blob: a609722d80e6db305b8f6f72bfb63fa59860693f [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Sean Silva706fba52015-08-06 22:56:24 +0000693The argument list is a comma separated sequence of arguments where each
694argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
Rafael Espindola464fe022014-07-30 22:51:54 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Sean Silvaa1190322015-08-06 22:56:48 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000750that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000825with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000831COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000897 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000932 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000933 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000941 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001030 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001037 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001073index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001090of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
Sean Silvaa1190322015-08-06 22:56:48 +00001097A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001111have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001116definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Sean Silvaa1190322015-08-06 22:56:48 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
1222 Transformations that are execution model agnostic may only move or
1223 tranform this call if the final location is control equivalent to its
1224 original position in the program, where control equivalence is defined as
1225 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001226``inlinehint``
1227 This attribute indicates that the source code contained a hint that
1228 inlining this function is desirable (such as the "inline" keyword in
1229 C/C++). It is just a hint; it imposes no requirements on the
1230 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001231``jumptable``
1232 This attribute indicates that the function should be added to a
1233 jump-instruction table at code-generation time, and that all address-taken
1234 references to this function should be replaced with a reference to the
1235 appropriate jump-instruction-table function pointer. Note that this creates
1236 a new pointer for the original function, which means that code that depends
1237 on function-pointer identity can break. So, any function annotated with
1238 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001239``minsize``
1240 This attribute suggests that optimization passes and code generator
1241 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001242 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001243 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001244``naked``
1245 This attribute disables prologue / epilogue emission for the
1246 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001247``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001248 This indicates that the callee function at a call site is not recognized as
1249 a built-in function. LLVM will retain the original call and not replace it
1250 with equivalent code based on the semantics of the built-in function, unless
1251 the call site uses the ``builtin`` attribute. This is valid at call sites
1252 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001253``noduplicate``
1254 This attribute indicates that calls to the function cannot be
1255 duplicated. A call to a ``noduplicate`` function may be moved
1256 within its parent function, but may not be duplicated within
1257 its parent function.
1258
1259 A function containing a ``noduplicate`` call may still
1260 be an inlining candidate, provided that the call is not
1261 duplicated by inlining. That implies that the function has
1262 internal linkage and only has one call site, so the original
1263 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001264``noimplicitfloat``
1265 This attributes disables implicit floating point instructions.
1266``noinline``
1267 This attribute indicates that the inliner should never inline this
1268 function in any situation. This attribute may not be used together
1269 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001270``nonlazybind``
1271 This attribute suppresses lazy symbol binding for the function. This
1272 may make calls to the function faster, at the cost of extra program
1273 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001274``noredzone``
1275 This attribute indicates that the code generator should not use a
1276 red zone, even if the target-specific ABI normally permits it.
1277``noreturn``
1278 This function attribute indicates that the function never returns
1279 normally. This produces undefined behavior at runtime if the
1280 function ever does dynamically return.
1281``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001282 This function attribute indicates that the function never raises an
1283 exception. If the function does raise an exception, its runtime
1284 behavior is undefined. However, functions marked nounwind may still
1285 trap or generate asynchronous exceptions. Exception handling schemes
1286 that are recognized by LLVM to handle asynchronous exceptions, such
1287 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288``optnone``
1289 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291 exception of interprocedural optimization passes.
1292 This attribute cannot be used together with the ``alwaysinline``
1293 attribute; this attribute is also incompatible
1294 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001295
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 This attribute requires the ``noinline`` attribute to be specified on
1297 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001298 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``optsize``
1301 This attribute suggests that optimization passes and code generator
1302 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001303 and otherwise do optimizations specifically to reduce code size as
1304 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001305``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001306 On a function, this attribute indicates that the function computes its
1307 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001308 without dereferencing any pointer arguments or otherwise accessing
1309 any mutable state (e.g. memory, control registers, etc) visible to
1310 caller functions. It does not write through any pointer arguments
1311 (including ``byval`` arguments) and never changes any state visible
1312 to callers. This means that it cannot unwind exceptions by calling
1313 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001314
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001315 On an argument, this attribute indicates that the function does not
1316 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001317 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001318``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001319 On a function, this attribute indicates that the function does not write
1320 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001321 modify any state (e.g. memory, control registers, etc) visible to
1322 caller functions. It may dereference pointer arguments and read
1323 state that may be set in the caller. A readonly function always
1324 returns the same value (or unwinds an exception identically) when
1325 called with the same set of arguments and global state. It cannot
1326 unwind an exception by calling the ``C++`` exception throwing
1327 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001328
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On an argument, this attribute indicates that the function does not write
1330 through this pointer argument, even though it may write to the memory that
1331 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001332``argmemonly``
1333 This attribute indicates that the only memory accesses inside function are
1334 loads and stores from objects pointed to by its pointer-typed arguments,
1335 with arbitrary offsets. Or in other words, all memory operations in the
1336 function can refer to memory only using pointers based on its function
1337 arguments.
1338 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1339 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001340``returns_twice``
1341 This attribute indicates that this function can return twice. The C
1342 ``setjmp`` is an example of such a function. The compiler disables
1343 some optimizations (like tail calls) in the caller of these
1344 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001345``safestack``
1346 This attribute indicates that
1347 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1348 protection is enabled for this function.
1349
1350 If a function that has a ``safestack`` attribute is inlined into a
1351 function that doesn't have a ``safestack`` attribute or which has an
1352 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1353 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001354``sanitize_address``
1355 This attribute indicates that AddressSanitizer checks
1356 (dynamic address safety analysis) are enabled for this function.
1357``sanitize_memory``
1358 This attribute indicates that MemorySanitizer checks (dynamic detection
1359 of accesses to uninitialized memory) are enabled for this function.
1360``sanitize_thread``
1361 This attribute indicates that ThreadSanitizer checks
1362 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001363``ssp``
1364 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001365 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001366 placed on the stack before the local variables that's checked upon
1367 return from the function to see if it has been overwritten. A
1368 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001370
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001371 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1372 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1373 - Calls to alloca() with variable sizes or constant sizes greater than
1374 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378
Sean Silvab084af42012-12-07 10:36:55 +00001379 If a function that has an ``ssp`` attribute is inlined into a
1380 function that doesn't have an ``ssp`` attribute, then the resulting
1381 function will have an ``ssp`` attribute.
1382``sspreq``
1383 This attribute indicates that the function should *always* emit a
1384 stack smashing protector. This overrides the ``ssp`` function
1385 attribute.
1386
Josh Magee24c7f062014-02-01 01:36:16 +00001387 Variables that are identified as requiring a protector will be arranged
1388 on the stack such that they are adjacent to the stack protector guard.
1389 The specific layout rules are:
1390
1391 #. Large arrays and structures containing large arrays
1392 (``>= ssp-buffer-size``) are closest to the stack protector.
1393 #. Small arrays and structures containing small arrays
1394 (``< ssp-buffer-size``) are 2nd closest to the protector.
1395 #. Variables that have had their address taken are 3rd closest to the
1396 protector.
1397
Sean Silvab084af42012-12-07 10:36:55 +00001398 If a function that has an ``sspreq`` attribute is inlined into a
1399 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001400 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1401 an ``sspreq`` attribute.
1402``sspstrong``
1403 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001405 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001406 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001407
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001408 - Arrays of any size and type
1409 - Aggregates containing an array of any size and type.
1410 - Calls to alloca().
1411 - Local variables that have had their address taken.
1412
Josh Magee24c7f062014-02-01 01:36:16 +00001413 Variables that are identified as requiring a protector will be arranged
1414 on the stack such that they are adjacent to the stack protector guard.
1415 The specific layout rules are:
1416
1417 #. Large arrays and structures containing large arrays
1418 (``>= ssp-buffer-size``) are closest to the stack protector.
1419 #. Small arrays and structures containing small arrays
1420 (``< ssp-buffer-size``) are 2nd closest to the protector.
1421 #. Variables that have had their address taken are 3rd closest to the
1422 protector.
1423
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001424 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001425
1426 If a function that has an ``sspstrong`` attribute is inlined into a
1427 function that doesn't have an ``sspstrong`` attribute, then the
1428 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001429``"thunk"``
1430 This attribute indicates that the function will delegate to some other
1431 function with a tail call. The prototype of a thunk should not be used for
1432 optimization purposes. The caller is expected to cast the thunk prototype to
1433 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001434``uwtable``
1435 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001436 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001437 show that no exceptions passes by it. This is normally the case for
1438 the ELF x86-64 abi, but it can be disabled for some compilation
1439 units.
Sean Silvab084af42012-12-07 10:36:55 +00001440
1441.. _moduleasm:
1442
1443Module-Level Inline Assembly
1444----------------------------
1445
1446Modules may contain "module-level inline asm" blocks, which corresponds
1447to the GCC "file scope inline asm" blocks. These blocks are internally
1448concatenated by LLVM and treated as a single unit, but may be separated
1449in the ``.ll`` file if desired. The syntax is very simple:
1450
1451.. code-block:: llvm
1452
1453 module asm "inline asm code goes here"
1454 module asm "more can go here"
1455
1456The strings can contain any character by escaping non-printable
1457characters. The escape sequence used is simply "\\xx" where "xx" is the
1458two digit hex code for the number.
1459
James Y Knightbc832ed2015-07-08 18:08:36 +00001460Note that the assembly string *must* be parseable by LLVM's integrated assembler
1461(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001462
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001463.. _langref_datalayout:
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465Data Layout
1466-----------
1467
1468A module may specify a target specific data layout string that specifies
1469how data is to be laid out in memory. The syntax for the data layout is
1470simply:
1471
1472.. code-block:: llvm
1473
1474 target datalayout = "layout specification"
1475
1476The *layout specification* consists of a list of specifications
1477separated by the minus sign character ('-'). Each specification starts
1478with a letter and may include other information after the letter to
1479define some aspect of the data layout. The specifications accepted are
1480as follows:
1481
1482``E``
1483 Specifies that the target lays out data in big-endian form. That is,
1484 the bits with the most significance have the lowest address
1485 location.
1486``e``
1487 Specifies that the target lays out data in little-endian form. That
1488 is, the bits with the least significance have the lowest address
1489 location.
1490``S<size>``
1491 Specifies the natural alignment of the stack in bits. Alignment
1492 promotion of stack variables is limited to the natural stack
1493 alignment to avoid dynamic stack realignment. The stack alignment
1494 must be a multiple of 8-bits. If omitted, the natural stack
1495 alignment defaults to "unspecified", which does not prevent any
1496 alignment promotions.
1497``p[n]:<size>:<abi>:<pref>``
1498 This specifies the *size* of a pointer and its ``<abi>`` and
1499 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001500 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001501 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001502 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001503``i<size>:<abi>:<pref>``
1504 This specifies the alignment for an integer type of a given bit
1505 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1506``v<size>:<abi>:<pref>``
1507 This specifies the alignment for a vector type of a given bit
1508 ``<size>``.
1509``f<size>:<abi>:<pref>``
1510 This specifies the alignment for a floating point type of a given bit
1511 ``<size>``. Only values of ``<size>`` that are supported by the target
1512 will work. 32 (float) and 64 (double) are supported on all targets; 80
1513 or 128 (different flavors of long double) are also supported on some
1514 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001515``a:<abi>:<pref>``
1516 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001517``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001518 If present, specifies that llvm names are mangled in the output. The
1519 options are
1520
1521 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1522 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1523 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1524 symbols get a ``_`` prefix.
1525 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1526 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001527``n<size1>:<size2>:<size3>...``
1528 This specifies a set of native integer widths for the target CPU in
1529 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1530 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1531 this set are considered to support most general arithmetic operations
1532 efficiently.
1533
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001534On every specification that takes a ``<abi>:<pref>``, specifying the
1535``<pref>`` alignment is optional. If omitted, the preceding ``:``
1536should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1537
Sean Silvab084af42012-12-07 10:36:55 +00001538When constructing the data layout for a given target, LLVM starts with a
1539default set of specifications which are then (possibly) overridden by
1540the specifications in the ``datalayout`` keyword. The default
1541specifications are given in this list:
1542
1543- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001544- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1545- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1546 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001547- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001548- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1549- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1550- ``i16:16:16`` - i16 is 16-bit aligned
1551- ``i32:32:32`` - i32 is 32-bit aligned
1552- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1553 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001554- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001555- ``f32:32:32`` - float is 32-bit aligned
1556- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001557- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001558- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1559- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001560- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001561
1562When LLVM is determining the alignment for a given type, it uses the
1563following rules:
1564
1565#. If the type sought is an exact match for one of the specifications,
1566 that specification is used.
1567#. If no match is found, and the type sought is an integer type, then
1568 the smallest integer type that is larger than the bitwidth of the
1569 sought type is used. If none of the specifications are larger than
1570 the bitwidth then the largest integer type is used. For example,
1571 given the default specifications above, the i7 type will use the
1572 alignment of i8 (next largest) while both i65 and i256 will use the
1573 alignment of i64 (largest specified).
1574#. If no match is found, and the type sought is a vector type, then the
1575 largest vector type that is smaller than the sought vector type will
1576 be used as a fall back. This happens because <128 x double> can be
1577 implemented in terms of 64 <2 x double>, for example.
1578
1579The function of the data layout string may not be what you expect.
1580Notably, this is not a specification from the frontend of what alignment
1581the code generator should use.
1582
1583Instead, if specified, the target data layout is required to match what
1584the ultimate *code generator* expects. This string is used by the
1585mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001586what the ultimate code generator uses. There is no way to generate IR
1587that does not embed this target-specific detail into the IR. If you
1588don't specify the string, the default specifications will be used to
1589generate a Data Layout and the optimization phases will operate
1590accordingly and introduce target specificity into the IR with respect to
1591these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001592
Bill Wendling5cc90842013-10-18 23:41:25 +00001593.. _langref_triple:
1594
1595Target Triple
1596-------------
1597
1598A module may specify a target triple string that describes the target
1599host. The syntax for the target triple is simply:
1600
1601.. code-block:: llvm
1602
1603 target triple = "x86_64-apple-macosx10.7.0"
1604
1605The *target triple* string consists of a series of identifiers delimited
1606by the minus sign character ('-'). The canonical forms are:
1607
1608::
1609
1610 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1611 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1612
1613This information is passed along to the backend so that it generates
1614code for the proper architecture. It's possible to override this on the
1615command line with the ``-mtriple`` command line option.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617.. _pointeraliasing:
1618
1619Pointer Aliasing Rules
1620----------------------
1621
1622Any memory access must be done through a pointer value associated with
1623an address range of the memory access, otherwise the behavior is
1624undefined. Pointer values are associated with address ranges according
1625to the following rules:
1626
1627- A pointer value is associated with the addresses associated with any
1628 value it is *based* on.
1629- An address of a global variable is associated with the address range
1630 of the variable's storage.
1631- The result value of an allocation instruction is associated with the
1632 address range of the allocated storage.
1633- A null pointer in the default address-space is associated with no
1634 address.
1635- An integer constant other than zero or a pointer value returned from
1636 a function not defined within LLVM may be associated with address
1637 ranges allocated through mechanisms other than those provided by
1638 LLVM. Such ranges shall not overlap with any ranges of addresses
1639 allocated by mechanisms provided by LLVM.
1640
1641A pointer value is *based* on another pointer value according to the
1642following rules:
1643
1644- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001645 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001646- The result value of a ``bitcast`` is *based* on the operand of the
1647 ``bitcast``.
1648- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1649 values that contribute (directly or indirectly) to the computation of
1650 the pointer's value.
1651- The "*based* on" relationship is transitive.
1652
1653Note that this definition of *"based"* is intentionally similar to the
1654definition of *"based"* in C99, though it is slightly weaker.
1655
1656LLVM IR does not associate types with memory. The result type of a
1657``load`` merely indicates the size and alignment of the memory from
1658which to load, as well as the interpretation of the value. The first
1659operand type of a ``store`` similarly only indicates the size and
1660alignment of the store.
1661
1662Consequently, type-based alias analysis, aka TBAA, aka
1663``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1664:ref:`Metadata <metadata>` may be used to encode additional information
1665which specialized optimization passes may use to implement type-based
1666alias analysis.
1667
1668.. _volatile:
1669
1670Volatile Memory Accesses
1671------------------------
1672
1673Certain memory accesses, such as :ref:`load <i_load>`'s,
1674:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1675marked ``volatile``. The optimizers must not change the number of
1676volatile operations or change their order of execution relative to other
1677volatile operations. The optimizers *may* change the order of volatile
1678operations relative to non-volatile operations. This is not Java's
1679"volatile" and has no cross-thread synchronization behavior.
1680
Andrew Trick89fc5a62013-01-30 21:19:35 +00001681IR-level volatile loads and stores cannot safely be optimized into
1682llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1683flagged volatile. Likewise, the backend should never split or merge
1684target-legal volatile load/store instructions.
1685
Andrew Trick7e6f9282013-01-31 00:49:39 +00001686.. admonition:: Rationale
1687
1688 Platforms may rely on volatile loads and stores of natively supported
1689 data width to be executed as single instruction. For example, in C
1690 this holds for an l-value of volatile primitive type with native
1691 hardware support, but not necessarily for aggregate types. The
1692 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001693 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001694 do not violate the frontend's contract with the language.
1695
Sean Silvab084af42012-12-07 10:36:55 +00001696.. _memmodel:
1697
1698Memory Model for Concurrent Operations
1699--------------------------------------
1700
1701The LLVM IR does not define any way to start parallel threads of
1702execution or to register signal handlers. Nonetheless, there are
1703platform-specific ways to create them, and we define LLVM IR's behavior
1704in their presence. This model is inspired by the C++0x memory model.
1705
1706For a more informal introduction to this model, see the :doc:`Atomics`.
1707
1708We define a *happens-before* partial order as the least partial order
1709that
1710
1711- Is a superset of single-thread program order, and
1712- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1713 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1714 techniques, like pthread locks, thread creation, thread joining,
1715 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1716 Constraints <ordering>`).
1717
1718Note that program order does not introduce *happens-before* edges
1719between a thread and signals executing inside that thread.
1720
1721Every (defined) read operation (load instructions, memcpy, atomic
1722loads/read-modify-writes, etc.) R reads a series of bytes written by
1723(defined) write operations (store instructions, atomic
1724stores/read-modify-writes, memcpy, etc.). For the purposes of this
1725section, initialized globals are considered to have a write of the
1726initializer which is atomic and happens before any other read or write
1727of the memory in question. For each byte of a read R, R\ :sub:`byte`
1728may see any write to the same byte, except:
1729
1730- If write\ :sub:`1` happens before write\ :sub:`2`, and
1731 write\ :sub:`2` happens before R\ :sub:`byte`, then
1732 R\ :sub:`byte` does not see write\ :sub:`1`.
1733- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1734 R\ :sub:`byte` does not see write\ :sub:`3`.
1735
1736Given that definition, R\ :sub:`byte` is defined as follows:
1737
1738- If R is volatile, the result is target-dependent. (Volatile is
1739 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001740 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001741 like normal memory. It does not generally provide cross-thread
1742 synchronization.)
1743- Otherwise, if there is no write to the same byte that happens before
1744 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1745- Otherwise, if R\ :sub:`byte` may see exactly one write,
1746 R\ :sub:`byte` returns the value written by that write.
1747- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1748 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1749 Memory Ordering Constraints <ordering>` section for additional
1750 constraints on how the choice is made.
1751- Otherwise R\ :sub:`byte` returns ``undef``.
1752
1753R returns the value composed of the series of bytes it read. This
1754implies that some bytes within the value may be ``undef`` **without**
1755the entire value being ``undef``. Note that this only defines the
1756semantics of the operation; it doesn't mean that targets will emit more
1757than one instruction to read the series of bytes.
1758
1759Note that in cases where none of the atomic intrinsics are used, this
1760model places only one restriction on IR transformations on top of what
1761is required for single-threaded execution: introducing a store to a byte
1762which might not otherwise be stored is not allowed in general.
1763(Specifically, in the case where another thread might write to and read
1764from an address, introducing a store can change a load that may see
1765exactly one write into a load that may see multiple writes.)
1766
1767.. _ordering:
1768
1769Atomic Memory Ordering Constraints
1770----------------------------------
1771
1772Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1773:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1774:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001775ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001776the same address they *synchronize with*. These semantics are borrowed
1777from Java and C++0x, but are somewhat more colloquial. If these
1778descriptions aren't precise enough, check those specs (see spec
1779references in the :doc:`atomics guide <Atomics>`).
1780:ref:`fence <i_fence>` instructions treat these orderings somewhat
1781differently since they don't take an address. See that instruction's
1782documentation for details.
1783
1784For a simpler introduction to the ordering constraints, see the
1785:doc:`Atomics`.
1786
1787``unordered``
1788 The set of values that can be read is governed by the happens-before
1789 partial order. A value cannot be read unless some operation wrote
1790 it. This is intended to provide a guarantee strong enough to model
1791 Java's non-volatile shared variables. This ordering cannot be
1792 specified for read-modify-write operations; it is not strong enough
1793 to make them atomic in any interesting way.
1794``monotonic``
1795 In addition to the guarantees of ``unordered``, there is a single
1796 total order for modifications by ``monotonic`` operations on each
1797 address. All modification orders must be compatible with the
1798 happens-before order. There is no guarantee that the modification
1799 orders can be combined to a global total order for the whole program
1800 (and this often will not be possible). The read in an atomic
1801 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1802 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1803 order immediately before the value it writes. If one atomic read
1804 happens before another atomic read of the same address, the later
1805 read must see the same value or a later value in the address's
1806 modification order. This disallows reordering of ``monotonic`` (or
1807 stronger) operations on the same address. If an address is written
1808 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1809 read that address repeatedly, the other threads must eventually see
1810 the write. This corresponds to the C++0x/C1x
1811 ``memory_order_relaxed``.
1812``acquire``
1813 In addition to the guarantees of ``monotonic``, a
1814 *synchronizes-with* edge may be formed with a ``release`` operation.
1815 This is intended to model C++'s ``memory_order_acquire``.
1816``release``
1817 In addition to the guarantees of ``monotonic``, if this operation
1818 writes a value which is subsequently read by an ``acquire``
1819 operation, it *synchronizes-with* that operation. (This isn't a
1820 complete description; see the C++0x definition of a release
1821 sequence.) This corresponds to the C++0x/C1x
1822 ``memory_order_release``.
1823``acq_rel`` (acquire+release)
1824 Acts as both an ``acquire`` and ``release`` operation on its
1825 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1826``seq_cst`` (sequentially consistent)
1827 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001828 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001829 writes), there is a global total order on all
1830 sequentially-consistent operations on all addresses, which is
1831 consistent with the *happens-before* partial order and with the
1832 modification orders of all the affected addresses. Each
1833 sequentially-consistent read sees the last preceding write to the
1834 same address in this global order. This corresponds to the C++0x/C1x
1835 ``memory_order_seq_cst`` and Java volatile.
1836
1837.. _singlethread:
1838
1839If an atomic operation is marked ``singlethread``, it only *synchronizes
1840with* or participates in modification and seq\_cst total orderings with
1841other operations running in the same thread (for example, in signal
1842handlers).
1843
1844.. _fastmath:
1845
1846Fast-Math Flags
1847---------------
1848
1849LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1850:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001851:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1852be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001853
1854``nnan``
1855 No NaNs - Allow optimizations to assume the arguments and result are not
1856 NaN. Such optimizations are required to retain defined behavior over
1857 NaNs, but the value of the result is undefined.
1858
1859``ninf``
1860 No Infs - Allow optimizations to assume the arguments and result are not
1861 +/-Inf. Such optimizations are required to retain defined behavior over
1862 +/-Inf, but the value of the result is undefined.
1863
1864``nsz``
1865 No Signed Zeros - Allow optimizations to treat the sign of a zero
1866 argument or result as insignificant.
1867
1868``arcp``
1869 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1870 argument rather than perform division.
1871
1872``fast``
1873 Fast - Allow algebraically equivalent transformations that may
1874 dramatically change results in floating point (e.g. reassociate). This
1875 flag implies all the others.
1876
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001877.. _uselistorder:
1878
1879Use-list Order Directives
1880-------------------------
1881
1882Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001883order to be recreated. ``<order-indexes>`` is a comma-separated list of
1884indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001885value's use-list is immediately sorted by these indexes.
1886
Sean Silvaa1190322015-08-06 22:56:48 +00001887Use-list directives may appear at function scope or global scope. They are not
1888instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001889function scope, they must appear after the terminator of the final basic block.
1890
1891If basic blocks have their address taken via ``blockaddress()`` expressions,
1892``uselistorder_bb`` can be used to reorder their use-lists from outside their
1893function's scope.
1894
1895:Syntax:
1896
1897::
1898
1899 uselistorder <ty> <value>, { <order-indexes> }
1900 uselistorder_bb @function, %block { <order-indexes> }
1901
1902:Examples:
1903
1904::
1905
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001906 define void @foo(i32 %arg1, i32 %arg2) {
1907 entry:
1908 ; ... instructions ...
1909 bb:
1910 ; ... instructions ...
1911
1912 ; At function scope.
1913 uselistorder i32 %arg1, { 1, 0, 2 }
1914 uselistorder label %bb, { 1, 0 }
1915 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001916
1917 ; At global scope.
1918 uselistorder i32* @global, { 1, 2, 0 }
1919 uselistorder i32 7, { 1, 0 }
1920 uselistorder i32 (i32) @bar, { 1, 0 }
1921 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1922
Sean Silvab084af42012-12-07 10:36:55 +00001923.. _typesystem:
1924
1925Type System
1926===========
1927
1928The LLVM type system is one of the most important features of the
1929intermediate representation. Being typed enables a number of
1930optimizations to be performed on the intermediate representation
1931directly, without having to do extra analyses on the side before the
1932transformation. A strong type system makes it easier to read the
1933generated code and enables novel analyses and transformations that are
1934not feasible to perform on normal three address code representations.
1935
Rafael Espindola08013342013-12-07 19:34:20 +00001936.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001937
Rafael Espindola08013342013-12-07 19:34:20 +00001938Void Type
1939---------
Sean Silvab084af42012-12-07 10:36:55 +00001940
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001941:Overview:
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943
1944The void type does not represent any value and has no size.
1945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Syntax:
1947
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949::
1950
1951 void
Sean Silvab084af42012-12-07 10:36:55 +00001952
1953
Rafael Espindola08013342013-12-07 19:34:20 +00001954.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola08013342013-12-07 19:34:20 +00001956Function Type
1957-------------
Sean Silvab084af42012-12-07 10:36:55 +00001958
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001959:Overview:
1960
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962The function type can be thought of as a function signature. It consists of a
1963return type and a list of formal parameter types. The return type of a function
1964type is a void type or first class type --- except for :ref:`label <t_label>`
1965and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola08013342013-12-07 19:34:20 +00001969::
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola08013342013-12-07 19:34:20 +00001973...where '``<parameter list>``' is a comma-separated list of type
1974specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00001975indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00001976argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00001977handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00001978except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001979
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001980:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001981
Rafael Espindola08013342013-12-07 19:34:20 +00001982+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1983| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1984+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1985| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1986+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1987| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1988+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1989| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1990+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1991
1992.. _t_firstclass:
1993
1994First Class Types
1995-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997The :ref:`first class <t_firstclass>` types are perhaps the most important.
1998Values of these types are the only ones which can be produced by
1999instructions.
2000
Rafael Espindola08013342013-12-07 19:34:20 +00002001.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola08013342013-12-07 19:34:20 +00002003Single Value Types
2004^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002005
Rafael Espindola08013342013-12-07 19:34:20 +00002006These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002007
2008.. _t_integer:
2009
2010Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
2015The integer type is a very simple type that simply specifies an
2016arbitrary bit width for the integer type desired. Any bit width from 1
2017bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021::
2022
2023 iN
2024
2025The number of bits the integer will occupy is specified by the ``N``
2026value.
2027
2028Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002029*********
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031+----------------+------------------------------------------------+
2032| ``i1`` | a single-bit integer. |
2033+----------------+------------------------------------------------+
2034| ``i32`` | a 32-bit integer. |
2035+----------------+------------------------------------------------+
2036| ``i1942652`` | a really big integer of over 1 million bits. |
2037+----------------+------------------------------------------------+
2038
2039.. _t_floating:
2040
2041Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002042""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002043
2044.. list-table::
2045 :header-rows: 1
2046
2047 * - Type
2048 - Description
2049
2050 * - ``half``
2051 - 16-bit floating point value
2052
2053 * - ``float``
2054 - 32-bit floating point value
2055
2056 * - ``double``
2057 - 64-bit floating point value
2058
2059 * - ``fp128``
2060 - 128-bit floating point value (112-bit mantissa)
2061
2062 * - ``x86_fp80``
2063 - 80-bit floating point value (X87)
2064
2065 * - ``ppc_fp128``
2066 - 128-bit floating point value (two 64-bits)
2067
Reid Kleckner9a16d082014-03-05 02:41:37 +00002068X86_mmx Type
2069""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002074machine. The operations allowed on it are quite limited: parameters and
2075return values, load and store, and bitcast. User-specified MMX
2076instructions are represented as intrinsic or asm calls with arguments
2077and/or results of this type. There are no arrays, vectors or constants
2078of this type.
2079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002081
2082::
2083
Reid Kleckner9a16d082014-03-05 02:41:37 +00002084 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002085
Sean Silvab084af42012-12-07 10:36:55 +00002086
Rafael Espindola08013342013-12-07 19:34:20 +00002087.. _t_pointer:
2088
2089Pointer Type
2090""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola08013342013-12-07 19:34:20 +00002094The pointer type is used to specify memory locations. Pointers are
2095commonly used to reference objects in memory.
2096
2097Pointer types may have an optional address space attribute defining the
2098numbered address space where the pointed-to object resides. The default
2099address space is number zero. The semantics of non-zero address spaces
2100are target-specific.
2101
2102Note that LLVM does not permit pointers to void (``void*``) nor does it
2103permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002104
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002105:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002106
2107::
2108
Rafael Espindola08013342013-12-07 19:34:20 +00002109 <type> *
2110
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002111:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002112
2113+-------------------------+--------------------------------------------------------------------------------------------------------------+
2114| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2115+-------------------------+--------------------------------------------------------------------------------------------------------------+
2116| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2117+-------------------------+--------------------------------------------------------------------------------------------------------------+
2118| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2119+-------------------------+--------------------------------------------------------------------------------------------------------------+
2120
2121.. _t_vector:
2122
2123Vector Type
2124"""""""""""
2125
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002126:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002127
2128A vector type is a simple derived type that represents a vector of
2129elements. Vector types are used when multiple primitive data are
2130operated in parallel using a single instruction (SIMD). A vector type
2131requires a size (number of elements) and an underlying primitive data
2132type. Vector types are considered :ref:`first class <t_firstclass>`.
2133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002135
2136::
2137
2138 < <# elements> x <elementtype> >
2139
2140The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002141elementtype may be any integer, floating point or pointer type. Vectors
2142of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002145
2146+-------------------+--------------------------------------------------+
2147| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2148+-------------------+--------------------------------------------------+
2149| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2150+-------------------+--------------------------------------------------+
2151| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2152+-------------------+--------------------------------------------------+
2153| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2154+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156.. _t_label:
2157
2158Label Type
2159^^^^^^^^^^
2160
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002161:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163The label type represents code labels.
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167::
2168
2169 label
2170
David Majnemerb611e3f2015-08-14 05:09:07 +00002171.. _t_token:
2172
2173Token Type
2174^^^^^^^^^^
2175
2176:Overview:
2177
2178The token type is used when a value is associated with an instruction
2179but all uses of the value must not attempt to introspect or obscure it.
2180As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2181:ref:`select <i_select>` of type token.
2182
2183:Syntax:
2184
2185::
2186
2187 token
2188
2189
2190
Sean Silvab084af42012-12-07 10:36:55 +00002191.. _t_metadata:
2192
2193Metadata Type
2194^^^^^^^^^^^^^
2195
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002196:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002197
2198The metadata type represents embedded metadata. No derived types may be
2199created from metadata except for :ref:`function <t_function>` arguments.
2200
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002201:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002202
2203::
2204
2205 metadata
2206
Sean Silvab084af42012-12-07 10:36:55 +00002207.. _t_aggregate:
2208
2209Aggregate Types
2210^^^^^^^^^^^^^^^
2211
2212Aggregate Types are a subset of derived types that can contain multiple
2213member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2214aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2215aggregate types.
2216
2217.. _t_array:
2218
2219Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002220""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002221
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002222:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002223
2224The array type is a very simple derived type that arranges elements
2225sequentially in memory. The array type requires a size (number of
2226elements) and an underlying data type.
2227
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002228:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002229
2230::
2231
2232 [<# elements> x <elementtype>]
2233
2234The number of elements is a constant integer value; ``elementtype`` may
2235be any type with a size.
2236
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002237:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002238
2239+------------------+--------------------------------------+
2240| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2241+------------------+--------------------------------------+
2242| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2243+------------------+--------------------------------------+
2244| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2245+------------------+--------------------------------------+
2246
2247Here are some examples of multidimensional arrays:
2248
2249+-----------------------------+----------------------------------------------------------+
2250| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2251+-----------------------------+----------------------------------------------------------+
2252| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2253+-----------------------------+----------------------------------------------------------+
2254| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2255+-----------------------------+----------------------------------------------------------+
2256
2257There is no restriction on indexing beyond the end of the array implied
2258by a static type (though there are restrictions on indexing beyond the
2259bounds of an allocated object in some cases). This means that
2260single-dimension 'variable sized array' addressing can be implemented in
2261LLVM with a zero length array type. An implementation of 'pascal style
2262arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2263example.
2264
Sean Silvab084af42012-12-07 10:36:55 +00002265.. _t_struct:
2266
2267Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002268""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002271
2272The structure type is used to represent a collection of data members
2273together in memory. The elements of a structure may be any type that has
2274a size.
2275
2276Structures in memory are accessed using '``load``' and '``store``' by
2277getting a pointer to a field with the '``getelementptr``' instruction.
2278Structures in registers are accessed using the '``extractvalue``' and
2279'``insertvalue``' instructions.
2280
2281Structures may optionally be "packed" structures, which indicate that
2282the alignment of the struct is one byte, and that there is no padding
2283between the elements. In non-packed structs, padding between field types
2284is inserted as defined by the DataLayout string in the module, which is
2285required to match what the underlying code generator expects.
2286
2287Structures can either be "literal" or "identified". A literal structure
2288is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2289identified types are always defined at the top level with a name.
2290Literal types are uniqued by their contents and can never be recursive
2291or opaque since there is no way to write one. Identified types can be
2292recursive, can be opaqued, and are never uniqued.
2293
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002294:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002295
2296::
2297
2298 %T1 = type { <type list> } ; Identified normal struct type
2299 %T2 = type <{ <type list> }> ; Identified packed struct type
2300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002302
2303+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2304| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2305+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002306| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002307+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2308| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2309+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2310
2311.. _t_opaque:
2312
2313Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002314""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002315
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002316:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002317
2318Opaque structure types are used to represent named structure types that
2319do not have a body specified. This corresponds (for example) to the C
2320notion of a forward declared structure.
2321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002323
2324::
2325
2326 %X = type opaque
2327 %52 = type opaque
2328
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002329:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002330
2331+--------------+-------------------+
2332| ``opaque`` | An opaque type. |
2333+--------------+-------------------+
2334
Sean Silva1703e702014-04-08 21:06:22 +00002335.. _constants:
2336
Sean Silvab084af42012-12-07 10:36:55 +00002337Constants
2338=========
2339
2340LLVM has several different basic types of constants. This section
2341describes them all and their syntax.
2342
2343Simple Constants
2344----------------
2345
2346**Boolean constants**
2347 The two strings '``true``' and '``false``' are both valid constants
2348 of the ``i1`` type.
2349**Integer constants**
2350 Standard integers (such as '4') are constants of the
2351 :ref:`integer <t_integer>` type. Negative numbers may be used with
2352 integer types.
2353**Floating point constants**
2354 Floating point constants use standard decimal notation (e.g.
2355 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2356 hexadecimal notation (see below). The assembler requires the exact
2357 decimal value of a floating-point constant. For example, the
2358 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2359 decimal in binary. Floating point constants must have a :ref:`floating
2360 point <t_floating>` type.
2361**Null pointer constants**
2362 The identifier '``null``' is recognized as a null pointer constant
2363 and must be of :ref:`pointer type <t_pointer>`.
2364
2365The one non-intuitive notation for constants is the hexadecimal form of
2366floating point constants. For example, the form
2367'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2368than) '``double 4.5e+15``'. The only time hexadecimal floating point
2369constants are required (and the only time that they are generated by the
2370disassembler) is when a floating point constant must be emitted but it
2371cannot be represented as a decimal floating point number in a reasonable
2372number of digits. For example, NaN's, infinities, and other special
2373values are represented in their IEEE hexadecimal format so that assembly
2374and disassembly do not cause any bits to change in the constants.
2375
2376When using the hexadecimal form, constants of types half, float, and
2377double are represented using the 16-digit form shown above (which
2378matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002379must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002380precision, respectively. Hexadecimal format is always used for long
2381double, and there are three forms of long double. The 80-bit format used
2382by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2383128-bit format used by PowerPC (two adjacent doubles) is represented by
2384``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002385represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2386will only work if they match the long double format on your target.
2387The IEEE 16-bit format (half precision) is represented by ``0xH``
2388followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2389(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002390
Reid Kleckner9a16d082014-03-05 02:41:37 +00002391There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002392
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002393.. _complexconstants:
2394
Sean Silvab084af42012-12-07 10:36:55 +00002395Complex Constants
2396-----------------
2397
2398Complex constants are a (potentially recursive) combination of simple
2399constants and smaller complex constants.
2400
2401**Structure constants**
2402 Structure constants are represented with notation similar to
2403 structure type definitions (a comma separated list of elements,
2404 surrounded by braces (``{}``)). For example:
2405 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2406 "``@G = external global i32``". Structure constants must have
2407 :ref:`structure type <t_struct>`, and the number and types of elements
2408 must match those specified by the type.
2409**Array constants**
2410 Array constants are represented with notation similar to array type
2411 definitions (a comma separated list of elements, surrounded by
2412 square brackets (``[]``)). For example:
2413 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2414 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002415 match those specified by the type. As a special case, character array
2416 constants may also be represented as a double-quoted string using the ``c``
2417 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002418**Vector constants**
2419 Vector constants are represented with notation similar to vector
2420 type definitions (a comma separated list of elements, surrounded by
2421 less-than/greater-than's (``<>``)). For example:
2422 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2423 must have :ref:`vector type <t_vector>`, and the number and types of
2424 elements must match those specified by the type.
2425**Zero initialization**
2426 The string '``zeroinitializer``' can be used to zero initialize a
2427 value to zero of *any* type, including scalar and
2428 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2429 having to print large zero initializers (e.g. for large arrays) and
2430 is always exactly equivalent to using explicit zero initializers.
2431**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002432 A metadata node is a constant tuple without types. For example:
2433 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002434 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2435 Unlike other typed constants that are meant to be interpreted as part of
2436 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002437 information such as debug info.
2438
2439Global Variable and Function Addresses
2440--------------------------------------
2441
2442The addresses of :ref:`global variables <globalvars>` and
2443:ref:`functions <functionstructure>` are always implicitly valid
2444(link-time) constants. These constants are explicitly referenced when
2445the :ref:`identifier for the global <identifiers>` is used and always have
2446:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2447file:
2448
2449.. code-block:: llvm
2450
2451 @X = global i32 17
2452 @Y = global i32 42
2453 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2454
2455.. _undefvalues:
2456
2457Undefined Values
2458----------------
2459
2460The string '``undef``' can be used anywhere a constant is expected, and
2461indicates that the user of the value may receive an unspecified
2462bit-pattern. Undefined values may be of any type (other than '``label``'
2463or '``void``') and be used anywhere a constant is permitted.
2464
2465Undefined values are useful because they indicate to the compiler that
2466the program is well defined no matter what value is used. This gives the
2467compiler more freedom to optimize. Here are some examples of
2468(potentially surprising) transformations that are valid (in pseudo IR):
2469
2470.. code-block:: llvm
2471
2472 %A = add %X, undef
2473 %B = sub %X, undef
2474 %C = xor %X, undef
2475 Safe:
2476 %A = undef
2477 %B = undef
2478 %C = undef
2479
2480This is safe because all of the output bits are affected by the undef
2481bits. Any output bit can have a zero or one depending on the input bits.
2482
2483.. code-block:: llvm
2484
2485 %A = or %X, undef
2486 %B = and %X, undef
2487 Safe:
2488 %A = -1
2489 %B = 0
2490 Unsafe:
2491 %A = undef
2492 %B = undef
2493
2494These logical operations have bits that are not always affected by the
2495input. For example, if ``%X`` has a zero bit, then the output of the
2496'``and``' operation will always be a zero for that bit, no matter what
2497the corresponding bit from the '``undef``' is. As such, it is unsafe to
2498optimize or assume that the result of the '``and``' is '``undef``'.
2499However, it is safe to assume that all bits of the '``undef``' could be
25000, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2501all the bits of the '``undef``' operand to the '``or``' could be set,
2502allowing the '``or``' to be folded to -1.
2503
2504.. code-block:: llvm
2505
2506 %A = select undef, %X, %Y
2507 %B = select undef, 42, %Y
2508 %C = select %X, %Y, undef
2509 Safe:
2510 %A = %X (or %Y)
2511 %B = 42 (or %Y)
2512 %C = %Y
2513 Unsafe:
2514 %A = undef
2515 %B = undef
2516 %C = undef
2517
2518This set of examples shows that undefined '``select``' (and conditional
2519branch) conditions can go *either way*, but they have to come from one
2520of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2521both known to have a clear low bit, then ``%A`` would have to have a
2522cleared low bit. However, in the ``%C`` example, the optimizer is
2523allowed to assume that the '``undef``' operand could be the same as
2524``%Y``, allowing the whole '``select``' to be eliminated.
2525
2526.. code-block:: llvm
2527
2528 %A = xor undef, undef
2529
2530 %B = undef
2531 %C = xor %B, %B
2532
2533 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002534 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002535 %F = icmp gte %D, 4
2536
2537 Safe:
2538 %A = undef
2539 %B = undef
2540 %C = undef
2541 %D = undef
2542 %E = undef
2543 %F = undef
2544
2545This example points out that two '``undef``' operands are not
2546necessarily the same. This can be surprising to people (and also matches
2547C semantics) where they assume that "``X^X``" is always zero, even if
2548``X`` is undefined. This isn't true for a number of reasons, but the
2549short answer is that an '``undef``' "variable" can arbitrarily change
2550its value over its "live range". This is true because the variable
2551doesn't actually *have a live range*. Instead, the value is logically
2552read from arbitrary registers that happen to be around when needed, so
2553the value is not necessarily consistent over time. In fact, ``%A`` and
2554``%C`` need to have the same semantics or the core LLVM "replace all
2555uses with" concept would not hold.
2556
2557.. code-block:: llvm
2558
2559 %A = fdiv undef, %X
2560 %B = fdiv %X, undef
2561 Safe:
2562 %A = undef
2563 b: unreachable
2564
2565These examples show the crucial difference between an *undefined value*
2566and *undefined behavior*. An undefined value (like '``undef``') is
2567allowed to have an arbitrary bit-pattern. This means that the ``%A``
2568operation can be constant folded to '``undef``', because the '``undef``'
2569could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2570However, in the second example, we can make a more aggressive
2571assumption: because the ``undef`` is allowed to be an arbitrary value,
2572we are allowed to assume that it could be zero. Since a divide by zero
2573has *undefined behavior*, we are allowed to assume that the operation
2574does not execute at all. This allows us to delete the divide and all
2575code after it. Because the undefined operation "can't happen", the
2576optimizer can assume that it occurs in dead code.
2577
2578.. code-block:: llvm
2579
2580 a: store undef -> %X
2581 b: store %X -> undef
2582 Safe:
2583 a: <deleted>
2584 b: unreachable
2585
2586These examples reiterate the ``fdiv`` example: a store *of* an undefined
2587value can be assumed to not have any effect; we can assume that the
2588value is overwritten with bits that happen to match what was already
2589there. However, a store *to* an undefined location could clobber
2590arbitrary memory, therefore, it has undefined behavior.
2591
2592.. _poisonvalues:
2593
2594Poison Values
2595-------------
2596
2597Poison values are similar to :ref:`undef values <undefvalues>`, however
2598they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002599that cannot evoke side effects has nevertheless detected a condition
2600that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002601
2602There is currently no way of representing a poison value in the IR; they
2603only exist when produced by operations such as :ref:`add <i_add>` with
2604the ``nsw`` flag.
2605
2606Poison value behavior is defined in terms of value *dependence*:
2607
2608- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2609- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2610 their dynamic predecessor basic block.
2611- Function arguments depend on the corresponding actual argument values
2612 in the dynamic callers of their functions.
2613- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2614 instructions that dynamically transfer control back to them.
2615- :ref:`Invoke <i_invoke>` instructions depend on the
2616 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2617 call instructions that dynamically transfer control back to them.
2618- Non-volatile loads and stores depend on the most recent stores to all
2619 of the referenced memory addresses, following the order in the IR
2620 (including loads and stores implied by intrinsics such as
2621 :ref:`@llvm.memcpy <int_memcpy>`.)
2622- An instruction with externally visible side effects depends on the
2623 most recent preceding instruction with externally visible side
2624 effects, following the order in the IR. (This includes :ref:`volatile
2625 operations <volatile>`.)
2626- An instruction *control-depends* on a :ref:`terminator
2627 instruction <terminators>` if the terminator instruction has
2628 multiple successors and the instruction is always executed when
2629 control transfers to one of the successors, and may not be executed
2630 when control is transferred to another.
2631- Additionally, an instruction also *control-depends* on a terminator
2632 instruction if the set of instructions it otherwise depends on would
2633 be different if the terminator had transferred control to a different
2634 successor.
2635- Dependence is transitive.
2636
Richard Smith32dbdf62014-07-31 04:25:36 +00002637Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2638with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002639on a poison value has undefined behavior.
2640
2641Here are some examples:
2642
2643.. code-block:: llvm
2644
2645 entry:
2646 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2647 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002648 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002649 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2650
2651 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002652 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002653
2654 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2655
2656 %narrowaddr = bitcast i32* @g to i16*
2657 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002658 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2659 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002660
2661 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2662 br i1 %cmp, label %true, label %end ; Branch to either destination.
2663
2664 true:
2665 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2666 ; it has undefined behavior.
2667 br label %end
2668
2669 end:
2670 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2671 ; Both edges into this PHI are
2672 ; control-dependent on %cmp, so this
2673 ; always results in a poison value.
2674
2675 store volatile i32 0, i32* @g ; This would depend on the store in %true
2676 ; if %cmp is true, or the store in %entry
2677 ; otherwise, so this is undefined behavior.
2678
2679 br i1 %cmp, label %second_true, label %second_end
2680 ; The same branch again, but this time the
2681 ; true block doesn't have side effects.
2682
2683 second_true:
2684 ; No side effects!
2685 ret void
2686
2687 second_end:
2688 store volatile i32 0, i32* @g ; This time, the instruction always depends
2689 ; on the store in %end. Also, it is
2690 ; control-equivalent to %end, so this is
2691 ; well-defined (ignoring earlier undefined
2692 ; behavior in this example).
2693
2694.. _blockaddress:
2695
2696Addresses of Basic Blocks
2697-------------------------
2698
2699``blockaddress(@function, %block)``
2700
2701The '``blockaddress``' constant computes the address of the specified
2702basic block in the specified function, and always has an ``i8*`` type.
2703Taking the address of the entry block is illegal.
2704
2705This value only has defined behavior when used as an operand to the
2706':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2707against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002708undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002709no label is equal to the null pointer. This may be passed around as an
2710opaque pointer sized value as long as the bits are not inspected. This
2711allows ``ptrtoint`` and arithmetic to be performed on these values so
2712long as the original value is reconstituted before the ``indirectbr``
2713instruction.
2714
2715Finally, some targets may provide defined semantics when using the value
2716as the operand to an inline assembly, but that is target specific.
2717
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002718.. _constantexprs:
2719
Sean Silvab084af42012-12-07 10:36:55 +00002720Constant Expressions
2721--------------------
2722
2723Constant expressions are used to allow expressions involving other
2724constants to be used as constants. Constant expressions may be of any
2725:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2726that does not have side effects (e.g. load and call are not supported).
2727The following is the syntax for constant expressions:
2728
2729``trunc (CST to TYPE)``
2730 Truncate a constant to another type. The bit size of CST must be
2731 larger than the bit size of TYPE. Both types must be integers.
2732``zext (CST to TYPE)``
2733 Zero extend a constant to another type. The bit size of CST must be
2734 smaller than the bit size of TYPE. Both types must be integers.
2735``sext (CST to TYPE)``
2736 Sign extend a constant to another type. The bit size of CST must be
2737 smaller than the bit size of TYPE. Both types must be integers.
2738``fptrunc (CST to TYPE)``
2739 Truncate a floating point constant to another floating point type.
2740 The size of CST must be larger than the size of TYPE. Both types
2741 must be floating point.
2742``fpext (CST to TYPE)``
2743 Floating point extend a constant to another type. The size of CST
2744 must be smaller or equal to the size of TYPE. Both types must be
2745 floating point.
2746``fptoui (CST to TYPE)``
2747 Convert a floating point constant to the corresponding unsigned
2748 integer constant. TYPE must be a scalar or vector integer type. CST
2749 must be of scalar or vector floating point type. Both CST and TYPE
2750 must be scalars, or vectors of the same number of elements. If the
2751 value won't fit in the integer type, the results are undefined.
2752``fptosi (CST to TYPE)``
2753 Convert a floating point constant to the corresponding signed
2754 integer constant. TYPE must be a scalar or vector integer type. CST
2755 must be of scalar or vector floating point type. Both CST and TYPE
2756 must be scalars, or vectors of the same number of elements. If the
2757 value won't fit in the integer type, the results are undefined.
2758``uitofp (CST to TYPE)``
2759 Convert an unsigned integer constant to the corresponding floating
2760 point constant. TYPE must be a scalar or vector floating point type.
2761 CST must be of scalar or vector integer type. Both CST and TYPE must
2762 be scalars, or vectors of the same number of elements. If the value
2763 won't fit in the floating point type, the results are undefined.
2764``sitofp (CST to TYPE)``
2765 Convert a signed integer constant to the corresponding floating
2766 point constant. TYPE must be a scalar or vector floating point type.
2767 CST must be of scalar or vector integer type. Both CST and TYPE must
2768 be scalars, or vectors of the same number of elements. If the value
2769 won't fit in the floating point type, the results are undefined.
2770``ptrtoint (CST to TYPE)``
2771 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002772 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002773 pointer type. The ``CST`` value is zero extended, truncated, or
2774 unchanged to make it fit in ``TYPE``.
2775``inttoptr (CST to TYPE)``
2776 Convert an integer constant to a pointer constant. TYPE must be a
2777 pointer type. CST must be of integer type. The CST value is zero
2778 extended, truncated, or unchanged to make it fit in a pointer size.
2779 This one is *really* dangerous!
2780``bitcast (CST to TYPE)``
2781 Convert a constant, CST, to another TYPE. The constraints of the
2782 operands are the same as those for the :ref:`bitcast
2783 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002784``addrspacecast (CST to TYPE)``
2785 Convert a constant pointer or constant vector of pointer, CST, to another
2786 TYPE in a different address space. The constraints of the operands are the
2787 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002788``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002789 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2790 constants. As with the :ref:`getelementptr <i_getelementptr>`
2791 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002792 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002793``select (COND, VAL1, VAL2)``
2794 Perform the :ref:`select operation <i_select>` on constants.
2795``icmp COND (VAL1, VAL2)``
2796 Performs the :ref:`icmp operation <i_icmp>` on constants.
2797``fcmp COND (VAL1, VAL2)``
2798 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2799``extractelement (VAL, IDX)``
2800 Perform the :ref:`extractelement operation <i_extractelement>` on
2801 constants.
2802``insertelement (VAL, ELT, IDX)``
2803 Perform the :ref:`insertelement operation <i_insertelement>` on
2804 constants.
2805``shufflevector (VEC1, VEC2, IDXMASK)``
2806 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2807 constants.
2808``extractvalue (VAL, IDX0, IDX1, ...)``
2809 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2810 constants. The index list is interpreted in a similar manner as
2811 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2812 least one index value must be specified.
2813``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2814 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2815 The index list is interpreted in a similar manner as indices in a
2816 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2817 value must be specified.
2818``OPCODE (LHS, RHS)``
2819 Perform the specified operation of the LHS and RHS constants. OPCODE
2820 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2821 binary <bitwiseops>` operations. The constraints on operands are
2822 the same as those for the corresponding instruction (e.g. no bitwise
2823 operations on floating point values are allowed).
2824
2825Other Values
2826============
2827
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002828.. _inlineasmexprs:
2829
Sean Silvab084af42012-12-07 10:36:55 +00002830Inline Assembler Expressions
2831----------------------------
2832
2833LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002834Inline Assembly <moduleasm>`) through the use of a special value. This value
2835represents the inline assembler as a template string (containing the
2836instructions to emit), a list of operand constraints (stored as a string), a
2837flag that indicates whether or not the inline asm expression has side effects,
2838and a flag indicating whether the function containing the asm needs to align its
2839stack conservatively.
2840
2841The template string supports argument substitution of the operands using "``$``"
2842followed by a number, to indicate substitution of the given register/memory
2843location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2844be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2845operand (See :ref:`inline-asm-modifiers`).
2846
2847A literal "``$``" may be included by using "``$$``" in the template. To include
2848other special characters into the output, the usual "``\XX``" escapes may be
2849used, just as in other strings. Note that after template substitution, the
2850resulting assembly string is parsed by LLVM's integrated assembler unless it is
2851disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2852syntax known to LLVM.
2853
2854LLVM's support for inline asm is modeled closely on the requirements of Clang's
2855GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2856modifier codes listed here are similar or identical to those in GCC's inline asm
2857support. However, to be clear, the syntax of the template and constraint strings
2858described here is *not* the same as the syntax accepted by GCC and Clang, and,
2859while most constraint letters are passed through as-is by Clang, some get
2860translated to other codes when converting from the C source to the LLVM
2861assembly.
2862
2863An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002864
2865.. code-block:: llvm
2866
2867 i32 (i32) asm "bswap $0", "=r,r"
2868
2869Inline assembler expressions may **only** be used as the callee operand
2870of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2871Thus, typically we have:
2872
2873.. code-block:: llvm
2874
2875 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2876
2877Inline asms with side effects not visible in the constraint list must be
2878marked as having side effects. This is done through the use of the
2879'``sideeffect``' keyword, like so:
2880
2881.. code-block:: llvm
2882
2883 call void asm sideeffect "eieio", ""()
2884
2885In some cases inline asms will contain code that will not work unless
2886the stack is aligned in some way, such as calls or SSE instructions on
2887x86, yet will not contain code that does that alignment within the asm.
2888The compiler should make conservative assumptions about what the asm
2889might contain and should generate its usual stack alignment code in the
2890prologue if the '``alignstack``' keyword is present:
2891
2892.. code-block:: llvm
2893
2894 call void asm alignstack "eieio", ""()
2895
2896Inline asms also support using non-standard assembly dialects. The
2897assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2898the inline asm is using the Intel dialect. Currently, ATT and Intel are
2899the only supported dialects. An example is:
2900
2901.. code-block:: llvm
2902
2903 call void asm inteldialect "eieio", ""()
2904
2905If multiple keywords appear the '``sideeffect``' keyword must come
2906first, the '``alignstack``' keyword second and the '``inteldialect``'
2907keyword last.
2908
James Y Knightbc832ed2015-07-08 18:08:36 +00002909Inline Asm Constraint String
2910^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2911
2912The constraint list is a comma-separated string, each element containing one or
2913more constraint codes.
2914
2915For each element in the constraint list an appropriate register or memory
2916operand will be chosen, and it will be made available to assembly template
2917string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2918second, etc.
2919
2920There are three different types of constraints, which are distinguished by a
2921prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2922constraints must always be given in that order: outputs first, then inputs, then
2923clobbers. They cannot be intermingled.
2924
2925There are also three different categories of constraint codes:
2926
2927- Register constraint. This is either a register class, or a fixed physical
2928 register. This kind of constraint will allocate a register, and if necessary,
2929 bitcast the argument or result to the appropriate type.
2930- Memory constraint. This kind of constraint is for use with an instruction
2931 taking a memory operand. Different constraints allow for different addressing
2932 modes used by the target.
2933- Immediate value constraint. This kind of constraint is for an integer or other
2934 immediate value which can be rendered directly into an instruction. The
2935 various target-specific constraints allow the selection of a value in the
2936 proper range for the instruction you wish to use it with.
2937
2938Output constraints
2939""""""""""""""""""
2940
2941Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2942indicates that the assembly will write to this operand, and the operand will
2943then be made available as a return value of the ``asm`` expression. Output
2944constraints do not consume an argument from the call instruction. (Except, see
2945below about indirect outputs).
2946
2947Normally, it is expected that no output locations are written to by the assembly
2948expression until *all* of the inputs have been read. As such, LLVM may assign
2949the same register to an output and an input. If this is not safe (e.g. if the
2950assembly contains two instructions, where the first writes to one output, and
2951the second reads an input and writes to a second output), then the "``&``"
2952modifier must be used (e.g. "``=&r``") to specify that the output is an
2953"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2954will not use the same register for any inputs (other than an input tied to this
2955output).
2956
2957Input constraints
2958"""""""""""""""""
2959
2960Input constraints do not have a prefix -- just the constraint codes. Each input
2961constraint will consume one argument from the call instruction. It is not
2962permitted for the asm to write to any input register or memory location (unless
2963that input is tied to an output). Note also that multiple inputs may all be
2964assigned to the same register, if LLVM can determine that they necessarily all
2965contain the same value.
2966
2967Instead of providing a Constraint Code, input constraints may also "tie"
2968themselves to an output constraint, by providing an integer as the constraint
2969string. Tied inputs still consume an argument from the call instruction, and
2970take up a position in the asm template numbering as is usual -- they will simply
2971be constrained to always use the same register as the output they've been tied
2972to. For example, a constraint string of "``=r,0``" says to assign a register for
2973output, and use that register as an input as well (it being the 0'th
2974constraint).
2975
2976It is permitted to tie an input to an "early-clobber" output. In that case, no
2977*other* input may share the same register as the input tied to the early-clobber
2978(even when the other input has the same value).
2979
2980You may only tie an input to an output which has a register constraint, not a
2981memory constraint. Only a single input may be tied to an output.
2982
2983There is also an "interesting" feature which deserves a bit of explanation: if a
2984register class constraint allocates a register which is too small for the value
2985type operand provided as input, the input value will be split into multiple
2986registers, and all of them passed to the inline asm.
2987
2988However, this feature is often not as useful as you might think.
2989
2990Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2991architectures that have instructions which operate on multiple consecutive
2992instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2993SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2994hardware then loads into both the named register, and the next register. This
2995feature of inline asm would not be useful to support that.)
2996
2997A few of the targets provide a template string modifier allowing explicit access
2998to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2999``D``). On such an architecture, you can actually access the second allocated
3000register (yet, still, not any subsequent ones). But, in that case, you're still
3001probably better off simply splitting the value into two separate operands, for
3002clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3003despite existing only for use with this feature, is not really a good idea to
3004use)
3005
3006Indirect inputs and outputs
3007"""""""""""""""""""""""""""
3008
3009Indirect output or input constraints can be specified by the "``*``" modifier
3010(which goes after the "``=``" in case of an output). This indicates that the asm
3011will write to or read from the contents of an *address* provided as an input
3012argument. (Note that in this way, indirect outputs act more like an *input* than
3013an output: just like an input, they consume an argument of the call expression,
3014rather than producing a return value. An indirect output constraint is an
3015"output" only in that the asm is expected to write to the contents of the input
3016memory location, instead of just read from it).
3017
3018This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3019address of a variable as a value.
3020
3021It is also possible to use an indirect *register* constraint, but only on output
3022(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3023value normally, and then, separately emit a store to the address provided as
3024input, after the provided inline asm. (It's not clear what value this
3025functionality provides, compared to writing the store explicitly after the asm
3026statement, and it can only produce worse code, since it bypasses many
3027optimization passes. I would recommend not using it.)
3028
3029
3030Clobber constraints
3031"""""""""""""""""""
3032
3033A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3034consume an input operand, nor generate an output. Clobbers cannot use any of the
3035general constraint code letters -- they may use only explicit register
3036constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3037"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3038memory locations -- not only the memory pointed to by a declared indirect
3039output.
3040
3041
3042Constraint Codes
3043""""""""""""""""
3044After a potential prefix comes constraint code, or codes.
3045
3046A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3047followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3048(e.g. "``{eax}``").
3049
3050The one and two letter constraint codes are typically chosen to be the same as
3051GCC's constraint codes.
3052
3053A single constraint may include one or more than constraint code in it, leaving
3054it up to LLVM to choose which one to use. This is included mainly for
3055compatibility with the translation of GCC inline asm coming from clang.
3056
3057There are two ways to specify alternatives, and either or both may be used in an
3058inline asm constraint list:
3059
30601) Append the codes to each other, making a constraint code set. E.g. "``im``"
3061 or "``{eax}m``". This means "choose any of the options in the set". The
3062 choice of constraint is made independently for each constraint in the
3063 constraint list.
3064
30652) Use "``|``" between constraint code sets, creating alternatives. Every
3066 constraint in the constraint list must have the same number of alternative
3067 sets. With this syntax, the same alternative in *all* of the items in the
3068 constraint list will be chosen together.
3069
3070Putting those together, you might have a two operand constraint string like
3071``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3072operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3073may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3074
3075However, the use of either of the alternatives features is *NOT* recommended, as
3076LLVM is not able to make an intelligent choice about which one to use. (At the
3077point it currently needs to choose, not enough information is available to do so
3078in a smart way.) Thus, it simply tries to make a choice that's most likely to
3079compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3080always choose to use memory, not registers). And, if given multiple registers,
3081or multiple register classes, it will simply choose the first one. (In fact, it
3082doesn't currently even ensure explicitly specified physical registers are
3083unique, so specifying multiple physical registers as alternatives, like
3084``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3085intended.)
3086
3087Supported Constraint Code List
3088""""""""""""""""""""""""""""""
3089
3090The constraint codes are, in general, expected to behave the same way they do in
3091GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3092inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3093and GCC likely indicates a bug in LLVM.
3094
3095Some constraint codes are typically supported by all targets:
3096
3097- ``r``: A register in the target's general purpose register class.
3098- ``m``: A memory address operand. It is target-specific what addressing modes
3099 are supported, typical examples are register, or register + register offset,
3100 or register + immediate offset (of some target-specific size).
3101- ``i``: An integer constant (of target-specific width). Allows either a simple
3102 immediate, or a relocatable value.
3103- ``n``: An integer constant -- *not* including relocatable values.
3104- ``s``: An integer constant, but allowing *only* relocatable values.
3105- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3106 useful to pass a label for an asm branch or call.
3107
3108 .. FIXME: but that surely isn't actually okay to jump out of an asm
3109 block without telling llvm about the control transfer???)
3110
3111- ``{register-name}``: Requires exactly the named physical register.
3112
3113Other constraints are target-specific:
3114
3115AArch64:
3116
3117- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3118- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3119 i.e. 0 to 4095 with optional shift by 12.
3120- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3121 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3122- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3123 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3124- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3125 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3126- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3127 32-bit register. This is a superset of ``K``: in addition to the bitmask
3128 immediate, also allows immediate integers which can be loaded with a single
3129 ``MOVZ`` or ``MOVL`` instruction.
3130- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3131 64-bit register. This is a superset of ``L``.
3132- ``Q``: Memory address operand must be in a single register (no
3133 offsets). (However, LLVM currently does this for the ``m`` constraint as
3134 well.)
3135- ``r``: A 32 or 64-bit integer register (W* or X*).
3136- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3137- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3138
3139AMDGPU:
3140
3141- ``r``: A 32 or 64-bit integer register.
3142- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3143- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3144
3145
3146All ARM modes:
3147
3148- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3149 operand. Treated the same as operand ``m``, at the moment.
3150
3151ARM and ARM's Thumb2 mode:
3152
3153- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3154- ``I``: An immediate integer valid for a data-processing instruction.
3155- ``J``: An immediate integer between -4095 and 4095.
3156- ``K``: An immediate integer whose bitwise inverse is valid for a
3157 data-processing instruction. (Can be used with template modifier "``B``" to
3158 print the inverted value).
3159- ``L``: An immediate integer whose negation is valid for a data-processing
3160 instruction. (Can be used with template modifier "``n``" to print the negated
3161 value).
3162- ``M``: A power of two or a integer between 0 and 32.
3163- ``N``: Invalid immediate constraint.
3164- ``O``: Invalid immediate constraint.
3165- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3166- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3167 as ``r``.
3168- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3169 invalid.
3170- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3171 ``d0-d31``, or ``q0-q15``.
3172- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3173 ``d0-d7``, or ``q0-q3``.
3174- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3175 ``s0-s31``.
3176
3177ARM's Thumb1 mode:
3178
3179- ``I``: An immediate integer between 0 and 255.
3180- ``J``: An immediate integer between -255 and -1.
3181- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3182 some amount.
3183- ``L``: An immediate integer between -7 and 7.
3184- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3185- ``N``: An immediate integer between 0 and 31.
3186- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3187- ``r``: A low 32-bit GPR register (``r0-r7``).
3188- ``l``: A low 32-bit GPR register (``r0-r7``).
3189- ``h``: A high GPR register (``r0-r7``).
3190- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3191 ``d0-d31``, or ``q0-q15``.
3192- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3193 ``d0-d7``, or ``q0-q3``.
3194- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3195 ``s0-s31``.
3196
3197
3198Hexagon:
3199
3200- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3201 at the moment.
3202- ``r``: A 32 or 64-bit register.
3203
3204MSP430:
3205
3206- ``r``: An 8 or 16-bit register.
3207
3208MIPS:
3209
3210- ``I``: An immediate signed 16-bit integer.
3211- ``J``: An immediate integer zero.
3212- ``K``: An immediate unsigned 16-bit integer.
3213- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3214- ``N``: An immediate integer between -65535 and -1.
3215- ``O``: An immediate signed 15-bit integer.
3216- ``P``: An immediate integer between 1 and 65535.
3217- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3218 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3219- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3220 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3221 ``m``.
3222- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3223 ``sc`` instruction on the given subtarget (details vary).
3224- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3225- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003226 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3227 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003228- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3229 ``25``).
3230- ``l``: The ``lo`` register, 32 or 64-bit.
3231- ``x``: Invalid.
3232
3233NVPTX:
3234
3235- ``b``: A 1-bit integer register.
3236- ``c`` or ``h``: A 16-bit integer register.
3237- ``r``: A 32-bit integer register.
3238- ``l`` or ``N``: A 64-bit integer register.
3239- ``f``: A 32-bit float register.
3240- ``d``: A 64-bit float register.
3241
3242
3243PowerPC:
3244
3245- ``I``: An immediate signed 16-bit integer.
3246- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3247- ``K``: An immediate unsigned 16-bit integer.
3248- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3249- ``M``: An immediate integer greater than 31.
3250- ``N``: An immediate integer that is an exact power of 2.
3251- ``O``: The immediate integer constant 0.
3252- ``P``: An immediate integer constant whose negation is a signed 16-bit
3253 constant.
3254- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3255 treated the same as ``m``.
3256- ``r``: A 32 or 64-bit integer register.
3257- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3258 ``R1-R31``).
3259- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3260 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3261- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3262 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3263 altivec vector register (``V0-V31``).
3264
3265 .. FIXME: is this a bug that v accepts QPX registers? I think this
3266 is supposed to only use the altivec vector registers?
3267
3268- ``y``: Condition register (``CR0-CR7``).
3269- ``wc``: An individual CR bit in a CR register.
3270- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3271 register set (overlapping both the floating-point and vector register files).
3272- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3273 set.
3274
3275Sparc:
3276
3277- ``I``: An immediate 13-bit signed integer.
3278- ``r``: A 32-bit integer register.
3279
3280SystemZ:
3281
3282- ``I``: An immediate unsigned 8-bit integer.
3283- ``J``: An immediate unsigned 12-bit integer.
3284- ``K``: An immediate signed 16-bit integer.
3285- ``L``: An immediate signed 20-bit integer.
3286- ``M``: An immediate integer 0x7fffffff.
3287- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3288 ``m``, at the moment.
3289- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3290- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3291 address context evaluates as zero).
3292- ``h``: A 32-bit value in the high part of a 64bit data register
3293 (LLVM-specific)
3294- ``f``: A 32, 64, or 128-bit floating point register.
3295
3296X86:
3297
3298- ``I``: An immediate integer between 0 and 31.
3299- ``J``: An immediate integer between 0 and 64.
3300- ``K``: An immediate signed 8-bit integer.
3301- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3302 0xffffffff.
3303- ``M``: An immediate integer between 0 and 3.
3304- ``N``: An immediate unsigned 8-bit integer.
3305- ``O``: An immediate integer between 0 and 127.
3306- ``e``: An immediate 32-bit signed integer.
3307- ``Z``: An immediate 32-bit unsigned integer.
3308- ``o``, ``v``: Treated the same as ``m``, at the moment.
3309- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3310 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3311 registers, and on X86-64, it is all of the integer registers.
3312- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3313 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3314- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3315- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3316 existed since i386, and can be accessed without the REX prefix.
3317- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3318- ``y``: A 64-bit MMX register, if MMX is enabled.
3319- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3320 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3321 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3322 512-bit vector operand in an AVX512 register, Otherwise, an error.
3323- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3324- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3325 32-bit mode, a 64-bit integer operand will get split into two registers). It
3326 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3327 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3328 you're better off splitting it yourself, before passing it to the asm
3329 statement.
3330
3331XCore:
3332
3333- ``r``: A 32-bit integer register.
3334
3335
3336.. _inline-asm-modifiers:
3337
3338Asm template argument modifiers
3339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3340
3341In the asm template string, modifiers can be used on the operand reference, like
3342"``${0:n}``".
3343
3344The modifiers are, in general, expected to behave the same way they do in
3345GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3346inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3347and GCC likely indicates a bug in LLVM.
3348
3349Target-independent:
3350
Sean Silvaa1190322015-08-06 22:56:48 +00003351- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003352 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3353- ``n``: Negate and print immediate integer constant unadorned, without the
3354 target-specific immediate punctuation (e.g. no ``$`` prefix).
3355- ``l``: Print as an unadorned label, without the target-specific label
3356 punctuation (e.g. no ``$`` prefix).
3357
3358AArch64:
3359
3360- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3361 instead of ``x30``, print ``w30``.
3362- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3363- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3364 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3365 ``v*``.
3366
3367AMDGPU:
3368
3369- ``r``: No effect.
3370
3371ARM:
3372
3373- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3374 register).
3375- ``P``: No effect.
3376- ``q``: No effect.
3377- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3378 as ``d4[1]`` instead of ``s9``)
3379- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3380 prefix.
3381- ``L``: Print the low 16-bits of an immediate integer constant.
3382- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3383 register operands subsequent to the specified one (!), so use carefully.
3384- ``Q``: Print the low-order register of a register-pair, or the low-order
3385 register of a two-register operand.
3386- ``R``: Print the high-order register of a register-pair, or the high-order
3387 register of a two-register operand.
3388- ``H``: Print the second register of a register-pair. (On a big-endian system,
3389 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3390 to ``R``.)
3391
3392 .. FIXME: H doesn't currently support printing the second register
3393 of a two-register operand.
3394
3395- ``e``: Print the low doubleword register of a NEON quad register.
3396- ``f``: Print the high doubleword register of a NEON quad register.
3397- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3398 adornment.
3399
3400Hexagon:
3401
3402- ``L``: Print the second register of a two-register operand. Requires that it
3403 has been allocated consecutively to the first.
3404
3405 .. FIXME: why is it restricted to consecutive ones? And there's
3406 nothing that ensures that happens, is there?
3407
3408- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3409 nothing. Used to print 'addi' vs 'add' instructions.
3410
3411MSP430:
3412
3413No additional modifiers.
3414
3415MIPS:
3416
3417- ``X``: Print an immediate integer as hexadecimal
3418- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3419- ``d``: Print an immediate integer as decimal.
3420- ``m``: Subtract one and print an immediate integer as decimal.
3421- ``z``: Print $0 if an immediate zero, otherwise print normally.
3422- ``L``: Print the low-order register of a two-register operand, or prints the
3423 address of the low-order word of a double-word memory operand.
3424
3425 .. FIXME: L seems to be missing memory operand support.
3426
3427- ``M``: Print the high-order register of a two-register operand, or prints the
3428 address of the high-order word of a double-word memory operand.
3429
3430 .. FIXME: M seems to be missing memory operand support.
3431
3432- ``D``: Print the second register of a two-register operand, or prints the
3433 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3434 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3435 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003436- ``w``: No effect. Provided for compatibility with GCC which requires this
3437 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3438 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003439
3440NVPTX:
3441
3442- ``r``: No effect.
3443
3444PowerPC:
3445
3446- ``L``: Print the second register of a two-register operand. Requires that it
3447 has been allocated consecutively to the first.
3448
3449 .. FIXME: why is it restricted to consecutive ones? And there's
3450 nothing that ensures that happens, is there?
3451
3452- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3453 nothing. Used to print 'addi' vs 'add' instructions.
3454- ``y``: For a memory operand, prints formatter for a two-register X-form
3455 instruction. (Currently always prints ``r0,OPERAND``).
3456- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3457 otherwise. (NOTE: LLVM does not support update form, so this will currently
3458 always print nothing)
3459- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3460 not support indexed form, so this will currently always print nothing)
3461
3462Sparc:
3463
3464- ``r``: No effect.
3465
3466SystemZ:
3467
3468SystemZ implements only ``n``, and does *not* support any of the other
3469target-independent modifiers.
3470
3471X86:
3472
3473- ``c``: Print an unadorned integer or symbol name. (The latter is
3474 target-specific behavior for this typically target-independent modifier).
3475- ``A``: Print a register name with a '``*``' before it.
3476- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3477 operand.
3478- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3479 memory operand.
3480- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3481 operand.
3482- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3483 operand.
3484- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3485 available, otherwise the 32-bit register name; do nothing on a memory operand.
3486- ``n``: Negate and print an unadorned integer, or, for operands other than an
3487 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3488 the operand. (The behavior for relocatable symbol expressions is a
3489 target-specific behavior for this typically target-independent modifier)
3490- ``H``: Print a memory reference with additional offset +8.
3491- ``P``: Print a memory reference or operand for use as the argument of a call
3492 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3493
3494XCore:
3495
3496No additional modifiers.
3497
3498
Sean Silvab084af42012-12-07 10:36:55 +00003499Inline Asm Metadata
3500^^^^^^^^^^^^^^^^^^^
3501
3502The call instructions that wrap inline asm nodes may have a
3503"``!srcloc``" MDNode attached to it that contains a list of constant
3504integers. If present, the code generator will use the integer as the
3505location cookie value when report errors through the ``LLVMContext``
3506error reporting mechanisms. This allows a front-end to correlate backend
3507errors that occur with inline asm back to the source code that produced
3508it. For example:
3509
3510.. code-block:: llvm
3511
3512 call void asm sideeffect "something bad", ""(), !srcloc !42
3513 ...
3514 !42 = !{ i32 1234567 }
3515
3516It is up to the front-end to make sense of the magic numbers it places
3517in the IR. If the MDNode contains multiple constants, the code generator
3518will use the one that corresponds to the line of the asm that the error
3519occurs on.
3520
3521.. _metadata:
3522
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003523Metadata
3524========
Sean Silvab084af42012-12-07 10:36:55 +00003525
3526LLVM IR allows metadata to be attached to instructions in the program
3527that can convey extra information about the code to the optimizers and
3528code generator. One example application of metadata is source-level
3529debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003530
Sean Silvaa1190322015-08-06 22:56:48 +00003531Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003532``call`` instruction, it uses the ``metadata`` type.
3533
3534All metadata are identified in syntax by a exclamation point ('``!``').
3535
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003536.. _metadata-string:
3537
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003538Metadata Nodes and Metadata Strings
3539-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003540
3541A metadata string is a string surrounded by double quotes. It can
3542contain any character by escaping non-printable characters with
3543"``\xx``" where "``xx``" is the two digit hex code. For example:
3544"``!"test\00"``".
3545
3546Metadata nodes are represented with notation similar to structure
3547constants (a comma separated list of elements, surrounded by braces and
3548preceded by an exclamation point). Metadata nodes can have any values as
3549their operand. For example:
3550
3551.. code-block:: llvm
3552
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003553 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003554
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003555Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3556
3557.. code-block:: llvm
3558
3559 !0 = distinct !{!"test\00", i32 10}
3560
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003561``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003562content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003563when metadata operands change.
3564
Sean Silvab084af42012-12-07 10:36:55 +00003565A :ref:`named metadata <namedmetadatastructure>` is a collection of
3566metadata nodes, which can be looked up in the module symbol table. For
3567example:
3568
3569.. code-block:: llvm
3570
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003571 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003572
3573Metadata can be used as function arguments. Here ``llvm.dbg.value``
3574function is using two metadata arguments:
3575
3576.. code-block:: llvm
3577
3578 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3579
3580Metadata can be attached with an instruction. Here metadata ``!21`` is
3581attached to the ``add`` instruction using the ``!dbg`` identifier:
3582
3583.. code-block:: llvm
3584
3585 %indvar.next = add i64 %indvar, 1, !dbg !21
3586
3587More information about specific metadata nodes recognized by the
3588optimizers and code generator is found below.
3589
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003590.. _specialized-metadata:
3591
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003592Specialized Metadata Nodes
3593^^^^^^^^^^^^^^^^^^^^^^^^^^
3594
3595Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003596to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003597order.
3598
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003599These aren't inherently debug info centric, but currently all the specialized
3600metadata nodes are related to debug info.
3601
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003602.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003603
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003604DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003605"""""""""""""
3606
Sean Silvaa1190322015-08-06 22:56:48 +00003607``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003608``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3609tuples containing the debug info to be emitted along with the compile unit,
3610regardless of code optimizations (some nodes are only emitted if there are
3611references to them from instructions).
3612
3613.. code-block:: llvm
3614
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003615 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003616 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3617 splitDebugFilename: "abc.debug", emissionKind: 1,
3618 enums: !2, retainedTypes: !3, subprograms: !4,
3619 globals: !5, imports: !6)
3620
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003621Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003622specific compilation unit. File descriptors are defined using this scope.
3623These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003624keep track of subprograms, global variables, type information, and imported
3625entities (declarations and namespaces).
3626
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003627.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003628
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003629DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003630""""""
3631
Sean Silvaa1190322015-08-06 22:56:48 +00003632``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003633
3634.. code-block:: llvm
3635
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003636 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003637
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003638Files are sometimes used in ``scope:`` fields, and are the only valid target
3639for ``file:`` fields.
3640
Michael Kuperstein605308a2015-05-14 10:58:59 +00003641.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003642
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003643DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003644"""""""""""
3645
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003646``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003647``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003648
3649.. code-block:: llvm
3650
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003651 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003652 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003653 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003654
Sean Silvaa1190322015-08-06 22:56:48 +00003655The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003656following:
3657
3658.. code-block:: llvm
3659
3660 DW_ATE_address = 1
3661 DW_ATE_boolean = 2
3662 DW_ATE_float = 4
3663 DW_ATE_signed = 5
3664 DW_ATE_signed_char = 6
3665 DW_ATE_unsigned = 7
3666 DW_ATE_unsigned_char = 8
3667
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003668.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003669
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003670DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003671""""""""""""""""
3672
Sean Silvaa1190322015-08-06 22:56:48 +00003673``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003674refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003675types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003676represents a function with no return value (such as ``void foo() {}`` in C++).
3677
3678.. code-block:: llvm
3679
3680 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3681 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003682 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003683
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003684.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003685
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003686DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003687"""""""""""""
3688
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003689``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003690qualified types.
3691
3692.. code-block:: llvm
3693
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003694 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003695 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003696 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003697 align: 32)
3698
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003699The following ``tag:`` values are valid:
3700
3701.. code-block:: llvm
3702
3703 DW_TAG_formal_parameter = 5
3704 DW_TAG_member = 13
3705 DW_TAG_pointer_type = 15
3706 DW_TAG_reference_type = 16
3707 DW_TAG_typedef = 22
3708 DW_TAG_ptr_to_member_type = 31
3709 DW_TAG_const_type = 38
3710 DW_TAG_volatile_type = 53
3711 DW_TAG_restrict_type = 55
3712
3713``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003714<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3715is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003716``DW_TAG_formal_parameter`` is used to define a member which is a formal
3717argument of a subprogram.
3718
3719``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3720
3721``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3722``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3723``baseType:``.
3724
3725Note that the ``void *`` type is expressed as a type derived from NULL.
3726
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003727.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003728
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003729DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003730"""""""""""""""
3731
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003732``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003733structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003734
3735If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003736identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003737can refer to composite types indirectly via a :ref:`metadata string
3738<metadata-string>` that matches their identifier.
3739
3740.. code-block:: llvm
3741
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003742 !0 = !DIEnumerator(name: "SixKind", value: 7)
3743 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3744 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3745 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003746 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3747 elements: !{!0, !1, !2})
3748
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003749The following ``tag:`` values are valid:
3750
3751.. code-block:: llvm
3752
3753 DW_TAG_array_type = 1
3754 DW_TAG_class_type = 2
3755 DW_TAG_enumeration_type = 4
3756 DW_TAG_structure_type = 19
3757 DW_TAG_union_type = 23
3758 DW_TAG_subroutine_type = 21
3759 DW_TAG_inheritance = 28
3760
3761
3762For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003763descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003764level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003765array type is a native packed vector.
3766
3767For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003768descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003769value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003770``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003771
3772For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3773``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003774<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003775
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003776.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003777
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003778DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003779""""""""""
3780
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003781``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003782:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783
3784.. code-block:: llvm
3785
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003786 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3787 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3788 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003790.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003793""""""""""""
3794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3796variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003797
3798.. code-block:: llvm
3799
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003800 !0 = !DIEnumerator(name: "SixKind", value: 7)
3801 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3802 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003803
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003804DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003805"""""""""""""""""""""""
3806
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003807``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003808language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003809:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003810
3811.. code-block:: llvm
3812
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003813 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003814
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003816""""""""""""""""""""""""
3817
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003818``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003819language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003820but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003821``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003822:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823
3824.. code-block:: llvm
3825
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003826 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003828DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003829"""""""""""
3830
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003831``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832
3833.. code-block:: llvm
3834
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003835 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003836
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003838""""""""""""""""
3839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841
3842.. code-block:: llvm
3843
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003844 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003845 file: !2, line: 7, type: !3, isLocal: true,
3846 isDefinition: false, variable: i32* @foo,
3847 declaration: !4)
3848
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003849All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003850:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003851
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855""""""""""""
3856
Sean Silvaa1190322015-08-06 22:56:48 +00003857``DISubprogram`` nodes represent functions from the source language. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Sean Silvaa1190322015-08-06 22:56:48 +00003859retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
3862.. code-block:: llvm
3863
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003864 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865 file: !2, line: 7, type: !3, isLocal: true,
3866 isDefinition: false, scopeLine: 8, containingType: !4,
3867 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3868 flags: DIFlagPrototyped, isOptimized: true,
3869 function: void ()* @_Z3foov,
3870 templateParams: !5, declaration: !6, variables: !7)
3871
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003872.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003875""""""""""""""
3876
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003877``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00003878<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00003879two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003880fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881
3882.. code-block:: llvm
3883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003885
3886Usually lexical blocks are ``distinct`` to prevent node merging based on
3887operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003891DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892""""""""""""""""""
3893
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003895:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896indicate textual inclusion, or the ``discriminator:`` field can be used to
3897discriminate between control flow within a single block in the source language.
3898
3899.. code-block:: llvm
3900
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3902 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3903 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904
Michael Kuperstein605308a2015-05-14 10:58:59 +00003905.. _DILocation:
3906
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003907DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003908""""""""""
3909
Sean Silvaa1190322015-08-06 22:56:48 +00003910``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003911mandatory, and points at an :ref:`DILexicalBlockFile`, an
3912:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003913
3914.. code-block:: llvm
3915
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003917
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003918.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921"""""""""""""""
3922
Sean Silvaa1190322015-08-06 22:56:48 +00003923``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003924the ``arg:`` field is set to non-zero, then this variable is a subprogram
3925parameter, and it will be included in the ``variables:`` field of its
3926:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003927
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928.. code-block:: llvm
3929
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003930 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
3931 type: !3, flags: DIFlagArtificial)
3932 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
3933 type: !3)
3934 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937""""""""""""
3938
Sean Silvaa1190322015-08-06 22:56:48 +00003939``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3941describe how the referenced LLVM variable relates to the source language
3942variable.
3943
3944The current supported vocabulary is limited:
3945
3946- ``DW_OP_deref`` dereferences the working expression.
3947- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3948- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3949 here, respectively) of the variable piece from the working expression.
3950
3951.. code-block:: llvm
3952
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953 !0 = !DIExpression(DW_OP_deref)
3954 !1 = !DIExpression(DW_OP_plus, 3)
3955 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3956 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003959""""""""""""""
3960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962
3963.. code-block:: llvm
3964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966 getter: "getFoo", attributes: 7, type: !2)
3967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969""""""""""""""""
3970
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003971``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972compile unit.
3973
3974.. code-block:: llvm
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977 entity: !1, line: 7)
3978
Sean Silvab084af42012-12-07 10:36:55 +00003979'``tbaa``' Metadata
3980^^^^^^^^^^^^^^^^^^^
3981
3982In LLVM IR, memory does not have types, so LLVM's own type system is not
3983suitable for doing TBAA. Instead, metadata is added to the IR to
3984describe a type system of a higher level language. This can be used to
3985implement typical C/C++ TBAA, but it can also be used to implement
3986custom alias analysis behavior for other languages.
3987
3988The current metadata format is very simple. TBAA metadata nodes have up
3989to three fields, e.g.:
3990
3991.. code-block:: llvm
3992
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003993 !0 = !{ !"an example type tree" }
3994 !1 = !{ !"int", !0 }
3995 !2 = !{ !"float", !0 }
3996 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003997
3998The first field is an identity field. It can be any value, usually a
3999metadata string, which uniquely identifies the type. The most important
4000name in the tree is the name of the root node. Two trees with different
4001root node names are entirely disjoint, even if they have leaves with
4002common names.
4003
4004The second field identifies the type's parent node in the tree, or is
4005null or omitted for a root node. A type is considered to alias all of
4006its descendants and all of its ancestors in the tree. Also, a type is
4007considered to alias all types in other trees, so that bitcode produced
4008from multiple front-ends is handled conservatively.
4009
4010If the third field is present, it's an integer which if equal to 1
4011indicates that the type is "constant" (meaning
4012``pointsToConstantMemory`` should return true; see `other useful
4013AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4014
4015'``tbaa.struct``' Metadata
4016^^^^^^^^^^^^^^^^^^^^^^^^^^
4017
4018The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4019aggregate assignment operations in C and similar languages, however it
4020is defined to copy a contiguous region of memory, which is more than
4021strictly necessary for aggregate types which contain holes due to
4022padding. Also, it doesn't contain any TBAA information about the fields
4023of the aggregate.
4024
4025``!tbaa.struct`` metadata can describe which memory subregions in a
4026memcpy are padding and what the TBAA tags of the struct are.
4027
4028The current metadata format is very simple. ``!tbaa.struct`` metadata
4029nodes are a list of operands which are in conceptual groups of three.
4030For each group of three, the first operand gives the byte offset of a
4031field in bytes, the second gives its size in bytes, and the third gives
4032its tbaa tag. e.g.:
4033
4034.. code-block:: llvm
4035
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004036 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004037
4038This describes a struct with two fields. The first is at offset 0 bytes
4039with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4040and has size 4 bytes and has tbaa tag !2.
4041
4042Note that the fields need not be contiguous. In this example, there is a
40434 byte gap between the two fields. This gap represents padding which
4044does not carry useful data and need not be preserved.
4045
Hal Finkel94146652014-07-24 14:25:39 +00004046'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004048
4049``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4050noalias memory-access sets. This means that some collection of memory access
4051instructions (loads, stores, memory-accessing calls, etc.) that carry
4052``noalias`` metadata can specifically be specified not to alias with some other
4053collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004054Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004055a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004056of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004057subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004058instruction's ``noalias`` list, then the two memory accesses are assumed not to
4059alias.
Hal Finkel94146652014-07-24 14:25:39 +00004060
Hal Finkel029cde62014-07-25 15:50:02 +00004061The metadata identifying each domain is itself a list containing one or two
4062entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004063string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004064self-reference can be used to create globally unique domain names. A
4065descriptive string may optionally be provided as a second list entry.
4066
4067The metadata identifying each scope is also itself a list containing two or
4068three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004069is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004070self-reference can be used to create globally unique scope names. A metadata
4071reference to the scope's domain is the second entry. A descriptive string may
4072optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004073
4074For example,
4075
4076.. code-block:: llvm
4077
Hal Finkel029cde62014-07-25 15:50:02 +00004078 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004079 !0 = !{!0}
4080 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004081
Hal Finkel029cde62014-07-25 15:50:02 +00004082 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004083 !2 = !{!2, !0}
4084 !3 = !{!3, !0}
4085 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004086
Hal Finkel029cde62014-07-25 15:50:02 +00004087 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004088 !5 = !{!4} ; A list containing only scope !4
4089 !6 = !{!4, !3, !2}
4090 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004091
4092 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004093 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004094 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004095
Hal Finkel029cde62014-07-25 15:50:02 +00004096 ; These two instructions also don't alias (for domain !1, the set of scopes
4097 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004098 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004099 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004100
Adam Nemet0a8416f2015-05-11 08:30:28 +00004101 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004102 ; the !noalias list is not a superset of, or equal to, the scopes in the
4103 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004104 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004105 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004106
Sean Silvab084af42012-12-07 10:36:55 +00004107'``fpmath``' Metadata
4108^^^^^^^^^^^^^^^^^^^^^
4109
4110``fpmath`` metadata may be attached to any instruction of floating point
4111type. It can be used to express the maximum acceptable error in the
4112result of that instruction, in ULPs, thus potentially allowing the
4113compiler to use a more efficient but less accurate method of computing
4114it. ULP is defined as follows:
4115
4116 If ``x`` is a real number that lies between two finite consecutive
4117 floating-point numbers ``a`` and ``b``, without being equal to one
4118 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4119 distance between the two non-equal finite floating-point numbers
4120 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4121
4122The metadata node shall consist of a single positive floating point
4123number representing the maximum relative error, for example:
4124
4125.. code-block:: llvm
4126
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004127 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004128
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004129.. _range-metadata:
4130
Sean Silvab084af42012-12-07 10:36:55 +00004131'``range``' Metadata
4132^^^^^^^^^^^^^^^^^^^^
4133
Jingyue Wu37fcb592014-06-19 16:50:16 +00004134``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4135integer types. It expresses the possible ranges the loaded value or the value
4136returned by the called function at this call site is in. The ranges are
4137represented with a flattened list of integers. The loaded value or the value
4138returned is known to be in the union of the ranges defined by each consecutive
4139pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004140
4141- The type must match the type loaded by the instruction.
4142- The pair ``a,b`` represents the range ``[a,b)``.
4143- Both ``a`` and ``b`` are constants.
4144- The range is allowed to wrap.
4145- The range should not represent the full or empty set. That is,
4146 ``a!=b``.
4147
4148In addition, the pairs must be in signed order of the lower bound and
4149they must be non-contiguous.
4150
4151Examples:
4152
4153.. code-block:: llvm
4154
David Blaikiec7aabbb2015-03-04 22:06:14 +00004155 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4156 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004157 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4158 %d = invoke i8 @bar() to label %cont
4159 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004160 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004161 !0 = !{ i8 0, i8 2 }
4162 !1 = !{ i8 255, i8 2 }
4163 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4164 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004165
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004166'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004167^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004168
4169``unpredictable`` metadata may be attached to any branch or switch
4170instruction. It can be used to express the unpredictability of control
4171flow. Similar to the llvm.expect intrinsic, it may be used to alter
4172optimizations related to compare and branch instructions. The metadata
4173is treated as a boolean value; if it exists, it signals that the branch
4174or switch that it is attached to is completely unpredictable.
4175
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004176'``llvm.loop``'
4177^^^^^^^^^^^^^^^
4178
4179It is sometimes useful to attach information to loop constructs. Currently,
4180loop metadata is implemented as metadata attached to the branch instruction
4181in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004182guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004183specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004184
4185The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004186itself to avoid merging it with any other identifier metadata, e.g.,
4187during module linkage or function inlining. That is, each loop should refer
4188to their own identification metadata even if they reside in separate functions.
4189The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004190constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004191
4192.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004193
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004194 !0 = !{!0}
4195 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004196
Mark Heffernan893752a2014-07-18 19:24:51 +00004197The loop identifier metadata can be used to specify additional
4198per-loop metadata. Any operands after the first operand can be treated
4199as user-defined metadata. For example the ``llvm.loop.unroll.count``
4200suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004201
Paul Redmond5fdf8362013-05-28 20:00:34 +00004202.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004203
Paul Redmond5fdf8362013-05-28 20:00:34 +00004204 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4205 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004206 !0 = !{!0, !1}
4207 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004208
Mark Heffernan9d20e422014-07-21 23:11:03 +00004209'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004211
Mark Heffernan9d20e422014-07-21 23:11:03 +00004212Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4213used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004214vectorization width and interleave count. These metadata should be used in
4215conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004216``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4217optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004218it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004219which contains information about loop-carried memory dependencies can be helpful
4220in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004221
Mark Heffernan9d20e422014-07-21 23:11:03 +00004222'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4224
Mark Heffernan9d20e422014-07-21 23:11:03 +00004225This metadata suggests an interleave count to the loop interleaver.
4226The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004227second operand is an integer specifying the interleave count. For
4228example:
4229
4230.. code-block:: llvm
4231
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004232 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004233
Mark Heffernan9d20e422014-07-21 23:11:03 +00004234Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004235multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004236then the interleave count will be determined automatically.
4237
4238'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004240
4241This metadata selectively enables or disables vectorization for the loop. The
4242first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004243is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000042440 disables vectorization:
4245
4246.. code-block:: llvm
4247
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004248 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4249 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004250
4251'``llvm.loop.vectorize.width``' Metadata
4252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4253
4254This metadata sets the target width of the vectorizer. The first
4255operand is the string ``llvm.loop.vectorize.width`` and the second
4256operand is an integer specifying the width. For example:
4257
4258.. code-block:: llvm
4259
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004260 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004261
4262Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004263vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000042640 or if the loop does not have this metadata the width will be
4265determined automatically.
4266
4267'``llvm.loop.unroll``'
4268^^^^^^^^^^^^^^^^^^^^^^
4269
4270Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4271optimization hints such as the unroll factor. ``llvm.loop.unroll``
4272metadata should be used in conjunction with ``llvm.loop`` loop
4273identification metadata. The ``llvm.loop.unroll`` metadata are only
4274optimization hints and the unrolling will only be performed if the
4275optimizer believes it is safe to do so.
4276
Mark Heffernan893752a2014-07-18 19:24:51 +00004277'``llvm.loop.unroll.count``' Metadata
4278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4279
4280This metadata suggests an unroll factor to the loop unroller. The
4281first operand is the string ``llvm.loop.unroll.count`` and the second
4282operand is a positive integer specifying the unroll factor. For
4283example:
4284
4285.. code-block:: llvm
4286
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004287 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004288
4289If the trip count of the loop is less than the unroll count the loop
4290will be partially unrolled.
4291
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004292'``llvm.loop.unroll.disable``' Metadata
4293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4294
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004295This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004296which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004297
4298.. code-block:: llvm
4299
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004300 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004301
Kevin Qin715b01e2015-03-09 06:14:18 +00004302'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004304
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004305This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004306operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004307
4308.. code-block:: llvm
4309
4310 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4311
Mark Heffernan89391542015-08-10 17:28:08 +00004312'``llvm.loop.unroll.enable``' Metadata
4313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4314
4315This metadata suggests that the loop should be fully unrolled if the trip count
4316is known at compile time and partially unrolled if the trip count is not known
4317at compile time. The metadata has a single operand which is the string
4318``llvm.loop.unroll.enable``. For example:
4319
4320.. code-block:: llvm
4321
4322 !0 = !{!"llvm.loop.unroll.enable"}
4323
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004324'``llvm.loop.unroll.full``' Metadata
4325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4326
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004327This metadata suggests that the loop should be unrolled fully. The
4328metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004329For example:
4330
4331.. code-block:: llvm
4332
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004333 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004334
4335'``llvm.mem``'
4336^^^^^^^^^^^^^^^
4337
4338Metadata types used to annotate memory accesses with information helpful
4339for optimizations are prefixed with ``llvm.mem``.
4340
4341'``llvm.mem.parallel_loop_access``' Metadata
4342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4343
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004344The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4345or metadata containing a list of loop identifiers for nested loops.
4346The metadata is attached to memory accessing instructions and denotes that
4347no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004348with the same loop identifier.
4349
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004350Precisely, given two instructions ``m1`` and ``m2`` that both have the
4351``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4352set of loops associated with that metadata, respectively, then there is no loop
4353carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004354``L2``.
4355
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004356As a special case, if all memory accessing instructions in a loop have
4357``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4358loop has no loop carried memory dependences and is considered to be a parallel
4359loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004360
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004361Note that if not all memory access instructions have such metadata referring to
4362the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004363memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004364safe mechanism, this causes loops that were originally parallel to be considered
4365sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004366insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004367
4368Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004369both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004370metadata types that refer to the same loop identifier metadata.
4371
4372.. code-block:: llvm
4373
4374 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004375 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004376 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004377 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004378 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004379 ...
4380 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004381
4382 for.end:
4383 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004384 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004385
4386It is also possible to have nested parallel loops. In that case the
4387memory accesses refer to a list of loop identifier metadata nodes instead of
4388the loop identifier metadata node directly:
4389
4390.. code-block:: llvm
4391
4392 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004393 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004394 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004395 ...
4396 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004397
4398 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004399 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004400 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004401 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004402 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004403 ...
4404 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004405
4406 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004407 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004408 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004409 ...
4410 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004411
4412 outer.for.end: ; preds = %for.body
4413 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004414 !0 = !{!1, !2} ; a list of loop identifiers
4415 !1 = !{!1} ; an identifier for the inner loop
4416 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004417
Peter Collingbournee6909c82015-02-20 20:30:47 +00004418'``llvm.bitsets``'
4419^^^^^^^^^^^^^^^^^^
4420
4421The ``llvm.bitsets`` global metadata is used to implement
4422:doc:`bitsets <BitSets>`.
4423
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004424'``invariant.group``' Metadata
4425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4426
4427The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4428The existence of the ``invariant.group`` metadata on the instruction tells
4429the optimizer that every ``load`` and ``store`` to the same pointer operand
4430within the same invariant group can be assumed to load or store the same
4431value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4432when two pointers are considered the same).
4433
4434Examples:
4435
4436.. code-block:: llvm
4437
4438 @unknownPtr = external global i8
4439 ...
4440 %ptr = alloca i8
4441 store i8 42, i8* %ptr, !invariant.group !0
4442 call void @foo(i8* %ptr)
4443
4444 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4445 call void @foo(i8* %ptr)
4446 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4447
4448 %newPtr = call i8* @getPointer(i8* %ptr)
4449 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4450
4451 %unknownValue = load i8, i8* @unknownPtr
4452 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4453
4454 call void @foo(i8* %ptr)
4455 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4456 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4457
4458 ...
4459 declare void @foo(i8*)
4460 declare i8* @getPointer(i8*)
4461 declare i8* @llvm.invariant.group.barrier(i8*)
4462
4463 !0 = !{!"magic ptr"}
4464 !1 = !{!"other ptr"}
4465
4466
4467
Sean Silvab084af42012-12-07 10:36:55 +00004468Module Flags Metadata
4469=====================
4470
4471Information about the module as a whole is difficult to convey to LLVM's
4472subsystems. The LLVM IR isn't sufficient to transmit this information.
4473The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004474this. These flags are in the form of key / value pairs --- much like a
4475dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004476look it up.
4477
4478The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4479Each triplet has the following form:
4480
4481- The first element is a *behavior* flag, which specifies the behavior
4482 when two (or more) modules are merged together, and it encounters two
4483 (or more) metadata with the same ID. The supported behaviors are
4484 described below.
4485- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004486 metadata. Each module may only have one flag entry for each unique ID (not
4487 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004488- The third element is the value of the flag.
4489
4490When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004491``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4492each unique metadata ID string, there will be exactly one entry in the merged
4493modules ``llvm.module.flags`` metadata table, and the value for that entry will
4494be determined by the merge behavior flag, as described below. The only exception
4495is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004496
4497The following behaviors are supported:
4498
4499.. list-table::
4500 :header-rows: 1
4501 :widths: 10 90
4502
4503 * - Value
4504 - Behavior
4505
4506 * - 1
4507 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004508 Emits an error if two values disagree, otherwise the resulting value
4509 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004510
4511 * - 2
4512 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004513 Emits a warning if two values disagree. The result value will be the
4514 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004515
4516 * - 3
4517 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004518 Adds a requirement that another module flag be present and have a
4519 specified value after linking is performed. The value must be a
4520 metadata pair, where the first element of the pair is the ID of the
4521 module flag to be restricted, and the second element of the pair is
4522 the value the module flag should be restricted to. This behavior can
4523 be used to restrict the allowable results (via triggering of an
4524 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004525
4526 * - 4
4527 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004528 Uses the specified value, regardless of the behavior or value of the
4529 other module. If both modules specify **Override**, but the values
4530 differ, an error will be emitted.
4531
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004532 * - 5
4533 - **Append**
4534 Appends the two values, which are required to be metadata nodes.
4535
4536 * - 6
4537 - **AppendUnique**
4538 Appends the two values, which are required to be metadata
4539 nodes. However, duplicate entries in the second list are dropped
4540 during the append operation.
4541
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004542It is an error for a particular unique flag ID to have multiple behaviors,
4543except in the case of **Require** (which adds restrictions on another metadata
4544value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004545
4546An example of module flags:
4547
4548.. code-block:: llvm
4549
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004550 !0 = !{ i32 1, !"foo", i32 1 }
4551 !1 = !{ i32 4, !"bar", i32 37 }
4552 !2 = !{ i32 2, !"qux", i32 42 }
4553 !3 = !{ i32 3, !"qux",
4554 !{
4555 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004556 }
4557 }
4558 !llvm.module.flags = !{ !0, !1, !2, !3 }
4559
4560- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4561 if two or more ``!"foo"`` flags are seen is to emit an error if their
4562 values are not equal.
4563
4564- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4565 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004566 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004567
4568- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4569 behavior if two or more ``!"qux"`` flags are seen is to emit a
4570 warning if their values are not equal.
4571
4572- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4573
4574 ::
4575
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004576 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004577
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004578 The behavior is to emit an error if the ``llvm.module.flags`` does not
4579 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4580 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004581
4582Objective-C Garbage Collection Module Flags Metadata
4583----------------------------------------------------
4584
4585On the Mach-O platform, Objective-C stores metadata about garbage
4586collection in a special section called "image info". The metadata
4587consists of a version number and a bitmask specifying what types of
4588garbage collection are supported (if any) by the file. If two or more
4589modules are linked together their garbage collection metadata needs to
4590be merged rather than appended together.
4591
4592The Objective-C garbage collection module flags metadata consists of the
4593following key-value pairs:
4594
4595.. list-table::
4596 :header-rows: 1
4597 :widths: 30 70
4598
4599 * - Key
4600 - Value
4601
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004602 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004603 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004604
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004605 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004606 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004607 always 0.
4608
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004609 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004610 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004611 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4612 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4613 Objective-C ABI version 2.
4614
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004615 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004616 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004617 not. Valid values are 0, for no garbage collection, and 2, for garbage
4618 collection supported.
4619
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004620 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004621 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004622 If present, its value must be 6. This flag requires that the
4623 ``Objective-C Garbage Collection`` flag have the value 2.
4624
4625Some important flag interactions:
4626
4627- If a module with ``Objective-C Garbage Collection`` set to 0 is
4628 merged with a module with ``Objective-C Garbage Collection`` set to
4629 2, then the resulting module has the
4630 ``Objective-C Garbage Collection`` flag set to 0.
4631- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4632 merged with a module with ``Objective-C GC Only`` set to 6.
4633
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004634Automatic Linker Flags Module Flags Metadata
4635--------------------------------------------
4636
4637Some targets support embedding flags to the linker inside individual object
4638files. Typically this is used in conjunction with language extensions which
4639allow source files to explicitly declare the libraries they depend on, and have
4640these automatically be transmitted to the linker via object files.
4641
4642These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004643using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004644to be ``AppendUnique``, and the value for the key is expected to be a metadata
4645node which should be a list of other metadata nodes, each of which should be a
4646list of metadata strings defining linker options.
4647
4648For example, the following metadata section specifies two separate sets of
4649linker options, presumably to link against ``libz`` and the ``Cocoa``
4650framework::
4651
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004652 !0 = !{ i32 6, !"Linker Options",
4653 !{
4654 !{ !"-lz" },
4655 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004656 !llvm.module.flags = !{ !0 }
4657
4658The metadata encoding as lists of lists of options, as opposed to a collapsed
4659list of options, is chosen so that the IR encoding can use multiple option
4660strings to specify e.g., a single library, while still having that specifier be
4661preserved as an atomic element that can be recognized by a target specific
4662assembly writer or object file emitter.
4663
4664Each individual option is required to be either a valid option for the target's
4665linker, or an option that is reserved by the target specific assembly writer or
4666object file emitter. No other aspect of these options is defined by the IR.
4667
Oliver Stannard5dc29342014-06-20 10:08:11 +00004668C type width Module Flags Metadata
4669----------------------------------
4670
4671The ARM backend emits a section into each generated object file describing the
4672options that it was compiled with (in a compiler-independent way) to prevent
4673linking incompatible objects, and to allow automatic library selection. Some
4674of these options are not visible at the IR level, namely wchar_t width and enum
4675width.
4676
4677To pass this information to the backend, these options are encoded in module
4678flags metadata, using the following key-value pairs:
4679
4680.. list-table::
4681 :header-rows: 1
4682 :widths: 30 70
4683
4684 * - Key
4685 - Value
4686
4687 * - short_wchar
4688 - * 0 --- sizeof(wchar_t) == 4
4689 * 1 --- sizeof(wchar_t) == 2
4690
4691 * - short_enum
4692 - * 0 --- Enums are at least as large as an ``int``.
4693 * 1 --- Enums are stored in the smallest integer type which can
4694 represent all of its values.
4695
4696For example, the following metadata section specifies that the module was
4697compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4698enum is the smallest type which can represent all of its values::
4699
4700 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004701 !0 = !{i32 1, !"short_wchar", i32 1}
4702 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004703
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004704.. _intrinsicglobalvariables:
4705
Sean Silvab084af42012-12-07 10:36:55 +00004706Intrinsic Global Variables
4707==========================
4708
4709LLVM has a number of "magic" global variables that contain data that
4710affect code generation or other IR semantics. These are documented here.
4711All globals of this sort should have a section specified as
4712"``llvm.metadata``". This section and all globals that start with
4713"``llvm.``" are reserved for use by LLVM.
4714
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004715.. _gv_llvmused:
4716
Sean Silvab084af42012-12-07 10:36:55 +00004717The '``llvm.used``' Global Variable
4718-----------------------------------
4719
Rafael Espindola74f2e462013-04-22 14:58:02 +00004720The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004721:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004722pointers to named global variables, functions and aliases which may optionally
4723have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004724use of it is:
4725
4726.. code-block:: llvm
4727
4728 @X = global i8 4
4729 @Y = global i32 123
4730
4731 @llvm.used = appending global [2 x i8*] [
4732 i8* @X,
4733 i8* bitcast (i32* @Y to i8*)
4734 ], section "llvm.metadata"
4735
Rafael Espindola74f2e462013-04-22 14:58:02 +00004736If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4737and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004738symbol that it cannot see (which is why they have to be named). For example, if
4739a variable has internal linkage and no references other than that from the
4740``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4741references from inline asms and other things the compiler cannot "see", and
4742corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004743
4744On some targets, the code generator must emit a directive to the
4745assembler or object file to prevent the assembler and linker from
4746molesting the symbol.
4747
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004748.. _gv_llvmcompilerused:
4749
Sean Silvab084af42012-12-07 10:36:55 +00004750The '``llvm.compiler.used``' Global Variable
4751--------------------------------------------
4752
4753The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4754directive, except that it only prevents the compiler from touching the
4755symbol. On targets that support it, this allows an intelligent linker to
4756optimize references to the symbol without being impeded as it would be
4757by ``@llvm.used``.
4758
4759This is a rare construct that should only be used in rare circumstances,
4760and should not be exposed to source languages.
4761
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004762.. _gv_llvmglobalctors:
4763
Sean Silvab084af42012-12-07 10:36:55 +00004764The '``llvm.global_ctors``' Global Variable
4765-------------------------------------------
4766
4767.. code-block:: llvm
4768
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004769 %0 = type { i32, void ()*, i8* }
4770 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004771
4772The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004773functions, priorities, and an optional associated global or function.
4774The functions referenced by this array will be called in ascending order
4775of priority (i.e. lowest first) when the module is loaded. The order of
4776functions with the same priority is not defined.
4777
4778If the third field is present, non-null, and points to a global variable
4779or function, the initializer function will only run if the associated
4780data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004781
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004782.. _llvmglobaldtors:
4783
Sean Silvab084af42012-12-07 10:36:55 +00004784The '``llvm.global_dtors``' Global Variable
4785-------------------------------------------
4786
4787.. code-block:: llvm
4788
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004789 %0 = type { i32, void ()*, i8* }
4790 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004791
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004792The ``@llvm.global_dtors`` array contains a list of destructor
4793functions, priorities, and an optional associated global or function.
4794The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004795order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004796order of functions with the same priority is not defined.
4797
4798If the third field is present, non-null, and points to a global variable
4799or function, the destructor function will only run if the associated
4800data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004801
4802Instruction Reference
4803=====================
4804
4805The LLVM instruction set consists of several different classifications
4806of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4807instructions <binaryops>`, :ref:`bitwise binary
4808instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4809:ref:`other instructions <otherops>`.
4810
4811.. _terminators:
4812
4813Terminator Instructions
4814-----------------------
4815
4816As mentioned :ref:`previously <functionstructure>`, every basic block in a
4817program ends with a "Terminator" instruction, which indicates which
4818block should be executed after the current block is finished. These
4819terminator instructions typically yield a '``void``' value: they produce
4820control flow, not values (the one exception being the
4821':ref:`invoke <i_invoke>`' instruction).
4822
4823The terminator instructions are: ':ref:`ret <i_ret>`',
4824':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4825':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004826':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4827':ref:`catchendpad <i_catchendpad>`',
4828':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004829':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004830':ref:`cleanupret <i_cleanupret>`',
4831':ref:`terminatepad <i_terminatepad>`',
4832and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004833
4834.. _i_ret:
4835
4836'``ret``' Instruction
4837^^^^^^^^^^^^^^^^^^^^^
4838
4839Syntax:
4840"""""""
4841
4842::
4843
4844 ret <type> <value> ; Return a value from a non-void function
4845 ret void ; Return from void function
4846
4847Overview:
4848"""""""""
4849
4850The '``ret``' instruction is used to return control flow (and optionally
4851a value) from a function back to the caller.
4852
4853There are two forms of the '``ret``' instruction: one that returns a
4854value and then causes control flow, and one that just causes control
4855flow to occur.
4856
4857Arguments:
4858""""""""""
4859
4860The '``ret``' instruction optionally accepts a single argument, the
4861return value. The type of the return value must be a ':ref:`first
4862class <t_firstclass>`' type.
4863
4864A function is not :ref:`well formed <wellformed>` if it it has a non-void
4865return type and contains a '``ret``' instruction with no return value or
4866a return value with a type that does not match its type, or if it has a
4867void return type and contains a '``ret``' instruction with a return
4868value.
4869
4870Semantics:
4871""""""""""
4872
4873When the '``ret``' instruction is executed, control flow returns back to
4874the calling function's context. If the caller is a
4875":ref:`call <i_call>`" instruction, execution continues at the
4876instruction after the call. If the caller was an
4877":ref:`invoke <i_invoke>`" instruction, execution continues at the
4878beginning of the "normal" destination block. If the instruction returns
4879a value, that value shall set the call or invoke instruction's return
4880value.
4881
4882Example:
4883""""""""
4884
4885.. code-block:: llvm
4886
4887 ret i32 5 ; Return an integer value of 5
4888 ret void ; Return from a void function
4889 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4890
4891.. _i_br:
4892
4893'``br``' Instruction
4894^^^^^^^^^^^^^^^^^^^^
4895
4896Syntax:
4897"""""""
4898
4899::
4900
4901 br i1 <cond>, label <iftrue>, label <iffalse>
4902 br label <dest> ; Unconditional branch
4903
4904Overview:
4905"""""""""
4906
4907The '``br``' instruction is used to cause control flow to transfer to a
4908different basic block in the current function. There are two forms of
4909this instruction, corresponding to a conditional branch and an
4910unconditional branch.
4911
4912Arguments:
4913""""""""""
4914
4915The conditional branch form of the '``br``' instruction takes a single
4916'``i1``' value and two '``label``' values. The unconditional form of the
4917'``br``' instruction takes a single '``label``' value as a target.
4918
4919Semantics:
4920""""""""""
4921
4922Upon execution of a conditional '``br``' instruction, the '``i1``'
4923argument is evaluated. If the value is ``true``, control flows to the
4924'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4925to the '``iffalse``' ``label`` argument.
4926
4927Example:
4928""""""""
4929
4930.. code-block:: llvm
4931
4932 Test:
4933 %cond = icmp eq i32 %a, %b
4934 br i1 %cond, label %IfEqual, label %IfUnequal
4935 IfEqual:
4936 ret i32 1
4937 IfUnequal:
4938 ret i32 0
4939
4940.. _i_switch:
4941
4942'``switch``' Instruction
4943^^^^^^^^^^^^^^^^^^^^^^^^
4944
4945Syntax:
4946"""""""
4947
4948::
4949
4950 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4951
4952Overview:
4953"""""""""
4954
4955The '``switch``' instruction is used to transfer control flow to one of
4956several different places. It is a generalization of the '``br``'
4957instruction, allowing a branch to occur to one of many possible
4958destinations.
4959
4960Arguments:
4961""""""""""
4962
4963The '``switch``' instruction uses three parameters: an integer
4964comparison value '``value``', a default '``label``' destination, and an
4965array of pairs of comparison value constants and '``label``'s. The table
4966is not allowed to contain duplicate constant entries.
4967
4968Semantics:
4969""""""""""
4970
4971The ``switch`` instruction specifies a table of values and destinations.
4972When the '``switch``' instruction is executed, this table is searched
4973for the given value. If the value is found, control flow is transferred
4974to the corresponding destination; otherwise, control flow is transferred
4975to the default destination.
4976
4977Implementation:
4978"""""""""""""""
4979
4980Depending on properties of the target machine and the particular
4981``switch`` instruction, this instruction may be code generated in
4982different ways. For example, it could be generated as a series of
4983chained conditional branches or with a lookup table.
4984
4985Example:
4986""""""""
4987
4988.. code-block:: llvm
4989
4990 ; Emulate a conditional br instruction
4991 %Val = zext i1 %value to i32
4992 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4993
4994 ; Emulate an unconditional br instruction
4995 switch i32 0, label %dest [ ]
4996
4997 ; Implement a jump table:
4998 switch i32 %val, label %otherwise [ i32 0, label %onzero
4999 i32 1, label %onone
5000 i32 2, label %ontwo ]
5001
5002.. _i_indirectbr:
5003
5004'``indirectbr``' Instruction
5005^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5006
5007Syntax:
5008"""""""
5009
5010::
5011
5012 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5013
5014Overview:
5015"""""""""
5016
5017The '``indirectbr``' instruction implements an indirect branch to a
5018label within the current function, whose address is specified by
5019"``address``". Address must be derived from a
5020:ref:`blockaddress <blockaddress>` constant.
5021
5022Arguments:
5023""""""""""
5024
5025The '``address``' argument is the address of the label to jump to. The
5026rest of the arguments indicate the full set of possible destinations
5027that the address may point to. Blocks are allowed to occur multiple
5028times in the destination list, though this isn't particularly useful.
5029
5030This destination list is required so that dataflow analysis has an
5031accurate understanding of the CFG.
5032
5033Semantics:
5034""""""""""
5035
5036Control transfers to the block specified in the address argument. All
5037possible destination blocks must be listed in the label list, otherwise
5038this instruction has undefined behavior. This implies that jumps to
5039labels defined in other functions have undefined behavior as well.
5040
5041Implementation:
5042"""""""""""""""
5043
5044This is typically implemented with a jump through a register.
5045
5046Example:
5047""""""""
5048
5049.. code-block:: llvm
5050
5051 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5052
5053.. _i_invoke:
5054
5055'``invoke``' Instruction
5056^^^^^^^^^^^^^^^^^^^^^^^^
5057
5058Syntax:
5059"""""""
5060
5061::
5062
5063 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
5064 to label <normal label> unwind label <exception label>
5065
5066Overview:
5067"""""""""
5068
5069The '``invoke``' instruction causes control to transfer to a specified
5070function, with the possibility of control flow transfer to either the
5071'``normal``' label or the '``exception``' label. If the callee function
5072returns with the "``ret``" instruction, control flow will return to the
5073"normal" label. If the callee (or any indirect callees) returns via the
5074":ref:`resume <i_resume>`" instruction or other exception handling
5075mechanism, control is interrupted and continued at the dynamically
5076nearest "exception" label.
5077
5078The '``exception``' label is a `landing
5079pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5080'``exception``' label is required to have the
5081":ref:`landingpad <i_landingpad>`" instruction, which contains the
5082information about the behavior of the program after unwinding happens,
5083as its first non-PHI instruction. The restrictions on the
5084"``landingpad``" instruction's tightly couples it to the "``invoke``"
5085instruction, so that the important information contained within the
5086"``landingpad``" instruction can't be lost through normal code motion.
5087
5088Arguments:
5089""""""""""
5090
5091This instruction requires several arguments:
5092
5093#. The optional "cconv" marker indicates which :ref:`calling
5094 convention <callingconv>` the call should use. If none is
5095 specified, the call defaults to using C calling conventions.
5096#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5097 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5098 are valid here.
5099#. '``ptr to function ty``': shall be the signature of the pointer to
5100 function value being invoked. In most cases, this is a direct
5101 function invocation, but indirect ``invoke``'s are just as possible,
5102 branching off an arbitrary pointer to function value.
5103#. '``function ptr val``': An LLVM value containing a pointer to a
5104 function to be invoked.
5105#. '``function args``': argument list whose types match the function
5106 signature argument types and parameter attributes. All arguments must
5107 be of :ref:`first class <t_firstclass>` type. If the function signature
5108 indicates the function accepts a variable number of arguments, the
5109 extra arguments can be specified.
5110#. '``normal label``': the label reached when the called function
5111 executes a '``ret``' instruction.
5112#. '``exception label``': the label reached when a callee returns via
5113 the :ref:`resume <i_resume>` instruction or other exception handling
5114 mechanism.
5115#. The optional :ref:`function attributes <fnattrs>` list. Only
5116 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5117 attributes are valid here.
5118
5119Semantics:
5120""""""""""
5121
5122This instruction is designed to operate as a standard '``call``'
5123instruction in most regards. The primary difference is that it
5124establishes an association with a label, which is used by the runtime
5125library to unwind the stack.
5126
5127This instruction is used in languages with destructors to ensure that
5128proper cleanup is performed in the case of either a ``longjmp`` or a
5129thrown exception. Additionally, this is important for implementation of
5130'``catch``' clauses in high-level languages that support them.
5131
5132For the purposes of the SSA form, the definition of the value returned
5133by the '``invoke``' instruction is deemed to occur on the edge from the
5134current block to the "normal" label. If the callee unwinds then no
5135return value is available.
5136
5137Example:
5138""""""""
5139
5140.. code-block:: llvm
5141
5142 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005143 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005144 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005145 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005146
5147.. _i_resume:
5148
5149'``resume``' Instruction
5150^^^^^^^^^^^^^^^^^^^^^^^^
5151
5152Syntax:
5153"""""""
5154
5155::
5156
5157 resume <type> <value>
5158
5159Overview:
5160"""""""""
5161
5162The '``resume``' instruction is a terminator instruction that has no
5163successors.
5164
5165Arguments:
5166""""""""""
5167
5168The '``resume``' instruction requires one argument, which must have the
5169same type as the result of any '``landingpad``' instruction in the same
5170function.
5171
5172Semantics:
5173""""""""""
5174
5175The '``resume``' instruction resumes propagation of an existing
5176(in-flight) exception whose unwinding was interrupted with a
5177:ref:`landingpad <i_landingpad>` instruction.
5178
5179Example:
5180""""""""
5181
5182.. code-block:: llvm
5183
5184 resume { i8*, i32 } %exn
5185
David Majnemer654e1302015-07-31 17:58:14 +00005186.. _i_catchpad:
5187
5188'``catchpad``' Instruction
5189^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5190
5191Syntax:
5192"""""""
5193
5194::
5195
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005196 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005197 to label <normal label> unwind label <exception label>
5198
5199Overview:
5200"""""""""
5201
5202The '``catchpad``' instruction is used by `LLVM's exception handling
5203system <ExceptionHandling.html#overview>`_ to specify that a basic block
5204is a catch block --- one where a personality routine attempts to transfer
5205control to catch an exception.
5206The ``args`` correspond to whatever information the personality
5207routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005208exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005209``catchpad`` is not an appropriate handler for the in-flight exception.
5210The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005211portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5212:ref:`token <t_token>` and is used to match the ``catchpad`` to
5213corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005214
5215Arguments:
5216""""""""""
5217
5218The instruction takes a list of arbitrary values which are interpreted
5219by the :ref:`personality function <personalityfn>`.
5220
5221The ``catchpad`` must be provided a ``normal`` label to transfer control
5222to if the ``catchpad`` matches the exception and an ``exception``
5223label to transfer control to if it doesn't.
5224
5225Semantics:
5226""""""""""
5227
David Majnemer654e1302015-07-31 17:58:14 +00005228When the call stack is being unwound due to an exception being thrown,
5229the exception is compared against the ``args``. If it doesn't match,
5230then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005231As with calling conventions, how the personality function results are
5232represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005233
5234The ``catchpad`` instruction has several restrictions:
5235
5236- A catch block is a basic block which is the unwind destination of
5237 an exceptional instruction.
5238- A catch block must have a '``catchpad``' instruction as its
5239 first non-PHI instruction.
5240- A catch block's ``exception`` edge must refer to a catch block or a
5241 catch-end block.
5242- There can be only one '``catchpad``' instruction within the
5243 catch block.
5244- A basic block that is not a catch block may not include a
5245 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005246- A catch block which has another catch block as a predecessor may not have
5247 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005248- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005249 ``ret`` without first executing a ``catchret`` that consumes the
5250 ``catchpad`` or unwinding through its ``catchendpad``.
5251- It is undefined behavior for control to transfer from a ``catchpad`` to
5252 itself without first executing a ``catchret`` that consumes the
5253 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005254
5255Example:
5256""""""""
5257
5258.. code-block:: llvm
5259
5260 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005261 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005262 to label %int.handler unwind label %terminate
5263
5264.. _i_catchendpad:
5265
5266'``catchendpad``' Instruction
5267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5268
5269Syntax:
5270"""""""
5271
5272::
5273
5274 catchendpad unwind label <nextaction>
5275 catchendpad unwind to caller
5276
5277Overview:
5278"""""""""
5279
5280The '``catchendpad``' instruction is used by `LLVM's exception handling
5281system <ExceptionHandling.html#overview>`_ to communicate to the
5282:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005283with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5284exception out of a catch handler is represented by unwinding through its
5285``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5286do not handle an exception is also represented by unwinding through their
5287``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005288
5289The ``nextaction`` label indicates where control should transfer to if
5290none of the ``catchpad`` instructions are suitable for catching the
5291in-flight exception.
5292
5293If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005294its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005295:ref:`personality function <personalityfn>` will continue processing
5296exception handling actions in the caller.
5297
5298Arguments:
5299""""""""""
5300
5301The instruction optionally takes a label, ``nextaction``, indicating
5302where control should transfer to if none of the preceding
5303``catchpad`` instructions are suitable for the in-flight exception.
5304
5305Semantics:
5306""""""""""
5307
5308When the call stack is being unwound due to an exception being thrown
5309and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005310control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005311present, control is transfered to the caller.
5312
5313The ``catchendpad`` instruction has several restrictions:
5314
5315- A catch-end block is a basic block which is the unwind destination of
5316 an exceptional instruction.
5317- A catch-end block must have a '``catchendpad``' instruction as its
5318 first non-PHI instruction.
5319- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005320 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005321- A basic block that is not a catch-end block may not include a
5322 '``catchendpad``' instruction.
5323- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005324- It is undefined behavior to execute a ``catchendpad`` if none of the
5325 '``catchpad``'s chained to it have been executed.
5326- It is undefined behavior to execute a ``catchendpad`` twice without an
5327 intervening execution of one or more of the '``catchpad``'s chained to it.
5328- It is undefined behavior to execute a ``catchendpad`` if, after the most
5329 recent execution of the normal successor edge of any ``catchpad`` chained
5330 to it, some ``catchret`` consuming that ``catchpad`` has already been
5331 executed.
5332- It is undefined behavior to execute a ``catchendpad`` if, after the most
5333 recent execution of the normal successor edge of any ``catchpad`` chained
5334 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5335 not had a corresponding
5336 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005337
5338Example:
5339""""""""
5340
5341.. code-block:: llvm
5342
5343 catchendpad unwind label %terminate
5344 catchendpad unwind to caller
5345
5346.. _i_catchret:
5347
5348'``catchret``' Instruction
5349^^^^^^^^^^^^^^^^^^^^^^^^^^
5350
5351Syntax:
5352"""""""
5353
5354::
5355
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005356 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005357
5358Overview:
5359"""""""""
5360
5361The '``catchret``' instruction is a terminator instruction that has a
5362single successor.
5363
5364
5365Arguments:
5366""""""""""
5367
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005368The first argument to a '``catchret``' indicates which ``catchpad`` it
5369exits. It must be a :ref:`catchpad <i_catchpad>`.
5370The second argument to a '``catchret``' specifies where control will
5371transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005372
5373Semantics:
5374""""""""""
5375
5376The '``catchret``' instruction ends the existing (in-flight) exception
5377whose unwinding was interrupted with a
5378:ref:`catchpad <i_catchpad>` instruction.
5379The :ref:`personality function <personalityfn>` gets a chance to execute
5380arbitrary code to, for example, run a C++ destructor.
5381Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005382It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005383
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005384It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5385not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005386
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005387It is undefined behavior to execute a ``catchret`` if, after the most recent
5388execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5389to the same ``catchpad`` has already been executed.
5390
5391It is undefined behavior to execute a ``catchret`` if, after the most recent
5392execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5393been executed but has not had a corresponding
5394``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005395
5396Example:
5397""""""""
5398
5399.. code-block:: llvm
5400
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005401 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005402
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005403.. _i_cleanupendpad:
5404
5405'``cleanupendpad``' Instruction
5406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5407
5408Syntax:
5409"""""""
5410
5411::
5412
5413 cleanupendpad <value> unwind label <nextaction>
5414 cleanupendpad <value> unwind to caller
5415
5416Overview:
5417"""""""""
5418
5419The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5420system <ExceptionHandling.html#overview>`_ to communicate to the
5421:ref:`personality function <personalityfn>` which invokes are associated
5422with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5423out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5424
5425The ``nextaction`` label indicates where control should unwind to next, in the
5426event that a cleanup is exited by means of an(other) exception being raised.
5427
5428If a ``nextaction`` label is not present, the instruction unwinds out of
5429its parent function. The
5430:ref:`personality function <personalityfn>` will continue processing
5431exception handling actions in the caller.
5432
5433Arguments:
5434""""""""""
5435
5436The '``cleanupendpad``' instruction requires one argument, which indicates
5437which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5438It also has an optional successor, ``nextaction``, indicating where control
5439should transfer to.
5440
5441Semantics:
5442""""""""""
5443
5444When and exception propagates to a ``cleanupendpad``, control is transfered to
5445``nextaction`` if it is present. If it is not present, control is transfered to
5446the caller.
5447
5448The ``cleanupendpad`` instruction has several restrictions:
5449
5450- A cleanup-end block is a basic block which is the unwind destination of
5451 an exceptional instruction.
5452- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5453 first non-PHI instruction.
5454- There can be only one '``cleanupendpad``' instruction within the
5455 cleanup-end block.
5456- A basic block that is not a cleanup-end block may not include a
5457 '``cleanupendpad``' instruction.
5458- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5459 has not been executed.
5460- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5461 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5462 consuming the same ``cleanuppad`` has already been executed.
5463- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5464 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5465 ``catchpad`` has been executed but has not had a corresponding
5466 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5467
5468Example:
5469""""""""
5470
5471.. code-block:: llvm
5472
5473 cleanupendpad %cleanup unwind label %terminate
5474 cleanupendpad %cleanup unwind to caller
5475
David Majnemer654e1302015-07-31 17:58:14 +00005476.. _i_cleanupret:
5477
5478'``cleanupret``' Instruction
5479^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5480
5481Syntax:
5482"""""""
5483
5484::
5485
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005486 cleanupret <value> unwind label <continue>
5487 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005488
5489Overview:
5490"""""""""
5491
5492The '``cleanupret``' instruction is a terminator instruction that has
5493an optional successor.
5494
5495
5496Arguments:
5497""""""""""
5498
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005499The '``cleanupret``' instruction requires one argument, which indicates
5500which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5501It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005502
5503Semantics:
5504""""""""""
5505
5506The '``cleanupret``' instruction indicates to the
5507:ref:`personality function <personalityfn>` that one
5508:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5509It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005510
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005511It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5512not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005513
5514It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5515execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5516consuming the same ``cleanuppad`` has already been executed.
5517
5518It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5519execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5520been executed but has not had a corresponding
5521``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005522
5523Example:
5524""""""""
5525
5526.. code-block:: llvm
5527
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005528 cleanupret %cleanup unwind to caller
5529 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005530
5531.. _i_terminatepad:
5532
5533'``terminatepad``' Instruction
5534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5535
5536Syntax:
5537"""""""
5538
5539::
5540
5541 terminatepad [<args>*] unwind label <exception label>
5542 terminatepad [<args>*] unwind to caller
5543
5544Overview:
5545"""""""""
5546
5547The '``terminatepad``' instruction is used by `LLVM's exception handling
5548system <ExceptionHandling.html#overview>`_ to specify that a basic block
5549is a terminate block --- one where a personality routine may decide to
5550terminate the program.
5551The ``args`` correspond to whatever information the personality
5552routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005553program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005554personality routine decides not to terminate the program for the
5555in-flight exception.
5556
5557Arguments:
5558""""""""""
5559
5560The instruction takes a list of arbitrary values which are interpreted
5561by the :ref:`personality function <personalityfn>`.
5562
5563The ``terminatepad`` may be given an ``exception`` label to
5564transfer control to if the in-flight exception matches the ``args``.
5565
5566Semantics:
5567""""""""""
5568
5569When the call stack is being unwound due to an exception being thrown,
5570the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005571then control is transfered to the ``exception`` basic block. Otherwise,
5572the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005573the first argument to ``terminatepad`` specifies what function the
5574personality should defer to in order to terminate the program.
5575
5576The ``terminatepad`` instruction has several restrictions:
5577
5578- A terminate block is a basic block which is the unwind destination of
5579 an exceptional instruction.
5580- A terminate block must have a '``terminatepad``' instruction as its
5581 first non-PHI instruction.
5582- There can be only one '``terminatepad``' instruction within the
5583 terminate block.
5584- A basic block that is not a terminate block may not include a
5585 '``terminatepad``' instruction.
5586
5587Example:
5588""""""""
5589
5590.. code-block:: llvm
5591
5592 ;; A terminate block which only permits integers.
5593 terminatepad [i8** @_ZTIi] unwind label %continue
5594
Sean Silvab084af42012-12-07 10:36:55 +00005595.. _i_unreachable:
5596
5597'``unreachable``' Instruction
5598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5599
5600Syntax:
5601"""""""
5602
5603::
5604
5605 unreachable
5606
5607Overview:
5608"""""""""
5609
5610The '``unreachable``' instruction has no defined semantics. This
5611instruction is used to inform the optimizer that a particular portion of
5612the code is not reachable. This can be used to indicate that the code
5613after a no-return function cannot be reached, and other facts.
5614
5615Semantics:
5616""""""""""
5617
5618The '``unreachable``' instruction has no defined semantics.
5619
5620.. _binaryops:
5621
5622Binary Operations
5623-----------------
5624
5625Binary operators are used to do most of the computation in a program.
5626They require two operands of the same type, execute an operation on
5627them, and produce a single value. The operands might represent multiple
5628data, as is the case with the :ref:`vector <t_vector>` data type. The
5629result value has the same type as its operands.
5630
5631There are several different binary operators:
5632
5633.. _i_add:
5634
5635'``add``' Instruction
5636^^^^^^^^^^^^^^^^^^^^^
5637
5638Syntax:
5639"""""""
5640
5641::
5642
Tim Northover675a0962014-06-13 14:24:23 +00005643 <result> = add <ty> <op1>, <op2> ; yields ty:result
5644 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5645 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5646 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005647
5648Overview:
5649"""""""""
5650
5651The '``add``' instruction returns the sum of its two operands.
5652
5653Arguments:
5654""""""""""
5655
5656The two arguments to the '``add``' instruction must be
5657:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5658arguments must have identical types.
5659
5660Semantics:
5661""""""""""
5662
5663The value produced is the integer sum of the two operands.
5664
5665If the sum has unsigned overflow, the result returned is the
5666mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5667the result.
5668
5669Because LLVM integers use a two's complement representation, this
5670instruction is appropriate for both signed and unsigned integers.
5671
5672``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5673respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5674result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5675unsigned and/or signed overflow, respectively, occurs.
5676
5677Example:
5678""""""""
5679
5680.. code-block:: llvm
5681
Tim Northover675a0962014-06-13 14:24:23 +00005682 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005683
5684.. _i_fadd:
5685
5686'``fadd``' Instruction
5687^^^^^^^^^^^^^^^^^^^^^^
5688
5689Syntax:
5690"""""""
5691
5692::
5693
Tim Northover675a0962014-06-13 14:24:23 +00005694 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005695
5696Overview:
5697"""""""""
5698
5699The '``fadd``' instruction returns the sum of its two operands.
5700
5701Arguments:
5702""""""""""
5703
5704The two arguments to the '``fadd``' instruction must be :ref:`floating
5705point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5706Both arguments must have identical types.
5707
5708Semantics:
5709""""""""""
5710
5711The value produced is the floating point sum of the two operands. This
5712instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5713which are optimization hints to enable otherwise unsafe floating point
5714optimizations:
5715
5716Example:
5717""""""""
5718
5719.. code-block:: llvm
5720
Tim Northover675a0962014-06-13 14:24:23 +00005721 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005722
5723'``sub``' Instruction
5724^^^^^^^^^^^^^^^^^^^^^
5725
5726Syntax:
5727"""""""
5728
5729::
5730
Tim Northover675a0962014-06-13 14:24:23 +00005731 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5732 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5733 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5734 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005735
5736Overview:
5737"""""""""
5738
5739The '``sub``' instruction returns the difference of its two operands.
5740
5741Note that the '``sub``' instruction is used to represent the '``neg``'
5742instruction present in most other intermediate representations.
5743
5744Arguments:
5745""""""""""
5746
5747The two arguments to the '``sub``' instruction must be
5748:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5749arguments must have identical types.
5750
5751Semantics:
5752""""""""""
5753
5754The value produced is the integer difference of the two operands.
5755
5756If the difference has unsigned overflow, the result returned is the
5757mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5758the result.
5759
5760Because LLVM integers use a two's complement representation, this
5761instruction is appropriate for both signed and unsigned integers.
5762
5763``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5764respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5765result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5766unsigned and/or signed overflow, respectively, occurs.
5767
5768Example:
5769""""""""
5770
5771.. code-block:: llvm
5772
Tim Northover675a0962014-06-13 14:24:23 +00005773 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5774 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005775
5776.. _i_fsub:
5777
5778'``fsub``' Instruction
5779^^^^^^^^^^^^^^^^^^^^^^
5780
5781Syntax:
5782"""""""
5783
5784::
5785
Tim Northover675a0962014-06-13 14:24:23 +00005786 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005787
5788Overview:
5789"""""""""
5790
5791The '``fsub``' instruction returns the difference of its two operands.
5792
5793Note that the '``fsub``' instruction is used to represent the '``fneg``'
5794instruction present in most other intermediate representations.
5795
5796Arguments:
5797""""""""""
5798
5799The two arguments to the '``fsub``' instruction must be :ref:`floating
5800point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5801Both arguments must have identical types.
5802
5803Semantics:
5804""""""""""
5805
5806The value produced is the floating point difference of the two operands.
5807This instruction can also take any number of :ref:`fast-math
5808flags <fastmath>`, which are optimization hints to enable otherwise
5809unsafe floating point optimizations:
5810
5811Example:
5812""""""""
5813
5814.. code-block:: llvm
5815
Tim Northover675a0962014-06-13 14:24:23 +00005816 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5817 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005818
5819'``mul``' Instruction
5820^^^^^^^^^^^^^^^^^^^^^
5821
5822Syntax:
5823"""""""
5824
5825::
5826
Tim Northover675a0962014-06-13 14:24:23 +00005827 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5828 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5829 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5830 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005831
5832Overview:
5833"""""""""
5834
5835The '``mul``' instruction returns the product of its two operands.
5836
5837Arguments:
5838""""""""""
5839
5840The two arguments to the '``mul``' instruction must be
5841:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5842arguments must have identical types.
5843
5844Semantics:
5845""""""""""
5846
5847The value produced is the integer product of the two operands.
5848
5849If the result of the multiplication has unsigned overflow, the result
5850returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5851bit width of the result.
5852
5853Because LLVM integers use a two's complement representation, and the
5854result is the same width as the operands, this instruction returns the
5855correct result for both signed and unsigned integers. If a full product
5856(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5857sign-extended or zero-extended as appropriate to the width of the full
5858product.
5859
5860``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5861respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5862result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5863unsigned and/or signed overflow, respectively, occurs.
5864
5865Example:
5866""""""""
5867
5868.. code-block:: llvm
5869
Tim Northover675a0962014-06-13 14:24:23 +00005870 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005871
5872.. _i_fmul:
5873
5874'``fmul``' Instruction
5875^^^^^^^^^^^^^^^^^^^^^^
5876
5877Syntax:
5878"""""""
5879
5880::
5881
Tim Northover675a0962014-06-13 14:24:23 +00005882 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005883
5884Overview:
5885"""""""""
5886
5887The '``fmul``' instruction returns the product of its two operands.
5888
5889Arguments:
5890""""""""""
5891
5892The two arguments to the '``fmul``' instruction must be :ref:`floating
5893point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5894Both arguments must have identical types.
5895
5896Semantics:
5897""""""""""
5898
5899The value produced is the floating point product of the two operands.
5900This instruction can also take any number of :ref:`fast-math
5901flags <fastmath>`, which are optimization hints to enable otherwise
5902unsafe floating point optimizations:
5903
5904Example:
5905""""""""
5906
5907.. code-block:: llvm
5908
Tim Northover675a0962014-06-13 14:24:23 +00005909 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005910
5911'``udiv``' Instruction
5912^^^^^^^^^^^^^^^^^^^^^^
5913
5914Syntax:
5915"""""""
5916
5917::
5918
Tim Northover675a0962014-06-13 14:24:23 +00005919 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5920 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005921
5922Overview:
5923"""""""""
5924
5925The '``udiv``' instruction returns the quotient of its two operands.
5926
5927Arguments:
5928""""""""""
5929
5930The two arguments to the '``udiv``' instruction must be
5931:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5932arguments must have identical types.
5933
5934Semantics:
5935""""""""""
5936
5937The value produced is the unsigned integer quotient of the two operands.
5938
5939Note that unsigned integer division and signed integer division are
5940distinct operations; for signed integer division, use '``sdiv``'.
5941
5942Division by zero leads to undefined behavior.
5943
5944If the ``exact`` keyword is present, the result value of the ``udiv`` is
5945a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5946such, "((a udiv exact b) mul b) == a").
5947
5948Example:
5949""""""""
5950
5951.. code-block:: llvm
5952
Tim Northover675a0962014-06-13 14:24:23 +00005953 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005954
5955'``sdiv``' Instruction
5956^^^^^^^^^^^^^^^^^^^^^^
5957
5958Syntax:
5959"""""""
5960
5961::
5962
Tim Northover675a0962014-06-13 14:24:23 +00005963 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5964 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005965
5966Overview:
5967"""""""""
5968
5969The '``sdiv``' instruction returns the quotient of its two operands.
5970
5971Arguments:
5972""""""""""
5973
5974The two arguments to the '``sdiv``' instruction must be
5975:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5976arguments must have identical types.
5977
5978Semantics:
5979""""""""""
5980
5981The value produced is the signed integer quotient of the two operands
5982rounded towards zero.
5983
5984Note that signed integer division and unsigned integer division are
5985distinct operations; for unsigned integer division, use '``udiv``'.
5986
5987Division by zero leads to undefined behavior. Overflow also leads to
5988undefined behavior; this is a rare case, but can occur, for example, by
5989doing a 32-bit division of -2147483648 by -1.
5990
5991If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5992a :ref:`poison value <poisonvalues>` if the result would be rounded.
5993
5994Example:
5995""""""""
5996
5997.. code-block:: llvm
5998
Tim Northover675a0962014-06-13 14:24:23 +00005999 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006000
6001.. _i_fdiv:
6002
6003'``fdiv``' Instruction
6004^^^^^^^^^^^^^^^^^^^^^^
6005
6006Syntax:
6007"""""""
6008
6009::
6010
Tim Northover675a0962014-06-13 14:24:23 +00006011 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006012
6013Overview:
6014"""""""""
6015
6016The '``fdiv``' instruction returns the quotient of its two operands.
6017
6018Arguments:
6019""""""""""
6020
6021The two arguments to the '``fdiv``' instruction must be :ref:`floating
6022point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6023Both arguments must have identical types.
6024
6025Semantics:
6026""""""""""
6027
6028The value produced is the floating point quotient of the two operands.
6029This instruction can also take any number of :ref:`fast-math
6030flags <fastmath>`, which are optimization hints to enable otherwise
6031unsafe floating point optimizations:
6032
6033Example:
6034""""""""
6035
6036.. code-block:: llvm
6037
Tim Northover675a0962014-06-13 14:24:23 +00006038 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006039
6040'``urem``' Instruction
6041^^^^^^^^^^^^^^^^^^^^^^
6042
6043Syntax:
6044"""""""
6045
6046::
6047
Tim Northover675a0962014-06-13 14:24:23 +00006048 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006049
6050Overview:
6051"""""""""
6052
6053The '``urem``' instruction returns the remainder from the unsigned
6054division of its two arguments.
6055
6056Arguments:
6057""""""""""
6058
6059The two arguments to the '``urem``' instruction must be
6060:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6061arguments must have identical types.
6062
6063Semantics:
6064""""""""""
6065
6066This instruction returns the unsigned integer *remainder* of a division.
6067This instruction always performs an unsigned division to get the
6068remainder.
6069
6070Note that unsigned integer remainder and signed integer remainder are
6071distinct operations; for signed integer remainder, use '``srem``'.
6072
6073Taking the remainder of a division by zero leads to undefined behavior.
6074
6075Example:
6076""""""""
6077
6078.. code-block:: llvm
6079
Tim Northover675a0962014-06-13 14:24:23 +00006080 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006081
6082'``srem``' Instruction
6083^^^^^^^^^^^^^^^^^^^^^^
6084
6085Syntax:
6086"""""""
6087
6088::
6089
Tim Northover675a0962014-06-13 14:24:23 +00006090 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006091
6092Overview:
6093"""""""""
6094
6095The '``srem``' instruction returns the remainder from the signed
6096division of its two operands. This instruction can also take
6097:ref:`vector <t_vector>` versions of the values in which case the elements
6098must be integers.
6099
6100Arguments:
6101""""""""""
6102
6103The two arguments to the '``srem``' instruction must be
6104:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6105arguments must have identical types.
6106
6107Semantics:
6108""""""""""
6109
6110This instruction returns the *remainder* of a division (where the result
6111is either zero or has the same sign as the dividend, ``op1``), not the
6112*modulo* operator (where the result is either zero or has the same sign
6113as the divisor, ``op2``) of a value. For more information about the
6114difference, see `The Math
6115Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6116table of how this is implemented in various languages, please see
6117`Wikipedia: modulo
6118operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6119
6120Note that signed integer remainder and unsigned integer remainder are
6121distinct operations; for unsigned integer remainder, use '``urem``'.
6122
6123Taking the remainder of a division by zero leads to undefined behavior.
6124Overflow also leads to undefined behavior; this is a rare case, but can
6125occur, for example, by taking the remainder of a 32-bit division of
6126-2147483648 by -1. (The remainder doesn't actually overflow, but this
6127rule lets srem be implemented using instructions that return both the
6128result of the division and the remainder.)
6129
6130Example:
6131""""""""
6132
6133.. code-block:: llvm
6134
Tim Northover675a0962014-06-13 14:24:23 +00006135 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006136
6137.. _i_frem:
6138
6139'``frem``' Instruction
6140^^^^^^^^^^^^^^^^^^^^^^
6141
6142Syntax:
6143"""""""
6144
6145::
6146
Tim Northover675a0962014-06-13 14:24:23 +00006147 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006148
6149Overview:
6150"""""""""
6151
6152The '``frem``' instruction returns the remainder from the division of
6153its two operands.
6154
6155Arguments:
6156""""""""""
6157
6158The two arguments to the '``frem``' instruction must be :ref:`floating
6159point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6160Both arguments must have identical types.
6161
6162Semantics:
6163""""""""""
6164
6165This instruction returns the *remainder* of a division. The remainder
6166has the same sign as the dividend. This instruction can also take any
6167number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6168to enable otherwise unsafe floating point optimizations:
6169
6170Example:
6171""""""""
6172
6173.. code-block:: llvm
6174
Tim Northover675a0962014-06-13 14:24:23 +00006175 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006176
6177.. _bitwiseops:
6178
6179Bitwise Binary Operations
6180-------------------------
6181
6182Bitwise binary operators are used to do various forms of bit-twiddling
6183in a program. They are generally very efficient instructions and can
6184commonly be strength reduced from other instructions. They require two
6185operands of the same type, execute an operation on them, and produce a
6186single value. The resulting value is the same type as its operands.
6187
6188'``shl``' Instruction
6189^^^^^^^^^^^^^^^^^^^^^
6190
6191Syntax:
6192"""""""
6193
6194::
6195
Tim Northover675a0962014-06-13 14:24:23 +00006196 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6197 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6198 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6199 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006200
6201Overview:
6202"""""""""
6203
6204The '``shl``' instruction returns the first operand shifted to the left
6205a specified number of bits.
6206
6207Arguments:
6208""""""""""
6209
6210Both arguments to the '``shl``' instruction must be the same
6211:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6212'``op2``' is treated as an unsigned value.
6213
6214Semantics:
6215""""""""""
6216
6217The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6218where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006219dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006220``op1``, the result is undefined. If the arguments are vectors, each
6221vector element of ``op1`` is shifted by the corresponding shift amount
6222in ``op2``.
6223
6224If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6225value <poisonvalues>` if it shifts out any non-zero bits. If the
6226``nsw`` keyword is present, then the shift produces a :ref:`poison
6227value <poisonvalues>` if it shifts out any bits that disagree with the
6228resultant sign bit. As such, NUW/NSW have the same semantics as they
6229would if the shift were expressed as a mul instruction with the same
6230nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6231
6232Example:
6233""""""""
6234
6235.. code-block:: llvm
6236
Tim Northover675a0962014-06-13 14:24:23 +00006237 <result> = shl i32 4, %var ; yields i32: 4 << %var
6238 <result> = shl i32 4, 2 ; yields i32: 16
6239 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006240 <result> = shl i32 1, 32 ; undefined
6241 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6242
6243'``lshr``' Instruction
6244^^^^^^^^^^^^^^^^^^^^^^
6245
6246Syntax:
6247"""""""
6248
6249::
6250
Tim Northover675a0962014-06-13 14:24:23 +00006251 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6252 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006253
6254Overview:
6255"""""""""
6256
6257The '``lshr``' instruction (logical shift right) returns the first
6258operand shifted to the right a specified number of bits with zero fill.
6259
6260Arguments:
6261""""""""""
6262
6263Both arguments to the '``lshr``' instruction must be the same
6264:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6265'``op2``' is treated as an unsigned value.
6266
6267Semantics:
6268""""""""""
6269
6270This instruction always performs a logical shift right operation. The
6271most significant bits of the result will be filled with zero bits after
6272the shift. If ``op2`` is (statically or dynamically) equal to or larger
6273than the number of bits in ``op1``, the result is undefined. If the
6274arguments are vectors, each vector element of ``op1`` is shifted by the
6275corresponding shift amount in ``op2``.
6276
6277If the ``exact`` keyword is present, the result value of the ``lshr`` is
6278a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6279non-zero.
6280
6281Example:
6282""""""""
6283
6284.. code-block:: llvm
6285
Tim Northover675a0962014-06-13 14:24:23 +00006286 <result> = lshr i32 4, 1 ; yields i32:result = 2
6287 <result> = lshr i32 4, 2 ; yields i32:result = 1
6288 <result> = lshr i8 4, 3 ; yields i8:result = 0
6289 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006290 <result> = lshr i32 1, 32 ; undefined
6291 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6292
6293'``ashr``' Instruction
6294^^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
Tim Northover675a0962014-06-13 14:24:23 +00006301 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6302 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006303
6304Overview:
6305"""""""""
6306
6307The '``ashr``' instruction (arithmetic shift right) returns the first
6308operand shifted to the right a specified number of bits with sign
6309extension.
6310
6311Arguments:
6312""""""""""
6313
6314Both arguments to the '``ashr``' instruction must be the same
6315:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6316'``op2``' is treated as an unsigned value.
6317
6318Semantics:
6319""""""""""
6320
6321This instruction always performs an arithmetic shift right operation,
6322The most significant bits of the result will be filled with the sign bit
6323of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6324than the number of bits in ``op1``, the result is undefined. If the
6325arguments are vectors, each vector element of ``op1`` is shifted by the
6326corresponding shift amount in ``op2``.
6327
6328If the ``exact`` keyword is present, the result value of the ``ashr`` is
6329a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6330non-zero.
6331
6332Example:
6333""""""""
6334
6335.. code-block:: llvm
6336
Tim Northover675a0962014-06-13 14:24:23 +00006337 <result> = ashr i32 4, 1 ; yields i32:result = 2
6338 <result> = ashr i32 4, 2 ; yields i32:result = 1
6339 <result> = ashr i8 4, 3 ; yields i8:result = 0
6340 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006341 <result> = ashr i32 1, 32 ; undefined
6342 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6343
6344'``and``' Instruction
6345^^^^^^^^^^^^^^^^^^^^^
6346
6347Syntax:
6348"""""""
6349
6350::
6351
Tim Northover675a0962014-06-13 14:24:23 +00006352 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006353
6354Overview:
6355"""""""""
6356
6357The '``and``' instruction returns the bitwise logical and of its two
6358operands.
6359
6360Arguments:
6361""""""""""
6362
6363The two arguments to the '``and``' instruction must be
6364:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6365arguments must have identical types.
6366
6367Semantics:
6368""""""""""
6369
6370The truth table used for the '``and``' instruction is:
6371
6372+-----+-----+-----+
6373| In0 | In1 | Out |
6374+-----+-----+-----+
6375| 0 | 0 | 0 |
6376+-----+-----+-----+
6377| 0 | 1 | 0 |
6378+-----+-----+-----+
6379| 1 | 0 | 0 |
6380+-----+-----+-----+
6381| 1 | 1 | 1 |
6382+-----+-----+-----+
6383
6384Example:
6385""""""""
6386
6387.. code-block:: llvm
6388
Tim Northover675a0962014-06-13 14:24:23 +00006389 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6390 <result> = and i32 15, 40 ; yields i32:result = 8
6391 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006392
6393'``or``' Instruction
6394^^^^^^^^^^^^^^^^^^^^
6395
6396Syntax:
6397"""""""
6398
6399::
6400
Tim Northover675a0962014-06-13 14:24:23 +00006401 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006402
6403Overview:
6404"""""""""
6405
6406The '``or``' instruction returns the bitwise logical inclusive or of its
6407two operands.
6408
6409Arguments:
6410""""""""""
6411
6412The two arguments to the '``or``' instruction must be
6413:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6414arguments must have identical types.
6415
6416Semantics:
6417""""""""""
6418
6419The truth table used for the '``or``' instruction is:
6420
6421+-----+-----+-----+
6422| In0 | In1 | Out |
6423+-----+-----+-----+
6424| 0 | 0 | 0 |
6425+-----+-----+-----+
6426| 0 | 1 | 1 |
6427+-----+-----+-----+
6428| 1 | 0 | 1 |
6429+-----+-----+-----+
6430| 1 | 1 | 1 |
6431+-----+-----+-----+
6432
6433Example:
6434""""""""
6435
6436::
6437
Tim Northover675a0962014-06-13 14:24:23 +00006438 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6439 <result> = or i32 15, 40 ; yields i32:result = 47
6440 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006441
6442'``xor``' Instruction
6443^^^^^^^^^^^^^^^^^^^^^
6444
6445Syntax:
6446"""""""
6447
6448::
6449
Tim Northover675a0962014-06-13 14:24:23 +00006450 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006451
6452Overview:
6453"""""""""
6454
6455The '``xor``' instruction returns the bitwise logical exclusive or of
6456its two operands. The ``xor`` is used to implement the "one's
6457complement" operation, which is the "~" operator in C.
6458
6459Arguments:
6460""""""""""
6461
6462The two arguments to the '``xor``' instruction must be
6463:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6464arguments must have identical types.
6465
6466Semantics:
6467""""""""""
6468
6469The truth table used for the '``xor``' instruction is:
6470
6471+-----+-----+-----+
6472| In0 | In1 | Out |
6473+-----+-----+-----+
6474| 0 | 0 | 0 |
6475+-----+-----+-----+
6476| 0 | 1 | 1 |
6477+-----+-----+-----+
6478| 1 | 0 | 1 |
6479+-----+-----+-----+
6480| 1 | 1 | 0 |
6481+-----+-----+-----+
6482
6483Example:
6484""""""""
6485
6486.. code-block:: llvm
6487
Tim Northover675a0962014-06-13 14:24:23 +00006488 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6489 <result> = xor i32 15, 40 ; yields i32:result = 39
6490 <result> = xor i32 4, 8 ; yields i32:result = 12
6491 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006492
6493Vector Operations
6494-----------------
6495
6496LLVM supports several instructions to represent vector operations in a
6497target-independent manner. These instructions cover the element-access
6498and vector-specific operations needed to process vectors effectively.
6499While LLVM does directly support these vector operations, many
6500sophisticated algorithms will want to use target-specific intrinsics to
6501take full advantage of a specific target.
6502
6503.. _i_extractelement:
6504
6505'``extractelement``' Instruction
6506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6507
6508Syntax:
6509"""""""
6510
6511::
6512
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006513 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006514
6515Overview:
6516"""""""""
6517
6518The '``extractelement``' instruction extracts a single scalar element
6519from a vector at a specified index.
6520
6521Arguments:
6522""""""""""
6523
6524The first operand of an '``extractelement``' instruction is a value of
6525:ref:`vector <t_vector>` type. The second operand is an index indicating
6526the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006527variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006528
6529Semantics:
6530""""""""""
6531
6532The result is a scalar of the same type as the element type of ``val``.
6533Its value is the value at position ``idx`` of ``val``. If ``idx``
6534exceeds the length of ``val``, the results are undefined.
6535
6536Example:
6537""""""""
6538
6539.. code-block:: llvm
6540
6541 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6542
6543.. _i_insertelement:
6544
6545'``insertelement``' Instruction
6546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6547
6548Syntax:
6549"""""""
6550
6551::
6552
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006553 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006554
6555Overview:
6556"""""""""
6557
6558The '``insertelement``' instruction inserts a scalar element into a
6559vector at a specified index.
6560
6561Arguments:
6562""""""""""
6563
6564The first operand of an '``insertelement``' instruction is a value of
6565:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6566type must equal the element type of the first operand. The third operand
6567is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006568index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006569
6570Semantics:
6571""""""""""
6572
6573The result is a vector of the same type as ``val``. Its element values
6574are those of ``val`` except at position ``idx``, where it gets the value
6575``elt``. If ``idx`` exceeds the length of ``val``, the results are
6576undefined.
6577
6578Example:
6579""""""""
6580
6581.. code-block:: llvm
6582
6583 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6584
6585.. _i_shufflevector:
6586
6587'``shufflevector``' Instruction
6588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6589
6590Syntax:
6591"""""""
6592
6593::
6594
6595 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6596
6597Overview:
6598"""""""""
6599
6600The '``shufflevector``' instruction constructs a permutation of elements
6601from two input vectors, returning a vector with the same element type as
6602the input and length that is the same as the shuffle mask.
6603
6604Arguments:
6605""""""""""
6606
6607The first two operands of a '``shufflevector``' instruction are vectors
6608with the same type. The third argument is a shuffle mask whose element
6609type is always 'i32'. The result of the instruction is a vector whose
6610length is the same as the shuffle mask and whose element type is the
6611same as the element type of the first two operands.
6612
6613The shuffle mask operand is required to be a constant vector with either
6614constant integer or undef values.
6615
6616Semantics:
6617""""""""""
6618
6619The elements of the two input vectors are numbered from left to right
6620across both of the vectors. The shuffle mask operand specifies, for each
6621element of the result vector, which element of the two input vectors the
6622result element gets. The element selector may be undef (meaning "don't
6623care") and the second operand may be undef if performing a shuffle from
6624only one vector.
6625
6626Example:
6627""""""""
6628
6629.. code-block:: llvm
6630
6631 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6632 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6633 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6634 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6635 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6636 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6637 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6638 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6639
6640Aggregate Operations
6641--------------------
6642
6643LLVM supports several instructions for working with
6644:ref:`aggregate <t_aggregate>` values.
6645
6646.. _i_extractvalue:
6647
6648'``extractvalue``' Instruction
6649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6650
6651Syntax:
6652"""""""
6653
6654::
6655
6656 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6657
6658Overview:
6659"""""""""
6660
6661The '``extractvalue``' instruction extracts the value of a member field
6662from an :ref:`aggregate <t_aggregate>` value.
6663
6664Arguments:
6665""""""""""
6666
6667The first operand of an '``extractvalue``' instruction is a value of
6668:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6669constant indices to specify which value to extract in a similar manner
6670as indices in a '``getelementptr``' instruction.
6671
6672The major differences to ``getelementptr`` indexing are:
6673
6674- Since the value being indexed is not a pointer, the first index is
6675 omitted and assumed to be zero.
6676- At least one index must be specified.
6677- Not only struct indices but also array indices must be in bounds.
6678
6679Semantics:
6680""""""""""
6681
6682The result is the value at the position in the aggregate specified by
6683the index operands.
6684
6685Example:
6686""""""""
6687
6688.. code-block:: llvm
6689
6690 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6691
6692.. _i_insertvalue:
6693
6694'``insertvalue``' Instruction
6695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6696
6697Syntax:
6698"""""""
6699
6700::
6701
6702 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6703
6704Overview:
6705"""""""""
6706
6707The '``insertvalue``' instruction inserts a value into a member field in
6708an :ref:`aggregate <t_aggregate>` value.
6709
6710Arguments:
6711""""""""""
6712
6713The first operand of an '``insertvalue``' instruction is a value of
6714:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6715a first-class value to insert. The following operands are constant
6716indices indicating the position at which to insert the value in a
6717similar manner as indices in a '``extractvalue``' instruction. The value
6718to insert must have the same type as the value identified by the
6719indices.
6720
6721Semantics:
6722""""""""""
6723
6724The result is an aggregate of the same type as ``val``. Its value is
6725that of ``val`` except that the value at the position specified by the
6726indices is that of ``elt``.
6727
6728Example:
6729""""""""
6730
6731.. code-block:: llvm
6732
6733 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6734 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006735 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006736
6737.. _memoryops:
6738
6739Memory Access and Addressing Operations
6740---------------------------------------
6741
6742A key design point of an SSA-based representation is how it represents
6743memory. In LLVM, no memory locations are in SSA form, which makes things
6744very simple. This section describes how to read, write, and allocate
6745memory in LLVM.
6746
6747.. _i_alloca:
6748
6749'``alloca``' Instruction
6750^^^^^^^^^^^^^^^^^^^^^^^^
6751
6752Syntax:
6753"""""""
6754
6755::
6756
Tim Northover675a0962014-06-13 14:24:23 +00006757 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006758
6759Overview:
6760"""""""""
6761
6762The '``alloca``' instruction allocates memory on the stack frame of the
6763currently executing function, to be automatically released when this
6764function returns to its caller. The object is always allocated in the
6765generic address space (address space zero).
6766
6767Arguments:
6768""""""""""
6769
6770The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6771bytes of memory on the runtime stack, returning a pointer of the
6772appropriate type to the program. If "NumElements" is specified, it is
6773the number of elements allocated, otherwise "NumElements" is defaulted
6774to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006775allocation is guaranteed to be aligned to at least that boundary. The
6776alignment may not be greater than ``1 << 29``. If not specified, or if
6777zero, the target can choose to align the allocation on any convenient
6778boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006779
6780'``type``' may be any sized type.
6781
6782Semantics:
6783""""""""""
6784
6785Memory is allocated; a pointer is returned. The operation is undefined
6786if there is insufficient stack space for the allocation. '``alloca``'d
6787memory is automatically released when the function returns. The
6788'``alloca``' instruction is commonly used to represent automatic
6789variables that must have an address available. When the function returns
6790(either with the ``ret`` or ``resume`` instructions), the memory is
6791reclaimed. Allocating zero bytes is legal, but the result is undefined.
6792The order in which memory is allocated (ie., which way the stack grows)
6793is not specified.
6794
6795Example:
6796""""""""
6797
6798.. code-block:: llvm
6799
Tim Northover675a0962014-06-13 14:24:23 +00006800 %ptr = alloca i32 ; yields i32*:ptr
6801 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6802 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6803 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006804
6805.. _i_load:
6806
6807'``load``' Instruction
6808^^^^^^^^^^^^^^^^^^^^^^
6809
6810Syntax:
6811"""""""
6812
6813::
6814
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006815 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006816 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006817 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006818 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Sean Silvab084af42012-12-07 10:36:55 +00006819
6820Overview:
6821"""""""""
6822
6823The '``load``' instruction is used to read from memory.
6824
6825Arguments:
6826""""""""""
6827
Eli Bendersky239a78b2013-04-17 20:17:08 +00006828The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006829from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006830class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6831then the optimizer is not allowed to modify the number or order of
6832execution of this ``load`` with other :ref:`volatile
6833operations <volatile>`.
6834
6835If the ``load`` is marked as ``atomic``, it takes an extra
6836:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6837``release`` and ``acq_rel`` orderings are not valid on ``load``
6838instructions. Atomic loads produce :ref:`defined <memmodel>` results
6839when they may see multiple atomic stores. The type of the pointee must
6840be an integer type whose bit width is a power of two greater than or
6841equal to eight and less than or equal to a target-specific size limit.
6842``align`` must be explicitly specified on atomic loads, and the load has
6843undefined behavior if the alignment is not set to a value which is at
6844least the size in bytes of the pointee. ``!nontemporal`` does not have
6845any defined semantics for atomic loads.
6846
6847The optional constant ``align`` argument specifies the alignment of the
6848operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006849or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006850alignment for the target. It is the responsibility of the code emitter
6851to ensure that the alignment information is correct. Overestimating the
6852alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006853may produce less efficient code. An alignment of 1 is always safe. The
6854maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006855
6856The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006857metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006858``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006859metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006860that this load is not expected to be reused in the cache. The code
6861generator may select special instructions to save cache bandwidth, such
6862as the ``MOVNT`` instruction on x86.
6863
6864The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006865metadata name ``<index>`` corresponding to a metadata node with no
6866entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006867instruction tells the optimizer and code generator that the address
6868operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006869Being invariant does not imply that a location is dereferenceable,
6870but it does imply that once the location is known dereferenceable
6871its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006872
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006873The optional ``!invariant.group`` metadata must reference a single metadata name
6874 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6875
Philip Reamescdb72f32014-10-20 22:40:55 +00006876The optional ``!nonnull`` metadata must reference a single
6877metadata name ``<index>`` corresponding to a metadata node with no
6878entries. The existence of the ``!nonnull`` metadata on the
6879instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006880never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006881on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006882to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006883
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006884The optional ``!dereferenceable`` metadata must reference a single metadata
6885name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006886entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006887tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006888The number of bytes known to be dereferenceable is specified by the integer
6889value in the metadata node. This is analogous to the ''dereferenceable''
6890attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006891to loads of a pointer type.
6892
6893The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006894metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6895``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006896instruction tells the optimizer that the value loaded is known to be either
6897dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006898The number of bytes known to be dereferenceable is specified by the integer
6899value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6900attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006901to loads of a pointer type.
6902
Sean Silvab084af42012-12-07 10:36:55 +00006903Semantics:
6904""""""""""
6905
6906The location of memory pointed to is loaded. If the value being loaded
6907is of scalar type then the number of bytes read does not exceed the
6908minimum number of bytes needed to hold all bits of the type. For
6909example, loading an ``i24`` reads at most three bytes. When loading a
6910value of a type like ``i20`` with a size that is not an integral number
6911of bytes, the result is undefined if the value was not originally
6912written using a store of the same type.
6913
6914Examples:
6915"""""""""
6916
6917.. code-block:: llvm
6918
Tim Northover675a0962014-06-13 14:24:23 +00006919 %ptr = alloca i32 ; yields i32*:ptr
6920 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006921 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006922
6923.. _i_store:
6924
6925'``store``' Instruction
6926^^^^^^^^^^^^^^^^^^^^^^^
6927
6928Syntax:
6929"""""""
6930
6931::
6932
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006933 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6934 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006935
6936Overview:
6937"""""""""
6938
6939The '``store``' instruction is used to write to memory.
6940
6941Arguments:
6942""""""""""
6943
Eli Benderskyca380842013-04-17 17:17:20 +00006944There are two arguments to the ``store`` instruction: a value to store
6945and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006946operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006947the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006948then the optimizer is not allowed to modify the number or order of
6949execution of this ``store`` with other :ref:`volatile
6950operations <volatile>`.
6951
6952If the ``store`` is marked as ``atomic``, it takes an extra
6953:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6954``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6955instructions. Atomic loads produce :ref:`defined <memmodel>` results
6956when they may see multiple atomic stores. The type of the pointee must
6957be an integer type whose bit width is a power of two greater than or
6958equal to eight and less than or equal to a target-specific size limit.
6959``align`` must be explicitly specified on atomic stores, and the store
6960has undefined behavior if the alignment is not set to a value which is
6961at least the size in bytes of the pointee. ``!nontemporal`` does not
6962have any defined semantics for atomic stores.
6963
Eli Benderskyca380842013-04-17 17:17:20 +00006964The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006965operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006966or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006967alignment for the target. It is the responsibility of the code emitter
6968to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006969alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006970alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006971safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006972
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006973The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006974name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006975value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006976tells the optimizer and code generator that this load is not expected to
6977be reused in the cache. The code generator may select special
6978instructions to save cache bandwidth, such as the MOVNT instruction on
6979x86.
6980
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006981The optional ``!invariant.group`` metadata must reference a
6982single metadata name ``<index>``. See ``invariant.group`` metadata.
6983
Sean Silvab084af42012-12-07 10:36:55 +00006984Semantics:
6985""""""""""
6986
Eli Benderskyca380842013-04-17 17:17:20 +00006987The contents of memory are updated to contain ``<value>`` at the
6988location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006989of scalar type then the number of bytes written does not exceed the
6990minimum number of bytes needed to hold all bits of the type. For
6991example, storing an ``i24`` writes at most three bytes. When writing a
6992value of a type like ``i20`` with a size that is not an integral number
6993of bytes, it is unspecified what happens to the extra bits that do not
6994belong to the type, but they will typically be overwritten.
6995
6996Example:
6997""""""""
6998
6999.. code-block:: llvm
7000
Tim Northover675a0962014-06-13 14:24:23 +00007001 %ptr = alloca i32 ; yields i32*:ptr
7002 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007003 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007004
7005.. _i_fence:
7006
7007'``fence``' Instruction
7008^^^^^^^^^^^^^^^^^^^^^^^
7009
7010Syntax:
7011"""""""
7012
7013::
7014
Tim Northover675a0962014-06-13 14:24:23 +00007015 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007016
7017Overview:
7018"""""""""
7019
7020The '``fence``' instruction is used to introduce happens-before edges
7021between operations.
7022
7023Arguments:
7024""""""""""
7025
7026'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7027defines what *synchronizes-with* edges they add. They can only be given
7028``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7029
7030Semantics:
7031""""""""""
7032
7033A fence A which has (at least) ``release`` ordering semantics
7034*synchronizes with* a fence B with (at least) ``acquire`` ordering
7035semantics if and only if there exist atomic operations X and Y, both
7036operating on some atomic object M, such that A is sequenced before X, X
7037modifies M (either directly or through some side effect of a sequence
7038headed by X), Y is sequenced before B, and Y observes M. This provides a
7039*happens-before* dependency between A and B. Rather than an explicit
7040``fence``, one (but not both) of the atomic operations X or Y might
7041provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7042still *synchronize-with* the explicit ``fence`` and establish the
7043*happens-before* edge.
7044
7045A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7046``acquire`` and ``release`` semantics specified above, participates in
7047the global program order of other ``seq_cst`` operations and/or fences.
7048
7049The optional ":ref:`singlethread <singlethread>`" argument specifies
7050that the fence only synchronizes with other fences in the same thread.
7051(This is useful for interacting with signal handlers.)
7052
7053Example:
7054""""""""
7055
7056.. code-block:: llvm
7057
Tim Northover675a0962014-06-13 14:24:23 +00007058 fence acquire ; yields void
7059 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007060
7061.. _i_cmpxchg:
7062
7063'``cmpxchg``' Instruction
7064^^^^^^^^^^^^^^^^^^^^^^^^^
7065
7066Syntax:
7067"""""""
7068
7069::
7070
Tim Northover675a0962014-06-13 14:24:23 +00007071 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007072
7073Overview:
7074"""""""""
7075
7076The '``cmpxchg``' instruction is used to atomically modify memory. It
7077loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007078equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007079
7080Arguments:
7081""""""""""
7082
7083There are three arguments to the '``cmpxchg``' instruction: an address
7084to operate on, a value to compare to the value currently be at that
7085address, and a new value to place at that address if the compared values
7086are equal. The type of '<cmp>' must be an integer type whose bit width
7087is a power of two greater than or equal to eight and less than or equal
7088to a target-specific size limit. '<cmp>' and '<new>' must have the same
7089type, and the type of '<pointer>' must be a pointer to that type. If the
7090``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7091to modify the number or order of execution of this ``cmpxchg`` with
7092other :ref:`volatile operations <volatile>`.
7093
Tim Northovere94a5182014-03-11 10:48:52 +00007094The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007095``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7096must be at least ``monotonic``, the ordering constraint on failure must be no
7097stronger than that on success, and the failure ordering cannot be either
7098``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007099
7100The optional "``singlethread``" argument declares that the ``cmpxchg``
7101is only atomic with respect to code (usually signal handlers) running in
7102the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7103respect to all other code in the system.
7104
7105The pointer passed into cmpxchg must have alignment greater than or
7106equal to the size in memory of the operand.
7107
7108Semantics:
7109""""""""""
7110
Tim Northover420a2162014-06-13 14:24:07 +00007111The contents of memory at the location specified by the '``<pointer>``' operand
7112is read and compared to '``<cmp>``'; if the read value is the equal, the
7113'``<new>``' is written. The original value at the location is returned, together
7114with a flag indicating success (true) or failure (false).
7115
7116If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7117permitted: the operation may not write ``<new>`` even if the comparison
7118matched.
7119
7120If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7121if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007122
Tim Northovere94a5182014-03-11 10:48:52 +00007123A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7124identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7125load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007126
7127Example:
7128""""""""
7129
7130.. code-block:: llvm
7131
7132 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007133 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007134 br label %loop
7135
7136 loop:
7137 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7138 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007139 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007140 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7141 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007142 br i1 %success, label %done, label %loop
7143
7144 done:
7145 ...
7146
7147.. _i_atomicrmw:
7148
7149'``atomicrmw``' Instruction
7150^^^^^^^^^^^^^^^^^^^^^^^^^^^
7151
7152Syntax:
7153"""""""
7154
7155::
7156
Tim Northover675a0962014-06-13 14:24:23 +00007157 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007158
7159Overview:
7160"""""""""
7161
7162The '``atomicrmw``' instruction is used to atomically modify memory.
7163
7164Arguments:
7165""""""""""
7166
7167There are three arguments to the '``atomicrmw``' instruction: an
7168operation to apply, an address whose value to modify, an argument to the
7169operation. The operation must be one of the following keywords:
7170
7171- xchg
7172- add
7173- sub
7174- and
7175- nand
7176- or
7177- xor
7178- max
7179- min
7180- umax
7181- umin
7182
7183The type of '<value>' must be an integer type whose bit width is a power
7184of two greater than or equal to eight and less than or equal to a
7185target-specific size limit. The type of the '``<pointer>``' operand must
7186be a pointer to that type. If the ``atomicrmw`` is marked as
7187``volatile``, then the optimizer is not allowed to modify the number or
7188order of execution of this ``atomicrmw`` with other :ref:`volatile
7189operations <volatile>`.
7190
7191Semantics:
7192""""""""""
7193
7194The contents of memory at the location specified by the '``<pointer>``'
7195operand are atomically read, modified, and written back. The original
7196value at the location is returned. The modification is specified by the
7197operation argument:
7198
7199- xchg: ``*ptr = val``
7200- add: ``*ptr = *ptr + val``
7201- sub: ``*ptr = *ptr - val``
7202- and: ``*ptr = *ptr & val``
7203- nand: ``*ptr = ~(*ptr & val)``
7204- or: ``*ptr = *ptr | val``
7205- xor: ``*ptr = *ptr ^ val``
7206- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7207- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7208- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7209 comparison)
7210- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7211 comparison)
7212
7213Example:
7214""""""""
7215
7216.. code-block:: llvm
7217
Tim Northover675a0962014-06-13 14:24:23 +00007218 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007219
7220.. _i_getelementptr:
7221
7222'``getelementptr``' Instruction
7223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7224
7225Syntax:
7226"""""""
7227
7228::
7229
David Blaikie16a97eb2015-03-04 22:02:58 +00007230 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7231 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7232 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007233
7234Overview:
7235"""""""""
7236
7237The '``getelementptr``' instruction is used to get the address of a
7238subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007239address calculation only and does not access memory. The instruction can also
7240be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007241
7242Arguments:
7243""""""""""
7244
David Blaikie16a97eb2015-03-04 22:02:58 +00007245The first argument is always a type used as the basis for the calculations.
7246The second argument is always a pointer or a vector of pointers, and is the
7247base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007248that indicate which of the elements of the aggregate object are indexed.
7249The interpretation of each index is dependent on the type being indexed
7250into. The first index always indexes the pointer value given as the
7251first argument, the second index indexes a value of the type pointed to
7252(not necessarily the value directly pointed to, since the first index
7253can be non-zero), etc. The first type indexed into must be a pointer
7254value, subsequent types can be arrays, vectors, and structs. Note that
7255subsequent types being indexed into can never be pointers, since that
7256would require loading the pointer before continuing calculation.
7257
7258The type of each index argument depends on the type it is indexing into.
7259When indexing into a (optionally packed) structure, only ``i32`` integer
7260**constants** are allowed (when using a vector of indices they must all
7261be the **same** ``i32`` integer constant). When indexing into an array,
7262pointer or vector, integers of any width are allowed, and they are not
7263required to be constant. These integers are treated as signed values
7264where relevant.
7265
7266For example, let's consider a C code fragment and how it gets compiled
7267to LLVM:
7268
7269.. code-block:: c
7270
7271 struct RT {
7272 char A;
7273 int B[10][20];
7274 char C;
7275 };
7276 struct ST {
7277 int X;
7278 double Y;
7279 struct RT Z;
7280 };
7281
7282 int *foo(struct ST *s) {
7283 return &s[1].Z.B[5][13];
7284 }
7285
7286The LLVM code generated by Clang is:
7287
7288.. code-block:: llvm
7289
7290 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7291 %struct.ST = type { i32, double, %struct.RT }
7292
7293 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7294 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007295 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007296 ret i32* %arrayidx
7297 }
7298
7299Semantics:
7300""""""""""
7301
7302In the example above, the first index is indexing into the
7303'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7304= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7305indexes into the third element of the structure, yielding a
7306'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7307structure. The third index indexes into the second element of the
7308structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7309dimensions of the array are subscripted into, yielding an '``i32``'
7310type. The '``getelementptr``' instruction returns a pointer to this
7311element, thus computing a value of '``i32*``' type.
7312
7313Note that it is perfectly legal to index partially through a structure,
7314returning a pointer to an inner element. Because of this, the LLVM code
7315for the given testcase is equivalent to:
7316
7317.. code-block:: llvm
7318
7319 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007320 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7321 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7322 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7323 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7324 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007325 ret i32* %t5
7326 }
7327
7328If the ``inbounds`` keyword is present, the result value of the
7329``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7330pointer is not an *in bounds* address of an allocated object, or if any
7331of the addresses that would be formed by successive addition of the
7332offsets implied by the indices to the base address with infinitely
7333precise signed arithmetic are not an *in bounds* address of that
7334allocated object. The *in bounds* addresses for an allocated object are
7335all the addresses that point into the object, plus the address one byte
7336past the end. In cases where the base is a vector of pointers the
7337``inbounds`` keyword applies to each of the computations element-wise.
7338
7339If the ``inbounds`` keyword is not present, the offsets are added to the
7340base address with silently-wrapping two's complement arithmetic. If the
7341offsets have a different width from the pointer, they are sign-extended
7342or truncated to the width of the pointer. The result value of the
7343``getelementptr`` may be outside the object pointed to by the base
7344pointer. The result value may not necessarily be used to access memory
7345though, even if it happens to point into allocated storage. See the
7346:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7347information.
7348
7349The getelementptr instruction is often confusing. For some more insight
7350into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7351
7352Example:
7353""""""""
7354
7355.. code-block:: llvm
7356
7357 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007358 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007359 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007360 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007361 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007362 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007363 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007364 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007365
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007366Vector of pointers:
7367"""""""""""""""""""
7368
7369The ``getelementptr`` returns a vector of pointers, instead of a single address,
7370when one or more of its arguments is a vector. In such cases, all vector
7371arguments should have the same number of elements, and every scalar argument
7372will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007373
7374.. code-block:: llvm
7375
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007376 ; All arguments are vectors:
7377 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7378 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007379
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007380 ; Add the same scalar offset to each pointer of a vector:
7381 ; A[i] = ptrs[i] + offset*sizeof(i8)
7382 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007383
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007384 ; Add distinct offsets to the same pointer:
7385 ; A[i] = ptr + offsets[i]*sizeof(i8)
7386 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007387
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007388 ; In all cases described above the type of the result is <4 x i8*>
7389
7390The two following instructions are equivalent:
7391
7392.. code-block:: llvm
7393
7394 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7395 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7396 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7397 <4 x i32> %ind4,
7398 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007399
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007400 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7401 i32 2, i32 1, <4 x i32> %ind4, i64 13
7402
7403Let's look at the C code, where the vector version of ``getelementptr``
7404makes sense:
7405
7406.. code-block:: c
7407
7408 // Let's assume that we vectorize the following loop:
7409 double *A, B; int *C;
7410 for (int i = 0; i < size; ++i) {
7411 A[i] = B[C[i]];
7412 }
7413
7414.. code-block:: llvm
7415
7416 ; get pointers for 8 elements from array B
7417 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7418 ; load 8 elements from array B into A
7419 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7420 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007421
7422Conversion Operations
7423---------------------
7424
7425The instructions in this category are the conversion instructions
7426(casting) which all take a single operand and a type. They perform
7427various bit conversions on the operand.
7428
7429'``trunc .. to``' Instruction
7430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7431
7432Syntax:
7433"""""""
7434
7435::
7436
7437 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7438
7439Overview:
7440"""""""""
7441
7442The '``trunc``' instruction truncates its operand to the type ``ty2``.
7443
7444Arguments:
7445""""""""""
7446
7447The '``trunc``' instruction takes a value to trunc, and a type to trunc
7448it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7449of the same number of integers. The bit size of the ``value`` must be
7450larger than the bit size of the destination type, ``ty2``. Equal sized
7451types are not allowed.
7452
7453Semantics:
7454""""""""""
7455
7456The '``trunc``' instruction truncates the high order bits in ``value``
7457and converts the remaining bits to ``ty2``. Since the source size must
7458be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7459It will always truncate bits.
7460
7461Example:
7462""""""""
7463
7464.. code-block:: llvm
7465
7466 %X = trunc i32 257 to i8 ; yields i8:1
7467 %Y = trunc i32 123 to i1 ; yields i1:true
7468 %Z = trunc i32 122 to i1 ; yields i1:false
7469 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7470
7471'``zext .. to``' Instruction
7472^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7473
7474Syntax:
7475"""""""
7476
7477::
7478
7479 <result> = zext <ty> <value> to <ty2> ; yields ty2
7480
7481Overview:
7482"""""""""
7483
7484The '``zext``' instruction zero extends its operand to type ``ty2``.
7485
7486Arguments:
7487""""""""""
7488
7489The '``zext``' instruction takes a value to cast, and a type to cast it
7490to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7491the same number of integers. The bit size of the ``value`` must be
7492smaller than the bit size of the destination type, ``ty2``.
7493
7494Semantics:
7495""""""""""
7496
7497The ``zext`` fills the high order bits of the ``value`` with zero bits
7498until it reaches the size of the destination type, ``ty2``.
7499
7500When zero extending from i1, the result will always be either 0 or 1.
7501
7502Example:
7503""""""""
7504
7505.. code-block:: llvm
7506
7507 %X = zext i32 257 to i64 ; yields i64:257
7508 %Y = zext i1 true to i32 ; yields i32:1
7509 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7510
7511'``sext .. to``' Instruction
7512^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7513
7514Syntax:
7515"""""""
7516
7517::
7518
7519 <result> = sext <ty> <value> to <ty2> ; yields ty2
7520
7521Overview:
7522"""""""""
7523
7524The '``sext``' sign extends ``value`` to the type ``ty2``.
7525
7526Arguments:
7527""""""""""
7528
7529The '``sext``' instruction takes a value to cast, and a type to cast it
7530to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7531the same number of integers. The bit size of the ``value`` must be
7532smaller than the bit size of the destination type, ``ty2``.
7533
7534Semantics:
7535""""""""""
7536
7537The '``sext``' instruction performs a sign extension by copying the sign
7538bit (highest order bit) of the ``value`` until it reaches the bit size
7539of the type ``ty2``.
7540
7541When sign extending from i1, the extension always results in -1 or 0.
7542
7543Example:
7544""""""""
7545
7546.. code-block:: llvm
7547
7548 %X = sext i8 -1 to i16 ; yields i16 :65535
7549 %Y = sext i1 true to i32 ; yields i32:-1
7550 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7551
7552'``fptrunc .. to``' Instruction
7553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7554
7555Syntax:
7556"""""""
7557
7558::
7559
7560 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7561
7562Overview:
7563"""""""""
7564
7565The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7566
7567Arguments:
7568""""""""""
7569
7570The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7571value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7572The size of ``value`` must be larger than the size of ``ty2``. This
7573implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7574
7575Semantics:
7576""""""""""
7577
Dan Liew50456fb2015-09-03 18:43:56 +00007578The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007579:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007580point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7581destination type, ``ty2``, then the results are undefined. If the cast produces
7582an inexact result, how rounding is performed (e.g. truncation, also known as
7583round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007584
7585Example:
7586""""""""
7587
7588.. code-block:: llvm
7589
7590 %X = fptrunc double 123.0 to float ; yields float:123.0
7591 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7592
7593'``fpext .. to``' Instruction
7594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7595
7596Syntax:
7597"""""""
7598
7599::
7600
7601 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7602
7603Overview:
7604"""""""""
7605
7606The '``fpext``' extends a floating point ``value`` to a larger floating
7607point value.
7608
7609Arguments:
7610""""""""""
7611
7612The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7613``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7614to. The source type must be smaller than the destination type.
7615
7616Semantics:
7617""""""""""
7618
7619The '``fpext``' instruction extends the ``value`` from a smaller
7620:ref:`floating point <t_floating>` type to a larger :ref:`floating
7621point <t_floating>` type. The ``fpext`` cannot be used to make a
7622*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7623*no-op cast* for a floating point cast.
7624
7625Example:
7626""""""""
7627
7628.. code-block:: llvm
7629
7630 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7631 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7632
7633'``fptoui .. to``' Instruction
7634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7635
7636Syntax:
7637"""""""
7638
7639::
7640
7641 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7642
7643Overview:
7644"""""""""
7645
7646The '``fptoui``' converts a floating point ``value`` to its unsigned
7647integer equivalent of type ``ty2``.
7648
7649Arguments:
7650""""""""""
7651
7652The '``fptoui``' instruction takes a value to cast, which must be a
7653scalar or vector :ref:`floating point <t_floating>` value, and a type to
7654cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7655``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7656type with the same number of elements as ``ty``
7657
7658Semantics:
7659""""""""""
7660
7661The '``fptoui``' instruction converts its :ref:`floating
7662point <t_floating>` operand into the nearest (rounding towards zero)
7663unsigned integer value. If the value cannot fit in ``ty2``, the results
7664are undefined.
7665
7666Example:
7667""""""""
7668
7669.. code-block:: llvm
7670
7671 %X = fptoui double 123.0 to i32 ; yields i32:123
7672 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7673 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7674
7675'``fptosi .. to``' Instruction
7676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7677
7678Syntax:
7679"""""""
7680
7681::
7682
7683 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7684
7685Overview:
7686"""""""""
7687
7688The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7689``value`` to type ``ty2``.
7690
7691Arguments:
7692""""""""""
7693
7694The '``fptosi``' instruction takes a value to cast, which must be a
7695scalar or vector :ref:`floating point <t_floating>` value, and a type to
7696cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7697``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7698type with the same number of elements as ``ty``
7699
7700Semantics:
7701""""""""""
7702
7703The '``fptosi``' instruction converts its :ref:`floating
7704point <t_floating>` operand into the nearest (rounding towards zero)
7705signed integer value. If the value cannot fit in ``ty2``, the results
7706are undefined.
7707
7708Example:
7709""""""""
7710
7711.. code-block:: llvm
7712
7713 %X = fptosi double -123.0 to i32 ; yields i32:-123
7714 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7715 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7716
7717'``uitofp .. to``' Instruction
7718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7719
7720Syntax:
7721"""""""
7722
7723::
7724
7725 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7726
7727Overview:
7728"""""""""
7729
7730The '``uitofp``' instruction regards ``value`` as an unsigned integer
7731and converts that value to the ``ty2`` type.
7732
7733Arguments:
7734""""""""""
7735
7736The '``uitofp``' instruction takes a value to cast, which must be a
7737scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7738``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7739``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7740type with the same number of elements as ``ty``
7741
7742Semantics:
7743""""""""""
7744
7745The '``uitofp``' instruction interprets its operand as an unsigned
7746integer quantity and converts it to the corresponding floating point
7747value. If the value cannot fit in the floating point value, the results
7748are undefined.
7749
7750Example:
7751""""""""
7752
7753.. code-block:: llvm
7754
7755 %X = uitofp i32 257 to float ; yields float:257.0
7756 %Y = uitofp i8 -1 to double ; yields double:255.0
7757
7758'``sitofp .. to``' Instruction
7759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7760
7761Syntax:
7762"""""""
7763
7764::
7765
7766 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7767
7768Overview:
7769"""""""""
7770
7771The '``sitofp``' instruction regards ``value`` as a signed integer and
7772converts that value to the ``ty2`` type.
7773
7774Arguments:
7775""""""""""
7776
7777The '``sitofp``' instruction takes a value to cast, which must be a
7778scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7779``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7780``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7781type with the same number of elements as ``ty``
7782
7783Semantics:
7784""""""""""
7785
7786The '``sitofp``' instruction interprets its operand as a signed integer
7787quantity and converts it to the corresponding floating point value. If
7788the value cannot fit in the floating point value, the results are
7789undefined.
7790
7791Example:
7792""""""""
7793
7794.. code-block:: llvm
7795
7796 %X = sitofp i32 257 to float ; yields float:257.0
7797 %Y = sitofp i8 -1 to double ; yields double:-1.0
7798
7799.. _i_ptrtoint:
7800
7801'``ptrtoint .. to``' Instruction
7802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7803
7804Syntax:
7805"""""""
7806
7807::
7808
7809 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7810
7811Overview:
7812"""""""""
7813
7814The '``ptrtoint``' instruction converts the pointer or a vector of
7815pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7816
7817Arguments:
7818""""""""""
7819
7820The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007821a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007822type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7823a vector of integers type.
7824
7825Semantics:
7826""""""""""
7827
7828The '``ptrtoint``' instruction converts ``value`` to integer type
7829``ty2`` by interpreting the pointer value as an integer and either
7830truncating or zero extending that value to the size of the integer type.
7831If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7832``value`` is larger than ``ty2`` then a truncation is done. If they are
7833the same size, then nothing is done (*no-op cast*) other than a type
7834change.
7835
7836Example:
7837""""""""
7838
7839.. code-block:: llvm
7840
7841 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7842 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7843 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7844
7845.. _i_inttoptr:
7846
7847'``inttoptr .. to``' Instruction
7848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7849
7850Syntax:
7851"""""""
7852
7853::
7854
7855 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7856
7857Overview:
7858"""""""""
7859
7860The '``inttoptr``' instruction converts an integer ``value`` to a
7861pointer type, ``ty2``.
7862
7863Arguments:
7864""""""""""
7865
7866The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7867cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7868type.
7869
7870Semantics:
7871""""""""""
7872
7873The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7874applying either a zero extension or a truncation depending on the size
7875of the integer ``value``. If ``value`` is larger than the size of a
7876pointer then a truncation is done. If ``value`` is smaller than the size
7877of a pointer then a zero extension is done. If they are the same size,
7878nothing is done (*no-op cast*).
7879
7880Example:
7881""""""""
7882
7883.. code-block:: llvm
7884
7885 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7886 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7887 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7888 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7889
7890.. _i_bitcast:
7891
7892'``bitcast .. to``' Instruction
7893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7894
7895Syntax:
7896"""""""
7897
7898::
7899
7900 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7901
7902Overview:
7903"""""""""
7904
7905The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7906changing any bits.
7907
7908Arguments:
7909""""""""""
7910
7911The '``bitcast``' instruction takes a value to cast, which must be a
7912non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007913also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7914bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007915identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007916also be a pointer of the same size. This instruction supports bitwise
7917conversion of vectors to integers and to vectors of other types (as
7918long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007919
7920Semantics:
7921""""""""""
7922
Matt Arsenault24b49c42013-07-31 17:49:08 +00007923The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7924is always a *no-op cast* because no bits change with this
7925conversion. The conversion is done as if the ``value`` had been stored
7926to memory and read back as type ``ty2``. Pointer (or vector of
7927pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007928pointers) types with the same address space through this instruction.
7929To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7930or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007931
7932Example:
7933""""""""
7934
7935.. code-block:: llvm
7936
7937 %X = bitcast i8 255 to i8 ; yields i8 :-1
7938 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7939 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7940 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7941
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007942.. _i_addrspacecast:
7943
7944'``addrspacecast .. to``' Instruction
7945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7946
7947Syntax:
7948"""""""
7949
7950::
7951
7952 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7953
7954Overview:
7955"""""""""
7956
7957The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7958address space ``n`` to type ``pty2`` in address space ``m``.
7959
7960Arguments:
7961""""""""""
7962
7963The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7964to cast and a pointer type to cast it to, which must have a different
7965address space.
7966
7967Semantics:
7968""""""""""
7969
7970The '``addrspacecast``' instruction converts the pointer value
7971``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007972value modification, depending on the target and the address space
7973pair. Pointer conversions within the same address space must be
7974performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007975conversion is legal then both result and operand refer to the same memory
7976location.
7977
7978Example:
7979""""""""
7980
7981.. code-block:: llvm
7982
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007983 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7984 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7985 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007986
Sean Silvab084af42012-12-07 10:36:55 +00007987.. _otherops:
7988
7989Other Operations
7990----------------
7991
7992The instructions in this category are the "miscellaneous" instructions,
7993which defy better classification.
7994
7995.. _i_icmp:
7996
7997'``icmp``' Instruction
7998^^^^^^^^^^^^^^^^^^^^^^
7999
8000Syntax:
8001"""""""
8002
8003::
8004
Tim Northover675a0962014-06-13 14:24:23 +00008005 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008006
8007Overview:
8008"""""""""
8009
8010The '``icmp``' instruction returns a boolean value or a vector of
8011boolean values based on comparison of its two integer, integer vector,
8012pointer, or pointer vector operands.
8013
8014Arguments:
8015""""""""""
8016
8017The '``icmp``' instruction takes three operands. The first operand is
8018the condition code indicating the kind of comparison to perform. It is
8019not a value, just a keyword. The possible condition code are:
8020
8021#. ``eq``: equal
8022#. ``ne``: not equal
8023#. ``ugt``: unsigned greater than
8024#. ``uge``: unsigned greater or equal
8025#. ``ult``: unsigned less than
8026#. ``ule``: unsigned less or equal
8027#. ``sgt``: signed greater than
8028#. ``sge``: signed greater or equal
8029#. ``slt``: signed less than
8030#. ``sle``: signed less or equal
8031
8032The remaining two arguments must be :ref:`integer <t_integer>` or
8033:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8034must also be identical types.
8035
8036Semantics:
8037""""""""""
8038
8039The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8040code given as ``cond``. The comparison performed always yields either an
8041:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8042
8043#. ``eq``: yields ``true`` if the operands are equal, ``false``
8044 otherwise. No sign interpretation is necessary or performed.
8045#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8046 otherwise. No sign interpretation is necessary or performed.
8047#. ``ugt``: interprets the operands as unsigned values and yields
8048 ``true`` if ``op1`` is greater than ``op2``.
8049#. ``uge``: interprets the operands as unsigned values and yields
8050 ``true`` if ``op1`` is greater than or equal to ``op2``.
8051#. ``ult``: interprets the operands as unsigned values and yields
8052 ``true`` if ``op1`` is less than ``op2``.
8053#. ``ule``: interprets the operands as unsigned values and yields
8054 ``true`` if ``op1`` is less than or equal to ``op2``.
8055#. ``sgt``: interprets the operands as signed values and yields ``true``
8056 if ``op1`` is greater than ``op2``.
8057#. ``sge``: interprets the operands as signed values and yields ``true``
8058 if ``op1`` is greater than or equal to ``op2``.
8059#. ``slt``: interprets the operands as signed values and yields ``true``
8060 if ``op1`` is less than ``op2``.
8061#. ``sle``: interprets the operands as signed values and yields ``true``
8062 if ``op1`` is less than or equal to ``op2``.
8063
8064If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8065are compared as if they were integers.
8066
8067If the operands are integer vectors, then they are compared element by
8068element. The result is an ``i1`` vector with the same number of elements
8069as the values being compared. Otherwise, the result is an ``i1``.
8070
8071Example:
8072""""""""
8073
8074.. code-block:: llvm
8075
8076 <result> = icmp eq i32 4, 5 ; yields: result=false
8077 <result> = icmp ne float* %X, %X ; yields: result=false
8078 <result> = icmp ult i16 4, 5 ; yields: result=true
8079 <result> = icmp sgt i16 4, 5 ; yields: result=false
8080 <result> = icmp ule i16 -4, 5 ; yields: result=false
8081 <result> = icmp sge i16 4, 5 ; yields: result=false
8082
8083Note that the code generator does not yet support vector types with the
8084``icmp`` instruction.
8085
8086.. _i_fcmp:
8087
8088'``fcmp``' Instruction
8089^^^^^^^^^^^^^^^^^^^^^^
8090
8091Syntax:
8092"""""""
8093
8094::
8095
James Molloy88eb5352015-07-10 12:52:00 +00008096 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008097
8098Overview:
8099"""""""""
8100
8101The '``fcmp``' instruction returns a boolean value or vector of boolean
8102values based on comparison of its operands.
8103
8104If the operands are floating point scalars, then the result type is a
8105boolean (:ref:`i1 <t_integer>`).
8106
8107If the operands are floating point vectors, then the result type is a
8108vector of boolean with the same number of elements as the operands being
8109compared.
8110
8111Arguments:
8112""""""""""
8113
8114The '``fcmp``' instruction takes three operands. The first operand is
8115the condition code indicating the kind of comparison to perform. It is
8116not a value, just a keyword. The possible condition code are:
8117
8118#. ``false``: no comparison, always returns false
8119#. ``oeq``: ordered and equal
8120#. ``ogt``: ordered and greater than
8121#. ``oge``: ordered and greater than or equal
8122#. ``olt``: ordered and less than
8123#. ``ole``: ordered and less than or equal
8124#. ``one``: ordered and not equal
8125#. ``ord``: ordered (no nans)
8126#. ``ueq``: unordered or equal
8127#. ``ugt``: unordered or greater than
8128#. ``uge``: unordered or greater than or equal
8129#. ``ult``: unordered or less than
8130#. ``ule``: unordered or less than or equal
8131#. ``une``: unordered or not equal
8132#. ``uno``: unordered (either nans)
8133#. ``true``: no comparison, always returns true
8134
8135*Ordered* means that neither operand is a QNAN while *unordered* means
8136that either operand may be a QNAN.
8137
8138Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8139point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8140type. They must have identical types.
8141
8142Semantics:
8143""""""""""
8144
8145The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8146condition code given as ``cond``. If the operands are vectors, then the
8147vectors are compared element by element. Each comparison performed
8148always yields an :ref:`i1 <t_integer>` result, as follows:
8149
8150#. ``false``: always yields ``false``, regardless of operands.
8151#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8152 is equal to ``op2``.
8153#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8154 is greater than ``op2``.
8155#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8156 is greater than or equal to ``op2``.
8157#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8158 is less than ``op2``.
8159#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8160 is less than or equal to ``op2``.
8161#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8162 is not equal to ``op2``.
8163#. ``ord``: yields ``true`` if both operands are not a QNAN.
8164#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8165 equal to ``op2``.
8166#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8167 greater than ``op2``.
8168#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8169 greater than or equal to ``op2``.
8170#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8171 less than ``op2``.
8172#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8173 less than or equal to ``op2``.
8174#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8175 not equal to ``op2``.
8176#. ``uno``: yields ``true`` if either operand is a QNAN.
8177#. ``true``: always yields ``true``, regardless of operands.
8178
James Molloy88eb5352015-07-10 12:52:00 +00008179The ``fcmp`` instruction can also optionally take any number of
8180:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8181otherwise unsafe floating point optimizations.
8182
8183Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8184only flags that have any effect on its semantics are those that allow
8185assumptions to be made about the values of input arguments; namely
8186``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8187
Sean Silvab084af42012-12-07 10:36:55 +00008188Example:
8189""""""""
8190
8191.. code-block:: llvm
8192
8193 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8194 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8195 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8196 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8197
8198Note that the code generator does not yet support vector types with the
8199``fcmp`` instruction.
8200
8201.. _i_phi:
8202
8203'``phi``' Instruction
8204^^^^^^^^^^^^^^^^^^^^^
8205
8206Syntax:
8207"""""""
8208
8209::
8210
8211 <result> = phi <ty> [ <val0>, <label0>], ...
8212
8213Overview:
8214"""""""""
8215
8216The '``phi``' instruction is used to implement the φ node in the SSA
8217graph representing the function.
8218
8219Arguments:
8220""""""""""
8221
8222The type of the incoming values is specified with the first type field.
8223After this, the '``phi``' instruction takes a list of pairs as
8224arguments, with one pair for each predecessor basic block of the current
8225block. Only values of :ref:`first class <t_firstclass>` type may be used as
8226the value arguments to the PHI node. Only labels may be used as the
8227label arguments.
8228
8229There must be no non-phi instructions between the start of a basic block
8230and the PHI instructions: i.e. PHI instructions must be first in a basic
8231block.
8232
8233For the purposes of the SSA form, the use of each incoming value is
8234deemed to occur on the edge from the corresponding predecessor block to
8235the current block (but after any definition of an '``invoke``'
8236instruction's return value on the same edge).
8237
8238Semantics:
8239""""""""""
8240
8241At runtime, the '``phi``' instruction logically takes on the value
8242specified by the pair corresponding to the predecessor basic block that
8243executed just prior to the current block.
8244
8245Example:
8246""""""""
8247
8248.. code-block:: llvm
8249
8250 Loop: ; Infinite loop that counts from 0 on up...
8251 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8252 %nextindvar = add i32 %indvar, 1
8253 br label %Loop
8254
8255.. _i_select:
8256
8257'``select``' Instruction
8258^^^^^^^^^^^^^^^^^^^^^^^^
8259
8260Syntax:
8261"""""""
8262
8263::
8264
8265 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8266
8267 selty is either i1 or {<N x i1>}
8268
8269Overview:
8270"""""""""
8271
8272The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008273condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008274
8275Arguments:
8276""""""""""
8277
8278The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8279values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008280class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008281
8282Semantics:
8283""""""""""
8284
8285If the condition is an i1 and it evaluates to 1, the instruction returns
8286the first value argument; otherwise, it returns the second value
8287argument.
8288
8289If the condition is a vector of i1, then the value arguments must be
8290vectors of the same size, and the selection is done element by element.
8291
David Majnemer40a0b592015-03-03 22:45:47 +00008292If the condition is an i1 and the value arguments are vectors of the
8293same size, then an entire vector is selected.
8294
Sean Silvab084af42012-12-07 10:36:55 +00008295Example:
8296""""""""
8297
8298.. code-block:: llvm
8299
8300 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8301
8302.. _i_call:
8303
8304'``call``' Instruction
8305^^^^^^^^^^^^^^^^^^^^^^
8306
8307Syntax:
8308"""""""
8309
8310::
8311
Reid Kleckner5772b772014-04-24 20:14:34 +00008312 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00008313
8314Overview:
8315"""""""""
8316
8317The '``call``' instruction represents a simple function call.
8318
8319Arguments:
8320""""""""""
8321
8322This instruction requires several arguments:
8323
Reid Kleckner5772b772014-04-24 20:14:34 +00008324#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008325 should perform tail call optimization. The ``tail`` marker is a hint that
8326 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008327 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008328 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008329
8330 #. The call will not cause unbounded stack growth if it is part of a
8331 recursive cycle in the call graph.
8332 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8333 forwarded in place.
8334
8335 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008336 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008337 rules:
8338
8339 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8340 or a pointer bitcast followed by a ret instruction.
8341 - The ret instruction must return the (possibly bitcasted) value
8342 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008343 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008344 parameters or return types may differ in pointee type, but not
8345 in address space.
8346 - The calling conventions of the caller and callee must match.
8347 - All ABI-impacting function attributes, such as sret, byval, inreg,
8348 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008349 - The callee must be varargs iff the caller is varargs. Bitcasting a
8350 non-varargs function to the appropriate varargs type is legal so
8351 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008352
8353 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8354 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008355
8356 - Caller and callee both have the calling convention ``fastcc``.
8357 - The call is in tail position (ret immediately follows call and ret
8358 uses value of call or is void).
8359 - Option ``-tailcallopt`` is enabled, or
8360 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008361 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008362 met. <CodeGenerator.html#tailcallopt>`_
8363
8364#. The optional "cconv" marker indicates which :ref:`calling
8365 convention <callingconv>` the call should use. If none is
8366 specified, the call defaults to using C calling conventions. The
8367 calling convention of the call must match the calling convention of
8368 the target function, or else the behavior is undefined.
8369#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8370 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8371 are valid here.
8372#. '``ty``': the type of the call instruction itself which is also the
8373 type of the return value. Functions that return no value are marked
8374 ``void``.
8375#. '``fnty``': shall be the signature of the pointer to function value
8376 being invoked. The argument types must match the types implied by
8377 this signature. This type can be omitted if the function is not
8378 varargs and if the function type does not return a pointer to a
8379 function.
8380#. '``fnptrval``': An LLVM value containing a pointer to a function to
8381 be invoked. In most cases, this is a direct function invocation, but
8382 indirect ``call``'s are just as possible, calling an arbitrary pointer
8383 to function value.
8384#. '``function args``': argument list whose types match the function
8385 signature argument types and parameter attributes. All arguments must
8386 be of :ref:`first class <t_firstclass>` type. If the function signature
8387 indicates the function accepts a variable number of arguments, the
8388 extra arguments can be specified.
8389#. The optional :ref:`function attributes <fnattrs>` list. Only
8390 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8391 attributes are valid here.
8392
8393Semantics:
8394""""""""""
8395
8396The '``call``' instruction is used to cause control flow to transfer to
8397a specified function, with its incoming arguments bound to the specified
8398values. Upon a '``ret``' instruction in the called function, control
8399flow continues with the instruction after the function call, and the
8400return value of the function is bound to the result argument.
8401
8402Example:
8403""""""""
8404
8405.. code-block:: llvm
8406
8407 %retval = call i32 @test(i32 %argc)
8408 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8409 %X = tail call i32 @foo() ; yields i32
8410 %Y = tail call fastcc i32 @foo() ; yields i32
8411 call void %foo(i8 97 signext)
8412
8413 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008414 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008415 %gr = extractvalue %struct.A %r, 0 ; yields i32
8416 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8417 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8418 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8419
8420llvm treats calls to some functions with names and arguments that match
8421the standard C99 library as being the C99 library functions, and may
8422perform optimizations or generate code for them under that assumption.
8423This is something we'd like to change in the future to provide better
8424support for freestanding environments and non-C-based languages.
8425
8426.. _i_va_arg:
8427
8428'``va_arg``' Instruction
8429^^^^^^^^^^^^^^^^^^^^^^^^
8430
8431Syntax:
8432"""""""
8433
8434::
8435
8436 <resultval> = va_arg <va_list*> <arglist>, <argty>
8437
8438Overview:
8439"""""""""
8440
8441The '``va_arg``' instruction is used to access arguments passed through
8442the "variable argument" area of a function call. It is used to implement
8443the ``va_arg`` macro in C.
8444
8445Arguments:
8446""""""""""
8447
8448This instruction takes a ``va_list*`` value and the type of the
8449argument. It returns a value of the specified argument type and
8450increments the ``va_list`` to point to the next argument. The actual
8451type of ``va_list`` is target specific.
8452
8453Semantics:
8454""""""""""
8455
8456The '``va_arg``' instruction loads an argument of the specified type
8457from the specified ``va_list`` and causes the ``va_list`` to point to
8458the next argument. For more information, see the variable argument
8459handling :ref:`Intrinsic Functions <int_varargs>`.
8460
8461It is legal for this instruction to be called in a function which does
8462not take a variable number of arguments, for example, the ``vfprintf``
8463function.
8464
8465``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8466function <intrinsics>` because it takes a type as an argument.
8467
8468Example:
8469""""""""
8470
8471See the :ref:`variable argument processing <int_varargs>` section.
8472
8473Note that the code generator does not yet fully support va\_arg on many
8474targets. Also, it does not currently support va\_arg with aggregate
8475types on any target.
8476
8477.. _i_landingpad:
8478
8479'``landingpad``' Instruction
8480^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8481
8482Syntax:
8483"""""""
8484
8485::
8486
David Majnemer7fddecc2015-06-17 20:52:32 +00008487 <resultval> = landingpad <resultty> <clause>+
8488 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008489
8490 <clause> := catch <type> <value>
8491 <clause> := filter <array constant type> <array constant>
8492
8493Overview:
8494"""""""""
8495
8496The '``landingpad``' instruction is used by `LLVM's exception handling
8497system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008498is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008499code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008500defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008501re-entry to the function. The ``resultval`` has the type ``resultty``.
8502
8503Arguments:
8504""""""""""
8505
David Majnemer7fddecc2015-06-17 20:52:32 +00008506The optional
Sean Silvab084af42012-12-07 10:36:55 +00008507``cleanup`` flag indicates that the landing pad block is a cleanup.
8508
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008509A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008510contains the global variable representing the "type" that may be caught
8511or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8512clause takes an array constant as its argument. Use
8513"``[0 x i8**] undef``" for a filter which cannot throw. The
8514'``landingpad``' instruction must contain *at least* one ``clause`` or
8515the ``cleanup`` flag.
8516
8517Semantics:
8518""""""""""
8519
8520The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008521:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008522therefore the "result type" of the ``landingpad`` instruction. As with
8523calling conventions, how the personality function results are
8524represented in LLVM IR is target specific.
8525
8526The clauses are applied in order from top to bottom. If two
8527``landingpad`` instructions are merged together through inlining, the
8528clauses from the calling function are appended to the list of clauses.
8529When the call stack is being unwound due to an exception being thrown,
8530the exception is compared against each ``clause`` in turn. If it doesn't
8531match any of the clauses, and the ``cleanup`` flag is not set, then
8532unwinding continues further up the call stack.
8533
8534The ``landingpad`` instruction has several restrictions:
8535
8536- A landing pad block is a basic block which is the unwind destination
8537 of an '``invoke``' instruction.
8538- A landing pad block must have a '``landingpad``' instruction as its
8539 first non-PHI instruction.
8540- There can be only one '``landingpad``' instruction within the landing
8541 pad block.
8542- A basic block that is not a landing pad block may not include a
8543 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008544
8545Example:
8546""""""""
8547
8548.. code-block:: llvm
8549
8550 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008551 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008552 catch i8** @_ZTIi
8553 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008554 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008555 cleanup
8556 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008557 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008558 catch i8** @_ZTIi
8559 filter [1 x i8**] [@_ZTId]
8560
David Majnemer654e1302015-07-31 17:58:14 +00008561.. _i_cleanuppad:
8562
8563'``cleanuppad``' Instruction
8564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8565
8566Syntax:
8567"""""""
8568
8569::
8570
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008571 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008572
8573Overview:
8574"""""""""
8575
8576The '``cleanuppad``' instruction is used by `LLVM's exception handling
8577system <ExceptionHandling.html#overview>`_ to specify that a basic block
8578is a cleanup block --- one where a personality routine attempts to
8579transfer control to run cleanup actions.
8580The ``args`` correspond to whatever additional
8581information the :ref:`personality function <personalityfn>` requires to
8582execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008583The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008584match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8585and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008586
8587Arguments:
8588""""""""""
8589
8590The instruction takes a list of arbitrary values which are interpreted
8591by the :ref:`personality function <personalityfn>`.
8592
8593Semantics:
8594""""""""""
8595
David Majnemer654e1302015-07-31 17:58:14 +00008596When the call stack is being unwound due to an exception being thrown,
8597the :ref:`personality function <personalityfn>` transfers control to the
8598``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008599As with calling conventions, how the personality function results are
8600represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008601
8602The ``cleanuppad`` instruction has several restrictions:
8603
8604- A cleanup block is a basic block which is the unwind destination of
8605 an exceptional instruction.
8606- A cleanup block must have a '``cleanuppad``' instruction as its
8607 first non-PHI instruction.
8608- There can be only one '``cleanuppad``' instruction within the
8609 cleanup block.
8610- A basic block that is not a cleanup block may not include a
8611 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008612- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8613 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008614- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008615 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8616 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008617- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008618 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8619 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008620
8621Example:
8622""""""""
8623
8624.. code-block:: llvm
8625
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008626 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008627
Sean Silvab084af42012-12-07 10:36:55 +00008628.. _intrinsics:
8629
8630Intrinsic Functions
8631===================
8632
8633LLVM supports the notion of an "intrinsic function". These functions
8634have well known names and semantics and are required to follow certain
8635restrictions. Overall, these intrinsics represent an extension mechanism
8636for the LLVM language that does not require changing all of the
8637transformations in LLVM when adding to the language (or the bitcode
8638reader/writer, the parser, etc...).
8639
8640Intrinsic function names must all start with an "``llvm.``" prefix. This
8641prefix is reserved in LLVM for intrinsic names; thus, function names may
8642not begin with this prefix. Intrinsic functions must always be external
8643functions: you cannot define the body of intrinsic functions. Intrinsic
8644functions may only be used in call or invoke instructions: it is illegal
8645to take the address of an intrinsic function. Additionally, because
8646intrinsic functions are part of the LLVM language, it is required if any
8647are added that they be documented here.
8648
8649Some intrinsic functions can be overloaded, i.e., the intrinsic
8650represents a family of functions that perform the same operation but on
8651different data types. Because LLVM can represent over 8 million
8652different integer types, overloading is used commonly to allow an
8653intrinsic function to operate on any integer type. One or more of the
8654argument types or the result type can be overloaded to accept any
8655integer type. Argument types may also be defined as exactly matching a
8656previous argument's type or the result type. This allows an intrinsic
8657function which accepts multiple arguments, but needs all of them to be
8658of the same type, to only be overloaded with respect to a single
8659argument or the result.
8660
8661Overloaded intrinsics will have the names of its overloaded argument
8662types encoded into its function name, each preceded by a period. Only
8663those types which are overloaded result in a name suffix. Arguments
8664whose type is matched against another type do not. For example, the
8665``llvm.ctpop`` function can take an integer of any width and returns an
8666integer of exactly the same integer width. This leads to a family of
8667functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8668``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8669overloaded, and only one type suffix is required. Because the argument's
8670type is matched against the return type, it does not require its own
8671name suffix.
8672
8673To learn how to add an intrinsic function, please see the `Extending
8674LLVM Guide <ExtendingLLVM.html>`_.
8675
8676.. _int_varargs:
8677
8678Variable Argument Handling Intrinsics
8679-------------------------------------
8680
8681Variable argument support is defined in LLVM with the
8682:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8683functions. These functions are related to the similarly named macros
8684defined in the ``<stdarg.h>`` header file.
8685
8686All of these functions operate on arguments that use a target-specific
8687value type "``va_list``". The LLVM assembly language reference manual
8688does not define what this type is, so all transformations should be
8689prepared to handle these functions regardless of the type used.
8690
8691This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8692variable argument handling intrinsic functions are used.
8693
8694.. code-block:: llvm
8695
Tim Northoverab60bb92014-11-02 01:21:51 +00008696 ; This struct is different for every platform. For most platforms,
8697 ; it is merely an i8*.
8698 %struct.va_list = type { i8* }
8699
8700 ; For Unix x86_64 platforms, va_list is the following struct:
8701 ; %struct.va_list = type { i32, i32, i8*, i8* }
8702
Sean Silvab084af42012-12-07 10:36:55 +00008703 define i32 @test(i32 %X, ...) {
8704 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008705 %ap = alloca %struct.va_list
8706 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008707 call void @llvm.va_start(i8* %ap2)
8708
8709 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008710 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008711
8712 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8713 %aq = alloca i8*
8714 %aq2 = bitcast i8** %aq to i8*
8715 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8716 call void @llvm.va_end(i8* %aq2)
8717
8718 ; Stop processing of arguments.
8719 call void @llvm.va_end(i8* %ap2)
8720 ret i32 %tmp
8721 }
8722
8723 declare void @llvm.va_start(i8*)
8724 declare void @llvm.va_copy(i8*, i8*)
8725 declare void @llvm.va_end(i8*)
8726
8727.. _int_va_start:
8728
8729'``llvm.va_start``' Intrinsic
8730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8731
8732Syntax:
8733"""""""
8734
8735::
8736
Nick Lewycky04f6de02013-09-11 22:04:52 +00008737 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008738
8739Overview:
8740"""""""""
8741
8742The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8743subsequent use by ``va_arg``.
8744
8745Arguments:
8746""""""""""
8747
8748The argument is a pointer to a ``va_list`` element to initialize.
8749
8750Semantics:
8751""""""""""
8752
8753The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8754available in C. In a target-dependent way, it initializes the
8755``va_list`` element to which the argument points, so that the next call
8756to ``va_arg`` will produce the first variable argument passed to the
8757function. Unlike the C ``va_start`` macro, this intrinsic does not need
8758to know the last argument of the function as the compiler can figure
8759that out.
8760
8761'``llvm.va_end``' Intrinsic
8762^^^^^^^^^^^^^^^^^^^^^^^^^^^
8763
8764Syntax:
8765"""""""
8766
8767::
8768
8769 declare void @llvm.va_end(i8* <arglist>)
8770
8771Overview:
8772"""""""""
8773
8774The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8775initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8776
8777Arguments:
8778""""""""""
8779
8780The argument is a pointer to a ``va_list`` to destroy.
8781
8782Semantics:
8783""""""""""
8784
8785The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8786available in C. In a target-dependent way, it destroys the ``va_list``
8787element to which the argument points. Calls to
8788:ref:`llvm.va_start <int_va_start>` and
8789:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8790``llvm.va_end``.
8791
8792.. _int_va_copy:
8793
8794'``llvm.va_copy``' Intrinsic
8795^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8796
8797Syntax:
8798"""""""
8799
8800::
8801
8802 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8803
8804Overview:
8805"""""""""
8806
8807The '``llvm.va_copy``' intrinsic copies the current argument position
8808from the source argument list to the destination argument list.
8809
8810Arguments:
8811""""""""""
8812
8813The first argument is a pointer to a ``va_list`` element to initialize.
8814The second argument is a pointer to a ``va_list`` element to copy from.
8815
8816Semantics:
8817""""""""""
8818
8819The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8820available in C. In a target-dependent way, it copies the source
8821``va_list`` element into the destination ``va_list`` element. This
8822intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8823arbitrarily complex and require, for example, memory allocation.
8824
8825Accurate Garbage Collection Intrinsics
8826--------------------------------------
8827
Philip Reamesc5b0f562015-02-25 23:52:06 +00008828LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008829(GC) requires the frontend to generate code containing appropriate intrinsic
8830calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008831intrinsics in a manner which is appropriate for the target collector.
8832
Sean Silvab084af42012-12-07 10:36:55 +00008833These intrinsics allow identification of :ref:`GC roots on the
8834stack <int_gcroot>`, as well as garbage collector implementations that
8835require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008836Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008837these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008838details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008839
Philip Reamesf80bbff2015-02-25 23:45:20 +00008840Experimental Statepoint Intrinsics
8841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8842
8843LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008844collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008845to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008846:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008847differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008848<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008849described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008850
8851.. _int_gcroot:
8852
8853'``llvm.gcroot``' Intrinsic
8854^^^^^^^^^^^^^^^^^^^^^^^^^^^
8855
8856Syntax:
8857"""""""
8858
8859::
8860
8861 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8862
8863Overview:
8864"""""""""
8865
8866The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8867the code generator, and allows some metadata to be associated with it.
8868
8869Arguments:
8870""""""""""
8871
8872The first argument specifies the address of a stack object that contains
8873the root pointer. The second pointer (which must be either a constant or
8874a global value address) contains the meta-data to be associated with the
8875root.
8876
8877Semantics:
8878""""""""""
8879
8880At runtime, a call to this intrinsic stores a null pointer into the
8881"ptrloc" location. At compile-time, the code generator generates
8882information to allow the runtime to find the pointer at GC safe points.
8883The '``llvm.gcroot``' intrinsic may only be used in a function which
8884:ref:`specifies a GC algorithm <gc>`.
8885
8886.. _int_gcread:
8887
8888'``llvm.gcread``' Intrinsic
8889^^^^^^^^^^^^^^^^^^^^^^^^^^^
8890
8891Syntax:
8892"""""""
8893
8894::
8895
8896 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8897
8898Overview:
8899"""""""""
8900
8901The '``llvm.gcread``' intrinsic identifies reads of references from heap
8902locations, allowing garbage collector implementations that require read
8903barriers.
8904
8905Arguments:
8906""""""""""
8907
8908The second argument is the address to read from, which should be an
8909address allocated from the garbage collector. The first object is a
8910pointer to the start of the referenced object, if needed by the language
8911runtime (otherwise null).
8912
8913Semantics:
8914""""""""""
8915
8916The '``llvm.gcread``' intrinsic has the same semantics as a load
8917instruction, but may be replaced with substantially more complex code by
8918the garbage collector runtime, as needed. The '``llvm.gcread``'
8919intrinsic may only be used in a function which :ref:`specifies a GC
8920algorithm <gc>`.
8921
8922.. _int_gcwrite:
8923
8924'``llvm.gcwrite``' Intrinsic
8925^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8926
8927Syntax:
8928"""""""
8929
8930::
8931
8932 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8933
8934Overview:
8935"""""""""
8936
8937The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8938locations, allowing garbage collector implementations that require write
8939barriers (such as generational or reference counting collectors).
8940
8941Arguments:
8942""""""""""
8943
8944The first argument is the reference to store, the second is the start of
8945the object to store it to, and the third is the address of the field of
8946Obj to store to. If the runtime does not require a pointer to the
8947object, Obj may be null.
8948
8949Semantics:
8950""""""""""
8951
8952The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8953instruction, but may be replaced with substantially more complex code by
8954the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8955intrinsic may only be used in a function which :ref:`specifies a GC
8956algorithm <gc>`.
8957
8958Code Generator Intrinsics
8959-------------------------
8960
8961These intrinsics are provided by LLVM to expose special features that
8962may only be implemented with code generator support.
8963
8964'``llvm.returnaddress``' Intrinsic
8965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8966
8967Syntax:
8968"""""""
8969
8970::
8971
8972 declare i8 *@llvm.returnaddress(i32 <level>)
8973
8974Overview:
8975"""""""""
8976
8977The '``llvm.returnaddress``' intrinsic attempts to compute a
8978target-specific value indicating the return address of the current
8979function or one of its callers.
8980
8981Arguments:
8982""""""""""
8983
8984The argument to this intrinsic indicates which function to return the
8985address for. Zero indicates the calling function, one indicates its
8986caller, etc. The argument is **required** to be a constant integer
8987value.
8988
8989Semantics:
8990""""""""""
8991
8992The '``llvm.returnaddress``' intrinsic either returns a pointer
8993indicating the return address of the specified call frame, or zero if it
8994cannot be identified. The value returned by this intrinsic is likely to
8995be incorrect or 0 for arguments other than zero, so it should only be
8996used for debugging purposes.
8997
8998Note that calling this intrinsic does not prevent function inlining or
8999other aggressive transformations, so the value returned may not be that
9000of the obvious source-language caller.
9001
9002'``llvm.frameaddress``' Intrinsic
9003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9004
9005Syntax:
9006"""""""
9007
9008::
9009
9010 declare i8* @llvm.frameaddress(i32 <level>)
9011
9012Overview:
9013"""""""""
9014
9015The '``llvm.frameaddress``' intrinsic attempts to return the
9016target-specific frame pointer value for the specified stack frame.
9017
9018Arguments:
9019""""""""""
9020
9021The argument to this intrinsic indicates which function to return the
9022frame pointer for. Zero indicates the calling function, one indicates
9023its caller, etc. The argument is **required** to be a constant integer
9024value.
9025
9026Semantics:
9027""""""""""
9028
9029The '``llvm.frameaddress``' intrinsic either returns a pointer
9030indicating the frame address of the specified call frame, or zero if it
9031cannot be identified. The value returned by this intrinsic is likely to
9032be incorrect or 0 for arguments other than zero, so it should only be
9033used for debugging purposes.
9034
9035Note that calling this intrinsic does not prevent function inlining or
9036other aggressive transformations, so the value returned may not be that
9037of the obvious source-language caller.
9038
Reid Kleckner60381792015-07-07 22:25:32 +00009039'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9041
9042Syntax:
9043"""""""
9044
9045::
9046
Reid Kleckner60381792015-07-07 22:25:32 +00009047 declare void @llvm.localescape(...)
9048 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009049
9050Overview:
9051"""""""""
9052
Reid Kleckner60381792015-07-07 22:25:32 +00009053The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9054allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009055live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009056computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009057
9058Arguments:
9059""""""""""
9060
Reid Kleckner60381792015-07-07 22:25:32 +00009061All arguments to '``llvm.localescape``' must be pointers to static allocas or
9062casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009063once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009064
Reid Kleckner60381792015-07-07 22:25:32 +00009065The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009066bitcasted pointer to a function defined in the current module. The code
9067generator cannot determine the frame allocation offset of functions defined in
9068other modules.
9069
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009070The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9071call frame that is currently live. The return value of '``llvm.localaddress``'
9072is one way to produce such a value, but various runtimes also expose a suitable
9073pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009074
Reid Kleckner60381792015-07-07 22:25:32 +00009075The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9076'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009077
Reid Klecknere9b89312015-01-13 00:48:10 +00009078Semantics:
9079""""""""""
9080
Reid Kleckner60381792015-07-07 22:25:32 +00009081These intrinsics allow a group of functions to share access to a set of local
9082stack allocations of a one parent function. The parent function may call the
9083'``llvm.localescape``' intrinsic once from the function entry block, and the
9084child functions can use '``llvm.localrecover``' to access the escaped allocas.
9085The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9086the escaped allocas are allocated, which would break attempts to use
9087'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009088
Renato Golinc7aea402014-05-06 16:51:25 +00009089.. _int_read_register:
9090.. _int_write_register:
9091
9092'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9094
9095Syntax:
9096"""""""
9097
9098::
9099
9100 declare i32 @llvm.read_register.i32(metadata)
9101 declare i64 @llvm.read_register.i64(metadata)
9102 declare void @llvm.write_register.i32(metadata, i32 @value)
9103 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009104 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009105
9106Overview:
9107"""""""""
9108
9109The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9110provides access to the named register. The register must be valid on
9111the architecture being compiled to. The type needs to be compatible
9112with the register being read.
9113
9114Semantics:
9115""""""""""
9116
9117The '``llvm.read_register``' intrinsic returns the current value of the
9118register, where possible. The '``llvm.write_register``' intrinsic sets
9119the current value of the register, where possible.
9120
9121This is useful to implement named register global variables that need
9122to always be mapped to a specific register, as is common practice on
9123bare-metal programs including OS kernels.
9124
9125The compiler doesn't check for register availability or use of the used
9126register in surrounding code, including inline assembly. Because of that,
9127allocatable registers are not supported.
9128
9129Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009130architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009131work is needed to support other registers and even more so, allocatable
9132registers.
9133
Sean Silvab084af42012-12-07 10:36:55 +00009134.. _int_stacksave:
9135
9136'``llvm.stacksave``' Intrinsic
9137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9138
9139Syntax:
9140"""""""
9141
9142::
9143
9144 declare i8* @llvm.stacksave()
9145
9146Overview:
9147"""""""""
9148
9149The '``llvm.stacksave``' intrinsic is used to remember the current state
9150of the function stack, for use with
9151:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9152implementing language features like scoped automatic variable sized
9153arrays in C99.
9154
9155Semantics:
9156""""""""""
9157
9158This intrinsic returns a opaque pointer value that can be passed to
9159:ref:`llvm.stackrestore <int_stackrestore>`. When an
9160``llvm.stackrestore`` intrinsic is executed with a value saved from
9161``llvm.stacksave``, it effectively restores the state of the stack to
9162the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9163practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9164were allocated after the ``llvm.stacksave`` was executed.
9165
9166.. _int_stackrestore:
9167
9168'``llvm.stackrestore``' Intrinsic
9169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9170
9171Syntax:
9172"""""""
9173
9174::
9175
9176 declare void @llvm.stackrestore(i8* %ptr)
9177
9178Overview:
9179"""""""""
9180
9181The '``llvm.stackrestore``' intrinsic is used to restore the state of
9182the function stack to the state it was in when the corresponding
9183:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9184useful for implementing language features like scoped automatic variable
9185sized arrays in C99.
9186
9187Semantics:
9188""""""""""
9189
9190See the description for :ref:`llvm.stacksave <int_stacksave>`.
9191
9192'``llvm.prefetch``' Intrinsic
9193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9194
9195Syntax:
9196"""""""
9197
9198::
9199
9200 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9201
9202Overview:
9203"""""""""
9204
9205The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9206insert a prefetch instruction if supported; otherwise, it is a noop.
9207Prefetches have no effect on the behavior of the program but can change
9208its performance characteristics.
9209
9210Arguments:
9211""""""""""
9212
9213``address`` is the address to be prefetched, ``rw`` is the specifier
9214determining if the fetch should be for a read (0) or write (1), and
9215``locality`` is a temporal locality specifier ranging from (0) - no
9216locality, to (3) - extremely local keep in cache. The ``cache type``
9217specifies whether the prefetch is performed on the data (1) or
9218instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9219arguments must be constant integers.
9220
9221Semantics:
9222""""""""""
9223
9224This intrinsic does not modify the behavior of the program. In
9225particular, prefetches cannot trap and do not produce a value. On
9226targets that support this intrinsic, the prefetch can provide hints to
9227the processor cache for better performance.
9228
9229'``llvm.pcmarker``' Intrinsic
9230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9231
9232Syntax:
9233"""""""
9234
9235::
9236
9237 declare void @llvm.pcmarker(i32 <id>)
9238
9239Overview:
9240"""""""""
9241
9242The '``llvm.pcmarker``' intrinsic is a method to export a Program
9243Counter (PC) in a region of code to simulators and other tools. The
9244method is target specific, but it is expected that the marker will use
9245exported symbols to transmit the PC of the marker. The marker makes no
9246guarantees that it will remain with any specific instruction after
9247optimizations. It is possible that the presence of a marker will inhibit
9248optimizations. The intended use is to be inserted after optimizations to
9249allow correlations of simulation runs.
9250
9251Arguments:
9252""""""""""
9253
9254``id`` is a numerical id identifying the marker.
9255
9256Semantics:
9257""""""""""
9258
9259This intrinsic does not modify the behavior of the program. Backends
9260that do not support this intrinsic may ignore it.
9261
9262'``llvm.readcyclecounter``' Intrinsic
9263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9264
9265Syntax:
9266"""""""
9267
9268::
9269
9270 declare i64 @llvm.readcyclecounter()
9271
9272Overview:
9273"""""""""
9274
9275The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9276counter register (or similar low latency, high accuracy clocks) on those
9277targets that support it. On X86, it should map to RDTSC. On Alpha, it
9278should map to RPCC. As the backing counters overflow quickly (on the
9279order of 9 seconds on alpha), this should only be used for small
9280timings.
9281
9282Semantics:
9283""""""""""
9284
9285When directly supported, reading the cycle counter should not modify any
9286memory. Implementations are allowed to either return a application
9287specific value or a system wide value. On backends without support, this
9288is lowered to a constant 0.
9289
Tim Northoverbc933082013-05-23 19:11:20 +00009290Note that runtime support may be conditional on the privilege-level code is
9291running at and the host platform.
9292
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009293'``llvm.clear_cache``' Intrinsic
9294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9295
9296Syntax:
9297"""""""
9298
9299::
9300
9301 declare void @llvm.clear_cache(i8*, i8*)
9302
9303Overview:
9304"""""""""
9305
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009306The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9307in the specified range to the execution unit of the processor. On
9308targets with non-unified instruction and data cache, the implementation
9309flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009310
9311Semantics:
9312""""""""""
9313
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009314On platforms with coherent instruction and data caches (e.g. x86), this
9315intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009316cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009317instructions or a system call, if cache flushing requires special
9318privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009319
Sean Silvad02bf3e2014-04-07 22:29:53 +00009320The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009321time library.
Renato Golin93010e62014-03-26 14:01:32 +00009322
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009323This instrinsic does *not* empty the instruction pipeline. Modifications
9324of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009325
Justin Bogner61ba2e32014-12-08 18:02:35 +00009326'``llvm.instrprof_increment``' Intrinsic
9327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9328
9329Syntax:
9330"""""""
9331
9332::
9333
9334 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9335 i32 <num-counters>, i32 <index>)
9336
9337Overview:
9338"""""""""
9339
9340The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9341frontend for use with instrumentation based profiling. These will be
9342lowered by the ``-instrprof`` pass to generate execution counts of a
9343program at runtime.
9344
9345Arguments:
9346""""""""""
9347
9348The first argument is a pointer to a global variable containing the
9349name of the entity being instrumented. This should generally be the
9350(mangled) function name for a set of counters.
9351
9352The second argument is a hash value that can be used by the consumer
9353of the profile data to detect changes to the instrumented source, and
9354the third is the number of counters associated with ``name``. It is an
9355error if ``hash`` or ``num-counters`` differ between two instances of
9356``instrprof_increment`` that refer to the same name.
9357
9358The last argument refers to which of the counters for ``name`` should
9359be incremented. It should be a value between 0 and ``num-counters``.
9360
9361Semantics:
9362""""""""""
9363
9364This intrinsic represents an increment of a profiling counter. It will
9365cause the ``-instrprof`` pass to generate the appropriate data
9366structures and the code to increment the appropriate value, in a
9367format that can be written out by a compiler runtime and consumed via
9368the ``llvm-profdata`` tool.
9369
Sean Silvab084af42012-12-07 10:36:55 +00009370Standard C Library Intrinsics
9371-----------------------------
9372
9373LLVM provides intrinsics for a few important standard C library
9374functions. These intrinsics allow source-language front-ends to pass
9375information about the alignment of the pointer arguments to the code
9376generator, providing opportunity for more efficient code generation.
9377
9378.. _int_memcpy:
9379
9380'``llvm.memcpy``' Intrinsic
9381^^^^^^^^^^^^^^^^^^^^^^^^^^^
9382
9383Syntax:
9384"""""""
9385
9386This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9387integer bit width and for different address spaces. Not all targets
9388support all bit widths however.
9389
9390::
9391
9392 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9393 i32 <len>, i32 <align>, i1 <isvolatile>)
9394 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9395 i64 <len>, i32 <align>, i1 <isvolatile>)
9396
9397Overview:
9398"""""""""
9399
9400The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9401source location to the destination location.
9402
9403Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9404intrinsics do not return a value, takes extra alignment/isvolatile
9405arguments and the pointers can be in specified address spaces.
9406
9407Arguments:
9408""""""""""
9409
9410The first argument is a pointer to the destination, the second is a
9411pointer to the source. The third argument is an integer argument
9412specifying the number of bytes to copy, the fourth argument is the
9413alignment of the source and destination locations, and the fifth is a
9414boolean indicating a volatile access.
9415
9416If the call to this intrinsic has an alignment value that is not 0 or 1,
9417then the caller guarantees that both the source and destination pointers
9418are aligned to that boundary.
9419
9420If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9421a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9422very cleanly specified and it is unwise to depend on it.
9423
9424Semantics:
9425""""""""""
9426
9427The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9428source location to the destination location, which are not allowed to
9429overlap. It copies "len" bytes of memory over. If the argument is known
9430to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009431argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009432
9433'``llvm.memmove``' Intrinsic
9434^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9435
9436Syntax:
9437"""""""
9438
9439This is an overloaded intrinsic. You can use llvm.memmove on any integer
9440bit width and for different address space. Not all targets support all
9441bit widths however.
9442
9443::
9444
9445 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9446 i32 <len>, i32 <align>, i1 <isvolatile>)
9447 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9448 i64 <len>, i32 <align>, i1 <isvolatile>)
9449
9450Overview:
9451"""""""""
9452
9453The '``llvm.memmove.*``' intrinsics move a block of memory from the
9454source location to the destination location. It is similar to the
9455'``llvm.memcpy``' intrinsic but allows the two memory locations to
9456overlap.
9457
9458Note that, unlike the standard libc function, the ``llvm.memmove.*``
9459intrinsics do not return a value, takes extra alignment/isvolatile
9460arguments and the pointers can be in specified address spaces.
9461
9462Arguments:
9463""""""""""
9464
9465The first argument is a pointer to the destination, the second is a
9466pointer to the source. The third argument is an integer argument
9467specifying the number of bytes to copy, the fourth argument is the
9468alignment of the source and destination locations, and the fifth is a
9469boolean indicating a volatile access.
9470
9471If the call to this intrinsic has an alignment value that is not 0 or 1,
9472then the caller guarantees that the source and destination pointers are
9473aligned to that boundary.
9474
9475If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9476is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9477not very cleanly specified and it is unwise to depend on it.
9478
9479Semantics:
9480""""""""""
9481
9482The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9483source location to the destination location, which may overlap. It
9484copies "len" bytes of memory over. If the argument is known to be
9485aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009486otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009487
9488'``llvm.memset.*``' Intrinsics
9489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9490
9491Syntax:
9492"""""""
9493
9494This is an overloaded intrinsic. You can use llvm.memset on any integer
9495bit width and for different address spaces. However, not all targets
9496support all bit widths.
9497
9498::
9499
9500 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9501 i32 <len>, i32 <align>, i1 <isvolatile>)
9502 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9503 i64 <len>, i32 <align>, i1 <isvolatile>)
9504
9505Overview:
9506"""""""""
9507
9508The '``llvm.memset.*``' intrinsics fill a block of memory with a
9509particular byte value.
9510
9511Note that, unlike the standard libc function, the ``llvm.memset``
9512intrinsic does not return a value and takes extra alignment/volatile
9513arguments. Also, the destination can be in an arbitrary address space.
9514
9515Arguments:
9516""""""""""
9517
9518The first argument is a pointer to the destination to fill, the second
9519is the byte value with which to fill it, the third argument is an
9520integer argument specifying the number of bytes to fill, and the fourth
9521argument is the known alignment of the destination location.
9522
9523If the call to this intrinsic has an alignment value that is not 0 or 1,
9524then the caller guarantees that the destination pointer is aligned to
9525that boundary.
9526
9527If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9528a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9529very cleanly specified and it is unwise to depend on it.
9530
9531Semantics:
9532""""""""""
9533
9534The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9535at the destination location. If the argument is known to be aligned to
9536some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009537it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009538
9539'``llvm.sqrt.*``' Intrinsic
9540^^^^^^^^^^^^^^^^^^^^^^^^^^^
9541
9542Syntax:
9543"""""""
9544
9545This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9546floating point or vector of floating point type. Not all targets support
9547all types however.
9548
9549::
9550
9551 declare float @llvm.sqrt.f32(float %Val)
9552 declare double @llvm.sqrt.f64(double %Val)
9553 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9554 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9555 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9556
9557Overview:
9558"""""""""
9559
9560The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9561returning the same value as the libm '``sqrt``' functions would. Unlike
9562``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9563negative numbers other than -0.0 (which allows for better optimization,
9564because there is no need to worry about errno being set).
9565``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9566
9567Arguments:
9568""""""""""
9569
9570The argument and return value are floating point numbers of the same
9571type.
9572
9573Semantics:
9574""""""""""
9575
9576This function returns the sqrt of the specified operand if it is a
9577nonnegative floating point number.
9578
9579'``llvm.powi.*``' Intrinsic
9580^^^^^^^^^^^^^^^^^^^^^^^^^^^
9581
9582Syntax:
9583"""""""
9584
9585This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9586floating point or vector of floating point type. Not all targets support
9587all types however.
9588
9589::
9590
9591 declare float @llvm.powi.f32(float %Val, i32 %power)
9592 declare double @llvm.powi.f64(double %Val, i32 %power)
9593 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9594 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9595 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9596
9597Overview:
9598"""""""""
9599
9600The '``llvm.powi.*``' intrinsics return the first operand raised to the
9601specified (positive or negative) power. The order of evaluation of
9602multiplications is not defined. When a vector of floating point type is
9603used, the second argument remains a scalar integer value.
9604
9605Arguments:
9606""""""""""
9607
9608The second argument is an integer power, and the first is a value to
9609raise to that power.
9610
9611Semantics:
9612""""""""""
9613
9614This function returns the first value raised to the second power with an
9615unspecified sequence of rounding operations.
9616
9617'``llvm.sin.*``' Intrinsic
9618^^^^^^^^^^^^^^^^^^^^^^^^^^
9619
9620Syntax:
9621"""""""
9622
9623This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9624floating point or vector of floating point type. Not all targets support
9625all types however.
9626
9627::
9628
9629 declare float @llvm.sin.f32(float %Val)
9630 declare double @llvm.sin.f64(double %Val)
9631 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9632 declare fp128 @llvm.sin.f128(fp128 %Val)
9633 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9634
9635Overview:
9636"""""""""
9637
9638The '``llvm.sin.*``' intrinsics return the sine of the operand.
9639
9640Arguments:
9641""""""""""
9642
9643The argument and return value are floating point numbers of the same
9644type.
9645
9646Semantics:
9647""""""""""
9648
9649This function returns the sine of the specified operand, returning the
9650same values as the libm ``sin`` functions would, and handles error
9651conditions in the same way.
9652
9653'``llvm.cos.*``' Intrinsic
9654^^^^^^^^^^^^^^^^^^^^^^^^^^
9655
9656Syntax:
9657"""""""
9658
9659This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9660floating point or vector of floating point type. Not all targets support
9661all types however.
9662
9663::
9664
9665 declare float @llvm.cos.f32(float %Val)
9666 declare double @llvm.cos.f64(double %Val)
9667 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9668 declare fp128 @llvm.cos.f128(fp128 %Val)
9669 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9670
9671Overview:
9672"""""""""
9673
9674The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9675
9676Arguments:
9677""""""""""
9678
9679The argument and return value are floating point numbers of the same
9680type.
9681
9682Semantics:
9683""""""""""
9684
9685This function returns the cosine of the specified operand, returning the
9686same values as the libm ``cos`` functions would, and handles error
9687conditions in the same way.
9688
9689'``llvm.pow.*``' Intrinsic
9690^^^^^^^^^^^^^^^^^^^^^^^^^^
9691
9692Syntax:
9693"""""""
9694
9695This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9696floating point or vector of floating point type. Not all targets support
9697all types however.
9698
9699::
9700
9701 declare float @llvm.pow.f32(float %Val, float %Power)
9702 declare double @llvm.pow.f64(double %Val, double %Power)
9703 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9704 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9705 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9706
9707Overview:
9708"""""""""
9709
9710The '``llvm.pow.*``' intrinsics return the first operand raised to the
9711specified (positive or negative) power.
9712
9713Arguments:
9714""""""""""
9715
9716The second argument is a floating point power, and the first is a value
9717to raise to that power.
9718
9719Semantics:
9720""""""""""
9721
9722This function returns the first value raised to the second power,
9723returning the same values as the libm ``pow`` functions would, and
9724handles error conditions in the same way.
9725
9726'``llvm.exp.*``' Intrinsic
9727^^^^^^^^^^^^^^^^^^^^^^^^^^
9728
9729Syntax:
9730"""""""
9731
9732This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9733floating point or vector of floating point type. Not all targets support
9734all types however.
9735
9736::
9737
9738 declare float @llvm.exp.f32(float %Val)
9739 declare double @llvm.exp.f64(double %Val)
9740 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9741 declare fp128 @llvm.exp.f128(fp128 %Val)
9742 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9743
9744Overview:
9745"""""""""
9746
9747The '``llvm.exp.*``' intrinsics perform the exp function.
9748
9749Arguments:
9750""""""""""
9751
9752The argument and return value are floating point numbers of the same
9753type.
9754
9755Semantics:
9756""""""""""
9757
9758This function returns the same values as the libm ``exp`` functions
9759would, and handles error conditions in the same way.
9760
9761'``llvm.exp2.*``' Intrinsic
9762^^^^^^^^^^^^^^^^^^^^^^^^^^^
9763
9764Syntax:
9765"""""""
9766
9767This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9768floating point or vector of floating point type. Not all targets support
9769all types however.
9770
9771::
9772
9773 declare float @llvm.exp2.f32(float %Val)
9774 declare double @llvm.exp2.f64(double %Val)
9775 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9776 declare fp128 @llvm.exp2.f128(fp128 %Val)
9777 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9778
9779Overview:
9780"""""""""
9781
9782The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9783
9784Arguments:
9785""""""""""
9786
9787The argument and return value are floating point numbers of the same
9788type.
9789
9790Semantics:
9791""""""""""
9792
9793This function returns the same values as the libm ``exp2`` functions
9794would, and handles error conditions in the same way.
9795
9796'``llvm.log.*``' Intrinsic
9797^^^^^^^^^^^^^^^^^^^^^^^^^^
9798
9799Syntax:
9800"""""""
9801
9802This is an overloaded intrinsic. You can use ``llvm.log`` on any
9803floating point or vector of floating point type. Not all targets support
9804all types however.
9805
9806::
9807
9808 declare float @llvm.log.f32(float %Val)
9809 declare double @llvm.log.f64(double %Val)
9810 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9811 declare fp128 @llvm.log.f128(fp128 %Val)
9812 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9813
9814Overview:
9815"""""""""
9816
9817The '``llvm.log.*``' intrinsics perform the log function.
9818
9819Arguments:
9820""""""""""
9821
9822The argument and return value are floating point numbers of the same
9823type.
9824
9825Semantics:
9826""""""""""
9827
9828This function returns the same values as the libm ``log`` functions
9829would, and handles error conditions in the same way.
9830
9831'``llvm.log10.*``' Intrinsic
9832^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9833
9834Syntax:
9835"""""""
9836
9837This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9838floating point or vector of floating point type. Not all targets support
9839all types however.
9840
9841::
9842
9843 declare float @llvm.log10.f32(float %Val)
9844 declare double @llvm.log10.f64(double %Val)
9845 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9846 declare fp128 @llvm.log10.f128(fp128 %Val)
9847 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9848
9849Overview:
9850"""""""""
9851
9852The '``llvm.log10.*``' intrinsics perform the log10 function.
9853
9854Arguments:
9855""""""""""
9856
9857The argument and return value are floating point numbers of the same
9858type.
9859
9860Semantics:
9861""""""""""
9862
9863This function returns the same values as the libm ``log10`` functions
9864would, and handles error conditions in the same way.
9865
9866'``llvm.log2.*``' Intrinsic
9867^^^^^^^^^^^^^^^^^^^^^^^^^^^
9868
9869Syntax:
9870"""""""
9871
9872This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9873floating point or vector of floating point type. Not all targets support
9874all types however.
9875
9876::
9877
9878 declare float @llvm.log2.f32(float %Val)
9879 declare double @llvm.log2.f64(double %Val)
9880 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9881 declare fp128 @llvm.log2.f128(fp128 %Val)
9882 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9883
9884Overview:
9885"""""""""
9886
9887The '``llvm.log2.*``' intrinsics perform the log2 function.
9888
9889Arguments:
9890""""""""""
9891
9892The argument and return value are floating point numbers of the same
9893type.
9894
9895Semantics:
9896""""""""""
9897
9898This function returns the same values as the libm ``log2`` functions
9899would, and handles error conditions in the same way.
9900
9901'``llvm.fma.*``' Intrinsic
9902^^^^^^^^^^^^^^^^^^^^^^^^^^
9903
9904Syntax:
9905"""""""
9906
9907This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9908floating point or vector of floating point type. Not all targets support
9909all types however.
9910
9911::
9912
9913 declare float @llvm.fma.f32(float %a, float %b, float %c)
9914 declare double @llvm.fma.f64(double %a, double %b, double %c)
9915 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9916 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9917 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9918
9919Overview:
9920"""""""""
9921
9922The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9923operation.
9924
9925Arguments:
9926""""""""""
9927
9928The argument and return value are floating point numbers of the same
9929type.
9930
9931Semantics:
9932""""""""""
9933
9934This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009935would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009936
9937'``llvm.fabs.*``' Intrinsic
9938^^^^^^^^^^^^^^^^^^^^^^^^^^^
9939
9940Syntax:
9941"""""""
9942
9943This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9944floating point or vector of floating point type. Not all targets support
9945all types however.
9946
9947::
9948
9949 declare float @llvm.fabs.f32(float %Val)
9950 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009951 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009952 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009953 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009954
9955Overview:
9956"""""""""
9957
9958The '``llvm.fabs.*``' intrinsics return the absolute value of the
9959operand.
9960
9961Arguments:
9962""""""""""
9963
9964The argument and return value are floating point numbers of the same
9965type.
9966
9967Semantics:
9968""""""""""
9969
9970This function returns the same values as the libm ``fabs`` functions
9971would, and handles error conditions in the same way.
9972
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009973'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009975
9976Syntax:
9977"""""""
9978
9979This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9980floating point or vector of floating point type. Not all targets support
9981all types however.
9982
9983::
9984
Matt Arsenault64313c92014-10-22 18:25:02 +00009985 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9986 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9987 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9988 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9989 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009990
9991Overview:
9992"""""""""
9993
9994The '``llvm.minnum.*``' intrinsics return the minimum of the two
9995arguments.
9996
9997
9998Arguments:
9999""""""""""
10000
10001The arguments and return value are floating point numbers of the same
10002type.
10003
10004Semantics:
10005""""""""""
10006
10007Follows the IEEE-754 semantics for minNum, which also match for libm's
10008fmin.
10009
10010If either operand is a NaN, returns the other non-NaN operand. Returns
10011NaN only if both operands are NaN. If the operands compare equal,
10012returns a value that compares equal to both operands. This means that
10013fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10014
10015'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010017
10018Syntax:
10019"""""""
10020
10021This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10022floating point or vector of floating point type. Not all targets support
10023all types however.
10024
10025::
10026
Matt Arsenault64313c92014-10-22 18:25:02 +000010027 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10028 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10029 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10030 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10031 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010032
10033Overview:
10034"""""""""
10035
10036The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10037arguments.
10038
10039
10040Arguments:
10041""""""""""
10042
10043The arguments and return value are floating point numbers of the same
10044type.
10045
10046Semantics:
10047""""""""""
10048Follows the IEEE-754 semantics for maxNum, which also match for libm's
10049fmax.
10050
10051If either operand is a NaN, returns the other non-NaN operand. Returns
10052NaN only if both operands are NaN. If the operands compare equal,
10053returns a value that compares equal to both operands. This means that
10054fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10055
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010056'``llvm.copysign.*``' Intrinsic
10057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10058
10059Syntax:
10060"""""""
10061
10062This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10063floating point or vector of floating point type. Not all targets support
10064all types however.
10065
10066::
10067
10068 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10069 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10070 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10071 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10072 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10073
10074Overview:
10075"""""""""
10076
10077The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10078first operand and the sign of the second operand.
10079
10080Arguments:
10081""""""""""
10082
10083The arguments and return value are floating point numbers of the same
10084type.
10085
10086Semantics:
10087""""""""""
10088
10089This function returns the same values as the libm ``copysign``
10090functions would, and handles error conditions in the same way.
10091
Sean Silvab084af42012-12-07 10:36:55 +000010092'``llvm.floor.*``' Intrinsic
10093^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10094
10095Syntax:
10096"""""""
10097
10098This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10099floating point or vector of floating point type. Not all targets support
10100all types however.
10101
10102::
10103
10104 declare float @llvm.floor.f32(float %Val)
10105 declare double @llvm.floor.f64(double %Val)
10106 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10107 declare fp128 @llvm.floor.f128(fp128 %Val)
10108 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10109
10110Overview:
10111"""""""""
10112
10113The '``llvm.floor.*``' intrinsics return the floor of the operand.
10114
10115Arguments:
10116""""""""""
10117
10118The argument and return value are floating point numbers of the same
10119type.
10120
10121Semantics:
10122""""""""""
10123
10124This function returns the same values as the libm ``floor`` functions
10125would, and handles error conditions in the same way.
10126
10127'``llvm.ceil.*``' Intrinsic
10128^^^^^^^^^^^^^^^^^^^^^^^^^^^
10129
10130Syntax:
10131"""""""
10132
10133This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10134floating point or vector of floating point type. Not all targets support
10135all types however.
10136
10137::
10138
10139 declare float @llvm.ceil.f32(float %Val)
10140 declare double @llvm.ceil.f64(double %Val)
10141 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10142 declare fp128 @llvm.ceil.f128(fp128 %Val)
10143 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10144
10145Overview:
10146"""""""""
10147
10148The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10149
10150Arguments:
10151""""""""""
10152
10153The argument and return value are floating point numbers of the same
10154type.
10155
10156Semantics:
10157""""""""""
10158
10159This function returns the same values as the libm ``ceil`` functions
10160would, and handles error conditions in the same way.
10161
10162'``llvm.trunc.*``' Intrinsic
10163^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10164
10165Syntax:
10166"""""""
10167
10168This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10169floating point or vector of floating point type. Not all targets support
10170all types however.
10171
10172::
10173
10174 declare float @llvm.trunc.f32(float %Val)
10175 declare double @llvm.trunc.f64(double %Val)
10176 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10177 declare fp128 @llvm.trunc.f128(fp128 %Val)
10178 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10179
10180Overview:
10181"""""""""
10182
10183The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10184nearest integer not larger in magnitude than the operand.
10185
10186Arguments:
10187""""""""""
10188
10189The argument and return value are floating point numbers of the same
10190type.
10191
10192Semantics:
10193""""""""""
10194
10195This function returns the same values as the libm ``trunc`` functions
10196would, and handles error conditions in the same way.
10197
10198'``llvm.rint.*``' Intrinsic
10199^^^^^^^^^^^^^^^^^^^^^^^^^^^
10200
10201Syntax:
10202"""""""
10203
10204This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10205floating point or vector of floating point type. Not all targets support
10206all types however.
10207
10208::
10209
10210 declare float @llvm.rint.f32(float %Val)
10211 declare double @llvm.rint.f64(double %Val)
10212 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10213 declare fp128 @llvm.rint.f128(fp128 %Val)
10214 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10215
10216Overview:
10217"""""""""
10218
10219The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10220nearest integer. It may raise an inexact floating-point exception if the
10221operand isn't an integer.
10222
10223Arguments:
10224""""""""""
10225
10226The argument and return value are floating point numbers of the same
10227type.
10228
10229Semantics:
10230""""""""""
10231
10232This function returns the same values as the libm ``rint`` functions
10233would, and handles error conditions in the same way.
10234
10235'``llvm.nearbyint.*``' Intrinsic
10236^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10237
10238Syntax:
10239"""""""
10240
10241This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10242floating point or vector of floating point type. Not all targets support
10243all types however.
10244
10245::
10246
10247 declare float @llvm.nearbyint.f32(float %Val)
10248 declare double @llvm.nearbyint.f64(double %Val)
10249 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10250 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10251 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10252
10253Overview:
10254"""""""""
10255
10256The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10257nearest integer.
10258
10259Arguments:
10260""""""""""
10261
10262The argument and return value are floating point numbers of the same
10263type.
10264
10265Semantics:
10266""""""""""
10267
10268This function returns the same values as the libm ``nearbyint``
10269functions would, and handles error conditions in the same way.
10270
Hal Finkel171817e2013-08-07 22:49:12 +000010271'``llvm.round.*``' Intrinsic
10272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10273
10274Syntax:
10275"""""""
10276
10277This is an overloaded intrinsic. You can use ``llvm.round`` on any
10278floating point or vector of floating point type. Not all targets support
10279all types however.
10280
10281::
10282
10283 declare float @llvm.round.f32(float %Val)
10284 declare double @llvm.round.f64(double %Val)
10285 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10286 declare fp128 @llvm.round.f128(fp128 %Val)
10287 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10288
10289Overview:
10290"""""""""
10291
10292The '``llvm.round.*``' intrinsics returns the operand rounded to the
10293nearest integer.
10294
10295Arguments:
10296""""""""""
10297
10298The argument and return value are floating point numbers of the same
10299type.
10300
10301Semantics:
10302""""""""""
10303
10304This function returns the same values as the libm ``round``
10305functions would, and handles error conditions in the same way.
10306
Sean Silvab084af42012-12-07 10:36:55 +000010307Bit Manipulation Intrinsics
10308---------------------------
10309
10310LLVM provides intrinsics for a few important bit manipulation
10311operations. These allow efficient code generation for some algorithms.
10312
10313'``llvm.bswap.*``' Intrinsics
10314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10315
10316Syntax:
10317"""""""
10318
10319This is an overloaded intrinsic function. You can use bswap on any
10320integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10321
10322::
10323
10324 declare i16 @llvm.bswap.i16(i16 <id>)
10325 declare i32 @llvm.bswap.i32(i32 <id>)
10326 declare i64 @llvm.bswap.i64(i64 <id>)
10327
10328Overview:
10329"""""""""
10330
10331The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10332values with an even number of bytes (positive multiple of 16 bits).
10333These are useful for performing operations on data that is not in the
10334target's native byte order.
10335
10336Semantics:
10337""""""""""
10338
10339The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10340and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10341intrinsic returns an i32 value that has the four bytes of the input i32
10342swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10343returned i32 will have its bytes in 3, 2, 1, 0 order. The
10344``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10345concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10346respectively).
10347
10348'``llvm.ctpop.*``' Intrinsic
10349^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10350
10351Syntax:
10352"""""""
10353
10354This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10355bit width, or on any vector with integer elements. Not all targets
10356support all bit widths or vector types, however.
10357
10358::
10359
10360 declare i8 @llvm.ctpop.i8(i8 <src>)
10361 declare i16 @llvm.ctpop.i16(i16 <src>)
10362 declare i32 @llvm.ctpop.i32(i32 <src>)
10363 declare i64 @llvm.ctpop.i64(i64 <src>)
10364 declare i256 @llvm.ctpop.i256(i256 <src>)
10365 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10366
10367Overview:
10368"""""""""
10369
10370The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10371in a value.
10372
10373Arguments:
10374""""""""""
10375
10376The only argument is the value to be counted. The argument may be of any
10377integer type, or a vector with integer elements. The return type must
10378match the argument type.
10379
10380Semantics:
10381""""""""""
10382
10383The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10384each element of a vector.
10385
10386'``llvm.ctlz.*``' Intrinsic
10387^^^^^^^^^^^^^^^^^^^^^^^^^^^
10388
10389Syntax:
10390"""""""
10391
10392This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10393integer bit width, or any vector whose elements are integers. Not all
10394targets support all bit widths or vector types, however.
10395
10396::
10397
10398 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10399 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10400 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10401 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10402 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10403 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10404
10405Overview:
10406"""""""""
10407
10408The '``llvm.ctlz``' family of intrinsic functions counts the number of
10409leading zeros in a variable.
10410
10411Arguments:
10412""""""""""
10413
10414The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010415any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010416type must match the first argument type.
10417
10418The second argument must be a constant and is a flag to indicate whether
10419the intrinsic should ensure that a zero as the first argument produces a
10420defined result. Historically some architectures did not provide a
10421defined result for zero values as efficiently, and many algorithms are
10422now predicated on avoiding zero-value inputs.
10423
10424Semantics:
10425""""""""""
10426
10427The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10428zeros in a variable, or within each element of the vector. If
10429``src == 0`` then the result is the size in bits of the type of ``src``
10430if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10431``llvm.ctlz(i32 2) = 30``.
10432
10433'``llvm.cttz.*``' Intrinsic
10434^^^^^^^^^^^^^^^^^^^^^^^^^^^
10435
10436Syntax:
10437"""""""
10438
10439This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10440integer bit width, or any vector of integer elements. Not all targets
10441support all bit widths or vector types, however.
10442
10443::
10444
10445 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10446 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10447 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10448 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10449 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10450 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10451
10452Overview:
10453"""""""""
10454
10455The '``llvm.cttz``' family of intrinsic functions counts the number of
10456trailing zeros.
10457
10458Arguments:
10459""""""""""
10460
10461The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010462any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010463type must match the first argument type.
10464
10465The second argument must be a constant and is a flag to indicate whether
10466the intrinsic should ensure that a zero as the first argument produces a
10467defined result. Historically some architectures did not provide a
10468defined result for zero values as efficiently, and many algorithms are
10469now predicated on avoiding zero-value inputs.
10470
10471Semantics:
10472""""""""""
10473
10474The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10475zeros in a variable, or within each element of a vector. If ``src == 0``
10476then the result is the size in bits of the type of ``src`` if
10477``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10478``llvm.cttz(2) = 1``.
10479
Philip Reames34843ae2015-03-05 05:55:55 +000010480.. _int_overflow:
10481
Sean Silvab084af42012-12-07 10:36:55 +000010482Arithmetic with Overflow Intrinsics
10483-----------------------------------
10484
10485LLVM provides intrinsics for some arithmetic with overflow operations.
10486
10487'``llvm.sadd.with.overflow.*``' Intrinsics
10488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10489
10490Syntax:
10491"""""""
10492
10493This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10494on any integer bit width.
10495
10496::
10497
10498 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10499 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10500 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10501
10502Overview:
10503"""""""""
10504
10505The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10506a signed addition of the two arguments, and indicate whether an overflow
10507occurred during the signed summation.
10508
10509Arguments:
10510""""""""""
10511
10512The arguments (%a and %b) and the first element of the result structure
10513may be of integer types of any bit width, but they must have the same
10514bit width. The second element of the result structure must be of type
10515``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10516addition.
10517
10518Semantics:
10519""""""""""
10520
10521The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010522a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010523first element of which is the signed summation, and the second element
10524of which is a bit specifying if the signed summation resulted in an
10525overflow.
10526
10527Examples:
10528"""""""""
10529
10530.. code-block:: llvm
10531
10532 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10533 %sum = extractvalue {i32, i1} %res, 0
10534 %obit = extractvalue {i32, i1} %res, 1
10535 br i1 %obit, label %overflow, label %normal
10536
10537'``llvm.uadd.with.overflow.*``' Intrinsics
10538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10539
10540Syntax:
10541"""""""
10542
10543This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10544on any integer bit width.
10545
10546::
10547
10548 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10549 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10550 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10551
10552Overview:
10553"""""""""
10554
10555The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10556an unsigned addition of the two arguments, and indicate whether a carry
10557occurred during the unsigned summation.
10558
10559Arguments:
10560""""""""""
10561
10562The arguments (%a and %b) and the first element of the result structure
10563may be of integer types of any bit width, but they must have the same
10564bit width. The second element of the result structure must be of type
10565``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10566addition.
10567
10568Semantics:
10569""""""""""
10570
10571The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010572an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010573first element of which is the sum, and the second element of which is a
10574bit specifying if the unsigned summation resulted in a carry.
10575
10576Examples:
10577"""""""""
10578
10579.. code-block:: llvm
10580
10581 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10582 %sum = extractvalue {i32, i1} %res, 0
10583 %obit = extractvalue {i32, i1} %res, 1
10584 br i1 %obit, label %carry, label %normal
10585
10586'``llvm.ssub.with.overflow.*``' Intrinsics
10587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10588
10589Syntax:
10590"""""""
10591
10592This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10593on any integer bit width.
10594
10595::
10596
10597 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10598 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10599 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10600
10601Overview:
10602"""""""""
10603
10604The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10605a signed subtraction of the two arguments, and indicate whether an
10606overflow occurred during the signed subtraction.
10607
10608Arguments:
10609""""""""""
10610
10611The arguments (%a and %b) and the first element of the result structure
10612may be of integer types of any bit width, but they must have the same
10613bit width. The second element of the result structure must be of type
10614``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10615subtraction.
10616
10617Semantics:
10618""""""""""
10619
10620The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010621a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010622first element of which is the subtraction, and the second element of
10623which is a bit specifying if the signed subtraction resulted in an
10624overflow.
10625
10626Examples:
10627"""""""""
10628
10629.. code-block:: llvm
10630
10631 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10632 %sum = extractvalue {i32, i1} %res, 0
10633 %obit = extractvalue {i32, i1} %res, 1
10634 br i1 %obit, label %overflow, label %normal
10635
10636'``llvm.usub.with.overflow.*``' Intrinsics
10637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10638
10639Syntax:
10640"""""""
10641
10642This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10643on any integer bit width.
10644
10645::
10646
10647 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10648 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10649 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10650
10651Overview:
10652"""""""""
10653
10654The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10655an unsigned subtraction of the two arguments, and indicate whether an
10656overflow occurred during the unsigned subtraction.
10657
10658Arguments:
10659""""""""""
10660
10661The arguments (%a and %b) and the first element of the result structure
10662may be of integer types of any bit width, but they must have the same
10663bit width. The second element of the result structure must be of type
10664``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10665subtraction.
10666
10667Semantics:
10668""""""""""
10669
10670The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010671an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010672the first element of which is the subtraction, and the second element of
10673which is a bit specifying if the unsigned subtraction resulted in an
10674overflow.
10675
10676Examples:
10677"""""""""
10678
10679.. code-block:: llvm
10680
10681 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10682 %sum = extractvalue {i32, i1} %res, 0
10683 %obit = extractvalue {i32, i1} %res, 1
10684 br i1 %obit, label %overflow, label %normal
10685
10686'``llvm.smul.with.overflow.*``' Intrinsics
10687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10688
10689Syntax:
10690"""""""
10691
10692This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10693on any integer bit width.
10694
10695::
10696
10697 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10698 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10699 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10700
10701Overview:
10702"""""""""
10703
10704The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10705a signed multiplication of the two arguments, and indicate whether an
10706overflow occurred during the signed multiplication.
10707
10708Arguments:
10709""""""""""
10710
10711The arguments (%a and %b) and the first element of the result structure
10712may be of integer types of any bit width, but they must have the same
10713bit width. The second element of the result structure must be of type
10714``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10715multiplication.
10716
10717Semantics:
10718""""""""""
10719
10720The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010721a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010722the first element of which is the multiplication, and the second element
10723of which is a bit specifying if the signed multiplication resulted in an
10724overflow.
10725
10726Examples:
10727"""""""""
10728
10729.. code-block:: llvm
10730
10731 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10732 %sum = extractvalue {i32, i1} %res, 0
10733 %obit = extractvalue {i32, i1} %res, 1
10734 br i1 %obit, label %overflow, label %normal
10735
10736'``llvm.umul.with.overflow.*``' Intrinsics
10737^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10738
10739Syntax:
10740"""""""
10741
10742This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10743on any integer bit width.
10744
10745::
10746
10747 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10748 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10749 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10750
10751Overview:
10752"""""""""
10753
10754The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10755a unsigned multiplication of the two arguments, and indicate whether an
10756overflow occurred during the unsigned multiplication.
10757
10758Arguments:
10759""""""""""
10760
10761The arguments (%a and %b) and the first element of the result structure
10762may be of integer types of any bit width, but they must have the same
10763bit width. The second element of the result structure must be of type
10764``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10765multiplication.
10766
10767Semantics:
10768""""""""""
10769
10770The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010771an unsigned multiplication of the two arguments. They return a structure ---
10772the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010773element of which is a bit specifying if the unsigned multiplication
10774resulted in an overflow.
10775
10776Examples:
10777"""""""""
10778
10779.. code-block:: llvm
10780
10781 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10782 %sum = extractvalue {i32, i1} %res, 0
10783 %obit = extractvalue {i32, i1} %res, 1
10784 br i1 %obit, label %overflow, label %normal
10785
10786Specialised Arithmetic Intrinsics
10787---------------------------------
10788
Owen Anderson1056a922015-07-11 07:01:27 +000010789'``llvm.canonicalize.*``' Intrinsic
10790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10791
10792Syntax:
10793"""""""
10794
10795::
10796
10797 declare float @llvm.canonicalize.f32(float %a)
10798 declare double @llvm.canonicalize.f64(double %b)
10799
10800Overview:
10801"""""""""
10802
10803The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010804encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010805implementing certain numeric primitives such as frexp. The canonical encoding is
10806defined by IEEE-754-2008 to be:
10807
10808::
10809
10810 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010811 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010812 numbers, infinities, and NaNs, especially in decimal formats.
10813
10814This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010815conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010816according to section 6.2.
10817
10818Examples of non-canonical encodings:
10819
Sean Silvaa1190322015-08-06 22:56:48 +000010820- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010821 converted to a canonical representation per hardware-specific protocol.
10822- Many normal decimal floating point numbers have non-canonical alternative
10823 encodings.
10824- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10825 These are treated as non-canonical encodings of zero and with be flushed to
10826 a zero of the same sign by this operation.
10827
10828Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10829default exception handling must signal an invalid exception, and produce a
10830quiet NaN result.
10831
10832This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010833that the compiler does not constant fold the operation. Likewise, division by
108341.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010835-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10836
Sean Silvaa1190322015-08-06 22:56:48 +000010837``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010838
10839- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10840- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10841 to ``(x == y)``
10842
10843Additionally, the sign of zero must be conserved:
10844``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10845
10846The payload bits of a NaN must be conserved, with two exceptions.
10847First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010848must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010849usual methods.
10850
10851The canonicalization operation may be optimized away if:
10852
Sean Silvaa1190322015-08-06 22:56:48 +000010853- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010854 floating-point operation that is required by the standard to be canonical.
10855- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010856 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010857
Sean Silvab084af42012-12-07 10:36:55 +000010858'``llvm.fmuladd.*``' Intrinsic
10859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10860
10861Syntax:
10862"""""""
10863
10864::
10865
10866 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10867 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10868
10869Overview:
10870"""""""""
10871
10872The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010873expressions that can be fused if the code generator determines that (a) the
10874target instruction set has support for a fused operation, and (b) that the
10875fused operation is more efficient than the equivalent, separate pair of mul
10876and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010877
10878Arguments:
10879""""""""""
10880
10881The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10882multiplicands, a and b, and an addend c.
10883
10884Semantics:
10885""""""""""
10886
10887The expression:
10888
10889::
10890
10891 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10892
10893is equivalent to the expression a \* b + c, except that rounding will
10894not be performed between the multiplication and addition steps if the
10895code generator fuses the operations. Fusion is not guaranteed, even if
10896the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010897corresponding llvm.fma.\* intrinsic function should be used
10898instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010899
10900Examples:
10901"""""""""
10902
10903.. code-block:: llvm
10904
Tim Northover675a0962014-06-13 14:24:23 +000010905 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010906
James Molloy7395a812015-07-16 15:22:46 +000010907
10908'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10909^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10910
10911Syntax:
10912"""""""
10913This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10914
10915.. code-block:: llvm
10916
10917 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10918
10919
10920Overview:
10921"""""""""
10922
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010923The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
10924of the two operands, treating them both as unsigned integers. The intermediate
10925calculations are computed using infinitely precise unsigned arithmetic. The final
10926result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000010927
Mohammad Shahid18715532015-08-21 05:31:07 +000010928The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010929the two operands, treating them both as signed integers. If the result overflows, the
10930behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000010931
10932.. note::
10933
10934 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010935 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000010936 recommended for users to create them manually.
10937
10938Arguments:
10939""""""""""
10940
10941Both intrinsics take two integer of the same bitwidth.
10942
10943Semantics:
10944""""""""""
10945
10946The expression::
10947
10948 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10949
10950is equivalent to::
10951
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010952 %1 = zext <4 x i32> %a to <4 x i64>
10953 %2 = zext <4 x i32> %b to <4 x i64>
10954 %sub = sub <4 x i64> %1, %2
10955 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000010956
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010957and the expression::
James Molloy7395a812015-07-16 15:22:46 +000010958
10959 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10960
10961is equivalent to::
10962
10963 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010964 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000010965 %neg = sub nsw <4 x i32> zeroinitializer, %sub
10966 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10967
10968
Sean Silvab084af42012-12-07 10:36:55 +000010969Half Precision Floating Point Intrinsics
10970----------------------------------------
10971
10972For most target platforms, half precision floating point is a
10973storage-only format. This means that it is a dense encoding (in memory)
10974but does not support computation in the format.
10975
10976This means that code must first load the half-precision floating point
10977value as an i16, then convert it to float with
10978:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10979then be performed on the float value (including extending to double
10980etc). To store the value back to memory, it is first converted to float
10981if needed, then converted to i16 with
10982:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10983i16 value.
10984
10985.. _int_convert_to_fp16:
10986
10987'``llvm.convert.to.fp16``' Intrinsic
10988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10989
10990Syntax:
10991"""""""
10992
10993::
10994
Tim Northoverfd7e4242014-07-17 10:51:23 +000010995 declare i16 @llvm.convert.to.fp16.f32(float %a)
10996 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010997
10998Overview:
10999"""""""""
11000
Tim Northoverfd7e4242014-07-17 10:51:23 +000011001The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11002conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011003
11004Arguments:
11005""""""""""
11006
11007The intrinsic function contains single argument - the value to be
11008converted.
11009
11010Semantics:
11011""""""""""
11012
Tim Northoverfd7e4242014-07-17 10:51:23 +000011013The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11014conventional floating point format to half precision floating point format. The
11015return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011016
11017Examples:
11018"""""""""
11019
11020.. code-block:: llvm
11021
Tim Northoverfd7e4242014-07-17 10:51:23 +000011022 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011023 store i16 %res, i16* @x, align 2
11024
11025.. _int_convert_from_fp16:
11026
11027'``llvm.convert.from.fp16``' Intrinsic
11028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11029
11030Syntax:
11031"""""""
11032
11033::
11034
Tim Northoverfd7e4242014-07-17 10:51:23 +000011035 declare float @llvm.convert.from.fp16.f32(i16 %a)
11036 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011037
11038Overview:
11039"""""""""
11040
11041The '``llvm.convert.from.fp16``' intrinsic function performs a
11042conversion from half precision floating point format to single precision
11043floating point format.
11044
11045Arguments:
11046""""""""""
11047
11048The intrinsic function contains single argument - the value to be
11049converted.
11050
11051Semantics:
11052""""""""""
11053
11054The '``llvm.convert.from.fp16``' intrinsic function performs a
11055conversion from half single precision floating point format to single
11056precision floating point format. The input half-float value is
11057represented by an ``i16`` value.
11058
11059Examples:
11060"""""""""
11061
11062.. code-block:: llvm
11063
David Blaikiec7aabbb2015-03-04 22:06:14 +000011064 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011065 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011066
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011067.. _dbg_intrinsics:
11068
Sean Silvab084af42012-12-07 10:36:55 +000011069Debugger Intrinsics
11070-------------------
11071
11072The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11073prefix), are described in the `LLVM Source Level
11074Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11075document.
11076
11077Exception Handling Intrinsics
11078-----------------------------
11079
11080The LLVM exception handling intrinsics (which all start with
11081``llvm.eh.`` prefix), are described in the `LLVM Exception
11082Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11083
11084.. _int_trampoline:
11085
11086Trampoline Intrinsics
11087---------------------
11088
11089These intrinsics make it possible to excise one parameter, marked with
11090the :ref:`nest <nest>` attribute, from a function. The result is a
11091callable function pointer lacking the nest parameter - the caller does
11092not need to provide a value for it. Instead, the value to use is stored
11093in advance in a "trampoline", a block of memory usually allocated on the
11094stack, which also contains code to splice the nest value into the
11095argument list. This is used to implement the GCC nested function address
11096extension.
11097
11098For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11099then the resulting function pointer has signature ``i32 (i32, i32)*``.
11100It can be created as follows:
11101
11102.. code-block:: llvm
11103
11104 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011105 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011106 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11107 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11108 %fp = bitcast i8* %p to i32 (i32, i32)*
11109
11110The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11111``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11112
11113.. _int_it:
11114
11115'``llvm.init.trampoline``' Intrinsic
11116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11117
11118Syntax:
11119"""""""
11120
11121::
11122
11123 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11124
11125Overview:
11126"""""""""
11127
11128This fills the memory pointed to by ``tramp`` with executable code,
11129turning it into a trampoline.
11130
11131Arguments:
11132""""""""""
11133
11134The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11135pointers. The ``tramp`` argument must point to a sufficiently large and
11136sufficiently aligned block of memory; this memory is written to by the
11137intrinsic. Note that the size and the alignment are target-specific -
11138LLVM currently provides no portable way of determining them, so a
11139front-end that generates this intrinsic needs to have some
11140target-specific knowledge. The ``func`` argument must hold a function
11141bitcast to an ``i8*``.
11142
11143Semantics:
11144""""""""""
11145
11146The block of memory pointed to by ``tramp`` is filled with target
11147dependent code, turning it into a function. Then ``tramp`` needs to be
11148passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11149be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11150function's signature is the same as that of ``func`` with any arguments
11151marked with the ``nest`` attribute removed. At most one such ``nest``
11152argument is allowed, and it must be of pointer type. Calling the new
11153function is equivalent to calling ``func`` with the same argument list,
11154but with ``nval`` used for the missing ``nest`` argument. If, after
11155calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11156modified, then the effect of any later call to the returned function
11157pointer is undefined.
11158
11159.. _int_at:
11160
11161'``llvm.adjust.trampoline``' Intrinsic
11162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11163
11164Syntax:
11165"""""""
11166
11167::
11168
11169 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11170
11171Overview:
11172"""""""""
11173
11174This performs any required machine-specific adjustment to the address of
11175a trampoline (passed as ``tramp``).
11176
11177Arguments:
11178""""""""""
11179
11180``tramp`` must point to a block of memory which already has trampoline
11181code filled in by a previous call to
11182:ref:`llvm.init.trampoline <int_it>`.
11183
11184Semantics:
11185""""""""""
11186
11187On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011188different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011189intrinsic returns the executable address corresponding to ``tramp``
11190after performing the required machine specific adjustments. The pointer
11191returned can then be :ref:`bitcast and executed <int_trampoline>`.
11192
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011193.. _int_mload_mstore:
11194
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011195Masked Vector Load and Store Intrinsics
11196---------------------------------------
11197
11198LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11199
11200.. _int_mload:
11201
11202'``llvm.masked.load.*``' Intrinsics
11203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11204
11205Syntax:
11206"""""""
11207This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11208
11209::
11210
11211 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11212 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11213
11214Overview:
11215"""""""""
11216
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011217Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011218
11219
11220Arguments:
11221""""""""""
11222
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011223The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011224
11225
11226Semantics:
11227""""""""""
11228
11229The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11230The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11231
11232
11233::
11234
11235 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011236
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011237 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011238 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011239 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011240
11241.. _int_mstore:
11242
11243'``llvm.masked.store.*``' Intrinsics
11244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11245
11246Syntax:
11247"""""""
11248This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11249
11250::
11251
11252 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11253 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11254
11255Overview:
11256"""""""""
11257
11258Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11259
11260Arguments:
11261""""""""""
11262
11263The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11264
11265
11266Semantics:
11267""""""""""
11268
11269The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11270The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11271
11272::
11273
11274 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011275
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011276 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011277 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011278 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11279 store <16 x float> %res, <16 x float>* %ptr, align 4
11280
11281
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011282Masked Vector Gather and Scatter Intrinsics
11283-------------------------------------------
11284
11285LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11286
11287.. _int_mgather:
11288
11289'``llvm.masked.gather.*``' Intrinsics
11290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11291
11292Syntax:
11293"""""""
11294This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11295
11296::
11297
11298 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11299 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11300
11301Overview:
11302"""""""""
11303
11304Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11305
11306
11307Arguments:
11308""""""""""
11309
11310The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11311
11312
11313Semantics:
11314""""""""""
11315
11316The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11317The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11318
11319
11320::
11321
11322 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11323
11324 ;; The gather with all-true mask is equivalent to the following instruction sequence
11325 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11326 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11327 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11328 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11329
11330 %val0 = load double, double* %ptr0, align 8
11331 %val1 = load double, double* %ptr1, align 8
11332 %val2 = load double, double* %ptr2, align 8
11333 %val3 = load double, double* %ptr3, align 8
11334
11335 %vec0 = insertelement <4 x double>undef, %val0, 0
11336 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11337 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11338 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11339
11340.. _int_mscatter:
11341
11342'``llvm.masked.scatter.*``' Intrinsics
11343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11344
11345Syntax:
11346"""""""
11347This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11348
11349::
11350
11351 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11352 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11353
11354Overview:
11355"""""""""
11356
11357Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11358
11359Arguments:
11360""""""""""
11361
11362The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11363
11364
11365Semantics:
11366""""""""""
11367
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011368The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011369
11370::
11371
11372 ;; This instruction unconditionaly stores data vector in multiple addresses
11373 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11374
11375 ;; It is equivalent to a list of scalar stores
11376 %val0 = extractelement <8 x i32> %value, i32 0
11377 %val1 = extractelement <8 x i32> %value, i32 1
11378 ..
11379 %val7 = extractelement <8 x i32> %value, i32 7
11380 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11381 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11382 ..
11383 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11384 ;; Note: the order of the following stores is important when they overlap:
11385 store i32 %val0, i32* %ptr0, align 4
11386 store i32 %val1, i32* %ptr1, align 4
11387 ..
11388 store i32 %val7, i32* %ptr7, align 4
11389
11390
Sean Silvab084af42012-12-07 10:36:55 +000011391Memory Use Markers
11392------------------
11393
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011394This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011395memory objects and ranges where variables are immutable.
11396
Reid Klecknera534a382013-12-19 02:14:12 +000011397.. _int_lifestart:
11398
Sean Silvab084af42012-12-07 10:36:55 +000011399'``llvm.lifetime.start``' Intrinsic
11400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11401
11402Syntax:
11403"""""""
11404
11405::
11406
11407 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11408
11409Overview:
11410"""""""""
11411
11412The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11413object's lifetime.
11414
11415Arguments:
11416""""""""""
11417
11418The first argument is a constant integer representing the size of the
11419object, or -1 if it is variable sized. The second argument is a pointer
11420to the object.
11421
11422Semantics:
11423""""""""""
11424
11425This intrinsic indicates that before this point in the code, the value
11426of the memory pointed to by ``ptr`` is dead. This means that it is known
11427to never be used and has an undefined value. A load from the pointer
11428that precedes this intrinsic can be replaced with ``'undef'``.
11429
Reid Klecknera534a382013-12-19 02:14:12 +000011430.. _int_lifeend:
11431
Sean Silvab084af42012-12-07 10:36:55 +000011432'``llvm.lifetime.end``' Intrinsic
11433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11434
11435Syntax:
11436"""""""
11437
11438::
11439
11440 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11441
11442Overview:
11443"""""""""
11444
11445The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11446object's lifetime.
11447
11448Arguments:
11449""""""""""
11450
11451The first argument is a constant integer representing the size of the
11452object, or -1 if it is variable sized. The second argument is a pointer
11453to the object.
11454
11455Semantics:
11456""""""""""
11457
11458This intrinsic indicates that after this point in the code, the value of
11459the memory pointed to by ``ptr`` is dead. This means that it is known to
11460never be used and has an undefined value. Any stores into the memory
11461object following this intrinsic may be removed as dead.
11462
11463'``llvm.invariant.start``' Intrinsic
11464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11465
11466Syntax:
11467"""""""
11468
11469::
11470
11471 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11472
11473Overview:
11474"""""""""
11475
11476The '``llvm.invariant.start``' intrinsic specifies that the contents of
11477a memory object will not change.
11478
11479Arguments:
11480""""""""""
11481
11482The first argument is a constant integer representing the size of the
11483object, or -1 if it is variable sized. The second argument is a pointer
11484to the object.
11485
11486Semantics:
11487""""""""""
11488
11489This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11490the return value, the referenced memory location is constant and
11491unchanging.
11492
11493'``llvm.invariant.end``' Intrinsic
11494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11495
11496Syntax:
11497"""""""
11498
11499::
11500
11501 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11502
11503Overview:
11504"""""""""
11505
11506The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11507memory object are mutable.
11508
11509Arguments:
11510""""""""""
11511
11512The first argument is the matching ``llvm.invariant.start`` intrinsic.
11513The second argument is a constant integer representing the size of the
11514object, or -1 if it is variable sized and the third argument is a
11515pointer to the object.
11516
11517Semantics:
11518""""""""""
11519
11520This intrinsic indicates that the memory is mutable again.
11521
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011522'``llvm.invariant.group.barrier``' Intrinsic
11523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11524
11525Syntax:
11526"""""""
11527
11528::
11529
11530 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11531
11532Overview:
11533"""""""""
11534
11535The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11536established by invariant.group metadata no longer holds, to obtain a new pointer
11537value that does not carry the invariant information.
11538
11539
11540Arguments:
11541""""""""""
11542
11543The ``llvm.invariant.group.barrier`` takes only one argument, which is
11544the pointer to the memory for which the ``invariant.group`` no longer holds.
11545
11546Semantics:
11547""""""""""
11548
11549Returns another pointer that aliases its argument but which is considered different
11550for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11551
Sean Silvab084af42012-12-07 10:36:55 +000011552General Intrinsics
11553------------------
11554
11555This class of intrinsics is designed to be generic and has no specific
11556purpose.
11557
11558'``llvm.var.annotation``' Intrinsic
11559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11560
11561Syntax:
11562"""""""
11563
11564::
11565
11566 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11567
11568Overview:
11569"""""""""
11570
11571The '``llvm.var.annotation``' intrinsic.
11572
11573Arguments:
11574""""""""""
11575
11576The first argument is a pointer to a value, the second is a pointer to a
11577global string, the third is a pointer to a global string which is the
11578source file name, and the last argument is the line number.
11579
11580Semantics:
11581""""""""""
11582
11583This intrinsic allows annotation of local variables with arbitrary
11584strings. This can be useful for special purpose optimizations that want
11585to look for these annotations. These have no other defined use; they are
11586ignored by code generation and optimization.
11587
Michael Gottesman88d18832013-03-26 00:34:27 +000011588'``llvm.ptr.annotation.*``' Intrinsic
11589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11590
11591Syntax:
11592"""""""
11593
11594This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11595pointer to an integer of any width. *NOTE* you must specify an address space for
11596the pointer. The identifier for the default address space is the integer
11597'``0``'.
11598
11599::
11600
11601 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11602 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11603 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11604 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11605 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11606
11607Overview:
11608"""""""""
11609
11610The '``llvm.ptr.annotation``' intrinsic.
11611
11612Arguments:
11613""""""""""
11614
11615The first argument is a pointer to an integer value of arbitrary bitwidth
11616(result of some expression), the second is a pointer to a global string, the
11617third is a pointer to a global string which is the source file name, and the
11618last argument is the line number. It returns the value of the first argument.
11619
11620Semantics:
11621""""""""""
11622
11623This intrinsic allows annotation of a pointer to an integer with arbitrary
11624strings. This can be useful for special purpose optimizations that want to look
11625for these annotations. These have no other defined use; they are ignored by code
11626generation and optimization.
11627
Sean Silvab084af42012-12-07 10:36:55 +000011628'``llvm.annotation.*``' Intrinsic
11629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11630
11631Syntax:
11632"""""""
11633
11634This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11635any integer bit width.
11636
11637::
11638
11639 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11640 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11641 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11642 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11643 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11644
11645Overview:
11646"""""""""
11647
11648The '``llvm.annotation``' intrinsic.
11649
11650Arguments:
11651""""""""""
11652
11653The first argument is an integer value (result of some expression), the
11654second is a pointer to a global string, the third is a pointer to a
11655global string which is the source file name, and the last argument is
11656the line number. It returns the value of the first argument.
11657
11658Semantics:
11659""""""""""
11660
11661This intrinsic allows annotations to be put on arbitrary expressions
11662with arbitrary strings. This can be useful for special purpose
11663optimizations that want to look for these annotations. These have no
11664other defined use; they are ignored by code generation and optimization.
11665
11666'``llvm.trap``' Intrinsic
11667^^^^^^^^^^^^^^^^^^^^^^^^^
11668
11669Syntax:
11670"""""""
11671
11672::
11673
11674 declare void @llvm.trap() noreturn nounwind
11675
11676Overview:
11677"""""""""
11678
11679The '``llvm.trap``' intrinsic.
11680
11681Arguments:
11682""""""""""
11683
11684None.
11685
11686Semantics:
11687""""""""""
11688
11689This intrinsic is lowered to the target dependent trap instruction. If
11690the target does not have a trap instruction, this intrinsic will be
11691lowered to a call of the ``abort()`` function.
11692
11693'``llvm.debugtrap``' Intrinsic
11694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11695
11696Syntax:
11697"""""""
11698
11699::
11700
11701 declare void @llvm.debugtrap() nounwind
11702
11703Overview:
11704"""""""""
11705
11706The '``llvm.debugtrap``' intrinsic.
11707
11708Arguments:
11709""""""""""
11710
11711None.
11712
11713Semantics:
11714""""""""""
11715
11716This intrinsic is lowered to code which is intended to cause an
11717execution trap with the intention of requesting the attention of a
11718debugger.
11719
11720'``llvm.stackprotector``' Intrinsic
11721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11722
11723Syntax:
11724"""""""
11725
11726::
11727
11728 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11729
11730Overview:
11731"""""""""
11732
11733The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11734onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11735is placed on the stack before local variables.
11736
11737Arguments:
11738""""""""""
11739
11740The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11741The first argument is the value loaded from the stack guard
11742``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11743enough space to hold the value of the guard.
11744
11745Semantics:
11746""""""""""
11747
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011748This intrinsic causes the prologue/epilogue inserter to force the position of
11749the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11750to ensure that if a local variable on the stack is overwritten, it will destroy
11751the value of the guard. When the function exits, the guard on the stack is
11752checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11753different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11754calling the ``__stack_chk_fail()`` function.
11755
11756'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011758
11759Syntax:
11760"""""""
11761
11762::
11763
11764 declare void @llvm.stackprotectorcheck(i8** <guard>)
11765
11766Overview:
11767"""""""""
11768
11769The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011770created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011771``__stack_chk_fail()`` function.
11772
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011773Arguments:
11774""""""""""
11775
11776The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11777the variable ``@__stack_chk_guard``.
11778
11779Semantics:
11780""""""""""
11781
11782This intrinsic is provided to perform the stack protector check by comparing
11783``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11784values do not match call the ``__stack_chk_fail()`` function.
11785
11786The reason to provide this as an IR level intrinsic instead of implementing it
11787via other IR operations is that in order to perform this operation at the IR
11788level without an intrinsic, one would need to create additional basic blocks to
11789handle the success/failure cases. This makes it difficult to stop the stack
11790protector check from disrupting sibling tail calls in Codegen. With this
11791intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011792codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011793
Sean Silvab084af42012-12-07 10:36:55 +000011794'``llvm.objectsize``' Intrinsic
11795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11796
11797Syntax:
11798"""""""
11799
11800::
11801
11802 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11803 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11804
11805Overview:
11806"""""""""
11807
11808The ``llvm.objectsize`` intrinsic is designed to provide information to
11809the optimizers to determine at compile time whether a) an operation
11810(like memcpy) will overflow a buffer that corresponds to an object, or
11811b) that a runtime check for overflow isn't necessary. An object in this
11812context means an allocation of a specific class, structure, array, or
11813other object.
11814
11815Arguments:
11816""""""""""
11817
11818The ``llvm.objectsize`` intrinsic takes two arguments. The first
11819argument is a pointer to or into the ``object``. The second argument is
11820a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11821or -1 (if false) when the object size is unknown. The second argument
11822only accepts constants.
11823
11824Semantics:
11825""""""""""
11826
11827The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11828the size of the object concerned. If the size cannot be determined at
11829compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11830on the ``min`` argument).
11831
11832'``llvm.expect``' Intrinsic
11833^^^^^^^^^^^^^^^^^^^^^^^^^^^
11834
11835Syntax:
11836"""""""
11837
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011838This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11839integer bit width.
11840
Sean Silvab084af42012-12-07 10:36:55 +000011841::
11842
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011843 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011844 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11845 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11846
11847Overview:
11848"""""""""
11849
11850The ``llvm.expect`` intrinsic provides information about expected (the
11851most probable) value of ``val``, which can be used by optimizers.
11852
11853Arguments:
11854""""""""""
11855
11856The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11857a value. The second argument is an expected value, this needs to be a
11858constant value, variables are not allowed.
11859
11860Semantics:
11861""""""""""
11862
11863This intrinsic is lowered to the ``val``.
11864
Philip Reamese0e90832015-04-26 22:23:12 +000011865.. _int_assume:
11866
Hal Finkel93046912014-07-25 21:13:35 +000011867'``llvm.assume``' Intrinsic
11868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11869
11870Syntax:
11871"""""""
11872
11873::
11874
11875 declare void @llvm.assume(i1 %cond)
11876
11877Overview:
11878"""""""""
11879
11880The ``llvm.assume`` allows the optimizer to assume that the provided
11881condition is true. This information can then be used in simplifying other parts
11882of the code.
11883
11884Arguments:
11885""""""""""
11886
11887The condition which the optimizer may assume is always true.
11888
11889Semantics:
11890""""""""""
11891
11892The intrinsic allows the optimizer to assume that the provided condition is
11893always true whenever the control flow reaches the intrinsic call. No code is
11894generated for this intrinsic, and instructions that contribute only to the
11895provided condition are not used for code generation. If the condition is
11896violated during execution, the behavior is undefined.
11897
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011898Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011899used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11900only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011901if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011902sufficient overall improvement in code quality. For this reason,
11903``llvm.assume`` should not be used to document basic mathematical invariants
11904that the optimizer can otherwise deduce or facts that are of little use to the
11905optimizer.
11906
Peter Collingbournee6909c82015-02-20 20:30:47 +000011907.. _bitset.test:
11908
11909'``llvm.bitset.test``' Intrinsic
11910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11911
11912Syntax:
11913"""""""
11914
11915::
11916
11917 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11918
11919
11920Arguments:
11921""""""""""
11922
11923The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000011924metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000011925
11926Overview:
11927"""""""""
11928
11929The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11930member of the given bitset.
11931
Sean Silvab084af42012-12-07 10:36:55 +000011932'``llvm.donothing``' Intrinsic
11933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11934
11935Syntax:
11936"""""""
11937
11938::
11939
11940 declare void @llvm.donothing() nounwind readnone
11941
11942Overview:
11943"""""""""
11944
Juergen Ributzkac9161192014-10-23 22:36:13 +000011945The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11946two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11947with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011948
11949Arguments:
11950""""""""""
11951
11952None.
11953
11954Semantics:
11955""""""""""
11956
11957This intrinsic does nothing, and it's removed by optimizers and ignored
11958by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011959
11960Stack Map Intrinsics
11961--------------------
11962
11963LLVM provides experimental intrinsics to support runtime patching
11964mechanisms commonly desired in dynamic language JITs. These intrinsics
11965are described in :doc:`StackMaps`.