blob: 4368cca4b54085af33da3fb1ae35f34aadcea9e7 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Sean Silva706fba52015-08-06 22:56:24 +0000693The argument list is a comma separated sequence of arguments where each
694argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
David Blaikie196582e2015-10-22 01:17:29 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Sean Silvaa1190322015-08-06 22:56:48 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000750that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000825with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000831COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000897 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000932 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000933 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000941 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001030 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001037 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001073index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001090of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
Sean Silvaa1190322015-08-06 22:56:48 +00001097A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001111have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001116definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Sean Silvaa1190322015-08-06 22:56:48 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001222 Transformations that are execution model agnostic may not make the execution
1223 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001224``inlinehint``
1225 This attribute indicates that the source code contained a hint that
1226 inlining this function is desirable (such as the "inline" keyword in
1227 C/C++). It is just a hint; it imposes no requirements on the
1228 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001229``jumptable``
1230 This attribute indicates that the function should be added to a
1231 jump-instruction table at code-generation time, and that all address-taken
1232 references to this function should be replaced with a reference to the
1233 appropriate jump-instruction-table function pointer. Note that this creates
1234 a new pointer for the original function, which means that code that depends
1235 on function-pointer identity can break. So, any function annotated with
1236 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001237``minsize``
1238 This attribute suggests that optimization passes and code generator
1239 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001240 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001241 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001242``naked``
1243 This attribute disables prologue / epilogue emission for the
1244 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001245``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001246 This indicates that the callee function at a call site is not recognized as
1247 a built-in function. LLVM will retain the original call and not replace it
1248 with equivalent code based on the semantics of the built-in function, unless
1249 the call site uses the ``builtin`` attribute. This is valid at call sites
1250 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001251``noduplicate``
1252 This attribute indicates that calls to the function cannot be
1253 duplicated. A call to a ``noduplicate`` function may be moved
1254 within its parent function, but may not be duplicated within
1255 its parent function.
1256
1257 A function containing a ``noduplicate`` call may still
1258 be an inlining candidate, provided that the call is not
1259 duplicated by inlining. That implies that the function has
1260 internal linkage and only has one call site, so the original
1261 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001262``noimplicitfloat``
1263 This attributes disables implicit floating point instructions.
1264``noinline``
1265 This attribute indicates that the inliner should never inline this
1266 function in any situation. This attribute may not be used together
1267 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001268``nonlazybind``
1269 This attribute suppresses lazy symbol binding for the function. This
1270 may make calls to the function faster, at the cost of extra program
1271 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001272``noredzone``
1273 This attribute indicates that the code generator should not use a
1274 red zone, even if the target-specific ABI normally permits it.
1275``noreturn``
1276 This function attribute indicates that the function never returns
1277 normally. This produces undefined behavior at runtime if the
1278 function ever does dynamically return.
1279``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001280 This function attribute indicates that the function never raises an
1281 exception. If the function does raise an exception, its runtime
1282 behavior is undefined. However, functions marked nounwind may still
1283 trap or generate asynchronous exceptions. Exception handling schemes
1284 that are recognized by LLVM to handle asynchronous exceptions, such
1285 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001286``optnone``
1287 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001288 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001289 exception of interprocedural optimization passes.
1290 This attribute cannot be used together with the ``alwaysinline``
1291 attribute; this attribute is also incompatible
1292 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001293
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001294 This attribute requires the ``noinline`` attribute to be specified on
1295 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001296 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001297 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001298``optsize``
1299 This attribute suggests that optimization passes and code generator
1300 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001301 and otherwise do optimizations specifically to reduce code size as
1302 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001303``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001304 On a function, this attribute indicates that the function computes its
1305 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001306 without dereferencing any pointer arguments or otherwise accessing
1307 any mutable state (e.g. memory, control registers, etc) visible to
1308 caller functions. It does not write through any pointer arguments
1309 (including ``byval`` arguments) and never changes any state visible
1310 to callers. This means that it cannot unwind exceptions by calling
1311 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001312
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001313 On an argument, this attribute indicates that the function does not
1314 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001315 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001316``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001317 On a function, this attribute indicates that the function does not write
1318 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001319 modify any state (e.g. memory, control registers, etc) visible to
1320 caller functions. It may dereference pointer arguments and read
1321 state that may be set in the caller. A readonly function always
1322 returns the same value (or unwinds an exception identically) when
1323 called with the same set of arguments and global state. It cannot
1324 unwind an exception by calling the ``C++`` exception throwing
1325 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001326
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001327 On an argument, this attribute indicates that the function does not write
1328 through this pointer argument, even though it may write to the memory that
1329 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001330``argmemonly``
1331 This attribute indicates that the only memory accesses inside function are
1332 loads and stores from objects pointed to by its pointer-typed arguments,
1333 with arbitrary offsets. Or in other words, all memory operations in the
1334 function can refer to memory only using pointers based on its function
1335 arguments.
1336 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1337 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001338``returns_twice``
1339 This attribute indicates that this function can return twice. The C
1340 ``setjmp`` is an example of such a function. The compiler disables
1341 some optimizations (like tail calls) in the caller of these
1342 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001343``safestack``
1344 This attribute indicates that
1345 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1346 protection is enabled for this function.
1347
1348 If a function that has a ``safestack`` attribute is inlined into a
1349 function that doesn't have a ``safestack`` attribute or which has an
1350 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1351 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001352``sanitize_address``
1353 This attribute indicates that AddressSanitizer checks
1354 (dynamic address safety analysis) are enabled for this function.
1355``sanitize_memory``
1356 This attribute indicates that MemorySanitizer checks (dynamic detection
1357 of accesses to uninitialized memory) are enabled for this function.
1358``sanitize_thread``
1359 This attribute indicates that ThreadSanitizer checks
1360 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001361``ssp``
1362 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001363 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001364 placed on the stack before the local variables that's checked upon
1365 return from the function to see if it has been overwritten. A
1366 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001367 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001368
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1370 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1371 - Calls to alloca() with variable sizes or constant sizes greater than
1372 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001373
Josh Magee24c7f062014-02-01 01:36:16 +00001374 Variables that are identified as requiring a protector will be arranged
1375 on the stack such that they are adjacent to the stack protector guard.
1376
Sean Silvab084af42012-12-07 10:36:55 +00001377 If a function that has an ``ssp`` attribute is inlined into a
1378 function that doesn't have an ``ssp`` attribute, then the resulting
1379 function will have an ``ssp`` attribute.
1380``sspreq``
1381 This attribute indicates that the function should *always* emit a
1382 stack smashing protector. This overrides the ``ssp`` function
1383 attribute.
1384
Josh Magee24c7f062014-02-01 01:36:16 +00001385 Variables that are identified as requiring a protector will be arranged
1386 on the stack such that they are adjacent to the stack protector guard.
1387 The specific layout rules are:
1388
1389 #. Large arrays and structures containing large arrays
1390 (``>= ssp-buffer-size``) are closest to the stack protector.
1391 #. Small arrays and structures containing small arrays
1392 (``< ssp-buffer-size``) are 2nd closest to the protector.
1393 #. Variables that have had their address taken are 3rd closest to the
1394 protector.
1395
Sean Silvab084af42012-12-07 10:36:55 +00001396 If a function that has an ``sspreq`` attribute is inlined into a
1397 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001398 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1399 an ``sspreq`` attribute.
1400``sspstrong``
1401 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001402 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001403 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001405
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001406 - Arrays of any size and type
1407 - Aggregates containing an array of any size and type.
1408 - Calls to alloca().
1409 - Local variables that have had their address taken.
1410
Josh Magee24c7f062014-02-01 01:36:16 +00001411 Variables that are identified as requiring a protector will be arranged
1412 on the stack such that they are adjacent to the stack protector guard.
1413 The specific layout rules are:
1414
1415 #. Large arrays and structures containing large arrays
1416 (``>= ssp-buffer-size``) are closest to the stack protector.
1417 #. Small arrays and structures containing small arrays
1418 (``< ssp-buffer-size``) are 2nd closest to the protector.
1419 #. Variables that have had their address taken are 3rd closest to the
1420 protector.
1421
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001422 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001423
1424 If a function that has an ``sspstrong`` attribute is inlined into a
1425 function that doesn't have an ``sspstrong`` attribute, then the
1426 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001427``"thunk"``
1428 This attribute indicates that the function will delegate to some other
1429 function with a tail call. The prototype of a thunk should not be used for
1430 optimization purposes. The caller is expected to cast the thunk prototype to
1431 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001432``uwtable``
1433 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001434 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001435 show that no exceptions passes by it. This is normally the case for
1436 the ELF x86-64 abi, but it can be disabled for some compilation
1437 units.
Sean Silvab084af42012-12-07 10:36:55 +00001438
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001439
1440.. _opbundles:
1441
1442Operand Bundles
1443---------------
1444
1445Note: operand bundles are a work in progress, and they should be
1446considered experimental at this time.
1447
1448Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001449with certain LLVM instructions (currently only ``call`` s and
1450``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001451incorrect and will change program semantics.
1452
1453Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001454
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001455 operand bundle set ::= '[' operand bundle ']'
1456 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1457 bundle operand ::= SSA value
1458 tag ::= string constant
1459
1460Operand bundles are **not** part of a function's signature, and a
1461given function may be called from multiple places with different kinds
1462of operand bundles. This reflects the fact that the operand bundles
1463are conceptually a part of the ``call`` (or ``invoke``), not the
1464callee being dispatched to.
1465
1466Operand bundles are a generic mechanism intended to support
1467runtime-introspection-like functionality for managed languages. While
1468the exact semantics of an operand bundle depend on the bundle tag,
1469there are certain limitations to how much the presence of an operand
1470bundle can influence the semantics of a program. These restrictions
1471are described as the semantics of an "unknown" operand bundle. As
1472long as the behavior of an operand bundle is describable within these
1473restrictions, LLVM does not need to have special knowledge of the
1474operand bundle to not miscompile programs containing it.
1475
David Majnemer34cacb42015-10-22 01:46:38 +00001476- The bundle operands for an unknown operand bundle escape in unknown
1477 ways before control is transferred to the callee or invokee.
1478- Calls and invokes with operand bundles have unknown read / write
1479 effect on the heap on entry and exit (even if the call target is
1480 ``readnone`` or ``readonly``).
1481- An operand bundle at a call site cannot change the implementation
1482 of the called function. Inter-procedural optimizations work as
1483 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001484
Sean Silvab084af42012-12-07 10:36:55 +00001485.. _moduleasm:
1486
1487Module-Level Inline Assembly
1488----------------------------
1489
1490Modules may contain "module-level inline asm" blocks, which corresponds
1491to the GCC "file scope inline asm" blocks. These blocks are internally
1492concatenated by LLVM and treated as a single unit, but may be separated
1493in the ``.ll`` file if desired. The syntax is very simple:
1494
1495.. code-block:: llvm
1496
1497 module asm "inline asm code goes here"
1498 module asm "more can go here"
1499
1500The strings can contain any character by escaping non-printable
1501characters. The escape sequence used is simply "\\xx" where "xx" is the
1502two digit hex code for the number.
1503
James Y Knightbc832ed2015-07-08 18:08:36 +00001504Note that the assembly string *must* be parseable by LLVM's integrated assembler
1505(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001506
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001507.. _langref_datalayout:
1508
Sean Silvab084af42012-12-07 10:36:55 +00001509Data Layout
1510-----------
1511
1512A module may specify a target specific data layout string that specifies
1513how data is to be laid out in memory. The syntax for the data layout is
1514simply:
1515
1516.. code-block:: llvm
1517
1518 target datalayout = "layout specification"
1519
1520The *layout specification* consists of a list of specifications
1521separated by the minus sign character ('-'). Each specification starts
1522with a letter and may include other information after the letter to
1523define some aspect of the data layout. The specifications accepted are
1524as follows:
1525
1526``E``
1527 Specifies that the target lays out data in big-endian form. That is,
1528 the bits with the most significance have the lowest address
1529 location.
1530``e``
1531 Specifies that the target lays out data in little-endian form. That
1532 is, the bits with the least significance have the lowest address
1533 location.
1534``S<size>``
1535 Specifies the natural alignment of the stack in bits. Alignment
1536 promotion of stack variables is limited to the natural stack
1537 alignment to avoid dynamic stack realignment. The stack alignment
1538 must be a multiple of 8-bits. If omitted, the natural stack
1539 alignment defaults to "unspecified", which does not prevent any
1540 alignment promotions.
1541``p[n]:<size>:<abi>:<pref>``
1542 This specifies the *size* of a pointer and its ``<abi>`` and
1543 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001544 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001545 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001546 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001547``i<size>:<abi>:<pref>``
1548 This specifies the alignment for an integer type of a given bit
1549 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1550``v<size>:<abi>:<pref>``
1551 This specifies the alignment for a vector type of a given bit
1552 ``<size>``.
1553``f<size>:<abi>:<pref>``
1554 This specifies the alignment for a floating point type of a given bit
1555 ``<size>``. Only values of ``<size>`` that are supported by the target
1556 will work. 32 (float) and 64 (double) are supported on all targets; 80
1557 or 128 (different flavors of long double) are also supported on some
1558 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001559``a:<abi>:<pref>``
1560 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001561``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001562 If present, specifies that llvm names are mangled in the output. The
1563 options are
1564
1565 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1566 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1567 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1568 symbols get a ``_`` prefix.
1569 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1570 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001571``n<size1>:<size2>:<size3>...``
1572 This specifies a set of native integer widths for the target CPU in
1573 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1574 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1575 this set are considered to support most general arithmetic operations
1576 efficiently.
1577
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001578On every specification that takes a ``<abi>:<pref>``, specifying the
1579``<pref>`` alignment is optional. If omitted, the preceding ``:``
1580should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1581
Sean Silvab084af42012-12-07 10:36:55 +00001582When constructing the data layout for a given target, LLVM starts with a
1583default set of specifications which are then (possibly) overridden by
1584the specifications in the ``datalayout`` keyword. The default
1585specifications are given in this list:
1586
1587- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001588- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1589- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1590 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001591- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001592- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1593- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1594- ``i16:16:16`` - i16 is 16-bit aligned
1595- ``i32:32:32`` - i32 is 32-bit aligned
1596- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1597 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001598- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001599- ``f32:32:32`` - float is 32-bit aligned
1600- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001601- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001602- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1603- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001604- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001605
1606When LLVM is determining the alignment for a given type, it uses the
1607following rules:
1608
1609#. If the type sought is an exact match for one of the specifications,
1610 that specification is used.
1611#. If no match is found, and the type sought is an integer type, then
1612 the smallest integer type that is larger than the bitwidth of the
1613 sought type is used. If none of the specifications are larger than
1614 the bitwidth then the largest integer type is used. For example,
1615 given the default specifications above, the i7 type will use the
1616 alignment of i8 (next largest) while both i65 and i256 will use the
1617 alignment of i64 (largest specified).
1618#. If no match is found, and the type sought is a vector type, then the
1619 largest vector type that is smaller than the sought vector type will
1620 be used as a fall back. This happens because <128 x double> can be
1621 implemented in terms of 64 <2 x double>, for example.
1622
1623The function of the data layout string may not be what you expect.
1624Notably, this is not a specification from the frontend of what alignment
1625the code generator should use.
1626
1627Instead, if specified, the target data layout is required to match what
1628the ultimate *code generator* expects. This string is used by the
1629mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001630what the ultimate code generator uses. There is no way to generate IR
1631that does not embed this target-specific detail into the IR. If you
1632don't specify the string, the default specifications will be used to
1633generate a Data Layout and the optimization phases will operate
1634accordingly and introduce target specificity into the IR with respect to
1635these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001636
Bill Wendling5cc90842013-10-18 23:41:25 +00001637.. _langref_triple:
1638
1639Target Triple
1640-------------
1641
1642A module may specify a target triple string that describes the target
1643host. The syntax for the target triple is simply:
1644
1645.. code-block:: llvm
1646
1647 target triple = "x86_64-apple-macosx10.7.0"
1648
1649The *target triple* string consists of a series of identifiers delimited
1650by the minus sign character ('-'). The canonical forms are:
1651
1652::
1653
1654 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1655 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1656
1657This information is passed along to the backend so that it generates
1658code for the proper architecture. It's possible to override this on the
1659command line with the ``-mtriple`` command line option.
1660
Sean Silvab084af42012-12-07 10:36:55 +00001661.. _pointeraliasing:
1662
1663Pointer Aliasing Rules
1664----------------------
1665
1666Any memory access must be done through a pointer value associated with
1667an address range of the memory access, otherwise the behavior is
1668undefined. Pointer values are associated with address ranges according
1669to the following rules:
1670
1671- A pointer value is associated with the addresses associated with any
1672 value it is *based* on.
1673- An address of a global variable is associated with the address range
1674 of the variable's storage.
1675- The result value of an allocation instruction is associated with the
1676 address range of the allocated storage.
1677- A null pointer in the default address-space is associated with no
1678 address.
1679- An integer constant other than zero or a pointer value returned from
1680 a function not defined within LLVM may be associated with address
1681 ranges allocated through mechanisms other than those provided by
1682 LLVM. Such ranges shall not overlap with any ranges of addresses
1683 allocated by mechanisms provided by LLVM.
1684
1685A pointer value is *based* on another pointer value according to the
1686following rules:
1687
1688- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001689 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001690- The result value of a ``bitcast`` is *based* on the operand of the
1691 ``bitcast``.
1692- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1693 values that contribute (directly or indirectly) to the computation of
1694 the pointer's value.
1695- The "*based* on" relationship is transitive.
1696
1697Note that this definition of *"based"* is intentionally similar to the
1698definition of *"based"* in C99, though it is slightly weaker.
1699
1700LLVM IR does not associate types with memory. The result type of a
1701``load`` merely indicates the size and alignment of the memory from
1702which to load, as well as the interpretation of the value. The first
1703operand type of a ``store`` similarly only indicates the size and
1704alignment of the store.
1705
1706Consequently, type-based alias analysis, aka TBAA, aka
1707``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1708:ref:`Metadata <metadata>` may be used to encode additional information
1709which specialized optimization passes may use to implement type-based
1710alias analysis.
1711
1712.. _volatile:
1713
1714Volatile Memory Accesses
1715------------------------
1716
1717Certain memory accesses, such as :ref:`load <i_load>`'s,
1718:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1719marked ``volatile``. The optimizers must not change the number of
1720volatile operations or change their order of execution relative to other
1721volatile operations. The optimizers *may* change the order of volatile
1722operations relative to non-volatile operations. This is not Java's
1723"volatile" and has no cross-thread synchronization behavior.
1724
Andrew Trick89fc5a62013-01-30 21:19:35 +00001725IR-level volatile loads and stores cannot safely be optimized into
1726llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1727flagged volatile. Likewise, the backend should never split or merge
1728target-legal volatile load/store instructions.
1729
Andrew Trick7e6f9282013-01-31 00:49:39 +00001730.. admonition:: Rationale
1731
1732 Platforms may rely on volatile loads and stores of natively supported
1733 data width to be executed as single instruction. For example, in C
1734 this holds for an l-value of volatile primitive type with native
1735 hardware support, but not necessarily for aggregate types. The
1736 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001737 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001738 do not violate the frontend's contract with the language.
1739
Sean Silvab084af42012-12-07 10:36:55 +00001740.. _memmodel:
1741
1742Memory Model for Concurrent Operations
1743--------------------------------------
1744
1745The LLVM IR does not define any way to start parallel threads of
1746execution or to register signal handlers. Nonetheless, there are
1747platform-specific ways to create them, and we define LLVM IR's behavior
1748in their presence. This model is inspired by the C++0x memory model.
1749
1750For a more informal introduction to this model, see the :doc:`Atomics`.
1751
1752We define a *happens-before* partial order as the least partial order
1753that
1754
1755- Is a superset of single-thread program order, and
1756- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1757 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1758 techniques, like pthread locks, thread creation, thread joining,
1759 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1760 Constraints <ordering>`).
1761
1762Note that program order does not introduce *happens-before* edges
1763between a thread and signals executing inside that thread.
1764
1765Every (defined) read operation (load instructions, memcpy, atomic
1766loads/read-modify-writes, etc.) R reads a series of bytes written by
1767(defined) write operations (store instructions, atomic
1768stores/read-modify-writes, memcpy, etc.). For the purposes of this
1769section, initialized globals are considered to have a write of the
1770initializer which is atomic and happens before any other read or write
1771of the memory in question. For each byte of a read R, R\ :sub:`byte`
1772may see any write to the same byte, except:
1773
1774- If write\ :sub:`1` happens before write\ :sub:`2`, and
1775 write\ :sub:`2` happens before R\ :sub:`byte`, then
1776 R\ :sub:`byte` does not see write\ :sub:`1`.
1777- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1778 R\ :sub:`byte` does not see write\ :sub:`3`.
1779
1780Given that definition, R\ :sub:`byte` is defined as follows:
1781
1782- If R is volatile, the result is target-dependent. (Volatile is
1783 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001784 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001785 like normal memory. It does not generally provide cross-thread
1786 synchronization.)
1787- Otherwise, if there is no write to the same byte that happens before
1788 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1789- Otherwise, if R\ :sub:`byte` may see exactly one write,
1790 R\ :sub:`byte` returns the value written by that write.
1791- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1792 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1793 Memory Ordering Constraints <ordering>` section for additional
1794 constraints on how the choice is made.
1795- Otherwise R\ :sub:`byte` returns ``undef``.
1796
1797R returns the value composed of the series of bytes it read. This
1798implies that some bytes within the value may be ``undef`` **without**
1799the entire value being ``undef``. Note that this only defines the
1800semantics of the operation; it doesn't mean that targets will emit more
1801than one instruction to read the series of bytes.
1802
1803Note that in cases where none of the atomic intrinsics are used, this
1804model places only one restriction on IR transformations on top of what
1805is required for single-threaded execution: introducing a store to a byte
1806which might not otherwise be stored is not allowed in general.
1807(Specifically, in the case where another thread might write to and read
1808from an address, introducing a store can change a load that may see
1809exactly one write into a load that may see multiple writes.)
1810
1811.. _ordering:
1812
1813Atomic Memory Ordering Constraints
1814----------------------------------
1815
1816Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1817:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1818:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001819ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001820the same address they *synchronize with*. These semantics are borrowed
1821from Java and C++0x, but are somewhat more colloquial. If these
1822descriptions aren't precise enough, check those specs (see spec
1823references in the :doc:`atomics guide <Atomics>`).
1824:ref:`fence <i_fence>` instructions treat these orderings somewhat
1825differently since they don't take an address. See that instruction's
1826documentation for details.
1827
1828For a simpler introduction to the ordering constraints, see the
1829:doc:`Atomics`.
1830
1831``unordered``
1832 The set of values that can be read is governed by the happens-before
1833 partial order. A value cannot be read unless some operation wrote
1834 it. This is intended to provide a guarantee strong enough to model
1835 Java's non-volatile shared variables. This ordering cannot be
1836 specified for read-modify-write operations; it is not strong enough
1837 to make them atomic in any interesting way.
1838``monotonic``
1839 In addition to the guarantees of ``unordered``, there is a single
1840 total order for modifications by ``monotonic`` operations on each
1841 address. All modification orders must be compatible with the
1842 happens-before order. There is no guarantee that the modification
1843 orders can be combined to a global total order for the whole program
1844 (and this often will not be possible). The read in an atomic
1845 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1846 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1847 order immediately before the value it writes. If one atomic read
1848 happens before another atomic read of the same address, the later
1849 read must see the same value or a later value in the address's
1850 modification order. This disallows reordering of ``monotonic`` (or
1851 stronger) operations on the same address. If an address is written
1852 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1853 read that address repeatedly, the other threads must eventually see
1854 the write. This corresponds to the C++0x/C1x
1855 ``memory_order_relaxed``.
1856``acquire``
1857 In addition to the guarantees of ``monotonic``, a
1858 *synchronizes-with* edge may be formed with a ``release`` operation.
1859 This is intended to model C++'s ``memory_order_acquire``.
1860``release``
1861 In addition to the guarantees of ``monotonic``, if this operation
1862 writes a value which is subsequently read by an ``acquire``
1863 operation, it *synchronizes-with* that operation. (This isn't a
1864 complete description; see the C++0x definition of a release
1865 sequence.) This corresponds to the C++0x/C1x
1866 ``memory_order_release``.
1867``acq_rel`` (acquire+release)
1868 Acts as both an ``acquire`` and ``release`` operation on its
1869 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1870``seq_cst`` (sequentially consistent)
1871 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001872 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001873 writes), there is a global total order on all
1874 sequentially-consistent operations on all addresses, which is
1875 consistent with the *happens-before* partial order and with the
1876 modification orders of all the affected addresses. Each
1877 sequentially-consistent read sees the last preceding write to the
1878 same address in this global order. This corresponds to the C++0x/C1x
1879 ``memory_order_seq_cst`` and Java volatile.
1880
1881.. _singlethread:
1882
1883If an atomic operation is marked ``singlethread``, it only *synchronizes
1884with* or participates in modification and seq\_cst total orderings with
1885other operations running in the same thread (for example, in signal
1886handlers).
1887
1888.. _fastmath:
1889
1890Fast-Math Flags
1891---------------
1892
1893LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1894:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001895:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1896be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001897
1898``nnan``
1899 No NaNs - Allow optimizations to assume the arguments and result are not
1900 NaN. Such optimizations are required to retain defined behavior over
1901 NaNs, but the value of the result is undefined.
1902
1903``ninf``
1904 No Infs - Allow optimizations to assume the arguments and result are not
1905 +/-Inf. Such optimizations are required to retain defined behavior over
1906 +/-Inf, but the value of the result is undefined.
1907
1908``nsz``
1909 No Signed Zeros - Allow optimizations to treat the sign of a zero
1910 argument or result as insignificant.
1911
1912``arcp``
1913 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1914 argument rather than perform division.
1915
1916``fast``
1917 Fast - Allow algebraically equivalent transformations that may
1918 dramatically change results in floating point (e.g. reassociate). This
1919 flag implies all the others.
1920
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001921.. _uselistorder:
1922
1923Use-list Order Directives
1924-------------------------
1925
1926Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001927order to be recreated. ``<order-indexes>`` is a comma-separated list of
1928indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001929value's use-list is immediately sorted by these indexes.
1930
Sean Silvaa1190322015-08-06 22:56:48 +00001931Use-list directives may appear at function scope or global scope. They are not
1932instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001933function scope, they must appear after the terminator of the final basic block.
1934
1935If basic blocks have their address taken via ``blockaddress()`` expressions,
1936``uselistorder_bb`` can be used to reorder their use-lists from outside their
1937function's scope.
1938
1939:Syntax:
1940
1941::
1942
1943 uselistorder <ty> <value>, { <order-indexes> }
1944 uselistorder_bb @function, %block { <order-indexes> }
1945
1946:Examples:
1947
1948::
1949
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001950 define void @foo(i32 %arg1, i32 %arg2) {
1951 entry:
1952 ; ... instructions ...
1953 bb:
1954 ; ... instructions ...
1955
1956 ; At function scope.
1957 uselistorder i32 %arg1, { 1, 0, 2 }
1958 uselistorder label %bb, { 1, 0 }
1959 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001960
1961 ; At global scope.
1962 uselistorder i32* @global, { 1, 2, 0 }
1963 uselistorder i32 7, { 1, 0 }
1964 uselistorder i32 (i32) @bar, { 1, 0 }
1965 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1966
Sean Silvab084af42012-12-07 10:36:55 +00001967.. _typesystem:
1968
1969Type System
1970===========
1971
1972The LLVM type system is one of the most important features of the
1973intermediate representation. Being typed enables a number of
1974optimizations to be performed on the intermediate representation
1975directly, without having to do extra analyses on the side before the
1976transformation. A strong type system makes it easier to read the
1977generated code and enables novel analyses and transformations that are
1978not feasible to perform on normal three address code representations.
1979
Rafael Espindola08013342013-12-07 19:34:20 +00001980.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001981
Rafael Espindola08013342013-12-07 19:34:20 +00001982Void Type
1983---------
Sean Silvab084af42012-12-07 10:36:55 +00001984
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001985:Overview:
1986
Rafael Espindola08013342013-12-07 19:34:20 +00001987
1988The void type does not represent any value and has no size.
1989
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001990:Syntax:
1991
Rafael Espindola08013342013-12-07 19:34:20 +00001992
1993::
1994
1995 void
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997
Rafael Espindola08013342013-12-07 19:34:20 +00001998.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001999
Rafael Espindola08013342013-12-07 19:34:20 +00002000Function Type
2001-------------
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002003:Overview:
2004
Sean Silvab084af42012-12-07 10:36:55 +00002005
Rafael Espindola08013342013-12-07 19:34:20 +00002006The function type can be thought of as a function signature. It consists of a
2007return type and a list of formal parameter types. The return type of a function
2008type is a void type or first class type --- except for :ref:`label <t_label>`
2009and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002010
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002011:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola08013342013-12-07 19:34:20 +00002013::
Sean Silvab084af42012-12-07 10:36:55 +00002014
Rafael Espindola08013342013-12-07 19:34:20 +00002015 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002016
Rafael Espindola08013342013-12-07 19:34:20 +00002017...where '``<parameter list>``' is a comma-separated list of type
2018specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002019indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002020argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002021handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002022except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002023
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002024:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002025
Rafael Espindola08013342013-12-07 19:34:20 +00002026+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2027| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2028+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2029| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2030+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2031| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2032+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2033| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2034+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2035
2036.. _t_firstclass:
2037
2038First Class Types
2039-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002040
2041The :ref:`first class <t_firstclass>` types are perhaps the most important.
2042Values of these types are the only ones which can be produced by
2043instructions.
2044
Rafael Espindola08013342013-12-07 19:34:20 +00002045.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002046
Rafael Espindola08013342013-12-07 19:34:20 +00002047Single Value Types
2048^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002049
Rafael Espindola08013342013-12-07 19:34:20 +00002050These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002051
2052.. _t_integer:
2053
2054Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002055""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002056
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002057:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002058
2059The integer type is a very simple type that simply specifies an
2060arbitrary bit width for the integer type desired. Any bit width from 1
2061bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2062
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002063:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002064
2065::
2066
2067 iN
2068
2069The number of bits the integer will occupy is specified by the ``N``
2070value.
2071
2072Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002073*********
Sean Silvab084af42012-12-07 10:36:55 +00002074
2075+----------------+------------------------------------------------+
2076| ``i1`` | a single-bit integer. |
2077+----------------+------------------------------------------------+
2078| ``i32`` | a 32-bit integer. |
2079+----------------+------------------------------------------------+
2080| ``i1942652`` | a really big integer of over 1 million bits. |
2081+----------------+------------------------------------------------+
2082
2083.. _t_floating:
2084
2085Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002086""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002087
2088.. list-table::
2089 :header-rows: 1
2090
2091 * - Type
2092 - Description
2093
2094 * - ``half``
2095 - 16-bit floating point value
2096
2097 * - ``float``
2098 - 32-bit floating point value
2099
2100 * - ``double``
2101 - 64-bit floating point value
2102
2103 * - ``fp128``
2104 - 128-bit floating point value (112-bit mantissa)
2105
2106 * - ``x86_fp80``
2107 - 80-bit floating point value (X87)
2108
2109 * - ``ppc_fp128``
2110 - 128-bit floating point value (two 64-bits)
2111
Reid Kleckner9a16d082014-03-05 02:41:37 +00002112X86_mmx Type
2113""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002114
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002115:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002116
Reid Kleckner9a16d082014-03-05 02:41:37 +00002117The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002118machine. The operations allowed on it are quite limited: parameters and
2119return values, load and store, and bitcast. User-specified MMX
2120instructions are represented as intrinsic or asm calls with arguments
2121and/or results of this type. There are no arrays, vectors or constants
2122of this type.
2123
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002124:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002125
2126::
2127
Reid Kleckner9a16d082014-03-05 02:41:37 +00002128 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002129
Sean Silvab084af42012-12-07 10:36:55 +00002130
Rafael Espindola08013342013-12-07 19:34:20 +00002131.. _t_pointer:
2132
2133Pointer Type
2134""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002135
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002136:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002137
Rafael Espindola08013342013-12-07 19:34:20 +00002138The pointer type is used to specify memory locations. Pointers are
2139commonly used to reference objects in memory.
2140
2141Pointer types may have an optional address space attribute defining the
2142numbered address space where the pointed-to object resides. The default
2143address space is number zero. The semantics of non-zero address spaces
2144are target-specific.
2145
2146Note that LLVM does not permit pointers to void (``void*``) nor does it
2147permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002148
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002149:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002150
2151::
2152
Rafael Espindola08013342013-12-07 19:34:20 +00002153 <type> *
2154
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002155:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002156
2157+-------------------------+--------------------------------------------------------------------------------------------------------------+
2158| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2159+-------------------------+--------------------------------------------------------------------------------------------------------------+
2160| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2161+-------------------------+--------------------------------------------------------------------------------------------------------------+
2162| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2163+-------------------------+--------------------------------------------------------------------------------------------------------------+
2164
2165.. _t_vector:
2166
2167Vector Type
2168"""""""""""
2169
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002170:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002171
2172A vector type is a simple derived type that represents a vector of
2173elements. Vector types are used when multiple primitive data are
2174operated in parallel using a single instruction (SIMD). A vector type
2175requires a size (number of elements) and an underlying primitive data
2176type. Vector types are considered :ref:`first class <t_firstclass>`.
2177
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002178:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002179
2180::
2181
2182 < <# elements> x <elementtype> >
2183
2184The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002185elementtype may be any integer, floating point or pointer type. Vectors
2186of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002187
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002188:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002189
2190+-------------------+--------------------------------------------------+
2191| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2192+-------------------+--------------------------------------------------+
2193| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2194+-------------------+--------------------------------------------------+
2195| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2196+-------------------+--------------------------------------------------+
2197| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2198+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002199
2200.. _t_label:
2201
2202Label Type
2203^^^^^^^^^^
2204
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002205:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002206
2207The label type represents code labels.
2208
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002209:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002210
2211::
2212
2213 label
2214
David Majnemerb611e3f2015-08-14 05:09:07 +00002215.. _t_token:
2216
2217Token Type
2218^^^^^^^^^^
2219
2220:Overview:
2221
2222The token type is used when a value is associated with an instruction
2223but all uses of the value must not attempt to introspect or obscure it.
2224As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2225:ref:`select <i_select>` of type token.
2226
2227:Syntax:
2228
2229::
2230
2231 token
2232
2233
2234
Sean Silvab084af42012-12-07 10:36:55 +00002235.. _t_metadata:
2236
2237Metadata Type
2238^^^^^^^^^^^^^
2239
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002240:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002241
2242The metadata type represents embedded metadata. No derived types may be
2243created from metadata except for :ref:`function <t_function>` arguments.
2244
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002245:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002246
2247::
2248
2249 metadata
2250
Sean Silvab084af42012-12-07 10:36:55 +00002251.. _t_aggregate:
2252
2253Aggregate Types
2254^^^^^^^^^^^^^^^
2255
2256Aggregate Types are a subset of derived types that can contain multiple
2257member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2258aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2259aggregate types.
2260
2261.. _t_array:
2262
2263Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002264""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002265
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002266:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002267
2268The array type is a very simple derived type that arranges elements
2269sequentially in memory. The array type requires a size (number of
2270elements) and an underlying data type.
2271
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002272:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002273
2274::
2275
2276 [<# elements> x <elementtype>]
2277
2278The number of elements is a constant integer value; ``elementtype`` may
2279be any type with a size.
2280
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002281:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002282
2283+------------------+--------------------------------------+
2284| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2285+------------------+--------------------------------------+
2286| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2287+------------------+--------------------------------------+
2288| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2289+------------------+--------------------------------------+
2290
2291Here are some examples of multidimensional arrays:
2292
2293+-----------------------------+----------------------------------------------------------+
2294| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2295+-----------------------------+----------------------------------------------------------+
2296| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2297+-----------------------------+----------------------------------------------------------+
2298| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2299+-----------------------------+----------------------------------------------------------+
2300
2301There is no restriction on indexing beyond the end of the array implied
2302by a static type (though there are restrictions on indexing beyond the
2303bounds of an allocated object in some cases). This means that
2304single-dimension 'variable sized array' addressing can be implemented in
2305LLVM with a zero length array type. An implementation of 'pascal style
2306arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2307example.
2308
Sean Silvab084af42012-12-07 10:36:55 +00002309.. _t_struct:
2310
2311Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002312""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002313
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002314:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002315
2316The structure type is used to represent a collection of data members
2317together in memory. The elements of a structure may be any type that has
2318a size.
2319
2320Structures in memory are accessed using '``load``' and '``store``' by
2321getting a pointer to a field with the '``getelementptr``' instruction.
2322Structures in registers are accessed using the '``extractvalue``' and
2323'``insertvalue``' instructions.
2324
2325Structures may optionally be "packed" structures, which indicate that
2326the alignment of the struct is one byte, and that there is no padding
2327between the elements. In non-packed structs, padding between field types
2328is inserted as defined by the DataLayout string in the module, which is
2329required to match what the underlying code generator expects.
2330
2331Structures can either be "literal" or "identified". A literal structure
2332is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2333identified types are always defined at the top level with a name.
2334Literal types are uniqued by their contents and can never be recursive
2335or opaque since there is no way to write one. Identified types can be
2336recursive, can be opaqued, and are never uniqued.
2337
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002338:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002339
2340::
2341
2342 %T1 = type { <type list> } ; Identified normal struct type
2343 %T2 = type <{ <type list> }> ; Identified packed struct type
2344
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002345:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002346
2347+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2348| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2349+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002350| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002351+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2352| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2353+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2354
2355.. _t_opaque:
2356
2357Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002358""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002359
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002360:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002361
2362Opaque structure types are used to represent named structure types that
2363do not have a body specified. This corresponds (for example) to the C
2364notion of a forward declared structure.
2365
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002366:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002367
2368::
2369
2370 %X = type opaque
2371 %52 = type opaque
2372
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002373:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002374
2375+--------------+-------------------+
2376| ``opaque`` | An opaque type. |
2377+--------------+-------------------+
2378
Sean Silva1703e702014-04-08 21:06:22 +00002379.. _constants:
2380
Sean Silvab084af42012-12-07 10:36:55 +00002381Constants
2382=========
2383
2384LLVM has several different basic types of constants. This section
2385describes them all and their syntax.
2386
2387Simple Constants
2388----------------
2389
2390**Boolean constants**
2391 The two strings '``true``' and '``false``' are both valid constants
2392 of the ``i1`` type.
2393**Integer constants**
2394 Standard integers (such as '4') are constants of the
2395 :ref:`integer <t_integer>` type. Negative numbers may be used with
2396 integer types.
2397**Floating point constants**
2398 Floating point constants use standard decimal notation (e.g.
2399 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2400 hexadecimal notation (see below). The assembler requires the exact
2401 decimal value of a floating-point constant. For example, the
2402 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2403 decimal in binary. Floating point constants must have a :ref:`floating
2404 point <t_floating>` type.
2405**Null pointer constants**
2406 The identifier '``null``' is recognized as a null pointer constant
2407 and must be of :ref:`pointer type <t_pointer>`.
2408
2409The one non-intuitive notation for constants is the hexadecimal form of
2410floating point constants. For example, the form
2411'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2412than) '``double 4.5e+15``'. The only time hexadecimal floating point
2413constants are required (and the only time that they are generated by the
2414disassembler) is when a floating point constant must be emitted but it
2415cannot be represented as a decimal floating point number in a reasonable
2416number of digits. For example, NaN's, infinities, and other special
2417values are represented in their IEEE hexadecimal format so that assembly
2418and disassembly do not cause any bits to change in the constants.
2419
2420When using the hexadecimal form, constants of types half, float, and
2421double are represented using the 16-digit form shown above (which
2422matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002423must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002424precision, respectively. Hexadecimal format is always used for long
2425double, and there are three forms of long double. The 80-bit format used
2426by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2427128-bit format used by PowerPC (two adjacent doubles) is represented by
2428``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002429represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2430will only work if they match the long double format on your target.
2431The IEEE 16-bit format (half precision) is represented by ``0xH``
2432followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2433(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002434
Reid Kleckner9a16d082014-03-05 02:41:37 +00002435There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002436
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002437.. _complexconstants:
2438
Sean Silvab084af42012-12-07 10:36:55 +00002439Complex Constants
2440-----------------
2441
2442Complex constants are a (potentially recursive) combination of simple
2443constants and smaller complex constants.
2444
2445**Structure constants**
2446 Structure constants are represented with notation similar to
2447 structure type definitions (a comma separated list of elements,
2448 surrounded by braces (``{}``)). For example:
2449 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2450 "``@G = external global i32``". Structure constants must have
2451 :ref:`structure type <t_struct>`, and the number and types of elements
2452 must match those specified by the type.
2453**Array constants**
2454 Array constants are represented with notation similar to array type
2455 definitions (a comma separated list of elements, surrounded by
2456 square brackets (``[]``)). For example:
2457 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2458 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002459 match those specified by the type. As a special case, character array
2460 constants may also be represented as a double-quoted string using the ``c``
2461 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002462**Vector constants**
2463 Vector constants are represented with notation similar to vector
2464 type definitions (a comma separated list of elements, surrounded by
2465 less-than/greater-than's (``<>``)). For example:
2466 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2467 must have :ref:`vector type <t_vector>`, and the number and types of
2468 elements must match those specified by the type.
2469**Zero initialization**
2470 The string '``zeroinitializer``' can be used to zero initialize a
2471 value to zero of *any* type, including scalar and
2472 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2473 having to print large zero initializers (e.g. for large arrays) and
2474 is always exactly equivalent to using explicit zero initializers.
2475**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002476 A metadata node is a constant tuple without types. For example:
2477 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002478 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2479 Unlike other typed constants that are meant to be interpreted as part of
2480 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002481 information such as debug info.
2482
2483Global Variable and Function Addresses
2484--------------------------------------
2485
2486The addresses of :ref:`global variables <globalvars>` and
2487:ref:`functions <functionstructure>` are always implicitly valid
2488(link-time) constants. These constants are explicitly referenced when
2489the :ref:`identifier for the global <identifiers>` is used and always have
2490:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2491file:
2492
2493.. code-block:: llvm
2494
2495 @X = global i32 17
2496 @Y = global i32 42
2497 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2498
2499.. _undefvalues:
2500
2501Undefined Values
2502----------------
2503
2504The string '``undef``' can be used anywhere a constant is expected, and
2505indicates that the user of the value may receive an unspecified
2506bit-pattern. Undefined values may be of any type (other than '``label``'
2507or '``void``') and be used anywhere a constant is permitted.
2508
2509Undefined values are useful because they indicate to the compiler that
2510the program is well defined no matter what value is used. This gives the
2511compiler more freedom to optimize. Here are some examples of
2512(potentially surprising) transformations that are valid (in pseudo IR):
2513
2514.. code-block:: llvm
2515
2516 %A = add %X, undef
2517 %B = sub %X, undef
2518 %C = xor %X, undef
2519 Safe:
2520 %A = undef
2521 %B = undef
2522 %C = undef
2523
2524This is safe because all of the output bits are affected by the undef
2525bits. Any output bit can have a zero or one depending on the input bits.
2526
2527.. code-block:: llvm
2528
2529 %A = or %X, undef
2530 %B = and %X, undef
2531 Safe:
2532 %A = -1
2533 %B = 0
2534 Unsafe:
2535 %A = undef
2536 %B = undef
2537
2538These logical operations have bits that are not always affected by the
2539input. For example, if ``%X`` has a zero bit, then the output of the
2540'``and``' operation will always be a zero for that bit, no matter what
2541the corresponding bit from the '``undef``' is. As such, it is unsafe to
2542optimize or assume that the result of the '``and``' is '``undef``'.
2543However, it is safe to assume that all bits of the '``undef``' could be
25440, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2545all the bits of the '``undef``' operand to the '``or``' could be set,
2546allowing the '``or``' to be folded to -1.
2547
2548.. code-block:: llvm
2549
2550 %A = select undef, %X, %Y
2551 %B = select undef, 42, %Y
2552 %C = select %X, %Y, undef
2553 Safe:
2554 %A = %X (or %Y)
2555 %B = 42 (or %Y)
2556 %C = %Y
2557 Unsafe:
2558 %A = undef
2559 %B = undef
2560 %C = undef
2561
2562This set of examples shows that undefined '``select``' (and conditional
2563branch) conditions can go *either way*, but they have to come from one
2564of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2565both known to have a clear low bit, then ``%A`` would have to have a
2566cleared low bit. However, in the ``%C`` example, the optimizer is
2567allowed to assume that the '``undef``' operand could be the same as
2568``%Y``, allowing the whole '``select``' to be eliminated.
2569
2570.. code-block:: llvm
2571
2572 %A = xor undef, undef
2573
2574 %B = undef
2575 %C = xor %B, %B
2576
2577 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002578 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002579 %F = icmp gte %D, 4
2580
2581 Safe:
2582 %A = undef
2583 %B = undef
2584 %C = undef
2585 %D = undef
2586 %E = undef
2587 %F = undef
2588
2589This example points out that two '``undef``' operands are not
2590necessarily the same. This can be surprising to people (and also matches
2591C semantics) where they assume that "``X^X``" is always zero, even if
2592``X`` is undefined. This isn't true for a number of reasons, but the
2593short answer is that an '``undef``' "variable" can arbitrarily change
2594its value over its "live range". This is true because the variable
2595doesn't actually *have a live range*. Instead, the value is logically
2596read from arbitrary registers that happen to be around when needed, so
2597the value is not necessarily consistent over time. In fact, ``%A`` and
2598``%C`` need to have the same semantics or the core LLVM "replace all
2599uses with" concept would not hold.
2600
2601.. code-block:: llvm
2602
2603 %A = fdiv undef, %X
2604 %B = fdiv %X, undef
2605 Safe:
2606 %A = undef
2607 b: unreachable
2608
2609These examples show the crucial difference between an *undefined value*
2610and *undefined behavior*. An undefined value (like '``undef``') is
2611allowed to have an arbitrary bit-pattern. This means that the ``%A``
2612operation can be constant folded to '``undef``', because the '``undef``'
2613could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2614However, in the second example, we can make a more aggressive
2615assumption: because the ``undef`` is allowed to be an arbitrary value,
2616we are allowed to assume that it could be zero. Since a divide by zero
2617has *undefined behavior*, we are allowed to assume that the operation
2618does not execute at all. This allows us to delete the divide and all
2619code after it. Because the undefined operation "can't happen", the
2620optimizer can assume that it occurs in dead code.
2621
2622.. code-block:: llvm
2623
2624 a: store undef -> %X
2625 b: store %X -> undef
2626 Safe:
2627 a: <deleted>
2628 b: unreachable
2629
2630These examples reiterate the ``fdiv`` example: a store *of* an undefined
2631value can be assumed to not have any effect; we can assume that the
2632value is overwritten with bits that happen to match what was already
2633there. However, a store *to* an undefined location could clobber
2634arbitrary memory, therefore, it has undefined behavior.
2635
2636.. _poisonvalues:
2637
2638Poison Values
2639-------------
2640
2641Poison values are similar to :ref:`undef values <undefvalues>`, however
2642they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002643that cannot evoke side effects has nevertheless detected a condition
2644that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002645
2646There is currently no way of representing a poison value in the IR; they
2647only exist when produced by operations such as :ref:`add <i_add>` with
2648the ``nsw`` flag.
2649
2650Poison value behavior is defined in terms of value *dependence*:
2651
2652- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2653- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2654 their dynamic predecessor basic block.
2655- Function arguments depend on the corresponding actual argument values
2656 in the dynamic callers of their functions.
2657- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2658 instructions that dynamically transfer control back to them.
2659- :ref:`Invoke <i_invoke>` instructions depend on the
2660 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2661 call instructions that dynamically transfer control back to them.
2662- Non-volatile loads and stores depend on the most recent stores to all
2663 of the referenced memory addresses, following the order in the IR
2664 (including loads and stores implied by intrinsics such as
2665 :ref:`@llvm.memcpy <int_memcpy>`.)
2666- An instruction with externally visible side effects depends on the
2667 most recent preceding instruction with externally visible side
2668 effects, following the order in the IR. (This includes :ref:`volatile
2669 operations <volatile>`.)
2670- An instruction *control-depends* on a :ref:`terminator
2671 instruction <terminators>` if the terminator instruction has
2672 multiple successors and the instruction is always executed when
2673 control transfers to one of the successors, and may not be executed
2674 when control is transferred to another.
2675- Additionally, an instruction also *control-depends* on a terminator
2676 instruction if the set of instructions it otherwise depends on would
2677 be different if the terminator had transferred control to a different
2678 successor.
2679- Dependence is transitive.
2680
Richard Smith32dbdf62014-07-31 04:25:36 +00002681Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2682with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002683on a poison value has undefined behavior.
2684
2685Here are some examples:
2686
2687.. code-block:: llvm
2688
2689 entry:
2690 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2691 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002692 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002693 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2694
2695 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002696 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002697
2698 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2699
2700 %narrowaddr = bitcast i32* @g to i16*
2701 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002702 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2703 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002704
2705 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2706 br i1 %cmp, label %true, label %end ; Branch to either destination.
2707
2708 true:
2709 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2710 ; it has undefined behavior.
2711 br label %end
2712
2713 end:
2714 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2715 ; Both edges into this PHI are
2716 ; control-dependent on %cmp, so this
2717 ; always results in a poison value.
2718
2719 store volatile i32 0, i32* @g ; This would depend on the store in %true
2720 ; if %cmp is true, or the store in %entry
2721 ; otherwise, so this is undefined behavior.
2722
2723 br i1 %cmp, label %second_true, label %second_end
2724 ; The same branch again, but this time the
2725 ; true block doesn't have side effects.
2726
2727 second_true:
2728 ; No side effects!
2729 ret void
2730
2731 second_end:
2732 store volatile i32 0, i32* @g ; This time, the instruction always depends
2733 ; on the store in %end. Also, it is
2734 ; control-equivalent to %end, so this is
2735 ; well-defined (ignoring earlier undefined
2736 ; behavior in this example).
2737
2738.. _blockaddress:
2739
2740Addresses of Basic Blocks
2741-------------------------
2742
2743``blockaddress(@function, %block)``
2744
2745The '``blockaddress``' constant computes the address of the specified
2746basic block in the specified function, and always has an ``i8*`` type.
2747Taking the address of the entry block is illegal.
2748
2749This value only has defined behavior when used as an operand to the
2750':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2751against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002752undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002753no label is equal to the null pointer. This may be passed around as an
2754opaque pointer sized value as long as the bits are not inspected. This
2755allows ``ptrtoint`` and arithmetic to be performed on these values so
2756long as the original value is reconstituted before the ``indirectbr``
2757instruction.
2758
2759Finally, some targets may provide defined semantics when using the value
2760as the operand to an inline assembly, but that is target specific.
2761
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002762.. _constantexprs:
2763
Sean Silvab084af42012-12-07 10:36:55 +00002764Constant Expressions
2765--------------------
2766
2767Constant expressions are used to allow expressions involving other
2768constants to be used as constants. Constant expressions may be of any
2769:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2770that does not have side effects (e.g. load and call are not supported).
2771The following is the syntax for constant expressions:
2772
2773``trunc (CST to TYPE)``
2774 Truncate a constant to another type. The bit size of CST must be
2775 larger than the bit size of TYPE. Both types must be integers.
2776``zext (CST to TYPE)``
2777 Zero extend a constant to another type. The bit size of CST must be
2778 smaller than the bit size of TYPE. Both types must be integers.
2779``sext (CST to TYPE)``
2780 Sign extend a constant to another type. The bit size of CST must be
2781 smaller than the bit size of TYPE. Both types must be integers.
2782``fptrunc (CST to TYPE)``
2783 Truncate a floating point constant to another floating point type.
2784 The size of CST must be larger than the size of TYPE. Both types
2785 must be floating point.
2786``fpext (CST to TYPE)``
2787 Floating point extend a constant to another type. The size of CST
2788 must be smaller or equal to the size of TYPE. Both types must be
2789 floating point.
2790``fptoui (CST to TYPE)``
2791 Convert a floating point constant to the corresponding unsigned
2792 integer constant. TYPE must be a scalar or vector integer type. CST
2793 must be of scalar or vector floating point type. Both CST and TYPE
2794 must be scalars, or vectors of the same number of elements. If the
2795 value won't fit in the integer type, the results are undefined.
2796``fptosi (CST to TYPE)``
2797 Convert a floating point constant to the corresponding signed
2798 integer constant. TYPE must be a scalar or vector integer type. CST
2799 must be of scalar or vector floating point type. Both CST and TYPE
2800 must be scalars, or vectors of the same number of elements. If the
2801 value won't fit in the integer type, the results are undefined.
2802``uitofp (CST to TYPE)``
2803 Convert an unsigned integer constant to the corresponding floating
2804 point constant. TYPE must be a scalar or vector floating point type.
2805 CST must be of scalar or vector integer type. Both CST and TYPE must
2806 be scalars, or vectors of the same number of elements. If the value
2807 won't fit in the floating point type, the results are undefined.
2808``sitofp (CST to TYPE)``
2809 Convert a signed integer constant to the corresponding floating
2810 point constant. TYPE must be a scalar or vector floating point type.
2811 CST must be of scalar or vector integer type. Both CST and TYPE must
2812 be scalars, or vectors of the same number of elements. If the value
2813 won't fit in the floating point type, the results are undefined.
2814``ptrtoint (CST to TYPE)``
2815 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002816 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002817 pointer type. The ``CST`` value is zero extended, truncated, or
2818 unchanged to make it fit in ``TYPE``.
2819``inttoptr (CST to TYPE)``
2820 Convert an integer constant to a pointer constant. TYPE must be a
2821 pointer type. CST must be of integer type. The CST value is zero
2822 extended, truncated, or unchanged to make it fit in a pointer size.
2823 This one is *really* dangerous!
2824``bitcast (CST to TYPE)``
2825 Convert a constant, CST, to another TYPE. The constraints of the
2826 operands are the same as those for the :ref:`bitcast
2827 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002828``addrspacecast (CST to TYPE)``
2829 Convert a constant pointer or constant vector of pointer, CST, to another
2830 TYPE in a different address space. The constraints of the operands are the
2831 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002832``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002833 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2834 constants. As with the :ref:`getelementptr <i_getelementptr>`
2835 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002836 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002837``select (COND, VAL1, VAL2)``
2838 Perform the :ref:`select operation <i_select>` on constants.
2839``icmp COND (VAL1, VAL2)``
2840 Performs the :ref:`icmp operation <i_icmp>` on constants.
2841``fcmp COND (VAL1, VAL2)``
2842 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2843``extractelement (VAL, IDX)``
2844 Perform the :ref:`extractelement operation <i_extractelement>` on
2845 constants.
2846``insertelement (VAL, ELT, IDX)``
2847 Perform the :ref:`insertelement operation <i_insertelement>` on
2848 constants.
2849``shufflevector (VEC1, VEC2, IDXMASK)``
2850 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2851 constants.
2852``extractvalue (VAL, IDX0, IDX1, ...)``
2853 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2854 constants. The index list is interpreted in a similar manner as
2855 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2856 least one index value must be specified.
2857``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2858 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2859 The index list is interpreted in a similar manner as indices in a
2860 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2861 value must be specified.
2862``OPCODE (LHS, RHS)``
2863 Perform the specified operation of the LHS and RHS constants. OPCODE
2864 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2865 binary <bitwiseops>` operations. The constraints on operands are
2866 the same as those for the corresponding instruction (e.g. no bitwise
2867 operations on floating point values are allowed).
2868
2869Other Values
2870============
2871
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002872.. _inlineasmexprs:
2873
Sean Silvab084af42012-12-07 10:36:55 +00002874Inline Assembler Expressions
2875----------------------------
2876
2877LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002878Inline Assembly <moduleasm>`) through the use of a special value. This value
2879represents the inline assembler as a template string (containing the
2880instructions to emit), a list of operand constraints (stored as a string), a
2881flag that indicates whether or not the inline asm expression has side effects,
2882and a flag indicating whether the function containing the asm needs to align its
2883stack conservatively.
2884
2885The template string supports argument substitution of the operands using "``$``"
2886followed by a number, to indicate substitution of the given register/memory
2887location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2888be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2889operand (See :ref:`inline-asm-modifiers`).
2890
2891A literal "``$``" may be included by using "``$$``" in the template. To include
2892other special characters into the output, the usual "``\XX``" escapes may be
2893used, just as in other strings. Note that after template substitution, the
2894resulting assembly string is parsed by LLVM's integrated assembler unless it is
2895disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2896syntax known to LLVM.
2897
2898LLVM's support for inline asm is modeled closely on the requirements of Clang's
2899GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2900modifier codes listed here are similar or identical to those in GCC's inline asm
2901support. However, to be clear, the syntax of the template and constraint strings
2902described here is *not* the same as the syntax accepted by GCC and Clang, and,
2903while most constraint letters are passed through as-is by Clang, some get
2904translated to other codes when converting from the C source to the LLVM
2905assembly.
2906
2907An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002908
2909.. code-block:: llvm
2910
2911 i32 (i32) asm "bswap $0", "=r,r"
2912
2913Inline assembler expressions may **only** be used as the callee operand
2914of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2915Thus, typically we have:
2916
2917.. code-block:: llvm
2918
2919 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2920
2921Inline asms with side effects not visible in the constraint list must be
2922marked as having side effects. This is done through the use of the
2923'``sideeffect``' keyword, like so:
2924
2925.. code-block:: llvm
2926
2927 call void asm sideeffect "eieio", ""()
2928
2929In some cases inline asms will contain code that will not work unless
2930the stack is aligned in some way, such as calls or SSE instructions on
2931x86, yet will not contain code that does that alignment within the asm.
2932The compiler should make conservative assumptions about what the asm
2933might contain and should generate its usual stack alignment code in the
2934prologue if the '``alignstack``' keyword is present:
2935
2936.. code-block:: llvm
2937
2938 call void asm alignstack "eieio", ""()
2939
2940Inline asms also support using non-standard assembly dialects. The
2941assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2942the inline asm is using the Intel dialect. Currently, ATT and Intel are
2943the only supported dialects. An example is:
2944
2945.. code-block:: llvm
2946
2947 call void asm inteldialect "eieio", ""()
2948
2949If multiple keywords appear the '``sideeffect``' keyword must come
2950first, the '``alignstack``' keyword second and the '``inteldialect``'
2951keyword last.
2952
James Y Knightbc832ed2015-07-08 18:08:36 +00002953Inline Asm Constraint String
2954^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2955
2956The constraint list is a comma-separated string, each element containing one or
2957more constraint codes.
2958
2959For each element in the constraint list an appropriate register or memory
2960operand will be chosen, and it will be made available to assembly template
2961string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2962second, etc.
2963
2964There are three different types of constraints, which are distinguished by a
2965prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2966constraints must always be given in that order: outputs first, then inputs, then
2967clobbers. They cannot be intermingled.
2968
2969There are also three different categories of constraint codes:
2970
2971- Register constraint. This is either a register class, or a fixed physical
2972 register. This kind of constraint will allocate a register, and if necessary,
2973 bitcast the argument or result to the appropriate type.
2974- Memory constraint. This kind of constraint is for use with an instruction
2975 taking a memory operand. Different constraints allow for different addressing
2976 modes used by the target.
2977- Immediate value constraint. This kind of constraint is for an integer or other
2978 immediate value which can be rendered directly into an instruction. The
2979 various target-specific constraints allow the selection of a value in the
2980 proper range for the instruction you wish to use it with.
2981
2982Output constraints
2983""""""""""""""""""
2984
2985Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2986indicates that the assembly will write to this operand, and the operand will
2987then be made available as a return value of the ``asm`` expression. Output
2988constraints do not consume an argument from the call instruction. (Except, see
2989below about indirect outputs).
2990
2991Normally, it is expected that no output locations are written to by the assembly
2992expression until *all* of the inputs have been read. As such, LLVM may assign
2993the same register to an output and an input. If this is not safe (e.g. if the
2994assembly contains two instructions, where the first writes to one output, and
2995the second reads an input and writes to a second output), then the "``&``"
2996modifier must be used (e.g. "``=&r``") to specify that the output is an
2997"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2998will not use the same register for any inputs (other than an input tied to this
2999output).
3000
3001Input constraints
3002"""""""""""""""""
3003
3004Input constraints do not have a prefix -- just the constraint codes. Each input
3005constraint will consume one argument from the call instruction. It is not
3006permitted for the asm to write to any input register or memory location (unless
3007that input is tied to an output). Note also that multiple inputs may all be
3008assigned to the same register, if LLVM can determine that they necessarily all
3009contain the same value.
3010
3011Instead of providing a Constraint Code, input constraints may also "tie"
3012themselves to an output constraint, by providing an integer as the constraint
3013string. Tied inputs still consume an argument from the call instruction, and
3014take up a position in the asm template numbering as is usual -- they will simply
3015be constrained to always use the same register as the output they've been tied
3016to. For example, a constraint string of "``=r,0``" says to assign a register for
3017output, and use that register as an input as well (it being the 0'th
3018constraint).
3019
3020It is permitted to tie an input to an "early-clobber" output. In that case, no
3021*other* input may share the same register as the input tied to the early-clobber
3022(even when the other input has the same value).
3023
3024You may only tie an input to an output which has a register constraint, not a
3025memory constraint. Only a single input may be tied to an output.
3026
3027There is also an "interesting" feature which deserves a bit of explanation: if a
3028register class constraint allocates a register which is too small for the value
3029type operand provided as input, the input value will be split into multiple
3030registers, and all of them passed to the inline asm.
3031
3032However, this feature is often not as useful as you might think.
3033
3034Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3035architectures that have instructions which operate on multiple consecutive
3036instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3037SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3038hardware then loads into both the named register, and the next register. This
3039feature of inline asm would not be useful to support that.)
3040
3041A few of the targets provide a template string modifier allowing explicit access
3042to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3043``D``). On such an architecture, you can actually access the second allocated
3044register (yet, still, not any subsequent ones). But, in that case, you're still
3045probably better off simply splitting the value into two separate operands, for
3046clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3047despite existing only for use with this feature, is not really a good idea to
3048use)
3049
3050Indirect inputs and outputs
3051"""""""""""""""""""""""""""
3052
3053Indirect output or input constraints can be specified by the "``*``" modifier
3054(which goes after the "``=``" in case of an output). This indicates that the asm
3055will write to or read from the contents of an *address* provided as an input
3056argument. (Note that in this way, indirect outputs act more like an *input* than
3057an output: just like an input, they consume an argument of the call expression,
3058rather than producing a return value. An indirect output constraint is an
3059"output" only in that the asm is expected to write to the contents of the input
3060memory location, instead of just read from it).
3061
3062This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3063address of a variable as a value.
3064
3065It is also possible to use an indirect *register* constraint, but only on output
3066(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3067value normally, and then, separately emit a store to the address provided as
3068input, after the provided inline asm. (It's not clear what value this
3069functionality provides, compared to writing the store explicitly after the asm
3070statement, and it can only produce worse code, since it bypasses many
3071optimization passes. I would recommend not using it.)
3072
3073
3074Clobber constraints
3075"""""""""""""""""""
3076
3077A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3078consume an input operand, nor generate an output. Clobbers cannot use any of the
3079general constraint code letters -- they may use only explicit register
3080constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3081"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3082memory locations -- not only the memory pointed to by a declared indirect
3083output.
3084
3085
3086Constraint Codes
3087""""""""""""""""
3088After a potential prefix comes constraint code, or codes.
3089
3090A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3091followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3092(e.g. "``{eax}``").
3093
3094The one and two letter constraint codes are typically chosen to be the same as
3095GCC's constraint codes.
3096
3097A single constraint may include one or more than constraint code in it, leaving
3098it up to LLVM to choose which one to use. This is included mainly for
3099compatibility with the translation of GCC inline asm coming from clang.
3100
3101There are two ways to specify alternatives, and either or both may be used in an
3102inline asm constraint list:
3103
31041) Append the codes to each other, making a constraint code set. E.g. "``im``"
3105 or "``{eax}m``". This means "choose any of the options in the set". The
3106 choice of constraint is made independently for each constraint in the
3107 constraint list.
3108
31092) Use "``|``" between constraint code sets, creating alternatives. Every
3110 constraint in the constraint list must have the same number of alternative
3111 sets. With this syntax, the same alternative in *all* of the items in the
3112 constraint list will be chosen together.
3113
3114Putting those together, you might have a two operand constraint string like
3115``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3116operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3117may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3118
3119However, the use of either of the alternatives features is *NOT* recommended, as
3120LLVM is not able to make an intelligent choice about which one to use. (At the
3121point it currently needs to choose, not enough information is available to do so
3122in a smart way.) Thus, it simply tries to make a choice that's most likely to
3123compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3124always choose to use memory, not registers). And, if given multiple registers,
3125or multiple register classes, it will simply choose the first one. (In fact, it
3126doesn't currently even ensure explicitly specified physical registers are
3127unique, so specifying multiple physical registers as alternatives, like
3128``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3129intended.)
3130
3131Supported Constraint Code List
3132""""""""""""""""""""""""""""""
3133
3134The constraint codes are, in general, expected to behave the same way they do in
3135GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3136inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3137and GCC likely indicates a bug in LLVM.
3138
3139Some constraint codes are typically supported by all targets:
3140
3141- ``r``: A register in the target's general purpose register class.
3142- ``m``: A memory address operand. It is target-specific what addressing modes
3143 are supported, typical examples are register, or register + register offset,
3144 or register + immediate offset (of some target-specific size).
3145- ``i``: An integer constant (of target-specific width). Allows either a simple
3146 immediate, or a relocatable value.
3147- ``n``: An integer constant -- *not* including relocatable values.
3148- ``s``: An integer constant, but allowing *only* relocatable values.
3149- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3150 useful to pass a label for an asm branch or call.
3151
3152 .. FIXME: but that surely isn't actually okay to jump out of an asm
3153 block without telling llvm about the control transfer???)
3154
3155- ``{register-name}``: Requires exactly the named physical register.
3156
3157Other constraints are target-specific:
3158
3159AArch64:
3160
3161- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3162- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3163 i.e. 0 to 4095 with optional shift by 12.
3164- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3165 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3166- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3167 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3168- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3169 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3170- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3171 32-bit register. This is a superset of ``K``: in addition to the bitmask
3172 immediate, also allows immediate integers which can be loaded with a single
3173 ``MOVZ`` or ``MOVL`` instruction.
3174- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3175 64-bit register. This is a superset of ``L``.
3176- ``Q``: Memory address operand must be in a single register (no
3177 offsets). (However, LLVM currently does this for the ``m`` constraint as
3178 well.)
3179- ``r``: A 32 or 64-bit integer register (W* or X*).
3180- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3181- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3182
3183AMDGPU:
3184
3185- ``r``: A 32 or 64-bit integer register.
3186- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3187- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3188
3189
3190All ARM modes:
3191
3192- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3193 operand. Treated the same as operand ``m``, at the moment.
3194
3195ARM and ARM's Thumb2 mode:
3196
3197- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3198- ``I``: An immediate integer valid for a data-processing instruction.
3199- ``J``: An immediate integer between -4095 and 4095.
3200- ``K``: An immediate integer whose bitwise inverse is valid for a
3201 data-processing instruction. (Can be used with template modifier "``B``" to
3202 print the inverted value).
3203- ``L``: An immediate integer whose negation is valid for a data-processing
3204 instruction. (Can be used with template modifier "``n``" to print the negated
3205 value).
3206- ``M``: A power of two or a integer between 0 and 32.
3207- ``N``: Invalid immediate constraint.
3208- ``O``: Invalid immediate constraint.
3209- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3210- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3211 as ``r``.
3212- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3213 invalid.
3214- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3215 ``d0-d31``, or ``q0-q15``.
3216- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3217 ``d0-d7``, or ``q0-q3``.
3218- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3219 ``s0-s31``.
3220
3221ARM's Thumb1 mode:
3222
3223- ``I``: An immediate integer between 0 and 255.
3224- ``J``: An immediate integer between -255 and -1.
3225- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3226 some amount.
3227- ``L``: An immediate integer between -7 and 7.
3228- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3229- ``N``: An immediate integer between 0 and 31.
3230- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3231- ``r``: A low 32-bit GPR register (``r0-r7``).
3232- ``l``: A low 32-bit GPR register (``r0-r7``).
3233- ``h``: A high GPR register (``r0-r7``).
3234- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3235 ``d0-d31``, or ``q0-q15``.
3236- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3237 ``d0-d7``, or ``q0-q3``.
3238- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3239 ``s0-s31``.
3240
3241
3242Hexagon:
3243
3244- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3245 at the moment.
3246- ``r``: A 32 or 64-bit register.
3247
3248MSP430:
3249
3250- ``r``: An 8 or 16-bit register.
3251
3252MIPS:
3253
3254- ``I``: An immediate signed 16-bit integer.
3255- ``J``: An immediate integer zero.
3256- ``K``: An immediate unsigned 16-bit integer.
3257- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3258- ``N``: An immediate integer between -65535 and -1.
3259- ``O``: An immediate signed 15-bit integer.
3260- ``P``: An immediate integer between 1 and 65535.
3261- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3262 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3263- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3264 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3265 ``m``.
3266- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3267 ``sc`` instruction on the given subtarget (details vary).
3268- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3269- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003270 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3271 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003272- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3273 ``25``).
3274- ``l``: The ``lo`` register, 32 or 64-bit.
3275- ``x``: Invalid.
3276
3277NVPTX:
3278
3279- ``b``: A 1-bit integer register.
3280- ``c`` or ``h``: A 16-bit integer register.
3281- ``r``: A 32-bit integer register.
3282- ``l`` or ``N``: A 64-bit integer register.
3283- ``f``: A 32-bit float register.
3284- ``d``: A 64-bit float register.
3285
3286
3287PowerPC:
3288
3289- ``I``: An immediate signed 16-bit integer.
3290- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3291- ``K``: An immediate unsigned 16-bit integer.
3292- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3293- ``M``: An immediate integer greater than 31.
3294- ``N``: An immediate integer that is an exact power of 2.
3295- ``O``: The immediate integer constant 0.
3296- ``P``: An immediate integer constant whose negation is a signed 16-bit
3297 constant.
3298- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3299 treated the same as ``m``.
3300- ``r``: A 32 or 64-bit integer register.
3301- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3302 ``R1-R31``).
3303- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3304 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3305- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3306 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3307 altivec vector register (``V0-V31``).
3308
3309 .. FIXME: is this a bug that v accepts QPX registers? I think this
3310 is supposed to only use the altivec vector registers?
3311
3312- ``y``: Condition register (``CR0-CR7``).
3313- ``wc``: An individual CR bit in a CR register.
3314- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3315 register set (overlapping both the floating-point and vector register files).
3316- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3317 set.
3318
3319Sparc:
3320
3321- ``I``: An immediate 13-bit signed integer.
3322- ``r``: A 32-bit integer register.
3323
3324SystemZ:
3325
3326- ``I``: An immediate unsigned 8-bit integer.
3327- ``J``: An immediate unsigned 12-bit integer.
3328- ``K``: An immediate signed 16-bit integer.
3329- ``L``: An immediate signed 20-bit integer.
3330- ``M``: An immediate integer 0x7fffffff.
3331- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3332 ``m``, at the moment.
3333- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3334- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3335 address context evaluates as zero).
3336- ``h``: A 32-bit value in the high part of a 64bit data register
3337 (LLVM-specific)
3338- ``f``: A 32, 64, or 128-bit floating point register.
3339
3340X86:
3341
3342- ``I``: An immediate integer between 0 and 31.
3343- ``J``: An immediate integer between 0 and 64.
3344- ``K``: An immediate signed 8-bit integer.
3345- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3346 0xffffffff.
3347- ``M``: An immediate integer between 0 and 3.
3348- ``N``: An immediate unsigned 8-bit integer.
3349- ``O``: An immediate integer between 0 and 127.
3350- ``e``: An immediate 32-bit signed integer.
3351- ``Z``: An immediate 32-bit unsigned integer.
3352- ``o``, ``v``: Treated the same as ``m``, at the moment.
3353- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3354 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3355 registers, and on X86-64, it is all of the integer registers.
3356- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3357 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3358- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3359- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3360 existed since i386, and can be accessed without the REX prefix.
3361- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3362- ``y``: A 64-bit MMX register, if MMX is enabled.
3363- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3364 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3365 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3366 512-bit vector operand in an AVX512 register, Otherwise, an error.
3367- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3368- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3369 32-bit mode, a 64-bit integer operand will get split into two registers). It
3370 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3371 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3372 you're better off splitting it yourself, before passing it to the asm
3373 statement.
3374
3375XCore:
3376
3377- ``r``: A 32-bit integer register.
3378
3379
3380.. _inline-asm-modifiers:
3381
3382Asm template argument modifiers
3383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3384
3385In the asm template string, modifiers can be used on the operand reference, like
3386"``${0:n}``".
3387
3388The modifiers are, in general, expected to behave the same way they do in
3389GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3390inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3391and GCC likely indicates a bug in LLVM.
3392
3393Target-independent:
3394
Sean Silvaa1190322015-08-06 22:56:48 +00003395- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003396 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3397- ``n``: Negate and print immediate integer constant unadorned, without the
3398 target-specific immediate punctuation (e.g. no ``$`` prefix).
3399- ``l``: Print as an unadorned label, without the target-specific label
3400 punctuation (e.g. no ``$`` prefix).
3401
3402AArch64:
3403
3404- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3405 instead of ``x30``, print ``w30``.
3406- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3407- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3408 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3409 ``v*``.
3410
3411AMDGPU:
3412
3413- ``r``: No effect.
3414
3415ARM:
3416
3417- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3418 register).
3419- ``P``: No effect.
3420- ``q``: No effect.
3421- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3422 as ``d4[1]`` instead of ``s9``)
3423- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3424 prefix.
3425- ``L``: Print the low 16-bits of an immediate integer constant.
3426- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3427 register operands subsequent to the specified one (!), so use carefully.
3428- ``Q``: Print the low-order register of a register-pair, or the low-order
3429 register of a two-register operand.
3430- ``R``: Print the high-order register of a register-pair, or the high-order
3431 register of a two-register operand.
3432- ``H``: Print the second register of a register-pair. (On a big-endian system,
3433 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3434 to ``R``.)
3435
3436 .. FIXME: H doesn't currently support printing the second register
3437 of a two-register operand.
3438
3439- ``e``: Print the low doubleword register of a NEON quad register.
3440- ``f``: Print the high doubleword register of a NEON quad register.
3441- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3442 adornment.
3443
3444Hexagon:
3445
3446- ``L``: Print the second register of a two-register operand. Requires that it
3447 has been allocated consecutively to the first.
3448
3449 .. FIXME: why is it restricted to consecutive ones? And there's
3450 nothing that ensures that happens, is there?
3451
3452- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3453 nothing. Used to print 'addi' vs 'add' instructions.
3454
3455MSP430:
3456
3457No additional modifiers.
3458
3459MIPS:
3460
3461- ``X``: Print an immediate integer as hexadecimal
3462- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3463- ``d``: Print an immediate integer as decimal.
3464- ``m``: Subtract one and print an immediate integer as decimal.
3465- ``z``: Print $0 if an immediate zero, otherwise print normally.
3466- ``L``: Print the low-order register of a two-register operand, or prints the
3467 address of the low-order word of a double-word memory operand.
3468
3469 .. FIXME: L seems to be missing memory operand support.
3470
3471- ``M``: Print the high-order register of a two-register operand, or prints the
3472 address of the high-order word of a double-word memory operand.
3473
3474 .. FIXME: M seems to be missing memory operand support.
3475
3476- ``D``: Print the second register of a two-register operand, or prints the
3477 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3478 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3479 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003480- ``w``: No effect. Provided for compatibility with GCC which requires this
3481 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3482 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003483
3484NVPTX:
3485
3486- ``r``: No effect.
3487
3488PowerPC:
3489
3490- ``L``: Print the second register of a two-register operand. Requires that it
3491 has been allocated consecutively to the first.
3492
3493 .. FIXME: why is it restricted to consecutive ones? And there's
3494 nothing that ensures that happens, is there?
3495
3496- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3497 nothing. Used to print 'addi' vs 'add' instructions.
3498- ``y``: For a memory operand, prints formatter for a two-register X-form
3499 instruction. (Currently always prints ``r0,OPERAND``).
3500- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3501 otherwise. (NOTE: LLVM does not support update form, so this will currently
3502 always print nothing)
3503- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3504 not support indexed form, so this will currently always print nothing)
3505
3506Sparc:
3507
3508- ``r``: No effect.
3509
3510SystemZ:
3511
3512SystemZ implements only ``n``, and does *not* support any of the other
3513target-independent modifiers.
3514
3515X86:
3516
3517- ``c``: Print an unadorned integer or symbol name. (The latter is
3518 target-specific behavior for this typically target-independent modifier).
3519- ``A``: Print a register name with a '``*``' before it.
3520- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3521 operand.
3522- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3523 memory operand.
3524- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3525 operand.
3526- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3527 operand.
3528- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3529 available, otherwise the 32-bit register name; do nothing on a memory operand.
3530- ``n``: Negate and print an unadorned integer, or, for operands other than an
3531 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3532 the operand. (The behavior for relocatable symbol expressions is a
3533 target-specific behavior for this typically target-independent modifier)
3534- ``H``: Print a memory reference with additional offset +8.
3535- ``P``: Print a memory reference or operand for use as the argument of a call
3536 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3537
3538XCore:
3539
3540No additional modifiers.
3541
3542
Sean Silvab084af42012-12-07 10:36:55 +00003543Inline Asm Metadata
3544^^^^^^^^^^^^^^^^^^^
3545
3546The call instructions that wrap inline asm nodes may have a
3547"``!srcloc``" MDNode attached to it that contains a list of constant
3548integers. If present, the code generator will use the integer as the
3549location cookie value when report errors through the ``LLVMContext``
3550error reporting mechanisms. This allows a front-end to correlate backend
3551errors that occur with inline asm back to the source code that produced
3552it. For example:
3553
3554.. code-block:: llvm
3555
3556 call void asm sideeffect "something bad", ""(), !srcloc !42
3557 ...
3558 !42 = !{ i32 1234567 }
3559
3560It is up to the front-end to make sense of the magic numbers it places
3561in the IR. If the MDNode contains multiple constants, the code generator
3562will use the one that corresponds to the line of the asm that the error
3563occurs on.
3564
3565.. _metadata:
3566
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003567Metadata
3568========
Sean Silvab084af42012-12-07 10:36:55 +00003569
3570LLVM IR allows metadata to be attached to instructions in the program
3571that can convey extra information about the code to the optimizers and
3572code generator. One example application of metadata is source-level
3573debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003574
Sean Silvaa1190322015-08-06 22:56:48 +00003575Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003576``call`` instruction, it uses the ``metadata`` type.
3577
3578All metadata are identified in syntax by a exclamation point ('``!``').
3579
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003580.. _metadata-string:
3581
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003582Metadata Nodes and Metadata Strings
3583-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003584
3585A metadata string is a string surrounded by double quotes. It can
3586contain any character by escaping non-printable characters with
3587"``\xx``" where "``xx``" is the two digit hex code. For example:
3588"``!"test\00"``".
3589
3590Metadata nodes are represented with notation similar to structure
3591constants (a comma separated list of elements, surrounded by braces and
3592preceded by an exclamation point). Metadata nodes can have any values as
3593their operand. For example:
3594
3595.. code-block:: llvm
3596
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003597 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003598
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003599Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3600
3601.. code-block:: llvm
3602
3603 !0 = distinct !{!"test\00", i32 10}
3604
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003605``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003606content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003607when metadata operands change.
3608
Sean Silvab084af42012-12-07 10:36:55 +00003609A :ref:`named metadata <namedmetadatastructure>` is a collection of
3610metadata nodes, which can be looked up in the module symbol table. For
3611example:
3612
3613.. code-block:: llvm
3614
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003615 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003616
3617Metadata can be used as function arguments. Here ``llvm.dbg.value``
3618function is using two metadata arguments:
3619
3620.. code-block:: llvm
3621
3622 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3623
3624Metadata can be attached with an instruction. Here metadata ``!21`` is
3625attached to the ``add`` instruction using the ``!dbg`` identifier:
3626
3627.. code-block:: llvm
3628
3629 %indvar.next = add i64 %indvar, 1, !dbg !21
3630
3631More information about specific metadata nodes recognized by the
3632optimizers and code generator is found below.
3633
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003634.. _specialized-metadata:
3635
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003636Specialized Metadata Nodes
3637^^^^^^^^^^^^^^^^^^^^^^^^^^
3638
3639Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003640to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003641order.
3642
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003643These aren't inherently debug info centric, but currently all the specialized
3644metadata nodes are related to debug info.
3645
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003646.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003647
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003648DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003649"""""""""""""
3650
Sean Silvaa1190322015-08-06 22:56:48 +00003651``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003652``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3653tuples containing the debug info to be emitted along with the compile unit,
3654regardless of code optimizations (some nodes are only emitted if there are
3655references to them from instructions).
3656
3657.. code-block:: llvm
3658
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003659 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003660 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3661 splitDebugFilename: "abc.debug", emissionKind: 1,
3662 enums: !2, retainedTypes: !3, subprograms: !4,
3663 globals: !5, imports: !6)
3664
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003665Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003666specific compilation unit. File descriptors are defined using this scope.
3667These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003668keep track of subprograms, global variables, type information, and imported
3669entities (declarations and namespaces).
3670
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003671.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003672
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003673DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003674""""""
3675
Sean Silvaa1190322015-08-06 22:56:48 +00003676``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003677
3678.. code-block:: llvm
3679
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003680 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003681
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003682Files are sometimes used in ``scope:`` fields, and are the only valid target
3683for ``file:`` fields.
3684
Michael Kuperstein605308a2015-05-14 10:58:59 +00003685.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003686
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003687DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003688"""""""""""
3689
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003690``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003691``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003692
3693.. code-block:: llvm
3694
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003695 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003696 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003697 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003698
Sean Silvaa1190322015-08-06 22:56:48 +00003699The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003700following:
3701
3702.. code-block:: llvm
3703
3704 DW_ATE_address = 1
3705 DW_ATE_boolean = 2
3706 DW_ATE_float = 4
3707 DW_ATE_signed = 5
3708 DW_ATE_signed_char = 6
3709 DW_ATE_unsigned = 7
3710 DW_ATE_unsigned_char = 8
3711
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003712.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003713
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003714DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003715""""""""""""""""
3716
Sean Silvaa1190322015-08-06 22:56:48 +00003717``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003718refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003719types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003720represents a function with no return value (such as ``void foo() {}`` in C++).
3721
3722.. code-block:: llvm
3723
3724 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3725 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003726 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003727
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003728.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003729
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003730DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003731"""""""""""""
3732
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003733``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003734qualified types.
3735
3736.. code-block:: llvm
3737
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003738 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003739 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003740 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003741 align: 32)
3742
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003743The following ``tag:`` values are valid:
3744
3745.. code-block:: llvm
3746
3747 DW_TAG_formal_parameter = 5
3748 DW_TAG_member = 13
3749 DW_TAG_pointer_type = 15
3750 DW_TAG_reference_type = 16
3751 DW_TAG_typedef = 22
3752 DW_TAG_ptr_to_member_type = 31
3753 DW_TAG_const_type = 38
3754 DW_TAG_volatile_type = 53
3755 DW_TAG_restrict_type = 55
3756
3757``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003758<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3759is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003760``DW_TAG_formal_parameter`` is used to define a member which is a formal
3761argument of a subprogram.
3762
3763``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3764
3765``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3766``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3767``baseType:``.
3768
3769Note that the ``void *`` type is expressed as a type derived from NULL.
3770
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003771.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003772
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003773DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003774"""""""""""""""
3775
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003776``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003777structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003778
3779If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003780identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003781can refer to composite types indirectly via a :ref:`metadata string
3782<metadata-string>` that matches their identifier.
3783
3784.. code-block:: llvm
3785
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003786 !0 = !DIEnumerator(name: "SixKind", value: 7)
3787 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3788 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3789 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3791 elements: !{!0, !1, !2})
3792
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003793The following ``tag:`` values are valid:
3794
3795.. code-block:: llvm
3796
3797 DW_TAG_array_type = 1
3798 DW_TAG_class_type = 2
3799 DW_TAG_enumeration_type = 4
3800 DW_TAG_structure_type = 19
3801 DW_TAG_union_type = 23
3802 DW_TAG_subroutine_type = 21
3803 DW_TAG_inheritance = 28
3804
3805
3806For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003807descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003808level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003809array type is a native packed vector.
3810
3811For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003812descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003813value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003814``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003815
3816For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3817``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003818<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003819
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003820.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003821
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003822DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823""""""""""
3824
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003825``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003826:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827
3828.. code-block:: llvm
3829
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003830 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3831 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3832 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003833
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003834.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003835
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003836DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003837""""""""""""
3838
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003839``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3840variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841
3842.. code-block:: llvm
3843
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003844 !0 = !DIEnumerator(name: "SixKind", value: 7)
3845 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3846 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003847
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003848DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003849"""""""""""""""""""""""
3850
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003851``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003852language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003853:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003854
3855.. code-block:: llvm
3856
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003857 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003858
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003859DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003860""""""""""""""""""""""""
3861
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003862``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003863language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003864but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003865``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003866:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003867
3868.. code-block:: llvm
3869
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003870 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003871
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003872DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873"""""""""""
3874
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003875``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876
3877.. code-block:: llvm
3878
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003879 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003880
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003881DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003882""""""""""""""""
3883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003885
3886.. code-block:: llvm
3887
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003888 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003889 file: !2, line: 7, type: !3, isLocal: true,
3890 isDefinition: false, variable: i32* @foo,
3891 declaration: !4)
3892
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003893All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003895
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003896.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003897
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003898DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003899""""""""""""
3900
Sean Silvaa1190322015-08-06 22:56:48 +00003901``DISubprogram`` nodes represent functions from the source language. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003902``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Sean Silvaa1190322015-08-06 22:56:48 +00003903retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003904``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003905
3906.. code-block:: llvm
3907
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003908 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003909 file: !2, line: 7, type: !3, isLocal: true,
3910 isDefinition: false, scopeLine: 8, containingType: !4,
3911 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3912 flags: DIFlagPrototyped, isOptimized: true,
3913 function: void ()* @_Z3foov,
3914 templateParams: !5, declaration: !6, variables: !7)
3915
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003917
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003918DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919""""""""""""""
3920
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003921``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00003922<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00003923two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003924fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003925
3926.. code-block:: llvm
3927
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003928 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003929
3930Usually lexical blocks are ``distinct`` to prevent node merging based on
3931operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003932
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003933.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003934
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003935DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003936""""""""""""""""""
3937
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003938``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003939:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940indicate textual inclusion, or the ``discriminator:`` field can be used to
3941discriminate between control flow within a single block in the source language.
3942
3943.. code-block:: llvm
3944
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003945 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3946 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3947 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003948
Michael Kuperstein605308a2015-05-14 10:58:59 +00003949.. _DILocation:
3950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003952""""""""""
3953
Sean Silvaa1190322015-08-06 22:56:48 +00003954``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003955mandatory, and points at an :ref:`DILexicalBlockFile`, an
3956:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003957
3958.. code-block:: llvm
3959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003961
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003962.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003963
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003964DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003965"""""""""""""""
3966
Sean Silvaa1190322015-08-06 22:56:48 +00003967``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003968the ``arg:`` field is set to non-zero, then this variable is a subprogram
3969parameter, and it will be included in the ``variables:`` field of its
3970:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003971
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972.. code-block:: llvm
3973
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003974 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
3975 type: !3, flags: DIFlagArtificial)
3976 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
3977 type: !3)
3978 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003980DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981""""""""""""
3982
Sean Silvaa1190322015-08-06 22:56:48 +00003983``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3985describe how the referenced LLVM variable relates to the source language
3986variable.
3987
3988The current supported vocabulary is limited:
3989
3990- ``DW_OP_deref`` dereferences the working expression.
3991- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3992- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3993 here, respectively) of the variable piece from the working expression.
3994
3995.. code-block:: llvm
3996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997 !0 = !DIExpression(DW_OP_deref)
3998 !1 = !DIExpression(DW_OP_plus, 3)
3999 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4000 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004002DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004003""""""""""""""
4004
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004005``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004006
4007.. code-block:: llvm
4008
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004009 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010 getter: "getFoo", attributes: 7, type: !2)
4011
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013""""""""""""""""
4014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004016compile unit.
4017
4018.. code-block:: llvm
4019
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021 entity: !1, line: 7)
4022
Sean Silvab084af42012-12-07 10:36:55 +00004023'``tbaa``' Metadata
4024^^^^^^^^^^^^^^^^^^^
4025
4026In LLVM IR, memory does not have types, so LLVM's own type system is not
4027suitable for doing TBAA. Instead, metadata is added to the IR to
4028describe a type system of a higher level language. This can be used to
4029implement typical C/C++ TBAA, but it can also be used to implement
4030custom alias analysis behavior for other languages.
4031
4032The current metadata format is very simple. TBAA metadata nodes have up
4033to three fields, e.g.:
4034
4035.. code-block:: llvm
4036
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004037 !0 = !{ !"an example type tree" }
4038 !1 = !{ !"int", !0 }
4039 !2 = !{ !"float", !0 }
4040 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004041
4042The first field is an identity field. It can be any value, usually a
4043metadata string, which uniquely identifies the type. The most important
4044name in the tree is the name of the root node. Two trees with different
4045root node names are entirely disjoint, even if they have leaves with
4046common names.
4047
4048The second field identifies the type's parent node in the tree, or is
4049null or omitted for a root node. A type is considered to alias all of
4050its descendants and all of its ancestors in the tree. Also, a type is
4051considered to alias all types in other trees, so that bitcode produced
4052from multiple front-ends is handled conservatively.
4053
4054If the third field is present, it's an integer which if equal to 1
4055indicates that the type is "constant" (meaning
4056``pointsToConstantMemory`` should return true; see `other useful
4057AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4058
4059'``tbaa.struct``' Metadata
4060^^^^^^^^^^^^^^^^^^^^^^^^^^
4061
4062The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4063aggregate assignment operations in C and similar languages, however it
4064is defined to copy a contiguous region of memory, which is more than
4065strictly necessary for aggregate types which contain holes due to
4066padding. Also, it doesn't contain any TBAA information about the fields
4067of the aggregate.
4068
4069``!tbaa.struct`` metadata can describe which memory subregions in a
4070memcpy are padding and what the TBAA tags of the struct are.
4071
4072The current metadata format is very simple. ``!tbaa.struct`` metadata
4073nodes are a list of operands which are in conceptual groups of three.
4074For each group of three, the first operand gives the byte offset of a
4075field in bytes, the second gives its size in bytes, and the third gives
4076its tbaa tag. e.g.:
4077
4078.. code-block:: llvm
4079
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004080 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004081
4082This describes a struct with two fields. The first is at offset 0 bytes
4083with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4084and has size 4 bytes and has tbaa tag !2.
4085
4086Note that the fields need not be contiguous. In this example, there is a
40874 byte gap between the two fields. This gap represents padding which
4088does not carry useful data and need not be preserved.
4089
Hal Finkel94146652014-07-24 14:25:39 +00004090'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004092
4093``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4094noalias memory-access sets. This means that some collection of memory access
4095instructions (loads, stores, memory-accessing calls, etc.) that carry
4096``noalias`` metadata can specifically be specified not to alias with some other
4097collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004098Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004099a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004100of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004101subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004102instruction's ``noalias`` list, then the two memory accesses are assumed not to
4103alias.
Hal Finkel94146652014-07-24 14:25:39 +00004104
Hal Finkel029cde62014-07-25 15:50:02 +00004105The metadata identifying each domain is itself a list containing one or two
4106entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004107string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004108self-reference can be used to create globally unique domain names. A
4109descriptive string may optionally be provided as a second list entry.
4110
4111The metadata identifying each scope is also itself a list containing two or
4112three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004113is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004114self-reference can be used to create globally unique scope names. A metadata
4115reference to the scope's domain is the second entry. A descriptive string may
4116optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004117
4118For example,
4119
4120.. code-block:: llvm
4121
Hal Finkel029cde62014-07-25 15:50:02 +00004122 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004123 !0 = !{!0}
4124 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004125
Hal Finkel029cde62014-07-25 15:50:02 +00004126 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004127 !2 = !{!2, !0}
4128 !3 = !{!3, !0}
4129 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004130
Hal Finkel029cde62014-07-25 15:50:02 +00004131 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004132 !5 = !{!4} ; A list containing only scope !4
4133 !6 = !{!4, !3, !2}
4134 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004135
4136 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004137 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004138 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004139
Hal Finkel029cde62014-07-25 15:50:02 +00004140 ; These two instructions also don't alias (for domain !1, the set of scopes
4141 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004142 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004143 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004144
Adam Nemet0a8416f2015-05-11 08:30:28 +00004145 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004146 ; the !noalias list is not a superset of, or equal to, the scopes in the
4147 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004148 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004149 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004150
Sean Silvab084af42012-12-07 10:36:55 +00004151'``fpmath``' Metadata
4152^^^^^^^^^^^^^^^^^^^^^
4153
4154``fpmath`` metadata may be attached to any instruction of floating point
4155type. It can be used to express the maximum acceptable error in the
4156result of that instruction, in ULPs, thus potentially allowing the
4157compiler to use a more efficient but less accurate method of computing
4158it. ULP is defined as follows:
4159
4160 If ``x`` is a real number that lies between two finite consecutive
4161 floating-point numbers ``a`` and ``b``, without being equal to one
4162 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4163 distance between the two non-equal finite floating-point numbers
4164 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4165
4166The metadata node shall consist of a single positive floating point
4167number representing the maximum relative error, for example:
4168
4169.. code-block:: llvm
4170
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004171 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004172
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004173.. _range-metadata:
4174
Sean Silvab084af42012-12-07 10:36:55 +00004175'``range``' Metadata
4176^^^^^^^^^^^^^^^^^^^^
4177
Jingyue Wu37fcb592014-06-19 16:50:16 +00004178``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4179integer types. It expresses the possible ranges the loaded value or the value
4180returned by the called function at this call site is in. The ranges are
4181represented with a flattened list of integers. The loaded value or the value
4182returned is known to be in the union of the ranges defined by each consecutive
4183pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004184
4185- The type must match the type loaded by the instruction.
4186- The pair ``a,b`` represents the range ``[a,b)``.
4187- Both ``a`` and ``b`` are constants.
4188- The range is allowed to wrap.
4189- The range should not represent the full or empty set. That is,
4190 ``a!=b``.
4191
4192In addition, the pairs must be in signed order of the lower bound and
4193they must be non-contiguous.
4194
4195Examples:
4196
4197.. code-block:: llvm
4198
David Blaikiec7aabbb2015-03-04 22:06:14 +00004199 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4200 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004201 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4202 %d = invoke i8 @bar() to label %cont
4203 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004204 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004205 !0 = !{ i8 0, i8 2 }
4206 !1 = !{ i8 255, i8 2 }
4207 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4208 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004209
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004210'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004211^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004212
4213``unpredictable`` metadata may be attached to any branch or switch
4214instruction. It can be used to express the unpredictability of control
4215flow. Similar to the llvm.expect intrinsic, it may be used to alter
4216optimizations related to compare and branch instructions. The metadata
4217is treated as a boolean value; if it exists, it signals that the branch
4218or switch that it is attached to is completely unpredictable.
4219
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004220'``llvm.loop``'
4221^^^^^^^^^^^^^^^
4222
4223It is sometimes useful to attach information to loop constructs. Currently,
4224loop metadata is implemented as metadata attached to the branch instruction
4225in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004226guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004227specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004228
4229The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004230itself to avoid merging it with any other identifier metadata, e.g.,
4231during module linkage or function inlining. That is, each loop should refer
4232to their own identification metadata even if they reside in separate functions.
4233The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004234constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004235
4236.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004237
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004238 !0 = !{!0}
4239 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004240
Mark Heffernan893752a2014-07-18 19:24:51 +00004241The loop identifier metadata can be used to specify additional
4242per-loop metadata. Any operands after the first operand can be treated
4243as user-defined metadata. For example the ``llvm.loop.unroll.count``
4244suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004245
Paul Redmond5fdf8362013-05-28 20:00:34 +00004246.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004247
Paul Redmond5fdf8362013-05-28 20:00:34 +00004248 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4249 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004250 !0 = !{!0, !1}
4251 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004252
Mark Heffernan9d20e422014-07-21 23:11:03 +00004253'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004255
Mark Heffernan9d20e422014-07-21 23:11:03 +00004256Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4257used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004258vectorization width and interleave count. These metadata should be used in
4259conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004260``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4261optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004262it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004263which contains information about loop-carried memory dependencies can be helpful
4264in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004265
Mark Heffernan9d20e422014-07-21 23:11:03 +00004266'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4268
Mark Heffernan9d20e422014-07-21 23:11:03 +00004269This metadata suggests an interleave count to the loop interleaver.
4270The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004271second operand is an integer specifying the interleave count. For
4272example:
4273
4274.. code-block:: llvm
4275
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004276 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004277
Mark Heffernan9d20e422014-07-21 23:11:03 +00004278Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004279multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004280then the interleave count will be determined automatically.
4281
4282'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004284
4285This metadata selectively enables or disables vectorization for the loop. The
4286first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004287is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000042880 disables vectorization:
4289
4290.. code-block:: llvm
4291
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004292 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4293 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004294
4295'``llvm.loop.vectorize.width``' Metadata
4296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4297
4298This metadata sets the target width of the vectorizer. The first
4299operand is the string ``llvm.loop.vectorize.width`` and the second
4300operand is an integer specifying the width. For example:
4301
4302.. code-block:: llvm
4303
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004304 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004305
4306Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004307vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000043080 or if the loop does not have this metadata the width will be
4309determined automatically.
4310
4311'``llvm.loop.unroll``'
4312^^^^^^^^^^^^^^^^^^^^^^
4313
4314Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4315optimization hints such as the unroll factor. ``llvm.loop.unroll``
4316metadata should be used in conjunction with ``llvm.loop`` loop
4317identification metadata. The ``llvm.loop.unroll`` metadata are only
4318optimization hints and the unrolling will only be performed if the
4319optimizer believes it is safe to do so.
4320
Mark Heffernan893752a2014-07-18 19:24:51 +00004321'``llvm.loop.unroll.count``' Metadata
4322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4323
4324This metadata suggests an unroll factor to the loop unroller. The
4325first operand is the string ``llvm.loop.unroll.count`` and the second
4326operand is a positive integer specifying the unroll factor. For
4327example:
4328
4329.. code-block:: llvm
4330
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004331 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004332
4333If the trip count of the loop is less than the unroll count the loop
4334will be partially unrolled.
4335
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004336'``llvm.loop.unroll.disable``' Metadata
4337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4338
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004339This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004340which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004341
4342.. code-block:: llvm
4343
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004344 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004345
Kevin Qin715b01e2015-03-09 06:14:18 +00004346'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004348
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004349This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004350operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004351
4352.. code-block:: llvm
4353
4354 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4355
Mark Heffernan89391542015-08-10 17:28:08 +00004356'``llvm.loop.unroll.enable``' Metadata
4357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4358
4359This metadata suggests that the loop should be fully unrolled if the trip count
4360is known at compile time and partially unrolled if the trip count is not known
4361at compile time. The metadata has a single operand which is the string
4362``llvm.loop.unroll.enable``. For example:
4363
4364.. code-block:: llvm
4365
4366 !0 = !{!"llvm.loop.unroll.enable"}
4367
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004368'``llvm.loop.unroll.full``' Metadata
4369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4370
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004371This metadata suggests that the loop should be unrolled fully. The
4372metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004373For example:
4374
4375.. code-block:: llvm
4376
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004377 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004378
4379'``llvm.mem``'
4380^^^^^^^^^^^^^^^
4381
4382Metadata types used to annotate memory accesses with information helpful
4383for optimizations are prefixed with ``llvm.mem``.
4384
4385'``llvm.mem.parallel_loop_access``' Metadata
4386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4387
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004388The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4389or metadata containing a list of loop identifiers for nested loops.
4390The metadata is attached to memory accessing instructions and denotes that
4391no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004392with the same loop identifier.
4393
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004394Precisely, given two instructions ``m1`` and ``m2`` that both have the
4395``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4396set of loops associated with that metadata, respectively, then there is no loop
4397carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004398``L2``.
4399
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004400As a special case, if all memory accessing instructions in a loop have
4401``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4402loop has no loop carried memory dependences and is considered to be a parallel
4403loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004404
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004405Note that if not all memory access instructions have such metadata referring to
4406the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004407memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004408safe mechanism, this causes loops that were originally parallel to be considered
4409sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004410insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004411
4412Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004413both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004414metadata types that refer to the same loop identifier metadata.
4415
4416.. code-block:: llvm
4417
4418 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004419 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004420 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004421 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004422 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004423 ...
4424 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004425
4426 for.end:
4427 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004428 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004429
4430It is also possible to have nested parallel loops. In that case the
4431memory accesses refer to a list of loop identifier metadata nodes instead of
4432the loop identifier metadata node directly:
4433
4434.. code-block:: llvm
4435
4436 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004437 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004438 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004439 ...
4440 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004441
4442 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004443 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004444 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004445 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004446 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004447 ...
4448 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004449
4450 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004451 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004452 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004453 ...
4454 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004455
4456 outer.for.end: ; preds = %for.body
4457 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004458 !0 = !{!1, !2} ; a list of loop identifiers
4459 !1 = !{!1} ; an identifier for the inner loop
4460 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004461
Peter Collingbournee6909c82015-02-20 20:30:47 +00004462'``llvm.bitsets``'
4463^^^^^^^^^^^^^^^^^^
4464
4465The ``llvm.bitsets`` global metadata is used to implement
4466:doc:`bitsets <BitSets>`.
4467
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004468'``invariant.group``' Metadata
4469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4470
4471The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4472The existence of the ``invariant.group`` metadata on the instruction tells
4473the optimizer that every ``load`` and ``store`` to the same pointer operand
4474within the same invariant group can be assumed to load or store the same
4475value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4476when two pointers are considered the same).
4477
4478Examples:
4479
4480.. code-block:: llvm
4481
4482 @unknownPtr = external global i8
4483 ...
4484 %ptr = alloca i8
4485 store i8 42, i8* %ptr, !invariant.group !0
4486 call void @foo(i8* %ptr)
4487
4488 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4489 call void @foo(i8* %ptr)
4490 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4491
4492 %newPtr = call i8* @getPointer(i8* %ptr)
4493 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4494
4495 %unknownValue = load i8, i8* @unknownPtr
4496 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4497
4498 call void @foo(i8* %ptr)
4499 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4500 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4501
4502 ...
4503 declare void @foo(i8*)
4504 declare i8* @getPointer(i8*)
4505 declare i8* @llvm.invariant.group.barrier(i8*)
4506
4507 !0 = !{!"magic ptr"}
4508 !1 = !{!"other ptr"}
4509
4510
4511
Sean Silvab084af42012-12-07 10:36:55 +00004512Module Flags Metadata
4513=====================
4514
4515Information about the module as a whole is difficult to convey to LLVM's
4516subsystems. The LLVM IR isn't sufficient to transmit this information.
4517The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004518this. These flags are in the form of key / value pairs --- much like a
4519dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004520look it up.
4521
4522The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4523Each triplet has the following form:
4524
4525- The first element is a *behavior* flag, which specifies the behavior
4526 when two (or more) modules are merged together, and it encounters two
4527 (or more) metadata with the same ID. The supported behaviors are
4528 described below.
4529- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004530 metadata. Each module may only have one flag entry for each unique ID (not
4531 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004532- The third element is the value of the flag.
4533
4534When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004535``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4536each unique metadata ID string, there will be exactly one entry in the merged
4537modules ``llvm.module.flags`` metadata table, and the value for that entry will
4538be determined by the merge behavior flag, as described below. The only exception
4539is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004540
4541The following behaviors are supported:
4542
4543.. list-table::
4544 :header-rows: 1
4545 :widths: 10 90
4546
4547 * - Value
4548 - Behavior
4549
4550 * - 1
4551 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004552 Emits an error if two values disagree, otherwise the resulting value
4553 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004554
4555 * - 2
4556 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004557 Emits a warning if two values disagree. The result value will be the
4558 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004559
4560 * - 3
4561 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004562 Adds a requirement that another module flag be present and have a
4563 specified value after linking is performed. The value must be a
4564 metadata pair, where the first element of the pair is the ID of the
4565 module flag to be restricted, and the second element of the pair is
4566 the value the module flag should be restricted to. This behavior can
4567 be used to restrict the allowable results (via triggering of an
4568 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004569
4570 * - 4
4571 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004572 Uses the specified value, regardless of the behavior or value of the
4573 other module. If both modules specify **Override**, but the values
4574 differ, an error will be emitted.
4575
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004576 * - 5
4577 - **Append**
4578 Appends the two values, which are required to be metadata nodes.
4579
4580 * - 6
4581 - **AppendUnique**
4582 Appends the two values, which are required to be metadata
4583 nodes. However, duplicate entries in the second list are dropped
4584 during the append operation.
4585
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004586It is an error for a particular unique flag ID to have multiple behaviors,
4587except in the case of **Require** (which adds restrictions on another metadata
4588value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004589
4590An example of module flags:
4591
4592.. code-block:: llvm
4593
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004594 !0 = !{ i32 1, !"foo", i32 1 }
4595 !1 = !{ i32 4, !"bar", i32 37 }
4596 !2 = !{ i32 2, !"qux", i32 42 }
4597 !3 = !{ i32 3, !"qux",
4598 !{
4599 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004600 }
4601 }
4602 !llvm.module.flags = !{ !0, !1, !2, !3 }
4603
4604- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4605 if two or more ``!"foo"`` flags are seen is to emit an error if their
4606 values are not equal.
4607
4608- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4609 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004610 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004611
4612- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4613 behavior if two or more ``!"qux"`` flags are seen is to emit a
4614 warning if their values are not equal.
4615
4616- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4617
4618 ::
4619
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004620 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004621
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004622 The behavior is to emit an error if the ``llvm.module.flags`` does not
4623 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4624 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004625
4626Objective-C Garbage Collection Module Flags Metadata
4627----------------------------------------------------
4628
4629On the Mach-O platform, Objective-C stores metadata about garbage
4630collection in a special section called "image info". The metadata
4631consists of a version number and a bitmask specifying what types of
4632garbage collection are supported (if any) by the file. If two or more
4633modules are linked together their garbage collection metadata needs to
4634be merged rather than appended together.
4635
4636The Objective-C garbage collection module flags metadata consists of the
4637following key-value pairs:
4638
4639.. list-table::
4640 :header-rows: 1
4641 :widths: 30 70
4642
4643 * - Key
4644 - Value
4645
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004646 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004647 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004648
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004649 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004650 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004651 always 0.
4652
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004653 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004654 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004655 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4656 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4657 Objective-C ABI version 2.
4658
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004659 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004660 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004661 not. Valid values are 0, for no garbage collection, and 2, for garbage
4662 collection supported.
4663
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004664 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004665 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004666 If present, its value must be 6. This flag requires that the
4667 ``Objective-C Garbage Collection`` flag have the value 2.
4668
4669Some important flag interactions:
4670
4671- If a module with ``Objective-C Garbage Collection`` set to 0 is
4672 merged with a module with ``Objective-C Garbage Collection`` set to
4673 2, then the resulting module has the
4674 ``Objective-C Garbage Collection`` flag set to 0.
4675- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4676 merged with a module with ``Objective-C GC Only`` set to 6.
4677
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004678Automatic Linker Flags Module Flags Metadata
4679--------------------------------------------
4680
4681Some targets support embedding flags to the linker inside individual object
4682files. Typically this is used in conjunction with language extensions which
4683allow source files to explicitly declare the libraries they depend on, and have
4684these automatically be transmitted to the linker via object files.
4685
4686These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004687using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004688to be ``AppendUnique``, and the value for the key is expected to be a metadata
4689node which should be a list of other metadata nodes, each of which should be a
4690list of metadata strings defining linker options.
4691
4692For example, the following metadata section specifies two separate sets of
4693linker options, presumably to link against ``libz`` and the ``Cocoa``
4694framework::
4695
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004696 !0 = !{ i32 6, !"Linker Options",
4697 !{
4698 !{ !"-lz" },
4699 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004700 !llvm.module.flags = !{ !0 }
4701
4702The metadata encoding as lists of lists of options, as opposed to a collapsed
4703list of options, is chosen so that the IR encoding can use multiple option
4704strings to specify e.g., a single library, while still having that specifier be
4705preserved as an atomic element that can be recognized by a target specific
4706assembly writer or object file emitter.
4707
4708Each individual option is required to be either a valid option for the target's
4709linker, or an option that is reserved by the target specific assembly writer or
4710object file emitter. No other aspect of these options is defined by the IR.
4711
Oliver Stannard5dc29342014-06-20 10:08:11 +00004712C type width Module Flags Metadata
4713----------------------------------
4714
4715The ARM backend emits a section into each generated object file describing the
4716options that it was compiled with (in a compiler-independent way) to prevent
4717linking incompatible objects, and to allow automatic library selection. Some
4718of these options are not visible at the IR level, namely wchar_t width and enum
4719width.
4720
4721To pass this information to the backend, these options are encoded in module
4722flags metadata, using the following key-value pairs:
4723
4724.. list-table::
4725 :header-rows: 1
4726 :widths: 30 70
4727
4728 * - Key
4729 - Value
4730
4731 * - short_wchar
4732 - * 0 --- sizeof(wchar_t) == 4
4733 * 1 --- sizeof(wchar_t) == 2
4734
4735 * - short_enum
4736 - * 0 --- Enums are at least as large as an ``int``.
4737 * 1 --- Enums are stored in the smallest integer type which can
4738 represent all of its values.
4739
4740For example, the following metadata section specifies that the module was
4741compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4742enum is the smallest type which can represent all of its values::
4743
4744 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004745 !0 = !{i32 1, !"short_wchar", i32 1}
4746 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004747
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004748.. _intrinsicglobalvariables:
4749
Sean Silvab084af42012-12-07 10:36:55 +00004750Intrinsic Global Variables
4751==========================
4752
4753LLVM has a number of "magic" global variables that contain data that
4754affect code generation or other IR semantics. These are documented here.
4755All globals of this sort should have a section specified as
4756"``llvm.metadata``". This section and all globals that start with
4757"``llvm.``" are reserved for use by LLVM.
4758
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004759.. _gv_llvmused:
4760
Sean Silvab084af42012-12-07 10:36:55 +00004761The '``llvm.used``' Global Variable
4762-----------------------------------
4763
Rafael Espindola74f2e462013-04-22 14:58:02 +00004764The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004765:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004766pointers to named global variables, functions and aliases which may optionally
4767have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004768use of it is:
4769
4770.. code-block:: llvm
4771
4772 @X = global i8 4
4773 @Y = global i32 123
4774
4775 @llvm.used = appending global [2 x i8*] [
4776 i8* @X,
4777 i8* bitcast (i32* @Y to i8*)
4778 ], section "llvm.metadata"
4779
Rafael Espindola74f2e462013-04-22 14:58:02 +00004780If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4781and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004782symbol that it cannot see (which is why they have to be named). For example, if
4783a variable has internal linkage and no references other than that from the
4784``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4785references from inline asms and other things the compiler cannot "see", and
4786corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004787
4788On some targets, the code generator must emit a directive to the
4789assembler or object file to prevent the assembler and linker from
4790molesting the symbol.
4791
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004792.. _gv_llvmcompilerused:
4793
Sean Silvab084af42012-12-07 10:36:55 +00004794The '``llvm.compiler.used``' Global Variable
4795--------------------------------------------
4796
4797The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4798directive, except that it only prevents the compiler from touching the
4799symbol. On targets that support it, this allows an intelligent linker to
4800optimize references to the symbol without being impeded as it would be
4801by ``@llvm.used``.
4802
4803This is a rare construct that should only be used in rare circumstances,
4804and should not be exposed to source languages.
4805
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004806.. _gv_llvmglobalctors:
4807
Sean Silvab084af42012-12-07 10:36:55 +00004808The '``llvm.global_ctors``' Global Variable
4809-------------------------------------------
4810
4811.. code-block:: llvm
4812
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004813 %0 = type { i32, void ()*, i8* }
4814 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004815
4816The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004817functions, priorities, and an optional associated global or function.
4818The functions referenced by this array will be called in ascending order
4819of priority (i.e. lowest first) when the module is loaded. The order of
4820functions with the same priority is not defined.
4821
4822If the third field is present, non-null, and points to a global variable
4823or function, the initializer function will only run if the associated
4824data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004825
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004826.. _llvmglobaldtors:
4827
Sean Silvab084af42012-12-07 10:36:55 +00004828The '``llvm.global_dtors``' Global Variable
4829-------------------------------------------
4830
4831.. code-block:: llvm
4832
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004833 %0 = type { i32, void ()*, i8* }
4834 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004835
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004836The ``@llvm.global_dtors`` array contains a list of destructor
4837functions, priorities, and an optional associated global or function.
4838The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004839order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004840order of functions with the same priority is not defined.
4841
4842If the third field is present, non-null, and points to a global variable
4843or function, the destructor function will only run if the associated
4844data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004845
4846Instruction Reference
4847=====================
4848
4849The LLVM instruction set consists of several different classifications
4850of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4851instructions <binaryops>`, :ref:`bitwise binary
4852instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4853:ref:`other instructions <otherops>`.
4854
4855.. _terminators:
4856
4857Terminator Instructions
4858-----------------------
4859
4860As mentioned :ref:`previously <functionstructure>`, every basic block in a
4861program ends with a "Terminator" instruction, which indicates which
4862block should be executed after the current block is finished. These
4863terminator instructions typically yield a '``void``' value: they produce
4864control flow, not values (the one exception being the
4865':ref:`invoke <i_invoke>`' instruction).
4866
4867The terminator instructions are: ':ref:`ret <i_ret>`',
4868':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4869':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004870':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4871':ref:`catchendpad <i_catchendpad>`',
4872':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004873':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004874':ref:`cleanupret <i_cleanupret>`',
4875':ref:`terminatepad <i_terminatepad>`',
4876and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004877
4878.. _i_ret:
4879
4880'``ret``' Instruction
4881^^^^^^^^^^^^^^^^^^^^^
4882
4883Syntax:
4884"""""""
4885
4886::
4887
4888 ret <type> <value> ; Return a value from a non-void function
4889 ret void ; Return from void function
4890
4891Overview:
4892"""""""""
4893
4894The '``ret``' instruction is used to return control flow (and optionally
4895a value) from a function back to the caller.
4896
4897There are two forms of the '``ret``' instruction: one that returns a
4898value and then causes control flow, and one that just causes control
4899flow to occur.
4900
4901Arguments:
4902""""""""""
4903
4904The '``ret``' instruction optionally accepts a single argument, the
4905return value. The type of the return value must be a ':ref:`first
4906class <t_firstclass>`' type.
4907
4908A function is not :ref:`well formed <wellformed>` if it it has a non-void
4909return type and contains a '``ret``' instruction with no return value or
4910a return value with a type that does not match its type, or if it has a
4911void return type and contains a '``ret``' instruction with a return
4912value.
4913
4914Semantics:
4915""""""""""
4916
4917When the '``ret``' instruction is executed, control flow returns back to
4918the calling function's context. If the caller is a
4919":ref:`call <i_call>`" instruction, execution continues at the
4920instruction after the call. If the caller was an
4921":ref:`invoke <i_invoke>`" instruction, execution continues at the
4922beginning of the "normal" destination block. If the instruction returns
4923a value, that value shall set the call or invoke instruction's return
4924value.
4925
4926Example:
4927""""""""
4928
4929.. code-block:: llvm
4930
4931 ret i32 5 ; Return an integer value of 5
4932 ret void ; Return from a void function
4933 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4934
4935.. _i_br:
4936
4937'``br``' Instruction
4938^^^^^^^^^^^^^^^^^^^^
4939
4940Syntax:
4941"""""""
4942
4943::
4944
4945 br i1 <cond>, label <iftrue>, label <iffalse>
4946 br label <dest> ; Unconditional branch
4947
4948Overview:
4949"""""""""
4950
4951The '``br``' instruction is used to cause control flow to transfer to a
4952different basic block in the current function. There are two forms of
4953this instruction, corresponding to a conditional branch and an
4954unconditional branch.
4955
4956Arguments:
4957""""""""""
4958
4959The conditional branch form of the '``br``' instruction takes a single
4960'``i1``' value and two '``label``' values. The unconditional form of the
4961'``br``' instruction takes a single '``label``' value as a target.
4962
4963Semantics:
4964""""""""""
4965
4966Upon execution of a conditional '``br``' instruction, the '``i1``'
4967argument is evaluated. If the value is ``true``, control flows to the
4968'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4969to the '``iffalse``' ``label`` argument.
4970
4971Example:
4972""""""""
4973
4974.. code-block:: llvm
4975
4976 Test:
4977 %cond = icmp eq i32 %a, %b
4978 br i1 %cond, label %IfEqual, label %IfUnequal
4979 IfEqual:
4980 ret i32 1
4981 IfUnequal:
4982 ret i32 0
4983
4984.. _i_switch:
4985
4986'``switch``' Instruction
4987^^^^^^^^^^^^^^^^^^^^^^^^
4988
4989Syntax:
4990"""""""
4991
4992::
4993
4994 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4995
4996Overview:
4997"""""""""
4998
4999The '``switch``' instruction is used to transfer control flow to one of
5000several different places. It is a generalization of the '``br``'
5001instruction, allowing a branch to occur to one of many possible
5002destinations.
5003
5004Arguments:
5005""""""""""
5006
5007The '``switch``' instruction uses three parameters: an integer
5008comparison value '``value``', a default '``label``' destination, and an
5009array of pairs of comparison value constants and '``label``'s. The table
5010is not allowed to contain duplicate constant entries.
5011
5012Semantics:
5013""""""""""
5014
5015The ``switch`` instruction specifies a table of values and destinations.
5016When the '``switch``' instruction is executed, this table is searched
5017for the given value. If the value is found, control flow is transferred
5018to the corresponding destination; otherwise, control flow is transferred
5019to the default destination.
5020
5021Implementation:
5022"""""""""""""""
5023
5024Depending on properties of the target machine and the particular
5025``switch`` instruction, this instruction may be code generated in
5026different ways. For example, it could be generated as a series of
5027chained conditional branches or with a lookup table.
5028
5029Example:
5030""""""""
5031
5032.. code-block:: llvm
5033
5034 ; Emulate a conditional br instruction
5035 %Val = zext i1 %value to i32
5036 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5037
5038 ; Emulate an unconditional br instruction
5039 switch i32 0, label %dest [ ]
5040
5041 ; Implement a jump table:
5042 switch i32 %val, label %otherwise [ i32 0, label %onzero
5043 i32 1, label %onone
5044 i32 2, label %ontwo ]
5045
5046.. _i_indirectbr:
5047
5048'``indirectbr``' Instruction
5049^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5050
5051Syntax:
5052"""""""
5053
5054::
5055
5056 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5057
5058Overview:
5059"""""""""
5060
5061The '``indirectbr``' instruction implements an indirect branch to a
5062label within the current function, whose address is specified by
5063"``address``". Address must be derived from a
5064:ref:`blockaddress <blockaddress>` constant.
5065
5066Arguments:
5067""""""""""
5068
5069The '``address``' argument is the address of the label to jump to. The
5070rest of the arguments indicate the full set of possible destinations
5071that the address may point to. Blocks are allowed to occur multiple
5072times in the destination list, though this isn't particularly useful.
5073
5074This destination list is required so that dataflow analysis has an
5075accurate understanding of the CFG.
5076
5077Semantics:
5078""""""""""
5079
5080Control transfers to the block specified in the address argument. All
5081possible destination blocks must be listed in the label list, otherwise
5082this instruction has undefined behavior. This implies that jumps to
5083labels defined in other functions have undefined behavior as well.
5084
5085Implementation:
5086"""""""""""""""
5087
5088This is typically implemented with a jump through a register.
5089
5090Example:
5091""""""""
5092
5093.. code-block:: llvm
5094
5095 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5096
5097.. _i_invoke:
5098
5099'``invoke``' Instruction
5100^^^^^^^^^^^^^^^^^^^^^^^^
5101
5102Syntax:
5103"""""""
5104
5105::
5106
5107 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005108 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005109
5110Overview:
5111"""""""""
5112
5113The '``invoke``' instruction causes control to transfer to a specified
5114function, with the possibility of control flow transfer to either the
5115'``normal``' label or the '``exception``' label. If the callee function
5116returns with the "``ret``" instruction, control flow will return to the
5117"normal" label. If the callee (or any indirect callees) returns via the
5118":ref:`resume <i_resume>`" instruction or other exception handling
5119mechanism, control is interrupted and continued at the dynamically
5120nearest "exception" label.
5121
5122The '``exception``' label is a `landing
5123pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5124'``exception``' label is required to have the
5125":ref:`landingpad <i_landingpad>`" instruction, which contains the
5126information about the behavior of the program after unwinding happens,
5127as its first non-PHI instruction. The restrictions on the
5128"``landingpad``" instruction's tightly couples it to the "``invoke``"
5129instruction, so that the important information contained within the
5130"``landingpad``" instruction can't be lost through normal code motion.
5131
5132Arguments:
5133""""""""""
5134
5135This instruction requires several arguments:
5136
5137#. The optional "cconv" marker indicates which :ref:`calling
5138 convention <callingconv>` the call should use. If none is
5139 specified, the call defaults to using C calling conventions.
5140#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5141 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5142 are valid here.
5143#. '``ptr to function ty``': shall be the signature of the pointer to
5144 function value being invoked. In most cases, this is a direct
5145 function invocation, but indirect ``invoke``'s are just as possible,
5146 branching off an arbitrary pointer to function value.
5147#. '``function ptr val``': An LLVM value containing a pointer to a
5148 function to be invoked.
5149#. '``function args``': argument list whose types match the function
5150 signature argument types and parameter attributes. All arguments must
5151 be of :ref:`first class <t_firstclass>` type. If the function signature
5152 indicates the function accepts a variable number of arguments, the
5153 extra arguments can be specified.
5154#. '``normal label``': the label reached when the called function
5155 executes a '``ret``' instruction.
5156#. '``exception label``': the label reached when a callee returns via
5157 the :ref:`resume <i_resume>` instruction or other exception handling
5158 mechanism.
5159#. The optional :ref:`function attributes <fnattrs>` list. Only
5160 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5161 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005162#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005163
5164Semantics:
5165""""""""""
5166
5167This instruction is designed to operate as a standard '``call``'
5168instruction in most regards. The primary difference is that it
5169establishes an association with a label, which is used by the runtime
5170library to unwind the stack.
5171
5172This instruction is used in languages with destructors to ensure that
5173proper cleanup is performed in the case of either a ``longjmp`` or a
5174thrown exception. Additionally, this is important for implementation of
5175'``catch``' clauses in high-level languages that support them.
5176
5177For the purposes of the SSA form, the definition of the value returned
5178by the '``invoke``' instruction is deemed to occur on the edge from the
5179current block to the "normal" label. If the callee unwinds then no
5180return value is available.
5181
5182Example:
5183""""""""
5184
5185.. code-block:: llvm
5186
5187 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005188 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005189 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005190 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005191
5192.. _i_resume:
5193
5194'``resume``' Instruction
5195^^^^^^^^^^^^^^^^^^^^^^^^
5196
5197Syntax:
5198"""""""
5199
5200::
5201
5202 resume <type> <value>
5203
5204Overview:
5205"""""""""
5206
5207The '``resume``' instruction is a terminator instruction that has no
5208successors.
5209
5210Arguments:
5211""""""""""
5212
5213The '``resume``' instruction requires one argument, which must have the
5214same type as the result of any '``landingpad``' instruction in the same
5215function.
5216
5217Semantics:
5218""""""""""
5219
5220The '``resume``' instruction resumes propagation of an existing
5221(in-flight) exception whose unwinding was interrupted with a
5222:ref:`landingpad <i_landingpad>` instruction.
5223
5224Example:
5225""""""""
5226
5227.. code-block:: llvm
5228
5229 resume { i8*, i32 } %exn
5230
David Majnemer654e1302015-07-31 17:58:14 +00005231.. _i_catchpad:
5232
5233'``catchpad``' Instruction
5234^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5235
5236Syntax:
5237"""""""
5238
5239::
5240
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005241 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005242 to label <normal label> unwind label <exception label>
5243
5244Overview:
5245"""""""""
5246
5247The '``catchpad``' instruction is used by `LLVM's exception handling
5248system <ExceptionHandling.html#overview>`_ to specify that a basic block
5249is a catch block --- one where a personality routine attempts to transfer
5250control to catch an exception.
5251The ``args`` correspond to whatever information the personality
5252routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005253exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005254``catchpad`` is not an appropriate handler for the in-flight exception.
5255The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005256portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5257:ref:`token <t_token>` and is used to match the ``catchpad`` to
5258corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005259
5260Arguments:
5261""""""""""
5262
5263The instruction takes a list of arbitrary values which are interpreted
5264by the :ref:`personality function <personalityfn>`.
5265
5266The ``catchpad`` must be provided a ``normal`` label to transfer control
5267to if the ``catchpad`` matches the exception and an ``exception``
5268label to transfer control to if it doesn't.
5269
5270Semantics:
5271""""""""""
5272
David Majnemer654e1302015-07-31 17:58:14 +00005273When the call stack is being unwound due to an exception being thrown,
5274the exception is compared against the ``args``. If it doesn't match,
5275then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005276As with calling conventions, how the personality function results are
5277represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005278
5279The ``catchpad`` instruction has several restrictions:
5280
5281- A catch block is a basic block which is the unwind destination of
5282 an exceptional instruction.
5283- A catch block must have a '``catchpad``' instruction as its
5284 first non-PHI instruction.
5285- A catch block's ``exception`` edge must refer to a catch block or a
5286 catch-end block.
5287- There can be only one '``catchpad``' instruction within the
5288 catch block.
5289- A basic block that is not a catch block may not include a
5290 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005291- A catch block which has another catch block as a predecessor may not have
5292 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005293- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005294 ``ret`` without first executing a ``catchret`` that consumes the
5295 ``catchpad`` or unwinding through its ``catchendpad``.
5296- It is undefined behavior for control to transfer from a ``catchpad`` to
5297 itself without first executing a ``catchret`` that consumes the
5298 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005299
5300Example:
5301""""""""
5302
5303.. code-block:: llvm
5304
5305 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005306 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005307 to label %int.handler unwind label %terminate
5308
5309.. _i_catchendpad:
5310
5311'``catchendpad``' Instruction
5312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5313
5314Syntax:
5315"""""""
5316
5317::
5318
5319 catchendpad unwind label <nextaction>
5320 catchendpad unwind to caller
5321
5322Overview:
5323"""""""""
5324
5325The '``catchendpad``' instruction is used by `LLVM's exception handling
5326system <ExceptionHandling.html#overview>`_ to communicate to the
5327:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005328with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5329exception out of a catch handler is represented by unwinding through its
5330``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5331do not handle an exception is also represented by unwinding through their
5332``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005333
5334The ``nextaction`` label indicates where control should transfer to if
5335none of the ``catchpad`` instructions are suitable for catching the
5336in-flight exception.
5337
5338If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005339its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005340:ref:`personality function <personalityfn>` will continue processing
5341exception handling actions in the caller.
5342
5343Arguments:
5344""""""""""
5345
5346The instruction optionally takes a label, ``nextaction``, indicating
5347where control should transfer to if none of the preceding
5348``catchpad`` instructions are suitable for the in-flight exception.
5349
5350Semantics:
5351""""""""""
5352
5353When the call stack is being unwound due to an exception being thrown
5354and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005355control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005356present, control is transfered to the caller.
5357
5358The ``catchendpad`` instruction has several restrictions:
5359
5360- A catch-end block is a basic block which is the unwind destination of
5361 an exceptional instruction.
5362- A catch-end block must have a '``catchendpad``' instruction as its
5363 first non-PHI instruction.
5364- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005365 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005366- A basic block that is not a catch-end block may not include a
5367 '``catchendpad``' instruction.
5368- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005369- It is undefined behavior to execute a ``catchendpad`` if none of the
5370 '``catchpad``'s chained to it have been executed.
5371- It is undefined behavior to execute a ``catchendpad`` twice without an
5372 intervening execution of one or more of the '``catchpad``'s chained to it.
5373- It is undefined behavior to execute a ``catchendpad`` if, after the most
5374 recent execution of the normal successor edge of any ``catchpad`` chained
5375 to it, some ``catchret`` consuming that ``catchpad`` has already been
5376 executed.
5377- It is undefined behavior to execute a ``catchendpad`` if, after the most
5378 recent execution of the normal successor edge of any ``catchpad`` chained
5379 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5380 not had a corresponding
5381 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005382
5383Example:
5384""""""""
5385
5386.. code-block:: llvm
5387
5388 catchendpad unwind label %terminate
5389 catchendpad unwind to caller
5390
5391.. _i_catchret:
5392
5393'``catchret``' Instruction
5394^^^^^^^^^^^^^^^^^^^^^^^^^^
5395
5396Syntax:
5397"""""""
5398
5399::
5400
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005401 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005402
5403Overview:
5404"""""""""
5405
5406The '``catchret``' instruction is a terminator instruction that has a
5407single successor.
5408
5409
5410Arguments:
5411""""""""""
5412
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005413The first argument to a '``catchret``' indicates which ``catchpad`` it
5414exits. It must be a :ref:`catchpad <i_catchpad>`.
5415The second argument to a '``catchret``' specifies where control will
5416transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005417
5418Semantics:
5419""""""""""
5420
5421The '``catchret``' instruction ends the existing (in-flight) exception
5422whose unwinding was interrupted with a
5423:ref:`catchpad <i_catchpad>` instruction.
5424The :ref:`personality function <personalityfn>` gets a chance to execute
5425arbitrary code to, for example, run a C++ destructor.
5426Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005427It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005428
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005429It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5430not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005431
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005432It is undefined behavior to execute a ``catchret`` if, after the most recent
5433execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5434to the same ``catchpad`` has already been executed.
5435
5436It is undefined behavior to execute a ``catchret`` if, after the most recent
5437execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5438been executed but has not had a corresponding
5439``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005440
5441Example:
5442""""""""
5443
5444.. code-block:: llvm
5445
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005446 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005447
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005448.. _i_cleanupendpad:
5449
5450'``cleanupendpad``' Instruction
5451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5452
5453Syntax:
5454"""""""
5455
5456::
5457
5458 cleanupendpad <value> unwind label <nextaction>
5459 cleanupendpad <value> unwind to caller
5460
5461Overview:
5462"""""""""
5463
5464The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5465system <ExceptionHandling.html#overview>`_ to communicate to the
5466:ref:`personality function <personalityfn>` which invokes are associated
5467with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5468out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5469
5470The ``nextaction`` label indicates where control should unwind to next, in the
5471event that a cleanup is exited by means of an(other) exception being raised.
5472
5473If a ``nextaction`` label is not present, the instruction unwinds out of
5474its parent function. The
5475:ref:`personality function <personalityfn>` will continue processing
5476exception handling actions in the caller.
5477
5478Arguments:
5479""""""""""
5480
5481The '``cleanupendpad``' instruction requires one argument, which indicates
5482which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5483It also has an optional successor, ``nextaction``, indicating where control
5484should transfer to.
5485
5486Semantics:
5487""""""""""
5488
5489When and exception propagates to a ``cleanupendpad``, control is transfered to
5490``nextaction`` if it is present. If it is not present, control is transfered to
5491the caller.
5492
5493The ``cleanupendpad`` instruction has several restrictions:
5494
5495- A cleanup-end block is a basic block which is the unwind destination of
5496 an exceptional instruction.
5497- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5498 first non-PHI instruction.
5499- There can be only one '``cleanupendpad``' instruction within the
5500 cleanup-end block.
5501- A basic block that is not a cleanup-end block may not include a
5502 '``cleanupendpad``' instruction.
5503- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5504 has not been executed.
5505- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5506 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5507 consuming the same ``cleanuppad`` has already been executed.
5508- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5509 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5510 ``catchpad`` has been executed but has not had a corresponding
5511 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5512
5513Example:
5514""""""""
5515
5516.. code-block:: llvm
5517
5518 cleanupendpad %cleanup unwind label %terminate
5519 cleanupendpad %cleanup unwind to caller
5520
David Majnemer654e1302015-07-31 17:58:14 +00005521.. _i_cleanupret:
5522
5523'``cleanupret``' Instruction
5524^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5525
5526Syntax:
5527"""""""
5528
5529::
5530
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005531 cleanupret <value> unwind label <continue>
5532 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005533
5534Overview:
5535"""""""""
5536
5537The '``cleanupret``' instruction is a terminator instruction that has
5538an optional successor.
5539
5540
5541Arguments:
5542""""""""""
5543
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005544The '``cleanupret``' instruction requires one argument, which indicates
5545which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5546It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005547
5548Semantics:
5549""""""""""
5550
5551The '``cleanupret``' instruction indicates to the
5552:ref:`personality function <personalityfn>` that one
5553:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5554It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005555
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005556It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5557not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005558
5559It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5560execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5561consuming the same ``cleanuppad`` has already been executed.
5562
5563It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5564execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5565been executed but has not had a corresponding
5566``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005567
5568Example:
5569""""""""
5570
5571.. code-block:: llvm
5572
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005573 cleanupret %cleanup unwind to caller
5574 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005575
5576.. _i_terminatepad:
5577
5578'``terminatepad``' Instruction
5579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5580
5581Syntax:
5582"""""""
5583
5584::
5585
5586 terminatepad [<args>*] unwind label <exception label>
5587 terminatepad [<args>*] unwind to caller
5588
5589Overview:
5590"""""""""
5591
5592The '``terminatepad``' instruction is used by `LLVM's exception handling
5593system <ExceptionHandling.html#overview>`_ to specify that a basic block
5594is a terminate block --- one where a personality routine may decide to
5595terminate the program.
5596The ``args`` correspond to whatever information the personality
5597routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005598program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005599personality routine decides not to terminate the program for the
5600in-flight exception.
5601
5602Arguments:
5603""""""""""
5604
5605The instruction takes a list of arbitrary values which are interpreted
5606by the :ref:`personality function <personalityfn>`.
5607
5608The ``terminatepad`` may be given an ``exception`` label to
5609transfer control to if the in-flight exception matches the ``args``.
5610
5611Semantics:
5612""""""""""
5613
5614When the call stack is being unwound due to an exception being thrown,
5615the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005616then control is transfered to the ``exception`` basic block. Otherwise,
5617the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005618the first argument to ``terminatepad`` specifies what function the
5619personality should defer to in order to terminate the program.
5620
5621The ``terminatepad`` instruction has several restrictions:
5622
5623- A terminate block is a basic block which is the unwind destination of
5624 an exceptional instruction.
5625- A terminate block must have a '``terminatepad``' instruction as its
5626 first non-PHI instruction.
5627- There can be only one '``terminatepad``' instruction within the
5628 terminate block.
5629- A basic block that is not a terminate block may not include a
5630 '``terminatepad``' instruction.
5631
5632Example:
5633""""""""
5634
5635.. code-block:: llvm
5636
5637 ;; A terminate block which only permits integers.
5638 terminatepad [i8** @_ZTIi] unwind label %continue
5639
Sean Silvab084af42012-12-07 10:36:55 +00005640.. _i_unreachable:
5641
5642'``unreachable``' Instruction
5643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5644
5645Syntax:
5646"""""""
5647
5648::
5649
5650 unreachable
5651
5652Overview:
5653"""""""""
5654
5655The '``unreachable``' instruction has no defined semantics. This
5656instruction is used to inform the optimizer that a particular portion of
5657the code is not reachable. This can be used to indicate that the code
5658after a no-return function cannot be reached, and other facts.
5659
5660Semantics:
5661""""""""""
5662
5663The '``unreachable``' instruction has no defined semantics.
5664
5665.. _binaryops:
5666
5667Binary Operations
5668-----------------
5669
5670Binary operators are used to do most of the computation in a program.
5671They require two operands of the same type, execute an operation on
5672them, and produce a single value. The operands might represent multiple
5673data, as is the case with the :ref:`vector <t_vector>` data type. The
5674result value has the same type as its operands.
5675
5676There are several different binary operators:
5677
5678.. _i_add:
5679
5680'``add``' Instruction
5681^^^^^^^^^^^^^^^^^^^^^
5682
5683Syntax:
5684"""""""
5685
5686::
5687
Tim Northover675a0962014-06-13 14:24:23 +00005688 <result> = add <ty> <op1>, <op2> ; yields ty:result
5689 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5690 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5691 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005692
5693Overview:
5694"""""""""
5695
5696The '``add``' instruction returns the sum of its two operands.
5697
5698Arguments:
5699""""""""""
5700
5701The two arguments to the '``add``' instruction must be
5702:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5703arguments must have identical types.
5704
5705Semantics:
5706""""""""""
5707
5708The value produced is the integer sum of the two operands.
5709
5710If the sum has unsigned overflow, the result returned is the
5711mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5712the result.
5713
5714Because LLVM integers use a two's complement representation, this
5715instruction is appropriate for both signed and unsigned integers.
5716
5717``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5718respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5719result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5720unsigned and/or signed overflow, respectively, occurs.
5721
5722Example:
5723""""""""
5724
5725.. code-block:: llvm
5726
Tim Northover675a0962014-06-13 14:24:23 +00005727 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005728
5729.. _i_fadd:
5730
5731'``fadd``' Instruction
5732^^^^^^^^^^^^^^^^^^^^^^
5733
5734Syntax:
5735"""""""
5736
5737::
5738
Tim Northover675a0962014-06-13 14:24:23 +00005739 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005740
5741Overview:
5742"""""""""
5743
5744The '``fadd``' instruction returns the sum of its two operands.
5745
5746Arguments:
5747""""""""""
5748
5749The two arguments to the '``fadd``' instruction must be :ref:`floating
5750point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5751Both arguments must have identical types.
5752
5753Semantics:
5754""""""""""
5755
5756The value produced is the floating point sum of the two operands. This
5757instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5758which are optimization hints to enable otherwise unsafe floating point
5759optimizations:
5760
5761Example:
5762""""""""
5763
5764.. code-block:: llvm
5765
Tim Northover675a0962014-06-13 14:24:23 +00005766 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005767
5768'``sub``' Instruction
5769^^^^^^^^^^^^^^^^^^^^^
5770
5771Syntax:
5772"""""""
5773
5774::
5775
Tim Northover675a0962014-06-13 14:24:23 +00005776 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5777 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5778 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5779 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005780
5781Overview:
5782"""""""""
5783
5784The '``sub``' instruction returns the difference of its two operands.
5785
5786Note that the '``sub``' instruction is used to represent the '``neg``'
5787instruction present in most other intermediate representations.
5788
5789Arguments:
5790""""""""""
5791
5792The two arguments to the '``sub``' instruction must be
5793:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5794arguments must have identical types.
5795
5796Semantics:
5797""""""""""
5798
5799The value produced is the integer difference of the two operands.
5800
5801If the difference has unsigned overflow, the result returned is the
5802mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5803the result.
5804
5805Because LLVM integers use a two's complement representation, this
5806instruction is appropriate for both signed and unsigned integers.
5807
5808``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5809respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5810result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5811unsigned and/or signed overflow, respectively, occurs.
5812
5813Example:
5814""""""""
5815
5816.. code-block:: llvm
5817
Tim Northover675a0962014-06-13 14:24:23 +00005818 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5819 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005820
5821.. _i_fsub:
5822
5823'``fsub``' Instruction
5824^^^^^^^^^^^^^^^^^^^^^^
5825
5826Syntax:
5827"""""""
5828
5829::
5830
Tim Northover675a0962014-06-13 14:24:23 +00005831 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005832
5833Overview:
5834"""""""""
5835
5836The '``fsub``' instruction returns the difference of its two operands.
5837
5838Note that the '``fsub``' instruction is used to represent the '``fneg``'
5839instruction present in most other intermediate representations.
5840
5841Arguments:
5842""""""""""
5843
5844The two arguments to the '``fsub``' instruction must be :ref:`floating
5845point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5846Both arguments must have identical types.
5847
5848Semantics:
5849""""""""""
5850
5851The value produced is the floating point difference of the two operands.
5852This instruction can also take any number of :ref:`fast-math
5853flags <fastmath>`, which are optimization hints to enable otherwise
5854unsafe floating point optimizations:
5855
5856Example:
5857""""""""
5858
5859.. code-block:: llvm
5860
Tim Northover675a0962014-06-13 14:24:23 +00005861 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5862 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005863
5864'``mul``' Instruction
5865^^^^^^^^^^^^^^^^^^^^^
5866
5867Syntax:
5868"""""""
5869
5870::
5871
Tim Northover675a0962014-06-13 14:24:23 +00005872 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5873 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5874 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5875 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005876
5877Overview:
5878"""""""""
5879
5880The '``mul``' instruction returns the product of its two operands.
5881
5882Arguments:
5883""""""""""
5884
5885The two arguments to the '``mul``' instruction must be
5886:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5887arguments must have identical types.
5888
5889Semantics:
5890""""""""""
5891
5892The value produced is the integer product of the two operands.
5893
5894If the result of the multiplication has unsigned overflow, the result
5895returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5896bit width of the result.
5897
5898Because LLVM integers use a two's complement representation, and the
5899result is the same width as the operands, this instruction returns the
5900correct result for both signed and unsigned integers. If a full product
5901(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5902sign-extended or zero-extended as appropriate to the width of the full
5903product.
5904
5905``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5906respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5907result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5908unsigned and/or signed overflow, respectively, occurs.
5909
5910Example:
5911""""""""
5912
5913.. code-block:: llvm
5914
Tim Northover675a0962014-06-13 14:24:23 +00005915 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005916
5917.. _i_fmul:
5918
5919'``fmul``' Instruction
5920^^^^^^^^^^^^^^^^^^^^^^
5921
5922Syntax:
5923"""""""
5924
5925::
5926
Tim Northover675a0962014-06-13 14:24:23 +00005927 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005928
5929Overview:
5930"""""""""
5931
5932The '``fmul``' instruction returns the product of its two operands.
5933
5934Arguments:
5935""""""""""
5936
5937The two arguments to the '``fmul``' instruction must be :ref:`floating
5938point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5939Both arguments must have identical types.
5940
5941Semantics:
5942""""""""""
5943
5944The value produced is the floating point product of the two operands.
5945This instruction can also take any number of :ref:`fast-math
5946flags <fastmath>`, which are optimization hints to enable otherwise
5947unsafe floating point optimizations:
5948
5949Example:
5950""""""""
5951
5952.. code-block:: llvm
5953
Tim Northover675a0962014-06-13 14:24:23 +00005954 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005955
5956'``udiv``' Instruction
5957^^^^^^^^^^^^^^^^^^^^^^
5958
5959Syntax:
5960"""""""
5961
5962::
5963
Tim Northover675a0962014-06-13 14:24:23 +00005964 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5965 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005966
5967Overview:
5968"""""""""
5969
5970The '``udiv``' instruction returns the quotient of its two operands.
5971
5972Arguments:
5973""""""""""
5974
5975The two arguments to the '``udiv``' instruction must be
5976:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5977arguments must have identical types.
5978
5979Semantics:
5980""""""""""
5981
5982The value produced is the unsigned integer quotient of the two operands.
5983
5984Note that unsigned integer division and signed integer division are
5985distinct operations; for signed integer division, use '``sdiv``'.
5986
5987Division by zero leads to undefined behavior.
5988
5989If the ``exact`` keyword is present, the result value of the ``udiv`` is
5990a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5991such, "((a udiv exact b) mul b) == a").
5992
5993Example:
5994""""""""
5995
5996.. code-block:: llvm
5997
Tim Northover675a0962014-06-13 14:24:23 +00005998 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005999
6000'``sdiv``' Instruction
6001^^^^^^^^^^^^^^^^^^^^^^
6002
6003Syntax:
6004"""""""
6005
6006::
6007
Tim Northover675a0962014-06-13 14:24:23 +00006008 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6009 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006010
6011Overview:
6012"""""""""
6013
6014The '``sdiv``' instruction returns the quotient of its two operands.
6015
6016Arguments:
6017""""""""""
6018
6019The two arguments to the '``sdiv``' instruction must be
6020:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6021arguments must have identical types.
6022
6023Semantics:
6024""""""""""
6025
6026The value produced is the signed integer quotient of the two operands
6027rounded towards zero.
6028
6029Note that signed integer division and unsigned integer division are
6030distinct operations; for unsigned integer division, use '``udiv``'.
6031
6032Division by zero leads to undefined behavior. Overflow also leads to
6033undefined behavior; this is a rare case, but can occur, for example, by
6034doing a 32-bit division of -2147483648 by -1.
6035
6036If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6037a :ref:`poison value <poisonvalues>` if the result would be rounded.
6038
6039Example:
6040""""""""
6041
6042.. code-block:: llvm
6043
Tim Northover675a0962014-06-13 14:24:23 +00006044 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006045
6046.. _i_fdiv:
6047
6048'``fdiv``' Instruction
6049^^^^^^^^^^^^^^^^^^^^^^
6050
6051Syntax:
6052"""""""
6053
6054::
6055
Tim Northover675a0962014-06-13 14:24:23 +00006056 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006057
6058Overview:
6059"""""""""
6060
6061The '``fdiv``' instruction returns the quotient of its two operands.
6062
6063Arguments:
6064""""""""""
6065
6066The two arguments to the '``fdiv``' instruction must be :ref:`floating
6067point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6068Both arguments must have identical types.
6069
6070Semantics:
6071""""""""""
6072
6073The value produced is the floating point quotient of the two operands.
6074This instruction can also take any number of :ref:`fast-math
6075flags <fastmath>`, which are optimization hints to enable otherwise
6076unsafe floating point optimizations:
6077
6078Example:
6079""""""""
6080
6081.. code-block:: llvm
6082
Tim Northover675a0962014-06-13 14:24:23 +00006083 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006084
6085'``urem``' Instruction
6086^^^^^^^^^^^^^^^^^^^^^^
6087
6088Syntax:
6089"""""""
6090
6091::
6092
Tim Northover675a0962014-06-13 14:24:23 +00006093 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006094
6095Overview:
6096"""""""""
6097
6098The '``urem``' instruction returns the remainder from the unsigned
6099division of its two arguments.
6100
6101Arguments:
6102""""""""""
6103
6104The two arguments to the '``urem``' instruction must be
6105:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6106arguments must have identical types.
6107
6108Semantics:
6109""""""""""
6110
6111This instruction returns the unsigned integer *remainder* of a division.
6112This instruction always performs an unsigned division to get the
6113remainder.
6114
6115Note that unsigned integer remainder and signed integer remainder are
6116distinct operations; for signed integer remainder, use '``srem``'.
6117
6118Taking the remainder of a division by zero leads to undefined behavior.
6119
6120Example:
6121""""""""
6122
6123.. code-block:: llvm
6124
Tim Northover675a0962014-06-13 14:24:23 +00006125 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006126
6127'``srem``' Instruction
6128^^^^^^^^^^^^^^^^^^^^^^
6129
6130Syntax:
6131"""""""
6132
6133::
6134
Tim Northover675a0962014-06-13 14:24:23 +00006135 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006136
6137Overview:
6138"""""""""
6139
6140The '``srem``' instruction returns the remainder from the signed
6141division of its two operands. This instruction can also take
6142:ref:`vector <t_vector>` versions of the values in which case the elements
6143must be integers.
6144
6145Arguments:
6146""""""""""
6147
6148The two arguments to the '``srem``' instruction must be
6149:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6150arguments must have identical types.
6151
6152Semantics:
6153""""""""""
6154
6155This instruction returns the *remainder* of a division (where the result
6156is either zero or has the same sign as the dividend, ``op1``), not the
6157*modulo* operator (where the result is either zero or has the same sign
6158as the divisor, ``op2``) of a value. For more information about the
6159difference, see `The Math
6160Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6161table of how this is implemented in various languages, please see
6162`Wikipedia: modulo
6163operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6164
6165Note that signed integer remainder and unsigned integer remainder are
6166distinct operations; for unsigned integer remainder, use '``urem``'.
6167
6168Taking the remainder of a division by zero leads to undefined behavior.
6169Overflow also leads to undefined behavior; this is a rare case, but can
6170occur, for example, by taking the remainder of a 32-bit division of
6171-2147483648 by -1. (The remainder doesn't actually overflow, but this
6172rule lets srem be implemented using instructions that return both the
6173result of the division and the remainder.)
6174
6175Example:
6176""""""""
6177
6178.. code-block:: llvm
6179
Tim Northover675a0962014-06-13 14:24:23 +00006180 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006181
6182.. _i_frem:
6183
6184'``frem``' Instruction
6185^^^^^^^^^^^^^^^^^^^^^^
6186
6187Syntax:
6188"""""""
6189
6190::
6191
Tim Northover675a0962014-06-13 14:24:23 +00006192 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006193
6194Overview:
6195"""""""""
6196
6197The '``frem``' instruction returns the remainder from the division of
6198its two operands.
6199
6200Arguments:
6201""""""""""
6202
6203The two arguments to the '``frem``' instruction must be :ref:`floating
6204point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6205Both arguments must have identical types.
6206
6207Semantics:
6208""""""""""
6209
6210This instruction returns the *remainder* of a division. The remainder
6211has the same sign as the dividend. This instruction can also take any
6212number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6213to enable otherwise unsafe floating point optimizations:
6214
6215Example:
6216""""""""
6217
6218.. code-block:: llvm
6219
Tim Northover675a0962014-06-13 14:24:23 +00006220 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006221
6222.. _bitwiseops:
6223
6224Bitwise Binary Operations
6225-------------------------
6226
6227Bitwise binary operators are used to do various forms of bit-twiddling
6228in a program. They are generally very efficient instructions and can
6229commonly be strength reduced from other instructions. They require two
6230operands of the same type, execute an operation on them, and produce a
6231single value. The resulting value is the same type as its operands.
6232
6233'``shl``' Instruction
6234^^^^^^^^^^^^^^^^^^^^^
6235
6236Syntax:
6237"""""""
6238
6239::
6240
Tim Northover675a0962014-06-13 14:24:23 +00006241 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6242 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6243 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6244 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006245
6246Overview:
6247"""""""""
6248
6249The '``shl``' instruction returns the first operand shifted to the left
6250a specified number of bits.
6251
6252Arguments:
6253""""""""""
6254
6255Both arguments to the '``shl``' instruction must be the same
6256:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6257'``op2``' is treated as an unsigned value.
6258
6259Semantics:
6260""""""""""
6261
6262The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6263where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006264dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006265``op1``, the result is undefined. If the arguments are vectors, each
6266vector element of ``op1`` is shifted by the corresponding shift amount
6267in ``op2``.
6268
6269If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6270value <poisonvalues>` if it shifts out any non-zero bits. If the
6271``nsw`` keyword is present, then the shift produces a :ref:`poison
6272value <poisonvalues>` if it shifts out any bits that disagree with the
6273resultant sign bit. As such, NUW/NSW have the same semantics as they
6274would if the shift were expressed as a mul instruction with the same
6275nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6276
6277Example:
6278""""""""
6279
6280.. code-block:: llvm
6281
Tim Northover675a0962014-06-13 14:24:23 +00006282 <result> = shl i32 4, %var ; yields i32: 4 << %var
6283 <result> = shl i32 4, 2 ; yields i32: 16
6284 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006285 <result> = shl i32 1, 32 ; undefined
6286 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6287
6288'``lshr``' Instruction
6289^^^^^^^^^^^^^^^^^^^^^^
6290
6291Syntax:
6292"""""""
6293
6294::
6295
Tim Northover675a0962014-06-13 14:24:23 +00006296 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6297 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006298
6299Overview:
6300"""""""""
6301
6302The '``lshr``' instruction (logical shift right) returns the first
6303operand shifted to the right a specified number of bits with zero fill.
6304
6305Arguments:
6306""""""""""
6307
6308Both arguments to the '``lshr``' instruction must be the same
6309:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6310'``op2``' is treated as an unsigned value.
6311
6312Semantics:
6313""""""""""
6314
6315This instruction always performs a logical shift right operation. The
6316most significant bits of the result will be filled with zero bits after
6317the shift. If ``op2`` is (statically or dynamically) equal to or larger
6318than the number of bits in ``op1``, the result is undefined. If the
6319arguments are vectors, each vector element of ``op1`` is shifted by the
6320corresponding shift amount in ``op2``.
6321
6322If the ``exact`` keyword is present, the result value of the ``lshr`` is
6323a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6324non-zero.
6325
6326Example:
6327""""""""
6328
6329.. code-block:: llvm
6330
Tim Northover675a0962014-06-13 14:24:23 +00006331 <result> = lshr i32 4, 1 ; yields i32:result = 2
6332 <result> = lshr i32 4, 2 ; yields i32:result = 1
6333 <result> = lshr i8 4, 3 ; yields i8:result = 0
6334 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006335 <result> = lshr i32 1, 32 ; undefined
6336 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6337
6338'``ashr``' Instruction
6339^^^^^^^^^^^^^^^^^^^^^^
6340
6341Syntax:
6342"""""""
6343
6344::
6345
Tim Northover675a0962014-06-13 14:24:23 +00006346 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6347 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006348
6349Overview:
6350"""""""""
6351
6352The '``ashr``' instruction (arithmetic shift right) returns the first
6353operand shifted to the right a specified number of bits with sign
6354extension.
6355
6356Arguments:
6357""""""""""
6358
6359Both arguments to the '``ashr``' instruction must be the same
6360:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6361'``op2``' is treated as an unsigned value.
6362
6363Semantics:
6364""""""""""
6365
6366This instruction always performs an arithmetic shift right operation,
6367The most significant bits of the result will be filled with the sign bit
6368of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6369than the number of bits in ``op1``, the result is undefined. If the
6370arguments are vectors, each vector element of ``op1`` is shifted by the
6371corresponding shift amount in ``op2``.
6372
6373If the ``exact`` keyword is present, the result value of the ``ashr`` is
6374a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6375non-zero.
6376
6377Example:
6378""""""""
6379
6380.. code-block:: llvm
6381
Tim Northover675a0962014-06-13 14:24:23 +00006382 <result> = ashr i32 4, 1 ; yields i32:result = 2
6383 <result> = ashr i32 4, 2 ; yields i32:result = 1
6384 <result> = ashr i8 4, 3 ; yields i8:result = 0
6385 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006386 <result> = ashr i32 1, 32 ; undefined
6387 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6388
6389'``and``' Instruction
6390^^^^^^^^^^^^^^^^^^^^^
6391
6392Syntax:
6393"""""""
6394
6395::
6396
Tim Northover675a0962014-06-13 14:24:23 +00006397 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006398
6399Overview:
6400"""""""""
6401
6402The '``and``' instruction returns the bitwise logical and of its two
6403operands.
6404
6405Arguments:
6406""""""""""
6407
6408The two arguments to the '``and``' instruction must be
6409:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6410arguments must have identical types.
6411
6412Semantics:
6413""""""""""
6414
6415The truth table used for the '``and``' instruction is:
6416
6417+-----+-----+-----+
6418| In0 | In1 | Out |
6419+-----+-----+-----+
6420| 0 | 0 | 0 |
6421+-----+-----+-----+
6422| 0 | 1 | 0 |
6423+-----+-----+-----+
6424| 1 | 0 | 0 |
6425+-----+-----+-----+
6426| 1 | 1 | 1 |
6427+-----+-----+-----+
6428
6429Example:
6430""""""""
6431
6432.. code-block:: llvm
6433
Tim Northover675a0962014-06-13 14:24:23 +00006434 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6435 <result> = and i32 15, 40 ; yields i32:result = 8
6436 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006437
6438'``or``' Instruction
6439^^^^^^^^^^^^^^^^^^^^
6440
6441Syntax:
6442"""""""
6443
6444::
6445
Tim Northover675a0962014-06-13 14:24:23 +00006446 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006447
6448Overview:
6449"""""""""
6450
6451The '``or``' instruction returns the bitwise logical inclusive or of its
6452two operands.
6453
6454Arguments:
6455""""""""""
6456
6457The two arguments to the '``or``' instruction must be
6458:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6459arguments must have identical types.
6460
6461Semantics:
6462""""""""""
6463
6464The truth table used for the '``or``' instruction is:
6465
6466+-----+-----+-----+
6467| In0 | In1 | Out |
6468+-----+-----+-----+
6469| 0 | 0 | 0 |
6470+-----+-----+-----+
6471| 0 | 1 | 1 |
6472+-----+-----+-----+
6473| 1 | 0 | 1 |
6474+-----+-----+-----+
6475| 1 | 1 | 1 |
6476+-----+-----+-----+
6477
6478Example:
6479""""""""
6480
6481::
6482
Tim Northover675a0962014-06-13 14:24:23 +00006483 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6484 <result> = or i32 15, 40 ; yields i32:result = 47
6485 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006486
6487'``xor``' Instruction
6488^^^^^^^^^^^^^^^^^^^^^
6489
6490Syntax:
6491"""""""
6492
6493::
6494
Tim Northover675a0962014-06-13 14:24:23 +00006495 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006496
6497Overview:
6498"""""""""
6499
6500The '``xor``' instruction returns the bitwise logical exclusive or of
6501its two operands. The ``xor`` is used to implement the "one's
6502complement" operation, which is the "~" operator in C.
6503
6504Arguments:
6505""""""""""
6506
6507The two arguments to the '``xor``' instruction must be
6508:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6509arguments must have identical types.
6510
6511Semantics:
6512""""""""""
6513
6514The truth table used for the '``xor``' instruction is:
6515
6516+-----+-----+-----+
6517| In0 | In1 | Out |
6518+-----+-----+-----+
6519| 0 | 0 | 0 |
6520+-----+-----+-----+
6521| 0 | 1 | 1 |
6522+-----+-----+-----+
6523| 1 | 0 | 1 |
6524+-----+-----+-----+
6525| 1 | 1 | 0 |
6526+-----+-----+-----+
6527
6528Example:
6529""""""""
6530
6531.. code-block:: llvm
6532
Tim Northover675a0962014-06-13 14:24:23 +00006533 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6534 <result> = xor i32 15, 40 ; yields i32:result = 39
6535 <result> = xor i32 4, 8 ; yields i32:result = 12
6536 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006537
6538Vector Operations
6539-----------------
6540
6541LLVM supports several instructions to represent vector operations in a
6542target-independent manner. These instructions cover the element-access
6543and vector-specific operations needed to process vectors effectively.
6544While LLVM does directly support these vector operations, many
6545sophisticated algorithms will want to use target-specific intrinsics to
6546take full advantage of a specific target.
6547
6548.. _i_extractelement:
6549
6550'``extractelement``' Instruction
6551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6552
6553Syntax:
6554"""""""
6555
6556::
6557
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006558 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006559
6560Overview:
6561"""""""""
6562
6563The '``extractelement``' instruction extracts a single scalar element
6564from a vector at a specified index.
6565
6566Arguments:
6567""""""""""
6568
6569The first operand of an '``extractelement``' instruction is a value of
6570:ref:`vector <t_vector>` type. The second operand is an index indicating
6571the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006572variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006573
6574Semantics:
6575""""""""""
6576
6577The result is a scalar of the same type as the element type of ``val``.
6578Its value is the value at position ``idx`` of ``val``. If ``idx``
6579exceeds the length of ``val``, the results are undefined.
6580
6581Example:
6582""""""""
6583
6584.. code-block:: llvm
6585
6586 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6587
6588.. _i_insertelement:
6589
6590'``insertelement``' Instruction
6591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6592
6593Syntax:
6594"""""""
6595
6596::
6597
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006598 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006599
6600Overview:
6601"""""""""
6602
6603The '``insertelement``' instruction inserts a scalar element into a
6604vector at a specified index.
6605
6606Arguments:
6607""""""""""
6608
6609The first operand of an '``insertelement``' instruction is a value of
6610:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6611type must equal the element type of the first operand. The third operand
6612is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006613index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006614
6615Semantics:
6616""""""""""
6617
6618The result is a vector of the same type as ``val``. Its element values
6619are those of ``val`` except at position ``idx``, where it gets the value
6620``elt``. If ``idx`` exceeds the length of ``val``, the results are
6621undefined.
6622
6623Example:
6624""""""""
6625
6626.. code-block:: llvm
6627
6628 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6629
6630.. _i_shufflevector:
6631
6632'``shufflevector``' Instruction
6633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6634
6635Syntax:
6636"""""""
6637
6638::
6639
6640 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6641
6642Overview:
6643"""""""""
6644
6645The '``shufflevector``' instruction constructs a permutation of elements
6646from two input vectors, returning a vector with the same element type as
6647the input and length that is the same as the shuffle mask.
6648
6649Arguments:
6650""""""""""
6651
6652The first two operands of a '``shufflevector``' instruction are vectors
6653with the same type. The third argument is a shuffle mask whose element
6654type is always 'i32'. The result of the instruction is a vector whose
6655length is the same as the shuffle mask and whose element type is the
6656same as the element type of the first two operands.
6657
6658The shuffle mask operand is required to be a constant vector with either
6659constant integer or undef values.
6660
6661Semantics:
6662""""""""""
6663
6664The elements of the two input vectors are numbered from left to right
6665across both of the vectors. The shuffle mask operand specifies, for each
6666element of the result vector, which element of the two input vectors the
6667result element gets. The element selector may be undef (meaning "don't
6668care") and the second operand may be undef if performing a shuffle from
6669only one vector.
6670
6671Example:
6672""""""""
6673
6674.. code-block:: llvm
6675
6676 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6677 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6678 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6679 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6680 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6681 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6682 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6683 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6684
6685Aggregate Operations
6686--------------------
6687
6688LLVM supports several instructions for working with
6689:ref:`aggregate <t_aggregate>` values.
6690
6691.. _i_extractvalue:
6692
6693'``extractvalue``' Instruction
6694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6695
6696Syntax:
6697"""""""
6698
6699::
6700
6701 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6702
6703Overview:
6704"""""""""
6705
6706The '``extractvalue``' instruction extracts the value of a member field
6707from an :ref:`aggregate <t_aggregate>` value.
6708
6709Arguments:
6710""""""""""
6711
6712The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006713:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006714constant indices to specify which value to extract in a similar manner
6715as indices in a '``getelementptr``' instruction.
6716
6717The major differences to ``getelementptr`` indexing are:
6718
6719- Since the value being indexed is not a pointer, the first index is
6720 omitted and assumed to be zero.
6721- At least one index must be specified.
6722- Not only struct indices but also array indices must be in bounds.
6723
6724Semantics:
6725""""""""""
6726
6727The result is the value at the position in the aggregate specified by
6728the index operands.
6729
6730Example:
6731""""""""
6732
6733.. code-block:: llvm
6734
6735 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6736
6737.. _i_insertvalue:
6738
6739'``insertvalue``' Instruction
6740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6741
6742Syntax:
6743"""""""
6744
6745::
6746
6747 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6748
6749Overview:
6750"""""""""
6751
6752The '``insertvalue``' instruction inserts a value into a member field in
6753an :ref:`aggregate <t_aggregate>` value.
6754
6755Arguments:
6756""""""""""
6757
6758The first operand of an '``insertvalue``' instruction is a value of
6759:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6760a first-class value to insert. The following operands are constant
6761indices indicating the position at which to insert the value in a
6762similar manner as indices in a '``extractvalue``' instruction. The value
6763to insert must have the same type as the value identified by the
6764indices.
6765
6766Semantics:
6767""""""""""
6768
6769The result is an aggregate of the same type as ``val``. Its value is
6770that of ``val`` except that the value at the position specified by the
6771indices is that of ``elt``.
6772
6773Example:
6774""""""""
6775
6776.. code-block:: llvm
6777
6778 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6779 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006780 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006781
6782.. _memoryops:
6783
6784Memory Access and Addressing Operations
6785---------------------------------------
6786
6787A key design point of an SSA-based representation is how it represents
6788memory. In LLVM, no memory locations are in SSA form, which makes things
6789very simple. This section describes how to read, write, and allocate
6790memory in LLVM.
6791
6792.. _i_alloca:
6793
6794'``alloca``' Instruction
6795^^^^^^^^^^^^^^^^^^^^^^^^
6796
6797Syntax:
6798"""""""
6799
6800::
6801
Tim Northover675a0962014-06-13 14:24:23 +00006802 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006803
6804Overview:
6805"""""""""
6806
6807The '``alloca``' instruction allocates memory on the stack frame of the
6808currently executing function, to be automatically released when this
6809function returns to its caller. The object is always allocated in the
6810generic address space (address space zero).
6811
6812Arguments:
6813""""""""""
6814
6815The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6816bytes of memory on the runtime stack, returning a pointer of the
6817appropriate type to the program. If "NumElements" is specified, it is
6818the number of elements allocated, otherwise "NumElements" is defaulted
6819to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006820allocation is guaranteed to be aligned to at least that boundary. The
6821alignment may not be greater than ``1 << 29``. If not specified, or if
6822zero, the target can choose to align the allocation on any convenient
6823boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006824
6825'``type``' may be any sized type.
6826
6827Semantics:
6828""""""""""
6829
6830Memory is allocated; a pointer is returned. The operation is undefined
6831if there is insufficient stack space for the allocation. '``alloca``'d
6832memory is automatically released when the function returns. The
6833'``alloca``' instruction is commonly used to represent automatic
6834variables that must have an address available. When the function returns
6835(either with the ``ret`` or ``resume`` instructions), the memory is
6836reclaimed. Allocating zero bytes is legal, but the result is undefined.
6837The order in which memory is allocated (ie., which way the stack grows)
6838is not specified.
6839
6840Example:
6841""""""""
6842
6843.. code-block:: llvm
6844
Tim Northover675a0962014-06-13 14:24:23 +00006845 %ptr = alloca i32 ; yields i32*:ptr
6846 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6847 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6848 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006849
6850.. _i_load:
6851
6852'``load``' Instruction
6853^^^^^^^^^^^^^^^^^^^^^^
6854
6855Syntax:
6856"""""""
6857
6858::
6859
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006860 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006861 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006862 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006863 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006864 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006865
6866Overview:
6867"""""""""
6868
6869The '``load``' instruction is used to read from memory.
6870
6871Arguments:
6872""""""""""
6873
Eli Bendersky239a78b2013-04-17 20:17:08 +00006874The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006875from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006876class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6877then the optimizer is not allowed to modify the number or order of
6878execution of this ``load`` with other :ref:`volatile
6879operations <volatile>`.
6880
6881If the ``load`` is marked as ``atomic``, it takes an extra
6882:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6883``release`` and ``acq_rel`` orderings are not valid on ``load``
6884instructions. Atomic loads produce :ref:`defined <memmodel>` results
6885when they may see multiple atomic stores. The type of the pointee must
6886be an integer type whose bit width is a power of two greater than or
6887equal to eight and less than or equal to a target-specific size limit.
6888``align`` must be explicitly specified on atomic loads, and the load has
6889undefined behavior if the alignment is not set to a value which is at
6890least the size in bytes of the pointee. ``!nontemporal`` does not have
6891any defined semantics for atomic loads.
6892
6893The optional constant ``align`` argument specifies the alignment of the
6894operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006895or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006896alignment for the target. It is the responsibility of the code emitter
6897to ensure that the alignment information is correct. Overestimating the
6898alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006899may produce less efficient code. An alignment of 1 is always safe. The
6900maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006901
6902The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006903metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006904``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006905metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006906that this load is not expected to be reused in the cache. The code
6907generator may select special instructions to save cache bandwidth, such
6908as the ``MOVNT`` instruction on x86.
6909
6910The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006911metadata name ``<index>`` corresponding to a metadata node with no
6912entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006913instruction tells the optimizer and code generator that the address
6914operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006915Being invariant does not imply that a location is dereferenceable,
6916but it does imply that once the location is known dereferenceable
6917its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006918
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006919The optional ``!invariant.group`` metadata must reference a single metadata name
6920 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6921
Philip Reamescdb72f32014-10-20 22:40:55 +00006922The optional ``!nonnull`` metadata must reference a single
6923metadata name ``<index>`` corresponding to a metadata node with no
6924entries. The existence of the ``!nonnull`` metadata on the
6925instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006926never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006927on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006928to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006929
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006930The optional ``!dereferenceable`` metadata must reference a single metadata
6931name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006932entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006933tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006934The number of bytes known to be dereferenceable is specified by the integer
6935value in the metadata node. This is analogous to the ''dereferenceable''
6936attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006937to loads of a pointer type.
6938
6939The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006940metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6941``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006942instruction tells the optimizer that the value loaded is known to be either
6943dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006944The number of bytes known to be dereferenceable is specified by the integer
6945value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6946attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006947to loads of a pointer type.
6948
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006949The optional ``!align`` metadata must reference a single metadata name
6950``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6951The existence of the ``!align`` metadata on the instruction tells the
6952optimizer that the value loaded is known to be aligned to a boundary specified
6953by the integer value in the metadata node. The alignment must be a power of 2.
6954This is analogous to the ''align'' attribute on parameters and return values.
6955This metadata can only be applied to loads of a pointer type.
6956
Sean Silvab084af42012-12-07 10:36:55 +00006957Semantics:
6958""""""""""
6959
6960The location of memory pointed to is loaded. If the value being loaded
6961is of scalar type then the number of bytes read does not exceed the
6962minimum number of bytes needed to hold all bits of the type. For
6963example, loading an ``i24`` reads at most three bytes. When loading a
6964value of a type like ``i20`` with a size that is not an integral number
6965of bytes, the result is undefined if the value was not originally
6966written using a store of the same type.
6967
6968Examples:
6969"""""""""
6970
6971.. code-block:: llvm
6972
Tim Northover675a0962014-06-13 14:24:23 +00006973 %ptr = alloca i32 ; yields i32*:ptr
6974 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006975 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006976
6977.. _i_store:
6978
6979'``store``' Instruction
6980^^^^^^^^^^^^^^^^^^^^^^^
6981
6982Syntax:
6983"""""""
6984
6985::
6986
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006987 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6988 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006989
6990Overview:
6991"""""""""
6992
6993The '``store``' instruction is used to write to memory.
6994
6995Arguments:
6996""""""""""
6997
Eli Benderskyca380842013-04-17 17:17:20 +00006998There are two arguments to the ``store`` instruction: a value to store
6999and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007000operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007001the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007002then the optimizer is not allowed to modify the number or order of
7003execution of this ``store`` with other :ref:`volatile
7004operations <volatile>`.
7005
7006If the ``store`` is marked as ``atomic``, it takes an extra
7007:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7008``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
7009instructions. Atomic loads produce :ref:`defined <memmodel>` results
7010when they may see multiple atomic stores. The type of the pointee must
7011be an integer type whose bit width is a power of two greater than or
7012equal to eight and less than or equal to a target-specific size limit.
7013``align`` must be explicitly specified on atomic stores, and the store
7014has undefined behavior if the alignment is not set to a value which is
7015at least the size in bytes of the pointee. ``!nontemporal`` does not
7016have any defined semantics for atomic stores.
7017
Eli Benderskyca380842013-04-17 17:17:20 +00007018The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007019operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007020or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007021alignment for the target. It is the responsibility of the code emitter
7022to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007023alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007024alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007025safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007026
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007027The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007028name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007029value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007030tells the optimizer and code generator that this load is not expected to
7031be reused in the cache. The code generator may select special
7032instructions to save cache bandwidth, such as the MOVNT instruction on
7033x86.
7034
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007035The optional ``!invariant.group`` metadata must reference a
7036single metadata name ``<index>``. See ``invariant.group`` metadata.
7037
Sean Silvab084af42012-12-07 10:36:55 +00007038Semantics:
7039""""""""""
7040
Eli Benderskyca380842013-04-17 17:17:20 +00007041The contents of memory are updated to contain ``<value>`` at the
7042location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007043of scalar type then the number of bytes written does not exceed the
7044minimum number of bytes needed to hold all bits of the type. For
7045example, storing an ``i24`` writes at most three bytes. When writing a
7046value of a type like ``i20`` with a size that is not an integral number
7047of bytes, it is unspecified what happens to the extra bits that do not
7048belong to the type, but they will typically be overwritten.
7049
7050Example:
7051""""""""
7052
7053.. code-block:: llvm
7054
Tim Northover675a0962014-06-13 14:24:23 +00007055 %ptr = alloca i32 ; yields i32*:ptr
7056 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007057 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007058
7059.. _i_fence:
7060
7061'``fence``' Instruction
7062^^^^^^^^^^^^^^^^^^^^^^^
7063
7064Syntax:
7065"""""""
7066
7067::
7068
Tim Northover675a0962014-06-13 14:24:23 +00007069 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007070
7071Overview:
7072"""""""""
7073
7074The '``fence``' instruction is used to introduce happens-before edges
7075between operations.
7076
7077Arguments:
7078""""""""""
7079
7080'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7081defines what *synchronizes-with* edges they add. They can only be given
7082``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7083
7084Semantics:
7085""""""""""
7086
7087A fence A which has (at least) ``release`` ordering semantics
7088*synchronizes with* a fence B with (at least) ``acquire`` ordering
7089semantics if and only if there exist atomic operations X and Y, both
7090operating on some atomic object M, such that A is sequenced before X, X
7091modifies M (either directly or through some side effect of a sequence
7092headed by X), Y is sequenced before B, and Y observes M. This provides a
7093*happens-before* dependency between A and B. Rather than an explicit
7094``fence``, one (but not both) of the atomic operations X or Y might
7095provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7096still *synchronize-with* the explicit ``fence`` and establish the
7097*happens-before* edge.
7098
7099A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7100``acquire`` and ``release`` semantics specified above, participates in
7101the global program order of other ``seq_cst`` operations and/or fences.
7102
7103The optional ":ref:`singlethread <singlethread>`" argument specifies
7104that the fence only synchronizes with other fences in the same thread.
7105(This is useful for interacting with signal handlers.)
7106
7107Example:
7108""""""""
7109
7110.. code-block:: llvm
7111
Tim Northover675a0962014-06-13 14:24:23 +00007112 fence acquire ; yields void
7113 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007114
7115.. _i_cmpxchg:
7116
7117'``cmpxchg``' Instruction
7118^^^^^^^^^^^^^^^^^^^^^^^^^
7119
7120Syntax:
7121"""""""
7122
7123::
7124
Tim Northover675a0962014-06-13 14:24:23 +00007125 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007126
7127Overview:
7128"""""""""
7129
7130The '``cmpxchg``' instruction is used to atomically modify memory. It
7131loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007132equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007133
7134Arguments:
7135""""""""""
7136
7137There are three arguments to the '``cmpxchg``' instruction: an address
7138to operate on, a value to compare to the value currently be at that
7139address, and a new value to place at that address if the compared values
7140are equal. The type of '<cmp>' must be an integer type whose bit width
7141is a power of two greater than or equal to eight and less than or equal
7142to a target-specific size limit. '<cmp>' and '<new>' must have the same
7143type, and the type of '<pointer>' must be a pointer to that type. If the
7144``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7145to modify the number or order of execution of this ``cmpxchg`` with
7146other :ref:`volatile operations <volatile>`.
7147
Tim Northovere94a5182014-03-11 10:48:52 +00007148The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007149``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7150must be at least ``monotonic``, the ordering constraint on failure must be no
7151stronger than that on success, and the failure ordering cannot be either
7152``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007153
7154The optional "``singlethread``" argument declares that the ``cmpxchg``
7155is only atomic with respect to code (usually signal handlers) running in
7156the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7157respect to all other code in the system.
7158
7159The pointer passed into cmpxchg must have alignment greater than or
7160equal to the size in memory of the operand.
7161
7162Semantics:
7163""""""""""
7164
Tim Northover420a2162014-06-13 14:24:07 +00007165The contents of memory at the location specified by the '``<pointer>``' operand
7166is read and compared to '``<cmp>``'; if the read value is the equal, the
7167'``<new>``' is written. The original value at the location is returned, together
7168with a flag indicating success (true) or failure (false).
7169
7170If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7171permitted: the operation may not write ``<new>`` even if the comparison
7172matched.
7173
7174If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7175if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007176
Tim Northovere94a5182014-03-11 10:48:52 +00007177A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7178identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7179load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007180
7181Example:
7182""""""""
7183
7184.. code-block:: llvm
7185
7186 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007187 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007188 br label %loop
7189
7190 loop:
7191 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7192 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007193 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007194 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7195 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007196 br i1 %success, label %done, label %loop
7197
7198 done:
7199 ...
7200
7201.. _i_atomicrmw:
7202
7203'``atomicrmw``' Instruction
7204^^^^^^^^^^^^^^^^^^^^^^^^^^^
7205
7206Syntax:
7207"""""""
7208
7209::
7210
Tim Northover675a0962014-06-13 14:24:23 +00007211 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007212
7213Overview:
7214"""""""""
7215
7216The '``atomicrmw``' instruction is used to atomically modify memory.
7217
7218Arguments:
7219""""""""""
7220
7221There are three arguments to the '``atomicrmw``' instruction: an
7222operation to apply, an address whose value to modify, an argument to the
7223operation. The operation must be one of the following keywords:
7224
7225- xchg
7226- add
7227- sub
7228- and
7229- nand
7230- or
7231- xor
7232- max
7233- min
7234- umax
7235- umin
7236
7237The type of '<value>' must be an integer type whose bit width is a power
7238of two greater than or equal to eight and less than or equal to a
7239target-specific size limit. The type of the '``<pointer>``' operand must
7240be a pointer to that type. If the ``atomicrmw`` is marked as
7241``volatile``, then the optimizer is not allowed to modify the number or
7242order of execution of this ``atomicrmw`` with other :ref:`volatile
7243operations <volatile>`.
7244
7245Semantics:
7246""""""""""
7247
7248The contents of memory at the location specified by the '``<pointer>``'
7249operand are atomically read, modified, and written back. The original
7250value at the location is returned. The modification is specified by the
7251operation argument:
7252
7253- xchg: ``*ptr = val``
7254- add: ``*ptr = *ptr + val``
7255- sub: ``*ptr = *ptr - val``
7256- and: ``*ptr = *ptr & val``
7257- nand: ``*ptr = ~(*ptr & val)``
7258- or: ``*ptr = *ptr | val``
7259- xor: ``*ptr = *ptr ^ val``
7260- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7261- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7262- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7263 comparison)
7264- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7265 comparison)
7266
7267Example:
7268""""""""
7269
7270.. code-block:: llvm
7271
Tim Northover675a0962014-06-13 14:24:23 +00007272 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007273
7274.. _i_getelementptr:
7275
7276'``getelementptr``' Instruction
7277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7278
7279Syntax:
7280"""""""
7281
7282::
7283
David Blaikie16a97eb2015-03-04 22:02:58 +00007284 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7285 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7286 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007287
7288Overview:
7289"""""""""
7290
7291The '``getelementptr``' instruction is used to get the address of a
7292subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007293address calculation only and does not access memory. The instruction can also
7294be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007295
7296Arguments:
7297""""""""""
7298
David Blaikie16a97eb2015-03-04 22:02:58 +00007299The first argument is always a type used as the basis for the calculations.
7300The second argument is always a pointer or a vector of pointers, and is the
7301base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007302that indicate which of the elements of the aggregate object are indexed.
7303The interpretation of each index is dependent on the type being indexed
7304into. The first index always indexes the pointer value given as the
7305first argument, the second index indexes a value of the type pointed to
7306(not necessarily the value directly pointed to, since the first index
7307can be non-zero), etc. The first type indexed into must be a pointer
7308value, subsequent types can be arrays, vectors, and structs. Note that
7309subsequent types being indexed into can never be pointers, since that
7310would require loading the pointer before continuing calculation.
7311
7312The type of each index argument depends on the type it is indexing into.
7313When indexing into a (optionally packed) structure, only ``i32`` integer
7314**constants** are allowed (when using a vector of indices they must all
7315be the **same** ``i32`` integer constant). When indexing into an array,
7316pointer or vector, integers of any width are allowed, and they are not
7317required to be constant. These integers are treated as signed values
7318where relevant.
7319
7320For example, let's consider a C code fragment and how it gets compiled
7321to LLVM:
7322
7323.. code-block:: c
7324
7325 struct RT {
7326 char A;
7327 int B[10][20];
7328 char C;
7329 };
7330 struct ST {
7331 int X;
7332 double Y;
7333 struct RT Z;
7334 };
7335
7336 int *foo(struct ST *s) {
7337 return &s[1].Z.B[5][13];
7338 }
7339
7340The LLVM code generated by Clang is:
7341
7342.. code-block:: llvm
7343
7344 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7345 %struct.ST = type { i32, double, %struct.RT }
7346
7347 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7348 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007349 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007350 ret i32* %arrayidx
7351 }
7352
7353Semantics:
7354""""""""""
7355
7356In the example above, the first index is indexing into the
7357'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7358= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7359indexes into the third element of the structure, yielding a
7360'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7361structure. The third index indexes into the second element of the
7362structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7363dimensions of the array are subscripted into, yielding an '``i32``'
7364type. The '``getelementptr``' instruction returns a pointer to this
7365element, thus computing a value of '``i32*``' type.
7366
7367Note that it is perfectly legal to index partially through a structure,
7368returning a pointer to an inner element. Because of this, the LLVM code
7369for the given testcase is equivalent to:
7370
7371.. code-block:: llvm
7372
7373 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007374 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7375 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7376 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7377 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7378 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007379 ret i32* %t5
7380 }
7381
7382If the ``inbounds`` keyword is present, the result value of the
7383``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7384pointer is not an *in bounds* address of an allocated object, or if any
7385of the addresses that would be formed by successive addition of the
7386offsets implied by the indices to the base address with infinitely
7387precise signed arithmetic are not an *in bounds* address of that
7388allocated object. The *in bounds* addresses for an allocated object are
7389all the addresses that point into the object, plus the address one byte
7390past the end. In cases where the base is a vector of pointers the
7391``inbounds`` keyword applies to each of the computations element-wise.
7392
7393If the ``inbounds`` keyword is not present, the offsets are added to the
7394base address with silently-wrapping two's complement arithmetic. If the
7395offsets have a different width from the pointer, they are sign-extended
7396or truncated to the width of the pointer. The result value of the
7397``getelementptr`` may be outside the object pointed to by the base
7398pointer. The result value may not necessarily be used to access memory
7399though, even if it happens to point into allocated storage. See the
7400:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7401information.
7402
7403The getelementptr instruction is often confusing. For some more insight
7404into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7405
7406Example:
7407""""""""
7408
7409.. code-block:: llvm
7410
7411 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007412 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007413 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007414 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007415 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007416 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007417 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007418 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007419
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007420Vector of pointers:
7421"""""""""""""""""""
7422
7423The ``getelementptr`` returns a vector of pointers, instead of a single address,
7424when one or more of its arguments is a vector. In such cases, all vector
7425arguments should have the same number of elements, and every scalar argument
7426will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007427
7428.. code-block:: llvm
7429
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007430 ; All arguments are vectors:
7431 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7432 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007433
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007434 ; Add the same scalar offset to each pointer of a vector:
7435 ; A[i] = ptrs[i] + offset*sizeof(i8)
7436 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007437
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007438 ; Add distinct offsets to the same pointer:
7439 ; A[i] = ptr + offsets[i]*sizeof(i8)
7440 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007441
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007442 ; In all cases described above the type of the result is <4 x i8*>
7443
7444The two following instructions are equivalent:
7445
7446.. code-block:: llvm
7447
7448 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7449 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7450 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7451 <4 x i32> %ind4,
7452 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007453
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007454 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7455 i32 2, i32 1, <4 x i32> %ind4, i64 13
7456
7457Let's look at the C code, where the vector version of ``getelementptr``
7458makes sense:
7459
7460.. code-block:: c
7461
7462 // Let's assume that we vectorize the following loop:
7463 double *A, B; int *C;
7464 for (int i = 0; i < size; ++i) {
7465 A[i] = B[C[i]];
7466 }
7467
7468.. code-block:: llvm
7469
7470 ; get pointers for 8 elements from array B
7471 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7472 ; load 8 elements from array B into A
7473 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7474 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007475
7476Conversion Operations
7477---------------------
7478
7479The instructions in this category are the conversion instructions
7480(casting) which all take a single operand and a type. They perform
7481various bit conversions on the operand.
7482
7483'``trunc .. to``' Instruction
7484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7485
7486Syntax:
7487"""""""
7488
7489::
7490
7491 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7492
7493Overview:
7494"""""""""
7495
7496The '``trunc``' instruction truncates its operand to the type ``ty2``.
7497
7498Arguments:
7499""""""""""
7500
7501The '``trunc``' instruction takes a value to trunc, and a type to trunc
7502it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7503of the same number of integers. The bit size of the ``value`` must be
7504larger than the bit size of the destination type, ``ty2``. Equal sized
7505types are not allowed.
7506
7507Semantics:
7508""""""""""
7509
7510The '``trunc``' instruction truncates the high order bits in ``value``
7511and converts the remaining bits to ``ty2``. Since the source size must
7512be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7513It will always truncate bits.
7514
7515Example:
7516""""""""
7517
7518.. code-block:: llvm
7519
7520 %X = trunc i32 257 to i8 ; yields i8:1
7521 %Y = trunc i32 123 to i1 ; yields i1:true
7522 %Z = trunc i32 122 to i1 ; yields i1:false
7523 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7524
7525'``zext .. to``' Instruction
7526^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7527
7528Syntax:
7529"""""""
7530
7531::
7532
7533 <result> = zext <ty> <value> to <ty2> ; yields ty2
7534
7535Overview:
7536"""""""""
7537
7538The '``zext``' instruction zero extends its operand to type ``ty2``.
7539
7540Arguments:
7541""""""""""
7542
7543The '``zext``' instruction takes a value to cast, and a type to cast it
7544to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7545the same number of integers. The bit size of the ``value`` must be
7546smaller than the bit size of the destination type, ``ty2``.
7547
7548Semantics:
7549""""""""""
7550
7551The ``zext`` fills the high order bits of the ``value`` with zero bits
7552until it reaches the size of the destination type, ``ty2``.
7553
7554When zero extending from i1, the result will always be either 0 or 1.
7555
7556Example:
7557""""""""
7558
7559.. code-block:: llvm
7560
7561 %X = zext i32 257 to i64 ; yields i64:257
7562 %Y = zext i1 true to i32 ; yields i32:1
7563 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7564
7565'``sext .. to``' Instruction
7566^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7567
7568Syntax:
7569"""""""
7570
7571::
7572
7573 <result> = sext <ty> <value> to <ty2> ; yields ty2
7574
7575Overview:
7576"""""""""
7577
7578The '``sext``' sign extends ``value`` to the type ``ty2``.
7579
7580Arguments:
7581""""""""""
7582
7583The '``sext``' instruction takes a value to cast, and a type to cast it
7584to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7585the same number of integers. The bit size of the ``value`` must be
7586smaller than the bit size of the destination type, ``ty2``.
7587
7588Semantics:
7589""""""""""
7590
7591The '``sext``' instruction performs a sign extension by copying the sign
7592bit (highest order bit) of the ``value`` until it reaches the bit size
7593of the type ``ty2``.
7594
7595When sign extending from i1, the extension always results in -1 or 0.
7596
7597Example:
7598""""""""
7599
7600.. code-block:: llvm
7601
7602 %X = sext i8 -1 to i16 ; yields i16 :65535
7603 %Y = sext i1 true to i32 ; yields i32:-1
7604 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7605
7606'``fptrunc .. to``' Instruction
7607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7608
7609Syntax:
7610"""""""
7611
7612::
7613
7614 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7615
7616Overview:
7617"""""""""
7618
7619The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7620
7621Arguments:
7622""""""""""
7623
7624The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7625value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7626The size of ``value`` must be larger than the size of ``ty2``. This
7627implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7628
7629Semantics:
7630""""""""""
7631
Dan Liew50456fb2015-09-03 18:43:56 +00007632The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007633:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007634point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7635destination type, ``ty2``, then the results are undefined. If the cast produces
7636an inexact result, how rounding is performed (e.g. truncation, also known as
7637round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007638
7639Example:
7640""""""""
7641
7642.. code-block:: llvm
7643
7644 %X = fptrunc double 123.0 to float ; yields float:123.0
7645 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7646
7647'``fpext .. to``' Instruction
7648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7649
7650Syntax:
7651"""""""
7652
7653::
7654
7655 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7656
7657Overview:
7658"""""""""
7659
7660The '``fpext``' extends a floating point ``value`` to a larger floating
7661point value.
7662
7663Arguments:
7664""""""""""
7665
7666The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7667``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7668to. The source type must be smaller than the destination type.
7669
7670Semantics:
7671""""""""""
7672
7673The '``fpext``' instruction extends the ``value`` from a smaller
7674:ref:`floating point <t_floating>` type to a larger :ref:`floating
7675point <t_floating>` type. The ``fpext`` cannot be used to make a
7676*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7677*no-op cast* for a floating point cast.
7678
7679Example:
7680""""""""
7681
7682.. code-block:: llvm
7683
7684 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7685 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7686
7687'``fptoui .. to``' Instruction
7688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7689
7690Syntax:
7691"""""""
7692
7693::
7694
7695 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7696
7697Overview:
7698"""""""""
7699
7700The '``fptoui``' converts a floating point ``value`` to its unsigned
7701integer equivalent of type ``ty2``.
7702
7703Arguments:
7704""""""""""
7705
7706The '``fptoui``' instruction takes a value to cast, which must be a
7707scalar or vector :ref:`floating point <t_floating>` value, and a type to
7708cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7709``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7710type with the same number of elements as ``ty``
7711
7712Semantics:
7713""""""""""
7714
7715The '``fptoui``' instruction converts its :ref:`floating
7716point <t_floating>` operand into the nearest (rounding towards zero)
7717unsigned integer value. If the value cannot fit in ``ty2``, the results
7718are undefined.
7719
7720Example:
7721""""""""
7722
7723.. code-block:: llvm
7724
7725 %X = fptoui double 123.0 to i32 ; yields i32:123
7726 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7727 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7728
7729'``fptosi .. to``' Instruction
7730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7731
7732Syntax:
7733"""""""
7734
7735::
7736
7737 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7738
7739Overview:
7740"""""""""
7741
7742The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7743``value`` to type ``ty2``.
7744
7745Arguments:
7746""""""""""
7747
7748The '``fptosi``' instruction takes a value to cast, which must be a
7749scalar or vector :ref:`floating point <t_floating>` value, and a type to
7750cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7751``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7752type with the same number of elements as ``ty``
7753
7754Semantics:
7755""""""""""
7756
7757The '``fptosi``' instruction converts its :ref:`floating
7758point <t_floating>` operand into the nearest (rounding towards zero)
7759signed integer value. If the value cannot fit in ``ty2``, the results
7760are undefined.
7761
7762Example:
7763""""""""
7764
7765.. code-block:: llvm
7766
7767 %X = fptosi double -123.0 to i32 ; yields i32:-123
7768 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7769 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7770
7771'``uitofp .. to``' Instruction
7772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7773
7774Syntax:
7775"""""""
7776
7777::
7778
7779 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7780
7781Overview:
7782"""""""""
7783
7784The '``uitofp``' instruction regards ``value`` as an unsigned integer
7785and converts that value to the ``ty2`` type.
7786
7787Arguments:
7788""""""""""
7789
7790The '``uitofp``' instruction takes a value to cast, which must be a
7791scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7792``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7793``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7794type with the same number of elements as ``ty``
7795
7796Semantics:
7797""""""""""
7798
7799The '``uitofp``' instruction interprets its operand as an unsigned
7800integer quantity and converts it to the corresponding floating point
7801value. If the value cannot fit in the floating point value, the results
7802are undefined.
7803
7804Example:
7805""""""""
7806
7807.. code-block:: llvm
7808
7809 %X = uitofp i32 257 to float ; yields float:257.0
7810 %Y = uitofp i8 -1 to double ; yields double:255.0
7811
7812'``sitofp .. to``' Instruction
7813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7814
7815Syntax:
7816"""""""
7817
7818::
7819
7820 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7821
7822Overview:
7823"""""""""
7824
7825The '``sitofp``' instruction regards ``value`` as a signed integer and
7826converts that value to the ``ty2`` type.
7827
7828Arguments:
7829""""""""""
7830
7831The '``sitofp``' instruction takes a value to cast, which must be a
7832scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7833``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7834``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7835type with the same number of elements as ``ty``
7836
7837Semantics:
7838""""""""""
7839
7840The '``sitofp``' instruction interprets its operand as a signed integer
7841quantity and converts it to the corresponding floating point value. If
7842the value cannot fit in the floating point value, the results are
7843undefined.
7844
7845Example:
7846""""""""
7847
7848.. code-block:: llvm
7849
7850 %X = sitofp i32 257 to float ; yields float:257.0
7851 %Y = sitofp i8 -1 to double ; yields double:-1.0
7852
7853.. _i_ptrtoint:
7854
7855'``ptrtoint .. to``' Instruction
7856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7857
7858Syntax:
7859"""""""
7860
7861::
7862
7863 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7864
7865Overview:
7866"""""""""
7867
7868The '``ptrtoint``' instruction converts the pointer or a vector of
7869pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7870
7871Arguments:
7872""""""""""
7873
7874The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007875a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007876type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7877a vector of integers type.
7878
7879Semantics:
7880""""""""""
7881
7882The '``ptrtoint``' instruction converts ``value`` to integer type
7883``ty2`` by interpreting the pointer value as an integer and either
7884truncating or zero extending that value to the size of the integer type.
7885If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7886``value`` is larger than ``ty2`` then a truncation is done. If they are
7887the same size, then nothing is done (*no-op cast*) other than a type
7888change.
7889
7890Example:
7891""""""""
7892
7893.. code-block:: llvm
7894
7895 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7896 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7897 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7898
7899.. _i_inttoptr:
7900
7901'``inttoptr .. to``' Instruction
7902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7903
7904Syntax:
7905"""""""
7906
7907::
7908
7909 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7910
7911Overview:
7912"""""""""
7913
7914The '``inttoptr``' instruction converts an integer ``value`` to a
7915pointer type, ``ty2``.
7916
7917Arguments:
7918""""""""""
7919
7920The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7921cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7922type.
7923
7924Semantics:
7925""""""""""
7926
7927The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7928applying either a zero extension or a truncation depending on the size
7929of the integer ``value``. If ``value`` is larger than the size of a
7930pointer then a truncation is done. If ``value`` is smaller than the size
7931of a pointer then a zero extension is done. If they are the same size,
7932nothing is done (*no-op cast*).
7933
7934Example:
7935""""""""
7936
7937.. code-block:: llvm
7938
7939 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7940 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7941 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7942 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7943
7944.. _i_bitcast:
7945
7946'``bitcast .. to``' Instruction
7947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7948
7949Syntax:
7950"""""""
7951
7952::
7953
7954 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7955
7956Overview:
7957"""""""""
7958
7959The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7960changing any bits.
7961
7962Arguments:
7963""""""""""
7964
7965The '``bitcast``' instruction takes a value to cast, which must be a
7966non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007967also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7968bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007969identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007970also be a pointer of the same size. This instruction supports bitwise
7971conversion of vectors to integers and to vectors of other types (as
7972long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007973
7974Semantics:
7975""""""""""
7976
Matt Arsenault24b49c42013-07-31 17:49:08 +00007977The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7978is always a *no-op cast* because no bits change with this
7979conversion. The conversion is done as if the ``value`` had been stored
7980to memory and read back as type ``ty2``. Pointer (or vector of
7981pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007982pointers) types with the same address space through this instruction.
7983To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7984or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007985
7986Example:
7987""""""""
7988
7989.. code-block:: llvm
7990
7991 %X = bitcast i8 255 to i8 ; yields i8 :-1
7992 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7993 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7994 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7995
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007996.. _i_addrspacecast:
7997
7998'``addrspacecast .. to``' Instruction
7999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8000
8001Syntax:
8002"""""""
8003
8004::
8005
8006 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8007
8008Overview:
8009"""""""""
8010
8011The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8012address space ``n`` to type ``pty2`` in address space ``m``.
8013
8014Arguments:
8015""""""""""
8016
8017The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8018to cast and a pointer type to cast it to, which must have a different
8019address space.
8020
8021Semantics:
8022""""""""""
8023
8024The '``addrspacecast``' instruction converts the pointer value
8025``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008026value modification, depending on the target and the address space
8027pair. Pointer conversions within the same address space must be
8028performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008029conversion is legal then both result and operand refer to the same memory
8030location.
8031
8032Example:
8033""""""""
8034
8035.. code-block:: llvm
8036
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008037 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8038 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8039 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008040
Sean Silvab084af42012-12-07 10:36:55 +00008041.. _otherops:
8042
8043Other Operations
8044----------------
8045
8046The instructions in this category are the "miscellaneous" instructions,
8047which defy better classification.
8048
8049.. _i_icmp:
8050
8051'``icmp``' Instruction
8052^^^^^^^^^^^^^^^^^^^^^^
8053
8054Syntax:
8055"""""""
8056
8057::
8058
Tim Northover675a0962014-06-13 14:24:23 +00008059 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008060
8061Overview:
8062"""""""""
8063
8064The '``icmp``' instruction returns a boolean value or a vector of
8065boolean values based on comparison of its two integer, integer vector,
8066pointer, or pointer vector operands.
8067
8068Arguments:
8069""""""""""
8070
8071The '``icmp``' instruction takes three operands. The first operand is
8072the condition code indicating the kind of comparison to perform. It is
8073not a value, just a keyword. The possible condition code are:
8074
8075#. ``eq``: equal
8076#. ``ne``: not equal
8077#. ``ugt``: unsigned greater than
8078#. ``uge``: unsigned greater or equal
8079#. ``ult``: unsigned less than
8080#. ``ule``: unsigned less or equal
8081#. ``sgt``: signed greater than
8082#. ``sge``: signed greater or equal
8083#. ``slt``: signed less than
8084#. ``sle``: signed less or equal
8085
8086The remaining two arguments must be :ref:`integer <t_integer>` or
8087:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8088must also be identical types.
8089
8090Semantics:
8091""""""""""
8092
8093The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8094code given as ``cond``. The comparison performed always yields either an
8095:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8096
8097#. ``eq``: yields ``true`` if the operands are equal, ``false``
8098 otherwise. No sign interpretation is necessary or performed.
8099#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8100 otherwise. No sign interpretation is necessary or performed.
8101#. ``ugt``: interprets the operands as unsigned values and yields
8102 ``true`` if ``op1`` is greater than ``op2``.
8103#. ``uge``: interprets the operands as unsigned values and yields
8104 ``true`` if ``op1`` is greater than or equal to ``op2``.
8105#. ``ult``: interprets the operands as unsigned values and yields
8106 ``true`` if ``op1`` is less than ``op2``.
8107#. ``ule``: interprets the operands as unsigned values and yields
8108 ``true`` if ``op1`` is less than or equal to ``op2``.
8109#. ``sgt``: interprets the operands as signed values and yields ``true``
8110 if ``op1`` is greater than ``op2``.
8111#. ``sge``: interprets the operands as signed values and yields ``true``
8112 if ``op1`` is greater than or equal to ``op2``.
8113#. ``slt``: interprets the operands as signed values and yields ``true``
8114 if ``op1`` is less than ``op2``.
8115#. ``sle``: interprets the operands as signed values and yields ``true``
8116 if ``op1`` is less than or equal to ``op2``.
8117
8118If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8119are compared as if they were integers.
8120
8121If the operands are integer vectors, then they are compared element by
8122element. The result is an ``i1`` vector with the same number of elements
8123as the values being compared. Otherwise, the result is an ``i1``.
8124
8125Example:
8126""""""""
8127
8128.. code-block:: llvm
8129
8130 <result> = icmp eq i32 4, 5 ; yields: result=false
8131 <result> = icmp ne float* %X, %X ; yields: result=false
8132 <result> = icmp ult i16 4, 5 ; yields: result=true
8133 <result> = icmp sgt i16 4, 5 ; yields: result=false
8134 <result> = icmp ule i16 -4, 5 ; yields: result=false
8135 <result> = icmp sge i16 4, 5 ; yields: result=false
8136
8137Note that the code generator does not yet support vector types with the
8138``icmp`` instruction.
8139
8140.. _i_fcmp:
8141
8142'``fcmp``' Instruction
8143^^^^^^^^^^^^^^^^^^^^^^
8144
8145Syntax:
8146"""""""
8147
8148::
8149
James Molloy88eb5352015-07-10 12:52:00 +00008150 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008151
8152Overview:
8153"""""""""
8154
8155The '``fcmp``' instruction returns a boolean value or vector of boolean
8156values based on comparison of its operands.
8157
8158If the operands are floating point scalars, then the result type is a
8159boolean (:ref:`i1 <t_integer>`).
8160
8161If the operands are floating point vectors, then the result type is a
8162vector of boolean with the same number of elements as the operands being
8163compared.
8164
8165Arguments:
8166""""""""""
8167
8168The '``fcmp``' instruction takes three operands. The first operand is
8169the condition code indicating the kind of comparison to perform. It is
8170not a value, just a keyword. The possible condition code are:
8171
8172#. ``false``: no comparison, always returns false
8173#. ``oeq``: ordered and equal
8174#. ``ogt``: ordered and greater than
8175#. ``oge``: ordered and greater than or equal
8176#. ``olt``: ordered and less than
8177#. ``ole``: ordered and less than or equal
8178#. ``one``: ordered and not equal
8179#. ``ord``: ordered (no nans)
8180#. ``ueq``: unordered or equal
8181#. ``ugt``: unordered or greater than
8182#. ``uge``: unordered or greater than or equal
8183#. ``ult``: unordered or less than
8184#. ``ule``: unordered or less than or equal
8185#. ``une``: unordered or not equal
8186#. ``uno``: unordered (either nans)
8187#. ``true``: no comparison, always returns true
8188
8189*Ordered* means that neither operand is a QNAN while *unordered* means
8190that either operand may be a QNAN.
8191
8192Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8193point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8194type. They must have identical types.
8195
8196Semantics:
8197""""""""""
8198
8199The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8200condition code given as ``cond``. If the operands are vectors, then the
8201vectors are compared element by element. Each comparison performed
8202always yields an :ref:`i1 <t_integer>` result, as follows:
8203
8204#. ``false``: always yields ``false``, regardless of operands.
8205#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8206 is equal to ``op2``.
8207#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8208 is greater than ``op2``.
8209#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8210 is greater than or equal to ``op2``.
8211#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8212 is less than ``op2``.
8213#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8214 is less than or equal to ``op2``.
8215#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8216 is not equal to ``op2``.
8217#. ``ord``: yields ``true`` if both operands are not a QNAN.
8218#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8219 equal to ``op2``.
8220#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8221 greater than ``op2``.
8222#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8223 greater than or equal to ``op2``.
8224#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8225 less than ``op2``.
8226#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8227 less than or equal to ``op2``.
8228#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8229 not equal to ``op2``.
8230#. ``uno``: yields ``true`` if either operand is a QNAN.
8231#. ``true``: always yields ``true``, regardless of operands.
8232
James Molloy88eb5352015-07-10 12:52:00 +00008233The ``fcmp`` instruction can also optionally take any number of
8234:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8235otherwise unsafe floating point optimizations.
8236
8237Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8238only flags that have any effect on its semantics are those that allow
8239assumptions to be made about the values of input arguments; namely
8240``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8241
Sean Silvab084af42012-12-07 10:36:55 +00008242Example:
8243""""""""
8244
8245.. code-block:: llvm
8246
8247 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8248 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8249 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8250 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8251
8252Note that the code generator does not yet support vector types with the
8253``fcmp`` instruction.
8254
8255.. _i_phi:
8256
8257'``phi``' Instruction
8258^^^^^^^^^^^^^^^^^^^^^
8259
8260Syntax:
8261"""""""
8262
8263::
8264
8265 <result> = phi <ty> [ <val0>, <label0>], ...
8266
8267Overview:
8268"""""""""
8269
8270The '``phi``' instruction is used to implement the φ node in the SSA
8271graph representing the function.
8272
8273Arguments:
8274""""""""""
8275
8276The type of the incoming values is specified with the first type field.
8277After this, the '``phi``' instruction takes a list of pairs as
8278arguments, with one pair for each predecessor basic block of the current
8279block. Only values of :ref:`first class <t_firstclass>` type may be used as
8280the value arguments to the PHI node. Only labels may be used as the
8281label arguments.
8282
8283There must be no non-phi instructions between the start of a basic block
8284and the PHI instructions: i.e. PHI instructions must be first in a basic
8285block.
8286
8287For the purposes of the SSA form, the use of each incoming value is
8288deemed to occur on the edge from the corresponding predecessor block to
8289the current block (but after any definition of an '``invoke``'
8290instruction's return value on the same edge).
8291
8292Semantics:
8293""""""""""
8294
8295At runtime, the '``phi``' instruction logically takes on the value
8296specified by the pair corresponding to the predecessor basic block that
8297executed just prior to the current block.
8298
8299Example:
8300""""""""
8301
8302.. code-block:: llvm
8303
8304 Loop: ; Infinite loop that counts from 0 on up...
8305 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8306 %nextindvar = add i32 %indvar, 1
8307 br label %Loop
8308
8309.. _i_select:
8310
8311'``select``' Instruction
8312^^^^^^^^^^^^^^^^^^^^^^^^
8313
8314Syntax:
8315"""""""
8316
8317::
8318
8319 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8320
8321 selty is either i1 or {<N x i1>}
8322
8323Overview:
8324"""""""""
8325
8326The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008327condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008328
8329Arguments:
8330""""""""""
8331
8332The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8333values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008334class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008335
8336Semantics:
8337""""""""""
8338
8339If the condition is an i1 and it evaluates to 1, the instruction returns
8340the first value argument; otherwise, it returns the second value
8341argument.
8342
8343If the condition is a vector of i1, then the value arguments must be
8344vectors of the same size, and the selection is done element by element.
8345
David Majnemer40a0b592015-03-03 22:45:47 +00008346If the condition is an i1 and the value arguments are vectors of the
8347same size, then an entire vector is selected.
8348
Sean Silvab084af42012-12-07 10:36:55 +00008349Example:
8350""""""""
8351
8352.. code-block:: llvm
8353
8354 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8355
8356.. _i_call:
8357
8358'``call``' Instruction
8359^^^^^^^^^^^^^^^^^^^^^^
8360
8361Syntax:
8362"""""""
8363
8364::
8365
Reid Kleckner5772b772014-04-24 20:14:34 +00008366 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008367 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008368
8369Overview:
8370"""""""""
8371
8372The '``call``' instruction represents a simple function call.
8373
8374Arguments:
8375""""""""""
8376
8377This instruction requires several arguments:
8378
Reid Kleckner5772b772014-04-24 20:14:34 +00008379#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008380 should perform tail call optimization. The ``tail`` marker is a hint that
8381 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008382 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008383 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008384
8385 #. The call will not cause unbounded stack growth if it is part of a
8386 recursive cycle in the call graph.
8387 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8388 forwarded in place.
8389
8390 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008391 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008392 rules:
8393
8394 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8395 or a pointer bitcast followed by a ret instruction.
8396 - The ret instruction must return the (possibly bitcasted) value
8397 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008398 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008399 parameters or return types may differ in pointee type, but not
8400 in address space.
8401 - The calling conventions of the caller and callee must match.
8402 - All ABI-impacting function attributes, such as sret, byval, inreg,
8403 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008404 - The callee must be varargs iff the caller is varargs. Bitcasting a
8405 non-varargs function to the appropriate varargs type is legal so
8406 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008407
8408 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8409 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008410
8411 - Caller and callee both have the calling convention ``fastcc``.
8412 - The call is in tail position (ret immediately follows call and ret
8413 uses value of call or is void).
8414 - Option ``-tailcallopt`` is enabled, or
8415 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008416 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008417 met. <CodeGenerator.html#tailcallopt>`_
8418
8419#. The optional "cconv" marker indicates which :ref:`calling
8420 convention <callingconv>` the call should use. If none is
8421 specified, the call defaults to using C calling conventions. The
8422 calling convention of the call must match the calling convention of
8423 the target function, or else the behavior is undefined.
8424#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8425 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8426 are valid here.
8427#. '``ty``': the type of the call instruction itself which is also the
8428 type of the return value. Functions that return no value are marked
8429 ``void``.
8430#. '``fnty``': shall be the signature of the pointer to function value
8431 being invoked. The argument types must match the types implied by
8432 this signature. This type can be omitted if the function is not
8433 varargs and if the function type does not return a pointer to a
8434 function.
8435#. '``fnptrval``': An LLVM value containing a pointer to a function to
8436 be invoked. In most cases, this is a direct function invocation, but
8437 indirect ``call``'s are just as possible, calling an arbitrary pointer
8438 to function value.
8439#. '``function args``': argument list whose types match the function
8440 signature argument types and parameter attributes. All arguments must
8441 be of :ref:`first class <t_firstclass>` type. If the function signature
8442 indicates the function accepts a variable number of arguments, the
8443 extra arguments can be specified.
8444#. The optional :ref:`function attributes <fnattrs>` list. Only
8445 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8446 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008447#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008448
8449Semantics:
8450""""""""""
8451
8452The '``call``' instruction is used to cause control flow to transfer to
8453a specified function, with its incoming arguments bound to the specified
8454values. Upon a '``ret``' instruction in the called function, control
8455flow continues with the instruction after the function call, and the
8456return value of the function is bound to the result argument.
8457
8458Example:
8459""""""""
8460
8461.. code-block:: llvm
8462
8463 %retval = call i32 @test(i32 %argc)
8464 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8465 %X = tail call i32 @foo() ; yields i32
8466 %Y = tail call fastcc i32 @foo() ; yields i32
8467 call void %foo(i8 97 signext)
8468
8469 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008470 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008471 %gr = extractvalue %struct.A %r, 0 ; yields i32
8472 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8473 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8474 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8475
8476llvm treats calls to some functions with names and arguments that match
8477the standard C99 library as being the C99 library functions, and may
8478perform optimizations or generate code for them under that assumption.
8479This is something we'd like to change in the future to provide better
8480support for freestanding environments and non-C-based languages.
8481
8482.. _i_va_arg:
8483
8484'``va_arg``' Instruction
8485^^^^^^^^^^^^^^^^^^^^^^^^
8486
8487Syntax:
8488"""""""
8489
8490::
8491
8492 <resultval> = va_arg <va_list*> <arglist>, <argty>
8493
8494Overview:
8495"""""""""
8496
8497The '``va_arg``' instruction is used to access arguments passed through
8498the "variable argument" area of a function call. It is used to implement
8499the ``va_arg`` macro in C.
8500
8501Arguments:
8502""""""""""
8503
8504This instruction takes a ``va_list*`` value and the type of the
8505argument. It returns a value of the specified argument type and
8506increments the ``va_list`` to point to the next argument. The actual
8507type of ``va_list`` is target specific.
8508
8509Semantics:
8510""""""""""
8511
8512The '``va_arg``' instruction loads an argument of the specified type
8513from the specified ``va_list`` and causes the ``va_list`` to point to
8514the next argument. For more information, see the variable argument
8515handling :ref:`Intrinsic Functions <int_varargs>`.
8516
8517It is legal for this instruction to be called in a function which does
8518not take a variable number of arguments, for example, the ``vfprintf``
8519function.
8520
8521``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8522function <intrinsics>` because it takes a type as an argument.
8523
8524Example:
8525""""""""
8526
8527See the :ref:`variable argument processing <int_varargs>` section.
8528
8529Note that the code generator does not yet fully support va\_arg on many
8530targets. Also, it does not currently support va\_arg with aggregate
8531types on any target.
8532
8533.. _i_landingpad:
8534
8535'``landingpad``' Instruction
8536^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8537
8538Syntax:
8539"""""""
8540
8541::
8542
David Majnemer7fddecc2015-06-17 20:52:32 +00008543 <resultval> = landingpad <resultty> <clause>+
8544 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008545
8546 <clause> := catch <type> <value>
8547 <clause> := filter <array constant type> <array constant>
8548
8549Overview:
8550"""""""""
8551
8552The '``landingpad``' instruction is used by `LLVM's exception handling
8553system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008554is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008555code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008556defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008557re-entry to the function. The ``resultval`` has the type ``resultty``.
8558
8559Arguments:
8560""""""""""
8561
David Majnemer7fddecc2015-06-17 20:52:32 +00008562The optional
Sean Silvab084af42012-12-07 10:36:55 +00008563``cleanup`` flag indicates that the landing pad block is a cleanup.
8564
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008565A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008566contains the global variable representing the "type" that may be caught
8567or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8568clause takes an array constant as its argument. Use
8569"``[0 x i8**] undef``" for a filter which cannot throw. The
8570'``landingpad``' instruction must contain *at least* one ``clause`` or
8571the ``cleanup`` flag.
8572
8573Semantics:
8574""""""""""
8575
8576The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008577:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008578therefore the "result type" of the ``landingpad`` instruction. As with
8579calling conventions, how the personality function results are
8580represented in LLVM IR is target specific.
8581
8582The clauses are applied in order from top to bottom. If two
8583``landingpad`` instructions are merged together through inlining, the
8584clauses from the calling function are appended to the list of clauses.
8585When the call stack is being unwound due to an exception being thrown,
8586the exception is compared against each ``clause`` in turn. If it doesn't
8587match any of the clauses, and the ``cleanup`` flag is not set, then
8588unwinding continues further up the call stack.
8589
8590The ``landingpad`` instruction has several restrictions:
8591
8592- A landing pad block is a basic block which is the unwind destination
8593 of an '``invoke``' instruction.
8594- A landing pad block must have a '``landingpad``' instruction as its
8595 first non-PHI instruction.
8596- There can be only one '``landingpad``' instruction within the landing
8597 pad block.
8598- A basic block that is not a landing pad block may not include a
8599 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008600
8601Example:
8602""""""""
8603
8604.. code-block:: llvm
8605
8606 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008607 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008608 catch i8** @_ZTIi
8609 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008610 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008611 cleanup
8612 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008613 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008614 catch i8** @_ZTIi
8615 filter [1 x i8**] [@_ZTId]
8616
David Majnemer654e1302015-07-31 17:58:14 +00008617.. _i_cleanuppad:
8618
8619'``cleanuppad``' Instruction
8620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8621
8622Syntax:
8623"""""""
8624
8625::
8626
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008627 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008628
8629Overview:
8630"""""""""
8631
8632The '``cleanuppad``' instruction is used by `LLVM's exception handling
8633system <ExceptionHandling.html#overview>`_ to specify that a basic block
8634is a cleanup block --- one where a personality routine attempts to
8635transfer control to run cleanup actions.
8636The ``args`` correspond to whatever additional
8637information the :ref:`personality function <personalityfn>` requires to
8638execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008639The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008640match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8641and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008642
8643Arguments:
8644""""""""""
8645
8646The instruction takes a list of arbitrary values which are interpreted
8647by the :ref:`personality function <personalityfn>`.
8648
8649Semantics:
8650""""""""""
8651
David Majnemer654e1302015-07-31 17:58:14 +00008652When the call stack is being unwound due to an exception being thrown,
8653the :ref:`personality function <personalityfn>` transfers control to the
8654``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008655As with calling conventions, how the personality function results are
8656represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008657
8658The ``cleanuppad`` instruction has several restrictions:
8659
8660- A cleanup block is a basic block which is the unwind destination of
8661 an exceptional instruction.
8662- A cleanup block must have a '``cleanuppad``' instruction as its
8663 first non-PHI instruction.
8664- There can be only one '``cleanuppad``' instruction within the
8665 cleanup block.
8666- A basic block that is not a cleanup block may not include a
8667 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008668- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8669 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008670- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008671 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8672 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008673- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008674 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8675 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008676
8677Example:
8678""""""""
8679
8680.. code-block:: llvm
8681
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008682 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008683
Sean Silvab084af42012-12-07 10:36:55 +00008684.. _intrinsics:
8685
8686Intrinsic Functions
8687===================
8688
8689LLVM supports the notion of an "intrinsic function". These functions
8690have well known names and semantics and are required to follow certain
8691restrictions. Overall, these intrinsics represent an extension mechanism
8692for the LLVM language that does not require changing all of the
8693transformations in LLVM when adding to the language (or the bitcode
8694reader/writer, the parser, etc...).
8695
8696Intrinsic function names must all start with an "``llvm.``" prefix. This
8697prefix is reserved in LLVM for intrinsic names; thus, function names may
8698not begin with this prefix. Intrinsic functions must always be external
8699functions: you cannot define the body of intrinsic functions. Intrinsic
8700functions may only be used in call or invoke instructions: it is illegal
8701to take the address of an intrinsic function. Additionally, because
8702intrinsic functions are part of the LLVM language, it is required if any
8703are added that they be documented here.
8704
8705Some intrinsic functions can be overloaded, i.e., the intrinsic
8706represents a family of functions that perform the same operation but on
8707different data types. Because LLVM can represent over 8 million
8708different integer types, overloading is used commonly to allow an
8709intrinsic function to operate on any integer type. One or more of the
8710argument types or the result type can be overloaded to accept any
8711integer type. Argument types may also be defined as exactly matching a
8712previous argument's type or the result type. This allows an intrinsic
8713function which accepts multiple arguments, but needs all of them to be
8714of the same type, to only be overloaded with respect to a single
8715argument or the result.
8716
8717Overloaded intrinsics will have the names of its overloaded argument
8718types encoded into its function name, each preceded by a period. Only
8719those types which are overloaded result in a name suffix. Arguments
8720whose type is matched against another type do not. For example, the
8721``llvm.ctpop`` function can take an integer of any width and returns an
8722integer of exactly the same integer width. This leads to a family of
8723functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8724``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8725overloaded, and only one type suffix is required. Because the argument's
8726type is matched against the return type, it does not require its own
8727name suffix.
8728
8729To learn how to add an intrinsic function, please see the `Extending
8730LLVM Guide <ExtendingLLVM.html>`_.
8731
8732.. _int_varargs:
8733
8734Variable Argument Handling Intrinsics
8735-------------------------------------
8736
8737Variable argument support is defined in LLVM with the
8738:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8739functions. These functions are related to the similarly named macros
8740defined in the ``<stdarg.h>`` header file.
8741
8742All of these functions operate on arguments that use a target-specific
8743value type "``va_list``". The LLVM assembly language reference manual
8744does not define what this type is, so all transformations should be
8745prepared to handle these functions regardless of the type used.
8746
8747This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8748variable argument handling intrinsic functions are used.
8749
8750.. code-block:: llvm
8751
Tim Northoverab60bb92014-11-02 01:21:51 +00008752 ; This struct is different for every platform. For most platforms,
8753 ; it is merely an i8*.
8754 %struct.va_list = type { i8* }
8755
8756 ; For Unix x86_64 platforms, va_list is the following struct:
8757 ; %struct.va_list = type { i32, i32, i8*, i8* }
8758
Sean Silvab084af42012-12-07 10:36:55 +00008759 define i32 @test(i32 %X, ...) {
8760 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008761 %ap = alloca %struct.va_list
8762 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008763 call void @llvm.va_start(i8* %ap2)
8764
8765 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008766 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008767
8768 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8769 %aq = alloca i8*
8770 %aq2 = bitcast i8** %aq to i8*
8771 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8772 call void @llvm.va_end(i8* %aq2)
8773
8774 ; Stop processing of arguments.
8775 call void @llvm.va_end(i8* %ap2)
8776 ret i32 %tmp
8777 }
8778
8779 declare void @llvm.va_start(i8*)
8780 declare void @llvm.va_copy(i8*, i8*)
8781 declare void @llvm.va_end(i8*)
8782
8783.. _int_va_start:
8784
8785'``llvm.va_start``' Intrinsic
8786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8787
8788Syntax:
8789"""""""
8790
8791::
8792
Nick Lewycky04f6de02013-09-11 22:04:52 +00008793 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008794
8795Overview:
8796"""""""""
8797
8798The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8799subsequent use by ``va_arg``.
8800
8801Arguments:
8802""""""""""
8803
8804The argument is a pointer to a ``va_list`` element to initialize.
8805
8806Semantics:
8807""""""""""
8808
8809The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8810available in C. In a target-dependent way, it initializes the
8811``va_list`` element to which the argument points, so that the next call
8812to ``va_arg`` will produce the first variable argument passed to the
8813function. Unlike the C ``va_start`` macro, this intrinsic does not need
8814to know the last argument of the function as the compiler can figure
8815that out.
8816
8817'``llvm.va_end``' Intrinsic
8818^^^^^^^^^^^^^^^^^^^^^^^^^^^
8819
8820Syntax:
8821"""""""
8822
8823::
8824
8825 declare void @llvm.va_end(i8* <arglist>)
8826
8827Overview:
8828"""""""""
8829
8830The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8831initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8832
8833Arguments:
8834""""""""""
8835
8836The argument is a pointer to a ``va_list`` to destroy.
8837
8838Semantics:
8839""""""""""
8840
8841The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8842available in C. In a target-dependent way, it destroys the ``va_list``
8843element to which the argument points. Calls to
8844:ref:`llvm.va_start <int_va_start>` and
8845:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8846``llvm.va_end``.
8847
8848.. _int_va_copy:
8849
8850'``llvm.va_copy``' Intrinsic
8851^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8852
8853Syntax:
8854"""""""
8855
8856::
8857
8858 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8859
8860Overview:
8861"""""""""
8862
8863The '``llvm.va_copy``' intrinsic copies the current argument position
8864from the source argument list to the destination argument list.
8865
8866Arguments:
8867""""""""""
8868
8869The first argument is a pointer to a ``va_list`` element to initialize.
8870The second argument is a pointer to a ``va_list`` element to copy from.
8871
8872Semantics:
8873""""""""""
8874
8875The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8876available in C. In a target-dependent way, it copies the source
8877``va_list`` element into the destination ``va_list`` element. This
8878intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8879arbitrarily complex and require, for example, memory allocation.
8880
8881Accurate Garbage Collection Intrinsics
8882--------------------------------------
8883
Philip Reamesc5b0f562015-02-25 23:52:06 +00008884LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008885(GC) requires the frontend to generate code containing appropriate intrinsic
8886calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008887intrinsics in a manner which is appropriate for the target collector.
8888
Sean Silvab084af42012-12-07 10:36:55 +00008889These intrinsics allow identification of :ref:`GC roots on the
8890stack <int_gcroot>`, as well as garbage collector implementations that
8891require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008892Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008893these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008894details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008895
Philip Reamesf80bbff2015-02-25 23:45:20 +00008896Experimental Statepoint Intrinsics
8897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8898
8899LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008900collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008901to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008902:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008903differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008904<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008905described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008906
8907.. _int_gcroot:
8908
8909'``llvm.gcroot``' Intrinsic
8910^^^^^^^^^^^^^^^^^^^^^^^^^^^
8911
8912Syntax:
8913"""""""
8914
8915::
8916
8917 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8918
8919Overview:
8920"""""""""
8921
8922The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8923the code generator, and allows some metadata to be associated with it.
8924
8925Arguments:
8926""""""""""
8927
8928The first argument specifies the address of a stack object that contains
8929the root pointer. The second pointer (which must be either a constant or
8930a global value address) contains the meta-data to be associated with the
8931root.
8932
8933Semantics:
8934""""""""""
8935
8936At runtime, a call to this intrinsic stores a null pointer into the
8937"ptrloc" location. At compile-time, the code generator generates
8938information to allow the runtime to find the pointer at GC safe points.
8939The '``llvm.gcroot``' intrinsic may only be used in a function which
8940:ref:`specifies a GC algorithm <gc>`.
8941
8942.. _int_gcread:
8943
8944'``llvm.gcread``' Intrinsic
8945^^^^^^^^^^^^^^^^^^^^^^^^^^^
8946
8947Syntax:
8948"""""""
8949
8950::
8951
8952 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8953
8954Overview:
8955"""""""""
8956
8957The '``llvm.gcread``' intrinsic identifies reads of references from heap
8958locations, allowing garbage collector implementations that require read
8959barriers.
8960
8961Arguments:
8962""""""""""
8963
8964The second argument is the address to read from, which should be an
8965address allocated from the garbage collector. The first object is a
8966pointer to the start of the referenced object, if needed by the language
8967runtime (otherwise null).
8968
8969Semantics:
8970""""""""""
8971
8972The '``llvm.gcread``' intrinsic has the same semantics as a load
8973instruction, but may be replaced with substantially more complex code by
8974the garbage collector runtime, as needed. The '``llvm.gcread``'
8975intrinsic may only be used in a function which :ref:`specifies a GC
8976algorithm <gc>`.
8977
8978.. _int_gcwrite:
8979
8980'``llvm.gcwrite``' Intrinsic
8981^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8982
8983Syntax:
8984"""""""
8985
8986::
8987
8988 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8989
8990Overview:
8991"""""""""
8992
8993The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8994locations, allowing garbage collector implementations that require write
8995barriers (such as generational or reference counting collectors).
8996
8997Arguments:
8998""""""""""
8999
9000The first argument is the reference to store, the second is the start of
9001the object to store it to, and the third is the address of the field of
9002Obj to store to. If the runtime does not require a pointer to the
9003object, Obj may be null.
9004
9005Semantics:
9006""""""""""
9007
9008The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9009instruction, but may be replaced with substantially more complex code by
9010the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9011intrinsic may only be used in a function which :ref:`specifies a GC
9012algorithm <gc>`.
9013
9014Code Generator Intrinsics
9015-------------------------
9016
9017These intrinsics are provided by LLVM to expose special features that
9018may only be implemented with code generator support.
9019
9020'``llvm.returnaddress``' Intrinsic
9021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9022
9023Syntax:
9024"""""""
9025
9026::
9027
9028 declare i8 *@llvm.returnaddress(i32 <level>)
9029
9030Overview:
9031"""""""""
9032
9033The '``llvm.returnaddress``' intrinsic attempts to compute a
9034target-specific value indicating the return address of the current
9035function or one of its callers.
9036
9037Arguments:
9038""""""""""
9039
9040The argument to this intrinsic indicates which function to return the
9041address for. Zero indicates the calling function, one indicates its
9042caller, etc. The argument is **required** to be a constant integer
9043value.
9044
9045Semantics:
9046""""""""""
9047
9048The '``llvm.returnaddress``' intrinsic either returns a pointer
9049indicating the return address of the specified call frame, or zero if it
9050cannot be identified. The value returned by this intrinsic is likely to
9051be incorrect or 0 for arguments other than zero, so it should only be
9052used for debugging purposes.
9053
9054Note that calling this intrinsic does not prevent function inlining or
9055other aggressive transformations, so the value returned may not be that
9056of the obvious source-language caller.
9057
9058'``llvm.frameaddress``' Intrinsic
9059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9060
9061Syntax:
9062"""""""
9063
9064::
9065
9066 declare i8* @llvm.frameaddress(i32 <level>)
9067
9068Overview:
9069"""""""""
9070
9071The '``llvm.frameaddress``' intrinsic attempts to return the
9072target-specific frame pointer value for the specified stack frame.
9073
9074Arguments:
9075""""""""""
9076
9077The argument to this intrinsic indicates which function to return the
9078frame pointer for. Zero indicates the calling function, one indicates
9079its caller, etc. The argument is **required** to be a constant integer
9080value.
9081
9082Semantics:
9083""""""""""
9084
9085The '``llvm.frameaddress``' intrinsic either returns a pointer
9086indicating the frame address of the specified call frame, or zero if it
9087cannot be identified. The value returned by this intrinsic is likely to
9088be incorrect or 0 for arguments other than zero, so it should only be
9089used for debugging purposes.
9090
9091Note that calling this intrinsic does not prevent function inlining or
9092other aggressive transformations, so the value returned may not be that
9093of the obvious source-language caller.
9094
Reid Kleckner60381792015-07-07 22:25:32 +00009095'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9097
9098Syntax:
9099"""""""
9100
9101::
9102
Reid Kleckner60381792015-07-07 22:25:32 +00009103 declare void @llvm.localescape(...)
9104 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009105
9106Overview:
9107"""""""""
9108
Reid Kleckner60381792015-07-07 22:25:32 +00009109The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9110allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009111live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009112computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009113
9114Arguments:
9115""""""""""
9116
Reid Kleckner60381792015-07-07 22:25:32 +00009117All arguments to '``llvm.localescape``' must be pointers to static allocas or
9118casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009119once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009120
Reid Kleckner60381792015-07-07 22:25:32 +00009121The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009122bitcasted pointer to a function defined in the current module. The code
9123generator cannot determine the frame allocation offset of functions defined in
9124other modules.
9125
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009126The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9127call frame that is currently live. The return value of '``llvm.localaddress``'
9128is one way to produce such a value, but various runtimes also expose a suitable
9129pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009130
Reid Kleckner60381792015-07-07 22:25:32 +00009131The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9132'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009133
Reid Klecknere9b89312015-01-13 00:48:10 +00009134Semantics:
9135""""""""""
9136
Reid Kleckner60381792015-07-07 22:25:32 +00009137These intrinsics allow a group of functions to share access to a set of local
9138stack allocations of a one parent function. The parent function may call the
9139'``llvm.localescape``' intrinsic once from the function entry block, and the
9140child functions can use '``llvm.localrecover``' to access the escaped allocas.
9141The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9142the escaped allocas are allocated, which would break attempts to use
9143'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009144
Renato Golinc7aea402014-05-06 16:51:25 +00009145.. _int_read_register:
9146.. _int_write_register:
9147
9148'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9150
9151Syntax:
9152"""""""
9153
9154::
9155
9156 declare i32 @llvm.read_register.i32(metadata)
9157 declare i64 @llvm.read_register.i64(metadata)
9158 declare void @llvm.write_register.i32(metadata, i32 @value)
9159 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009160 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009161
9162Overview:
9163"""""""""
9164
9165The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9166provides access to the named register. The register must be valid on
9167the architecture being compiled to. The type needs to be compatible
9168with the register being read.
9169
9170Semantics:
9171""""""""""
9172
9173The '``llvm.read_register``' intrinsic returns the current value of the
9174register, where possible. The '``llvm.write_register``' intrinsic sets
9175the current value of the register, where possible.
9176
9177This is useful to implement named register global variables that need
9178to always be mapped to a specific register, as is common practice on
9179bare-metal programs including OS kernels.
9180
9181The compiler doesn't check for register availability or use of the used
9182register in surrounding code, including inline assembly. Because of that,
9183allocatable registers are not supported.
9184
9185Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009186architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009187work is needed to support other registers and even more so, allocatable
9188registers.
9189
Sean Silvab084af42012-12-07 10:36:55 +00009190.. _int_stacksave:
9191
9192'``llvm.stacksave``' Intrinsic
9193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9194
9195Syntax:
9196"""""""
9197
9198::
9199
9200 declare i8* @llvm.stacksave()
9201
9202Overview:
9203"""""""""
9204
9205The '``llvm.stacksave``' intrinsic is used to remember the current state
9206of the function stack, for use with
9207:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9208implementing language features like scoped automatic variable sized
9209arrays in C99.
9210
9211Semantics:
9212""""""""""
9213
9214This intrinsic returns a opaque pointer value that can be passed to
9215:ref:`llvm.stackrestore <int_stackrestore>`. When an
9216``llvm.stackrestore`` intrinsic is executed with a value saved from
9217``llvm.stacksave``, it effectively restores the state of the stack to
9218the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9219practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9220were allocated after the ``llvm.stacksave`` was executed.
9221
9222.. _int_stackrestore:
9223
9224'``llvm.stackrestore``' Intrinsic
9225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9226
9227Syntax:
9228"""""""
9229
9230::
9231
9232 declare void @llvm.stackrestore(i8* %ptr)
9233
9234Overview:
9235"""""""""
9236
9237The '``llvm.stackrestore``' intrinsic is used to restore the state of
9238the function stack to the state it was in when the corresponding
9239:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9240useful for implementing language features like scoped automatic variable
9241sized arrays in C99.
9242
9243Semantics:
9244""""""""""
9245
9246See the description for :ref:`llvm.stacksave <int_stacksave>`.
9247
9248'``llvm.prefetch``' Intrinsic
9249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9250
9251Syntax:
9252"""""""
9253
9254::
9255
9256 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9257
9258Overview:
9259"""""""""
9260
9261The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9262insert a prefetch instruction if supported; otherwise, it is a noop.
9263Prefetches have no effect on the behavior of the program but can change
9264its performance characteristics.
9265
9266Arguments:
9267""""""""""
9268
9269``address`` is the address to be prefetched, ``rw`` is the specifier
9270determining if the fetch should be for a read (0) or write (1), and
9271``locality`` is a temporal locality specifier ranging from (0) - no
9272locality, to (3) - extremely local keep in cache. The ``cache type``
9273specifies whether the prefetch is performed on the data (1) or
9274instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9275arguments must be constant integers.
9276
9277Semantics:
9278""""""""""
9279
9280This intrinsic does not modify the behavior of the program. In
9281particular, prefetches cannot trap and do not produce a value. On
9282targets that support this intrinsic, the prefetch can provide hints to
9283the processor cache for better performance.
9284
9285'``llvm.pcmarker``' Intrinsic
9286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9287
9288Syntax:
9289"""""""
9290
9291::
9292
9293 declare void @llvm.pcmarker(i32 <id>)
9294
9295Overview:
9296"""""""""
9297
9298The '``llvm.pcmarker``' intrinsic is a method to export a Program
9299Counter (PC) in a region of code to simulators and other tools. The
9300method is target specific, but it is expected that the marker will use
9301exported symbols to transmit the PC of the marker. The marker makes no
9302guarantees that it will remain with any specific instruction after
9303optimizations. It is possible that the presence of a marker will inhibit
9304optimizations. The intended use is to be inserted after optimizations to
9305allow correlations of simulation runs.
9306
9307Arguments:
9308""""""""""
9309
9310``id`` is a numerical id identifying the marker.
9311
9312Semantics:
9313""""""""""
9314
9315This intrinsic does not modify the behavior of the program. Backends
9316that do not support this intrinsic may ignore it.
9317
9318'``llvm.readcyclecounter``' Intrinsic
9319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9320
9321Syntax:
9322"""""""
9323
9324::
9325
9326 declare i64 @llvm.readcyclecounter()
9327
9328Overview:
9329"""""""""
9330
9331The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9332counter register (or similar low latency, high accuracy clocks) on those
9333targets that support it. On X86, it should map to RDTSC. On Alpha, it
9334should map to RPCC. As the backing counters overflow quickly (on the
9335order of 9 seconds on alpha), this should only be used for small
9336timings.
9337
9338Semantics:
9339""""""""""
9340
9341When directly supported, reading the cycle counter should not modify any
9342memory. Implementations are allowed to either return a application
9343specific value or a system wide value. On backends without support, this
9344is lowered to a constant 0.
9345
Tim Northoverbc933082013-05-23 19:11:20 +00009346Note that runtime support may be conditional on the privilege-level code is
9347running at and the host platform.
9348
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009349'``llvm.clear_cache``' Intrinsic
9350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9351
9352Syntax:
9353"""""""
9354
9355::
9356
9357 declare void @llvm.clear_cache(i8*, i8*)
9358
9359Overview:
9360"""""""""
9361
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009362The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9363in the specified range to the execution unit of the processor. On
9364targets with non-unified instruction and data cache, the implementation
9365flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009366
9367Semantics:
9368""""""""""
9369
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009370On platforms with coherent instruction and data caches (e.g. x86), this
9371intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009372cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009373instructions or a system call, if cache flushing requires special
9374privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009375
Sean Silvad02bf3e2014-04-07 22:29:53 +00009376The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009377time library.
Renato Golin93010e62014-03-26 14:01:32 +00009378
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009379This instrinsic does *not* empty the instruction pipeline. Modifications
9380of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009381
Justin Bogner61ba2e32014-12-08 18:02:35 +00009382'``llvm.instrprof_increment``' Intrinsic
9383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9384
9385Syntax:
9386"""""""
9387
9388::
9389
9390 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9391 i32 <num-counters>, i32 <index>)
9392
9393Overview:
9394"""""""""
9395
9396The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9397frontend for use with instrumentation based profiling. These will be
9398lowered by the ``-instrprof`` pass to generate execution counts of a
9399program at runtime.
9400
9401Arguments:
9402""""""""""
9403
9404The first argument is a pointer to a global variable containing the
9405name of the entity being instrumented. This should generally be the
9406(mangled) function name for a set of counters.
9407
9408The second argument is a hash value that can be used by the consumer
9409of the profile data to detect changes to the instrumented source, and
9410the third is the number of counters associated with ``name``. It is an
9411error if ``hash`` or ``num-counters`` differ between two instances of
9412``instrprof_increment`` that refer to the same name.
9413
9414The last argument refers to which of the counters for ``name`` should
9415be incremented. It should be a value between 0 and ``num-counters``.
9416
9417Semantics:
9418""""""""""
9419
9420This intrinsic represents an increment of a profiling counter. It will
9421cause the ``-instrprof`` pass to generate the appropriate data
9422structures and the code to increment the appropriate value, in a
9423format that can be written out by a compiler runtime and consumed via
9424the ``llvm-profdata`` tool.
9425
Sean Silvab084af42012-12-07 10:36:55 +00009426Standard C Library Intrinsics
9427-----------------------------
9428
9429LLVM provides intrinsics for a few important standard C library
9430functions. These intrinsics allow source-language front-ends to pass
9431information about the alignment of the pointer arguments to the code
9432generator, providing opportunity for more efficient code generation.
9433
9434.. _int_memcpy:
9435
9436'``llvm.memcpy``' Intrinsic
9437^^^^^^^^^^^^^^^^^^^^^^^^^^^
9438
9439Syntax:
9440"""""""
9441
9442This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9443integer bit width and for different address spaces. Not all targets
9444support all bit widths however.
9445
9446::
9447
9448 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9449 i32 <len>, i32 <align>, i1 <isvolatile>)
9450 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9451 i64 <len>, i32 <align>, i1 <isvolatile>)
9452
9453Overview:
9454"""""""""
9455
9456The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9457source location to the destination location.
9458
9459Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9460intrinsics do not return a value, takes extra alignment/isvolatile
9461arguments and the pointers can be in specified address spaces.
9462
9463Arguments:
9464""""""""""
9465
9466The first argument is a pointer to the destination, the second is a
9467pointer to the source. The third argument is an integer argument
9468specifying the number of bytes to copy, the fourth argument is the
9469alignment of the source and destination locations, and the fifth is a
9470boolean indicating a volatile access.
9471
9472If the call to this intrinsic has an alignment value that is not 0 or 1,
9473then the caller guarantees that both the source and destination pointers
9474are aligned to that boundary.
9475
9476If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9477a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9478very cleanly specified and it is unwise to depend on it.
9479
9480Semantics:
9481""""""""""
9482
9483The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9484source location to the destination location, which are not allowed to
9485overlap. It copies "len" bytes of memory over. If the argument is known
9486to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009487argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009488
9489'``llvm.memmove``' Intrinsic
9490^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9491
9492Syntax:
9493"""""""
9494
9495This is an overloaded intrinsic. You can use llvm.memmove on any integer
9496bit width and for different address space. Not all targets support all
9497bit widths however.
9498
9499::
9500
9501 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9502 i32 <len>, i32 <align>, i1 <isvolatile>)
9503 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9504 i64 <len>, i32 <align>, i1 <isvolatile>)
9505
9506Overview:
9507"""""""""
9508
9509The '``llvm.memmove.*``' intrinsics move a block of memory from the
9510source location to the destination location. It is similar to the
9511'``llvm.memcpy``' intrinsic but allows the two memory locations to
9512overlap.
9513
9514Note that, unlike the standard libc function, the ``llvm.memmove.*``
9515intrinsics do not return a value, takes extra alignment/isvolatile
9516arguments and the pointers can be in specified address spaces.
9517
9518Arguments:
9519""""""""""
9520
9521The first argument is a pointer to the destination, the second is a
9522pointer to the source. The third argument is an integer argument
9523specifying the number of bytes to copy, the fourth argument is the
9524alignment of the source and destination locations, and the fifth is a
9525boolean indicating a volatile access.
9526
9527If the call to this intrinsic has an alignment value that is not 0 or 1,
9528then the caller guarantees that the source and destination pointers are
9529aligned to that boundary.
9530
9531If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9532is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9533not very cleanly specified and it is unwise to depend on it.
9534
9535Semantics:
9536""""""""""
9537
9538The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9539source location to the destination location, which may overlap. It
9540copies "len" bytes of memory over. If the argument is known to be
9541aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009542otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009543
9544'``llvm.memset.*``' Intrinsics
9545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9546
9547Syntax:
9548"""""""
9549
9550This is an overloaded intrinsic. You can use llvm.memset on any integer
9551bit width and for different address spaces. However, not all targets
9552support all bit widths.
9553
9554::
9555
9556 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9557 i32 <len>, i32 <align>, i1 <isvolatile>)
9558 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9559 i64 <len>, i32 <align>, i1 <isvolatile>)
9560
9561Overview:
9562"""""""""
9563
9564The '``llvm.memset.*``' intrinsics fill a block of memory with a
9565particular byte value.
9566
9567Note that, unlike the standard libc function, the ``llvm.memset``
9568intrinsic does not return a value and takes extra alignment/volatile
9569arguments. Also, the destination can be in an arbitrary address space.
9570
9571Arguments:
9572""""""""""
9573
9574The first argument is a pointer to the destination to fill, the second
9575is the byte value with which to fill it, the third argument is an
9576integer argument specifying the number of bytes to fill, and the fourth
9577argument is the known alignment of the destination location.
9578
9579If the call to this intrinsic has an alignment value that is not 0 or 1,
9580then the caller guarantees that the destination pointer is aligned to
9581that boundary.
9582
9583If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9584a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9585very cleanly specified and it is unwise to depend on it.
9586
9587Semantics:
9588""""""""""
9589
9590The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9591at the destination location. If the argument is known to be aligned to
9592some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009593it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009594
9595'``llvm.sqrt.*``' Intrinsic
9596^^^^^^^^^^^^^^^^^^^^^^^^^^^
9597
9598Syntax:
9599"""""""
9600
9601This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9602floating point or vector of floating point type. Not all targets support
9603all types however.
9604
9605::
9606
9607 declare float @llvm.sqrt.f32(float %Val)
9608 declare double @llvm.sqrt.f64(double %Val)
9609 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9610 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9611 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9612
9613Overview:
9614"""""""""
9615
9616The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9617returning the same value as the libm '``sqrt``' functions would. Unlike
9618``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9619negative numbers other than -0.0 (which allows for better optimization,
9620because there is no need to worry about errno being set).
9621``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9622
9623Arguments:
9624""""""""""
9625
9626The argument and return value are floating point numbers of the same
9627type.
9628
9629Semantics:
9630""""""""""
9631
9632This function returns the sqrt of the specified operand if it is a
9633nonnegative floating point number.
9634
9635'``llvm.powi.*``' Intrinsic
9636^^^^^^^^^^^^^^^^^^^^^^^^^^^
9637
9638Syntax:
9639"""""""
9640
9641This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9642floating point or vector of floating point type. Not all targets support
9643all types however.
9644
9645::
9646
9647 declare float @llvm.powi.f32(float %Val, i32 %power)
9648 declare double @llvm.powi.f64(double %Val, i32 %power)
9649 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9650 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9651 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9652
9653Overview:
9654"""""""""
9655
9656The '``llvm.powi.*``' intrinsics return the first operand raised to the
9657specified (positive or negative) power. The order of evaluation of
9658multiplications is not defined. When a vector of floating point type is
9659used, the second argument remains a scalar integer value.
9660
9661Arguments:
9662""""""""""
9663
9664The second argument is an integer power, and the first is a value to
9665raise to that power.
9666
9667Semantics:
9668""""""""""
9669
9670This function returns the first value raised to the second power with an
9671unspecified sequence of rounding operations.
9672
9673'``llvm.sin.*``' Intrinsic
9674^^^^^^^^^^^^^^^^^^^^^^^^^^
9675
9676Syntax:
9677"""""""
9678
9679This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9680floating point or vector of floating point type. Not all targets support
9681all types however.
9682
9683::
9684
9685 declare float @llvm.sin.f32(float %Val)
9686 declare double @llvm.sin.f64(double %Val)
9687 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9688 declare fp128 @llvm.sin.f128(fp128 %Val)
9689 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9690
9691Overview:
9692"""""""""
9693
9694The '``llvm.sin.*``' intrinsics return the sine of the operand.
9695
9696Arguments:
9697""""""""""
9698
9699The argument and return value are floating point numbers of the same
9700type.
9701
9702Semantics:
9703""""""""""
9704
9705This function returns the sine of the specified operand, returning the
9706same values as the libm ``sin`` functions would, and handles error
9707conditions in the same way.
9708
9709'``llvm.cos.*``' Intrinsic
9710^^^^^^^^^^^^^^^^^^^^^^^^^^
9711
9712Syntax:
9713"""""""
9714
9715This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9716floating point or vector of floating point type. Not all targets support
9717all types however.
9718
9719::
9720
9721 declare float @llvm.cos.f32(float %Val)
9722 declare double @llvm.cos.f64(double %Val)
9723 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9724 declare fp128 @llvm.cos.f128(fp128 %Val)
9725 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9726
9727Overview:
9728"""""""""
9729
9730The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9731
9732Arguments:
9733""""""""""
9734
9735The argument and return value are floating point numbers of the same
9736type.
9737
9738Semantics:
9739""""""""""
9740
9741This function returns the cosine of the specified operand, returning the
9742same values as the libm ``cos`` functions would, and handles error
9743conditions in the same way.
9744
9745'``llvm.pow.*``' Intrinsic
9746^^^^^^^^^^^^^^^^^^^^^^^^^^
9747
9748Syntax:
9749"""""""
9750
9751This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9752floating point or vector of floating point type. Not all targets support
9753all types however.
9754
9755::
9756
9757 declare float @llvm.pow.f32(float %Val, float %Power)
9758 declare double @llvm.pow.f64(double %Val, double %Power)
9759 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9760 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9761 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9762
9763Overview:
9764"""""""""
9765
9766The '``llvm.pow.*``' intrinsics return the first operand raised to the
9767specified (positive or negative) power.
9768
9769Arguments:
9770""""""""""
9771
9772The second argument is a floating point power, and the first is a value
9773to raise to that power.
9774
9775Semantics:
9776""""""""""
9777
9778This function returns the first value raised to the second power,
9779returning the same values as the libm ``pow`` functions would, and
9780handles error conditions in the same way.
9781
9782'``llvm.exp.*``' Intrinsic
9783^^^^^^^^^^^^^^^^^^^^^^^^^^
9784
9785Syntax:
9786"""""""
9787
9788This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9789floating point or vector of floating point type. Not all targets support
9790all types however.
9791
9792::
9793
9794 declare float @llvm.exp.f32(float %Val)
9795 declare double @llvm.exp.f64(double %Val)
9796 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9797 declare fp128 @llvm.exp.f128(fp128 %Val)
9798 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9799
9800Overview:
9801"""""""""
9802
9803The '``llvm.exp.*``' intrinsics perform the exp function.
9804
9805Arguments:
9806""""""""""
9807
9808The argument and return value are floating point numbers of the same
9809type.
9810
9811Semantics:
9812""""""""""
9813
9814This function returns the same values as the libm ``exp`` functions
9815would, and handles error conditions in the same way.
9816
9817'``llvm.exp2.*``' Intrinsic
9818^^^^^^^^^^^^^^^^^^^^^^^^^^^
9819
9820Syntax:
9821"""""""
9822
9823This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9824floating point or vector of floating point type. Not all targets support
9825all types however.
9826
9827::
9828
9829 declare float @llvm.exp2.f32(float %Val)
9830 declare double @llvm.exp2.f64(double %Val)
9831 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9832 declare fp128 @llvm.exp2.f128(fp128 %Val)
9833 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9834
9835Overview:
9836"""""""""
9837
9838The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9839
9840Arguments:
9841""""""""""
9842
9843The argument and return value are floating point numbers of the same
9844type.
9845
9846Semantics:
9847""""""""""
9848
9849This function returns the same values as the libm ``exp2`` functions
9850would, and handles error conditions in the same way.
9851
9852'``llvm.log.*``' Intrinsic
9853^^^^^^^^^^^^^^^^^^^^^^^^^^
9854
9855Syntax:
9856"""""""
9857
9858This is an overloaded intrinsic. You can use ``llvm.log`` on any
9859floating point or vector of floating point type. Not all targets support
9860all types however.
9861
9862::
9863
9864 declare float @llvm.log.f32(float %Val)
9865 declare double @llvm.log.f64(double %Val)
9866 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9867 declare fp128 @llvm.log.f128(fp128 %Val)
9868 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9869
9870Overview:
9871"""""""""
9872
9873The '``llvm.log.*``' intrinsics perform the log function.
9874
9875Arguments:
9876""""""""""
9877
9878The argument and return value are floating point numbers of the same
9879type.
9880
9881Semantics:
9882""""""""""
9883
9884This function returns the same values as the libm ``log`` functions
9885would, and handles error conditions in the same way.
9886
9887'``llvm.log10.*``' Intrinsic
9888^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9889
9890Syntax:
9891"""""""
9892
9893This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9894floating point or vector of floating point type. Not all targets support
9895all types however.
9896
9897::
9898
9899 declare float @llvm.log10.f32(float %Val)
9900 declare double @llvm.log10.f64(double %Val)
9901 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9902 declare fp128 @llvm.log10.f128(fp128 %Val)
9903 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9904
9905Overview:
9906"""""""""
9907
9908The '``llvm.log10.*``' intrinsics perform the log10 function.
9909
9910Arguments:
9911""""""""""
9912
9913The argument and return value are floating point numbers of the same
9914type.
9915
9916Semantics:
9917""""""""""
9918
9919This function returns the same values as the libm ``log10`` functions
9920would, and handles error conditions in the same way.
9921
9922'``llvm.log2.*``' Intrinsic
9923^^^^^^^^^^^^^^^^^^^^^^^^^^^
9924
9925Syntax:
9926"""""""
9927
9928This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9929floating point or vector of floating point type. Not all targets support
9930all types however.
9931
9932::
9933
9934 declare float @llvm.log2.f32(float %Val)
9935 declare double @llvm.log2.f64(double %Val)
9936 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9937 declare fp128 @llvm.log2.f128(fp128 %Val)
9938 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9939
9940Overview:
9941"""""""""
9942
9943The '``llvm.log2.*``' intrinsics perform the log2 function.
9944
9945Arguments:
9946""""""""""
9947
9948The argument and return value are floating point numbers of the same
9949type.
9950
9951Semantics:
9952""""""""""
9953
9954This function returns the same values as the libm ``log2`` functions
9955would, and handles error conditions in the same way.
9956
9957'``llvm.fma.*``' Intrinsic
9958^^^^^^^^^^^^^^^^^^^^^^^^^^
9959
9960Syntax:
9961"""""""
9962
9963This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9964floating point or vector of floating point type. Not all targets support
9965all types however.
9966
9967::
9968
9969 declare float @llvm.fma.f32(float %a, float %b, float %c)
9970 declare double @llvm.fma.f64(double %a, double %b, double %c)
9971 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9972 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9973 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9974
9975Overview:
9976"""""""""
9977
9978The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9979operation.
9980
9981Arguments:
9982""""""""""
9983
9984The argument and return value are floating point numbers of the same
9985type.
9986
9987Semantics:
9988""""""""""
9989
9990This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009991would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009992
9993'``llvm.fabs.*``' Intrinsic
9994^^^^^^^^^^^^^^^^^^^^^^^^^^^
9995
9996Syntax:
9997"""""""
9998
9999This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10000floating point or vector of floating point type. Not all targets support
10001all types however.
10002
10003::
10004
10005 declare float @llvm.fabs.f32(float %Val)
10006 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010007 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010008 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010009 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010010
10011Overview:
10012"""""""""
10013
10014The '``llvm.fabs.*``' intrinsics return the absolute value of the
10015operand.
10016
10017Arguments:
10018""""""""""
10019
10020The argument and return value are floating point numbers of the same
10021type.
10022
10023Semantics:
10024""""""""""
10025
10026This function returns the same values as the libm ``fabs`` functions
10027would, and handles error conditions in the same way.
10028
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010029'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010031
10032Syntax:
10033"""""""
10034
10035This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10036floating point or vector of floating point type. Not all targets support
10037all types however.
10038
10039::
10040
Matt Arsenault64313c92014-10-22 18:25:02 +000010041 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10042 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10043 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10044 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10045 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010046
10047Overview:
10048"""""""""
10049
10050The '``llvm.minnum.*``' intrinsics return the minimum of the two
10051arguments.
10052
10053
10054Arguments:
10055""""""""""
10056
10057The arguments and return value are floating point numbers of the same
10058type.
10059
10060Semantics:
10061""""""""""
10062
10063Follows the IEEE-754 semantics for minNum, which also match for libm's
10064fmin.
10065
10066If either operand is a NaN, returns the other non-NaN operand. Returns
10067NaN only if both operands are NaN. If the operands compare equal,
10068returns a value that compares equal to both operands. This means that
10069fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10070
10071'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010073
10074Syntax:
10075"""""""
10076
10077This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10078floating point or vector of floating point type. Not all targets support
10079all types however.
10080
10081::
10082
Matt Arsenault64313c92014-10-22 18:25:02 +000010083 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10084 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10085 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10086 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10087 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010088
10089Overview:
10090"""""""""
10091
10092The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10093arguments.
10094
10095
10096Arguments:
10097""""""""""
10098
10099The arguments and return value are floating point numbers of the same
10100type.
10101
10102Semantics:
10103""""""""""
10104Follows the IEEE-754 semantics for maxNum, which also match for libm's
10105fmax.
10106
10107If either operand is a NaN, returns the other non-NaN operand. Returns
10108NaN only if both operands are NaN. If the operands compare equal,
10109returns a value that compares equal to both operands. This means that
10110fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10111
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010112'``llvm.copysign.*``' Intrinsic
10113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10114
10115Syntax:
10116"""""""
10117
10118This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10119floating point or vector of floating point type. Not all targets support
10120all types however.
10121
10122::
10123
10124 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10125 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10126 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10127 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10128 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10129
10130Overview:
10131"""""""""
10132
10133The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10134first operand and the sign of the second operand.
10135
10136Arguments:
10137""""""""""
10138
10139The arguments and return value are floating point numbers of the same
10140type.
10141
10142Semantics:
10143""""""""""
10144
10145This function returns the same values as the libm ``copysign``
10146functions would, and handles error conditions in the same way.
10147
Sean Silvab084af42012-12-07 10:36:55 +000010148'``llvm.floor.*``' Intrinsic
10149^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10150
10151Syntax:
10152"""""""
10153
10154This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10155floating point or vector of floating point type. Not all targets support
10156all types however.
10157
10158::
10159
10160 declare float @llvm.floor.f32(float %Val)
10161 declare double @llvm.floor.f64(double %Val)
10162 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10163 declare fp128 @llvm.floor.f128(fp128 %Val)
10164 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10165
10166Overview:
10167"""""""""
10168
10169The '``llvm.floor.*``' intrinsics return the floor of the operand.
10170
10171Arguments:
10172""""""""""
10173
10174The argument and return value are floating point numbers of the same
10175type.
10176
10177Semantics:
10178""""""""""
10179
10180This function returns the same values as the libm ``floor`` functions
10181would, and handles error conditions in the same way.
10182
10183'``llvm.ceil.*``' Intrinsic
10184^^^^^^^^^^^^^^^^^^^^^^^^^^^
10185
10186Syntax:
10187"""""""
10188
10189This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10190floating point or vector of floating point type. Not all targets support
10191all types however.
10192
10193::
10194
10195 declare float @llvm.ceil.f32(float %Val)
10196 declare double @llvm.ceil.f64(double %Val)
10197 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10198 declare fp128 @llvm.ceil.f128(fp128 %Val)
10199 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10200
10201Overview:
10202"""""""""
10203
10204The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10205
10206Arguments:
10207""""""""""
10208
10209The argument and return value are floating point numbers of the same
10210type.
10211
10212Semantics:
10213""""""""""
10214
10215This function returns the same values as the libm ``ceil`` functions
10216would, and handles error conditions in the same way.
10217
10218'``llvm.trunc.*``' Intrinsic
10219^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10220
10221Syntax:
10222"""""""
10223
10224This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10225floating point or vector of floating point type. Not all targets support
10226all types however.
10227
10228::
10229
10230 declare float @llvm.trunc.f32(float %Val)
10231 declare double @llvm.trunc.f64(double %Val)
10232 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10233 declare fp128 @llvm.trunc.f128(fp128 %Val)
10234 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10235
10236Overview:
10237"""""""""
10238
10239The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10240nearest integer not larger in magnitude than the operand.
10241
10242Arguments:
10243""""""""""
10244
10245The argument and return value are floating point numbers of the same
10246type.
10247
10248Semantics:
10249""""""""""
10250
10251This function returns the same values as the libm ``trunc`` functions
10252would, and handles error conditions in the same way.
10253
10254'``llvm.rint.*``' Intrinsic
10255^^^^^^^^^^^^^^^^^^^^^^^^^^^
10256
10257Syntax:
10258"""""""
10259
10260This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10261floating point or vector of floating point type. Not all targets support
10262all types however.
10263
10264::
10265
10266 declare float @llvm.rint.f32(float %Val)
10267 declare double @llvm.rint.f64(double %Val)
10268 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10269 declare fp128 @llvm.rint.f128(fp128 %Val)
10270 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10271
10272Overview:
10273"""""""""
10274
10275The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10276nearest integer. It may raise an inexact floating-point exception if the
10277operand isn't an integer.
10278
10279Arguments:
10280""""""""""
10281
10282The argument and return value are floating point numbers of the same
10283type.
10284
10285Semantics:
10286""""""""""
10287
10288This function returns the same values as the libm ``rint`` functions
10289would, and handles error conditions in the same way.
10290
10291'``llvm.nearbyint.*``' Intrinsic
10292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10293
10294Syntax:
10295"""""""
10296
10297This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10298floating point or vector of floating point type. Not all targets support
10299all types however.
10300
10301::
10302
10303 declare float @llvm.nearbyint.f32(float %Val)
10304 declare double @llvm.nearbyint.f64(double %Val)
10305 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10306 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10307 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10308
10309Overview:
10310"""""""""
10311
10312The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10313nearest integer.
10314
10315Arguments:
10316""""""""""
10317
10318The argument and return value are floating point numbers of the same
10319type.
10320
10321Semantics:
10322""""""""""
10323
10324This function returns the same values as the libm ``nearbyint``
10325functions would, and handles error conditions in the same way.
10326
Hal Finkel171817e2013-08-07 22:49:12 +000010327'``llvm.round.*``' Intrinsic
10328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10329
10330Syntax:
10331"""""""
10332
10333This is an overloaded intrinsic. You can use ``llvm.round`` on any
10334floating point or vector of floating point type. Not all targets support
10335all types however.
10336
10337::
10338
10339 declare float @llvm.round.f32(float %Val)
10340 declare double @llvm.round.f64(double %Val)
10341 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10342 declare fp128 @llvm.round.f128(fp128 %Val)
10343 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10344
10345Overview:
10346"""""""""
10347
10348The '``llvm.round.*``' intrinsics returns the operand rounded to the
10349nearest integer.
10350
10351Arguments:
10352""""""""""
10353
10354The argument and return value are floating point numbers of the same
10355type.
10356
10357Semantics:
10358""""""""""
10359
10360This function returns the same values as the libm ``round``
10361functions would, and handles error conditions in the same way.
10362
Sean Silvab084af42012-12-07 10:36:55 +000010363Bit Manipulation Intrinsics
10364---------------------------
10365
10366LLVM provides intrinsics for a few important bit manipulation
10367operations. These allow efficient code generation for some algorithms.
10368
10369'``llvm.bswap.*``' Intrinsics
10370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10371
10372Syntax:
10373"""""""
10374
10375This is an overloaded intrinsic function. You can use bswap on any
10376integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10377
10378::
10379
10380 declare i16 @llvm.bswap.i16(i16 <id>)
10381 declare i32 @llvm.bswap.i32(i32 <id>)
10382 declare i64 @llvm.bswap.i64(i64 <id>)
10383
10384Overview:
10385"""""""""
10386
10387The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10388values with an even number of bytes (positive multiple of 16 bits).
10389These are useful for performing operations on data that is not in the
10390target's native byte order.
10391
10392Semantics:
10393""""""""""
10394
10395The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10396and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10397intrinsic returns an i32 value that has the four bytes of the input i32
10398swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10399returned i32 will have its bytes in 3, 2, 1, 0 order. The
10400``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10401concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10402respectively).
10403
10404'``llvm.ctpop.*``' Intrinsic
10405^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10406
10407Syntax:
10408"""""""
10409
10410This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10411bit width, or on any vector with integer elements. Not all targets
10412support all bit widths or vector types, however.
10413
10414::
10415
10416 declare i8 @llvm.ctpop.i8(i8 <src>)
10417 declare i16 @llvm.ctpop.i16(i16 <src>)
10418 declare i32 @llvm.ctpop.i32(i32 <src>)
10419 declare i64 @llvm.ctpop.i64(i64 <src>)
10420 declare i256 @llvm.ctpop.i256(i256 <src>)
10421 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10422
10423Overview:
10424"""""""""
10425
10426The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10427in a value.
10428
10429Arguments:
10430""""""""""
10431
10432The only argument is the value to be counted. The argument may be of any
10433integer type, or a vector with integer elements. The return type must
10434match the argument type.
10435
10436Semantics:
10437""""""""""
10438
10439The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10440each element of a vector.
10441
10442'``llvm.ctlz.*``' Intrinsic
10443^^^^^^^^^^^^^^^^^^^^^^^^^^^
10444
10445Syntax:
10446"""""""
10447
10448This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10449integer bit width, or any vector whose elements are integers. Not all
10450targets support all bit widths or vector types, however.
10451
10452::
10453
10454 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10455 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10456 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10457 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10458 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10459 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10460
10461Overview:
10462"""""""""
10463
10464The '``llvm.ctlz``' family of intrinsic functions counts the number of
10465leading zeros in a variable.
10466
10467Arguments:
10468""""""""""
10469
10470The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010471any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010472type must match the first argument type.
10473
10474The second argument must be a constant and is a flag to indicate whether
10475the intrinsic should ensure that a zero as the first argument produces a
10476defined result. Historically some architectures did not provide a
10477defined result for zero values as efficiently, and many algorithms are
10478now predicated on avoiding zero-value inputs.
10479
10480Semantics:
10481""""""""""
10482
10483The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10484zeros in a variable, or within each element of the vector. If
10485``src == 0`` then the result is the size in bits of the type of ``src``
10486if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10487``llvm.ctlz(i32 2) = 30``.
10488
10489'``llvm.cttz.*``' Intrinsic
10490^^^^^^^^^^^^^^^^^^^^^^^^^^^
10491
10492Syntax:
10493"""""""
10494
10495This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10496integer bit width, or any vector of integer elements. Not all targets
10497support all bit widths or vector types, however.
10498
10499::
10500
10501 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10502 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10503 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10504 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10505 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10506 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10507
10508Overview:
10509"""""""""
10510
10511The '``llvm.cttz``' family of intrinsic functions counts the number of
10512trailing zeros.
10513
10514Arguments:
10515""""""""""
10516
10517The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010518any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010519type must match the first argument type.
10520
10521The second argument must be a constant and is a flag to indicate whether
10522the intrinsic should ensure that a zero as the first argument produces a
10523defined result. Historically some architectures did not provide a
10524defined result for zero values as efficiently, and many algorithms are
10525now predicated on avoiding zero-value inputs.
10526
10527Semantics:
10528""""""""""
10529
10530The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10531zeros in a variable, or within each element of a vector. If ``src == 0``
10532then the result is the size in bits of the type of ``src`` if
10533``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10534``llvm.cttz(2) = 1``.
10535
Philip Reames34843ae2015-03-05 05:55:55 +000010536.. _int_overflow:
10537
Sean Silvab084af42012-12-07 10:36:55 +000010538Arithmetic with Overflow Intrinsics
10539-----------------------------------
10540
10541LLVM provides intrinsics for some arithmetic with overflow operations.
10542
10543'``llvm.sadd.with.overflow.*``' Intrinsics
10544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10545
10546Syntax:
10547"""""""
10548
10549This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10550on any integer bit width.
10551
10552::
10553
10554 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10555 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10556 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10557
10558Overview:
10559"""""""""
10560
10561The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10562a signed addition of the two arguments, and indicate whether an overflow
10563occurred during the signed summation.
10564
10565Arguments:
10566""""""""""
10567
10568The arguments (%a and %b) and the first element of the result structure
10569may be of integer types of any bit width, but they must have the same
10570bit width. The second element of the result structure must be of type
10571``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10572addition.
10573
10574Semantics:
10575""""""""""
10576
10577The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010578a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010579first element of which is the signed summation, and the second element
10580of which is a bit specifying if the signed summation resulted in an
10581overflow.
10582
10583Examples:
10584"""""""""
10585
10586.. code-block:: llvm
10587
10588 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10589 %sum = extractvalue {i32, i1} %res, 0
10590 %obit = extractvalue {i32, i1} %res, 1
10591 br i1 %obit, label %overflow, label %normal
10592
10593'``llvm.uadd.with.overflow.*``' Intrinsics
10594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10595
10596Syntax:
10597"""""""
10598
10599This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10600on any integer bit width.
10601
10602::
10603
10604 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10605 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10606 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10607
10608Overview:
10609"""""""""
10610
10611The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10612an unsigned addition of the two arguments, and indicate whether a carry
10613occurred during the unsigned summation.
10614
10615Arguments:
10616""""""""""
10617
10618The arguments (%a and %b) and the first element of the result structure
10619may be of integer types of any bit width, but they must have the same
10620bit width. The second element of the result structure must be of type
10621``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10622addition.
10623
10624Semantics:
10625""""""""""
10626
10627The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010628an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010629first element of which is the sum, and the second element of which is a
10630bit specifying if the unsigned summation resulted in a carry.
10631
10632Examples:
10633"""""""""
10634
10635.. code-block:: llvm
10636
10637 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10638 %sum = extractvalue {i32, i1} %res, 0
10639 %obit = extractvalue {i32, i1} %res, 1
10640 br i1 %obit, label %carry, label %normal
10641
10642'``llvm.ssub.with.overflow.*``' Intrinsics
10643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10644
10645Syntax:
10646"""""""
10647
10648This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10649on any integer bit width.
10650
10651::
10652
10653 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10654 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10655 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10656
10657Overview:
10658"""""""""
10659
10660The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10661a signed subtraction of the two arguments, and indicate whether an
10662overflow occurred during the signed subtraction.
10663
10664Arguments:
10665""""""""""
10666
10667The arguments (%a and %b) and the first element of the result structure
10668may be of integer types of any bit width, but they must have the same
10669bit width. The second element of the result structure must be of type
10670``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10671subtraction.
10672
10673Semantics:
10674""""""""""
10675
10676The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010677a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010678first element of which is the subtraction, and the second element of
10679which is a bit specifying if the signed subtraction resulted in an
10680overflow.
10681
10682Examples:
10683"""""""""
10684
10685.. code-block:: llvm
10686
10687 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10688 %sum = extractvalue {i32, i1} %res, 0
10689 %obit = extractvalue {i32, i1} %res, 1
10690 br i1 %obit, label %overflow, label %normal
10691
10692'``llvm.usub.with.overflow.*``' Intrinsics
10693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10694
10695Syntax:
10696"""""""
10697
10698This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10699on any integer bit width.
10700
10701::
10702
10703 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10704 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10705 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10706
10707Overview:
10708"""""""""
10709
10710The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10711an unsigned subtraction of the two arguments, and indicate whether an
10712overflow occurred during the unsigned subtraction.
10713
10714Arguments:
10715""""""""""
10716
10717The arguments (%a and %b) and the first element of the result structure
10718may be of integer types of any bit width, but they must have the same
10719bit width. The second element of the result structure must be of type
10720``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10721subtraction.
10722
10723Semantics:
10724""""""""""
10725
10726The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010727an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010728the first element of which is the subtraction, and the second element of
10729which is a bit specifying if the unsigned subtraction resulted in an
10730overflow.
10731
10732Examples:
10733"""""""""
10734
10735.. code-block:: llvm
10736
10737 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10738 %sum = extractvalue {i32, i1} %res, 0
10739 %obit = extractvalue {i32, i1} %res, 1
10740 br i1 %obit, label %overflow, label %normal
10741
10742'``llvm.smul.with.overflow.*``' Intrinsics
10743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10744
10745Syntax:
10746"""""""
10747
10748This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10749on any integer bit width.
10750
10751::
10752
10753 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10754 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10755 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10756
10757Overview:
10758"""""""""
10759
10760The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10761a signed multiplication of the two arguments, and indicate whether an
10762overflow occurred during the signed multiplication.
10763
10764Arguments:
10765""""""""""
10766
10767The arguments (%a and %b) and the first element of the result structure
10768may be of integer types of any bit width, but they must have the same
10769bit width. The second element of the result structure must be of type
10770``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10771multiplication.
10772
10773Semantics:
10774""""""""""
10775
10776The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010777a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010778the first element of which is the multiplication, and the second element
10779of which is a bit specifying if the signed multiplication resulted in an
10780overflow.
10781
10782Examples:
10783"""""""""
10784
10785.. code-block:: llvm
10786
10787 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10788 %sum = extractvalue {i32, i1} %res, 0
10789 %obit = extractvalue {i32, i1} %res, 1
10790 br i1 %obit, label %overflow, label %normal
10791
10792'``llvm.umul.with.overflow.*``' Intrinsics
10793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10794
10795Syntax:
10796"""""""
10797
10798This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10799on any integer bit width.
10800
10801::
10802
10803 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10804 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10805 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10806
10807Overview:
10808"""""""""
10809
10810The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10811a unsigned multiplication of the two arguments, and indicate whether an
10812overflow occurred during the unsigned multiplication.
10813
10814Arguments:
10815""""""""""
10816
10817The arguments (%a and %b) and the first element of the result structure
10818may be of integer types of any bit width, but they must have the same
10819bit width. The second element of the result structure must be of type
10820``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10821multiplication.
10822
10823Semantics:
10824""""""""""
10825
10826The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010827an unsigned multiplication of the two arguments. They return a structure ---
10828the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010829element of which is a bit specifying if the unsigned multiplication
10830resulted in an overflow.
10831
10832Examples:
10833"""""""""
10834
10835.. code-block:: llvm
10836
10837 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10838 %sum = extractvalue {i32, i1} %res, 0
10839 %obit = extractvalue {i32, i1} %res, 1
10840 br i1 %obit, label %overflow, label %normal
10841
10842Specialised Arithmetic Intrinsics
10843---------------------------------
10844
Owen Anderson1056a922015-07-11 07:01:27 +000010845'``llvm.canonicalize.*``' Intrinsic
10846^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10847
10848Syntax:
10849"""""""
10850
10851::
10852
10853 declare float @llvm.canonicalize.f32(float %a)
10854 declare double @llvm.canonicalize.f64(double %b)
10855
10856Overview:
10857"""""""""
10858
10859The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010860encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010861implementing certain numeric primitives such as frexp. The canonical encoding is
10862defined by IEEE-754-2008 to be:
10863
10864::
10865
10866 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010867 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010868 numbers, infinities, and NaNs, especially in decimal formats.
10869
10870This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010871conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010872according to section 6.2.
10873
10874Examples of non-canonical encodings:
10875
Sean Silvaa1190322015-08-06 22:56:48 +000010876- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010877 converted to a canonical representation per hardware-specific protocol.
10878- Many normal decimal floating point numbers have non-canonical alternative
10879 encodings.
10880- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10881 These are treated as non-canonical encodings of zero and with be flushed to
10882 a zero of the same sign by this operation.
10883
10884Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10885default exception handling must signal an invalid exception, and produce a
10886quiet NaN result.
10887
10888This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010889that the compiler does not constant fold the operation. Likewise, division by
108901.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010891-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10892
Sean Silvaa1190322015-08-06 22:56:48 +000010893``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010894
10895- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10896- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10897 to ``(x == y)``
10898
10899Additionally, the sign of zero must be conserved:
10900``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10901
10902The payload bits of a NaN must be conserved, with two exceptions.
10903First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010904must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010905usual methods.
10906
10907The canonicalization operation may be optimized away if:
10908
Sean Silvaa1190322015-08-06 22:56:48 +000010909- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010910 floating-point operation that is required by the standard to be canonical.
10911- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010912 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010913
Sean Silvab084af42012-12-07 10:36:55 +000010914'``llvm.fmuladd.*``' Intrinsic
10915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10916
10917Syntax:
10918"""""""
10919
10920::
10921
10922 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10923 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10924
10925Overview:
10926"""""""""
10927
10928The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010929expressions that can be fused if the code generator determines that (a) the
10930target instruction set has support for a fused operation, and (b) that the
10931fused operation is more efficient than the equivalent, separate pair of mul
10932and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010933
10934Arguments:
10935""""""""""
10936
10937The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10938multiplicands, a and b, and an addend c.
10939
10940Semantics:
10941""""""""""
10942
10943The expression:
10944
10945::
10946
10947 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10948
10949is equivalent to the expression a \* b + c, except that rounding will
10950not be performed between the multiplication and addition steps if the
10951code generator fuses the operations. Fusion is not guaranteed, even if
10952the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010953corresponding llvm.fma.\* intrinsic function should be used
10954instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010955
10956Examples:
10957"""""""""
10958
10959.. code-block:: llvm
10960
Tim Northover675a0962014-06-13 14:24:23 +000010961 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010962
James Molloy7395a812015-07-16 15:22:46 +000010963
10964'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10966
10967Syntax:
10968"""""""
10969This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10970
10971.. code-block:: llvm
10972
10973 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10974
10975
10976Overview:
10977"""""""""
10978
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010979The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
10980of the two operands, treating them both as unsigned integers. The intermediate
10981calculations are computed using infinitely precise unsigned arithmetic. The final
10982result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000010983
Mohammad Shahid18715532015-08-21 05:31:07 +000010984The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010985the two operands, treating them both as signed integers. If the result overflows, the
10986behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000010987
10988.. note::
10989
10990 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010991 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000010992 recommended for users to create them manually.
10993
10994Arguments:
10995""""""""""
10996
10997Both intrinsics take two integer of the same bitwidth.
10998
10999Semantics:
11000""""""""""
11001
11002The expression::
11003
11004 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11005
11006is equivalent to::
11007
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011008 %1 = zext <4 x i32> %a to <4 x i64>
11009 %2 = zext <4 x i32> %b to <4 x i64>
11010 %sub = sub <4 x i64> %1, %2
11011 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000011012
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011013and the expression::
James Molloy7395a812015-07-16 15:22:46 +000011014
11015 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11016
11017is equivalent to::
11018
11019 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011020 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000011021 %neg = sub nsw <4 x i32> zeroinitializer, %sub
11022 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
11023
11024
Sean Silvab084af42012-12-07 10:36:55 +000011025Half Precision Floating Point Intrinsics
11026----------------------------------------
11027
11028For most target platforms, half precision floating point is a
11029storage-only format. This means that it is a dense encoding (in memory)
11030but does not support computation in the format.
11031
11032This means that code must first load the half-precision floating point
11033value as an i16, then convert it to float with
11034:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11035then be performed on the float value (including extending to double
11036etc). To store the value back to memory, it is first converted to float
11037if needed, then converted to i16 with
11038:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11039i16 value.
11040
11041.. _int_convert_to_fp16:
11042
11043'``llvm.convert.to.fp16``' Intrinsic
11044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11045
11046Syntax:
11047"""""""
11048
11049::
11050
Tim Northoverfd7e4242014-07-17 10:51:23 +000011051 declare i16 @llvm.convert.to.fp16.f32(float %a)
11052 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011053
11054Overview:
11055"""""""""
11056
Tim Northoverfd7e4242014-07-17 10:51:23 +000011057The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11058conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011059
11060Arguments:
11061""""""""""
11062
11063The intrinsic function contains single argument - the value to be
11064converted.
11065
11066Semantics:
11067""""""""""
11068
Tim Northoverfd7e4242014-07-17 10:51:23 +000011069The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11070conventional floating point format to half precision floating point format. The
11071return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011072
11073Examples:
11074"""""""""
11075
11076.. code-block:: llvm
11077
Tim Northoverfd7e4242014-07-17 10:51:23 +000011078 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011079 store i16 %res, i16* @x, align 2
11080
11081.. _int_convert_from_fp16:
11082
11083'``llvm.convert.from.fp16``' Intrinsic
11084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11085
11086Syntax:
11087"""""""
11088
11089::
11090
Tim Northoverfd7e4242014-07-17 10:51:23 +000011091 declare float @llvm.convert.from.fp16.f32(i16 %a)
11092 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011093
11094Overview:
11095"""""""""
11096
11097The '``llvm.convert.from.fp16``' intrinsic function performs a
11098conversion from half precision floating point format to single precision
11099floating point format.
11100
11101Arguments:
11102""""""""""
11103
11104The intrinsic function contains single argument - the value to be
11105converted.
11106
11107Semantics:
11108""""""""""
11109
11110The '``llvm.convert.from.fp16``' intrinsic function performs a
11111conversion from half single precision floating point format to single
11112precision floating point format. The input half-float value is
11113represented by an ``i16`` value.
11114
11115Examples:
11116"""""""""
11117
11118.. code-block:: llvm
11119
David Blaikiec7aabbb2015-03-04 22:06:14 +000011120 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011121 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011122
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011123.. _dbg_intrinsics:
11124
Sean Silvab084af42012-12-07 10:36:55 +000011125Debugger Intrinsics
11126-------------------
11127
11128The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11129prefix), are described in the `LLVM Source Level
11130Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11131document.
11132
11133Exception Handling Intrinsics
11134-----------------------------
11135
11136The LLVM exception handling intrinsics (which all start with
11137``llvm.eh.`` prefix), are described in the `LLVM Exception
11138Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11139
11140.. _int_trampoline:
11141
11142Trampoline Intrinsics
11143---------------------
11144
11145These intrinsics make it possible to excise one parameter, marked with
11146the :ref:`nest <nest>` attribute, from a function. The result is a
11147callable function pointer lacking the nest parameter - the caller does
11148not need to provide a value for it. Instead, the value to use is stored
11149in advance in a "trampoline", a block of memory usually allocated on the
11150stack, which also contains code to splice the nest value into the
11151argument list. This is used to implement the GCC nested function address
11152extension.
11153
11154For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11155then the resulting function pointer has signature ``i32 (i32, i32)*``.
11156It can be created as follows:
11157
11158.. code-block:: llvm
11159
11160 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011161 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011162 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11163 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11164 %fp = bitcast i8* %p to i32 (i32, i32)*
11165
11166The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11167``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11168
11169.. _int_it:
11170
11171'``llvm.init.trampoline``' Intrinsic
11172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11173
11174Syntax:
11175"""""""
11176
11177::
11178
11179 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11180
11181Overview:
11182"""""""""
11183
11184This fills the memory pointed to by ``tramp`` with executable code,
11185turning it into a trampoline.
11186
11187Arguments:
11188""""""""""
11189
11190The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11191pointers. The ``tramp`` argument must point to a sufficiently large and
11192sufficiently aligned block of memory; this memory is written to by the
11193intrinsic. Note that the size and the alignment are target-specific -
11194LLVM currently provides no portable way of determining them, so a
11195front-end that generates this intrinsic needs to have some
11196target-specific knowledge. The ``func`` argument must hold a function
11197bitcast to an ``i8*``.
11198
11199Semantics:
11200""""""""""
11201
11202The block of memory pointed to by ``tramp`` is filled with target
11203dependent code, turning it into a function. Then ``tramp`` needs to be
11204passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11205be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11206function's signature is the same as that of ``func`` with any arguments
11207marked with the ``nest`` attribute removed. At most one such ``nest``
11208argument is allowed, and it must be of pointer type. Calling the new
11209function is equivalent to calling ``func`` with the same argument list,
11210but with ``nval`` used for the missing ``nest`` argument. If, after
11211calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11212modified, then the effect of any later call to the returned function
11213pointer is undefined.
11214
11215.. _int_at:
11216
11217'``llvm.adjust.trampoline``' Intrinsic
11218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11219
11220Syntax:
11221"""""""
11222
11223::
11224
11225 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11226
11227Overview:
11228"""""""""
11229
11230This performs any required machine-specific adjustment to the address of
11231a trampoline (passed as ``tramp``).
11232
11233Arguments:
11234""""""""""
11235
11236``tramp`` must point to a block of memory which already has trampoline
11237code filled in by a previous call to
11238:ref:`llvm.init.trampoline <int_it>`.
11239
11240Semantics:
11241""""""""""
11242
11243On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011244different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011245intrinsic returns the executable address corresponding to ``tramp``
11246after performing the required machine specific adjustments. The pointer
11247returned can then be :ref:`bitcast and executed <int_trampoline>`.
11248
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011249.. _int_mload_mstore:
11250
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011251Masked Vector Load and Store Intrinsics
11252---------------------------------------
11253
11254LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11255
11256.. _int_mload:
11257
11258'``llvm.masked.load.*``' Intrinsics
11259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11260
11261Syntax:
11262"""""""
11263This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11264
11265::
11266
11267 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11268 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11269
11270Overview:
11271"""""""""
11272
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011273Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011274
11275
11276Arguments:
11277""""""""""
11278
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011279The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011280
11281
11282Semantics:
11283""""""""""
11284
11285The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11286The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11287
11288
11289::
11290
11291 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011292
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011293 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011294 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011295 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011296
11297.. _int_mstore:
11298
11299'``llvm.masked.store.*``' Intrinsics
11300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11301
11302Syntax:
11303"""""""
11304This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11305
11306::
11307
11308 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11309 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11310
11311Overview:
11312"""""""""
11313
11314Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11315
11316Arguments:
11317""""""""""
11318
11319The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11320
11321
11322Semantics:
11323""""""""""
11324
11325The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11326The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11327
11328::
11329
11330 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011331
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011332 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011333 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011334 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11335 store <16 x float> %res, <16 x float>* %ptr, align 4
11336
11337
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011338Masked Vector Gather and Scatter Intrinsics
11339-------------------------------------------
11340
11341LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11342
11343.. _int_mgather:
11344
11345'``llvm.masked.gather.*``' Intrinsics
11346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11347
11348Syntax:
11349"""""""
11350This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11351
11352::
11353
11354 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11355 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11356
11357Overview:
11358"""""""""
11359
11360Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11361
11362
11363Arguments:
11364""""""""""
11365
11366The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11367
11368
11369Semantics:
11370""""""""""
11371
11372The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11373The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11374
11375
11376::
11377
11378 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11379
11380 ;; The gather with all-true mask is equivalent to the following instruction sequence
11381 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11382 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11383 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11384 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11385
11386 %val0 = load double, double* %ptr0, align 8
11387 %val1 = load double, double* %ptr1, align 8
11388 %val2 = load double, double* %ptr2, align 8
11389 %val3 = load double, double* %ptr3, align 8
11390
11391 %vec0 = insertelement <4 x double>undef, %val0, 0
11392 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11393 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11394 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11395
11396.. _int_mscatter:
11397
11398'``llvm.masked.scatter.*``' Intrinsics
11399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11400
11401Syntax:
11402"""""""
11403This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11404
11405::
11406
11407 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11408 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11409
11410Overview:
11411"""""""""
11412
11413Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11414
11415Arguments:
11416""""""""""
11417
11418The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11419
11420
11421Semantics:
11422""""""""""
11423
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011424The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011425
11426::
11427
11428 ;; This instruction unconditionaly stores data vector in multiple addresses
11429 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11430
11431 ;; It is equivalent to a list of scalar stores
11432 %val0 = extractelement <8 x i32> %value, i32 0
11433 %val1 = extractelement <8 x i32> %value, i32 1
11434 ..
11435 %val7 = extractelement <8 x i32> %value, i32 7
11436 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11437 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11438 ..
11439 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11440 ;; Note: the order of the following stores is important when they overlap:
11441 store i32 %val0, i32* %ptr0, align 4
11442 store i32 %val1, i32* %ptr1, align 4
11443 ..
11444 store i32 %val7, i32* %ptr7, align 4
11445
11446
Sean Silvab084af42012-12-07 10:36:55 +000011447Memory Use Markers
11448------------------
11449
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011450This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011451memory objects and ranges where variables are immutable.
11452
Reid Klecknera534a382013-12-19 02:14:12 +000011453.. _int_lifestart:
11454
Sean Silvab084af42012-12-07 10:36:55 +000011455'``llvm.lifetime.start``' Intrinsic
11456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11457
11458Syntax:
11459"""""""
11460
11461::
11462
11463 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11464
11465Overview:
11466"""""""""
11467
11468The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11469object's lifetime.
11470
11471Arguments:
11472""""""""""
11473
11474The first argument is a constant integer representing the size of the
11475object, or -1 if it is variable sized. The second argument is a pointer
11476to the object.
11477
11478Semantics:
11479""""""""""
11480
11481This intrinsic indicates that before this point in the code, the value
11482of the memory pointed to by ``ptr`` is dead. This means that it is known
11483to never be used and has an undefined value. A load from the pointer
11484that precedes this intrinsic can be replaced with ``'undef'``.
11485
Reid Klecknera534a382013-12-19 02:14:12 +000011486.. _int_lifeend:
11487
Sean Silvab084af42012-12-07 10:36:55 +000011488'``llvm.lifetime.end``' Intrinsic
11489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11490
11491Syntax:
11492"""""""
11493
11494::
11495
11496 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11497
11498Overview:
11499"""""""""
11500
11501The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11502object's lifetime.
11503
11504Arguments:
11505""""""""""
11506
11507The first argument is a constant integer representing the size of the
11508object, or -1 if it is variable sized. The second argument is a pointer
11509to the object.
11510
11511Semantics:
11512""""""""""
11513
11514This intrinsic indicates that after this point in the code, the value of
11515the memory pointed to by ``ptr`` is dead. This means that it is known to
11516never be used and has an undefined value. Any stores into the memory
11517object following this intrinsic may be removed as dead.
11518
11519'``llvm.invariant.start``' Intrinsic
11520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11521
11522Syntax:
11523"""""""
11524
11525::
11526
11527 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11528
11529Overview:
11530"""""""""
11531
11532The '``llvm.invariant.start``' intrinsic specifies that the contents of
11533a memory object will not change.
11534
11535Arguments:
11536""""""""""
11537
11538The first argument is a constant integer representing the size of the
11539object, or -1 if it is variable sized. The second argument is a pointer
11540to the object.
11541
11542Semantics:
11543""""""""""
11544
11545This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11546the return value, the referenced memory location is constant and
11547unchanging.
11548
11549'``llvm.invariant.end``' Intrinsic
11550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11551
11552Syntax:
11553"""""""
11554
11555::
11556
11557 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11558
11559Overview:
11560"""""""""
11561
11562The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11563memory object are mutable.
11564
11565Arguments:
11566""""""""""
11567
11568The first argument is the matching ``llvm.invariant.start`` intrinsic.
11569The second argument is a constant integer representing the size of the
11570object, or -1 if it is variable sized and the third argument is a
11571pointer to the object.
11572
11573Semantics:
11574""""""""""
11575
11576This intrinsic indicates that the memory is mutable again.
11577
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011578'``llvm.invariant.group.barrier``' Intrinsic
11579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11580
11581Syntax:
11582"""""""
11583
11584::
11585
11586 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11587
11588Overview:
11589"""""""""
11590
11591The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11592established by invariant.group metadata no longer holds, to obtain a new pointer
11593value that does not carry the invariant information.
11594
11595
11596Arguments:
11597""""""""""
11598
11599The ``llvm.invariant.group.barrier`` takes only one argument, which is
11600the pointer to the memory for which the ``invariant.group`` no longer holds.
11601
11602Semantics:
11603""""""""""
11604
11605Returns another pointer that aliases its argument but which is considered different
11606for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11607
Sean Silvab084af42012-12-07 10:36:55 +000011608General Intrinsics
11609------------------
11610
11611This class of intrinsics is designed to be generic and has no specific
11612purpose.
11613
11614'``llvm.var.annotation``' Intrinsic
11615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11616
11617Syntax:
11618"""""""
11619
11620::
11621
11622 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11623
11624Overview:
11625"""""""""
11626
11627The '``llvm.var.annotation``' intrinsic.
11628
11629Arguments:
11630""""""""""
11631
11632The first argument is a pointer to a value, the second is a pointer to a
11633global string, the third is a pointer to a global string which is the
11634source file name, and the last argument is the line number.
11635
11636Semantics:
11637""""""""""
11638
11639This intrinsic allows annotation of local variables with arbitrary
11640strings. This can be useful for special purpose optimizations that want
11641to look for these annotations. These have no other defined use; they are
11642ignored by code generation and optimization.
11643
Michael Gottesman88d18832013-03-26 00:34:27 +000011644'``llvm.ptr.annotation.*``' Intrinsic
11645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11646
11647Syntax:
11648"""""""
11649
11650This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11651pointer to an integer of any width. *NOTE* you must specify an address space for
11652the pointer. The identifier for the default address space is the integer
11653'``0``'.
11654
11655::
11656
11657 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11658 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11659 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11660 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11661 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11662
11663Overview:
11664"""""""""
11665
11666The '``llvm.ptr.annotation``' intrinsic.
11667
11668Arguments:
11669""""""""""
11670
11671The first argument is a pointer to an integer value of arbitrary bitwidth
11672(result of some expression), the second is a pointer to a global string, the
11673third is a pointer to a global string which is the source file name, and the
11674last argument is the line number. It returns the value of the first argument.
11675
11676Semantics:
11677""""""""""
11678
11679This intrinsic allows annotation of a pointer to an integer with arbitrary
11680strings. This can be useful for special purpose optimizations that want to look
11681for these annotations. These have no other defined use; they are ignored by code
11682generation and optimization.
11683
Sean Silvab084af42012-12-07 10:36:55 +000011684'``llvm.annotation.*``' Intrinsic
11685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11686
11687Syntax:
11688"""""""
11689
11690This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11691any integer bit width.
11692
11693::
11694
11695 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11696 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11697 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11698 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11699 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11700
11701Overview:
11702"""""""""
11703
11704The '``llvm.annotation``' intrinsic.
11705
11706Arguments:
11707""""""""""
11708
11709The first argument is an integer value (result of some expression), the
11710second is a pointer to a global string, the third is a pointer to a
11711global string which is the source file name, and the last argument is
11712the line number. It returns the value of the first argument.
11713
11714Semantics:
11715""""""""""
11716
11717This intrinsic allows annotations to be put on arbitrary expressions
11718with arbitrary strings. This can be useful for special purpose
11719optimizations that want to look for these annotations. These have no
11720other defined use; they are ignored by code generation and optimization.
11721
11722'``llvm.trap``' Intrinsic
11723^^^^^^^^^^^^^^^^^^^^^^^^^
11724
11725Syntax:
11726"""""""
11727
11728::
11729
11730 declare void @llvm.trap() noreturn nounwind
11731
11732Overview:
11733"""""""""
11734
11735The '``llvm.trap``' intrinsic.
11736
11737Arguments:
11738""""""""""
11739
11740None.
11741
11742Semantics:
11743""""""""""
11744
11745This intrinsic is lowered to the target dependent trap instruction. If
11746the target does not have a trap instruction, this intrinsic will be
11747lowered to a call of the ``abort()`` function.
11748
11749'``llvm.debugtrap``' Intrinsic
11750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11751
11752Syntax:
11753"""""""
11754
11755::
11756
11757 declare void @llvm.debugtrap() nounwind
11758
11759Overview:
11760"""""""""
11761
11762The '``llvm.debugtrap``' intrinsic.
11763
11764Arguments:
11765""""""""""
11766
11767None.
11768
11769Semantics:
11770""""""""""
11771
11772This intrinsic is lowered to code which is intended to cause an
11773execution trap with the intention of requesting the attention of a
11774debugger.
11775
11776'``llvm.stackprotector``' Intrinsic
11777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11778
11779Syntax:
11780"""""""
11781
11782::
11783
11784 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11785
11786Overview:
11787"""""""""
11788
11789The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11790onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11791is placed on the stack before local variables.
11792
11793Arguments:
11794""""""""""
11795
11796The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11797The first argument is the value loaded from the stack guard
11798``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11799enough space to hold the value of the guard.
11800
11801Semantics:
11802""""""""""
11803
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011804This intrinsic causes the prologue/epilogue inserter to force the position of
11805the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11806to ensure that if a local variable on the stack is overwritten, it will destroy
11807the value of the guard. When the function exits, the guard on the stack is
11808checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11809different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11810calling the ``__stack_chk_fail()`` function.
11811
11812'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011814
11815Syntax:
11816"""""""
11817
11818::
11819
11820 declare void @llvm.stackprotectorcheck(i8** <guard>)
11821
11822Overview:
11823"""""""""
11824
11825The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011826created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011827``__stack_chk_fail()`` function.
11828
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011829Arguments:
11830""""""""""
11831
11832The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11833the variable ``@__stack_chk_guard``.
11834
11835Semantics:
11836""""""""""
11837
11838This intrinsic is provided to perform the stack protector check by comparing
11839``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11840values do not match call the ``__stack_chk_fail()`` function.
11841
11842The reason to provide this as an IR level intrinsic instead of implementing it
11843via other IR operations is that in order to perform this operation at the IR
11844level without an intrinsic, one would need to create additional basic blocks to
11845handle the success/failure cases. This makes it difficult to stop the stack
11846protector check from disrupting sibling tail calls in Codegen. With this
11847intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011848codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011849
Sean Silvab084af42012-12-07 10:36:55 +000011850'``llvm.objectsize``' Intrinsic
11851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11852
11853Syntax:
11854"""""""
11855
11856::
11857
11858 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11859 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11860
11861Overview:
11862"""""""""
11863
11864The ``llvm.objectsize`` intrinsic is designed to provide information to
11865the optimizers to determine at compile time whether a) an operation
11866(like memcpy) will overflow a buffer that corresponds to an object, or
11867b) that a runtime check for overflow isn't necessary. An object in this
11868context means an allocation of a specific class, structure, array, or
11869other object.
11870
11871Arguments:
11872""""""""""
11873
11874The ``llvm.objectsize`` intrinsic takes two arguments. The first
11875argument is a pointer to or into the ``object``. The second argument is
11876a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11877or -1 (if false) when the object size is unknown. The second argument
11878only accepts constants.
11879
11880Semantics:
11881""""""""""
11882
11883The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11884the size of the object concerned. If the size cannot be determined at
11885compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11886on the ``min`` argument).
11887
11888'``llvm.expect``' Intrinsic
11889^^^^^^^^^^^^^^^^^^^^^^^^^^^
11890
11891Syntax:
11892"""""""
11893
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011894This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11895integer bit width.
11896
Sean Silvab084af42012-12-07 10:36:55 +000011897::
11898
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011899 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011900 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11901 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11902
11903Overview:
11904"""""""""
11905
11906The ``llvm.expect`` intrinsic provides information about expected (the
11907most probable) value of ``val``, which can be used by optimizers.
11908
11909Arguments:
11910""""""""""
11911
11912The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11913a value. The second argument is an expected value, this needs to be a
11914constant value, variables are not allowed.
11915
11916Semantics:
11917""""""""""
11918
11919This intrinsic is lowered to the ``val``.
11920
Philip Reamese0e90832015-04-26 22:23:12 +000011921.. _int_assume:
11922
Hal Finkel93046912014-07-25 21:13:35 +000011923'``llvm.assume``' Intrinsic
11924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11925
11926Syntax:
11927"""""""
11928
11929::
11930
11931 declare void @llvm.assume(i1 %cond)
11932
11933Overview:
11934"""""""""
11935
11936The ``llvm.assume`` allows the optimizer to assume that the provided
11937condition is true. This information can then be used in simplifying other parts
11938of the code.
11939
11940Arguments:
11941""""""""""
11942
11943The condition which the optimizer may assume is always true.
11944
11945Semantics:
11946""""""""""
11947
11948The intrinsic allows the optimizer to assume that the provided condition is
11949always true whenever the control flow reaches the intrinsic call. No code is
11950generated for this intrinsic, and instructions that contribute only to the
11951provided condition are not used for code generation. If the condition is
11952violated during execution, the behavior is undefined.
11953
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011954Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011955used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11956only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011957if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011958sufficient overall improvement in code quality. For this reason,
11959``llvm.assume`` should not be used to document basic mathematical invariants
11960that the optimizer can otherwise deduce or facts that are of little use to the
11961optimizer.
11962
Peter Collingbournee6909c82015-02-20 20:30:47 +000011963.. _bitset.test:
11964
11965'``llvm.bitset.test``' Intrinsic
11966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11967
11968Syntax:
11969"""""""
11970
11971::
11972
11973 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11974
11975
11976Arguments:
11977""""""""""
11978
11979The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000011980metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000011981
11982Overview:
11983"""""""""
11984
11985The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11986member of the given bitset.
11987
Sean Silvab084af42012-12-07 10:36:55 +000011988'``llvm.donothing``' Intrinsic
11989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11990
11991Syntax:
11992"""""""
11993
11994::
11995
11996 declare void @llvm.donothing() nounwind readnone
11997
11998Overview:
11999"""""""""
12000
Juergen Ributzkac9161192014-10-23 22:36:13 +000012001The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12002two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12003with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012004
12005Arguments:
12006""""""""""
12007
12008None.
12009
12010Semantics:
12011""""""""""
12012
12013This intrinsic does nothing, and it's removed by optimizers and ignored
12014by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012015
12016Stack Map Intrinsics
12017--------------------
12018
12019LLVM provides experimental intrinsics to support runtime patching
12020mechanisms commonly desired in dynamic language JITs. These intrinsics
12021are described in :doc:`StackMaps`.