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011814Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011815used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11816only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011817if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011818sufficient overall improvement in code quality. For this reason,
11819``llvm.assume`` should not be used to document basic mathematical invariants
11820that the optimizer can otherwise deduce or facts that are of little use to the
11821optimizer.
11822
Peter Collingbournee6909c82015-02-20 20:30:47 +000011823.. _bitset.test:
11824
11825'``llvm.bitset.test``' Intrinsic
11826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11827
11828Syntax:
11829"""""""
11830
11831::
11832
11833 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11834
11835
11836Arguments:
11837""""""""""
11838
11839The first argument is a pointer to be tested. The second argument is a
11840metadata string containing the name of a :doc:`bitset <BitSets>`.
11841
11842Overview:
11843"""""""""
11844
11845The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11846member of the given bitset.
11847
Sean Silvab084af42012-12-07 10:36:55 +000011848'``llvm.donothing``' Intrinsic
11849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11850
11851Syntax:
11852"""""""
11853
11854::
11855
11856 declare void @llvm.donothing() nounwind readnone
11857
11858Overview:
11859"""""""""
11860
Juergen Ributzkac9161192014-10-23 22:36:13 +000011861The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11862two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11863with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011864
11865Arguments:
11866""""""""""
11867
11868None.
11869
11870Semantics:
11871""""""""""
11872
11873This intrinsic does nothing, and it's removed by optimizers and ignored
11874by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011875
11876Stack Map Intrinsics
11877--------------------
11878
11879LLVM provides experimental intrinsics to support runtime patching
11880mechanisms commonly desired in dynamic language JITs. These intrinsics
11881are described in :doc:`StackMaps`.