blob: 8ab1d0ae41ad9f4f1ebfebadd946a16d2b9c85e8 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Sean Silva706fba52015-08-06 22:56:24 +0000693The argument list is a comma separated sequence of arguments where each
694argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
Rafael Espindola464fe022014-07-30 22:51:54 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Sean Silvaa1190322015-08-06 22:56:48 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000750that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000825with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000831COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000897 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000932 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000933 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000941 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001030 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001037 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001073index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001090of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
Sean Silvaa1190322015-08-06 22:56:48 +00001097A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001111have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001116definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Sean Silvaa1190322015-08-06 22:56:48 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001222 Transformations that are execution model agnostic may not make the execution
1223 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001224``inlinehint``
1225 This attribute indicates that the source code contained a hint that
1226 inlining this function is desirable (such as the "inline" keyword in
1227 C/C++). It is just a hint; it imposes no requirements on the
1228 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001229``jumptable``
1230 This attribute indicates that the function should be added to a
1231 jump-instruction table at code-generation time, and that all address-taken
1232 references to this function should be replaced with a reference to the
1233 appropriate jump-instruction-table function pointer. Note that this creates
1234 a new pointer for the original function, which means that code that depends
1235 on function-pointer identity can break. So, any function annotated with
1236 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001237``minsize``
1238 This attribute suggests that optimization passes and code generator
1239 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001240 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001241 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001242``naked``
1243 This attribute disables prologue / epilogue emission for the
1244 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001245``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001246 This indicates that the callee function at a call site is not recognized as
1247 a built-in function. LLVM will retain the original call and not replace it
1248 with equivalent code based on the semantics of the built-in function, unless
1249 the call site uses the ``builtin`` attribute. This is valid at call sites
1250 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001251``noduplicate``
1252 This attribute indicates that calls to the function cannot be
1253 duplicated. A call to a ``noduplicate`` function may be moved
1254 within its parent function, but may not be duplicated within
1255 its parent function.
1256
1257 A function containing a ``noduplicate`` call may still
1258 be an inlining candidate, provided that the call is not
1259 duplicated by inlining. That implies that the function has
1260 internal linkage and only has one call site, so the original
1261 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001262``noimplicitfloat``
1263 This attributes disables implicit floating point instructions.
1264``noinline``
1265 This attribute indicates that the inliner should never inline this
1266 function in any situation. This attribute may not be used together
1267 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001268``nonlazybind``
1269 This attribute suppresses lazy symbol binding for the function. This
1270 may make calls to the function faster, at the cost of extra program
1271 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001272``noredzone``
1273 This attribute indicates that the code generator should not use a
1274 red zone, even if the target-specific ABI normally permits it.
1275``noreturn``
1276 This function attribute indicates that the function never returns
1277 normally. This produces undefined behavior at runtime if the
1278 function ever does dynamically return.
1279``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001280 This function attribute indicates that the function never raises an
1281 exception. If the function does raise an exception, its runtime
1282 behavior is undefined. However, functions marked nounwind may still
1283 trap or generate asynchronous exceptions. Exception handling schemes
1284 that are recognized by LLVM to handle asynchronous exceptions, such
1285 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001286``optnone``
1287 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001288 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001289 exception of interprocedural optimization passes.
1290 This attribute cannot be used together with the ``alwaysinline``
1291 attribute; this attribute is also incompatible
1292 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001293
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001294 This attribute requires the ``noinline`` attribute to be specified on
1295 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001296 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001297 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001298``optsize``
1299 This attribute suggests that optimization passes and code generator
1300 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001301 and otherwise do optimizations specifically to reduce code size as
1302 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001303``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001304 On a function, this attribute indicates that the function computes its
1305 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001306 without dereferencing any pointer arguments or otherwise accessing
1307 any mutable state (e.g. memory, control registers, etc) visible to
1308 caller functions. It does not write through any pointer arguments
1309 (including ``byval`` arguments) and never changes any state visible
1310 to callers. This means that it cannot unwind exceptions by calling
1311 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001312
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001313 On an argument, this attribute indicates that the function does not
1314 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001315 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001316``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001317 On a function, this attribute indicates that the function does not write
1318 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001319 modify any state (e.g. memory, control registers, etc) visible to
1320 caller functions. It may dereference pointer arguments and read
1321 state that may be set in the caller. A readonly function always
1322 returns the same value (or unwinds an exception identically) when
1323 called with the same set of arguments and global state. It cannot
1324 unwind an exception by calling the ``C++`` exception throwing
1325 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001326
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001327 On an argument, this attribute indicates that the function does not write
1328 through this pointer argument, even though it may write to the memory that
1329 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001330``argmemonly``
1331 This attribute indicates that the only memory accesses inside function are
1332 loads and stores from objects pointed to by its pointer-typed arguments,
1333 with arbitrary offsets. Or in other words, all memory operations in the
1334 function can refer to memory only using pointers based on its function
1335 arguments.
1336 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1337 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001338``returns_twice``
1339 This attribute indicates that this function can return twice. The C
1340 ``setjmp`` is an example of such a function. The compiler disables
1341 some optimizations (like tail calls) in the caller of these
1342 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001343``safestack``
1344 This attribute indicates that
1345 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1346 protection is enabled for this function.
1347
1348 If a function that has a ``safestack`` attribute is inlined into a
1349 function that doesn't have a ``safestack`` attribute or which has an
1350 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1351 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001352``sanitize_address``
1353 This attribute indicates that AddressSanitizer checks
1354 (dynamic address safety analysis) are enabled for this function.
1355``sanitize_memory``
1356 This attribute indicates that MemorySanitizer checks (dynamic detection
1357 of accesses to uninitialized memory) are enabled for this function.
1358``sanitize_thread``
1359 This attribute indicates that ThreadSanitizer checks
1360 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001361``ssp``
1362 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001363 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001364 placed on the stack before the local variables that's checked upon
1365 return from the function to see if it has been overwritten. A
1366 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001367 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001368
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1370 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1371 - Calls to alloca() with variable sizes or constant sizes greater than
1372 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001373
Josh Magee24c7f062014-02-01 01:36:16 +00001374 Variables that are identified as requiring a protector will be arranged
1375 on the stack such that they are adjacent to the stack protector guard.
1376
Sean Silvab084af42012-12-07 10:36:55 +00001377 If a function that has an ``ssp`` attribute is inlined into a
1378 function that doesn't have an ``ssp`` attribute, then the resulting
1379 function will have an ``ssp`` attribute.
1380``sspreq``
1381 This attribute indicates that the function should *always* emit a
1382 stack smashing protector. This overrides the ``ssp`` function
1383 attribute.
1384
Josh Magee24c7f062014-02-01 01:36:16 +00001385 Variables that are identified as requiring a protector will be arranged
1386 on the stack such that they are adjacent to the stack protector guard.
1387 The specific layout rules are:
1388
1389 #. Large arrays and structures containing large arrays
1390 (``>= ssp-buffer-size``) are closest to the stack protector.
1391 #. Small arrays and structures containing small arrays
1392 (``< ssp-buffer-size``) are 2nd closest to the protector.
1393 #. Variables that have had their address taken are 3rd closest to the
1394 protector.
1395
Sean Silvab084af42012-12-07 10:36:55 +00001396 If a function that has an ``sspreq`` attribute is inlined into a
1397 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001398 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1399 an ``sspreq`` attribute.
1400``sspstrong``
1401 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001402 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001403 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001405
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001406 - Arrays of any size and type
1407 - Aggregates containing an array of any size and type.
1408 - Calls to alloca().
1409 - Local variables that have had their address taken.
1410
Josh Magee24c7f062014-02-01 01:36:16 +00001411 Variables that are identified as requiring a protector will be arranged
1412 on the stack such that they are adjacent to the stack protector guard.
1413 The specific layout rules are:
1414
1415 #. Large arrays and structures containing large arrays
1416 (``>= ssp-buffer-size``) are closest to the stack protector.
1417 #. Small arrays and structures containing small arrays
1418 (``< ssp-buffer-size``) are 2nd closest to the protector.
1419 #. Variables that have had their address taken are 3rd closest to the
1420 protector.
1421
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001422 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001423
1424 If a function that has an ``sspstrong`` attribute is inlined into a
1425 function that doesn't have an ``sspstrong`` attribute, then the
1426 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001427``"thunk"``
1428 This attribute indicates that the function will delegate to some other
1429 function with a tail call. The prototype of a thunk should not be used for
1430 optimization purposes. The caller is expected to cast the thunk prototype to
1431 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001432``uwtable``
1433 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001434 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001435 show that no exceptions passes by it. This is normally the case for
1436 the ELF x86-64 abi, but it can be disabled for some compilation
1437 units.
Sean Silvab084af42012-12-07 10:36:55 +00001438
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001439
1440.. _opbundles:
1441
1442Operand Bundles
1443---------------
1444
1445Note: operand bundles are a work in progress, and they should be
1446considered experimental at this time.
1447
1448Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001449with certain LLVM instructions (currently only ``call`` s and
1450``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001451incorrect and will change program semantics.
1452
1453Syntax::
1454 operand bundle set ::= '[' operand bundle ']'
1455 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1456 bundle operand ::= SSA value
1457 tag ::= string constant
1458
1459Operand bundles are **not** part of a function's signature, and a
1460given function may be called from multiple places with different kinds
1461of operand bundles. This reflects the fact that the operand bundles
1462are conceptually a part of the ``call`` (or ``invoke``), not the
1463callee being dispatched to.
1464
1465Operand bundles are a generic mechanism intended to support
1466runtime-introspection-like functionality for managed languages. While
1467the exact semantics of an operand bundle depend on the bundle tag,
1468there are certain limitations to how much the presence of an operand
1469bundle can influence the semantics of a program. These restrictions
1470are described as the semantics of an "unknown" operand bundle. As
1471long as the behavior of an operand bundle is describable within these
1472restrictions, LLVM does not need to have special knowledge of the
1473operand bundle to not miscompile programs containing it.
1474
1475 - The bundle operands for an unknown operand bundle escape in unknown
1476 ways before control is transferred to the callee or invokee.
1477
1478 - Calls and invokes with operand bundles have unknown read / write
1479 effect on the heap on entry and exit (even if the call target is
1480 ``readnone`` or ``readonly``).
1481
1482 - An operand bundle at a call site cannot change the implementation
1483 of the called function. Inter-procedural optimizations work as
1484 usual as long as they take into account the first two properties.
1485
Sean Silvab084af42012-12-07 10:36:55 +00001486.. _moduleasm:
1487
1488Module-Level Inline Assembly
1489----------------------------
1490
1491Modules may contain "module-level inline asm" blocks, which corresponds
1492to the GCC "file scope inline asm" blocks. These blocks are internally
1493concatenated by LLVM and treated as a single unit, but may be separated
1494in the ``.ll`` file if desired. The syntax is very simple:
1495
1496.. code-block:: llvm
1497
1498 module asm "inline asm code goes here"
1499 module asm "more can go here"
1500
1501The strings can contain any character by escaping non-printable
1502characters. The escape sequence used is simply "\\xx" where "xx" is the
1503two digit hex code for the number.
1504
James Y Knightbc832ed2015-07-08 18:08:36 +00001505Note that the assembly string *must* be parseable by LLVM's integrated assembler
1506(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001507
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001508.. _langref_datalayout:
1509
Sean Silvab084af42012-12-07 10:36:55 +00001510Data Layout
1511-----------
1512
1513A module may specify a target specific data layout string that specifies
1514how data is to be laid out in memory. The syntax for the data layout is
1515simply:
1516
1517.. code-block:: llvm
1518
1519 target datalayout = "layout specification"
1520
1521The *layout specification* consists of a list of specifications
1522separated by the minus sign character ('-'). Each specification starts
1523with a letter and may include other information after the letter to
1524define some aspect of the data layout. The specifications accepted are
1525as follows:
1526
1527``E``
1528 Specifies that the target lays out data in big-endian form. That is,
1529 the bits with the most significance have the lowest address
1530 location.
1531``e``
1532 Specifies that the target lays out data in little-endian form. That
1533 is, the bits with the least significance have the lowest address
1534 location.
1535``S<size>``
1536 Specifies the natural alignment of the stack in bits. Alignment
1537 promotion of stack variables is limited to the natural stack
1538 alignment to avoid dynamic stack realignment. The stack alignment
1539 must be a multiple of 8-bits. If omitted, the natural stack
1540 alignment defaults to "unspecified", which does not prevent any
1541 alignment promotions.
1542``p[n]:<size>:<abi>:<pref>``
1543 This specifies the *size* of a pointer and its ``<abi>`` and
1544 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001545 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001546 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001547 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001548``i<size>:<abi>:<pref>``
1549 This specifies the alignment for an integer type of a given bit
1550 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1551``v<size>:<abi>:<pref>``
1552 This specifies the alignment for a vector type of a given bit
1553 ``<size>``.
1554``f<size>:<abi>:<pref>``
1555 This specifies the alignment for a floating point type of a given bit
1556 ``<size>``. Only values of ``<size>`` that are supported by the target
1557 will work. 32 (float) and 64 (double) are supported on all targets; 80
1558 or 128 (different flavors of long double) are also supported on some
1559 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001560``a:<abi>:<pref>``
1561 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001562``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001563 If present, specifies that llvm names are mangled in the output. The
1564 options are
1565
1566 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1567 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1568 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1569 symbols get a ``_`` prefix.
1570 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1571 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001572``n<size1>:<size2>:<size3>...``
1573 This specifies a set of native integer widths for the target CPU in
1574 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1575 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1576 this set are considered to support most general arithmetic operations
1577 efficiently.
1578
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001579On every specification that takes a ``<abi>:<pref>``, specifying the
1580``<pref>`` alignment is optional. If omitted, the preceding ``:``
1581should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1582
Sean Silvab084af42012-12-07 10:36:55 +00001583When constructing the data layout for a given target, LLVM starts with a
1584default set of specifications which are then (possibly) overridden by
1585the specifications in the ``datalayout`` keyword. The default
1586specifications are given in this list:
1587
1588- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001589- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1590- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1591 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001592- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001593- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1594- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1595- ``i16:16:16`` - i16 is 16-bit aligned
1596- ``i32:32:32`` - i32 is 32-bit aligned
1597- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1598 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001599- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001600- ``f32:32:32`` - float is 32-bit aligned
1601- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001602- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001603- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1604- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001605- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001606
1607When LLVM is determining the alignment for a given type, it uses the
1608following rules:
1609
1610#. If the type sought is an exact match for one of the specifications,
1611 that specification is used.
1612#. If no match is found, and the type sought is an integer type, then
1613 the smallest integer type that is larger than the bitwidth of the
1614 sought type is used. If none of the specifications are larger than
1615 the bitwidth then the largest integer type is used. For example,
1616 given the default specifications above, the i7 type will use the
1617 alignment of i8 (next largest) while both i65 and i256 will use the
1618 alignment of i64 (largest specified).
1619#. If no match is found, and the type sought is a vector type, then the
1620 largest vector type that is smaller than the sought vector type will
1621 be used as a fall back. This happens because <128 x double> can be
1622 implemented in terms of 64 <2 x double>, for example.
1623
1624The function of the data layout string may not be what you expect.
1625Notably, this is not a specification from the frontend of what alignment
1626the code generator should use.
1627
1628Instead, if specified, the target data layout is required to match what
1629the ultimate *code generator* expects. This string is used by the
1630mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001631what the ultimate code generator uses. There is no way to generate IR
1632that does not embed this target-specific detail into the IR. If you
1633don't specify the string, the default specifications will be used to
1634generate a Data Layout and the optimization phases will operate
1635accordingly and introduce target specificity into the IR with respect to
1636these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001637
Bill Wendling5cc90842013-10-18 23:41:25 +00001638.. _langref_triple:
1639
1640Target Triple
1641-------------
1642
1643A module may specify a target triple string that describes the target
1644host. The syntax for the target triple is simply:
1645
1646.. code-block:: llvm
1647
1648 target triple = "x86_64-apple-macosx10.7.0"
1649
1650The *target triple* string consists of a series of identifiers delimited
1651by the minus sign character ('-'). The canonical forms are:
1652
1653::
1654
1655 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1656 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1657
1658This information is passed along to the backend so that it generates
1659code for the proper architecture. It's possible to override this on the
1660command line with the ``-mtriple`` command line option.
1661
Sean Silvab084af42012-12-07 10:36:55 +00001662.. _pointeraliasing:
1663
1664Pointer Aliasing Rules
1665----------------------
1666
1667Any memory access must be done through a pointer value associated with
1668an address range of the memory access, otherwise the behavior is
1669undefined. Pointer values are associated with address ranges according
1670to the following rules:
1671
1672- A pointer value is associated with the addresses associated with any
1673 value it is *based* on.
1674- An address of a global variable is associated with the address range
1675 of the variable's storage.
1676- The result value of an allocation instruction is associated with the
1677 address range of the allocated storage.
1678- A null pointer in the default address-space is associated with no
1679 address.
1680- An integer constant other than zero or a pointer value returned from
1681 a function not defined within LLVM may be associated with address
1682 ranges allocated through mechanisms other than those provided by
1683 LLVM. Such ranges shall not overlap with any ranges of addresses
1684 allocated by mechanisms provided by LLVM.
1685
1686A pointer value is *based* on another pointer value according to the
1687following rules:
1688
1689- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001690 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001691- The result value of a ``bitcast`` is *based* on the operand of the
1692 ``bitcast``.
1693- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1694 values that contribute (directly or indirectly) to the computation of
1695 the pointer's value.
1696- The "*based* on" relationship is transitive.
1697
1698Note that this definition of *"based"* is intentionally similar to the
1699definition of *"based"* in C99, though it is slightly weaker.
1700
1701LLVM IR does not associate types with memory. The result type of a
1702``load`` merely indicates the size and alignment of the memory from
1703which to load, as well as the interpretation of the value. The first
1704operand type of a ``store`` similarly only indicates the size and
1705alignment of the store.
1706
1707Consequently, type-based alias analysis, aka TBAA, aka
1708``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1709:ref:`Metadata <metadata>` may be used to encode additional information
1710which specialized optimization passes may use to implement type-based
1711alias analysis.
1712
1713.. _volatile:
1714
1715Volatile Memory Accesses
1716------------------------
1717
1718Certain memory accesses, such as :ref:`load <i_load>`'s,
1719:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1720marked ``volatile``. The optimizers must not change the number of
1721volatile operations or change their order of execution relative to other
1722volatile operations. The optimizers *may* change the order of volatile
1723operations relative to non-volatile operations. This is not Java's
1724"volatile" and has no cross-thread synchronization behavior.
1725
Andrew Trick89fc5a62013-01-30 21:19:35 +00001726IR-level volatile loads and stores cannot safely be optimized into
1727llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1728flagged volatile. Likewise, the backend should never split or merge
1729target-legal volatile load/store instructions.
1730
Andrew Trick7e6f9282013-01-31 00:49:39 +00001731.. admonition:: Rationale
1732
1733 Platforms may rely on volatile loads and stores of natively supported
1734 data width to be executed as single instruction. For example, in C
1735 this holds for an l-value of volatile primitive type with native
1736 hardware support, but not necessarily for aggregate types. The
1737 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001738 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001739 do not violate the frontend's contract with the language.
1740
Sean Silvab084af42012-12-07 10:36:55 +00001741.. _memmodel:
1742
1743Memory Model for Concurrent Operations
1744--------------------------------------
1745
1746The LLVM IR does not define any way to start parallel threads of
1747execution or to register signal handlers. Nonetheless, there are
1748platform-specific ways to create them, and we define LLVM IR's behavior
1749in their presence. This model is inspired by the C++0x memory model.
1750
1751For a more informal introduction to this model, see the :doc:`Atomics`.
1752
1753We define a *happens-before* partial order as the least partial order
1754that
1755
1756- Is a superset of single-thread program order, and
1757- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1758 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1759 techniques, like pthread locks, thread creation, thread joining,
1760 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1761 Constraints <ordering>`).
1762
1763Note that program order does not introduce *happens-before* edges
1764between a thread and signals executing inside that thread.
1765
1766Every (defined) read operation (load instructions, memcpy, atomic
1767loads/read-modify-writes, etc.) R reads a series of bytes written by
1768(defined) write operations (store instructions, atomic
1769stores/read-modify-writes, memcpy, etc.). For the purposes of this
1770section, initialized globals are considered to have a write of the
1771initializer which is atomic and happens before any other read or write
1772of the memory in question. For each byte of a read R, R\ :sub:`byte`
1773may see any write to the same byte, except:
1774
1775- If write\ :sub:`1` happens before write\ :sub:`2`, and
1776 write\ :sub:`2` happens before R\ :sub:`byte`, then
1777 R\ :sub:`byte` does not see write\ :sub:`1`.
1778- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1779 R\ :sub:`byte` does not see write\ :sub:`3`.
1780
1781Given that definition, R\ :sub:`byte` is defined as follows:
1782
1783- If R is volatile, the result is target-dependent. (Volatile is
1784 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001785 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001786 like normal memory. It does not generally provide cross-thread
1787 synchronization.)
1788- Otherwise, if there is no write to the same byte that happens before
1789 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1790- Otherwise, if R\ :sub:`byte` may see exactly one write,
1791 R\ :sub:`byte` returns the value written by that write.
1792- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1793 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1794 Memory Ordering Constraints <ordering>` section for additional
1795 constraints on how the choice is made.
1796- Otherwise R\ :sub:`byte` returns ``undef``.
1797
1798R returns the value composed of the series of bytes it read. This
1799implies that some bytes within the value may be ``undef`` **without**
1800the entire value being ``undef``. Note that this only defines the
1801semantics of the operation; it doesn't mean that targets will emit more
1802than one instruction to read the series of bytes.
1803
1804Note that in cases where none of the atomic intrinsics are used, this
1805model places only one restriction on IR transformations on top of what
1806is required for single-threaded execution: introducing a store to a byte
1807which might not otherwise be stored is not allowed in general.
1808(Specifically, in the case where another thread might write to and read
1809from an address, introducing a store can change a load that may see
1810exactly one write into a load that may see multiple writes.)
1811
1812.. _ordering:
1813
1814Atomic Memory Ordering Constraints
1815----------------------------------
1816
1817Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1818:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1819:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001820ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001821the same address they *synchronize with*. These semantics are borrowed
1822from Java and C++0x, but are somewhat more colloquial. If these
1823descriptions aren't precise enough, check those specs (see spec
1824references in the :doc:`atomics guide <Atomics>`).
1825:ref:`fence <i_fence>` instructions treat these orderings somewhat
1826differently since they don't take an address. See that instruction's
1827documentation for details.
1828
1829For a simpler introduction to the ordering constraints, see the
1830:doc:`Atomics`.
1831
1832``unordered``
1833 The set of values that can be read is governed by the happens-before
1834 partial order. A value cannot be read unless some operation wrote
1835 it. This is intended to provide a guarantee strong enough to model
1836 Java's non-volatile shared variables. This ordering cannot be
1837 specified for read-modify-write operations; it is not strong enough
1838 to make them atomic in any interesting way.
1839``monotonic``
1840 In addition to the guarantees of ``unordered``, there is a single
1841 total order for modifications by ``monotonic`` operations on each
1842 address. All modification orders must be compatible with the
1843 happens-before order. There is no guarantee that the modification
1844 orders can be combined to a global total order for the whole program
1845 (and this often will not be possible). The read in an atomic
1846 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1847 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1848 order immediately before the value it writes. If one atomic read
1849 happens before another atomic read of the same address, the later
1850 read must see the same value or a later value in the address's
1851 modification order. This disallows reordering of ``monotonic`` (or
1852 stronger) operations on the same address. If an address is written
1853 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1854 read that address repeatedly, the other threads must eventually see
1855 the write. This corresponds to the C++0x/C1x
1856 ``memory_order_relaxed``.
1857``acquire``
1858 In addition to the guarantees of ``monotonic``, a
1859 *synchronizes-with* edge may be formed with a ``release`` operation.
1860 This is intended to model C++'s ``memory_order_acquire``.
1861``release``
1862 In addition to the guarantees of ``monotonic``, if this operation
1863 writes a value which is subsequently read by an ``acquire``
1864 operation, it *synchronizes-with* that operation. (This isn't a
1865 complete description; see the C++0x definition of a release
1866 sequence.) This corresponds to the C++0x/C1x
1867 ``memory_order_release``.
1868``acq_rel`` (acquire+release)
1869 Acts as both an ``acquire`` and ``release`` operation on its
1870 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1871``seq_cst`` (sequentially consistent)
1872 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001873 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001874 writes), there is a global total order on all
1875 sequentially-consistent operations on all addresses, which is
1876 consistent with the *happens-before* partial order and with the
1877 modification orders of all the affected addresses. Each
1878 sequentially-consistent read sees the last preceding write to the
1879 same address in this global order. This corresponds to the C++0x/C1x
1880 ``memory_order_seq_cst`` and Java volatile.
1881
1882.. _singlethread:
1883
1884If an atomic operation is marked ``singlethread``, it only *synchronizes
1885with* or participates in modification and seq\_cst total orderings with
1886other operations running in the same thread (for example, in signal
1887handlers).
1888
1889.. _fastmath:
1890
1891Fast-Math Flags
1892---------------
1893
1894LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1895:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001896:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1897be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899``nnan``
1900 No NaNs - Allow optimizations to assume the arguments and result are not
1901 NaN. Such optimizations are required to retain defined behavior over
1902 NaNs, but the value of the result is undefined.
1903
1904``ninf``
1905 No Infs - Allow optimizations to assume the arguments and result are not
1906 +/-Inf. Such optimizations are required to retain defined behavior over
1907 +/-Inf, but the value of the result is undefined.
1908
1909``nsz``
1910 No Signed Zeros - Allow optimizations to treat the sign of a zero
1911 argument or result as insignificant.
1912
1913``arcp``
1914 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1915 argument rather than perform division.
1916
1917``fast``
1918 Fast - Allow algebraically equivalent transformations that may
1919 dramatically change results in floating point (e.g. reassociate). This
1920 flag implies all the others.
1921
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001922.. _uselistorder:
1923
1924Use-list Order Directives
1925-------------------------
1926
1927Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001928order to be recreated. ``<order-indexes>`` is a comma-separated list of
1929indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001930value's use-list is immediately sorted by these indexes.
1931
Sean Silvaa1190322015-08-06 22:56:48 +00001932Use-list directives may appear at function scope or global scope. They are not
1933instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001934function scope, they must appear after the terminator of the final basic block.
1935
1936If basic blocks have their address taken via ``blockaddress()`` expressions,
1937``uselistorder_bb`` can be used to reorder their use-lists from outside their
1938function's scope.
1939
1940:Syntax:
1941
1942::
1943
1944 uselistorder <ty> <value>, { <order-indexes> }
1945 uselistorder_bb @function, %block { <order-indexes> }
1946
1947:Examples:
1948
1949::
1950
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001951 define void @foo(i32 %arg1, i32 %arg2) {
1952 entry:
1953 ; ... instructions ...
1954 bb:
1955 ; ... instructions ...
1956
1957 ; At function scope.
1958 uselistorder i32 %arg1, { 1, 0, 2 }
1959 uselistorder label %bb, { 1, 0 }
1960 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001961
1962 ; At global scope.
1963 uselistorder i32* @global, { 1, 2, 0 }
1964 uselistorder i32 7, { 1, 0 }
1965 uselistorder i32 (i32) @bar, { 1, 0 }
1966 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1967
Sean Silvab084af42012-12-07 10:36:55 +00001968.. _typesystem:
1969
1970Type System
1971===========
1972
1973The LLVM type system is one of the most important features of the
1974intermediate representation. Being typed enables a number of
1975optimizations to be performed on the intermediate representation
1976directly, without having to do extra analyses on the side before the
1977transformation. A strong type system makes it easier to read the
1978generated code and enables novel analyses and transformations that are
1979not feasible to perform on normal three address code representations.
1980
Rafael Espindola08013342013-12-07 19:34:20 +00001981.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001982
Rafael Espindola08013342013-12-07 19:34:20 +00001983Void Type
1984---------
Sean Silvab084af42012-12-07 10:36:55 +00001985
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001986:Overview:
1987
Rafael Espindola08013342013-12-07 19:34:20 +00001988
1989The void type does not represent any value and has no size.
1990
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001991:Syntax:
1992
Rafael Espindola08013342013-12-07 19:34:20 +00001993
1994::
1995
1996 void
Sean Silvab084af42012-12-07 10:36:55 +00001997
1998
Rafael Espindola08013342013-12-07 19:34:20 +00001999.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002000
Rafael Espindola08013342013-12-07 19:34:20 +00002001Function Type
2002-------------
Sean Silvab084af42012-12-07 10:36:55 +00002003
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002004:Overview:
2005
Sean Silvab084af42012-12-07 10:36:55 +00002006
Rafael Espindola08013342013-12-07 19:34:20 +00002007The function type can be thought of as a function signature. It consists of a
2008return type and a list of formal parameter types. The return type of a function
2009type is a void type or first class type --- except for :ref:`label <t_label>`
2010and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002011
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002012:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002013
Rafael Espindola08013342013-12-07 19:34:20 +00002014::
Sean Silvab084af42012-12-07 10:36:55 +00002015
Rafael Espindola08013342013-12-07 19:34:20 +00002016 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002017
Rafael Espindola08013342013-12-07 19:34:20 +00002018...where '``<parameter list>``' is a comma-separated list of type
2019specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002020indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002021argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002022handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002023except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002024
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002025:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002026
Rafael Espindola08013342013-12-07 19:34:20 +00002027+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2028| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2029+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2030| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2031+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2032| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2033+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2034| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2035+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2036
2037.. _t_firstclass:
2038
2039First Class Types
2040-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002041
2042The :ref:`first class <t_firstclass>` types are perhaps the most important.
2043Values of these types are the only ones which can be produced by
2044instructions.
2045
Rafael Espindola08013342013-12-07 19:34:20 +00002046.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002047
Rafael Espindola08013342013-12-07 19:34:20 +00002048Single Value Types
2049^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002050
Rafael Espindola08013342013-12-07 19:34:20 +00002051These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002052
2053.. _t_integer:
2054
2055Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002056""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002057
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002058:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002059
2060The integer type is a very simple type that simply specifies an
2061arbitrary bit width for the integer type desired. Any bit width from 1
2062bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2063
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002064:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002065
2066::
2067
2068 iN
2069
2070The number of bits the integer will occupy is specified by the ``N``
2071value.
2072
2073Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002074*********
Sean Silvab084af42012-12-07 10:36:55 +00002075
2076+----------------+------------------------------------------------+
2077| ``i1`` | a single-bit integer. |
2078+----------------+------------------------------------------------+
2079| ``i32`` | a 32-bit integer. |
2080+----------------+------------------------------------------------+
2081| ``i1942652`` | a really big integer of over 1 million bits. |
2082+----------------+------------------------------------------------+
2083
2084.. _t_floating:
2085
2086Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002087""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002088
2089.. list-table::
2090 :header-rows: 1
2091
2092 * - Type
2093 - Description
2094
2095 * - ``half``
2096 - 16-bit floating point value
2097
2098 * - ``float``
2099 - 32-bit floating point value
2100
2101 * - ``double``
2102 - 64-bit floating point value
2103
2104 * - ``fp128``
2105 - 128-bit floating point value (112-bit mantissa)
2106
2107 * - ``x86_fp80``
2108 - 80-bit floating point value (X87)
2109
2110 * - ``ppc_fp128``
2111 - 128-bit floating point value (two 64-bits)
2112
Reid Kleckner9a16d082014-03-05 02:41:37 +00002113X86_mmx Type
2114""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002115
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002116:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002117
Reid Kleckner9a16d082014-03-05 02:41:37 +00002118The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002119machine. The operations allowed on it are quite limited: parameters and
2120return values, load and store, and bitcast. User-specified MMX
2121instructions are represented as intrinsic or asm calls with arguments
2122and/or results of this type. There are no arrays, vectors or constants
2123of this type.
2124
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002125:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002126
2127::
2128
Reid Kleckner9a16d082014-03-05 02:41:37 +00002129 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002130
Sean Silvab084af42012-12-07 10:36:55 +00002131
Rafael Espindola08013342013-12-07 19:34:20 +00002132.. _t_pointer:
2133
2134Pointer Type
2135""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002136
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002137:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002138
Rafael Espindola08013342013-12-07 19:34:20 +00002139The pointer type is used to specify memory locations. Pointers are
2140commonly used to reference objects in memory.
2141
2142Pointer types may have an optional address space attribute defining the
2143numbered address space where the pointed-to object resides. The default
2144address space is number zero. The semantics of non-zero address spaces
2145are target-specific.
2146
2147Note that LLVM does not permit pointers to void (``void*``) nor does it
2148permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002149
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002150:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002151
2152::
2153
Rafael Espindola08013342013-12-07 19:34:20 +00002154 <type> *
2155
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002156:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002157
2158+-------------------------+--------------------------------------------------------------------------------------------------------------+
2159| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2160+-------------------------+--------------------------------------------------------------------------------------------------------------+
2161| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2162+-------------------------+--------------------------------------------------------------------------------------------------------------+
2163| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2164+-------------------------+--------------------------------------------------------------------------------------------------------------+
2165
2166.. _t_vector:
2167
2168Vector Type
2169"""""""""""
2170
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002171:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002172
2173A vector type is a simple derived type that represents a vector of
2174elements. Vector types are used when multiple primitive data are
2175operated in parallel using a single instruction (SIMD). A vector type
2176requires a size (number of elements) and an underlying primitive data
2177type. Vector types are considered :ref:`first class <t_firstclass>`.
2178
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002179:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002180
2181::
2182
2183 < <# elements> x <elementtype> >
2184
2185The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002186elementtype may be any integer, floating point or pointer type. Vectors
2187of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002188
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002189:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002190
2191+-------------------+--------------------------------------------------+
2192| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2193+-------------------+--------------------------------------------------+
2194| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2195+-------------------+--------------------------------------------------+
2196| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2197+-------------------+--------------------------------------------------+
2198| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2199+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002200
2201.. _t_label:
2202
2203Label Type
2204^^^^^^^^^^
2205
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002206:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002207
2208The label type represents code labels.
2209
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002210:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002211
2212::
2213
2214 label
2215
David Majnemerb611e3f2015-08-14 05:09:07 +00002216.. _t_token:
2217
2218Token Type
2219^^^^^^^^^^
2220
2221:Overview:
2222
2223The token type is used when a value is associated with an instruction
2224but all uses of the value must not attempt to introspect or obscure it.
2225As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2226:ref:`select <i_select>` of type token.
2227
2228:Syntax:
2229
2230::
2231
2232 token
2233
2234
2235
Sean Silvab084af42012-12-07 10:36:55 +00002236.. _t_metadata:
2237
2238Metadata Type
2239^^^^^^^^^^^^^
2240
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002241:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002242
2243The metadata type represents embedded metadata. No derived types may be
2244created from metadata except for :ref:`function <t_function>` arguments.
2245
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002246:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002247
2248::
2249
2250 metadata
2251
Sean Silvab084af42012-12-07 10:36:55 +00002252.. _t_aggregate:
2253
2254Aggregate Types
2255^^^^^^^^^^^^^^^
2256
2257Aggregate Types are a subset of derived types that can contain multiple
2258member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2259aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2260aggregate types.
2261
2262.. _t_array:
2263
2264Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002265""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002266
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002267:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002268
2269The array type is a very simple derived type that arranges elements
2270sequentially in memory. The array type requires a size (number of
2271elements) and an underlying data type.
2272
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002273:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002274
2275::
2276
2277 [<# elements> x <elementtype>]
2278
2279The number of elements is a constant integer value; ``elementtype`` may
2280be any type with a size.
2281
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002282:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002283
2284+------------------+--------------------------------------+
2285| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2286+------------------+--------------------------------------+
2287| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2288+------------------+--------------------------------------+
2289| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2290+------------------+--------------------------------------+
2291
2292Here are some examples of multidimensional arrays:
2293
2294+-----------------------------+----------------------------------------------------------+
2295| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2296+-----------------------------+----------------------------------------------------------+
2297| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2298+-----------------------------+----------------------------------------------------------+
2299| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2300+-----------------------------+----------------------------------------------------------+
2301
2302There is no restriction on indexing beyond the end of the array implied
2303by a static type (though there are restrictions on indexing beyond the
2304bounds of an allocated object in some cases). This means that
2305single-dimension 'variable sized array' addressing can be implemented in
2306LLVM with a zero length array type. An implementation of 'pascal style
2307arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2308example.
2309
Sean Silvab084af42012-12-07 10:36:55 +00002310.. _t_struct:
2311
2312Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002313""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002314
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002315:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002316
2317The structure type is used to represent a collection of data members
2318together in memory. The elements of a structure may be any type that has
2319a size.
2320
2321Structures in memory are accessed using '``load``' and '``store``' by
2322getting a pointer to a field with the '``getelementptr``' instruction.
2323Structures in registers are accessed using the '``extractvalue``' and
2324'``insertvalue``' instructions.
2325
2326Structures may optionally be "packed" structures, which indicate that
2327the alignment of the struct is one byte, and that there is no padding
2328between the elements. In non-packed structs, padding between field types
2329is inserted as defined by the DataLayout string in the module, which is
2330required to match what the underlying code generator expects.
2331
2332Structures can either be "literal" or "identified". A literal structure
2333is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2334identified types are always defined at the top level with a name.
2335Literal types are uniqued by their contents and can never be recursive
2336or opaque since there is no way to write one. Identified types can be
2337recursive, can be opaqued, and are never uniqued.
2338
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002339:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002340
2341::
2342
2343 %T1 = type { <type list> } ; Identified normal struct type
2344 %T2 = type <{ <type list> }> ; Identified packed struct type
2345
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002346:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002347
2348+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2349| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2350+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002351| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002352+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2353| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2354+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2355
2356.. _t_opaque:
2357
2358Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002359""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002360
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002361:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363Opaque structure types are used to represent named structure types that
2364do not have a body specified. This corresponds (for example) to the C
2365notion of a forward declared structure.
2366
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002367:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002368
2369::
2370
2371 %X = type opaque
2372 %52 = type opaque
2373
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002374:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002375
2376+--------------+-------------------+
2377| ``opaque`` | An opaque type. |
2378+--------------+-------------------+
2379
Sean Silva1703e702014-04-08 21:06:22 +00002380.. _constants:
2381
Sean Silvab084af42012-12-07 10:36:55 +00002382Constants
2383=========
2384
2385LLVM has several different basic types of constants. This section
2386describes them all and their syntax.
2387
2388Simple Constants
2389----------------
2390
2391**Boolean constants**
2392 The two strings '``true``' and '``false``' are both valid constants
2393 of the ``i1`` type.
2394**Integer constants**
2395 Standard integers (such as '4') are constants of the
2396 :ref:`integer <t_integer>` type. Negative numbers may be used with
2397 integer types.
2398**Floating point constants**
2399 Floating point constants use standard decimal notation (e.g.
2400 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2401 hexadecimal notation (see below). The assembler requires the exact
2402 decimal value of a floating-point constant. For example, the
2403 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2404 decimal in binary. Floating point constants must have a :ref:`floating
2405 point <t_floating>` type.
2406**Null pointer constants**
2407 The identifier '``null``' is recognized as a null pointer constant
2408 and must be of :ref:`pointer type <t_pointer>`.
2409
2410The one non-intuitive notation for constants is the hexadecimal form of
2411floating point constants. For example, the form
2412'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2413than) '``double 4.5e+15``'. The only time hexadecimal floating point
2414constants are required (and the only time that they are generated by the
2415disassembler) is when a floating point constant must be emitted but it
2416cannot be represented as a decimal floating point number in a reasonable
2417number of digits. For example, NaN's, infinities, and other special
2418values are represented in their IEEE hexadecimal format so that assembly
2419and disassembly do not cause any bits to change in the constants.
2420
2421When using the hexadecimal form, constants of types half, float, and
2422double are represented using the 16-digit form shown above (which
2423matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002424must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002425precision, respectively. Hexadecimal format is always used for long
2426double, and there are three forms of long double. The 80-bit format used
2427by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2428128-bit format used by PowerPC (two adjacent doubles) is represented by
2429``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002430represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2431will only work if they match the long double format on your target.
2432The IEEE 16-bit format (half precision) is represented by ``0xH``
2433followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2434(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002435
Reid Kleckner9a16d082014-03-05 02:41:37 +00002436There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002437
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002438.. _complexconstants:
2439
Sean Silvab084af42012-12-07 10:36:55 +00002440Complex Constants
2441-----------------
2442
2443Complex constants are a (potentially recursive) combination of simple
2444constants and smaller complex constants.
2445
2446**Structure constants**
2447 Structure constants are represented with notation similar to
2448 structure type definitions (a comma separated list of elements,
2449 surrounded by braces (``{}``)). For example:
2450 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2451 "``@G = external global i32``". Structure constants must have
2452 :ref:`structure type <t_struct>`, and the number and types of elements
2453 must match those specified by the type.
2454**Array constants**
2455 Array constants are represented with notation similar to array type
2456 definitions (a comma separated list of elements, surrounded by
2457 square brackets (``[]``)). For example:
2458 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2459 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002460 match those specified by the type. As a special case, character array
2461 constants may also be represented as a double-quoted string using the ``c``
2462 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002463**Vector constants**
2464 Vector constants are represented with notation similar to vector
2465 type definitions (a comma separated list of elements, surrounded by
2466 less-than/greater-than's (``<>``)). For example:
2467 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2468 must have :ref:`vector type <t_vector>`, and the number and types of
2469 elements must match those specified by the type.
2470**Zero initialization**
2471 The string '``zeroinitializer``' can be used to zero initialize a
2472 value to zero of *any* type, including scalar and
2473 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2474 having to print large zero initializers (e.g. for large arrays) and
2475 is always exactly equivalent to using explicit zero initializers.
2476**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002477 A metadata node is a constant tuple without types. For example:
2478 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002479 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2480 Unlike other typed constants that are meant to be interpreted as part of
2481 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002482 information such as debug info.
2483
2484Global Variable and Function Addresses
2485--------------------------------------
2486
2487The addresses of :ref:`global variables <globalvars>` and
2488:ref:`functions <functionstructure>` are always implicitly valid
2489(link-time) constants. These constants are explicitly referenced when
2490the :ref:`identifier for the global <identifiers>` is used and always have
2491:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2492file:
2493
2494.. code-block:: llvm
2495
2496 @X = global i32 17
2497 @Y = global i32 42
2498 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2499
2500.. _undefvalues:
2501
2502Undefined Values
2503----------------
2504
2505The string '``undef``' can be used anywhere a constant is expected, and
2506indicates that the user of the value may receive an unspecified
2507bit-pattern. Undefined values may be of any type (other than '``label``'
2508or '``void``') and be used anywhere a constant is permitted.
2509
2510Undefined values are useful because they indicate to the compiler that
2511the program is well defined no matter what value is used. This gives the
2512compiler more freedom to optimize. Here are some examples of
2513(potentially surprising) transformations that are valid (in pseudo IR):
2514
2515.. code-block:: llvm
2516
2517 %A = add %X, undef
2518 %B = sub %X, undef
2519 %C = xor %X, undef
2520 Safe:
2521 %A = undef
2522 %B = undef
2523 %C = undef
2524
2525This is safe because all of the output bits are affected by the undef
2526bits. Any output bit can have a zero or one depending on the input bits.
2527
2528.. code-block:: llvm
2529
2530 %A = or %X, undef
2531 %B = and %X, undef
2532 Safe:
2533 %A = -1
2534 %B = 0
2535 Unsafe:
2536 %A = undef
2537 %B = undef
2538
2539These logical operations have bits that are not always affected by the
2540input. For example, if ``%X`` has a zero bit, then the output of the
2541'``and``' operation will always be a zero for that bit, no matter what
2542the corresponding bit from the '``undef``' is. As such, it is unsafe to
2543optimize or assume that the result of the '``and``' is '``undef``'.
2544However, it is safe to assume that all bits of the '``undef``' could be
25450, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2546all the bits of the '``undef``' operand to the '``or``' could be set,
2547allowing the '``or``' to be folded to -1.
2548
2549.. code-block:: llvm
2550
2551 %A = select undef, %X, %Y
2552 %B = select undef, 42, %Y
2553 %C = select %X, %Y, undef
2554 Safe:
2555 %A = %X (or %Y)
2556 %B = 42 (or %Y)
2557 %C = %Y
2558 Unsafe:
2559 %A = undef
2560 %B = undef
2561 %C = undef
2562
2563This set of examples shows that undefined '``select``' (and conditional
2564branch) conditions can go *either way*, but they have to come from one
2565of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2566both known to have a clear low bit, then ``%A`` would have to have a
2567cleared low bit. However, in the ``%C`` example, the optimizer is
2568allowed to assume that the '``undef``' operand could be the same as
2569``%Y``, allowing the whole '``select``' to be eliminated.
2570
2571.. code-block:: llvm
2572
2573 %A = xor undef, undef
2574
2575 %B = undef
2576 %C = xor %B, %B
2577
2578 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002579 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002580 %F = icmp gte %D, 4
2581
2582 Safe:
2583 %A = undef
2584 %B = undef
2585 %C = undef
2586 %D = undef
2587 %E = undef
2588 %F = undef
2589
2590This example points out that two '``undef``' operands are not
2591necessarily the same. This can be surprising to people (and also matches
2592C semantics) where they assume that "``X^X``" is always zero, even if
2593``X`` is undefined. This isn't true for a number of reasons, but the
2594short answer is that an '``undef``' "variable" can arbitrarily change
2595its value over its "live range". This is true because the variable
2596doesn't actually *have a live range*. Instead, the value is logically
2597read from arbitrary registers that happen to be around when needed, so
2598the value is not necessarily consistent over time. In fact, ``%A`` and
2599``%C`` need to have the same semantics or the core LLVM "replace all
2600uses with" concept would not hold.
2601
2602.. code-block:: llvm
2603
2604 %A = fdiv undef, %X
2605 %B = fdiv %X, undef
2606 Safe:
2607 %A = undef
2608 b: unreachable
2609
2610These examples show the crucial difference between an *undefined value*
2611and *undefined behavior*. An undefined value (like '``undef``') is
2612allowed to have an arbitrary bit-pattern. This means that the ``%A``
2613operation can be constant folded to '``undef``', because the '``undef``'
2614could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2615However, in the second example, we can make a more aggressive
2616assumption: because the ``undef`` is allowed to be an arbitrary value,
2617we are allowed to assume that it could be zero. Since a divide by zero
2618has *undefined behavior*, we are allowed to assume that the operation
2619does not execute at all. This allows us to delete the divide and all
2620code after it. Because the undefined operation "can't happen", the
2621optimizer can assume that it occurs in dead code.
2622
2623.. code-block:: llvm
2624
2625 a: store undef -> %X
2626 b: store %X -> undef
2627 Safe:
2628 a: <deleted>
2629 b: unreachable
2630
2631These examples reiterate the ``fdiv`` example: a store *of* an undefined
2632value can be assumed to not have any effect; we can assume that the
2633value is overwritten with bits that happen to match what was already
2634there. However, a store *to* an undefined location could clobber
2635arbitrary memory, therefore, it has undefined behavior.
2636
2637.. _poisonvalues:
2638
2639Poison Values
2640-------------
2641
2642Poison values are similar to :ref:`undef values <undefvalues>`, however
2643they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002644that cannot evoke side effects has nevertheless detected a condition
2645that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002646
2647There is currently no way of representing a poison value in the IR; they
2648only exist when produced by operations such as :ref:`add <i_add>` with
2649the ``nsw`` flag.
2650
2651Poison value behavior is defined in terms of value *dependence*:
2652
2653- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2654- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2655 their dynamic predecessor basic block.
2656- Function arguments depend on the corresponding actual argument values
2657 in the dynamic callers of their functions.
2658- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2659 instructions that dynamically transfer control back to them.
2660- :ref:`Invoke <i_invoke>` instructions depend on the
2661 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2662 call instructions that dynamically transfer control back to them.
2663- Non-volatile loads and stores depend on the most recent stores to all
2664 of the referenced memory addresses, following the order in the IR
2665 (including loads and stores implied by intrinsics such as
2666 :ref:`@llvm.memcpy <int_memcpy>`.)
2667- An instruction with externally visible side effects depends on the
2668 most recent preceding instruction with externally visible side
2669 effects, following the order in the IR. (This includes :ref:`volatile
2670 operations <volatile>`.)
2671- An instruction *control-depends* on a :ref:`terminator
2672 instruction <terminators>` if the terminator instruction has
2673 multiple successors and the instruction is always executed when
2674 control transfers to one of the successors, and may not be executed
2675 when control is transferred to another.
2676- Additionally, an instruction also *control-depends* on a terminator
2677 instruction if the set of instructions it otherwise depends on would
2678 be different if the terminator had transferred control to a different
2679 successor.
2680- Dependence is transitive.
2681
Richard Smith32dbdf62014-07-31 04:25:36 +00002682Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2683with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002684on a poison value has undefined behavior.
2685
2686Here are some examples:
2687
2688.. code-block:: llvm
2689
2690 entry:
2691 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2692 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002693 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002694 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2695
2696 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002697 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002698
2699 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2700
2701 %narrowaddr = bitcast i32* @g to i16*
2702 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002703 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2704 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002705
2706 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2707 br i1 %cmp, label %true, label %end ; Branch to either destination.
2708
2709 true:
2710 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2711 ; it has undefined behavior.
2712 br label %end
2713
2714 end:
2715 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2716 ; Both edges into this PHI are
2717 ; control-dependent on %cmp, so this
2718 ; always results in a poison value.
2719
2720 store volatile i32 0, i32* @g ; This would depend on the store in %true
2721 ; if %cmp is true, or the store in %entry
2722 ; otherwise, so this is undefined behavior.
2723
2724 br i1 %cmp, label %second_true, label %second_end
2725 ; The same branch again, but this time the
2726 ; true block doesn't have side effects.
2727
2728 second_true:
2729 ; No side effects!
2730 ret void
2731
2732 second_end:
2733 store volatile i32 0, i32* @g ; This time, the instruction always depends
2734 ; on the store in %end. Also, it is
2735 ; control-equivalent to %end, so this is
2736 ; well-defined (ignoring earlier undefined
2737 ; behavior in this example).
2738
2739.. _blockaddress:
2740
2741Addresses of Basic Blocks
2742-------------------------
2743
2744``blockaddress(@function, %block)``
2745
2746The '``blockaddress``' constant computes the address of the specified
2747basic block in the specified function, and always has an ``i8*`` type.
2748Taking the address of the entry block is illegal.
2749
2750This value only has defined behavior when used as an operand to the
2751':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2752against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002753undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002754no label is equal to the null pointer. This may be passed around as an
2755opaque pointer sized value as long as the bits are not inspected. This
2756allows ``ptrtoint`` and arithmetic to be performed on these values so
2757long as the original value is reconstituted before the ``indirectbr``
2758instruction.
2759
2760Finally, some targets may provide defined semantics when using the value
2761as the operand to an inline assembly, but that is target specific.
2762
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002763.. _constantexprs:
2764
Sean Silvab084af42012-12-07 10:36:55 +00002765Constant Expressions
2766--------------------
2767
2768Constant expressions are used to allow expressions involving other
2769constants to be used as constants. Constant expressions may be of any
2770:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2771that does not have side effects (e.g. load and call are not supported).
2772The following is the syntax for constant expressions:
2773
2774``trunc (CST to TYPE)``
2775 Truncate a constant to another type. The bit size of CST must be
2776 larger than the bit size of TYPE. Both types must be integers.
2777``zext (CST to TYPE)``
2778 Zero extend a constant to another type. The bit size of CST must be
2779 smaller than the bit size of TYPE. Both types must be integers.
2780``sext (CST to TYPE)``
2781 Sign extend a constant to another type. The bit size of CST must be
2782 smaller than the bit size of TYPE. Both types must be integers.
2783``fptrunc (CST to TYPE)``
2784 Truncate a floating point constant to another floating point type.
2785 The size of CST must be larger than the size of TYPE. Both types
2786 must be floating point.
2787``fpext (CST to TYPE)``
2788 Floating point extend a constant to another type. The size of CST
2789 must be smaller or equal to the size of TYPE. Both types must be
2790 floating point.
2791``fptoui (CST to TYPE)``
2792 Convert a floating point constant to the corresponding unsigned
2793 integer constant. TYPE must be a scalar or vector integer type. CST
2794 must be of scalar or vector floating point type. Both CST and TYPE
2795 must be scalars, or vectors of the same number of elements. If the
2796 value won't fit in the integer type, the results are undefined.
2797``fptosi (CST to TYPE)``
2798 Convert a floating point constant to the corresponding signed
2799 integer constant. TYPE must be a scalar or vector integer type. CST
2800 must be of scalar or vector floating point type. Both CST and TYPE
2801 must be scalars, or vectors of the same number of elements. If the
2802 value won't fit in the integer type, the results are undefined.
2803``uitofp (CST to TYPE)``
2804 Convert an unsigned integer constant to the corresponding floating
2805 point constant. TYPE must be a scalar or vector floating point type.
2806 CST must be of scalar or vector integer type. Both CST and TYPE must
2807 be scalars, or vectors of the same number of elements. If the value
2808 won't fit in the floating point type, the results are undefined.
2809``sitofp (CST to TYPE)``
2810 Convert a signed integer constant to the corresponding floating
2811 point constant. TYPE must be a scalar or vector floating point type.
2812 CST must be of scalar or vector integer type. Both CST and TYPE must
2813 be scalars, or vectors of the same number of elements. If the value
2814 won't fit in the floating point type, the results are undefined.
2815``ptrtoint (CST to TYPE)``
2816 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002817 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002818 pointer type. The ``CST`` value is zero extended, truncated, or
2819 unchanged to make it fit in ``TYPE``.
2820``inttoptr (CST to TYPE)``
2821 Convert an integer constant to a pointer constant. TYPE must be a
2822 pointer type. CST must be of integer type. The CST value is zero
2823 extended, truncated, or unchanged to make it fit in a pointer size.
2824 This one is *really* dangerous!
2825``bitcast (CST to TYPE)``
2826 Convert a constant, CST, to another TYPE. The constraints of the
2827 operands are the same as those for the :ref:`bitcast
2828 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002829``addrspacecast (CST to TYPE)``
2830 Convert a constant pointer or constant vector of pointer, CST, to another
2831 TYPE in a different address space. The constraints of the operands are the
2832 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002833``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002834 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2835 constants. As with the :ref:`getelementptr <i_getelementptr>`
2836 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002837 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002838``select (COND, VAL1, VAL2)``
2839 Perform the :ref:`select operation <i_select>` on constants.
2840``icmp COND (VAL1, VAL2)``
2841 Performs the :ref:`icmp operation <i_icmp>` on constants.
2842``fcmp COND (VAL1, VAL2)``
2843 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2844``extractelement (VAL, IDX)``
2845 Perform the :ref:`extractelement operation <i_extractelement>` on
2846 constants.
2847``insertelement (VAL, ELT, IDX)``
2848 Perform the :ref:`insertelement operation <i_insertelement>` on
2849 constants.
2850``shufflevector (VEC1, VEC2, IDXMASK)``
2851 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2852 constants.
2853``extractvalue (VAL, IDX0, IDX1, ...)``
2854 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2855 constants. The index list is interpreted in a similar manner as
2856 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2857 least one index value must be specified.
2858``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2859 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2860 The index list is interpreted in a similar manner as indices in a
2861 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2862 value must be specified.
2863``OPCODE (LHS, RHS)``
2864 Perform the specified operation of the LHS and RHS constants. OPCODE
2865 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2866 binary <bitwiseops>` operations. The constraints on operands are
2867 the same as those for the corresponding instruction (e.g. no bitwise
2868 operations on floating point values are allowed).
2869
2870Other Values
2871============
2872
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002873.. _inlineasmexprs:
2874
Sean Silvab084af42012-12-07 10:36:55 +00002875Inline Assembler Expressions
2876----------------------------
2877
2878LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002879Inline Assembly <moduleasm>`) through the use of a special value. This value
2880represents the inline assembler as a template string (containing the
2881instructions to emit), a list of operand constraints (stored as a string), a
2882flag that indicates whether or not the inline asm expression has side effects,
2883and a flag indicating whether the function containing the asm needs to align its
2884stack conservatively.
2885
2886The template string supports argument substitution of the operands using "``$``"
2887followed by a number, to indicate substitution of the given register/memory
2888location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2889be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2890operand (See :ref:`inline-asm-modifiers`).
2891
2892A literal "``$``" may be included by using "``$$``" in the template. To include
2893other special characters into the output, the usual "``\XX``" escapes may be
2894used, just as in other strings. Note that after template substitution, the
2895resulting assembly string is parsed by LLVM's integrated assembler unless it is
2896disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2897syntax known to LLVM.
2898
2899LLVM's support for inline asm is modeled closely on the requirements of Clang's
2900GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2901modifier codes listed here are similar or identical to those in GCC's inline asm
2902support. However, to be clear, the syntax of the template and constraint strings
2903described here is *not* the same as the syntax accepted by GCC and Clang, and,
2904while most constraint letters are passed through as-is by Clang, some get
2905translated to other codes when converting from the C source to the LLVM
2906assembly.
2907
2908An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002909
2910.. code-block:: llvm
2911
2912 i32 (i32) asm "bswap $0", "=r,r"
2913
2914Inline assembler expressions may **only** be used as the callee operand
2915of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2916Thus, typically we have:
2917
2918.. code-block:: llvm
2919
2920 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2921
2922Inline asms with side effects not visible in the constraint list must be
2923marked as having side effects. This is done through the use of the
2924'``sideeffect``' keyword, like so:
2925
2926.. code-block:: llvm
2927
2928 call void asm sideeffect "eieio", ""()
2929
2930In some cases inline asms will contain code that will not work unless
2931the stack is aligned in some way, such as calls or SSE instructions on
2932x86, yet will not contain code that does that alignment within the asm.
2933The compiler should make conservative assumptions about what the asm
2934might contain and should generate its usual stack alignment code in the
2935prologue if the '``alignstack``' keyword is present:
2936
2937.. code-block:: llvm
2938
2939 call void asm alignstack "eieio", ""()
2940
2941Inline asms also support using non-standard assembly dialects. The
2942assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2943the inline asm is using the Intel dialect. Currently, ATT and Intel are
2944the only supported dialects. An example is:
2945
2946.. code-block:: llvm
2947
2948 call void asm inteldialect "eieio", ""()
2949
2950If multiple keywords appear the '``sideeffect``' keyword must come
2951first, the '``alignstack``' keyword second and the '``inteldialect``'
2952keyword last.
2953
James Y Knightbc832ed2015-07-08 18:08:36 +00002954Inline Asm Constraint String
2955^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2956
2957The constraint list is a comma-separated string, each element containing one or
2958more constraint codes.
2959
2960For each element in the constraint list an appropriate register or memory
2961operand will be chosen, and it will be made available to assembly template
2962string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2963second, etc.
2964
2965There are three different types of constraints, which are distinguished by a
2966prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2967constraints must always be given in that order: outputs first, then inputs, then
2968clobbers. They cannot be intermingled.
2969
2970There are also three different categories of constraint codes:
2971
2972- Register constraint. This is either a register class, or a fixed physical
2973 register. This kind of constraint will allocate a register, and if necessary,
2974 bitcast the argument or result to the appropriate type.
2975- Memory constraint. This kind of constraint is for use with an instruction
2976 taking a memory operand. Different constraints allow for different addressing
2977 modes used by the target.
2978- Immediate value constraint. This kind of constraint is for an integer or other
2979 immediate value which can be rendered directly into an instruction. The
2980 various target-specific constraints allow the selection of a value in the
2981 proper range for the instruction you wish to use it with.
2982
2983Output constraints
2984""""""""""""""""""
2985
2986Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2987indicates that the assembly will write to this operand, and the operand will
2988then be made available as a return value of the ``asm`` expression. Output
2989constraints do not consume an argument from the call instruction. (Except, see
2990below about indirect outputs).
2991
2992Normally, it is expected that no output locations are written to by the assembly
2993expression until *all* of the inputs have been read. As such, LLVM may assign
2994the same register to an output and an input. If this is not safe (e.g. if the
2995assembly contains two instructions, where the first writes to one output, and
2996the second reads an input and writes to a second output), then the "``&``"
2997modifier must be used (e.g. "``=&r``") to specify that the output is an
2998"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2999will not use the same register for any inputs (other than an input tied to this
3000output).
3001
3002Input constraints
3003"""""""""""""""""
3004
3005Input constraints do not have a prefix -- just the constraint codes. Each input
3006constraint will consume one argument from the call instruction. It is not
3007permitted for the asm to write to any input register or memory location (unless
3008that input is tied to an output). Note also that multiple inputs may all be
3009assigned to the same register, if LLVM can determine that they necessarily all
3010contain the same value.
3011
3012Instead of providing a Constraint Code, input constraints may also "tie"
3013themselves to an output constraint, by providing an integer as the constraint
3014string. Tied inputs still consume an argument from the call instruction, and
3015take up a position in the asm template numbering as is usual -- they will simply
3016be constrained to always use the same register as the output they've been tied
3017to. For example, a constraint string of "``=r,0``" says to assign a register for
3018output, and use that register as an input as well (it being the 0'th
3019constraint).
3020
3021It is permitted to tie an input to an "early-clobber" output. In that case, no
3022*other* input may share the same register as the input tied to the early-clobber
3023(even when the other input has the same value).
3024
3025You may only tie an input to an output which has a register constraint, not a
3026memory constraint. Only a single input may be tied to an output.
3027
3028There is also an "interesting" feature which deserves a bit of explanation: if a
3029register class constraint allocates a register which is too small for the value
3030type operand provided as input, the input value will be split into multiple
3031registers, and all of them passed to the inline asm.
3032
3033However, this feature is often not as useful as you might think.
3034
3035Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3036architectures that have instructions which operate on multiple consecutive
3037instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3038SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3039hardware then loads into both the named register, and the next register. This
3040feature of inline asm would not be useful to support that.)
3041
3042A few of the targets provide a template string modifier allowing explicit access
3043to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3044``D``). On such an architecture, you can actually access the second allocated
3045register (yet, still, not any subsequent ones). But, in that case, you're still
3046probably better off simply splitting the value into two separate operands, for
3047clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3048despite existing only for use with this feature, is not really a good idea to
3049use)
3050
3051Indirect inputs and outputs
3052"""""""""""""""""""""""""""
3053
3054Indirect output or input constraints can be specified by the "``*``" modifier
3055(which goes after the "``=``" in case of an output). This indicates that the asm
3056will write to or read from the contents of an *address* provided as an input
3057argument. (Note that in this way, indirect outputs act more like an *input* than
3058an output: just like an input, they consume an argument of the call expression,
3059rather than producing a return value. An indirect output constraint is an
3060"output" only in that the asm is expected to write to the contents of the input
3061memory location, instead of just read from it).
3062
3063This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3064address of a variable as a value.
3065
3066It is also possible to use an indirect *register* constraint, but only on output
3067(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3068value normally, and then, separately emit a store to the address provided as
3069input, after the provided inline asm. (It's not clear what value this
3070functionality provides, compared to writing the store explicitly after the asm
3071statement, and it can only produce worse code, since it bypasses many
3072optimization passes. I would recommend not using it.)
3073
3074
3075Clobber constraints
3076"""""""""""""""""""
3077
3078A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3079consume an input operand, nor generate an output. Clobbers cannot use any of the
3080general constraint code letters -- they may use only explicit register
3081constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3082"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3083memory locations -- not only the memory pointed to by a declared indirect
3084output.
3085
3086
3087Constraint Codes
3088""""""""""""""""
3089After a potential prefix comes constraint code, or codes.
3090
3091A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3092followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3093(e.g. "``{eax}``").
3094
3095The one and two letter constraint codes are typically chosen to be the same as
3096GCC's constraint codes.
3097
3098A single constraint may include one or more than constraint code in it, leaving
3099it up to LLVM to choose which one to use. This is included mainly for
3100compatibility with the translation of GCC inline asm coming from clang.
3101
3102There are two ways to specify alternatives, and either or both may be used in an
3103inline asm constraint list:
3104
31051) Append the codes to each other, making a constraint code set. E.g. "``im``"
3106 or "``{eax}m``". This means "choose any of the options in the set". The
3107 choice of constraint is made independently for each constraint in the
3108 constraint list.
3109
31102) Use "``|``" between constraint code sets, creating alternatives. Every
3111 constraint in the constraint list must have the same number of alternative
3112 sets. With this syntax, the same alternative in *all* of the items in the
3113 constraint list will be chosen together.
3114
3115Putting those together, you might have a two operand constraint string like
3116``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3117operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3118may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3119
3120However, the use of either of the alternatives features is *NOT* recommended, as
3121LLVM is not able to make an intelligent choice about which one to use. (At the
3122point it currently needs to choose, not enough information is available to do so
3123in a smart way.) Thus, it simply tries to make a choice that's most likely to
3124compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3125always choose to use memory, not registers). And, if given multiple registers,
3126or multiple register classes, it will simply choose the first one. (In fact, it
3127doesn't currently even ensure explicitly specified physical registers are
3128unique, so specifying multiple physical registers as alternatives, like
3129``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3130intended.)
3131
3132Supported Constraint Code List
3133""""""""""""""""""""""""""""""
3134
3135The constraint codes are, in general, expected to behave the same way they do in
3136GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3137inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3138and GCC likely indicates a bug in LLVM.
3139
3140Some constraint codes are typically supported by all targets:
3141
3142- ``r``: A register in the target's general purpose register class.
3143- ``m``: A memory address operand. It is target-specific what addressing modes
3144 are supported, typical examples are register, or register + register offset,
3145 or register + immediate offset (of some target-specific size).
3146- ``i``: An integer constant (of target-specific width). Allows either a simple
3147 immediate, or a relocatable value.
3148- ``n``: An integer constant -- *not* including relocatable values.
3149- ``s``: An integer constant, but allowing *only* relocatable values.
3150- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3151 useful to pass a label for an asm branch or call.
3152
3153 .. FIXME: but that surely isn't actually okay to jump out of an asm
3154 block without telling llvm about the control transfer???)
3155
3156- ``{register-name}``: Requires exactly the named physical register.
3157
3158Other constraints are target-specific:
3159
3160AArch64:
3161
3162- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3163- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3164 i.e. 0 to 4095 with optional shift by 12.
3165- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3166 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3167- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3168 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3169- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3170 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3171- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3172 32-bit register. This is a superset of ``K``: in addition to the bitmask
3173 immediate, also allows immediate integers which can be loaded with a single
3174 ``MOVZ`` or ``MOVL`` instruction.
3175- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3176 64-bit register. This is a superset of ``L``.
3177- ``Q``: Memory address operand must be in a single register (no
3178 offsets). (However, LLVM currently does this for the ``m`` constraint as
3179 well.)
3180- ``r``: A 32 or 64-bit integer register (W* or X*).
3181- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3182- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3183
3184AMDGPU:
3185
3186- ``r``: A 32 or 64-bit integer register.
3187- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3188- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3189
3190
3191All ARM modes:
3192
3193- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3194 operand. Treated the same as operand ``m``, at the moment.
3195
3196ARM and ARM's Thumb2 mode:
3197
3198- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3199- ``I``: An immediate integer valid for a data-processing instruction.
3200- ``J``: An immediate integer between -4095 and 4095.
3201- ``K``: An immediate integer whose bitwise inverse is valid for a
3202 data-processing instruction. (Can be used with template modifier "``B``" to
3203 print the inverted value).
3204- ``L``: An immediate integer whose negation is valid for a data-processing
3205 instruction. (Can be used with template modifier "``n``" to print the negated
3206 value).
3207- ``M``: A power of two or a integer between 0 and 32.
3208- ``N``: Invalid immediate constraint.
3209- ``O``: Invalid immediate constraint.
3210- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3211- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3212 as ``r``.
3213- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3214 invalid.
3215- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3216 ``d0-d31``, or ``q0-q15``.
3217- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3218 ``d0-d7``, or ``q0-q3``.
3219- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3220 ``s0-s31``.
3221
3222ARM's Thumb1 mode:
3223
3224- ``I``: An immediate integer between 0 and 255.
3225- ``J``: An immediate integer between -255 and -1.
3226- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3227 some amount.
3228- ``L``: An immediate integer between -7 and 7.
3229- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3230- ``N``: An immediate integer between 0 and 31.
3231- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3232- ``r``: A low 32-bit GPR register (``r0-r7``).
3233- ``l``: A low 32-bit GPR register (``r0-r7``).
3234- ``h``: A high GPR register (``r0-r7``).
3235- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3236 ``d0-d31``, or ``q0-q15``.
3237- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3238 ``d0-d7``, or ``q0-q3``.
3239- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3240 ``s0-s31``.
3241
3242
3243Hexagon:
3244
3245- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3246 at the moment.
3247- ``r``: A 32 or 64-bit register.
3248
3249MSP430:
3250
3251- ``r``: An 8 or 16-bit register.
3252
3253MIPS:
3254
3255- ``I``: An immediate signed 16-bit integer.
3256- ``J``: An immediate integer zero.
3257- ``K``: An immediate unsigned 16-bit integer.
3258- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3259- ``N``: An immediate integer between -65535 and -1.
3260- ``O``: An immediate signed 15-bit integer.
3261- ``P``: An immediate integer between 1 and 65535.
3262- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3263 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3264- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3265 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3266 ``m``.
3267- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3268 ``sc`` instruction on the given subtarget (details vary).
3269- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3270- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003271 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3272 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003273- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3274 ``25``).
3275- ``l``: The ``lo`` register, 32 or 64-bit.
3276- ``x``: Invalid.
3277
3278NVPTX:
3279
3280- ``b``: A 1-bit integer register.
3281- ``c`` or ``h``: A 16-bit integer register.
3282- ``r``: A 32-bit integer register.
3283- ``l`` or ``N``: A 64-bit integer register.
3284- ``f``: A 32-bit float register.
3285- ``d``: A 64-bit float register.
3286
3287
3288PowerPC:
3289
3290- ``I``: An immediate signed 16-bit integer.
3291- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3292- ``K``: An immediate unsigned 16-bit integer.
3293- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3294- ``M``: An immediate integer greater than 31.
3295- ``N``: An immediate integer that is an exact power of 2.
3296- ``O``: The immediate integer constant 0.
3297- ``P``: An immediate integer constant whose negation is a signed 16-bit
3298 constant.
3299- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3300 treated the same as ``m``.
3301- ``r``: A 32 or 64-bit integer register.
3302- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3303 ``R1-R31``).
3304- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3305 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3306- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3307 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3308 altivec vector register (``V0-V31``).
3309
3310 .. FIXME: is this a bug that v accepts QPX registers? I think this
3311 is supposed to only use the altivec vector registers?
3312
3313- ``y``: Condition register (``CR0-CR7``).
3314- ``wc``: An individual CR bit in a CR register.
3315- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3316 register set (overlapping both the floating-point and vector register files).
3317- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3318 set.
3319
3320Sparc:
3321
3322- ``I``: An immediate 13-bit signed integer.
3323- ``r``: A 32-bit integer register.
3324
3325SystemZ:
3326
3327- ``I``: An immediate unsigned 8-bit integer.
3328- ``J``: An immediate unsigned 12-bit integer.
3329- ``K``: An immediate signed 16-bit integer.
3330- ``L``: An immediate signed 20-bit integer.
3331- ``M``: An immediate integer 0x7fffffff.
3332- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3333 ``m``, at the moment.
3334- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3335- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3336 address context evaluates as zero).
3337- ``h``: A 32-bit value in the high part of a 64bit data register
3338 (LLVM-specific)
3339- ``f``: A 32, 64, or 128-bit floating point register.
3340
3341X86:
3342
3343- ``I``: An immediate integer between 0 and 31.
3344- ``J``: An immediate integer between 0 and 64.
3345- ``K``: An immediate signed 8-bit integer.
3346- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3347 0xffffffff.
3348- ``M``: An immediate integer between 0 and 3.
3349- ``N``: An immediate unsigned 8-bit integer.
3350- ``O``: An immediate integer between 0 and 127.
3351- ``e``: An immediate 32-bit signed integer.
3352- ``Z``: An immediate 32-bit unsigned integer.
3353- ``o``, ``v``: Treated the same as ``m``, at the moment.
3354- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3355 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3356 registers, and on X86-64, it is all of the integer registers.
3357- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3358 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3359- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3360- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3361 existed since i386, and can be accessed without the REX prefix.
3362- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3363- ``y``: A 64-bit MMX register, if MMX is enabled.
3364- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3365 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3366 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3367 512-bit vector operand in an AVX512 register, Otherwise, an error.
3368- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3369- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3370 32-bit mode, a 64-bit integer operand will get split into two registers). It
3371 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3372 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3373 you're better off splitting it yourself, before passing it to the asm
3374 statement.
3375
3376XCore:
3377
3378- ``r``: A 32-bit integer register.
3379
3380
3381.. _inline-asm-modifiers:
3382
3383Asm template argument modifiers
3384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3385
3386In the asm template string, modifiers can be used on the operand reference, like
3387"``${0:n}``".
3388
3389The modifiers are, in general, expected to behave the same way they do in
3390GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3391inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3392and GCC likely indicates a bug in LLVM.
3393
3394Target-independent:
3395
Sean Silvaa1190322015-08-06 22:56:48 +00003396- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003397 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3398- ``n``: Negate and print immediate integer constant unadorned, without the
3399 target-specific immediate punctuation (e.g. no ``$`` prefix).
3400- ``l``: Print as an unadorned label, without the target-specific label
3401 punctuation (e.g. no ``$`` prefix).
3402
3403AArch64:
3404
3405- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3406 instead of ``x30``, print ``w30``.
3407- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3408- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3409 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3410 ``v*``.
3411
3412AMDGPU:
3413
3414- ``r``: No effect.
3415
3416ARM:
3417
3418- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3419 register).
3420- ``P``: No effect.
3421- ``q``: No effect.
3422- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3423 as ``d4[1]`` instead of ``s9``)
3424- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3425 prefix.
3426- ``L``: Print the low 16-bits of an immediate integer constant.
3427- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3428 register operands subsequent to the specified one (!), so use carefully.
3429- ``Q``: Print the low-order register of a register-pair, or the low-order
3430 register of a two-register operand.
3431- ``R``: Print the high-order register of a register-pair, or the high-order
3432 register of a two-register operand.
3433- ``H``: Print the second register of a register-pair. (On a big-endian system,
3434 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3435 to ``R``.)
3436
3437 .. FIXME: H doesn't currently support printing the second register
3438 of a two-register operand.
3439
3440- ``e``: Print the low doubleword register of a NEON quad register.
3441- ``f``: Print the high doubleword register of a NEON quad register.
3442- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3443 adornment.
3444
3445Hexagon:
3446
3447- ``L``: Print the second register of a two-register operand. Requires that it
3448 has been allocated consecutively to the first.
3449
3450 .. FIXME: why is it restricted to consecutive ones? And there's
3451 nothing that ensures that happens, is there?
3452
3453- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3454 nothing. Used to print 'addi' vs 'add' instructions.
3455
3456MSP430:
3457
3458No additional modifiers.
3459
3460MIPS:
3461
3462- ``X``: Print an immediate integer as hexadecimal
3463- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3464- ``d``: Print an immediate integer as decimal.
3465- ``m``: Subtract one and print an immediate integer as decimal.
3466- ``z``: Print $0 if an immediate zero, otherwise print normally.
3467- ``L``: Print the low-order register of a two-register operand, or prints the
3468 address of the low-order word of a double-word memory operand.
3469
3470 .. FIXME: L seems to be missing memory operand support.
3471
3472- ``M``: Print the high-order register of a two-register operand, or prints the
3473 address of the high-order word of a double-word memory operand.
3474
3475 .. FIXME: M seems to be missing memory operand support.
3476
3477- ``D``: Print the second register of a two-register operand, or prints the
3478 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3479 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3480 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003481- ``w``: No effect. Provided for compatibility with GCC which requires this
3482 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3483 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003484
3485NVPTX:
3486
3487- ``r``: No effect.
3488
3489PowerPC:
3490
3491- ``L``: Print the second register of a two-register operand. Requires that it
3492 has been allocated consecutively to the first.
3493
3494 .. FIXME: why is it restricted to consecutive ones? And there's
3495 nothing that ensures that happens, is there?
3496
3497- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3498 nothing. Used to print 'addi' vs 'add' instructions.
3499- ``y``: For a memory operand, prints formatter for a two-register X-form
3500 instruction. (Currently always prints ``r0,OPERAND``).
3501- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3502 otherwise. (NOTE: LLVM does not support update form, so this will currently
3503 always print nothing)
3504- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3505 not support indexed form, so this will currently always print nothing)
3506
3507Sparc:
3508
3509- ``r``: No effect.
3510
3511SystemZ:
3512
3513SystemZ implements only ``n``, and does *not* support any of the other
3514target-independent modifiers.
3515
3516X86:
3517
3518- ``c``: Print an unadorned integer or symbol name. (The latter is
3519 target-specific behavior for this typically target-independent modifier).
3520- ``A``: Print a register name with a '``*``' before it.
3521- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3522 operand.
3523- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3524 memory operand.
3525- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3526 operand.
3527- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3528 operand.
3529- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3530 available, otherwise the 32-bit register name; do nothing on a memory operand.
3531- ``n``: Negate and print an unadorned integer, or, for operands other than an
3532 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3533 the operand. (The behavior for relocatable symbol expressions is a
3534 target-specific behavior for this typically target-independent modifier)
3535- ``H``: Print a memory reference with additional offset +8.
3536- ``P``: Print a memory reference or operand for use as the argument of a call
3537 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3538
3539XCore:
3540
3541No additional modifiers.
3542
3543
Sean Silvab084af42012-12-07 10:36:55 +00003544Inline Asm Metadata
3545^^^^^^^^^^^^^^^^^^^
3546
3547The call instructions that wrap inline asm nodes may have a
3548"``!srcloc``" MDNode attached to it that contains a list of constant
3549integers. If present, the code generator will use the integer as the
3550location cookie value when report errors through the ``LLVMContext``
3551error reporting mechanisms. This allows a front-end to correlate backend
3552errors that occur with inline asm back to the source code that produced
3553it. For example:
3554
3555.. code-block:: llvm
3556
3557 call void asm sideeffect "something bad", ""(), !srcloc !42
3558 ...
3559 !42 = !{ i32 1234567 }
3560
3561It is up to the front-end to make sense of the magic numbers it places
3562in the IR. If the MDNode contains multiple constants, the code generator
3563will use the one that corresponds to the line of the asm that the error
3564occurs on.
3565
3566.. _metadata:
3567
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003568Metadata
3569========
Sean Silvab084af42012-12-07 10:36:55 +00003570
3571LLVM IR allows metadata to be attached to instructions in the program
3572that can convey extra information about the code to the optimizers and
3573code generator. One example application of metadata is source-level
3574debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003575
Sean Silvaa1190322015-08-06 22:56:48 +00003576Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003577``call`` instruction, it uses the ``metadata`` type.
3578
3579All metadata are identified in syntax by a exclamation point ('``!``').
3580
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003581.. _metadata-string:
3582
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003583Metadata Nodes and Metadata Strings
3584-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003585
3586A metadata string is a string surrounded by double quotes. It can
3587contain any character by escaping non-printable characters with
3588"``\xx``" where "``xx``" is the two digit hex code. For example:
3589"``!"test\00"``".
3590
3591Metadata nodes are represented with notation similar to structure
3592constants (a comma separated list of elements, surrounded by braces and
3593preceded by an exclamation point). Metadata nodes can have any values as
3594their operand. For example:
3595
3596.. code-block:: llvm
3597
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003598 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003599
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003600Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3601
3602.. code-block:: llvm
3603
3604 !0 = distinct !{!"test\00", i32 10}
3605
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003606``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003607content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003608when metadata operands change.
3609
Sean Silvab084af42012-12-07 10:36:55 +00003610A :ref:`named metadata <namedmetadatastructure>` is a collection of
3611metadata nodes, which can be looked up in the module symbol table. For
3612example:
3613
3614.. code-block:: llvm
3615
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003616 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003617
3618Metadata can be used as function arguments. Here ``llvm.dbg.value``
3619function is using two metadata arguments:
3620
3621.. code-block:: llvm
3622
3623 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3624
3625Metadata can be attached with an instruction. Here metadata ``!21`` is
3626attached to the ``add`` instruction using the ``!dbg`` identifier:
3627
3628.. code-block:: llvm
3629
3630 %indvar.next = add i64 %indvar, 1, !dbg !21
3631
3632More information about specific metadata nodes recognized by the
3633optimizers and code generator is found below.
3634
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003635.. _specialized-metadata:
3636
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003637Specialized Metadata Nodes
3638^^^^^^^^^^^^^^^^^^^^^^^^^^
3639
3640Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003641to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003642order.
3643
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003644These aren't inherently debug info centric, but currently all the specialized
3645metadata nodes are related to debug info.
3646
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003647.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003648
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003649DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003650"""""""""""""
3651
Sean Silvaa1190322015-08-06 22:56:48 +00003652``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003653``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3654tuples containing the debug info to be emitted along with the compile unit,
3655regardless of code optimizations (some nodes are only emitted if there are
3656references to them from instructions).
3657
3658.. code-block:: llvm
3659
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003660 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003661 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3662 splitDebugFilename: "abc.debug", emissionKind: 1,
3663 enums: !2, retainedTypes: !3, subprograms: !4,
3664 globals: !5, imports: !6)
3665
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003666Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003667specific compilation unit. File descriptors are defined using this scope.
3668These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003669keep track of subprograms, global variables, type information, and imported
3670entities (declarations and namespaces).
3671
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003672.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003673
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003674DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003675""""""
3676
Sean Silvaa1190322015-08-06 22:56:48 +00003677``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003678
3679.. code-block:: llvm
3680
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003681 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003682
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003683Files are sometimes used in ``scope:`` fields, and are the only valid target
3684for ``file:`` fields.
3685
Michael Kuperstein605308a2015-05-14 10:58:59 +00003686.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003687
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003688DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003689"""""""""""
3690
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003691``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003692``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003693
3694.. code-block:: llvm
3695
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003696 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003697 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003698 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003699
Sean Silvaa1190322015-08-06 22:56:48 +00003700The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003701following:
3702
3703.. code-block:: llvm
3704
3705 DW_ATE_address = 1
3706 DW_ATE_boolean = 2
3707 DW_ATE_float = 4
3708 DW_ATE_signed = 5
3709 DW_ATE_signed_char = 6
3710 DW_ATE_unsigned = 7
3711 DW_ATE_unsigned_char = 8
3712
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003713.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003714
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003715DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003716""""""""""""""""
3717
Sean Silvaa1190322015-08-06 22:56:48 +00003718``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003719refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003720types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003721represents a function with no return value (such as ``void foo() {}`` in C++).
3722
3723.. code-block:: llvm
3724
3725 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3726 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003727 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003728
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003729.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003730
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003731DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003732"""""""""""""
3733
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003734``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003735qualified types.
3736
3737.. code-block:: llvm
3738
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003739 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003740 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003741 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003742 align: 32)
3743
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003744The following ``tag:`` values are valid:
3745
3746.. code-block:: llvm
3747
3748 DW_TAG_formal_parameter = 5
3749 DW_TAG_member = 13
3750 DW_TAG_pointer_type = 15
3751 DW_TAG_reference_type = 16
3752 DW_TAG_typedef = 22
3753 DW_TAG_ptr_to_member_type = 31
3754 DW_TAG_const_type = 38
3755 DW_TAG_volatile_type = 53
3756 DW_TAG_restrict_type = 55
3757
3758``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003759<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3760is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003761``DW_TAG_formal_parameter`` is used to define a member which is a formal
3762argument of a subprogram.
3763
3764``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3765
3766``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3767``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3768``baseType:``.
3769
3770Note that the ``void *`` type is expressed as a type derived from NULL.
3771
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003772.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003773
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003774DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003775"""""""""""""""
3776
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003777``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003778structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003779
3780If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003781identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003782can refer to composite types indirectly via a :ref:`metadata string
3783<metadata-string>` that matches their identifier.
3784
3785.. code-block:: llvm
3786
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003787 !0 = !DIEnumerator(name: "SixKind", value: 7)
3788 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3789 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3790 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003791 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3792 elements: !{!0, !1, !2})
3793
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003794The following ``tag:`` values are valid:
3795
3796.. code-block:: llvm
3797
3798 DW_TAG_array_type = 1
3799 DW_TAG_class_type = 2
3800 DW_TAG_enumeration_type = 4
3801 DW_TAG_structure_type = 19
3802 DW_TAG_union_type = 23
3803 DW_TAG_subroutine_type = 21
3804 DW_TAG_inheritance = 28
3805
3806
3807For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003808descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003809level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003810array type is a native packed vector.
3811
3812For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003813descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003814value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003816
3817For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3818``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003819<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003820
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003821.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003822
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003823DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003824""""""""""
3825
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003826``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003827:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003828
3829.. code-block:: llvm
3830
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003831 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3832 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3833 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003834
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003835.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003836
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003838""""""""""""
3839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3841variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003842
3843.. code-block:: llvm
3844
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003845 !0 = !DIEnumerator(name: "SixKind", value: 7)
3846 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3847 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003848
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003849DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003850"""""""""""""""""""""""
3851
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003853language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855
3856.. code-block:: llvm
3857
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003859
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861""""""""""""""""""""""""
3862
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003863``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003864language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003866``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003867:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003868
3869.. code-block:: llvm
3870
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003871 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003872
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003873DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003874"""""""""""
3875
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003876``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003877
3878.. code-block:: llvm
3879
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003880 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003882DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003883""""""""""""""""
3884
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003885``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003886
3887.. code-block:: llvm
3888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890 file: !2, line: 7, type: !3, isLocal: true,
3891 isDefinition: false, variable: i32* @foo,
3892 declaration: !4)
3893
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003894All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003895:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003896
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003897.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003898
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003899DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003900""""""""""""
3901
Sean Silvaa1190322015-08-06 22:56:48 +00003902``DISubprogram`` nodes represent functions from the source language. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Sean Silvaa1190322015-08-06 22:56:48 +00003904retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003905``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003906
3907.. code-block:: llvm
3908
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003909 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003910 file: !2, line: 7, type: !3, isLocal: true,
3911 isDefinition: false, scopeLine: 8, containingType: !4,
3912 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3913 flags: DIFlagPrototyped, isOptimized: true,
3914 function: void ()* @_Z3foov,
3915 templateParams: !5, declaration: !6, variables: !7)
3916
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003918
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003919DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003920""""""""""""""
3921
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003922``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00003923<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00003924two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003925fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003926
3927.. code-block:: llvm
3928
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003929 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003930
3931Usually lexical blocks are ``distinct`` to prevent node merging based on
3932operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003933
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003934.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937""""""""""""""""""
3938
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003939``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003940:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941indicate textual inclusion, or the ``discriminator:`` field can be used to
3942discriminate between control flow within a single block in the source language.
3943
3944.. code-block:: llvm
3945
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3947 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3948 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949
Michael Kuperstein605308a2015-05-14 10:58:59 +00003950.. _DILocation:
3951
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003952DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003953""""""""""
3954
Sean Silvaa1190322015-08-06 22:56:48 +00003955``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003956mandatory, and points at an :ref:`DILexicalBlockFile`, an
3957:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003958
3959.. code-block:: llvm
3960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003962
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003963.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966"""""""""""""""
3967
Sean Silvaa1190322015-08-06 22:56:48 +00003968``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003969the ``arg:`` field is set to non-zero, then this variable is a subprogram
3970parameter, and it will be included in the ``variables:`` field of its
3971:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003973.. code-block:: llvm
3974
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003975 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
3976 type: !3, flags: DIFlagArtificial)
3977 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
3978 type: !3)
3979 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982""""""""""""
3983
Sean Silvaa1190322015-08-06 22:56:48 +00003984``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003985:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3986describe how the referenced LLVM variable relates to the source language
3987variable.
3988
3989The current supported vocabulary is limited:
3990
3991- ``DW_OP_deref`` dereferences the working expression.
3992- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3993- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3994 here, respectively) of the variable piece from the working expression.
3995
3996.. code-block:: llvm
3997
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003998 !0 = !DIExpression(DW_OP_deref)
3999 !1 = !DIExpression(DW_OP_plus, 3)
4000 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4001 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004002
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004003DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004004""""""""""""""
4005
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004006``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004007
4008.. code-block:: llvm
4009
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004010 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004011 getter: "getFoo", attributes: 7, type: !2)
4012
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004013DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004014""""""""""""""""
4015
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004016``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017compile unit.
4018
4019.. code-block:: llvm
4020
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004021 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004022 entity: !1, line: 7)
4023
Sean Silvab084af42012-12-07 10:36:55 +00004024'``tbaa``' Metadata
4025^^^^^^^^^^^^^^^^^^^
4026
4027In LLVM IR, memory does not have types, so LLVM's own type system is not
4028suitable for doing TBAA. Instead, metadata is added to the IR to
4029describe a type system of a higher level language. This can be used to
4030implement typical C/C++ TBAA, but it can also be used to implement
4031custom alias analysis behavior for other languages.
4032
4033The current metadata format is very simple. TBAA metadata nodes have up
4034to three fields, e.g.:
4035
4036.. code-block:: llvm
4037
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004038 !0 = !{ !"an example type tree" }
4039 !1 = !{ !"int", !0 }
4040 !2 = !{ !"float", !0 }
4041 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004042
4043The first field is an identity field. It can be any value, usually a
4044metadata string, which uniquely identifies the type. The most important
4045name in the tree is the name of the root node. Two trees with different
4046root node names are entirely disjoint, even if they have leaves with
4047common names.
4048
4049The second field identifies the type's parent node in the tree, or is
4050null or omitted for a root node. A type is considered to alias all of
4051its descendants and all of its ancestors in the tree. Also, a type is
4052considered to alias all types in other trees, so that bitcode produced
4053from multiple front-ends is handled conservatively.
4054
4055If the third field is present, it's an integer which if equal to 1
4056indicates that the type is "constant" (meaning
4057``pointsToConstantMemory`` should return true; see `other useful
4058AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4059
4060'``tbaa.struct``' Metadata
4061^^^^^^^^^^^^^^^^^^^^^^^^^^
4062
4063The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4064aggregate assignment operations in C and similar languages, however it
4065is defined to copy a contiguous region of memory, which is more than
4066strictly necessary for aggregate types which contain holes due to
4067padding. Also, it doesn't contain any TBAA information about the fields
4068of the aggregate.
4069
4070``!tbaa.struct`` metadata can describe which memory subregions in a
4071memcpy are padding and what the TBAA tags of the struct are.
4072
4073The current metadata format is very simple. ``!tbaa.struct`` metadata
4074nodes are a list of operands which are in conceptual groups of three.
4075For each group of three, the first operand gives the byte offset of a
4076field in bytes, the second gives its size in bytes, and the third gives
4077its tbaa tag. e.g.:
4078
4079.. code-block:: llvm
4080
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004081 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004082
4083This describes a struct with two fields. The first is at offset 0 bytes
4084with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4085and has size 4 bytes and has tbaa tag !2.
4086
4087Note that the fields need not be contiguous. In this example, there is a
40884 byte gap between the two fields. This gap represents padding which
4089does not carry useful data and need not be preserved.
4090
Hal Finkel94146652014-07-24 14:25:39 +00004091'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004093
4094``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4095noalias memory-access sets. This means that some collection of memory access
4096instructions (loads, stores, memory-accessing calls, etc.) that carry
4097``noalias`` metadata can specifically be specified not to alias with some other
4098collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004099Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004100a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004101of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004102subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004103instruction's ``noalias`` list, then the two memory accesses are assumed not to
4104alias.
Hal Finkel94146652014-07-24 14:25:39 +00004105
Hal Finkel029cde62014-07-25 15:50:02 +00004106The metadata identifying each domain is itself a list containing one or two
4107entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004108string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004109self-reference can be used to create globally unique domain names. A
4110descriptive string may optionally be provided as a second list entry.
4111
4112The metadata identifying each scope is also itself a list containing two or
4113three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004114is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004115self-reference can be used to create globally unique scope names. A metadata
4116reference to the scope's domain is the second entry. A descriptive string may
4117optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004118
4119For example,
4120
4121.. code-block:: llvm
4122
Hal Finkel029cde62014-07-25 15:50:02 +00004123 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004124 !0 = !{!0}
4125 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004126
Hal Finkel029cde62014-07-25 15:50:02 +00004127 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004128 !2 = !{!2, !0}
4129 !3 = !{!3, !0}
4130 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004131
Hal Finkel029cde62014-07-25 15:50:02 +00004132 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004133 !5 = !{!4} ; A list containing only scope !4
4134 !6 = !{!4, !3, !2}
4135 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004136
4137 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004138 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004139 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004140
Hal Finkel029cde62014-07-25 15:50:02 +00004141 ; These two instructions also don't alias (for domain !1, the set of scopes
4142 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004143 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004144 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004145
Adam Nemet0a8416f2015-05-11 08:30:28 +00004146 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004147 ; the !noalias list is not a superset of, or equal to, the scopes in the
4148 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004149 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004150 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004151
Sean Silvab084af42012-12-07 10:36:55 +00004152'``fpmath``' Metadata
4153^^^^^^^^^^^^^^^^^^^^^
4154
4155``fpmath`` metadata may be attached to any instruction of floating point
4156type. It can be used to express the maximum acceptable error in the
4157result of that instruction, in ULPs, thus potentially allowing the
4158compiler to use a more efficient but less accurate method of computing
4159it. ULP is defined as follows:
4160
4161 If ``x`` is a real number that lies between two finite consecutive
4162 floating-point numbers ``a`` and ``b``, without being equal to one
4163 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4164 distance between the two non-equal finite floating-point numbers
4165 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4166
4167The metadata node shall consist of a single positive floating point
4168number representing the maximum relative error, for example:
4169
4170.. code-block:: llvm
4171
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004172 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004173
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004174.. _range-metadata:
4175
Sean Silvab084af42012-12-07 10:36:55 +00004176'``range``' Metadata
4177^^^^^^^^^^^^^^^^^^^^
4178
Jingyue Wu37fcb592014-06-19 16:50:16 +00004179``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4180integer types. It expresses the possible ranges the loaded value or the value
4181returned by the called function at this call site is in. The ranges are
4182represented with a flattened list of integers. The loaded value or the value
4183returned is known to be in the union of the ranges defined by each consecutive
4184pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004185
4186- The type must match the type loaded by the instruction.
4187- The pair ``a,b`` represents the range ``[a,b)``.
4188- Both ``a`` and ``b`` are constants.
4189- The range is allowed to wrap.
4190- The range should not represent the full or empty set. That is,
4191 ``a!=b``.
4192
4193In addition, the pairs must be in signed order of the lower bound and
4194they must be non-contiguous.
4195
4196Examples:
4197
4198.. code-block:: llvm
4199
David Blaikiec7aabbb2015-03-04 22:06:14 +00004200 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4201 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004202 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4203 %d = invoke i8 @bar() to label %cont
4204 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004205 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004206 !0 = !{ i8 0, i8 2 }
4207 !1 = !{ i8 255, i8 2 }
4208 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4209 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004210
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004211'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004212^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004213
4214``unpredictable`` metadata may be attached to any branch or switch
4215instruction. It can be used to express the unpredictability of control
4216flow. Similar to the llvm.expect intrinsic, it may be used to alter
4217optimizations related to compare and branch instructions. The metadata
4218is treated as a boolean value; if it exists, it signals that the branch
4219or switch that it is attached to is completely unpredictable.
4220
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004221'``llvm.loop``'
4222^^^^^^^^^^^^^^^
4223
4224It is sometimes useful to attach information to loop constructs. Currently,
4225loop metadata is implemented as metadata attached to the branch instruction
4226in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004227guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004228specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004229
4230The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004231itself to avoid merging it with any other identifier metadata, e.g.,
4232during module linkage or function inlining. That is, each loop should refer
4233to their own identification metadata even if they reside in separate functions.
4234The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004235constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004236
4237.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004238
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004239 !0 = !{!0}
4240 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004241
Mark Heffernan893752a2014-07-18 19:24:51 +00004242The loop identifier metadata can be used to specify additional
4243per-loop metadata. Any operands after the first operand can be treated
4244as user-defined metadata. For example the ``llvm.loop.unroll.count``
4245suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004246
Paul Redmond5fdf8362013-05-28 20:00:34 +00004247.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004248
Paul Redmond5fdf8362013-05-28 20:00:34 +00004249 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4250 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004251 !0 = !{!0, !1}
4252 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004253
Mark Heffernan9d20e422014-07-21 23:11:03 +00004254'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004256
Mark Heffernan9d20e422014-07-21 23:11:03 +00004257Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4258used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004259vectorization width and interleave count. These metadata should be used in
4260conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004261``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4262optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004263it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004264which contains information about loop-carried memory dependencies can be helpful
4265in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004266
Mark Heffernan9d20e422014-07-21 23:11:03 +00004267'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4269
Mark Heffernan9d20e422014-07-21 23:11:03 +00004270This metadata suggests an interleave count to the loop interleaver.
4271The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004272second operand is an integer specifying the interleave count. For
4273example:
4274
4275.. code-block:: llvm
4276
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004277 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004278
Mark Heffernan9d20e422014-07-21 23:11:03 +00004279Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004280multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004281then the interleave count will be determined automatically.
4282
4283'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004285
4286This metadata selectively enables or disables vectorization for the loop. The
4287first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004288is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000042890 disables vectorization:
4290
4291.. code-block:: llvm
4292
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004293 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4294 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004295
4296'``llvm.loop.vectorize.width``' Metadata
4297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4298
4299This metadata sets the target width of the vectorizer. The first
4300operand is the string ``llvm.loop.vectorize.width`` and the second
4301operand is an integer specifying the width. For example:
4302
4303.. code-block:: llvm
4304
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004305 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004306
4307Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004308vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000043090 or if the loop does not have this metadata the width will be
4310determined automatically.
4311
4312'``llvm.loop.unroll``'
4313^^^^^^^^^^^^^^^^^^^^^^
4314
4315Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4316optimization hints such as the unroll factor. ``llvm.loop.unroll``
4317metadata should be used in conjunction with ``llvm.loop`` loop
4318identification metadata. The ``llvm.loop.unroll`` metadata are only
4319optimization hints and the unrolling will only be performed if the
4320optimizer believes it is safe to do so.
4321
Mark Heffernan893752a2014-07-18 19:24:51 +00004322'``llvm.loop.unroll.count``' Metadata
4323^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4324
4325This metadata suggests an unroll factor to the loop unroller. The
4326first operand is the string ``llvm.loop.unroll.count`` and the second
4327operand is a positive integer specifying the unroll factor. For
4328example:
4329
4330.. code-block:: llvm
4331
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004332 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004333
4334If the trip count of the loop is less than the unroll count the loop
4335will be partially unrolled.
4336
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004337'``llvm.loop.unroll.disable``' Metadata
4338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4339
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004340This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004341which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004342
4343.. code-block:: llvm
4344
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004345 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004346
Kevin Qin715b01e2015-03-09 06:14:18 +00004347'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004349
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004350This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004351operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004352
4353.. code-block:: llvm
4354
4355 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4356
Mark Heffernan89391542015-08-10 17:28:08 +00004357'``llvm.loop.unroll.enable``' Metadata
4358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4359
4360This metadata suggests that the loop should be fully unrolled if the trip count
4361is known at compile time and partially unrolled if the trip count is not known
4362at compile time. The metadata has a single operand which is the string
4363``llvm.loop.unroll.enable``. For example:
4364
4365.. code-block:: llvm
4366
4367 !0 = !{!"llvm.loop.unroll.enable"}
4368
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004369'``llvm.loop.unroll.full``' Metadata
4370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4371
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004372This metadata suggests that the loop should be unrolled fully. The
4373metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004374For example:
4375
4376.. code-block:: llvm
4377
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004378 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004379
4380'``llvm.mem``'
4381^^^^^^^^^^^^^^^
4382
4383Metadata types used to annotate memory accesses with information helpful
4384for optimizations are prefixed with ``llvm.mem``.
4385
4386'``llvm.mem.parallel_loop_access``' Metadata
4387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4388
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004389The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4390or metadata containing a list of loop identifiers for nested loops.
4391The metadata is attached to memory accessing instructions and denotes that
4392no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004393with the same loop identifier.
4394
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004395Precisely, given two instructions ``m1`` and ``m2`` that both have the
4396``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4397set of loops associated with that metadata, respectively, then there is no loop
4398carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004399``L2``.
4400
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004401As a special case, if all memory accessing instructions in a loop have
4402``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4403loop has no loop carried memory dependences and is considered to be a parallel
4404loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004405
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004406Note that if not all memory access instructions have such metadata referring to
4407the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004408memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004409safe mechanism, this causes loops that were originally parallel to be considered
4410sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004411insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004412
4413Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004414both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004415metadata types that refer to the same loop identifier metadata.
4416
4417.. code-block:: llvm
4418
4419 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004420 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004421 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004422 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004423 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004424 ...
4425 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004426
4427 for.end:
4428 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004429 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004430
4431It is also possible to have nested parallel loops. In that case the
4432memory accesses refer to a list of loop identifier metadata nodes instead of
4433the loop identifier metadata node directly:
4434
4435.. code-block:: llvm
4436
4437 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004438 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004439 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004440 ...
4441 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004442
4443 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004444 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004445 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004446 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004447 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004448 ...
4449 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004450
4451 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004452 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004453 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004454 ...
4455 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004456
4457 outer.for.end: ; preds = %for.body
4458 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004459 !0 = !{!1, !2} ; a list of loop identifiers
4460 !1 = !{!1} ; an identifier for the inner loop
4461 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004462
Peter Collingbournee6909c82015-02-20 20:30:47 +00004463'``llvm.bitsets``'
4464^^^^^^^^^^^^^^^^^^
4465
4466The ``llvm.bitsets`` global metadata is used to implement
4467:doc:`bitsets <BitSets>`.
4468
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004469'``invariant.group``' Metadata
4470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4471
4472The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4473The existence of the ``invariant.group`` metadata on the instruction tells
4474the optimizer that every ``load`` and ``store`` to the same pointer operand
4475within the same invariant group can be assumed to load or store the same
4476value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4477when two pointers are considered the same).
4478
4479Examples:
4480
4481.. code-block:: llvm
4482
4483 @unknownPtr = external global i8
4484 ...
4485 %ptr = alloca i8
4486 store i8 42, i8* %ptr, !invariant.group !0
4487 call void @foo(i8* %ptr)
4488
4489 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4490 call void @foo(i8* %ptr)
4491 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4492
4493 %newPtr = call i8* @getPointer(i8* %ptr)
4494 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4495
4496 %unknownValue = load i8, i8* @unknownPtr
4497 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4498
4499 call void @foo(i8* %ptr)
4500 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4501 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4502
4503 ...
4504 declare void @foo(i8*)
4505 declare i8* @getPointer(i8*)
4506 declare i8* @llvm.invariant.group.barrier(i8*)
4507
4508 !0 = !{!"magic ptr"}
4509 !1 = !{!"other ptr"}
4510
4511
4512
Sean Silvab084af42012-12-07 10:36:55 +00004513Module Flags Metadata
4514=====================
4515
4516Information about the module as a whole is difficult to convey to LLVM's
4517subsystems. The LLVM IR isn't sufficient to transmit this information.
4518The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004519this. These flags are in the form of key / value pairs --- much like a
4520dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004521look it up.
4522
4523The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4524Each triplet has the following form:
4525
4526- The first element is a *behavior* flag, which specifies the behavior
4527 when two (or more) modules are merged together, and it encounters two
4528 (or more) metadata with the same ID. The supported behaviors are
4529 described below.
4530- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004531 metadata. Each module may only have one flag entry for each unique ID (not
4532 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004533- The third element is the value of the flag.
4534
4535When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004536``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4537each unique metadata ID string, there will be exactly one entry in the merged
4538modules ``llvm.module.flags`` metadata table, and the value for that entry will
4539be determined by the merge behavior flag, as described below. The only exception
4540is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004541
4542The following behaviors are supported:
4543
4544.. list-table::
4545 :header-rows: 1
4546 :widths: 10 90
4547
4548 * - Value
4549 - Behavior
4550
4551 * - 1
4552 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004553 Emits an error if two values disagree, otherwise the resulting value
4554 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004555
4556 * - 2
4557 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004558 Emits a warning if two values disagree. The result value will be the
4559 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004560
4561 * - 3
4562 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004563 Adds a requirement that another module flag be present and have a
4564 specified value after linking is performed. The value must be a
4565 metadata pair, where the first element of the pair is the ID of the
4566 module flag to be restricted, and the second element of the pair is
4567 the value the module flag should be restricted to. This behavior can
4568 be used to restrict the allowable results (via triggering of an
4569 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004570
4571 * - 4
4572 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004573 Uses the specified value, regardless of the behavior or value of the
4574 other module. If both modules specify **Override**, but the values
4575 differ, an error will be emitted.
4576
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004577 * - 5
4578 - **Append**
4579 Appends the two values, which are required to be metadata nodes.
4580
4581 * - 6
4582 - **AppendUnique**
4583 Appends the two values, which are required to be metadata
4584 nodes. However, duplicate entries in the second list are dropped
4585 during the append operation.
4586
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004587It is an error for a particular unique flag ID to have multiple behaviors,
4588except in the case of **Require** (which adds restrictions on another metadata
4589value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004590
4591An example of module flags:
4592
4593.. code-block:: llvm
4594
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004595 !0 = !{ i32 1, !"foo", i32 1 }
4596 !1 = !{ i32 4, !"bar", i32 37 }
4597 !2 = !{ i32 2, !"qux", i32 42 }
4598 !3 = !{ i32 3, !"qux",
4599 !{
4600 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004601 }
4602 }
4603 !llvm.module.flags = !{ !0, !1, !2, !3 }
4604
4605- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4606 if two or more ``!"foo"`` flags are seen is to emit an error if their
4607 values are not equal.
4608
4609- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4610 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004611 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004612
4613- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4614 behavior if two or more ``!"qux"`` flags are seen is to emit a
4615 warning if their values are not equal.
4616
4617- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4618
4619 ::
4620
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004621 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004622
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004623 The behavior is to emit an error if the ``llvm.module.flags`` does not
4624 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4625 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004626
4627Objective-C Garbage Collection Module Flags Metadata
4628----------------------------------------------------
4629
4630On the Mach-O platform, Objective-C stores metadata about garbage
4631collection in a special section called "image info". The metadata
4632consists of a version number and a bitmask specifying what types of
4633garbage collection are supported (if any) by the file. If two or more
4634modules are linked together their garbage collection metadata needs to
4635be merged rather than appended together.
4636
4637The Objective-C garbage collection module flags metadata consists of the
4638following key-value pairs:
4639
4640.. list-table::
4641 :header-rows: 1
4642 :widths: 30 70
4643
4644 * - Key
4645 - Value
4646
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004647 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004648 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004649
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004650 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004651 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004652 always 0.
4653
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004654 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004655 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004656 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4657 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4658 Objective-C ABI version 2.
4659
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004660 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004661 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004662 not. Valid values are 0, for no garbage collection, and 2, for garbage
4663 collection supported.
4664
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004665 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004666 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004667 If present, its value must be 6. This flag requires that the
4668 ``Objective-C Garbage Collection`` flag have the value 2.
4669
4670Some important flag interactions:
4671
4672- If a module with ``Objective-C Garbage Collection`` set to 0 is
4673 merged with a module with ``Objective-C Garbage Collection`` set to
4674 2, then the resulting module has the
4675 ``Objective-C Garbage Collection`` flag set to 0.
4676- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4677 merged with a module with ``Objective-C GC Only`` set to 6.
4678
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004679Automatic Linker Flags Module Flags Metadata
4680--------------------------------------------
4681
4682Some targets support embedding flags to the linker inside individual object
4683files. Typically this is used in conjunction with language extensions which
4684allow source files to explicitly declare the libraries they depend on, and have
4685these automatically be transmitted to the linker via object files.
4686
4687These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004688using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004689to be ``AppendUnique``, and the value for the key is expected to be a metadata
4690node which should be a list of other metadata nodes, each of which should be a
4691list of metadata strings defining linker options.
4692
4693For example, the following metadata section specifies two separate sets of
4694linker options, presumably to link against ``libz`` and the ``Cocoa``
4695framework::
4696
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004697 !0 = !{ i32 6, !"Linker Options",
4698 !{
4699 !{ !"-lz" },
4700 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004701 !llvm.module.flags = !{ !0 }
4702
4703The metadata encoding as lists of lists of options, as opposed to a collapsed
4704list of options, is chosen so that the IR encoding can use multiple option
4705strings to specify e.g., a single library, while still having that specifier be
4706preserved as an atomic element that can be recognized by a target specific
4707assembly writer or object file emitter.
4708
4709Each individual option is required to be either a valid option for the target's
4710linker, or an option that is reserved by the target specific assembly writer or
4711object file emitter. No other aspect of these options is defined by the IR.
4712
Oliver Stannard5dc29342014-06-20 10:08:11 +00004713C type width Module Flags Metadata
4714----------------------------------
4715
4716The ARM backend emits a section into each generated object file describing the
4717options that it was compiled with (in a compiler-independent way) to prevent
4718linking incompatible objects, and to allow automatic library selection. Some
4719of these options are not visible at the IR level, namely wchar_t width and enum
4720width.
4721
4722To pass this information to the backend, these options are encoded in module
4723flags metadata, using the following key-value pairs:
4724
4725.. list-table::
4726 :header-rows: 1
4727 :widths: 30 70
4728
4729 * - Key
4730 - Value
4731
4732 * - short_wchar
4733 - * 0 --- sizeof(wchar_t) == 4
4734 * 1 --- sizeof(wchar_t) == 2
4735
4736 * - short_enum
4737 - * 0 --- Enums are at least as large as an ``int``.
4738 * 1 --- Enums are stored in the smallest integer type which can
4739 represent all of its values.
4740
4741For example, the following metadata section specifies that the module was
4742compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4743enum is the smallest type which can represent all of its values::
4744
4745 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004746 !0 = !{i32 1, !"short_wchar", i32 1}
4747 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004748
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004749.. _intrinsicglobalvariables:
4750
Sean Silvab084af42012-12-07 10:36:55 +00004751Intrinsic Global Variables
4752==========================
4753
4754LLVM has a number of "magic" global variables that contain data that
4755affect code generation or other IR semantics. These are documented here.
4756All globals of this sort should have a section specified as
4757"``llvm.metadata``". This section and all globals that start with
4758"``llvm.``" are reserved for use by LLVM.
4759
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004760.. _gv_llvmused:
4761
Sean Silvab084af42012-12-07 10:36:55 +00004762The '``llvm.used``' Global Variable
4763-----------------------------------
4764
Rafael Espindola74f2e462013-04-22 14:58:02 +00004765The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004766:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004767pointers to named global variables, functions and aliases which may optionally
4768have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004769use of it is:
4770
4771.. code-block:: llvm
4772
4773 @X = global i8 4
4774 @Y = global i32 123
4775
4776 @llvm.used = appending global [2 x i8*] [
4777 i8* @X,
4778 i8* bitcast (i32* @Y to i8*)
4779 ], section "llvm.metadata"
4780
Rafael Espindola74f2e462013-04-22 14:58:02 +00004781If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4782and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004783symbol that it cannot see (which is why they have to be named). For example, if
4784a variable has internal linkage and no references other than that from the
4785``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4786references from inline asms and other things the compiler cannot "see", and
4787corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004788
4789On some targets, the code generator must emit a directive to the
4790assembler or object file to prevent the assembler and linker from
4791molesting the symbol.
4792
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004793.. _gv_llvmcompilerused:
4794
Sean Silvab084af42012-12-07 10:36:55 +00004795The '``llvm.compiler.used``' Global Variable
4796--------------------------------------------
4797
4798The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4799directive, except that it only prevents the compiler from touching the
4800symbol. On targets that support it, this allows an intelligent linker to
4801optimize references to the symbol without being impeded as it would be
4802by ``@llvm.used``.
4803
4804This is a rare construct that should only be used in rare circumstances,
4805and should not be exposed to source languages.
4806
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004807.. _gv_llvmglobalctors:
4808
Sean Silvab084af42012-12-07 10:36:55 +00004809The '``llvm.global_ctors``' Global Variable
4810-------------------------------------------
4811
4812.. code-block:: llvm
4813
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004814 %0 = type { i32, void ()*, i8* }
4815 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004816
4817The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004818functions, priorities, and an optional associated global or function.
4819The functions referenced by this array will be called in ascending order
4820of priority (i.e. lowest first) when the module is loaded. The order of
4821functions with the same priority is not defined.
4822
4823If the third field is present, non-null, and points to a global variable
4824or function, the initializer function will only run if the associated
4825data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004826
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004827.. _llvmglobaldtors:
4828
Sean Silvab084af42012-12-07 10:36:55 +00004829The '``llvm.global_dtors``' Global Variable
4830-------------------------------------------
4831
4832.. code-block:: llvm
4833
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004834 %0 = type { i32, void ()*, i8* }
4835 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004836
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004837The ``@llvm.global_dtors`` array contains a list of destructor
4838functions, priorities, and an optional associated global or function.
4839The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004840order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004841order of functions with the same priority is not defined.
4842
4843If the third field is present, non-null, and points to a global variable
4844or function, the destructor function will only run if the associated
4845data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004846
4847Instruction Reference
4848=====================
4849
4850The LLVM instruction set consists of several different classifications
4851of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4852instructions <binaryops>`, :ref:`bitwise binary
4853instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4854:ref:`other instructions <otherops>`.
4855
4856.. _terminators:
4857
4858Terminator Instructions
4859-----------------------
4860
4861As mentioned :ref:`previously <functionstructure>`, every basic block in a
4862program ends with a "Terminator" instruction, which indicates which
4863block should be executed after the current block is finished. These
4864terminator instructions typically yield a '``void``' value: they produce
4865control flow, not values (the one exception being the
4866':ref:`invoke <i_invoke>`' instruction).
4867
4868The terminator instructions are: ':ref:`ret <i_ret>`',
4869':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4870':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004871':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4872':ref:`catchendpad <i_catchendpad>`',
4873':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004874':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004875':ref:`cleanupret <i_cleanupret>`',
4876':ref:`terminatepad <i_terminatepad>`',
4877and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004878
4879.. _i_ret:
4880
4881'``ret``' Instruction
4882^^^^^^^^^^^^^^^^^^^^^
4883
4884Syntax:
4885"""""""
4886
4887::
4888
4889 ret <type> <value> ; Return a value from a non-void function
4890 ret void ; Return from void function
4891
4892Overview:
4893"""""""""
4894
4895The '``ret``' instruction is used to return control flow (and optionally
4896a value) from a function back to the caller.
4897
4898There are two forms of the '``ret``' instruction: one that returns a
4899value and then causes control flow, and one that just causes control
4900flow to occur.
4901
4902Arguments:
4903""""""""""
4904
4905The '``ret``' instruction optionally accepts a single argument, the
4906return value. The type of the return value must be a ':ref:`first
4907class <t_firstclass>`' type.
4908
4909A function is not :ref:`well formed <wellformed>` if it it has a non-void
4910return type and contains a '``ret``' instruction with no return value or
4911a return value with a type that does not match its type, or if it has a
4912void return type and contains a '``ret``' instruction with a return
4913value.
4914
4915Semantics:
4916""""""""""
4917
4918When the '``ret``' instruction is executed, control flow returns back to
4919the calling function's context. If the caller is a
4920":ref:`call <i_call>`" instruction, execution continues at the
4921instruction after the call. If the caller was an
4922":ref:`invoke <i_invoke>`" instruction, execution continues at the
4923beginning of the "normal" destination block. If the instruction returns
4924a value, that value shall set the call or invoke instruction's return
4925value.
4926
4927Example:
4928""""""""
4929
4930.. code-block:: llvm
4931
4932 ret i32 5 ; Return an integer value of 5
4933 ret void ; Return from a void function
4934 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4935
4936.. _i_br:
4937
4938'``br``' Instruction
4939^^^^^^^^^^^^^^^^^^^^
4940
4941Syntax:
4942"""""""
4943
4944::
4945
4946 br i1 <cond>, label <iftrue>, label <iffalse>
4947 br label <dest> ; Unconditional branch
4948
4949Overview:
4950"""""""""
4951
4952The '``br``' instruction is used to cause control flow to transfer to a
4953different basic block in the current function. There are two forms of
4954this instruction, corresponding to a conditional branch and an
4955unconditional branch.
4956
4957Arguments:
4958""""""""""
4959
4960The conditional branch form of the '``br``' instruction takes a single
4961'``i1``' value and two '``label``' values. The unconditional form of the
4962'``br``' instruction takes a single '``label``' value as a target.
4963
4964Semantics:
4965""""""""""
4966
4967Upon execution of a conditional '``br``' instruction, the '``i1``'
4968argument is evaluated. If the value is ``true``, control flows to the
4969'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4970to the '``iffalse``' ``label`` argument.
4971
4972Example:
4973""""""""
4974
4975.. code-block:: llvm
4976
4977 Test:
4978 %cond = icmp eq i32 %a, %b
4979 br i1 %cond, label %IfEqual, label %IfUnequal
4980 IfEqual:
4981 ret i32 1
4982 IfUnequal:
4983 ret i32 0
4984
4985.. _i_switch:
4986
4987'``switch``' Instruction
4988^^^^^^^^^^^^^^^^^^^^^^^^
4989
4990Syntax:
4991"""""""
4992
4993::
4994
4995 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4996
4997Overview:
4998"""""""""
4999
5000The '``switch``' instruction is used to transfer control flow to one of
5001several different places. It is a generalization of the '``br``'
5002instruction, allowing a branch to occur to one of many possible
5003destinations.
5004
5005Arguments:
5006""""""""""
5007
5008The '``switch``' instruction uses three parameters: an integer
5009comparison value '``value``', a default '``label``' destination, and an
5010array of pairs of comparison value constants and '``label``'s. The table
5011is not allowed to contain duplicate constant entries.
5012
5013Semantics:
5014""""""""""
5015
5016The ``switch`` instruction specifies a table of values and destinations.
5017When the '``switch``' instruction is executed, this table is searched
5018for the given value. If the value is found, control flow is transferred
5019to the corresponding destination; otherwise, control flow is transferred
5020to the default destination.
5021
5022Implementation:
5023"""""""""""""""
5024
5025Depending on properties of the target machine and the particular
5026``switch`` instruction, this instruction may be code generated in
5027different ways. For example, it could be generated as a series of
5028chained conditional branches or with a lookup table.
5029
5030Example:
5031""""""""
5032
5033.. code-block:: llvm
5034
5035 ; Emulate a conditional br instruction
5036 %Val = zext i1 %value to i32
5037 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5038
5039 ; Emulate an unconditional br instruction
5040 switch i32 0, label %dest [ ]
5041
5042 ; Implement a jump table:
5043 switch i32 %val, label %otherwise [ i32 0, label %onzero
5044 i32 1, label %onone
5045 i32 2, label %ontwo ]
5046
5047.. _i_indirectbr:
5048
5049'``indirectbr``' Instruction
5050^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5051
5052Syntax:
5053"""""""
5054
5055::
5056
5057 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5058
5059Overview:
5060"""""""""
5061
5062The '``indirectbr``' instruction implements an indirect branch to a
5063label within the current function, whose address is specified by
5064"``address``". Address must be derived from a
5065:ref:`blockaddress <blockaddress>` constant.
5066
5067Arguments:
5068""""""""""
5069
5070The '``address``' argument is the address of the label to jump to. The
5071rest of the arguments indicate the full set of possible destinations
5072that the address may point to. Blocks are allowed to occur multiple
5073times in the destination list, though this isn't particularly useful.
5074
5075This destination list is required so that dataflow analysis has an
5076accurate understanding of the CFG.
5077
5078Semantics:
5079""""""""""
5080
5081Control transfers to the block specified in the address argument. All
5082possible destination blocks must be listed in the label list, otherwise
5083this instruction has undefined behavior. This implies that jumps to
5084labels defined in other functions have undefined behavior as well.
5085
5086Implementation:
5087"""""""""""""""
5088
5089This is typically implemented with a jump through a register.
5090
5091Example:
5092""""""""
5093
5094.. code-block:: llvm
5095
5096 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5097
5098.. _i_invoke:
5099
5100'``invoke``' Instruction
5101^^^^^^^^^^^^^^^^^^^^^^^^
5102
5103Syntax:
5104"""""""
5105
5106::
5107
5108 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005109 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005110
5111Overview:
5112"""""""""
5113
5114The '``invoke``' instruction causes control to transfer to a specified
5115function, with the possibility of control flow transfer to either the
5116'``normal``' label or the '``exception``' label. If the callee function
5117returns with the "``ret``" instruction, control flow will return to the
5118"normal" label. If the callee (or any indirect callees) returns via the
5119":ref:`resume <i_resume>`" instruction or other exception handling
5120mechanism, control is interrupted and continued at the dynamically
5121nearest "exception" label.
5122
5123The '``exception``' label is a `landing
5124pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5125'``exception``' label is required to have the
5126":ref:`landingpad <i_landingpad>`" instruction, which contains the
5127information about the behavior of the program after unwinding happens,
5128as its first non-PHI instruction. The restrictions on the
5129"``landingpad``" instruction's tightly couples it to the "``invoke``"
5130instruction, so that the important information contained within the
5131"``landingpad``" instruction can't be lost through normal code motion.
5132
5133Arguments:
5134""""""""""
5135
5136This instruction requires several arguments:
5137
5138#. The optional "cconv" marker indicates which :ref:`calling
5139 convention <callingconv>` the call should use. If none is
5140 specified, the call defaults to using C calling conventions.
5141#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5142 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5143 are valid here.
5144#. '``ptr to function ty``': shall be the signature of the pointer to
5145 function value being invoked. In most cases, this is a direct
5146 function invocation, but indirect ``invoke``'s are just as possible,
5147 branching off an arbitrary pointer to function value.
5148#. '``function ptr val``': An LLVM value containing a pointer to a
5149 function to be invoked.
5150#. '``function args``': argument list whose types match the function
5151 signature argument types and parameter attributes. All arguments must
5152 be of :ref:`first class <t_firstclass>` type. If the function signature
5153 indicates the function accepts a variable number of arguments, the
5154 extra arguments can be specified.
5155#. '``normal label``': the label reached when the called function
5156 executes a '``ret``' instruction.
5157#. '``exception label``': the label reached when a callee returns via
5158 the :ref:`resume <i_resume>` instruction or other exception handling
5159 mechanism.
5160#. The optional :ref:`function attributes <fnattrs>` list. Only
5161 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5162 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005163#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005164
5165Semantics:
5166""""""""""
5167
5168This instruction is designed to operate as a standard '``call``'
5169instruction in most regards. The primary difference is that it
5170establishes an association with a label, which is used by the runtime
5171library to unwind the stack.
5172
5173This instruction is used in languages with destructors to ensure that
5174proper cleanup is performed in the case of either a ``longjmp`` or a
5175thrown exception. Additionally, this is important for implementation of
5176'``catch``' clauses in high-level languages that support them.
5177
5178For the purposes of the SSA form, the definition of the value returned
5179by the '``invoke``' instruction is deemed to occur on the edge from the
5180current block to the "normal" label. If the callee unwinds then no
5181return value is available.
5182
5183Example:
5184""""""""
5185
5186.. code-block:: llvm
5187
5188 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005189 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005190 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005191 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005192
5193.. _i_resume:
5194
5195'``resume``' Instruction
5196^^^^^^^^^^^^^^^^^^^^^^^^
5197
5198Syntax:
5199"""""""
5200
5201::
5202
5203 resume <type> <value>
5204
5205Overview:
5206"""""""""
5207
5208The '``resume``' instruction is a terminator instruction that has no
5209successors.
5210
5211Arguments:
5212""""""""""
5213
5214The '``resume``' instruction requires one argument, which must have the
5215same type as the result of any '``landingpad``' instruction in the same
5216function.
5217
5218Semantics:
5219""""""""""
5220
5221The '``resume``' instruction resumes propagation of an existing
5222(in-flight) exception whose unwinding was interrupted with a
5223:ref:`landingpad <i_landingpad>` instruction.
5224
5225Example:
5226""""""""
5227
5228.. code-block:: llvm
5229
5230 resume { i8*, i32 } %exn
5231
David Majnemer654e1302015-07-31 17:58:14 +00005232.. _i_catchpad:
5233
5234'``catchpad``' Instruction
5235^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5236
5237Syntax:
5238"""""""
5239
5240::
5241
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005242 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005243 to label <normal label> unwind label <exception label>
5244
5245Overview:
5246"""""""""
5247
5248The '``catchpad``' instruction is used by `LLVM's exception handling
5249system <ExceptionHandling.html#overview>`_ to specify that a basic block
5250is a catch block --- one where a personality routine attempts to transfer
5251control to catch an exception.
5252The ``args`` correspond to whatever information the personality
5253routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005254exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005255``catchpad`` is not an appropriate handler for the in-flight exception.
5256The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005257portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5258:ref:`token <t_token>` and is used to match the ``catchpad`` to
5259corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005260
5261Arguments:
5262""""""""""
5263
5264The instruction takes a list of arbitrary values which are interpreted
5265by the :ref:`personality function <personalityfn>`.
5266
5267The ``catchpad`` must be provided a ``normal`` label to transfer control
5268to if the ``catchpad`` matches the exception and an ``exception``
5269label to transfer control to if it doesn't.
5270
5271Semantics:
5272""""""""""
5273
David Majnemer654e1302015-07-31 17:58:14 +00005274When the call stack is being unwound due to an exception being thrown,
5275the exception is compared against the ``args``. If it doesn't match,
5276then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005277As with calling conventions, how the personality function results are
5278represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005279
5280The ``catchpad`` instruction has several restrictions:
5281
5282- A catch block is a basic block which is the unwind destination of
5283 an exceptional instruction.
5284- A catch block must have a '``catchpad``' instruction as its
5285 first non-PHI instruction.
5286- A catch block's ``exception`` edge must refer to a catch block or a
5287 catch-end block.
5288- There can be only one '``catchpad``' instruction within the
5289 catch block.
5290- A basic block that is not a catch block may not include a
5291 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005292- A catch block which has another catch block as a predecessor may not have
5293 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005294- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005295 ``ret`` without first executing a ``catchret`` that consumes the
5296 ``catchpad`` or unwinding through its ``catchendpad``.
5297- It is undefined behavior for control to transfer from a ``catchpad`` to
5298 itself without first executing a ``catchret`` that consumes the
5299 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005300
5301Example:
5302""""""""
5303
5304.. code-block:: llvm
5305
5306 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005307 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005308 to label %int.handler unwind label %terminate
5309
5310.. _i_catchendpad:
5311
5312'``catchendpad``' Instruction
5313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5314
5315Syntax:
5316"""""""
5317
5318::
5319
5320 catchendpad unwind label <nextaction>
5321 catchendpad unwind to caller
5322
5323Overview:
5324"""""""""
5325
5326The '``catchendpad``' instruction is used by `LLVM's exception handling
5327system <ExceptionHandling.html#overview>`_ to communicate to the
5328:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005329with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5330exception out of a catch handler is represented by unwinding through its
5331``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5332do not handle an exception is also represented by unwinding through their
5333``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005334
5335The ``nextaction`` label indicates where control should transfer to if
5336none of the ``catchpad`` instructions are suitable for catching the
5337in-flight exception.
5338
5339If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005340its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005341:ref:`personality function <personalityfn>` will continue processing
5342exception handling actions in the caller.
5343
5344Arguments:
5345""""""""""
5346
5347The instruction optionally takes a label, ``nextaction``, indicating
5348where control should transfer to if none of the preceding
5349``catchpad`` instructions are suitable for the in-flight exception.
5350
5351Semantics:
5352""""""""""
5353
5354When the call stack is being unwound due to an exception being thrown
5355and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005356control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005357present, control is transfered to the caller.
5358
5359The ``catchendpad`` instruction has several restrictions:
5360
5361- A catch-end block is a basic block which is the unwind destination of
5362 an exceptional instruction.
5363- A catch-end block must have a '``catchendpad``' instruction as its
5364 first non-PHI instruction.
5365- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005366 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005367- A basic block that is not a catch-end block may not include a
5368 '``catchendpad``' instruction.
5369- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005370- It is undefined behavior to execute a ``catchendpad`` if none of the
5371 '``catchpad``'s chained to it have been executed.
5372- It is undefined behavior to execute a ``catchendpad`` twice without an
5373 intervening execution of one or more of the '``catchpad``'s chained to it.
5374- It is undefined behavior to execute a ``catchendpad`` if, after the most
5375 recent execution of the normal successor edge of any ``catchpad`` chained
5376 to it, some ``catchret`` consuming that ``catchpad`` has already been
5377 executed.
5378- It is undefined behavior to execute a ``catchendpad`` if, after the most
5379 recent execution of the normal successor edge of any ``catchpad`` chained
5380 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5381 not had a corresponding
5382 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005383
5384Example:
5385""""""""
5386
5387.. code-block:: llvm
5388
5389 catchendpad unwind label %terminate
5390 catchendpad unwind to caller
5391
5392.. _i_catchret:
5393
5394'``catchret``' Instruction
5395^^^^^^^^^^^^^^^^^^^^^^^^^^
5396
5397Syntax:
5398"""""""
5399
5400::
5401
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005402 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005403
5404Overview:
5405"""""""""
5406
5407The '``catchret``' instruction is a terminator instruction that has a
5408single successor.
5409
5410
5411Arguments:
5412""""""""""
5413
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005414The first argument to a '``catchret``' indicates which ``catchpad`` it
5415exits. It must be a :ref:`catchpad <i_catchpad>`.
5416The second argument to a '``catchret``' specifies where control will
5417transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005418
5419Semantics:
5420""""""""""
5421
5422The '``catchret``' instruction ends the existing (in-flight) exception
5423whose unwinding was interrupted with a
5424:ref:`catchpad <i_catchpad>` instruction.
5425The :ref:`personality function <personalityfn>` gets a chance to execute
5426arbitrary code to, for example, run a C++ destructor.
5427Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005428It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005429
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005430It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5431not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005432
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005433It is undefined behavior to execute a ``catchret`` if, after the most recent
5434execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5435to the same ``catchpad`` has already been executed.
5436
5437It is undefined behavior to execute a ``catchret`` if, after the most recent
5438execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5439been executed but has not had a corresponding
5440``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005441
5442Example:
5443""""""""
5444
5445.. code-block:: llvm
5446
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005447 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005448
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005449.. _i_cleanupendpad:
5450
5451'``cleanupendpad``' Instruction
5452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5453
5454Syntax:
5455"""""""
5456
5457::
5458
5459 cleanupendpad <value> unwind label <nextaction>
5460 cleanupendpad <value> unwind to caller
5461
5462Overview:
5463"""""""""
5464
5465The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5466system <ExceptionHandling.html#overview>`_ to communicate to the
5467:ref:`personality function <personalityfn>` which invokes are associated
5468with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5469out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5470
5471The ``nextaction`` label indicates where control should unwind to next, in the
5472event that a cleanup is exited by means of an(other) exception being raised.
5473
5474If a ``nextaction`` label is not present, the instruction unwinds out of
5475its parent function. The
5476:ref:`personality function <personalityfn>` will continue processing
5477exception handling actions in the caller.
5478
5479Arguments:
5480""""""""""
5481
5482The '``cleanupendpad``' instruction requires one argument, which indicates
5483which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5484It also has an optional successor, ``nextaction``, indicating where control
5485should transfer to.
5486
5487Semantics:
5488""""""""""
5489
5490When and exception propagates to a ``cleanupendpad``, control is transfered to
5491``nextaction`` if it is present. If it is not present, control is transfered to
5492the caller.
5493
5494The ``cleanupendpad`` instruction has several restrictions:
5495
5496- A cleanup-end block is a basic block which is the unwind destination of
5497 an exceptional instruction.
5498- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5499 first non-PHI instruction.
5500- There can be only one '``cleanupendpad``' instruction within the
5501 cleanup-end block.
5502- A basic block that is not a cleanup-end block may not include a
5503 '``cleanupendpad``' instruction.
5504- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5505 has not been executed.
5506- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5507 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5508 consuming the same ``cleanuppad`` has already been executed.
5509- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5510 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5511 ``catchpad`` has been executed but has not had a corresponding
5512 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5513
5514Example:
5515""""""""
5516
5517.. code-block:: llvm
5518
5519 cleanupendpad %cleanup unwind label %terminate
5520 cleanupendpad %cleanup unwind to caller
5521
David Majnemer654e1302015-07-31 17:58:14 +00005522.. _i_cleanupret:
5523
5524'``cleanupret``' Instruction
5525^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5526
5527Syntax:
5528"""""""
5529
5530::
5531
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005532 cleanupret <value> unwind label <continue>
5533 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005534
5535Overview:
5536"""""""""
5537
5538The '``cleanupret``' instruction is a terminator instruction that has
5539an optional successor.
5540
5541
5542Arguments:
5543""""""""""
5544
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005545The '``cleanupret``' instruction requires one argument, which indicates
5546which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5547It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005548
5549Semantics:
5550""""""""""
5551
5552The '``cleanupret``' instruction indicates to the
5553:ref:`personality function <personalityfn>` that one
5554:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5555It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005556
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005557It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5558not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005559
5560It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5561execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5562consuming the same ``cleanuppad`` has already been executed.
5563
5564It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5565execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5566been executed but has not had a corresponding
5567``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005568
5569Example:
5570""""""""
5571
5572.. code-block:: llvm
5573
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005574 cleanupret %cleanup unwind to caller
5575 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005576
5577.. _i_terminatepad:
5578
5579'``terminatepad``' Instruction
5580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5581
5582Syntax:
5583"""""""
5584
5585::
5586
5587 terminatepad [<args>*] unwind label <exception label>
5588 terminatepad [<args>*] unwind to caller
5589
5590Overview:
5591"""""""""
5592
5593The '``terminatepad``' instruction is used by `LLVM's exception handling
5594system <ExceptionHandling.html#overview>`_ to specify that a basic block
5595is a terminate block --- one where a personality routine may decide to
5596terminate the program.
5597The ``args`` correspond to whatever information the personality
5598routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005599program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005600personality routine decides not to terminate the program for the
5601in-flight exception.
5602
5603Arguments:
5604""""""""""
5605
5606The instruction takes a list of arbitrary values which are interpreted
5607by the :ref:`personality function <personalityfn>`.
5608
5609The ``terminatepad`` may be given an ``exception`` label to
5610transfer control to if the in-flight exception matches the ``args``.
5611
5612Semantics:
5613""""""""""
5614
5615When the call stack is being unwound due to an exception being thrown,
5616the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005617then control is transfered to the ``exception`` basic block. Otherwise,
5618the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005619the first argument to ``terminatepad`` specifies what function the
5620personality should defer to in order to terminate the program.
5621
5622The ``terminatepad`` instruction has several restrictions:
5623
5624- A terminate block is a basic block which is the unwind destination of
5625 an exceptional instruction.
5626- A terminate block must have a '``terminatepad``' instruction as its
5627 first non-PHI instruction.
5628- There can be only one '``terminatepad``' instruction within the
5629 terminate block.
5630- A basic block that is not a terminate block may not include a
5631 '``terminatepad``' instruction.
5632
5633Example:
5634""""""""
5635
5636.. code-block:: llvm
5637
5638 ;; A terminate block which only permits integers.
5639 terminatepad [i8** @_ZTIi] unwind label %continue
5640
Sean Silvab084af42012-12-07 10:36:55 +00005641.. _i_unreachable:
5642
5643'``unreachable``' Instruction
5644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5645
5646Syntax:
5647"""""""
5648
5649::
5650
5651 unreachable
5652
5653Overview:
5654"""""""""
5655
5656The '``unreachable``' instruction has no defined semantics. This
5657instruction is used to inform the optimizer that a particular portion of
5658the code is not reachable. This can be used to indicate that the code
5659after a no-return function cannot be reached, and other facts.
5660
5661Semantics:
5662""""""""""
5663
5664The '``unreachable``' instruction has no defined semantics.
5665
5666.. _binaryops:
5667
5668Binary Operations
5669-----------------
5670
5671Binary operators are used to do most of the computation in a program.
5672They require two operands of the same type, execute an operation on
5673them, and produce a single value. The operands might represent multiple
5674data, as is the case with the :ref:`vector <t_vector>` data type. The
5675result value has the same type as its operands.
5676
5677There are several different binary operators:
5678
5679.. _i_add:
5680
5681'``add``' Instruction
5682^^^^^^^^^^^^^^^^^^^^^
5683
5684Syntax:
5685"""""""
5686
5687::
5688
Tim Northover675a0962014-06-13 14:24:23 +00005689 <result> = add <ty> <op1>, <op2> ; yields ty:result
5690 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5691 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5692 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005693
5694Overview:
5695"""""""""
5696
5697The '``add``' instruction returns the sum of its two operands.
5698
5699Arguments:
5700""""""""""
5701
5702The two arguments to the '``add``' instruction must be
5703:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5704arguments must have identical types.
5705
5706Semantics:
5707""""""""""
5708
5709The value produced is the integer sum of the two operands.
5710
5711If the sum has unsigned overflow, the result returned is the
5712mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5713the result.
5714
5715Because LLVM integers use a two's complement representation, this
5716instruction is appropriate for both signed and unsigned integers.
5717
5718``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5719respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5720result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5721unsigned and/or signed overflow, respectively, occurs.
5722
5723Example:
5724""""""""
5725
5726.. code-block:: llvm
5727
Tim Northover675a0962014-06-13 14:24:23 +00005728 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005729
5730.. _i_fadd:
5731
5732'``fadd``' Instruction
5733^^^^^^^^^^^^^^^^^^^^^^
5734
5735Syntax:
5736"""""""
5737
5738::
5739
Tim Northover675a0962014-06-13 14:24:23 +00005740 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005741
5742Overview:
5743"""""""""
5744
5745The '``fadd``' instruction returns the sum of its two operands.
5746
5747Arguments:
5748""""""""""
5749
5750The two arguments to the '``fadd``' instruction must be :ref:`floating
5751point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5752Both arguments must have identical types.
5753
5754Semantics:
5755""""""""""
5756
5757The value produced is the floating point sum of the two operands. This
5758instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5759which are optimization hints to enable otherwise unsafe floating point
5760optimizations:
5761
5762Example:
5763""""""""
5764
5765.. code-block:: llvm
5766
Tim Northover675a0962014-06-13 14:24:23 +00005767 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005768
5769'``sub``' Instruction
5770^^^^^^^^^^^^^^^^^^^^^
5771
5772Syntax:
5773"""""""
5774
5775::
5776
Tim Northover675a0962014-06-13 14:24:23 +00005777 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5778 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5779 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5780 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005781
5782Overview:
5783"""""""""
5784
5785The '``sub``' instruction returns the difference of its two operands.
5786
5787Note that the '``sub``' instruction is used to represent the '``neg``'
5788instruction present in most other intermediate representations.
5789
5790Arguments:
5791""""""""""
5792
5793The two arguments to the '``sub``' instruction must be
5794:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5795arguments must have identical types.
5796
5797Semantics:
5798""""""""""
5799
5800The value produced is the integer difference of the two operands.
5801
5802If the difference has unsigned overflow, the result returned is the
5803mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5804the result.
5805
5806Because LLVM integers use a two's complement representation, this
5807instruction is appropriate for both signed and unsigned integers.
5808
5809``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5810respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5811result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5812unsigned and/or signed overflow, respectively, occurs.
5813
5814Example:
5815""""""""
5816
5817.. code-block:: llvm
5818
Tim Northover675a0962014-06-13 14:24:23 +00005819 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5820 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005821
5822.. _i_fsub:
5823
5824'``fsub``' Instruction
5825^^^^^^^^^^^^^^^^^^^^^^
5826
5827Syntax:
5828"""""""
5829
5830::
5831
Tim Northover675a0962014-06-13 14:24:23 +00005832 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005833
5834Overview:
5835"""""""""
5836
5837The '``fsub``' instruction returns the difference of its two operands.
5838
5839Note that the '``fsub``' instruction is used to represent the '``fneg``'
5840instruction present in most other intermediate representations.
5841
5842Arguments:
5843""""""""""
5844
5845The two arguments to the '``fsub``' instruction must be :ref:`floating
5846point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5847Both arguments must have identical types.
5848
5849Semantics:
5850""""""""""
5851
5852The value produced is the floating point difference of the two operands.
5853This instruction can also take any number of :ref:`fast-math
5854flags <fastmath>`, which are optimization hints to enable otherwise
5855unsafe floating point optimizations:
5856
5857Example:
5858""""""""
5859
5860.. code-block:: llvm
5861
Tim Northover675a0962014-06-13 14:24:23 +00005862 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5863 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005864
5865'``mul``' Instruction
5866^^^^^^^^^^^^^^^^^^^^^
5867
5868Syntax:
5869"""""""
5870
5871::
5872
Tim Northover675a0962014-06-13 14:24:23 +00005873 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5874 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5875 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5876 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005877
5878Overview:
5879"""""""""
5880
5881The '``mul``' instruction returns the product of its two operands.
5882
5883Arguments:
5884""""""""""
5885
5886The two arguments to the '``mul``' instruction must be
5887:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5888arguments must have identical types.
5889
5890Semantics:
5891""""""""""
5892
5893The value produced is the integer product of the two operands.
5894
5895If the result of the multiplication has unsigned overflow, the result
5896returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5897bit width of the result.
5898
5899Because LLVM integers use a two's complement representation, and the
5900result is the same width as the operands, this instruction returns the
5901correct result for both signed and unsigned integers. If a full product
5902(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5903sign-extended or zero-extended as appropriate to the width of the full
5904product.
5905
5906``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5907respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5908result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5909unsigned and/or signed overflow, respectively, occurs.
5910
5911Example:
5912""""""""
5913
5914.. code-block:: llvm
5915
Tim Northover675a0962014-06-13 14:24:23 +00005916 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005917
5918.. _i_fmul:
5919
5920'``fmul``' Instruction
5921^^^^^^^^^^^^^^^^^^^^^^
5922
5923Syntax:
5924"""""""
5925
5926::
5927
Tim Northover675a0962014-06-13 14:24:23 +00005928 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005929
5930Overview:
5931"""""""""
5932
5933The '``fmul``' instruction returns the product of its two operands.
5934
5935Arguments:
5936""""""""""
5937
5938The two arguments to the '``fmul``' instruction must be :ref:`floating
5939point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5940Both arguments must have identical types.
5941
5942Semantics:
5943""""""""""
5944
5945The value produced is the floating point product of the two operands.
5946This instruction can also take any number of :ref:`fast-math
5947flags <fastmath>`, which are optimization hints to enable otherwise
5948unsafe floating point optimizations:
5949
5950Example:
5951""""""""
5952
5953.. code-block:: llvm
5954
Tim Northover675a0962014-06-13 14:24:23 +00005955 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005956
5957'``udiv``' Instruction
5958^^^^^^^^^^^^^^^^^^^^^^
5959
5960Syntax:
5961"""""""
5962
5963::
5964
Tim Northover675a0962014-06-13 14:24:23 +00005965 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5966 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005967
5968Overview:
5969"""""""""
5970
5971The '``udiv``' instruction returns the quotient of its two operands.
5972
5973Arguments:
5974""""""""""
5975
5976The two arguments to the '``udiv``' instruction must be
5977:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5978arguments must have identical types.
5979
5980Semantics:
5981""""""""""
5982
5983The value produced is the unsigned integer quotient of the two operands.
5984
5985Note that unsigned integer division and signed integer division are
5986distinct operations; for signed integer division, use '``sdiv``'.
5987
5988Division by zero leads to undefined behavior.
5989
5990If the ``exact`` keyword is present, the result value of the ``udiv`` is
5991a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5992such, "((a udiv exact b) mul b) == a").
5993
5994Example:
5995""""""""
5996
5997.. code-block:: llvm
5998
Tim Northover675a0962014-06-13 14:24:23 +00005999 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006000
6001'``sdiv``' Instruction
6002^^^^^^^^^^^^^^^^^^^^^^
6003
6004Syntax:
6005"""""""
6006
6007::
6008
Tim Northover675a0962014-06-13 14:24:23 +00006009 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6010 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006011
6012Overview:
6013"""""""""
6014
6015The '``sdiv``' instruction returns the quotient of its two operands.
6016
6017Arguments:
6018""""""""""
6019
6020The two arguments to the '``sdiv``' instruction must be
6021:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6022arguments must have identical types.
6023
6024Semantics:
6025""""""""""
6026
6027The value produced is the signed integer quotient of the two operands
6028rounded towards zero.
6029
6030Note that signed integer division and unsigned integer division are
6031distinct operations; for unsigned integer division, use '``udiv``'.
6032
6033Division by zero leads to undefined behavior. Overflow also leads to
6034undefined behavior; this is a rare case, but can occur, for example, by
6035doing a 32-bit division of -2147483648 by -1.
6036
6037If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6038a :ref:`poison value <poisonvalues>` if the result would be rounded.
6039
6040Example:
6041""""""""
6042
6043.. code-block:: llvm
6044
Tim Northover675a0962014-06-13 14:24:23 +00006045 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006046
6047.. _i_fdiv:
6048
6049'``fdiv``' Instruction
6050^^^^^^^^^^^^^^^^^^^^^^
6051
6052Syntax:
6053"""""""
6054
6055::
6056
Tim Northover675a0962014-06-13 14:24:23 +00006057 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006058
6059Overview:
6060"""""""""
6061
6062The '``fdiv``' instruction returns the quotient of its two operands.
6063
6064Arguments:
6065""""""""""
6066
6067The two arguments to the '``fdiv``' instruction must be :ref:`floating
6068point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6069Both arguments must have identical types.
6070
6071Semantics:
6072""""""""""
6073
6074The value produced is the floating point quotient of the two operands.
6075This instruction can also take any number of :ref:`fast-math
6076flags <fastmath>`, which are optimization hints to enable otherwise
6077unsafe floating point optimizations:
6078
6079Example:
6080""""""""
6081
6082.. code-block:: llvm
6083
Tim Northover675a0962014-06-13 14:24:23 +00006084 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006085
6086'``urem``' Instruction
6087^^^^^^^^^^^^^^^^^^^^^^
6088
6089Syntax:
6090"""""""
6091
6092::
6093
Tim Northover675a0962014-06-13 14:24:23 +00006094 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006095
6096Overview:
6097"""""""""
6098
6099The '``urem``' instruction returns the remainder from the unsigned
6100division of its two arguments.
6101
6102Arguments:
6103""""""""""
6104
6105The two arguments to the '``urem``' instruction must be
6106:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6107arguments must have identical types.
6108
6109Semantics:
6110""""""""""
6111
6112This instruction returns the unsigned integer *remainder* of a division.
6113This instruction always performs an unsigned division to get the
6114remainder.
6115
6116Note that unsigned integer remainder and signed integer remainder are
6117distinct operations; for signed integer remainder, use '``srem``'.
6118
6119Taking the remainder of a division by zero leads to undefined behavior.
6120
6121Example:
6122""""""""
6123
6124.. code-block:: llvm
6125
Tim Northover675a0962014-06-13 14:24:23 +00006126 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006127
6128'``srem``' Instruction
6129^^^^^^^^^^^^^^^^^^^^^^
6130
6131Syntax:
6132"""""""
6133
6134::
6135
Tim Northover675a0962014-06-13 14:24:23 +00006136 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006137
6138Overview:
6139"""""""""
6140
6141The '``srem``' instruction returns the remainder from the signed
6142division of its two operands. This instruction can also take
6143:ref:`vector <t_vector>` versions of the values in which case the elements
6144must be integers.
6145
6146Arguments:
6147""""""""""
6148
6149The two arguments to the '``srem``' instruction must be
6150:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6151arguments must have identical types.
6152
6153Semantics:
6154""""""""""
6155
6156This instruction returns the *remainder* of a division (where the result
6157is either zero or has the same sign as the dividend, ``op1``), not the
6158*modulo* operator (where the result is either zero or has the same sign
6159as the divisor, ``op2``) of a value. For more information about the
6160difference, see `The Math
6161Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6162table of how this is implemented in various languages, please see
6163`Wikipedia: modulo
6164operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6165
6166Note that signed integer remainder and unsigned integer remainder are
6167distinct operations; for unsigned integer remainder, use '``urem``'.
6168
6169Taking the remainder of a division by zero leads to undefined behavior.
6170Overflow also leads to undefined behavior; this is a rare case, but can
6171occur, for example, by taking the remainder of a 32-bit division of
6172-2147483648 by -1. (The remainder doesn't actually overflow, but this
6173rule lets srem be implemented using instructions that return both the
6174result of the division and the remainder.)
6175
6176Example:
6177""""""""
6178
6179.. code-block:: llvm
6180
Tim Northover675a0962014-06-13 14:24:23 +00006181 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006182
6183.. _i_frem:
6184
6185'``frem``' Instruction
6186^^^^^^^^^^^^^^^^^^^^^^
6187
6188Syntax:
6189"""""""
6190
6191::
6192
Tim Northover675a0962014-06-13 14:24:23 +00006193 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006194
6195Overview:
6196"""""""""
6197
6198The '``frem``' instruction returns the remainder from the division of
6199its two operands.
6200
6201Arguments:
6202""""""""""
6203
6204The two arguments to the '``frem``' instruction must be :ref:`floating
6205point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6206Both arguments must have identical types.
6207
6208Semantics:
6209""""""""""
6210
6211This instruction returns the *remainder* of a division. The remainder
6212has the same sign as the dividend. This instruction can also take any
6213number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6214to enable otherwise unsafe floating point optimizations:
6215
6216Example:
6217""""""""
6218
6219.. code-block:: llvm
6220
Tim Northover675a0962014-06-13 14:24:23 +00006221 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006222
6223.. _bitwiseops:
6224
6225Bitwise Binary Operations
6226-------------------------
6227
6228Bitwise binary operators are used to do various forms of bit-twiddling
6229in a program. They are generally very efficient instructions and can
6230commonly be strength reduced from other instructions. They require two
6231operands of the same type, execute an operation on them, and produce a
6232single value. The resulting value is the same type as its operands.
6233
6234'``shl``' Instruction
6235^^^^^^^^^^^^^^^^^^^^^
6236
6237Syntax:
6238"""""""
6239
6240::
6241
Tim Northover675a0962014-06-13 14:24:23 +00006242 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6243 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6244 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6245 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006246
6247Overview:
6248"""""""""
6249
6250The '``shl``' instruction returns the first operand shifted to the left
6251a specified number of bits.
6252
6253Arguments:
6254""""""""""
6255
6256Both arguments to the '``shl``' instruction must be the same
6257:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6258'``op2``' is treated as an unsigned value.
6259
6260Semantics:
6261""""""""""
6262
6263The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6264where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006265dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006266``op1``, the result is undefined. If the arguments are vectors, each
6267vector element of ``op1`` is shifted by the corresponding shift amount
6268in ``op2``.
6269
6270If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6271value <poisonvalues>` if it shifts out any non-zero bits. If the
6272``nsw`` keyword is present, then the shift produces a :ref:`poison
6273value <poisonvalues>` if it shifts out any bits that disagree with the
6274resultant sign bit. As such, NUW/NSW have the same semantics as they
6275would if the shift were expressed as a mul instruction with the same
6276nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6277
6278Example:
6279""""""""
6280
6281.. code-block:: llvm
6282
Tim Northover675a0962014-06-13 14:24:23 +00006283 <result> = shl i32 4, %var ; yields i32: 4 << %var
6284 <result> = shl i32 4, 2 ; yields i32: 16
6285 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006286 <result> = shl i32 1, 32 ; undefined
6287 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6288
6289'``lshr``' Instruction
6290^^^^^^^^^^^^^^^^^^^^^^
6291
6292Syntax:
6293"""""""
6294
6295::
6296
Tim Northover675a0962014-06-13 14:24:23 +00006297 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6298 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006299
6300Overview:
6301"""""""""
6302
6303The '``lshr``' instruction (logical shift right) returns the first
6304operand shifted to the right a specified number of bits with zero fill.
6305
6306Arguments:
6307""""""""""
6308
6309Both arguments to the '``lshr``' instruction must be the same
6310:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6311'``op2``' is treated as an unsigned value.
6312
6313Semantics:
6314""""""""""
6315
6316This instruction always performs a logical shift right operation. The
6317most significant bits of the result will be filled with zero bits after
6318the shift. If ``op2`` is (statically or dynamically) equal to or larger
6319than the number of bits in ``op1``, the result is undefined. If the
6320arguments are vectors, each vector element of ``op1`` is shifted by the
6321corresponding shift amount in ``op2``.
6322
6323If the ``exact`` keyword is present, the result value of the ``lshr`` is
6324a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6325non-zero.
6326
6327Example:
6328""""""""
6329
6330.. code-block:: llvm
6331
Tim Northover675a0962014-06-13 14:24:23 +00006332 <result> = lshr i32 4, 1 ; yields i32:result = 2
6333 <result> = lshr i32 4, 2 ; yields i32:result = 1
6334 <result> = lshr i8 4, 3 ; yields i8:result = 0
6335 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006336 <result> = lshr i32 1, 32 ; undefined
6337 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6338
6339'``ashr``' Instruction
6340^^^^^^^^^^^^^^^^^^^^^^
6341
6342Syntax:
6343"""""""
6344
6345::
6346
Tim Northover675a0962014-06-13 14:24:23 +00006347 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6348 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006349
6350Overview:
6351"""""""""
6352
6353The '``ashr``' instruction (arithmetic shift right) returns the first
6354operand shifted to the right a specified number of bits with sign
6355extension.
6356
6357Arguments:
6358""""""""""
6359
6360Both arguments to the '``ashr``' instruction must be the same
6361:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6362'``op2``' is treated as an unsigned value.
6363
6364Semantics:
6365""""""""""
6366
6367This instruction always performs an arithmetic shift right operation,
6368The most significant bits of the result will be filled with the sign bit
6369of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6370than the number of bits in ``op1``, the result is undefined. If the
6371arguments are vectors, each vector element of ``op1`` is shifted by the
6372corresponding shift amount in ``op2``.
6373
6374If the ``exact`` keyword is present, the result value of the ``ashr`` is
6375a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6376non-zero.
6377
6378Example:
6379""""""""
6380
6381.. code-block:: llvm
6382
Tim Northover675a0962014-06-13 14:24:23 +00006383 <result> = ashr i32 4, 1 ; yields i32:result = 2
6384 <result> = ashr i32 4, 2 ; yields i32:result = 1
6385 <result> = ashr i8 4, 3 ; yields i8:result = 0
6386 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006387 <result> = ashr i32 1, 32 ; undefined
6388 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6389
6390'``and``' Instruction
6391^^^^^^^^^^^^^^^^^^^^^
6392
6393Syntax:
6394"""""""
6395
6396::
6397
Tim Northover675a0962014-06-13 14:24:23 +00006398 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006399
6400Overview:
6401"""""""""
6402
6403The '``and``' instruction returns the bitwise logical and of its two
6404operands.
6405
6406Arguments:
6407""""""""""
6408
6409The two arguments to the '``and``' instruction must be
6410:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6411arguments must have identical types.
6412
6413Semantics:
6414""""""""""
6415
6416The truth table used for the '``and``' instruction is:
6417
6418+-----+-----+-----+
6419| In0 | In1 | Out |
6420+-----+-----+-----+
6421| 0 | 0 | 0 |
6422+-----+-----+-----+
6423| 0 | 1 | 0 |
6424+-----+-----+-----+
6425| 1 | 0 | 0 |
6426+-----+-----+-----+
6427| 1 | 1 | 1 |
6428+-----+-----+-----+
6429
6430Example:
6431""""""""
6432
6433.. code-block:: llvm
6434
Tim Northover675a0962014-06-13 14:24:23 +00006435 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6436 <result> = and i32 15, 40 ; yields i32:result = 8
6437 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006438
6439'``or``' Instruction
6440^^^^^^^^^^^^^^^^^^^^
6441
6442Syntax:
6443"""""""
6444
6445::
6446
Tim Northover675a0962014-06-13 14:24:23 +00006447 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006448
6449Overview:
6450"""""""""
6451
6452The '``or``' instruction returns the bitwise logical inclusive or of its
6453two operands.
6454
6455Arguments:
6456""""""""""
6457
6458The two arguments to the '``or``' instruction must be
6459:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6460arguments must have identical types.
6461
6462Semantics:
6463""""""""""
6464
6465The truth table used for the '``or``' instruction is:
6466
6467+-----+-----+-----+
6468| In0 | In1 | Out |
6469+-----+-----+-----+
6470| 0 | 0 | 0 |
6471+-----+-----+-----+
6472| 0 | 1 | 1 |
6473+-----+-----+-----+
6474| 1 | 0 | 1 |
6475+-----+-----+-----+
6476| 1 | 1 | 1 |
6477+-----+-----+-----+
6478
6479Example:
6480""""""""
6481
6482::
6483
Tim Northover675a0962014-06-13 14:24:23 +00006484 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6485 <result> = or i32 15, 40 ; yields i32:result = 47
6486 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006487
6488'``xor``' Instruction
6489^^^^^^^^^^^^^^^^^^^^^
6490
6491Syntax:
6492"""""""
6493
6494::
6495
Tim Northover675a0962014-06-13 14:24:23 +00006496 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006497
6498Overview:
6499"""""""""
6500
6501The '``xor``' instruction returns the bitwise logical exclusive or of
6502its two operands. The ``xor`` is used to implement the "one's
6503complement" operation, which is the "~" operator in C.
6504
6505Arguments:
6506""""""""""
6507
6508The two arguments to the '``xor``' instruction must be
6509:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6510arguments must have identical types.
6511
6512Semantics:
6513""""""""""
6514
6515The truth table used for the '``xor``' instruction is:
6516
6517+-----+-----+-----+
6518| In0 | In1 | Out |
6519+-----+-----+-----+
6520| 0 | 0 | 0 |
6521+-----+-----+-----+
6522| 0 | 1 | 1 |
6523+-----+-----+-----+
6524| 1 | 0 | 1 |
6525+-----+-----+-----+
6526| 1 | 1 | 0 |
6527+-----+-----+-----+
6528
6529Example:
6530""""""""
6531
6532.. code-block:: llvm
6533
Tim Northover675a0962014-06-13 14:24:23 +00006534 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6535 <result> = xor i32 15, 40 ; yields i32:result = 39
6536 <result> = xor i32 4, 8 ; yields i32:result = 12
6537 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006538
6539Vector Operations
6540-----------------
6541
6542LLVM supports several instructions to represent vector operations in a
6543target-independent manner. These instructions cover the element-access
6544and vector-specific operations needed to process vectors effectively.
6545While LLVM does directly support these vector operations, many
6546sophisticated algorithms will want to use target-specific intrinsics to
6547take full advantage of a specific target.
6548
6549.. _i_extractelement:
6550
6551'``extractelement``' Instruction
6552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6553
6554Syntax:
6555"""""""
6556
6557::
6558
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006559 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006560
6561Overview:
6562"""""""""
6563
6564The '``extractelement``' instruction extracts a single scalar element
6565from a vector at a specified index.
6566
6567Arguments:
6568""""""""""
6569
6570The first operand of an '``extractelement``' instruction is a value of
6571:ref:`vector <t_vector>` type. The second operand is an index indicating
6572the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006573variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006574
6575Semantics:
6576""""""""""
6577
6578The result is a scalar of the same type as the element type of ``val``.
6579Its value is the value at position ``idx`` of ``val``. If ``idx``
6580exceeds the length of ``val``, the results are undefined.
6581
6582Example:
6583""""""""
6584
6585.. code-block:: llvm
6586
6587 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6588
6589.. _i_insertelement:
6590
6591'``insertelement``' Instruction
6592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6593
6594Syntax:
6595"""""""
6596
6597::
6598
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006599 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006600
6601Overview:
6602"""""""""
6603
6604The '``insertelement``' instruction inserts a scalar element into a
6605vector at a specified index.
6606
6607Arguments:
6608""""""""""
6609
6610The first operand of an '``insertelement``' instruction is a value of
6611:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6612type must equal the element type of the first operand. The third operand
6613is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006614index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006615
6616Semantics:
6617""""""""""
6618
6619The result is a vector of the same type as ``val``. Its element values
6620are those of ``val`` except at position ``idx``, where it gets the value
6621``elt``. If ``idx`` exceeds the length of ``val``, the results are
6622undefined.
6623
6624Example:
6625""""""""
6626
6627.. code-block:: llvm
6628
6629 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6630
6631.. _i_shufflevector:
6632
6633'``shufflevector``' Instruction
6634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6635
6636Syntax:
6637"""""""
6638
6639::
6640
6641 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6642
6643Overview:
6644"""""""""
6645
6646The '``shufflevector``' instruction constructs a permutation of elements
6647from two input vectors, returning a vector with the same element type as
6648the input and length that is the same as the shuffle mask.
6649
6650Arguments:
6651""""""""""
6652
6653The first two operands of a '``shufflevector``' instruction are vectors
6654with the same type. The third argument is a shuffle mask whose element
6655type is always 'i32'. The result of the instruction is a vector whose
6656length is the same as the shuffle mask and whose element type is the
6657same as the element type of the first two operands.
6658
6659The shuffle mask operand is required to be a constant vector with either
6660constant integer or undef values.
6661
6662Semantics:
6663""""""""""
6664
6665The elements of the two input vectors are numbered from left to right
6666across both of the vectors. The shuffle mask operand specifies, for each
6667element of the result vector, which element of the two input vectors the
6668result element gets. The element selector may be undef (meaning "don't
6669care") and the second operand may be undef if performing a shuffle from
6670only one vector.
6671
6672Example:
6673""""""""
6674
6675.. code-block:: llvm
6676
6677 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6678 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6679 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6680 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6681 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6682 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6683 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6684 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6685
6686Aggregate Operations
6687--------------------
6688
6689LLVM supports several instructions for working with
6690:ref:`aggregate <t_aggregate>` values.
6691
6692.. _i_extractvalue:
6693
6694'``extractvalue``' Instruction
6695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6696
6697Syntax:
6698"""""""
6699
6700::
6701
6702 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6703
6704Overview:
6705"""""""""
6706
6707The '``extractvalue``' instruction extracts the value of a member field
6708from an :ref:`aggregate <t_aggregate>` value.
6709
6710Arguments:
6711""""""""""
6712
6713The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006714:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006715constant indices to specify which value to extract in a similar manner
6716as indices in a '``getelementptr``' instruction.
6717
6718The major differences to ``getelementptr`` indexing are:
6719
6720- Since the value being indexed is not a pointer, the first index is
6721 omitted and assumed to be zero.
6722- At least one index must be specified.
6723- Not only struct indices but also array indices must be in bounds.
6724
6725Semantics:
6726""""""""""
6727
6728The result is the value at the position in the aggregate specified by
6729the index operands.
6730
6731Example:
6732""""""""
6733
6734.. code-block:: llvm
6735
6736 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6737
6738.. _i_insertvalue:
6739
6740'``insertvalue``' Instruction
6741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6742
6743Syntax:
6744"""""""
6745
6746::
6747
6748 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6749
6750Overview:
6751"""""""""
6752
6753The '``insertvalue``' instruction inserts a value into a member field in
6754an :ref:`aggregate <t_aggregate>` value.
6755
6756Arguments:
6757""""""""""
6758
6759The first operand of an '``insertvalue``' instruction is a value of
6760:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6761a first-class value to insert. The following operands are constant
6762indices indicating the position at which to insert the value in a
6763similar manner as indices in a '``extractvalue``' instruction. The value
6764to insert must have the same type as the value identified by the
6765indices.
6766
6767Semantics:
6768""""""""""
6769
6770The result is an aggregate of the same type as ``val``. Its value is
6771that of ``val`` except that the value at the position specified by the
6772indices is that of ``elt``.
6773
6774Example:
6775""""""""
6776
6777.. code-block:: llvm
6778
6779 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6780 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006781 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006782
6783.. _memoryops:
6784
6785Memory Access and Addressing Operations
6786---------------------------------------
6787
6788A key design point of an SSA-based representation is how it represents
6789memory. In LLVM, no memory locations are in SSA form, which makes things
6790very simple. This section describes how to read, write, and allocate
6791memory in LLVM.
6792
6793.. _i_alloca:
6794
6795'``alloca``' Instruction
6796^^^^^^^^^^^^^^^^^^^^^^^^
6797
6798Syntax:
6799"""""""
6800
6801::
6802
Tim Northover675a0962014-06-13 14:24:23 +00006803 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006804
6805Overview:
6806"""""""""
6807
6808The '``alloca``' instruction allocates memory on the stack frame of the
6809currently executing function, to be automatically released when this
6810function returns to its caller. The object is always allocated in the
6811generic address space (address space zero).
6812
6813Arguments:
6814""""""""""
6815
6816The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6817bytes of memory on the runtime stack, returning a pointer of the
6818appropriate type to the program. If "NumElements" is specified, it is
6819the number of elements allocated, otherwise "NumElements" is defaulted
6820to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006821allocation is guaranteed to be aligned to at least that boundary. The
6822alignment may not be greater than ``1 << 29``. If not specified, or if
6823zero, the target can choose to align the allocation on any convenient
6824boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006825
6826'``type``' may be any sized type.
6827
6828Semantics:
6829""""""""""
6830
6831Memory is allocated; a pointer is returned. The operation is undefined
6832if there is insufficient stack space for the allocation. '``alloca``'d
6833memory is automatically released when the function returns. The
6834'``alloca``' instruction is commonly used to represent automatic
6835variables that must have an address available. When the function returns
6836(either with the ``ret`` or ``resume`` instructions), the memory is
6837reclaimed. Allocating zero bytes is legal, but the result is undefined.
6838The order in which memory is allocated (ie., which way the stack grows)
6839is not specified.
6840
6841Example:
6842""""""""
6843
6844.. code-block:: llvm
6845
Tim Northover675a0962014-06-13 14:24:23 +00006846 %ptr = alloca i32 ; yields i32*:ptr
6847 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6848 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6849 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006850
6851.. _i_load:
6852
6853'``load``' Instruction
6854^^^^^^^^^^^^^^^^^^^^^^
6855
6856Syntax:
6857"""""""
6858
6859::
6860
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006861 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006862 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006863 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006864 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006865 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006866
6867Overview:
6868"""""""""
6869
6870The '``load``' instruction is used to read from memory.
6871
6872Arguments:
6873""""""""""
6874
Eli Bendersky239a78b2013-04-17 20:17:08 +00006875The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006876from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006877class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6878then the optimizer is not allowed to modify the number or order of
6879execution of this ``load`` with other :ref:`volatile
6880operations <volatile>`.
6881
6882If the ``load`` is marked as ``atomic``, it takes an extra
6883:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6884``release`` and ``acq_rel`` orderings are not valid on ``load``
6885instructions. Atomic loads produce :ref:`defined <memmodel>` results
6886when they may see multiple atomic stores. The type of the pointee must
6887be an integer type whose bit width is a power of two greater than or
6888equal to eight and less than or equal to a target-specific size limit.
6889``align`` must be explicitly specified on atomic loads, and the load has
6890undefined behavior if the alignment is not set to a value which is at
6891least the size in bytes of the pointee. ``!nontemporal`` does not have
6892any defined semantics for atomic loads.
6893
6894The optional constant ``align`` argument specifies the alignment of the
6895operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006896or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006897alignment for the target. It is the responsibility of the code emitter
6898to ensure that the alignment information is correct. Overestimating the
6899alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006900may produce less efficient code. An alignment of 1 is always safe. The
6901maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006902
6903The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006904metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006905``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006906metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006907that this load is not expected to be reused in the cache. The code
6908generator may select special instructions to save cache bandwidth, such
6909as the ``MOVNT`` instruction on x86.
6910
6911The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006912metadata name ``<index>`` corresponding to a metadata node with no
6913entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006914instruction tells the optimizer and code generator that the address
6915operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006916Being invariant does not imply that a location is dereferenceable,
6917but it does imply that once the location is known dereferenceable
6918its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006919
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006920The optional ``!invariant.group`` metadata must reference a single metadata name
6921 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6922
Philip Reamescdb72f32014-10-20 22:40:55 +00006923The optional ``!nonnull`` metadata must reference a single
6924metadata name ``<index>`` corresponding to a metadata node with no
6925entries. The existence of the ``!nonnull`` metadata on the
6926instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006927never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006928on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006929to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006930
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006931The optional ``!dereferenceable`` metadata must reference a single metadata
6932name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006933entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006934tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006935The number of bytes known to be dereferenceable is specified by the integer
6936value in the metadata node. This is analogous to the ''dereferenceable''
6937attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006938to loads of a pointer type.
6939
6940The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006941metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6942``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006943instruction tells the optimizer that the value loaded is known to be either
6944dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006945The number of bytes known to be dereferenceable is specified by the integer
6946value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6947attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006948to loads of a pointer type.
6949
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006950The optional ``!align`` metadata must reference a single metadata name
6951``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6952The existence of the ``!align`` metadata on the instruction tells the
6953optimizer that the value loaded is known to be aligned to a boundary specified
6954by the integer value in the metadata node. The alignment must be a power of 2.
6955This is analogous to the ''align'' attribute on parameters and return values.
6956This metadata can only be applied to loads of a pointer type.
6957
Sean Silvab084af42012-12-07 10:36:55 +00006958Semantics:
6959""""""""""
6960
6961The location of memory pointed to is loaded. If the value being loaded
6962is of scalar type then the number of bytes read does not exceed the
6963minimum number of bytes needed to hold all bits of the type. For
6964example, loading an ``i24`` reads at most three bytes. When loading a
6965value of a type like ``i20`` with a size that is not an integral number
6966of bytes, the result is undefined if the value was not originally
6967written using a store of the same type.
6968
6969Examples:
6970"""""""""
6971
6972.. code-block:: llvm
6973
Tim Northover675a0962014-06-13 14:24:23 +00006974 %ptr = alloca i32 ; yields i32*:ptr
6975 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006976 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006977
6978.. _i_store:
6979
6980'``store``' Instruction
6981^^^^^^^^^^^^^^^^^^^^^^^
6982
6983Syntax:
6984"""""""
6985
6986::
6987
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006988 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6989 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006990
6991Overview:
6992"""""""""
6993
6994The '``store``' instruction is used to write to memory.
6995
6996Arguments:
6997""""""""""
6998
Eli Benderskyca380842013-04-17 17:17:20 +00006999There are two arguments to the ``store`` instruction: a value to store
7000and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007001operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007002the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007003then the optimizer is not allowed to modify the number or order of
7004execution of this ``store`` with other :ref:`volatile
7005operations <volatile>`.
7006
7007If the ``store`` is marked as ``atomic``, it takes an extra
7008:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7009``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
7010instructions. Atomic loads produce :ref:`defined <memmodel>` results
7011when they may see multiple atomic stores. The type of the pointee must
7012be an integer type whose bit width is a power of two greater than or
7013equal to eight and less than or equal to a target-specific size limit.
7014``align`` must be explicitly specified on atomic stores, and the store
7015has undefined behavior if the alignment is not set to a value which is
7016at least the size in bytes of the pointee. ``!nontemporal`` does not
7017have any defined semantics for atomic stores.
7018
Eli Benderskyca380842013-04-17 17:17:20 +00007019The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007020operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007021or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007022alignment for the target. It is the responsibility of the code emitter
7023to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007024alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007025alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007026safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007027
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007028The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007029name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007030value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007031tells the optimizer and code generator that this load is not expected to
7032be reused in the cache. The code generator may select special
7033instructions to save cache bandwidth, such as the MOVNT instruction on
7034x86.
7035
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007036The optional ``!invariant.group`` metadata must reference a
7037single metadata name ``<index>``. See ``invariant.group`` metadata.
7038
Sean Silvab084af42012-12-07 10:36:55 +00007039Semantics:
7040""""""""""
7041
Eli Benderskyca380842013-04-17 17:17:20 +00007042The contents of memory are updated to contain ``<value>`` at the
7043location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007044of scalar type then the number of bytes written does not exceed the
7045minimum number of bytes needed to hold all bits of the type. For
7046example, storing an ``i24`` writes at most three bytes. When writing a
7047value of a type like ``i20`` with a size that is not an integral number
7048of bytes, it is unspecified what happens to the extra bits that do not
7049belong to the type, but they will typically be overwritten.
7050
7051Example:
7052""""""""
7053
7054.. code-block:: llvm
7055
Tim Northover675a0962014-06-13 14:24:23 +00007056 %ptr = alloca i32 ; yields i32*:ptr
7057 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007058 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007059
7060.. _i_fence:
7061
7062'``fence``' Instruction
7063^^^^^^^^^^^^^^^^^^^^^^^
7064
7065Syntax:
7066"""""""
7067
7068::
7069
Tim Northover675a0962014-06-13 14:24:23 +00007070 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007071
7072Overview:
7073"""""""""
7074
7075The '``fence``' instruction is used to introduce happens-before edges
7076between operations.
7077
7078Arguments:
7079""""""""""
7080
7081'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7082defines what *synchronizes-with* edges they add. They can only be given
7083``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7084
7085Semantics:
7086""""""""""
7087
7088A fence A which has (at least) ``release`` ordering semantics
7089*synchronizes with* a fence B with (at least) ``acquire`` ordering
7090semantics if and only if there exist atomic operations X and Y, both
7091operating on some atomic object M, such that A is sequenced before X, X
7092modifies M (either directly or through some side effect of a sequence
7093headed by X), Y is sequenced before B, and Y observes M. This provides a
7094*happens-before* dependency between A and B. Rather than an explicit
7095``fence``, one (but not both) of the atomic operations X or Y might
7096provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7097still *synchronize-with* the explicit ``fence`` and establish the
7098*happens-before* edge.
7099
7100A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7101``acquire`` and ``release`` semantics specified above, participates in
7102the global program order of other ``seq_cst`` operations and/or fences.
7103
7104The optional ":ref:`singlethread <singlethread>`" argument specifies
7105that the fence only synchronizes with other fences in the same thread.
7106(This is useful for interacting with signal handlers.)
7107
7108Example:
7109""""""""
7110
7111.. code-block:: llvm
7112
Tim Northover675a0962014-06-13 14:24:23 +00007113 fence acquire ; yields void
7114 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007115
7116.. _i_cmpxchg:
7117
7118'``cmpxchg``' Instruction
7119^^^^^^^^^^^^^^^^^^^^^^^^^
7120
7121Syntax:
7122"""""""
7123
7124::
7125
Tim Northover675a0962014-06-13 14:24:23 +00007126 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007127
7128Overview:
7129"""""""""
7130
7131The '``cmpxchg``' instruction is used to atomically modify memory. It
7132loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007133equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007134
7135Arguments:
7136""""""""""
7137
7138There are three arguments to the '``cmpxchg``' instruction: an address
7139to operate on, a value to compare to the value currently be at that
7140address, and a new value to place at that address if the compared values
7141are equal. The type of '<cmp>' must be an integer type whose bit width
7142is a power of two greater than or equal to eight and less than or equal
7143to a target-specific size limit. '<cmp>' and '<new>' must have the same
7144type, and the type of '<pointer>' must be a pointer to that type. If the
7145``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7146to modify the number or order of execution of this ``cmpxchg`` with
7147other :ref:`volatile operations <volatile>`.
7148
Tim Northovere94a5182014-03-11 10:48:52 +00007149The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007150``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7151must be at least ``monotonic``, the ordering constraint on failure must be no
7152stronger than that on success, and the failure ordering cannot be either
7153``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007154
7155The optional "``singlethread``" argument declares that the ``cmpxchg``
7156is only atomic with respect to code (usually signal handlers) running in
7157the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7158respect to all other code in the system.
7159
7160The pointer passed into cmpxchg must have alignment greater than or
7161equal to the size in memory of the operand.
7162
7163Semantics:
7164""""""""""
7165
Tim Northover420a2162014-06-13 14:24:07 +00007166The contents of memory at the location specified by the '``<pointer>``' operand
7167is read and compared to '``<cmp>``'; if the read value is the equal, the
7168'``<new>``' is written. The original value at the location is returned, together
7169with a flag indicating success (true) or failure (false).
7170
7171If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7172permitted: the operation may not write ``<new>`` even if the comparison
7173matched.
7174
7175If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7176if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007177
Tim Northovere94a5182014-03-11 10:48:52 +00007178A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7179identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7180load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007181
7182Example:
7183""""""""
7184
7185.. code-block:: llvm
7186
7187 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007188 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007189 br label %loop
7190
7191 loop:
7192 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7193 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007194 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007195 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7196 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007197 br i1 %success, label %done, label %loop
7198
7199 done:
7200 ...
7201
7202.. _i_atomicrmw:
7203
7204'``atomicrmw``' Instruction
7205^^^^^^^^^^^^^^^^^^^^^^^^^^^
7206
7207Syntax:
7208"""""""
7209
7210::
7211
Tim Northover675a0962014-06-13 14:24:23 +00007212 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007213
7214Overview:
7215"""""""""
7216
7217The '``atomicrmw``' instruction is used to atomically modify memory.
7218
7219Arguments:
7220""""""""""
7221
7222There are three arguments to the '``atomicrmw``' instruction: an
7223operation to apply, an address whose value to modify, an argument to the
7224operation. The operation must be one of the following keywords:
7225
7226- xchg
7227- add
7228- sub
7229- and
7230- nand
7231- or
7232- xor
7233- max
7234- min
7235- umax
7236- umin
7237
7238The type of '<value>' must be an integer type whose bit width is a power
7239of two greater than or equal to eight and less than or equal to a
7240target-specific size limit. The type of the '``<pointer>``' operand must
7241be a pointer to that type. If the ``atomicrmw`` is marked as
7242``volatile``, then the optimizer is not allowed to modify the number or
7243order of execution of this ``atomicrmw`` with other :ref:`volatile
7244operations <volatile>`.
7245
7246Semantics:
7247""""""""""
7248
7249The contents of memory at the location specified by the '``<pointer>``'
7250operand are atomically read, modified, and written back. The original
7251value at the location is returned. The modification is specified by the
7252operation argument:
7253
7254- xchg: ``*ptr = val``
7255- add: ``*ptr = *ptr + val``
7256- sub: ``*ptr = *ptr - val``
7257- and: ``*ptr = *ptr & val``
7258- nand: ``*ptr = ~(*ptr & val)``
7259- or: ``*ptr = *ptr | val``
7260- xor: ``*ptr = *ptr ^ val``
7261- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7262- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7263- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7264 comparison)
7265- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7266 comparison)
7267
7268Example:
7269""""""""
7270
7271.. code-block:: llvm
7272
Tim Northover675a0962014-06-13 14:24:23 +00007273 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007274
7275.. _i_getelementptr:
7276
7277'``getelementptr``' Instruction
7278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7279
7280Syntax:
7281"""""""
7282
7283::
7284
David Blaikie16a97eb2015-03-04 22:02:58 +00007285 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7286 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7287 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007288
7289Overview:
7290"""""""""
7291
7292The '``getelementptr``' instruction is used to get the address of a
7293subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007294address calculation only and does not access memory. The instruction can also
7295be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007296
7297Arguments:
7298""""""""""
7299
David Blaikie16a97eb2015-03-04 22:02:58 +00007300The first argument is always a type used as the basis for the calculations.
7301The second argument is always a pointer or a vector of pointers, and is the
7302base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007303that indicate which of the elements of the aggregate object are indexed.
7304The interpretation of each index is dependent on the type being indexed
7305into. The first index always indexes the pointer value given as the
7306first argument, the second index indexes a value of the type pointed to
7307(not necessarily the value directly pointed to, since the first index
7308can be non-zero), etc. The first type indexed into must be a pointer
7309value, subsequent types can be arrays, vectors, and structs. Note that
7310subsequent types being indexed into can never be pointers, since that
7311would require loading the pointer before continuing calculation.
7312
7313The type of each index argument depends on the type it is indexing into.
7314When indexing into a (optionally packed) structure, only ``i32`` integer
7315**constants** are allowed (when using a vector of indices they must all
7316be the **same** ``i32`` integer constant). When indexing into an array,
7317pointer or vector, integers of any width are allowed, and they are not
7318required to be constant. These integers are treated as signed values
7319where relevant.
7320
7321For example, let's consider a C code fragment and how it gets compiled
7322to LLVM:
7323
7324.. code-block:: c
7325
7326 struct RT {
7327 char A;
7328 int B[10][20];
7329 char C;
7330 };
7331 struct ST {
7332 int X;
7333 double Y;
7334 struct RT Z;
7335 };
7336
7337 int *foo(struct ST *s) {
7338 return &s[1].Z.B[5][13];
7339 }
7340
7341The LLVM code generated by Clang is:
7342
7343.. code-block:: llvm
7344
7345 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7346 %struct.ST = type { i32, double, %struct.RT }
7347
7348 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7349 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007350 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007351 ret i32* %arrayidx
7352 }
7353
7354Semantics:
7355""""""""""
7356
7357In the example above, the first index is indexing into the
7358'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7359= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7360indexes into the third element of the structure, yielding a
7361'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7362structure. The third index indexes into the second element of the
7363structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7364dimensions of the array are subscripted into, yielding an '``i32``'
7365type. The '``getelementptr``' instruction returns a pointer to this
7366element, thus computing a value of '``i32*``' type.
7367
7368Note that it is perfectly legal to index partially through a structure,
7369returning a pointer to an inner element. Because of this, the LLVM code
7370for the given testcase is equivalent to:
7371
7372.. code-block:: llvm
7373
7374 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007375 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7376 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7377 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7378 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7379 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007380 ret i32* %t5
7381 }
7382
7383If the ``inbounds`` keyword is present, the result value of the
7384``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7385pointer is not an *in bounds* address of an allocated object, or if any
7386of the addresses that would be formed by successive addition of the
7387offsets implied by the indices to the base address with infinitely
7388precise signed arithmetic are not an *in bounds* address of that
7389allocated object. The *in bounds* addresses for an allocated object are
7390all the addresses that point into the object, plus the address one byte
7391past the end. In cases where the base is a vector of pointers the
7392``inbounds`` keyword applies to each of the computations element-wise.
7393
7394If the ``inbounds`` keyword is not present, the offsets are added to the
7395base address with silently-wrapping two's complement arithmetic. If the
7396offsets have a different width from the pointer, they are sign-extended
7397or truncated to the width of the pointer. The result value of the
7398``getelementptr`` may be outside the object pointed to by the base
7399pointer. The result value may not necessarily be used to access memory
7400though, even if it happens to point into allocated storage. See the
7401:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7402information.
7403
7404The getelementptr instruction is often confusing. For some more insight
7405into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7406
7407Example:
7408""""""""
7409
7410.. code-block:: llvm
7411
7412 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007413 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007414 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007415 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007416 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007417 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007418 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007419 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007420
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007421Vector of pointers:
7422"""""""""""""""""""
7423
7424The ``getelementptr`` returns a vector of pointers, instead of a single address,
7425when one or more of its arguments is a vector. In such cases, all vector
7426arguments should have the same number of elements, and every scalar argument
7427will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007428
7429.. code-block:: llvm
7430
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007431 ; All arguments are vectors:
7432 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7433 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007434
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007435 ; Add the same scalar offset to each pointer of a vector:
7436 ; A[i] = ptrs[i] + offset*sizeof(i8)
7437 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007438
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007439 ; Add distinct offsets to the same pointer:
7440 ; A[i] = ptr + offsets[i]*sizeof(i8)
7441 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007442
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007443 ; In all cases described above the type of the result is <4 x i8*>
7444
7445The two following instructions are equivalent:
7446
7447.. code-block:: llvm
7448
7449 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7450 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7451 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7452 <4 x i32> %ind4,
7453 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007454
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007455 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7456 i32 2, i32 1, <4 x i32> %ind4, i64 13
7457
7458Let's look at the C code, where the vector version of ``getelementptr``
7459makes sense:
7460
7461.. code-block:: c
7462
7463 // Let's assume that we vectorize the following loop:
7464 double *A, B; int *C;
7465 for (int i = 0; i < size; ++i) {
7466 A[i] = B[C[i]];
7467 }
7468
7469.. code-block:: llvm
7470
7471 ; get pointers for 8 elements from array B
7472 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7473 ; load 8 elements from array B into A
7474 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7475 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007476
7477Conversion Operations
7478---------------------
7479
7480The instructions in this category are the conversion instructions
7481(casting) which all take a single operand and a type. They perform
7482various bit conversions on the operand.
7483
7484'``trunc .. to``' Instruction
7485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7486
7487Syntax:
7488"""""""
7489
7490::
7491
7492 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7493
7494Overview:
7495"""""""""
7496
7497The '``trunc``' instruction truncates its operand to the type ``ty2``.
7498
7499Arguments:
7500""""""""""
7501
7502The '``trunc``' instruction takes a value to trunc, and a type to trunc
7503it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7504of the same number of integers. The bit size of the ``value`` must be
7505larger than the bit size of the destination type, ``ty2``. Equal sized
7506types are not allowed.
7507
7508Semantics:
7509""""""""""
7510
7511The '``trunc``' instruction truncates the high order bits in ``value``
7512and converts the remaining bits to ``ty2``. Since the source size must
7513be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7514It will always truncate bits.
7515
7516Example:
7517""""""""
7518
7519.. code-block:: llvm
7520
7521 %X = trunc i32 257 to i8 ; yields i8:1
7522 %Y = trunc i32 123 to i1 ; yields i1:true
7523 %Z = trunc i32 122 to i1 ; yields i1:false
7524 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7525
7526'``zext .. to``' Instruction
7527^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7528
7529Syntax:
7530"""""""
7531
7532::
7533
7534 <result> = zext <ty> <value> to <ty2> ; yields ty2
7535
7536Overview:
7537"""""""""
7538
7539The '``zext``' instruction zero extends its operand to type ``ty2``.
7540
7541Arguments:
7542""""""""""
7543
7544The '``zext``' instruction takes a value to cast, and a type to cast it
7545to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7546the same number of integers. The bit size of the ``value`` must be
7547smaller than the bit size of the destination type, ``ty2``.
7548
7549Semantics:
7550""""""""""
7551
7552The ``zext`` fills the high order bits of the ``value`` with zero bits
7553until it reaches the size of the destination type, ``ty2``.
7554
7555When zero extending from i1, the result will always be either 0 or 1.
7556
7557Example:
7558""""""""
7559
7560.. code-block:: llvm
7561
7562 %X = zext i32 257 to i64 ; yields i64:257
7563 %Y = zext i1 true to i32 ; yields i32:1
7564 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7565
7566'``sext .. to``' Instruction
7567^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7568
7569Syntax:
7570"""""""
7571
7572::
7573
7574 <result> = sext <ty> <value> to <ty2> ; yields ty2
7575
7576Overview:
7577"""""""""
7578
7579The '``sext``' sign extends ``value`` to the type ``ty2``.
7580
7581Arguments:
7582""""""""""
7583
7584The '``sext``' instruction takes a value to cast, and a type to cast it
7585to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7586the same number of integers. The bit size of the ``value`` must be
7587smaller than the bit size of the destination type, ``ty2``.
7588
7589Semantics:
7590""""""""""
7591
7592The '``sext``' instruction performs a sign extension by copying the sign
7593bit (highest order bit) of the ``value`` until it reaches the bit size
7594of the type ``ty2``.
7595
7596When sign extending from i1, the extension always results in -1 or 0.
7597
7598Example:
7599""""""""
7600
7601.. code-block:: llvm
7602
7603 %X = sext i8 -1 to i16 ; yields i16 :65535
7604 %Y = sext i1 true to i32 ; yields i32:-1
7605 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7606
7607'``fptrunc .. to``' Instruction
7608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7609
7610Syntax:
7611"""""""
7612
7613::
7614
7615 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7616
7617Overview:
7618"""""""""
7619
7620The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7621
7622Arguments:
7623""""""""""
7624
7625The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7626value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7627The size of ``value`` must be larger than the size of ``ty2``. This
7628implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7629
7630Semantics:
7631""""""""""
7632
Dan Liew50456fb2015-09-03 18:43:56 +00007633The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007634:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007635point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7636destination type, ``ty2``, then the results are undefined. If the cast produces
7637an inexact result, how rounding is performed (e.g. truncation, also known as
7638round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007639
7640Example:
7641""""""""
7642
7643.. code-block:: llvm
7644
7645 %X = fptrunc double 123.0 to float ; yields float:123.0
7646 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7647
7648'``fpext .. to``' Instruction
7649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7650
7651Syntax:
7652"""""""
7653
7654::
7655
7656 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7657
7658Overview:
7659"""""""""
7660
7661The '``fpext``' extends a floating point ``value`` to a larger floating
7662point value.
7663
7664Arguments:
7665""""""""""
7666
7667The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7668``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7669to. The source type must be smaller than the destination type.
7670
7671Semantics:
7672""""""""""
7673
7674The '``fpext``' instruction extends the ``value`` from a smaller
7675:ref:`floating point <t_floating>` type to a larger :ref:`floating
7676point <t_floating>` type. The ``fpext`` cannot be used to make a
7677*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7678*no-op cast* for a floating point cast.
7679
7680Example:
7681""""""""
7682
7683.. code-block:: llvm
7684
7685 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7686 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7687
7688'``fptoui .. to``' Instruction
7689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7690
7691Syntax:
7692"""""""
7693
7694::
7695
7696 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7697
7698Overview:
7699"""""""""
7700
7701The '``fptoui``' converts a floating point ``value`` to its unsigned
7702integer equivalent of type ``ty2``.
7703
7704Arguments:
7705""""""""""
7706
7707The '``fptoui``' instruction takes a value to cast, which must be a
7708scalar or vector :ref:`floating point <t_floating>` value, and a type to
7709cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7710``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7711type with the same number of elements as ``ty``
7712
7713Semantics:
7714""""""""""
7715
7716The '``fptoui``' instruction converts its :ref:`floating
7717point <t_floating>` operand into the nearest (rounding towards zero)
7718unsigned integer value. If the value cannot fit in ``ty2``, the results
7719are undefined.
7720
7721Example:
7722""""""""
7723
7724.. code-block:: llvm
7725
7726 %X = fptoui double 123.0 to i32 ; yields i32:123
7727 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7728 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7729
7730'``fptosi .. to``' Instruction
7731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7732
7733Syntax:
7734"""""""
7735
7736::
7737
7738 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7739
7740Overview:
7741"""""""""
7742
7743The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7744``value`` to type ``ty2``.
7745
7746Arguments:
7747""""""""""
7748
7749The '``fptosi``' instruction takes a value to cast, which must be a
7750scalar or vector :ref:`floating point <t_floating>` value, and a type to
7751cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7752``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7753type with the same number of elements as ``ty``
7754
7755Semantics:
7756""""""""""
7757
7758The '``fptosi``' instruction converts its :ref:`floating
7759point <t_floating>` operand into the nearest (rounding towards zero)
7760signed integer value. If the value cannot fit in ``ty2``, the results
7761are undefined.
7762
7763Example:
7764""""""""
7765
7766.. code-block:: llvm
7767
7768 %X = fptosi double -123.0 to i32 ; yields i32:-123
7769 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7770 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7771
7772'``uitofp .. to``' Instruction
7773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7774
7775Syntax:
7776"""""""
7777
7778::
7779
7780 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7781
7782Overview:
7783"""""""""
7784
7785The '``uitofp``' instruction regards ``value`` as an unsigned integer
7786and converts that value to the ``ty2`` type.
7787
7788Arguments:
7789""""""""""
7790
7791The '``uitofp``' instruction takes a value to cast, which must be a
7792scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7793``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7794``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7795type with the same number of elements as ``ty``
7796
7797Semantics:
7798""""""""""
7799
7800The '``uitofp``' instruction interprets its operand as an unsigned
7801integer quantity and converts it to the corresponding floating point
7802value. If the value cannot fit in the floating point value, the results
7803are undefined.
7804
7805Example:
7806""""""""
7807
7808.. code-block:: llvm
7809
7810 %X = uitofp i32 257 to float ; yields float:257.0
7811 %Y = uitofp i8 -1 to double ; yields double:255.0
7812
7813'``sitofp .. to``' Instruction
7814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7815
7816Syntax:
7817"""""""
7818
7819::
7820
7821 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7822
7823Overview:
7824"""""""""
7825
7826The '``sitofp``' instruction regards ``value`` as a signed integer and
7827converts that value to the ``ty2`` type.
7828
7829Arguments:
7830""""""""""
7831
7832The '``sitofp``' instruction takes a value to cast, which must be a
7833scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7834``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7835``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7836type with the same number of elements as ``ty``
7837
7838Semantics:
7839""""""""""
7840
7841The '``sitofp``' instruction interprets its operand as a signed integer
7842quantity and converts it to the corresponding floating point value. If
7843the value cannot fit in the floating point value, the results are
7844undefined.
7845
7846Example:
7847""""""""
7848
7849.. code-block:: llvm
7850
7851 %X = sitofp i32 257 to float ; yields float:257.0
7852 %Y = sitofp i8 -1 to double ; yields double:-1.0
7853
7854.. _i_ptrtoint:
7855
7856'``ptrtoint .. to``' Instruction
7857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7858
7859Syntax:
7860"""""""
7861
7862::
7863
7864 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7865
7866Overview:
7867"""""""""
7868
7869The '``ptrtoint``' instruction converts the pointer or a vector of
7870pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7871
7872Arguments:
7873""""""""""
7874
7875The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007876a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007877type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7878a vector of integers type.
7879
7880Semantics:
7881""""""""""
7882
7883The '``ptrtoint``' instruction converts ``value`` to integer type
7884``ty2`` by interpreting the pointer value as an integer and either
7885truncating or zero extending that value to the size of the integer type.
7886If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7887``value`` is larger than ``ty2`` then a truncation is done. If they are
7888the same size, then nothing is done (*no-op cast*) other than a type
7889change.
7890
7891Example:
7892""""""""
7893
7894.. code-block:: llvm
7895
7896 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7897 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7898 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7899
7900.. _i_inttoptr:
7901
7902'``inttoptr .. to``' Instruction
7903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7904
7905Syntax:
7906"""""""
7907
7908::
7909
7910 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7911
7912Overview:
7913"""""""""
7914
7915The '``inttoptr``' instruction converts an integer ``value`` to a
7916pointer type, ``ty2``.
7917
7918Arguments:
7919""""""""""
7920
7921The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7922cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7923type.
7924
7925Semantics:
7926""""""""""
7927
7928The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7929applying either a zero extension or a truncation depending on the size
7930of the integer ``value``. If ``value`` is larger than the size of a
7931pointer then a truncation is done. If ``value`` is smaller than the size
7932of a pointer then a zero extension is done. If they are the same size,
7933nothing is done (*no-op cast*).
7934
7935Example:
7936""""""""
7937
7938.. code-block:: llvm
7939
7940 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7941 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7942 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7943 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7944
7945.. _i_bitcast:
7946
7947'``bitcast .. to``' Instruction
7948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7949
7950Syntax:
7951"""""""
7952
7953::
7954
7955 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7956
7957Overview:
7958"""""""""
7959
7960The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7961changing any bits.
7962
7963Arguments:
7964""""""""""
7965
7966The '``bitcast``' instruction takes a value to cast, which must be a
7967non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007968also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7969bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007970identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007971also be a pointer of the same size. This instruction supports bitwise
7972conversion of vectors to integers and to vectors of other types (as
7973long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007974
7975Semantics:
7976""""""""""
7977
Matt Arsenault24b49c42013-07-31 17:49:08 +00007978The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7979is always a *no-op cast* because no bits change with this
7980conversion. The conversion is done as if the ``value`` had been stored
7981to memory and read back as type ``ty2``. Pointer (or vector of
7982pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007983pointers) types with the same address space through this instruction.
7984To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7985or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007986
7987Example:
7988""""""""
7989
7990.. code-block:: llvm
7991
7992 %X = bitcast i8 255 to i8 ; yields i8 :-1
7993 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7994 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7995 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7996
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007997.. _i_addrspacecast:
7998
7999'``addrspacecast .. to``' Instruction
8000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8001
8002Syntax:
8003"""""""
8004
8005::
8006
8007 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8008
8009Overview:
8010"""""""""
8011
8012The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8013address space ``n`` to type ``pty2`` in address space ``m``.
8014
8015Arguments:
8016""""""""""
8017
8018The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8019to cast and a pointer type to cast it to, which must have a different
8020address space.
8021
8022Semantics:
8023""""""""""
8024
8025The '``addrspacecast``' instruction converts the pointer value
8026``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008027value modification, depending on the target and the address space
8028pair. Pointer conversions within the same address space must be
8029performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008030conversion is legal then both result and operand refer to the same memory
8031location.
8032
8033Example:
8034""""""""
8035
8036.. code-block:: llvm
8037
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008038 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8039 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8040 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008041
Sean Silvab084af42012-12-07 10:36:55 +00008042.. _otherops:
8043
8044Other Operations
8045----------------
8046
8047The instructions in this category are the "miscellaneous" instructions,
8048which defy better classification.
8049
8050.. _i_icmp:
8051
8052'``icmp``' Instruction
8053^^^^^^^^^^^^^^^^^^^^^^
8054
8055Syntax:
8056"""""""
8057
8058::
8059
Tim Northover675a0962014-06-13 14:24:23 +00008060 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008061
8062Overview:
8063"""""""""
8064
8065The '``icmp``' instruction returns a boolean value or a vector of
8066boolean values based on comparison of its two integer, integer vector,
8067pointer, or pointer vector operands.
8068
8069Arguments:
8070""""""""""
8071
8072The '``icmp``' instruction takes three operands. The first operand is
8073the condition code indicating the kind of comparison to perform. It is
8074not a value, just a keyword. The possible condition code are:
8075
8076#. ``eq``: equal
8077#. ``ne``: not equal
8078#. ``ugt``: unsigned greater than
8079#. ``uge``: unsigned greater or equal
8080#. ``ult``: unsigned less than
8081#. ``ule``: unsigned less or equal
8082#. ``sgt``: signed greater than
8083#. ``sge``: signed greater or equal
8084#. ``slt``: signed less than
8085#. ``sle``: signed less or equal
8086
8087The remaining two arguments must be :ref:`integer <t_integer>` or
8088:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8089must also be identical types.
8090
8091Semantics:
8092""""""""""
8093
8094The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8095code given as ``cond``. The comparison performed always yields either an
8096:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8097
8098#. ``eq``: yields ``true`` if the operands are equal, ``false``
8099 otherwise. No sign interpretation is necessary or performed.
8100#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8101 otherwise. No sign interpretation is necessary or performed.
8102#. ``ugt``: interprets the operands as unsigned values and yields
8103 ``true`` if ``op1`` is greater than ``op2``.
8104#. ``uge``: interprets the operands as unsigned values and yields
8105 ``true`` if ``op1`` is greater than or equal to ``op2``.
8106#. ``ult``: interprets the operands as unsigned values and yields
8107 ``true`` if ``op1`` is less than ``op2``.
8108#. ``ule``: interprets the operands as unsigned values and yields
8109 ``true`` if ``op1`` is less than or equal to ``op2``.
8110#. ``sgt``: interprets the operands as signed values and yields ``true``
8111 if ``op1`` is greater than ``op2``.
8112#. ``sge``: interprets the operands as signed values and yields ``true``
8113 if ``op1`` is greater than or equal to ``op2``.
8114#. ``slt``: interprets the operands as signed values and yields ``true``
8115 if ``op1`` is less than ``op2``.
8116#. ``sle``: interprets the operands as signed values and yields ``true``
8117 if ``op1`` is less than or equal to ``op2``.
8118
8119If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8120are compared as if they were integers.
8121
8122If the operands are integer vectors, then they are compared element by
8123element. The result is an ``i1`` vector with the same number of elements
8124as the values being compared. Otherwise, the result is an ``i1``.
8125
8126Example:
8127""""""""
8128
8129.. code-block:: llvm
8130
8131 <result> = icmp eq i32 4, 5 ; yields: result=false
8132 <result> = icmp ne float* %X, %X ; yields: result=false
8133 <result> = icmp ult i16 4, 5 ; yields: result=true
8134 <result> = icmp sgt i16 4, 5 ; yields: result=false
8135 <result> = icmp ule i16 -4, 5 ; yields: result=false
8136 <result> = icmp sge i16 4, 5 ; yields: result=false
8137
8138Note that the code generator does not yet support vector types with the
8139``icmp`` instruction.
8140
8141.. _i_fcmp:
8142
8143'``fcmp``' Instruction
8144^^^^^^^^^^^^^^^^^^^^^^
8145
8146Syntax:
8147"""""""
8148
8149::
8150
James Molloy88eb5352015-07-10 12:52:00 +00008151 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008152
8153Overview:
8154"""""""""
8155
8156The '``fcmp``' instruction returns a boolean value or vector of boolean
8157values based on comparison of its operands.
8158
8159If the operands are floating point scalars, then the result type is a
8160boolean (:ref:`i1 <t_integer>`).
8161
8162If the operands are floating point vectors, then the result type is a
8163vector of boolean with the same number of elements as the operands being
8164compared.
8165
8166Arguments:
8167""""""""""
8168
8169The '``fcmp``' instruction takes three operands. The first operand is
8170the condition code indicating the kind of comparison to perform. It is
8171not a value, just a keyword. The possible condition code are:
8172
8173#. ``false``: no comparison, always returns false
8174#. ``oeq``: ordered and equal
8175#. ``ogt``: ordered and greater than
8176#. ``oge``: ordered and greater than or equal
8177#. ``olt``: ordered and less than
8178#. ``ole``: ordered and less than or equal
8179#. ``one``: ordered and not equal
8180#. ``ord``: ordered (no nans)
8181#. ``ueq``: unordered or equal
8182#. ``ugt``: unordered or greater than
8183#. ``uge``: unordered or greater than or equal
8184#. ``ult``: unordered or less than
8185#. ``ule``: unordered or less than or equal
8186#. ``une``: unordered or not equal
8187#. ``uno``: unordered (either nans)
8188#. ``true``: no comparison, always returns true
8189
8190*Ordered* means that neither operand is a QNAN while *unordered* means
8191that either operand may be a QNAN.
8192
8193Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8194point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8195type. They must have identical types.
8196
8197Semantics:
8198""""""""""
8199
8200The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8201condition code given as ``cond``. If the operands are vectors, then the
8202vectors are compared element by element. Each comparison performed
8203always yields an :ref:`i1 <t_integer>` result, as follows:
8204
8205#. ``false``: always yields ``false``, regardless of operands.
8206#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8207 is equal to ``op2``.
8208#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8209 is greater than ``op2``.
8210#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8211 is greater than or equal to ``op2``.
8212#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8213 is less than ``op2``.
8214#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8215 is less than or equal to ``op2``.
8216#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8217 is not equal to ``op2``.
8218#. ``ord``: yields ``true`` if both operands are not a QNAN.
8219#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8220 equal to ``op2``.
8221#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8222 greater than ``op2``.
8223#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8224 greater than or equal to ``op2``.
8225#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8226 less than ``op2``.
8227#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8228 less than or equal to ``op2``.
8229#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8230 not equal to ``op2``.
8231#. ``uno``: yields ``true`` if either operand is a QNAN.
8232#. ``true``: always yields ``true``, regardless of operands.
8233
James Molloy88eb5352015-07-10 12:52:00 +00008234The ``fcmp`` instruction can also optionally take any number of
8235:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8236otherwise unsafe floating point optimizations.
8237
8238Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8239only flags that have any effect on its semantics are those that allow
8240assumptions to be made about the values of input arguments; namely
8241``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8242
Sean Silvab084af42012-12-07 10:36:55 +00008243Example:
8244""""""""
8245
8246.. code-block:: llvm
8247
8248 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8249 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8250 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8251 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8252
8253Note that the code generator does not yet support vector types with the
8254``fcmp`` instruction.
8255
8256.. _i_phi:
8257
8258'``phi``' Instruction
8259^^^^^^^^^^^^^^^^^^^^^
8260
8261Syntax:
8262"""""""
8263
8264::
8265
8266 <result> = phi <ty> [ <val0>, <label0>], ...
8267
8268Overview:
8269"""""""""
8270
8271The '``phi``' instruction is used to implement the φ node in the SSA
8272graph representing the function.
8273
8274Arguments:
8275""""""""""
8276
8277The type of the incoming values is specified with the first type field.
8278After this, the '``phi``' instruction takes a list of pairs as
8279arguments, with one pair for each predecessor basic block of the current
8280block. Only values of :ref:`first class <t_firstclass>` type may be used as
8281the value arguments to the PHI node. Only labels may be used as the
8282label arguments.
8283
8284There must be no non-phi instructions between the start of a basic block
8285and the PHI instructions: i.e. PHI instructions must be first in a basic
8286block.
8287
8288For the purposes of the SSA form, the use of each incoming value is
8289deemed to occur on the edge from the corresponding predecessor block to
8290the current block (but after any definition of an '``invoke``'
8291instruction's return value on the same edge).
8292
8293Semantics:
8294""""""""""
8295
8296At runtime, the '``phi``' instruction logically takes on the value
8297specified by the pair corresponding to the predecessor basic block that
8298executed just prior to the current block.
8299
8300Example:
8301""""""""
8302
8303.. code-block:: llvm
8304
8305 Loop: ; Infinite loop that counts from 0 on up...
8306 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8307 %nextindvar = add i32 %indvar, 1
8308 br label %Loop
8309
8310.. _i_select:
8311
8312'``select``' Instruction
8313^^^^^^^^^^^^^^^^^^^^^^^^
8314
8315Syntax:
8316"""""""
8317
8318::
8319
8320 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8321
8322 selty is either i1 or {<N x i1>}
8323
8324Overview:
8325"""""""""
8326
8327The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008328condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008329
8330Arguments:
8331""""""""""
8332
8333The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8334values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008335class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008336
8337Semantics:
8338""""""""""
8339
8340If the condition is an i1 and it evaluates to 1, the instruction returns
8341the first value argument; otherwise, it returns the second value
8342argument.
8343
8344If the condition is a vector of i1, then the value arguments must be
8345vectors of the same size, and the selection is done element by element.
8346
David Majnemer40a0b592015-03-03 22:45:47 +00008347If the condition is an i1 and the value arguments are vectors of the
8348same size, then an entire vector is selected.
8349
Sean Silvab084af42012-12-07 10:36:55 +00008350Example:
8351""""""""
8352
8353.. code-block:: llvm
8354
8355 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8356
8357.. _i_call:
8358
8359'``call``' Instruction
8360^^^^^^^^^^^^^^^^^^^^^^
8361
8362Syntax:
8363"""""""
8364
8365::
8366
Reid Kleckner5772b772014-04-24 20:14:34 +00008367 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008368 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008369
8370Overview:
8371"""""""""
8372
8373The '``call``' instruction represents a simple function call.
8374
8375Arguments:
8376""""""""""
8377
8378This instruction requires several arguments:
8379
Reid Kleckner5772b772014-04-24 20:14:34 +00008380#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008381 should perform tail call optimization. The ``tail`` marker is a hint that
8382 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008383 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008384 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008385
8386 #. The call will not cause unbounded stack growth if it is part of a
8387 recursive cycle in the call graph.
8388 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8389 forwarded in place.
8390
8391 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008392 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008393 rules:
8394
8395 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8396 or a pointer bitcast followed by a ret instruction.
8397 - The ret instruction must return the (possibly bitcasted) value
8398 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008399 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008400 parameters or return types may differ in pointee type, but not
8401 in address space.
8402 - The calling conventions of the caller and callee must match.
8403 - All ABI-impacting function attributes, such as sret, byval, inreg,
8404 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008405 - The callee must be varargs iff the caller is varargs. Bitcasting a
8406 non-varargs function to the appropriate varargs type is legal so
8407 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008408
8409 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8410 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008411
8412 - Caller and callee both have the calling convention ``fastcc``.
8413 - The call is in tail position (ret immediately follows call and ret
8414 uses value of call or is void).
8415 - Option ``-tailcallopt`` is enabled, or
8416 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008417 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008418 met. <CodeGenerator.html#tailcallopt>`_
8419
8420#. The optional "cconv" marker indicates which :ref:`calling
8421 convention <callingconv>` the call should use. If none is
8422 specified, the call defaults to using C calling conventions. The
8423 calling convention of the call must match the calling convention of
8424 the target function, or else the behavior is undefined.
8425#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8426 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8427 are valid here.
8428#. '``ty``': the type of the call instruction itself which is also the
8429 type of the return value. Functions that return no value are marked
8430 ``void``.
8431#. '``fnty``': shall be the signature of the pointer to function value
8432 being invoked. The argument types must match the types implied by
8433 this signature. This type can be omitted if the function is not
8434 varargs and if the function type does not return a pointer to a
8435 function.
8436#. '``fnptrval``': An LLVM value containing a pointer to a function to
8437 be invoked. In most cases, this is a direct function invocation, but
8438 indirect ``call``'s are just as possible, calling an arbitrary pointer
8439 to function value.
8440#. '``function args``': argument list whose types match the function
8441 signature argument types and parameter attributes. All arguments must
8442 be of :ref:`first class <t_firstclass>` type. If the function signature
8443 indicates the function accepts a variable number of arguments, the
8444 extra arguments can be specified.
8445#. The optional :ref:`function attributes <fnattrs>` list. Only
8446 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8447 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008448#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008449
8450Semantics:
8451""""""""""
8452
8453The '``call``' instruction is used to cause control flow to transfer to
8454a specified function, with its incoming arguments bound to the specified
8455values. Upon a '``ret``' instruction in the called function, control
8456flow continues with the instruction after the function call, and the
8457return value of the function is bound to the result argument.
8458
8459Example:
8460""""""""
8461
8462.. code-block:: llvm
8463
8464 %retval = call i32 @test(i32 %argc)
8465 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8466 %X = tail call i32 @foo() ; yields i32
8467 %Y = tail call fastcc i32 @foo() ; yields i32
8468 call void %foo(i8 97 signext)
8469
8470 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008471 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008472 %gr = extractvalue %struct.A %r, 0 ; yields i32
8473 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8474 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8475 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8476
8477llvm treats calls to some functions with names and arguments that match
8478the standard C99 library as being the C99 library functions, and may
8479perform optimizations or generate code for them under that assumption.
8480This is something we'd like to change in the future to provide better
8481support for freestanding environments and non-C-based languages.
8482
8483.. _i_va_arg:
8484
8485'``va_arg``' Instruction
8486^^^^^^^^^^^^^^^^^^^^^^^^
8487
8488Syntax:
8489"""""""
8490
8491::
8492
8493 <resultval> = va_arg <va_list*> <arglist>, <argty>
8494
8495Overview:
8496"""""""""
8497
8498The '``va_arg``' instruction is used to access arguments passed through
8499the "variable argument" area of a function call. It is used to implement
8500the ``va_arg`` macro in C.
8501
8502Arguments:
8503""""""""""
8504
8505This instruction takes a ``va_list*`` value and the type of the
8506argument. It returns a value of the specified argument type and
8507increments the ``va_list`` to point to the next argument. The actual
8508type of ``va_list`` is target specific.
8509
8510Semantics:
8511""""""""""
8512
8513The '``va_arg``' instruction loads an argument of the specified type
8514from the specified ``va_list`` and causes the ``va_list`` to point to
8515the next argument. For more information, see the variable argument
8516handling :ref:`Intrinsic Functions <int_varargs>`.
8517
8518It is legal for this instruction to be called in a function which does
8519not take a variable number of arguments, for example, the ``vfprintf``
8520function.
8521
8522``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8523function <intrinsics>` because it takes a type as an argument.
8524
8525Example:
8526""""""""
8527
8528See the :ref:`variable argument processing <int_varargs>` section.
8529
8530Note that the code generator does not yet fully support va\_arg on many
8531targets. Also, it does not currently support va\_arg with aggregate
8532types on any target.
8533
8534.. _i_landingpad:
8535
8536'``landingpad``' Instruction
8537^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8538
8539Syntax:
8540"""""""
8541
8542::
8543
David Majnemer7fddecc2015-06-17 20:52:32 +00008544 <resultval> = landingpad <resultty> <clause>+
8545 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008546
8547 <clause> := catch <type> <value>
8548 <clause> := filter <array constant type> <array constant>
8549
8550Overview:
8551"""""""""
8552
8553The '``landingpad``' instruction is used by `LLVM's exception handling
8554system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008555is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008556code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008557defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008558re-entry to the function. The ``resultval`` has the type ``resultty``.
8559
8560Arguments:
8561""""""""""
8562
David Majnemer7fddecc2015-06-17 20:52:32 +00008563The optional
Sean Silvab084af42012-12-07 10:36:55 +00008564``cleanup`` flag indicates that the landing pad block is a cleanup.
8565
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008566A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008567contains the global variable representing the "type" that may be caught
8568or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8569clause takes an array constant as its argument. Use
8570"``[0 x i8**] undef``" for a filter which cannot throw. The
8571'``landingpad``' instruction must contain *at least* one ``clause`` or
8572the ``cleanup`` flag.
8573
8574Semantics:
8575""""""""""
8576
8577The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008578:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008579therefore the "result type" of the ``landingpad`` instruction. As with
8580calling conventions, how the personality function results are
8581represented in LLVM IR is target specific.
8582
8583The clauses are applied in order from top to bottom. If two
8584``landingpad`` instructions are merged together through inlining, the
8585clauses from the calling function are appended to the list of clauses.
8586When the call stack is being unwound due to an exception being thrown,
8587the exception is compared against each ``clause`` in turn. If it doesn't
8588match any of the clauses, and the ``cleanup`` flag is not set, then
8589unwinding continues further up the call stack.
8590
8591The ``landingpad`` instruction has several restrictions:
8592
8593- A landing pad block is a basic block which is the unwind destination
8594 of an '``invoke``' instruction.
8595- A landing pad block must have a '``landingpad``' instruction as its
8596 first non-PHI instruction.
8597- There can be only one '``landingpad``' instruction within the landing
8598 pad block.
8599- A basic block that is not a landing pad block may not include a
8600 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008601
8602Example:
8603""""""""
8604
8605.. code-block:: llvm
8606
8607 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008608 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008609 catch i8** @_ZTIi
8610 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008611 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008612 cleanup
8613 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008614 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008615 catch i8** @_ZTIi
8616 filter [1 x i8**] [@_ZTId]
8617
David Majnemer654e1302015-07-31 17:58:14 +00008618.. _i_cleanuppad:
8619
8620'``cleanuppad``' Instruction
8621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8622
8623Syntax:
8624"""""""
8625
8626::
8627
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008628 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008629
8630Overview:
8631"""""""""
8632
8633The '``cleanuppad``' instruction is used by `LLVM's exception handling
8634system <ExceptionHandling.html#overview>`_ to specify that a basic block
8635is a cleanup block --- one where a personality routine attempts to
8636transfer control to run cleanup actions.
8637The ``args`` correspond to whatever additional
8638information the :ref:`personality function <personalityfn>` requires to
8639execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008640The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008641match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8642and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008643
8644Arguments:
8645""""""""""
8646
8647The instruction takes a list of arbitrary values which are interpreted
8648by the :ref:`personality function <personalityfn>`.
8649
8650Semantics:
8651""""""""""
8652
David Majnemer654e1302015-07-31 17:58:14 +00008653When the call stack is being unwound due to an exception being thrown,
8654the :ref:`personality function <personalityfn>` transfers control to the
8655``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008656As with calling conventions, how the personality function results are
8657represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008658
8659The ``cleanuppad`` instruction has several restrictions:
8660
8661- A cleanup block is a basic block which is the unwind destination of
8662 an exceptional instruction.
8663- A cleanup block must have a '``cleanuppad``' instruction as its
8664 first non-PHI instruction.
8665- There can be only one '``cleanuppad``' instruction within the
8666 cleanup block.
8667- A basic block that is not a cleanup block may not include a
8668 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008669- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8670 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008671- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008672 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8673 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008674- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008675 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8676 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008677
8678Example:
8679""""""""
8680
8681.. code-block:: llvm
8682
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008683 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008684
Sean Silvab084af42012-12-07 10:36:55 +00008685.. _intrinsics:
8686
8687Intrinsic Functions
8688===================
8689
8690LLVM supports the notion of an "intrinsic function". These functions
8691have well known names and semantics and are required to follow certain
8692restrictions. Overall, these intrinsics represent an extension mechanism
8693for the LLVM language that does not require changing all of the
8694transformations in LLVM when adding to the language (or the bitcode
8695reader/writer, the parser, etc...).
8696
8697Intrinsic function names must all start with an "``llvm.``" prefix. This
8698prefix is reserved in LLVM for intrinsic names; thus, function names may
8699not begin with this prefix. Intrinsic functions must always be external
8700functions: you cannot define the body of intrinsic functions. Intrinsic
8701functions may only be used in call or invoke instructions: it is illegal
8702to take the address of an intrinsic function. Additionally, because
8703intrinsic functions are part of the LLVM language, it is required if any
8704are added that they be documented here.
8705
8706Some intrinsic functions can be overloaded, i.e., the intrinsic
8707represents a family of functions that perform the same operation but on
8708different data types. Because LLVM can represent over 8 million
8709different integer types, overloading is used commonly to allow an
8710intrinsic function to operate on any integer type. One or more of the
8711argument types or the result type can be overloaded to accept any
8712integer type. Argument types may also be defined as exactly matching a
8713previous argument's type or the result type. This allows an intrinsic
8714function which accepts multiple arguments, but needs all of them to be
8715of the same type, to only be overloaded with respect to a single
8716argument or the result.
8717
8718Overloaded intrinsics will have the names of its overloaded argument
8719types encoded into its function name, each preceded by a period. Only
8720those types which are overloaded result in a name suffix. Arguments
8721whose type is matched against another type do not. For example, the
8722``llvm.ctpop`` function can take an integer of any width and returns an
8723integer of exactly the same integer width. This leads to a family of
8724functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8725``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8726overloaded, and only one type suffix is required. Because the argument's
8727type is matched against the return type, it does not require its own
8728name suffix.
8729
8730To learn how to add an intrinsic function, please see the `Extending
8731LLVM Guide <ExtendingLLVM.html>`_.
8732
8733.. _int_varargs:
8734
8735Variable Argument Handling Intrinsics
8736-------------------------------------
8737
8738Variable argument support is defined in LLVM with the
8739:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8740functions. These functions are related to the similarly named macros
8741defined in the ``<stdarg.h>`` header file.
8742
8743All of these functions operate on arguments that use a target-specific
8744value type "``va_list``". The LLVM assembly language reference manual
8745does not define what this type is, so all transformations should be
8746prepared to handle these functions regardless of the type used.
8747
8748This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8749variable argument handling intrinsic functions are used.
8750
8751.. code-block:: llvm
8752
Tim Northoverab60bb92014-11-02 01:21:51 +00008753 ; This struct is different for every platform. For most platforms,
8754 ; it is merely an i8*.
8755 %struct.va_list = type { i8* }
8756
8757 ; For Unix x86_64 platforms, va_list is the following struct:
8758 ; %struct.va_list = type { i32, i32, i8*, i8* }
8759
Sean Silvab084af42012-12-07 10:36:55 +00008760 define i32 @test(i32 %X, ...) {
8761 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008762 %ap = alloca %struct.va_list
8763 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008764 call void @llvm.va_start(i8* %ap2)
8765
8766 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008767 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008768
8769 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8770 %aq = alloca i8*
8771 %aq2 = bitcast i8** %aq to i8*
8772 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8773 call void @llvm.va_end(i8* %aq2)
8774
8775 ; Stop processing of arguments.
8776 call void @llvm.va_end(i8* %ap2)
8777 ret i32 %tmp
8778 }
8779
8780 declare void @llvm.va_start(i8*)
8781 declare void @llvm.va_copy(i8*, i8*)
8782 declare void @llvm.va_end(i8*)
8783
8784.. _int_va_start:
8785
8786'``llvm.va_start``' Intrinsic
8787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8788
8789Syntax:
8790"""""""
8791
8792::
8793
Nick Lewycky04f6de02013-09-11 22:04:52 +00008794 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008795
8796Overview:
8797"""""""""
8798
8799The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8800subsequent use by ``va_arg``.
8801
8802Arguments:
8803""""""""""
8804
8805The argument is a pointer to a ``va_list`` element to initialize.
8806
8807Semantics:
8808""""""""""
8809
8810The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8811available in C. In a target-dependent way, it initializes the
8812``va_list`` element to which the argument points, so that the next call
8813to ``va_arg`` will produce the first variable argument passed to the
8814function. Unlike the C ``va_start`` macro, this intrinsic does not need
8815to know the last argument of the function as the compiler can figure
8816that out.
8817
8818'``llvm.va_end``' Intrinsic
8819^^^^^^^^^^^^^^^^^^^^^^^^^^^
8820
8821Syntax:
8822"""""""
8823
8824::
8825
8826 declare void @llvm.va_end(i8* <arglist>)
8827
8828Overview:
8829"""""""""
8830
8831The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8832initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8833
8834Arguments:
8835""""""""""
8836
8837The argument is a pointer to a ``va_list`` to destroy.
8838
8839Semantics:
8840""""""""""
8841
8842The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8843available in C. In a target-dependent way, it destroys the ``va_list``
8844element to which the argument points. Calls to
8845:ref:`llvm.va_start <int_va_start>` and
8846:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8847``llvm.va_end``.
8848
8849.. _int_va_copy:
8850
8851'``llvm.va_copy``' Intrinsic
8852^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8853
8854Syntax:
8855"""""""
8856
8857::
8858
8859 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8860
8861Overview:
8862"""""""""
8863
8864The '``llvm.va_copy``' intrinsic copies the current argument position
8865from the source argument list to the destination argument list.
8866
8867Arguments:
8868""""""""""
8869
8870The first argument is a pointer to a ``va_list`` element to initialize.
8871The second argument is a pointer to a ``va_list`` element to copy from.
8872
8873Semantics:
8874""""""""""
8875
8876The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8877available in C. In a target-dependent way, it copies the source
8878``va_list`` element into the destination ``va_list`` element. This
8879intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8880arbitrarily complex and require, for example, memory allocation.
8881
8882Accurate Garbage Collection Intrinsics
8883--------------------------------------
8884
Philip Reamesc5b0f562015-02-25 23:52:06 +00008885LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008886(GC) requires the frontend to generate code containing appropriate intrinsic
8887calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008888intrinsics in a manner which is appropriate for the target collector.
8889
Sean Silvab084af42012-12-07 10:36:55 +00008890These intrinsics allow identification of :ref:`GC roots on the
8891stack <int_gcroot>`, as well as garbage collector implementations that
8892require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008893Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008894these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008895details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008896
Philip Reamesf80bbff2015-02-25 23:45:20 +00008897Experimental Statepoint Intrinsics
8898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8899
8900LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008901collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008902to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008903:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008904differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008905<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008906described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008907
8908.. _int_gcroot:
8909
8910'``llvm.gcroot``' Intrinsic
8911^^^^^^^^^^^^^^^^^^^^^^^^^^^
8912
8913Syntax:
8914"""""""
8915
8916::
8917
8918 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8919
8920Overview:
8921"""""""""
8922
8923The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8924the code generator, and allows some metadata to be associated with it.
8925
8926Arguments:
8927""""""""""
8928
8929The first argument specifies the address of a stack object that contains
8930the root pointer. The second pointer (which must be either a constant or
8931a global value address) contains the meta-data to be associated with the
8932root.
8933
8934Semantics:
8935""""""""""
8936
8937At runtime, a call to this intrinsic stores a null pointer into the
8938"ptrloc" location. At compile-time, the code generator generates
8939information to allow the runtime to find the pointer at GC safe points.
8940The '``llvm.gcroot``' intrinsic may only be used in a function which
8941:ref:`specifies a GC algorithm <gc>`.
8942
8943.. _int_gcread:
8944
8945'``llvm.gcread``' Intrinsic
8946^^^^^^^^^^^^^^^^^^^^^^^^^^^
8947
8948Syntax:
8949"""""""
8950
8951::
8952
8953 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8954
8955Overview:
8956"""""""""
8957
8958The '``llvm.gcread``' intrinsic identifies reads of references from heap
8959locations, allowing garbage collector implementations that require read
8960barriers.
8961
8962Arguments:
8963""""""""""
8964
8965The second argument is the address to read from, which should be an
8966address allocated from the garbage collector. The first object is a
8967pointer to the start of the referenced object, if needed by the language
8968runtime (otherwise null).
8969
8970Semantics:
8971""""""""""
8972
8973The '``llvm.gcread``' intrinsic has the same semantics as a load
8974instruction, but may be replaced with substantially more complex code by
8975the garbage collector runtime, as needed. The '``llvm.gcread``'
8976intrinsic may only be used in a function which :ref:`specifies a GC
8977algorithm <gc>`.
8978
8979.. _int_gcwrite:
8980
8981'``llvm.gcwrite``' Intrinsic
8982^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8983
8984Syntax:
8985"""""""
8986
8987::
8988
8989 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8990
8991Overview:
8992"""""""""
8993
8994The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8995locations, allowing garbage collector implementations that require write
8996barriers (such as generational or reference counting collectors).
8997
8998Arguments:
8999""""""""""
9000
9001The first argument is the reference to store, the second is the start of
9002the object to store it to, and the third is the address of the field of
9003Obj to store to. If the runtime does not require a pointer to the
9004object, Obj may be null.
9005
9006Semantics:
9007""""""""""
9008
9009The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9010instruction, but may be replaced with substantially more complex code by
9011the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9012intrinsic may only be used in a function which :ref:`specifies a GC
9013algorithm <gc>`.
9014
9015Code Generator Intrinsics
9016-------------------------
9017
9018These intrinsics are provided by LLVM to expose special features that
9019may only be implemented with code generator support.
9020
9021'``llvm.returnaddress``' Intrinsic
9022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9023
9024Syntax:
9025"""""""
9026
9027::
9028
9029 declare i8 *@llvm.returnaddress(i32 <level>)
9030
9031Overview:
9032"""""""""
9033
9034The '``llvm.returnaddress``' intrinsic attempts to compute a
9035target-specific value indicating the return address of the current
9036function or one of its callers.
9037
9038Arguments:
9039""""""""""
9040
9041The argument to this intrinsic indicates which function to return the
9042address for. Zero indicates the calling function, one indicates its
9043caller, etc. The argument is **required** to be a constant integer
9044value.
9045
9046Semantics:
9047""""""""""
9048
9049The '``llvm.returnaddress``' intrinsic either returns a pointer
9050indicating the return address of the specified call frame, or zero if it
9051cannot be identified. The value returned by this intrinsic is likely to
9052be incorrect or 0 for arguments other than zero, so it should only be
9053used for debugging purposes.
9054
9055Note that calling this intrinsic does not prevent function inlining or
9056other aggressive transformations, so the value returned may not be that
9057of the obvious source-language caller.
9058
9059'``llvm.frameaddress``' Intrinsic
9060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9061
9062Syntax:
9063"""""""
9064
9065::
9066
9067 declare i8* @llvm.frameaddress(i32 <level>)
9068
9069Overview:
9070"""""""""
9071
9072The '``llvm.frameaddress``' intrinsic attempts to return the
9073target-specific frame pointer value for the specified stack frame.
9074
9075Arguments:
9076""""""""""
9077
9078The argument to this intrinsic indicates which function to return the
9079frame pointer for. Zero indicates the calling function, one indicates
9080its caller, etc. The argument is **required** to be a constant integer
9081value.
9082
9083Semantics:
9084""""""""""
9085
9086The '``llvm.frameaddress``' intrinsic either returns a pointer
9087indicating the frame address of the specified call frame, or zero if it
9088cannot be identified. The value returned by this intrinsic is likely to
9089be incorrect or 0 for arguments other than zero, so it should only be
9090used for debugging purposes.
9091
9092Note that calling this intrinsic does not prevent function inlining or
9093other aggressive transformations, so the value returned may not be that
9094of the obvious source-language caller.
9095
Reid Kleckner60381792015-07-07 22:25:32 +00009096'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9098
9099Syntax:
9100"""""""
9101
9102::
9103
Reid Kleckner60381792015-07-07 22:25:32 +00009104 declare void @llvm.localescape(...)
9105 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009106
9107Overview:
9108"""""""""
9109
Reid Kleckner60381792015-07-07 22:25:32 +00009110The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9111allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009112live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009113computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009114
9115Arguments:
9116""""""""""
9117
Reid Kleckner60381792015-07-07 22:25:32 +00009118All arguments to '``llvm.localescape``' must be pointers to static allocas or
9119casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009120once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009121
Reid Kleckner60381792015-07-07 22:25:32 +00009122The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009123bitcasted pointer to a function defined in the current module. The code
9124generator cannot determine the frame allocation offset of functions defined in
9125other modules.
9126
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009127The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9128call frame that is currently live. The return value of '``llvm.localaddress``'
9129is one way to produce such a value, but various runtimes also expose a suitable
9130pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009131
Reid Kleckner60381792015-07-07 22:25:32 +00009132The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9133'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009134
Reid Klecknere9b89312015-01-13 00:48:10 +00009135Semantics:
9136""""""""""
9137
Reid Kleckner60381792015-07-07 22:25:32 +00009138These intrinsics allow a group of functions to share access to a set of local
9139stack allocations of a one parent function. The parent function may call the
9140'``llvm.localescape``' intrinsic once from the function entry block, and the
9141child functions can use '``llvm.localrecover``' to access the escaped allocas.
9142The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9143the escaped allocas are allocated, which would break attempts to use
9144'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009145
Renato Golinc7aea402014-05-06 16:51:25 +00009146.. _int_read_register:
9147.. _int_write_register:
9148
9149'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9151
9152Syntax:
9153"""""""
9154
9155::
9156
9157 declare i32 @llvm.read_register.i32(metadata)
9158 declare i64 @llvm.read_register.i64(metadata)
9159 declare void @llvm.write_register.i32(metadata, i32 @value)
9160 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009161 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009162
9163Overview:
9164"""""""""
9165
9166The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9167provides access to the named register. The register must be valid on
9168the architecture being compiled to. The type needs to be compatible
9169with the register being read.
9170
9171Semantics:
9172""""""""""
9173
9174The '``llvm.read_register``' intrinsic returns the current value of the
9175register, where possible. The '``llvm.write_register``' intrinsic sets
9176the current value of the register, where possible.
9177
9178This is useful to implement named register global variables that need
9179to always be mapped to a specific register, as is common practice on
9180bare-metal programs including OS kernels.
9181
9182The compiler doesn't check for register availability or use of the used
9183register in surrounding code, including inline assembly. Because of that,
9184allocatable registers are not supported.
9185
9186Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009187architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009188work is needed to support other registers and even more so, allocatable
9189registers.
9190
Sean Silvab084af42012-12-07 10:36:55 +00009191.. _int_stacksave:
9192
9193'``llvm.stacksave``' Intrinsic
9194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9195
9196Syntax:
9197"""""""
9198
9199::
9200
9201 declare i8* @llvm.stacksave()
9202
9203Overview:
9204"""""""""
9205
9206The '``llvm.stacksave``' intrinsic is used to remember the current state
9207of the function stack, for use with
9208:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9209implementing language features like scoped automatic variable sized
9210arrays in C99.
9211
9212Semantics:
9213""""""""""
9214
9215This intrinsic returns a opaque pointer value that can be passed to
9216:ref:`llvm.stackrestore <int_stackrestore>`. When an
9217``llvm.stackrestore`` intrinsic is executed with a value saved from
9218``llvm.stacksave``, it effectively restores the state of the stack to
9219the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9220practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9221were allocated after the ``llvm.stacksave`` was executed.
9222
9223.. _int_stackrestore:
9224
9225'``llvm.stackrestore``' Intrinsic
9226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9227
9228Syntax:
9229"""""""
9230
9231::
9232
9233 declare void @llvm.stackrestore(i8* %ptr)
9234
9235Overview:
9236"""""""""
9237
9238The '``llvm.stackrestore``' intrinsic is used to restore the state of
9239the function stack to the state it was in when the corresponding
9240:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9241useful for implementing language features like scoped automatic variable
9242sized arrays in C99.
9243
9244Semantics:
9245""""""""""
9246
9247See the description for :ref:`llvm.stacksave <int_stacksave>`.
9248
9249'``llvm.prefetch``' Intrinsic
9250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9251
9252Syntax:
9253"""""""
9254
9255::
9256
9257 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9258
9259Overview:
9260"""""""""
9261
9262The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9263insert a prefetch instruction if supported; otherwise, it is a noop.
9264Prefetches have no effect on the behavior of the program but can change
9265its performance characteristics.
9266
9267Arguments:
9268""""""""""
9269
9270``address`` is the address to be prefetched, ``rw`` is the specifier
9271determining if the fetch should be for a read (0) or write (1), and
9272``locality`` is a temporal locality specifier ranging from (0) - no
9273locality, to (3) - extremely local keep in cache. The ``cache type``
9274specifies whether the prefetch is performed on the data (1) or
9275instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9276arguments must be constant integers.
9277
9278Semantics:
9279""""""""""
9280
9281This intrinsic does not modify the behavior of the program. In
9282particular, prefetches cannot trap and do not produce a value. On
9283targets that support this intrinsic, the prefetch can provide hints to
9284the processor cache for better performance.
9285
9286'``llvm.pcmarker``' Intrinsic
9287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9288
9289Syntax:
9290"""""""
9291
9292::
9293
9294 declare void @llvm.pcmarker(i32 <id>)
9295
9296Overview:
9297"""""""""
9298
9299The '``llvm.pcmarker``' intrinsic is a method to export a Program
9300Counter (PC) in a region of code to simulators and other tools. The
9301method is target specific, but it is expected that the marker will use
9302exported symbols to transmit the PC of the marker. The marker makes no
9303guarantees that it will remain with any specific instruction after
9304optimizations. It is possible that the presence of a marker will inhibit
9305optimizations. The intended use is to be inserted after optimizations to
9306allow correlations of simulation runs.
9307
9308Arguments:
9309""""""""""
9310
9311``id`` is a numerical id identifying the marker.
9312
9313Semantics:
9314""""""""""
9315
9316This intrinsic does not modify the behavior of the program. Backends
9317that do not support this intrinsic may ignore it.
9318
9319'``llvm.readcyclecounter``' Intrinsic
9320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9321
9322Syntax:
9323"""""""
9324
9325::
9326
9327 declare i64 @llvm.readcyclecounter()
9328
9329Overview:
9330"""""""""
9331
9332The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9333counter register (or similar low latency, high accuracy clocks) on those
9334targets that support it. On X86, it should map to RDTSC. On Alpha, it
9335should map to RPCC. As the backing counters overflow quickly (on the
9336order of 9 seconds on alpha), this should only be used for small
9337timings.
9338
9339Semantics:
9340""""""""""
9341
9342When directly supported, reading the cycle counter should not modify any
9343memory. Implementations are allowed to either return a application
9344specific value or a system wide value. On backends without support, this
9345is lowered to a constant 0.
9346
Tim Northoverbc933082013-05-23 19:11:20 +00009347Note that runtime support may be conditional on the privilege-level code is
9348running at and the host platform.
9349
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009350'``llvm.clear_cache``' Intrinsic
9351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9352
9353Syntax:
9354"""""""
9355
9356::
9357
9358 declare void @llvm.clear_cache(i8*, i8*)
9359
9360Overview:
9361"""""""""
9362
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009363The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9364in the specified range to the execution unit of the processor. On
9365targets with non-unified instruction and data cache, the implementation
9366flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009367
9368Semantics:
9369""""""""""
9370
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009371On platforms with coherent instruction and data caches (e.g. x86), this
9372intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009373cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009374instructions or a system call, if cache flushing requires special
9375privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009376
Sean Silvad02bf3e2014-04-07 22:29:53 +00009377The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009378time library.
Renato Golin93010e62014-03-26 14:01:32 +00009379
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009380This instrinsic does *not* empty the instruction pipeline. Modifications
9381of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009382
Justin Bogner61ba2e32014-12-08 18:02:35 +00009383'``llvm.instrprof_increment``' Intrinsic
9384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9385
9386Syntax:
9387"""""""
9388
9389::
9390
9391 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9392 i32 <num-counters>, i32 <index>)
9393
9394Overview:
9395"""""""""
9396
9397The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9398frontend for use with instrumentation based profiling. These will be
9399lowered by the ``-instrprof`` pass to generate execution counts of a
9400program at runtime.
9401
9402Arguments:
9403""""""""""
9404
9405The first argument is a pointer to a global variable containing the
9406name of the entity being instrumented. This should generally be the
9407(mangled) function name for a set of counters.
9408
9409The second argument is a hash value that can be used by the consumer
9410of the profile data to detect changes to the instrumented source, and
9411the third is the number of counters associated with ``name``. It is an
9412error if ``hash`` or ``num-counters`` differ between two instances of
9413``instrprof_increment`` that refer to the same name.
9414
9415The last argument refers to which of the counters for ``name`` should
9416be incremented. It should be a value between 0 and ``num-counters``.
9417
9418Semantics:
9419""""""""""
9420
9421This intrinsic represents an increment of a profiling counter. It will
9422cause the ``-instrprof`` pass to generate the appropriate data
9423structures and the code to increment the appropriate value, in a
9424format that can be written out by a compiler runtime and consumed via
9425the ``llvm-profdata`` tool.
9426
Sean Silvab084af42012-12-07 10:36:55 +00009427Standard C Library Intrinsics
9428-----------------------------
9429
9430LLVM provides intrinsics for a few important standard C library
9431functions. These intrinsics allow source-language front-ends to pass
9432information about the alignment of the pointer arguments to the code
9433generator, providing opportunity for more efficient code generation.
9434
9435.. _int_memcpy:
9436
9437'``llvm.memcpy``' Intrinsic
9438^^^^^^^^^^^^^^^^^^^^^^^^^^^
9439
9440Syntax:
9441"""""""
9442
9443This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9444integer bit width and for different address spaces. Not all targets
9445support all bit widths however.
9446
9447::
9448
9449 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9450 i32 <len>, i32 <align>, i1 <isvolatile>)
9451 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9452 i64 <len>, i32 <align>, i1 <isvolatile>)
9453
9454Overview:
9455"""""""""
9456
9457The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9458source location to the destination location.
9459
9460Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9461intrinsics do not return a value, takes extra alignment/isvolatile
9462arguments and the pointers can be in specified address spaces.
9463
9464Arguments:
9465""""""""""
9466
9467The first argument is a pointer to the destination, the second is a
9468pointer to the source. The third argument is an integer argument
9469specifying the number of bytes to copy, the fourth argument is the
9470alignment of the source and destination locations, and the fifth is a
9471boolean indicating a volatile access.
9472
9473If the call to this intrinsic has an alignment value that is not 0 or 1,
9474then the caller guarantees that both the source and destination pointers
9475are aligned to that boundary.
9476
9477If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9478a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9479very cleanly specified and it is unwise to depend on it.
9480
9481Semantics:
9482""""""""""
9483
9484The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9485source location to the destination location, which are not allowed to
9486overlap. It copies "len" bytes of memory over. If the argument is known
9487to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009488argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009489
9490'``llvm.memmove``' Intrinsic
9491^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9492
9493Syntax:
9494"""""""
9495
9496This is an overloaded intrinsic. You can use llvm.memmove on any integer
9497bit width and for different address space. Not all targets support all
9498bit widths however.
9499
9500::
9501
9502 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9503 i32 <len>, i32 <align>, i1 <isvolatile>)
9504 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9505 i64 <len>, i32 <align>, i1 <isvolatile>)
9506
9507Overview:
9508"""""""""
9509
9510The '``llvm.memmove.*``' intrinsics move a block of memory from the
9511source location to the destination location. It is similar to the
9512'``llvm.memcpy``' intrinsic but allows the two memory locations to
9513overlap.
9514
9515Note that, unlike the standard libc function, the ``llvm.memmove.*``
9516intrinsics do not return a value, takes extra alignment/isvolatile
9517arguments and the pointers can be in specified address spaces.
9518
9519Arguments:
9520""""""""""
9521
9522The first argument is a pointer to the destination, the second is a
9523pointer to the source. The third argument is an integer argument
9524specifying the number of bytes to copy, the fourth argument is the
9525alignment of the source and destination locations, and the fifth is a
9526boolean indicating a volatile access.
9527
9528If the call to this intrinsic has an alignment value that is not 0 or 1,
9529then the caller guarantees that the source and destination pointers are
9530aligned to that boundary.
9531
9532If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9533is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9534not very cleanly specified and it is unwise to depend on it.
9535
9536Semantics:
9537""""""""""
9538
9539The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9540source location to the destination location, which may overlap. It
9541copies "len" bytes of memory over. If the argument is known to be
9542aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009543otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009544
9545'``llvm.memset.*``' Intrinsics
9546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9547
9548Syntax:
9549"""""""
9550
9551This is an overloaded intrinsic. You can use llvm.memset on any integer
9552bit width and for different address spaces. However, not all targets
9553support all bit widths.
9554
9555::
9556
9557 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9558 i32 <len>, i32 <align>, i1 <isvolatile>)
9559 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9560 i64 <len>, i32 <align>, i1 <isvolatile>)
9561
9562Overview:
9563"""""""""
9564
9565The '``llvm.memset.*``' intrinsics fill a block of memory with a
9566particular byte value.
9567
9568Note that, unlike the standard libc function, the ``llvm.memset``
9569intrinsic does not return a value and takes extra alignment/volatile
9570arguments. Also, the destination can be in an arbitrary address space.
9571
9572Arguments:
9573""""""""""
9574
9575The first argument is a pointer to the destination to fill, the second
9576is the byte value with which to fill it, the third argument is an
9577integer argument specifying the number of bytes to fill, and the fourth
9578argument is the known alignment of the destination location.
9579
9580If the call to this intrinsic has an alignment value that is not 0 or 1,
9581then the caller guarantees that the destination pointer is aligned to
9582that boundary.
9583
9584If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9585a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9586very cleanly specified and it is unwise to depend on it.
9587
9588Semantics:
9589""""""""""
9590
9591The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9592at the destination location. If the argument is known to be aligned to
9593some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009594it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009595
9596'``llvm.sqrt.*``' Intrinsic
9597^^^^^^^^^^^^^^^^^^^^^^^^^^^
9598
9599Syntax:
9600"""""""
9601
9602This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9603floating point or vector of floating point type. Not all targets support
9604all types however.
9605
9606::
9607
9608 declare float @llvm.sqrt.f32(float %Val)
9609 declare double @llvm.sqrt.f64(double %Val)
9610 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9611 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9612 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9613
9614Overview:
9615"""""""""
9616
9617The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9618returning the same value as the libm '``sqrt``' functions would. Unlike
9619``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9620negative numbers other than -0.0 (which allows for better optimization,
9621because there is no need to worry about errno being set).
9622``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9623
9624Arguments:
9625""""""""""
9626
9627The argument and return value are floating point numbers of the same
9628type.
9629
9630Semantics:
9631""""""""""
9632
9633This function returns the sqrt of the specified operand if it is a
9634nonnegative floating point number.
9635
9636'``llvm.powi.*``' Intrinsic
9637^^^^^^^^^^^^^^^^^^^^^^^^^^^
9638
9639Syntax:
9640"""""""
9641
9642This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9643floating point or vector of floating point type. Not all targets support
9644all types however.
9645
9646::
9647
9648 declare float @llvm.powi.f32(float %Val, i32 %power)
9649 declare double @llvm.powi.f64(double %Val, i32 %power)
9650 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9651 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9652 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9653
9654Overview:
9655"""""""""
9656
9657The '``llvm.powi.*``' intrinsics return the first operand raised to the
9658specified (positive or negative) power. The order of evaluation of
9659multiplications is not defined. When a vector of floating point type is
9660used, the second argument remains a scalar integer value.
9661
9662Arguments:
9663""""""""""
9664
9665The second argument is an integer power, and the first is a value to
9666raise to that power.
9667
9668Semantics:
9669""""""""""
9670
9671This function returns the first value raised to the second power with an
9672unspecified sequence of rounding operations.
9673
9674'``llvm.sin.*``' Intrinsic
9675^^^^^^^^^^^^^^^^^^^^^^^^^^
9676
9677Syntax:
9678"""""""
9679
9680This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9681floating point or vector of floating point type. Not all targets support
9682all types however.
9683
9684::
9685
9686 declare float @llvm.sin.f32(float %Val)
9687 declare double @llvm.sin.f64(double %Val)
9688 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9689 declare fp128 @llvm.sin.f128(fp128 %Val)
9690 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9691
9692Overview:
9693"""""""""
9694
9695The '``llvm.sin.*``' intrinsics return the sine of the operand.
9696
9697Arguments:
9698""""""""""
9699
9700The argument and return value are floating point numbers of the same
9701type.
9702
9703Semantics:
9704""""""""""
9705
9706This function returns the sine of the specified operand, returning the
9707same values as the libm ``sin`` functions would, and handles error
9708conditions in the same way.
9709
9710'``llvm.cos.*``' Intrinsic
9711^^^^^^^^^^^^^^^^^^^^^^^^^^
9712
9713Syntax:
9714"""""""
9715
9716This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9717floating point or vector of floating point type. Not all targets support
9718all types however.
9719
9720::
9721
9722 declare float @llvm.cos.f32(float %Val)
9723 declare double @llvm.cos.f64(double %Val)
9724 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9725 declare fp128 @llvm.cos.f128(fp128 %Val)
9726 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9727
9728Overview:
9729"""""""""
9730
9731The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9732
9733Arguments:
9734""""""""""
9735
9736The argument and return value are floating point numbers of the same
9737type.
9738
9739Semantics:
9740""""""""""
9741
9742This function returns the cosine of the specified operand, returning the
9743same values as the libm ``cos`` functions would, and handles error
9744conditions in the same way.
9745
9746'``llvm.pow.*``' Intrinsic
9747^^^^^^^^^^^^^^^^^^^^^^^^^^
9748
9749Syntax:
9750"""""""
9751
9752This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9753floating point or vector of floating point type. Not all targets support
9754all types however.
9755
9756::
9757
9758 declare float @llvm.pow.f32(float %Val, float %Power)
9759 declare double @llvm.pow.f64(double %Val, double %Power)
9760 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9761 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9762 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9763
9764Overview:
9765"""""""""
9766
9767The '``llvm.pow.*``' intrinsics return the first operand raised to the
9768specified (positive or negative) power.
9769
9770Arguments:
9771""""""""""
9772
9773The second argument is a floating point power, and the first is a value
9774to raise to that power.
9775
9776Semantics:
9777""""""""""
9778
9779This function returns the first value raised to the second power,
9780returning the same values as the libm ``pow`` functions would, and
9781handles error conditions in the same way.
9782
9783'``llvm.exp.*``' Intrinsic
9784^^^^^^^^^^^^^^^^^^^^^^^^^^
9785
9786Syntax:
9787"""""""
9788
9789This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9790floating point or vector of floating point type. Not all targets support
9791all types however.
9792
9793::
9794
9795 declare float @llvm.exp.f32(float %Val)
9796 declare double @llvm.exp.f64(double %Val)
9797 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9798 declare fp128 @llvm.exp.f128(fp128 %Val)
9799 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9800
9801Overview:
9802"""""""""
9803
9804The '``llvm.exp.*``' intrinsics perform the exp function.
9805
9806Arguments:
9807""""""""""
9808
9809The argument and return value are floating point numbers of the same
9810type.
9811
9812Semantics:
9813""""""""""
9814
9815This function returns the same values as the libm ``exp`` functions
9816would, and handles error conditions in the same way.
9817
9818'``llvm.exp2.*``' Intrinsic
9819^^^^^^^^^^^^^^^^^^^^^^^^^^^
9820
9821Syntax:
9822"""""""
9823
9824This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9825floating point or vector of floating point type. Not all targets support
9826all types however.
9827
9828::
9829
9830 declare float @llvm.exp2.f32(float %Val)
9831 declare double @llvm.exp2.f64(double %Val)
9832 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9833 declare fp128 @llvm.exp2.f128(fp128 %Val)
9834 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9835
9836Overview:
9837"""""""""
9838
9839The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9840
9841Arguments:
9842""""""""""
9843
9844The argument and return value are floating point numbers of the same
9845type.
9846
9847Semantics:
9848""""""""""
9849
9850This function returns the same values as the libm ``exp2`` functions
9851would, and handles error conditions in the same way.
9852
9853'``llvm.log.*``' Intrinsic
9854^^^^^^^^^^^^^^^^^^^^^^^^^^
9855
9856Syntax:
9857"""""""
9858
9859This is an overloaded intrinsic. You can use ``llvm.log`` on any
9860floating point or vector of floating point type. Not all targets support
9861all types however.
9862
9863::
9864
9865 declare float @llvm.log.f32(float %Val)
9866 declare double @llvm.log.f64(double %Val)
9867 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9868 declare fp128 @llvm.log.f128(fp128 %Val)
9869 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9870
9871Overview:
9872"""""""""
9873
9874The '``llvm.log.*``' intrinsics perform the log function.
9875
9876Arguments:
9877""""""""""
9878
9879The argument and return value are floating point numbers of the same
9880type.
9881
9882Semantics:
9883""""""""""
9884
9885This function returns the same values as the libm ``log`` functions
9886would, and handles error conditions in the same way.
9887
9888'``llvm.log10.*``' Intrinsic
9889^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9890
9891Syntax:
9892"""""""
9893
9894This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9895floating point or vector of floating point type. Not all targets support
9896all types however.
9897
9898::
9899
9900 declare float @llvm.log10.f32(float %Val)
9901 declare double @llvm.log10.f64(double %Val)
9902 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9903 declare fp128 @llvm.log10.f128(fp128 %Val)
9904 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9905
9906Overview:
9907"""""""""
9908
9909The '``llvm.log10.*``' intrinsics perform the log10 function.
9910
9911Arguments:
9912""""""""""
9913
9914The argument and return value are floating point numbers of the same
9915type.
9916
9917Semantics:
9918""""""""""
9919
9920This function returns the same values as the libm ``log10`` functions
9921would, and handles error conditions in the same way.
9922
9923'``llvm.log2.*``' Intrinsic
9924^^^^^^^^^^^^^^^^^^^^^^^^^^^
9925
9926Syntax:
9927"""""""
9928
9929This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9930floating point or vector of floating point type. Not all targets support
9931all types however.
9932
9933::
9934
9935 declare float @llvm.log2.f32(float %Val)
9936 declare double @llvm.log2.f64(double %Val)
9937 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9938 declare fp128 @llvm.log2.f128(fp128 %Val)
9939 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9940
9941Overview:
9942"""""""""
9943
9944The '``llvm.log2.*``' intrinsics perform the log2 function.
9945
9946Arguments:
9947""""""""""
9948
9949The argument and return value are floating point numbers of the same
9950type.
9951
9952Semantics:
9953""""""""""
9954
9955This function returns the same values as the libm ``log2`` functions
9956would, and handles error conditions in the same way.
9957
9958'``llvm.fma.*``' Intrinsic
9959^^^^^^^^^^^^^^^^^^^^^^^^^^
9960
9961Syntax:
9962"""""""
9963
9964This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9965floating point or vector of floating point type. Not all targets support
9966all types however.
9967
9968::
9969
9970 declare float @llvm.fma.f32(float %a, float %b, float %c)
9971 declare double @llvm.fma.f64(double %a, double %b, double %c)
9972 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9973 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9974 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9975
9976Overview:
9977"""""""""
9978
9979The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9980operation.
9981
9982Arguments:
9983""""""""""
9984
9985The argument and return value are floating point numbers of the same
9986type.
9987
9988Semantics:
9989""""""""""
9990
9991This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009992would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009993
9994'``llvm.fabs.*``' Intrinsic
9995^^^^^^^^^^^^^^^^^^^^^^^^^^^
9996
9997Syntax:
9998"""""""
9999
10000This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10001floating point or vector of floating point type. Not all targets support
10002all types however.
10003
10004::
10005
10006 declare float @llvm.fabs.f32(float %Val)
10007 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010008 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010009 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010010 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010011
10012Overview:
10013"""""""""
10014
10015The '``llvm.fabs.*``' intrinsics return the absolute value of the
10016operand.
10017
10018Arguments:
10019""""""""""
10020
10021The argument and return value are floating point numbers of the same
10022type.
10023
10024Semantics:
10025""""""""""
10026
10027This function returns the same values as the libm ``fabs`` functions
10028would, and handles error conditions in the same way.
10029
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010030'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010032
10033Syntax:
10034"""""""
10035
10036This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10037floating point or vector of floating point type. Not all targets support
10038all types however.
10039
10040::
10041
Matt Arsenault64313c92014-10-22 18:25:02 +000010042 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10043 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10044 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10045 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10046 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010047
10048Overview:
10049"""""""""
10050
10051The '``llvm.minnum.*``' intrinsics return the minimum of the two
10052arguments.
10053
10054
10055Arguments:
10056""""""""""
10057
10058The arguments and return value are floating point numbers of the same
10059type.
10060
10061Semantics:
10062""""""""""
10063
10064Follows the IEEE-754 semantics for minNum, which also match for libm's
10065fmin.
10066
10067If either operand is a NaN, returns the other non-NaN operand. Returns
10068NaN only if both operands are NaN. If the operands compare equal,
10069returns a value that compares equal to both operands. This means that
10070fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10071
10072'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010074
10075Syntax:
10076"""""""
10077
10078This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10079floating point or vector of floating point type. Not all targets support
10080all types however.
10081
10082::
10083
Matt Arsenault64313c92014-10-22 18:25:02 +000010084 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10085 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10086 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10087 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10088 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010089
10090Overview:
10091"""""""""
10092
10093The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10094arguments.
10095
10096
10097Arguments:
10098""""""""""
10099
10100The arguments and return value are floating point numbers of the same
10101type.
10102
10103Semantics:
10104""""""""""
10105Follows the IEEE-754 semantics for maxNum, which also match for libm's
10106fmax.
10107
10108If either operand is a NaN, returns the other non-NaN operand. Returns
10109NaN only if both operands are NaN. If the operands compare equal,
10110returns a value that compares equal to both operands. This means that
10111fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10112
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010113'``llvm.copysign.*``' Intrinsic
10114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10115
10116Syntax:
10117"""""""
10118
10119This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10120floating point or vector of floating point type. Not all targets support
10121all types however.
10122
10123::
10124
10125 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10126 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10127 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10128 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10129 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10130
10131Overview:
10132"""""""""
10133
10134The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10135first operand and the sign of the second operand.
10136
10137Arguments:
10138""""""""""
10139
10140The arguments and return value are floating point numbers of the same
10141type.
10142
10143Semantics:
10144""""""""""
10145
10146This function returns the same values as the libm ``copysign``
10147functions would, and handles error conditions in the same way.
10148
Sean Silvab084af42012-12-07 10:36:55 +000010149'``llvm.floor.*``' Intrinsic
10150^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10151
10152Syntax:
10153"""""""
10154
10155This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10156floating point or vector of floating point type. Not all targets support
10157all types however.
10158
10159::
10160
10161 declare float @llvm.floor.f32(float %Val)
10162 declare double @llvm.floor.f64(double %Val)
10163 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10164 declare fp128 @llvm.floor.f128(fp128 %Val)
10165 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10166
10167Overview:
10168"""""""""
10169
10170The '``llvm.floor.*``' intrinsics return the floor of the operand.
10171
10172Arguments:
10173""""""""""
10174
10175The argument and return value are floating point numbers of the same
10176type.
10177
10178Semantics:
10179""""""""""
10180
10181This function returns the same values as the libm ``floor`` functions
10182would, and handles error conditions in the same way.
10183
10184'``llvm.ceil.*``' Intrinsic
10185^^^^^^^^^^^^^^^^^^^^^^^^^^^
10186
10187Syntax:
10188"""""""
10189
10190This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10191floating point or vector of floating point type. Not all targets support
10192all types however.
10193
10194::
10195
10196 declare float @llvm.ceil.f32(float %Val)
10197 declare double @llvm.ceil.f64(double %Val)
10198 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10199 declare fp128 @llvm.ceil.f128(fp128 %Val)
10200 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10201
10202Overview:
10203"""""""""
10204
10205The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10206
10207Arguments:
10208""""""""""
10209
10210The argument and return value are floating point numbers of the same
10211type.
10212
10213Semantics:
10214""""""""""
10215
10216This function returns the same values as the libm ``ceil`` functions
10217would, and handles error conditions in the same way.
10218
10219'``llvm.trunc.*``' Intrinsic
10220^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10221
10222Syntax:
10223"""""""
10224
10225This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10226floating point or vector of floating point type. Not all targets support
10227all types however.
10228
10229::
10230
10231 declare float @llvm.trunc.f32(float %Val)
10232 declare double @llvm.trunc.f64(double %Val)
10233 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10234 declare fp128 @llvm.trunc.f128(fp128 %Val)
10235 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10236
10237Overview:
10238"""""""""
10239
10240The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10241nearest integer not larger in magnitude than the operand.
10242
10243Arguments:
10244""""""""""
10245
10246The argument and return value are floating point numbers of the same
10247type.
10248
10249Semantics:
10250""""""""""
10251
10252This function returns the same values as the libm ``trunc`` functions
10253would, and handles error conditions in the same way.
10254
10255'``llvm.rint.*``' Intrinsic
10256^^^^^^^^^^^^^^^^^^^^^^^^^^^
10257
10258Syntax:
10259"""""""
10260
10261This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10262floating point or vector of floating point type. Not all targets support
10263all types however.
10264
10265::
10266
10267 declare float @llvm.rint.f32(float %Val)
10268 declare double @llvm.rint.f64(double %Val)
10269 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10270 declare fp128 @llvm.rint.f128(fp128 %Val)
10271 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10272
10273Overview:
10274"""""""""
10275
10276The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10277nearest integer. It may raise an inexact floating-point exception if the
10278operand isn't an integer.
10279
10280Arguments:
10281""""""""""
10282
10283The argument and return value are floating point numbers of the same
10284type.
10285
10286Semantics:
10287""""""""""
10288
10289This function returns the same values as the libm ``rint`` functions
10290would, and handles error conditions in the same way.
10291
10292'``llvm.nearbyint.*``' Intrinsic
10293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10294
10295Syntax:
10296"""""""
10297
10298This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10299floating point or vector of floating point type. Not all targets support
10300all types however.
10301
10302::
10303
10304 declare float @llvm.nearbyint.f32(float %Val)
10305 declare double @llvm.nearbyint.f64(double %Val)
10306 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10307 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10308 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10309
10310Overview:
10311"""""""""
10312
10313The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10314nearest integer.
10315
10316Arguments:
10317""""""""""
10318
10319The argument and return value are floating point numbers of the same
10320type.
10321
10322Semantics:
10323""""""""""
10324
10325This function returns the same values as the libm ``nearbyint``
10326functions would, and handles error conditions in the same way.
10327
Hal Finkel171817e2013-08-07 22:49:12 +000010328'``llvm.round.*``' Intrinsic
10329^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10330
10331Syntax:
10332"""""""
10333
10334This is an overloaded intrinsic. You can use ``llvm.round`` on any
10335floating point or vector of floating point type. Not all targets support
10336all types however.
10337
10338::
10339
10340 declare float @llvm.round.f32(float %Val)
10341 declare double @llvm.round.f64(double %Val)
10342 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10343 declare fp128 @llvm.round.f128(fp128 %Val)
10344 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10345
10346Overview:
10347"""""""""
10348
10349The '``llvm.round.*``' intrinsics returns the operand rounded to the
10350nearest integer.
10351
10352Arguments:
10353""""""""""
10354
10355The argument and return value are floating point numbers of the same
10356type.
10357
10358Semantics:
10359""""""""""
10360
10361This function returns the same values as the libm ``round``
10362functions would, and handles error conditions in the same way.
10363
Sean Silvab084af42012-12-07 10:36:55 +000010364Bit Manipulation Intrinsics
10365---------------------------
10366
10367LLVM provides intrinsics for a few important bit manipulation
10368operations. These allow efficient code generation for some algorithms.
10369
10370'``llvm.bswap.*``' Intrinsics
10371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10372
10373Syntax:
10374"""""""
10375
10376This is an overloaded intrinsic function. You can use bswap on any
10377integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10378
10379::
10380
10381 declare i16 @llvm.bswap.i16(i16 <id>)
10382 declare i32 @llvm.bswap.i32(i32 <id>)
10383 declare i64 @llvm.bswap.i64(i64 <id>)
10384
10385Overview:
10386"""""""""
10387
10388The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10389values with an even number of bytes (positive multiple of 16 bits).
10390These are useful for performing operations on data that is not in the
10391target's native byte order.
10392
10393Semantics:
10394""""""""""
10395
10396The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10397and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10398intrinsic returns an i32 value that has the four bytes of the input i32
10399swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10400returned i32 will have its bytes in 3, 2, 1, 0 order. The
10401``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10402concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10403respectively).
10404
10405'``llvm.ctpop.*``' Intrinsic
10406^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10407
10408Syntax:
10409"""""""
10410
10411This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10412bit width, or on any vector with integer elements. Not all targets
10413support all bit widths or vector types, however.
10414
10415::
10416
10417 declare i8 @llvm.ctpop.i8(i8 <src>)
10418 declare i16 @llvm.ctpop.i16(i16 <src>)
10419 declare i32 @llvm.ctpop.i32(i32 <src>)
10420 declare i64 @llvm.ctpop.i64(i64 <src>)
10421 declare i256 @llvm.ctpop.i256(i256 <src>)
10422 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10423
10424Overview:
10425"""""""""
10426
10427The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10428in a value.
10429
10430Arguments:
10431""""""""""
10432
10433The only argument is the value to be counted. The argument may be of any
10434integer type, or a vector with integer elements. The return type must
10435match the argument type.
10436
10437Semantics:
10438""""""""""
10439
10440The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10441each element of a vector.
10442
10443'``llvm.ctlz.*``' Intrinsic
10444^^^^^^^^^^^^^^^^^^^^^^^^^^^
10445
10446Syntax:
10447"""""""
10448
10449This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10450integer bit width, or any vector whose elements are integers. Not all
10451targets support all bit widths or vector types, however.
10452
10453::
10454
10455 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10456 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10457 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10458 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10459 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10460 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10461
10462Overview:
10463"""""""""
10464
10465The '``llvm.ctlz``' family of intrinsic functions counts the number of
10466leading zeros in a variable.
10467
10468Arguments:
10469""""""""""
10470
10471The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010472any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010473type must match the first argument type.
10474
10475The second argument must be a constant and is a flag to indicate whether
10476the intrinsic should ensure that a zero as the first argument produces a
10477defined result. Historically some architectures did not provide a
10478defined result for zero values as efficiently, and many algorithms are
10479now predicated on avoiding zero-value inputs.
10480
10481Semantics:
10482""""""""""
10483
10484The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10485zeros in a variable, or within each element of the vector. If
10486``src == 0`` then the result is the size in bits of the type of ``src``
10487if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10488``llvm.ctlz(i32 2) = 30``.
10489
10490'``llvm.cttz.*``' Intrinsic
10491^^^^^^^^^^^^^^^^^^^^^^^^^^^
10492
10493Syntax:
10494"""""""
10495
10496This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10497integer bit width, or any vector of integer elements. Not all targets
10498support all bit widths or vector types, however.
10499
10500::
10501
10502 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10503 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10504 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10505 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10506 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10507 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10508
10509Overview:
10510"""""""""
10511
10512The '``llvm.cttz``' family of intrinsic functions counts the number of
10513trailing zeros.
10514
10515Arguments:
10516""""""""""
10517
10518The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010519any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010520type must match the first argument type.
10521
10522The second argument must be a constant and is a flag to indicate whether
10523the intrinsic should ensure that a zero as the first argument produces a
10524defined result. Historically some architectures did not provide a
10525defined result for zero values as efficiently, and many algorithms are
10526now predicated on avoiding zero-value inputs.
10527
10528Semantics:
10529""""""""""
10530
10531The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10532zeros in a variable, or within each element of a vector. If ``src == 0``
10533then the result is the size in bits of the type of ``src`` if
10534``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10535``llvm.cttz(2) = 1``.
10536
Philip Reames34843ae2015-03-05 05:55:55 +000010537.. _int_overflow:
10538
Sean Silvab084af42012-12-07 10:36:55 +000010539Arithmetic with Overflow Intrinsics
10540-----------------------------------
10541
10542LLVM provides intrinsics for some arithmetic with overflow operations.
10543
10544'``llvm.sadd.with.overflow.*``' Intrinsics
10545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10546
10547Syntax:
10548"""""""
10549
10550This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10551on any integer bit width.
10552
10553::
10554
10555 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10556 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10557 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10558
10559Overview:
10560"""""""""
10561
10562The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10563a signed addition of the two arguments, and indicate whether an overflow
10564occurred during the signed summation.
10565
10566Arguments:
10567""""""""""
10568
10569The arguments (%a and %b) and the first element of the result structure
10570may be of integer types of any bit width, but they must have the same
10571bit width. The second element of the result structure must be of type
10572``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10573addition.
10574
10575Semantics:
10576""""""""""
10577
10578The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010579a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010580first element of which is the signed summation, and the second element
10581of which is a bit specifying if the signed summation resulted in an
10582overflow.
10583
10584Examples:
10585"""""""""
10586
10587.. code-block:: llvm
10588
10589 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10590 %sum = extractvalue {i32, i1} %res, 0
10591 %obit = extractvalue {i32, i1} %res, 1
10592 br i1 %obit, label %overflow, label %normal
10593
10594'``llvm.uadd.with.overflow.*``' Intrinsics
10595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10596
10597Syntax:
10598"""""""
10599
10600This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10601on any integer bit width.
10602
10603::
10604
10605 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10606 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10607 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10608
10609Overview:
10610"""""""""
10611
10612The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10613an unsigned addition of the two arguments, and indicate whether a carry
10614occurred during the unsigned summation.
10615
10616Arguments:
10617""""""""""
10618
10619The arguments (%a and %b) and the first element of the result structure
10620may be of integer types of any bit width, but they must have the same
10621bit width. The second element of the result structure must be of type
10622``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10623addition.
10624
10625Semantics:
10626""""""""""
10627
10628The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010629an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010630first element of which is the sum, and the second element of which is a
10631bit specifying if the unsigned summation resulted in a carry.
10632
10633Examples:
10634"""""""""
10635
10636.. code-block:: llvm
10637
10638 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10639 %sum = extractvalue {i32, i1} %res, 0
10640 %obit = extractvalue {i32, i1} %res, 1
10641 br i1 %obit, label %carry, label %normal
10642
10643'``llvm.ssub.with.overflow.*``' Intrinsics
10644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10645
10646Syntax:
10647"""""""
10648
10649This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10650on any integer bit width.
10651
10652::
10653
10654 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10655 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10656 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10657
10658Overview:
10659"""""""""
10660
10661The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10662a signed subtraction of the two arguments, and indicate whether an
10663overflow occurred during the signed subtraction.
10664
10665Arguments:
10666""""""""""
10667
10668The arguments (%a and %b) and the first element of the result structure
10669may be of integer types of any bit width, but they must have the same
10670bit width. The second element of the result structure must be of type
10671``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10672subtraction.
10673
10674Semantics:
10675""""""""""
10676
10677The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010678a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010679first element of which is the subtraction, and the second element of
10680which is a bit specifying if the signed subtraction resulted in an
10681overflow.
10682
10683Examples:
10684"""""""""
10685
10686.. code-block:: llvm
10687
10688 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10689 %sum = extractvalue {i32, i1} %res, 0
10690 %obit = extractvalue {i32, i1} %res, 1
10691 br i1 %obit, label %overflow, label %normal
10692
10693'``llvm.usub.with.overflow.*``' Intrinsics
10694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10695
10696Syntax:
10697"""""""
10698
10699This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10700on any integer bit width.
10701
10702::
10703
10704 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10705 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10706 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10707
10708Overview:
10709"""""""""
10710
10711The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10712an unsigned subtraction of the two arguments, and indicate whether an
10713overflow occurred during the unsigned subtraction.
10714
10715Arguments:
10716""""""""""
10717
10718The arguments (%a and %b) and the first element of the result structure
10719may be of integer types of any bit width, but they must have the same
10720bit width. The second element of the result structure must be of type
10721``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10722subtraction.
10723
10724Semantics:
10725""""""""""
10726
10727The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010728an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010729the first element of which is the subtraction, and the second element of
10730which is a bit specifying if the unsigned subtraction resulted in an
10731overflow.
10732
10733Examples:
10734"""""""""
10735
10736.. code-block:: llvm
10737
10738 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10739 %sum = extractvalue {i32, i1} %res, 0
10740 %obit = extractvalue {i32, i1} %res, 1
10741 br i1 %obit, label %overflow, label %normal
10742
10743'``llvm.smul.with.overflow.*``' Intrinsics
10744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10745
10746Syntax:
10747"""""""
10748
10749This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10750on any integer bit width.
10751
10752::
10753
10754 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10755 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10756 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10757
10758Overview:
10759"""""""""
10760
10761The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10762a signed multiplication of the two arguments, and indicate whether an
10763overflow occurred during the signed multiplication.
10764
10765Arguments:
10766""""""""""
10767
10768The arguments (%a and %b) and the first element of the result structure
10769may be of integer types of any bit width, but they must have the same
10770bit width. The second element of the result structure must be of type
10771``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10772multiplication.
10773
10774Semantics:
10775""""""""""
10776
10777The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010778a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010779the first element of which is the multiplication, and the second element
10780of which is a bit specifying if the signed multiplication resulted in an
10781overflow.
10782
10783Examples:
10784"""""""""
10785
10786.. code-block:: llvm
10787
10788 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10789 %sum = extractvalue {i32, i1} %res, 0
10790 %obit = extractvalue {i32, i1} %res, 1
10791 br i1 %obit, label %overflow, label %normal
10792
10793'``llvm.umul.with.overflow.*``' Intrinsics
10794^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10795
10796Syntax:
10797"""""""
10798
10799This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10800on any integer bit width.
10801
10802::
10803
10804 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10805 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10806 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10807
10808Overview:
10809"""""""""
10810
10811The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10812a unsigned multiplication of the two arguments, and indicate whether an
10813overflow occurred during the unsigned multiplication.
10814
10815Arguments:
10816""""""""""
10817
10818The arguments (%a and %b) and the first element of the result structure
10819may be of integer types of any bit width, but they must have the same
10820bit width. The second element of the result structure must be of type
10821``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10822multiplication.
10823
10824Semantics:
10825""""""""""
10826
10827The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010828an unsigned multiplication of the two arguments. They return a structure ---
10829the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010830element of which is a bit specifying if the unsigned multiplication
10831resulted in an overflow.
10832
10833Examples:
10834"""""""""
10835
10836.. code-block:: llvm
10837
10838 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10839 %sum = extractvalue {i32, i1} %res, 0
10840 %obit = extractvalue {i32, i1} %res, 1
10841 br i1 %obit, label %overflow, label %normal
10842
10843Specialised Arithmetic Intrinsics
10844---------------------------------
10845
Owen Anderson1056a922015-07-11 07:01:27 +000010846'``llvm.canonicalize.*``' Intrinsic
10847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10848
10849Syntax:
10850"""""""
10851
10852::
10853
10854 declare float @llvm.canonicalize.f32(float %a)
10855 declare double @llvm.canonicalize.f64(double %b)
10856
10857Overview:
10858"""""""""
10859
10860The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010861encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010862implementing certain numeric primitives such as frexp. The canonical encoding is
10863defined by IEEE-754-2008 to be:
10864
10865::
10866
10867 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010868 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010869 numbers, infinities, and NaNs, especially in decimal formats.
10870
10871This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010872conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010873according to section 6.2.
10874
10875Examples of non-canonical encodings:
10876
Sean Silvaa1190322015-08-06 22:56:48 +000010877- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010878 converted to a canonical representation per hardware-specific protocol.
10879- Many normal decimal floating point numbers have non-canonical alternative
10880 encodings.
10881- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10882 These are treated as non-canonical encodings of zero and with be flushed to
10883 a zero of the same sign by this operation.
10884
10885Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10886default exception handling must signal an invalid exception, and produce a
10887quiet NaN result.
10888
10889This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010890that the compiler does not constant fold the operation. Likewise, division by
108911.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010892-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10893
Sean Silvaa1190322015-08-06 22:56:48 +000010894``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010895
10896- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10897- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10898 to ``(x == y)``
10899
10900Additionally, the sign of zero must be conserved:
10901``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10902
10903The payload bits of a NaN must be conserved, with two exceptions.
10904First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010905must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010906usual methods.
10907
10908The canonicalization operation may be optimized away if:
10909
Sean Silvaa1190322015-08-06 22:56:48 +000010910- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010911 floating-point operation that is required by the standard to be canonical.
10912- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010913 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010914
Sean Silvab084af42012-12-07 10:36:55 +000010915'``llvm.fmuladd.*``' Intrinsic
10916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10917
10918Syntax:
10919"""""""
10920
10921::
10922
10923 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10924 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10925
10926Overview:
10927"""""""""
10928
10929The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010930expressions that can be fused if the code generator determines that (a) the
10931target instruction set has support for a fused operation, and (b) that the
10932fused operation is more efficient than the equivalent, separate pair of mul
10933and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010934
10935Arguments:
10936""""""""""
10937
10938The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10939multiplicands, a and b, and an addend c.
10940
10941Semantics:
10942""""""""""
10943
10944The expression:
10945
10946::
10947
10948 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10949
10950is equivalent to the expression a \* b + c, except that rounding will
10951not be performed between the multiplication and addition steps if the
10952code generator fuses the operations. Fusion is not guaranteed, even if
10953the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010954corresponding llvm.fma.\* intrinsic function should be used
10955instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010956
10957Examples:
10958"""""""""
10959
10960.. code-block:: llvm
10961
Tim Northover675a0962014-06-13 14:24:23 +000010962 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010963
James Molloy7395a812015-07-16 15:22:46 +000010964
10965'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10967
10968Syntax:
10969"""""""
10970This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10971
10972.. code-block:: llvm
10973
10974 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10975
10976
10977Overview:
10978"""""""""
10979
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010980The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
10981of the two operands, treating them both as unsigned integers. The intermediate
10982calculations are computed using infinitely precise unsigned arithmetic. The final
10983result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000010984
Mohammad Shahid18715532015-08-21 05:31:07 +000010985The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010986the two operands, treating them both as signed integers. If the result overflows, the
10987behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000010988
10989.. note::
10990
10991 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010992 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000010993 recommended for users to create them manually.
10994
10995Arguments:
10996""""""""""
10997
10998Both intrinsics take two integer of the same bitwidth.
10999
11000Semantics:
11001""""""""""
11002
11003The expression::
11004
11005 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11006
11007is equivalent to::
11008
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011009 %1 = zext <4 x i32> %a to <4 x i64>
11010 %2 = zext <4 x i32> %b to <4 x i64>
11011 %sub = sub <4 x i64> %1, %2
11012 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000011013
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011014and the expression::
James Molloy7395a812015-07-16 15:22:46 +000011015
11016 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11017
11018is equivalent to::
11019
11020 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011021 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000011022 %neg = sub nsw <4 x i32> zeroinitializer, %sub
11023 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
11024
11025
Sean Silvab084af42012-12-07 10:36:55 +000011026Half Precision Floating Point Intrinsics
11027----------------------------------------
11028
11029For most target platforms, half precision floating point is a
11030storage-only format. This means that it is a dense encoding (in memory)
11031but does not support computation in the format.
11032
11033This means that code must first load the half-precision floating point
11034value as an i16, then convert it to float with
11035:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11036then be performed on the float value (including extending to double
11037etc). To store the value back to memory, it is first converted to float
11038if needed, then converted to i16 with
11039:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11040i16 value.
11041
11042.. _int_convert_to_fp16:
11043
11044'``llvm.convert.to.fp16``' Intrinsic
11045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11046
11047Syntax:
11048"""""""
11049
11050::
11051
Tim Northoverfd7e4242014-07-17 10:51:23 +000011052 declare i16 @llvm.convert.to.fp16.f32(float %a)
11053 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011054
11055Overview:
11056"""""""""
11057
Tim Northoverfd7e4242014-07-17 10:51:23 +000011058The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11059conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011060
11061Arguments:
11062""""""""""
11063
11064The intrinsic function contains single argument - the value to be
11065converted.
11066
11067Semantics:
11068""""""""""
11069
Tim Northoverfd7e4242014-07-17 10:51:23 +000011070The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11071conventional floating point format to half precision floating point format. The
11072return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011073
11074Examples:
11075"""""""""
11076
11077.. code-block:: llvm
11078
Tim Northoverfd7e4242014-07-17 10:51:23 +000011079 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011080 store i16 %res, i16* @x, align 2
11081
11082.. _int_convert_from_fp16:
11083
11084'``llvm.convert.from.fp16``' Intrinsic
11085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11086
11087Syntax:
11088"""""""
11089
11090::
11091
Tim Northoverfd7e4242014-07-17 10:51:23 +000011092 declare float @llvm.convert.from.fp16.f32(i16 %a)
11093 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011094
11095Overview:
11096"""""""""
11097
11098The '``llvm.convert.from.fp16``' intrinsic function performs a
11099conversion from half precision floating point format to single precision
11100floating point format.
11101
11102Arguments:
11103""""""""""
11104
11105The intrinsic function contains single argument - the value to be
11106converted.
11107
11108Semantics:
11109""""""""""
11110
11111The '``llvm.convert.from.fp16``' intrinsic function performs a
11112conversion from half single precision floating point format to single
11113precision floating point format. The input half-float value is
11114represented by an ``i16`` value.
11115
11116Examples:
11117"""""""""
11118
11119.. code-block:: llvm
11120
David Blaikiec7aabbb2015-03-04 22:06:14 +000011121 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011122 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011123
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011124.. _dbg_intrinsics:
11125
Sean Silvab084af42012-12-07 10:36:55 +000011126Debugger Intrinsics
11127-------------------
11128
11129The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11130prefix), are described in the `LLVM Source Level
11131Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11132document.
11133
11134Exception Handling Intrinsics
11135-----------------------------
11136
11137The LLVM exception handling intrinsics (which all start with
11138``llvm.eh.`` prefix), are described in the `LLVM Exception
11139Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11140
11141.. _int_trampoline:
11142
11143Trampoline Intrinsics
11144---------------------
11145
11146These intrinsics make it possible to excise one parameter, marked with
11147the :ref:`nest <nest>` attribute, from a function. The result is a
11148callable function pointer lacking the nest parameter - the caller does
11149not need to provide a value for it. Instead, the value to use is stored
11150in advance in a "trampoline", a block of memory usually allocated on the
11151stack, which also contains code to splice the nest value into the
11152argument list. This is used to implement the GCC nested function address
11153extension.
11154
11155For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11156then the resulting function pointer has signature ``i32 (i32, i32)*``.
11157It can be created as follows:
11158
11159.. code-block:: llvm
11160
11161 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011162 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011163 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11164 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11165 %fp = bitcast i8* %p to i32 (i32, i32)*
11166
11167The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11168``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11169
11170.. _int_it:
11171
11172'``llvm.init.trampoline``' Intrinsic
11173^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11174
11175Syntax:
11176"""""""
11177
11178::
11179
11180 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11181
11182Overview:
11183"""""""""
11184
11185This fills the memory pointed to by ``tramp`` with executable code,
11186turning it into a trampoline.
11187
11188Arguments:
11189""""""""""
11190
11191The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11192pointers. The ``tramp`` argument must point to a sufficiently large and
11193sufficiently aligned block of memory; this memory is written to by the
11194intrinsic. Note that the size and the alignment are target-specific -
11195LLVM currently provides no portable way of determining them, so a
11196front-end that generates this intrinsic needs to have some
11197target-specific knowledge. The ``func`` argument must hold a function
11198bitcast to an ``i8*``.
11199
11200Semantics:
11201""""""""""
11202
11203The block of memory pointed to by ``tramp`` is filled with target
11204dependent code, turning it into a function. Then ``tramp`` needs to be
11205passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11206be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11207function's signature is the same as that of ``func`` with any arguments
11208marked with the ``nest`` attribute removed. At most one such ``nest``
11209argument is allowed, and it must be of pointer type. Calling the new
11210function is equivalent to calling ``func`` with the same argument list,
11211but with ``nval`` used for the missing ``nest`` argument. If, after
11212calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11213modified, then the effect of any later call to the returned function
11214pointer is undefined.
11215
11216.. _int_at:
11217
11218'``llvm.adjust.trampoline``' Intrinsic
11219^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11220
11221Syntax:
11222"""""""
11223
11224::
11225
11226 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11227
11228Overview:
11229"""""""""
11230
11231This performs any required machine-specific adjustment to the address of
11232a trampoline (passed as ``tramp``).
11233
11234Arguments:
11235""""""""""
11236
11237``tramp`` must point to a block of memory which already has trampoline
11238code filled in by a previous call to
11239:ref:`llvm.init.trampoline <int_it>`.
11240
11241Semantics:
11242""""""""""
11243
11244On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011245different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011246intrinsic returns the executable address corresponding to ``tramp``
11247after performing the required machine specific adjustments. The pointer
11248returned can then be :ref:`bitcast and executed <int_trampoline>`.
11249
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011250.. _int_mload_mstore:
11251
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011252Masked Vector Load and Store Intrinsics
11253---------------------------------------
11254
11255LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11256
11257.. _int_mload:
11258
11259'``llvm.masked.load.*``' Intrinsics
11260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11261
11262Syntax:
11263"""""""
11264This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11265
11266::
11267
11268 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11269 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11270
11271Overview:
11272"""""""""
11273
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011274Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011275
11276
11277Arguments:
11278""""""""""
11279
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011280The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011281
11282
11283Semantics:
11284""""""""""
11285
11286The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11287The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11288
11289
11290::
11291
11292 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011293
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011294 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011295 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011296 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011297
11298.. _int_mstore:
11299
11300'``llvm.masked.store.*``' Intrinsics
11301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11302
11303Syntax:
11304"""""""
11305This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11306
11307::
11308
11309 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11310 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11311
11312Overview:
11313"""""""""
11314
11315Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11316
11317Arguments:
11318""""""""""
11319
11320The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11321
11322
11323Semantics:
11324""""""""""
11325
11326The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11327The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11328
11329::
11330
11331 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011332
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011333 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011334 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011335 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11336 store <16 x float> %res, <16 x float>* %ptr, align 4
11337
11338
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011339Masked Vector Gather and Scatter Intrinsics
11340-------------------------------------------
11341
11342LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11343
11344.. _int_mgather:
11345
11346'``llvm.masked.gather.*``' Intrinsics
11347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11348
11349Syntax:
11350"""""""
11351This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11352
11353::
11354
11355 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11356 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11357
11358Overview:
11359"""""""""
11360
11361Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11362
11363
11364Arguments:
11365""""""""""
11366
11367The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11368
11369
11370Semantics:
11371""""""""""
11372
11373The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11374The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11375
11376
11377::
11378
11379 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11380
11381 ;; The gather with all-true mask is equivalent to the following instruction sequence
11382 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11383 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11384 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11385 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11386
11387 %val0 = load double, double* %ptr0, align 8
11388 %val1 = load double, double* %ptr1, align 8
11389 %val2 = load double, double* %ptr2, align 8
11390 %val3 = load double, double* %ptr3, align 8
11391
11392 %vec0 = insertelement <4 x double>undef, %val0, 0
11393 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11394 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11395 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11396
11397.. _int_mscatter:
11398
11399'``llvm.masked.scatter.*``' Intrinsics
11400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11401
11402Syntax:
11403"""""""
11404This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11405
11406::
11407
11408 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11409 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11410
11411Overview:
11412"""""""""
11413
11414Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11415
11416Arguments:
11417""""""""""
11418
11419The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11420
11421
11422Semantics:
11423""""""""""
11424
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011425The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011426
11427::
11428
11429 ;; This instruction unconditionaly stores data vector in multiple addresses
11430 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11431
11432 ;; It is equivalent to a list of scalar stores
11433 %val0 = extractelement <8 x i32> %value, i32 0
11434 %val1 = extractelement <8 x i32> %value, i32 1
11435 ..
11436 %val7 = extractelement <8 x i32> %value, i32 7
11437 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11438 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11439 ..
11440 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11441 ;; Note: the order of the following stores is important when they overlap:
11442 store i32 %val0, i32* %ptr0, align 4
11443 store i32 %val1, i32* %ptr1, align 4
11444 ..
11445 store i32 %val7, i32* %ptr7, align 4
11446
11447
Sean Silvab084af42012-12-07 10:36:55 +000011448Memory Use Markers
11449------------------
11450
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011451This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011452memory objects and ranges where variables are immutable.
11453
Reid Klecknera534a382013-12-19 02:14:12 +000011454.. _int_lifestart:
11455
Sean Silvab084af42012-12-07 10:36:55 +000011456'``llvm.lifetime.start``' Intrinsic
11457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11458
11459Syntax:
11460"""""""
11461
11462::
11463
11464 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11465
11466Overview:
11467"""""""""
11468
11469The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11470object's lifetime.
11471
11472Arguments:
11473""""""""""
11474
11475The first argument is a constant integer representing the size of the
11476object, or -1 if it is variable sized. The second argument is a pointer
11477to the object.
11478
11479Semantics:
11480""""""""""
11481
11482This intrinsic indicates that before this point in the code, the value
11483of the memory pointed to by ``ptr`` is dead. This means that it is known
11484to never be used and has an undefined value. A load from the pointer
11485that precedes this intrinsic can be replaced with ``'undef'``.
11486
Reid Klecknera534a382013-12-19 02:14:12 +000011487.. _int_lifeend:
11488
Sean Silvab084af42012-12-07 10:36:55 +000011489'``llvm.lifetime.end``' Intrinsic
11490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11491
11492Syntax:
11493"""""""
11494
11495::
11496
11497 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11498
11499Overview:
11500"""""""""
11501
11502The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11503object's lifetime.
11504
11505Arguments:
11506""""""""""
11507
11508The first argument is a constant integer representing the size of the
11509object, or -1 if it is variable sized. The second argument is a pointer
11510to the object.
11511
11512Semantics:
11513""""""""""
11514
11515This intrinsic indicates that after this point in the code, the value of
11516the memory pointed to by ``ptr`` is dead. This means that it is known to
11517never be used and has an undefined value. Any stores into the memory
11518object following this intrinsic may be removed as dead.
11519
11520'``llvm.invariant.start``' Intrinsic
11521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11522
11523Syntax:
11524"""""""
11525
11526::
11527
11528 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11529
11530Overview:
11531"""""""""
11532
11533The '``llvm.invariant.start``' intrinsic specifies that the contents of
11534a memory object will not change.
11535
11536Arguments:
11537""""""""""
11538
11539The first argument is a constant integer representing the size of the
11540object, or -1 if it is variable sized. The second argument is a pointer
11541to the object.
11542
11543Semantics:
11544""""""""""
11545
11546This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11547the return value, the referenced memory location is constant and
11548unchanging.
11549
11550'``llvm.invariant.end``' Intrinsic
11551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11552
11553Syntax:
11554"""""""
11555
11556::
11557
11558 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11559
11560Overview:
11561"""""""""
11562
11563The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11564memory object are mutable.
11565
11566Arguments:
11567""""""""""
11568
11569The first argument is the matching ``llvm.invariant.start`` intrinsic.
11570The second argument is a constant integer representing the size of the
11571object, or -1 if it is variable sized and the third argument is a
11572pointer to the object.
11573
11574Semantics:
11575""""""""""
11576
11577This intrinsic indicates that the memory is mutable again.
11578
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011579'``llvm.invariant.group.barrier``' Intrinsic
11580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11581
11582Syntax:
11583"""""""
11584
11585::
11586
11587 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11588
11589Overview:
11590"""""""""
11591
11592The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11593established by invariant.group metadata no longer holds, to obtain a new pointer
11594value that does not carry the invariant information.
11595
11596
11597Arguments:
11598""""""""""
11599
11600The ``llvm.invariant.group.barrier`` takes only one argument, which is
11601the pointer to the memory for which the ``invariant.group`` no longer holds.
11602
11603Semantics:
11604""""""""""
11605
11606Returns another pointer that aliases its argument but which is considered different
11607for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11608
Sean Silvab084af42012-12-07 10:36:55 +000011609General Intrinsics
11610------------------
11611
11612This class of intrinsics is designed to be generic and has no specific
11613purpose.
11614
11615'``llvm.var.annotation``' Intrinsic
11616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11617
11618Syntax:
11619"""""""
11620
11621::
11622
11623 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11624
11625Overview:
11626"""""""""
11627
11628The '``llvm.var.annotation``' intrinsic.
11629
11630Arguments:
11631""""""""""
11632
11633The first argument is a pointer to a value, the second is a pointer to a
11634global string, the third is a pointer to a global string which is the
11635source file name, and the last argument is the line number.
11636
11637Semantics:
11638""""""""""
11639
11640This intrinsic allows annotation of local variables with arbitrary
11641strings. This can be useful for special purpose optimizations that want
11642to look for these annotations. These have no other defined use; they are
11643ignored by code generation and optimization.
11644
Michael Gottesman88d18832013-03-26 00:34:27 +000011645'``llvm.ptr.annotation.*``' Intrinsic
11646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11647
11648Syntax:
11649"""""""
11650
11651This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11652pointer to an integer of any width. *NOTE* you must specify an address space for
11653the pointer. The identifier for the default address space is the integer
11654'``0``'.
11655
11656::
11657
11658 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11659 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11660 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11661 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11662 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11663
11664Overview:
11665"""""""""
11666
11667The '``llvm.ptr.annotation``' intrinsic.
11668
11669Arguments:
11670""""""""""
11671
11672The first argument is a pointer to an integer value of arbitrary bitwidth
11673(result of some expression), the second is a pointer to a global string, the
11674third is a pointer to a global string which is the source file name, and the
11675last argument is the line number. It returns the value of the first argument.
11676
11677Semantics:
11678""""""""""
11679
11680This intrinsic allows annotation of a pointer to an integer with arbitrary
11681strings. This can be useful for special purpose optimizations that want to look
11682for these annotations. These have no other defined use; they are ignored by code
11683generation and optimization.
11684
Sean Silvab084af42012-12-07 10:36:55 +000011685'``llvm.annotation.*``' Intrinsic
11686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11687
11688Syntax:
11689"""""""
11690
11691This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11692any integer bit width.
11693
11694::
11695
11696 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11697 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11698 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11699 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11700 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11701
11702Overview:
11703"""""""""
11704
11705The '``llvm.annotation``' intrinsic.
11706
11707Arguments:
11708""""""""""
11709
11710The first argument is an integer value (result of some expression), the
11711second is a pointer to a global string, the third is a pointer to a
11712global string which is the source file name, and the last argument is
11713the line number. It returns the value of the first argument.
11714
11715Semantics:
11716""""""""""
11717
11718This intrinsic allows annotations to be put on arbitrary expressions
11719with arbitrary strings. This can be useful for special purpose
11720optimizations that want to look for these annotations. These have no
11721other defined use; they are ignored by code generation and optimization.
11722
11723'``llvm.trap``' Intrinsic
11724^^^^^^^^^^^^^^^^^^^^^^^^^
11725
11726Syntax:
11727"""""""
11728
11729::
11730
11731 declare void @llvm.trap() noreturn nounwind
11732
11733Overview:
11734"""""""""
11735
11736The '``llvm.trap``' intrinsic.
11737
11738Arguments:
11739""""""""""
11740
11741None.
11742
11743Semantics:
11744""""""""""
11745
11746This intrinsic is lowered to the target dependent trap instruction. If
11747the target does not have a trap instruction, this intrinsic will be
11748lowered to a call of the ``abort()`` function.
11749
11750'``llvm.debugtrap``' Intrinsic
11751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11752
11753Syntax:
11754"""""""
11755
11756::
11757
11758 declare void @llvm.debugtrap() nounwind
11759
11760Overview:
11761"""""""""
11762
11763The '``llvm.debugtrap``' intrinsic.
11764
11765Arguments:
11766""""""""""
11767
11768None.
11769
11770Semantics:
11771""""""""""
11772
11773This intrinsic is lowered to code which is intended to cause an
11774execution trap with the intention of requesting the attention of a
11775debugger.
11776
11777'``llvm.stackprotector``' Intrinsic
11778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11779
11780Syntax:
11781"""""""
11782
11783::
11784
11785 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11786
11787Overview:
11788"""""""""
11789
11790The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11791onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11792is placed on the stack before local variables.
11793
11794Arguments:
11795""""""""""
11796
11797The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11798The first argument is the value loaded from the stack guard
11799``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11800enough space to hold the value of the guard.
11801
11802Semantics:
11803""""""""""
11804
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011805This intrinsic causes the prologue/epilogue inserter to force the position of
11806the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11807to ensure that if a local variable on the stack is overwritten, it will destroy
11808the value of the guard. When the function exits, the guard on the stack is
11809checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11810different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11811calling the ``__stack_chk_fail()`` function.
11812
11813'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011815
11816Syntax:
11817"""""""
11818
11819::
11820
11821 declare void @llvm.stackprotectorcheck(i8** <guard>)
11822
11823Overview:
11824"""""""""
11825
11826The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011827created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011828``__stack_chk_fail()`` function.
11829
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011830Arguments:
11831""""""""""
11832
11833The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11834the variable ``@__stack_chk_guard``.
11835
11836Semantics:
11837""""""""""
11838
11839This intrinsic is provided to perform the stack protector check by comparing
11840``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11841values do not match call the ``__stack_chk_fail()`` function.
11842
11843The reason to provide this as an IR level intrinsic instead of implementing it
11844via other IR operations is that in order to perform this operation at the IR
11845level without an intrinsic, one would need to create additional basic blocks to
11846handle the success/failure cases. This makes it difficult to stop the stack
11847protector check from disrupting sibling tail calls in Codegen. With this
11848intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011849codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011850
Sean Silvab084af42012-12-07 10:36:55 +000011851'``llvm.objectsize``' Intrinsic
11852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11853
11854Syntax:
11855"""""""
11856
11857::
11858
11859 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11860 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11861
11862Overview:
11863"""""""""
11864
11865The ``llvm.objectsize`` intrinsic is designed to provide information to
11866the optimizers to determine at compile time whether a) an operation
11867(like memcpy) will overflow a buffer that corresponds to an object, or
11868b) that a runtime check for overflow isn't necessary. An object in this
11869context means an allocation of a specific class, structure, array, or
11870other object.
11871
11872Arguments:
11873""""""""""
11874
11875The ``llvm.objectsize`` intrinsic takes two arguments. The first
11876argument is a pointer to or into the ``object``. The second argument is
11877a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11878or -1 (if false) when the object size is unknown. The second argument
11879only accepts constants.
11880
11881Semantics:
11882""""""""""
11883
11884The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11885the size of the object concerned. If the size cannot be determined at
11886compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11887on the ``min`` argument).
11888
11889'``llvm.expect``' Intrinsic
11890^^^^^^^^^^^^^^^^^^^^^^^^^^^
11891
11892Syntax:
11893"""""""
11894
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011895This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11896integer bit width.
11897
Sean Silvab084af42012-12-07 10:36:55 +000011898::
11899
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011900 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011901 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11902 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11903
11904Overview:
11905"""""""""
11906
11907The ``llvm.expect`` intrinsic provides information about expected (the
11908most probable) value of ``val``, which can be used by optimizers.
11909
11910Arguments:
11911""""""""""
11912
11913The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11914a value. The second argument is an expected value, this needs to be a
11915constant value, variables are not allowed.
11916
11917Semantics:
11918""""""""""
11919
11920This intrinsic is lowered to the ``val``.
11921
Philip Reamese0e90832015-04-26 22:23:12 +000011922.. _int_assume:
11923
Hal Finkel93046912014-07-25 21:13:35 +000011924'``llvm.assume``' Intrinsic
11925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11926
11927Syntax:
11928"""""""
11929
11930::
11931
11932 declare void @llvm.assume(i1 %cond)
11933
11934Overview:
11935"""""""""
11936
11937The ``llvm.assume`` allows the optimizer to assume that the provided
11938condition is true. This information can then be used in simplifying other parts
11939of the code.
11940
11941Arguments:
11942""""""""""
11943
11944The condition which the optimizer may assume is always true.
11945
11946Semantics:
11947""""""""""
11948
11949The intrinsic allows the optimizer to assume that the provided condition is
11950always true whenever the control flow reaches the intrinsic call. No code is
11951generated for this intrinsic, and instructions that contribute only to the
11952provided condition are not used for code generation. If the condition is
11953violated during execution, the behavior is undefined.
11954
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011955Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011956used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11957only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011958if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011959sufficient overall improvement in code quality. For this reason,
11960``llvm.assume`` should not be used to document basic mathematical invariants
11961that the optimizer can otherwise deduce or facts that are of little use to the
11962optimizer.
11963
Peter Collingbournee6909c82015-02-20 20:30:47 +000011964.. _bitset.test:
11965
11966'``llvm.bitset.test``' Intrinsic
11967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11968
11969Syntax:
11970"""""""
11971
11972::
11973
11974 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11975
11976
11977Arguments:
11978""""""""""
11979
11980The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000011981metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000011982
11983Overview:
11984"""""""""
11985
11986The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11987member of the given bitset.
11988
Sean Silvab084af42012-12-07 10:36:55 +000011989'``llvm.donothing``' Intrinsic
11990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11991
11992Syntax:
11993"""""""
11994
11995::
11996
11997 declare void @llvm.donothing() nounwind readnone
11998
11999Overview:
12000"""""""""
12001
Juergen Ributzkac9161192014-10-23 22:36:13 +000012002The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12003two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12004with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012005
12006Arguments:
12007""""""""""
12008
12009None.
12010
12011Semantics:
12012""""""""""
12013
12014This intrinsic does nothing, and it's removed by optimizers and ignored
12015by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012016
12017Stack Map Intrinsics
12018--------------------
12019
12020LLVM provides experimental intrinsics to support runtime patching
12021mechanisms commonly desired in dynamic language JITs. These intrinsics
12022are described in :doc:`StackMaps`.