blob: bc4df0586460e654b5998e04b98a1daf14c6069b [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Sean Silva706fba52015-08-06 22:56:24 +0000693The argument list is a comma separated sequence of arguments where each
694argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
Rafael Espindola464fe022014-07-30 22:51:54 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Sean Silvaa1190322015-08-06 22:56:48 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000750that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000825with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000831COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000897 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000932 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000933 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000941 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001030 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001037 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001073index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001090of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
Sean Silvaa1190322015-08-06 22:56:48 +00001097A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001111have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001116definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Sean Silvaa1190322015-08-06 22:56:48 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
1222 Transformations that are execution model agnostic may only move or
1223 tranform this call if the final location is control equivalent to its
1224 original position in the program, where control equivalence is defined as
1225 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001226``inlinehint``
1227 This attribute indicates that the source code contained a hint that
1228 inlining this function is desirable (such as the "inline" keyword in
1229 C/C++). It is just a hint; it imposes no requirements on the
1230 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001231``jumptable``
1232 This attribute indicates that the function should be added to a
1233 jump-instruction table at code-generation time, and that all address-taken
1234 references to this function should be replaced with a reference to the
1235 appropriate jump-instruction-table function pointer. Note that this creates
1236 a new pointer for the original function, which means that code that depends
1237 on function-pointer identity can break. So, any function annotated with
1238 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001239``minsize``
1240 This attribute suggests that optimization passes and code generator
1241 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001242 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001243 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001244``naked``
1245 This attribute disables prologue / epilogue emission for the
1246 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001247``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001248 This indicates that the callee function at a call site is not recognized as
1249 a built-in function. LLVM will retain the original call and not replace it
1250 with equivalent code based on the semantics of the built-in function, unless
1251 the call site uses the ``builtin`` attribute. This is valid at call sites
1252 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001253``noduplicate``
1254 This attribute indicates that calls to the function cannot be
1255 duplicated. A call to a ``noduplicate`` function may be moved
1256 within its parent function, but may not be duplicated within
1257 its parent function.
1258
1259 A function containing a ``noduplicate`` call may still
1260 be an inlining candidate, provided that the call is not
1261 duplicated by inlining. That implies that the function has
1262 internal linkage and only has one call site, so the original
1263 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001264``noimplicitfloat``
1265 This attributes disables implicit floating point instructions.
1266``noinline``
1267 This attribute indicates that the inliner should never inline this
1268 function in any situation. This attribute may not be used together
1269 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001270``nonlazybind``
1271 This attribute suppresses lazy symbol binding for the function. This
1272 may make calls to the function faster, at the cost of extra program
1273 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001274``noredzone``
1275 This attribute indicates that the code generator should not use a
1276 red zone, even if the target-specific ABI normally permits it.
1277``noreturn``
1278 This function attribute indicates that the function never returns
1279 normally. This produces undefined behavior at runtime if the
1280 function ever does dynamically return.
1281``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001282 This function attribute indicates that the function never raises an
1283 exception. If the function does raise an exception, its runtime
1284 behavior is undefined. However, functions marked nounwind may still
1285 trap or generate asynchronous exceptions. Exception handling schemes
1286 that are recognized by LLVM to handle asynchronous exceptions, such
1287 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288``optnone``
1289 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291 exception of interprocedural optimization passes.
1292 This attribute cannot be used together with the ``alwaysinline``
1293 attribute; this attribute is also incompatible
1294 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001295
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 This attribute requires the ``noinline`` attribute to be specified on
1297 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001298 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``optsize``
1301 This attribute suggests that optimization passes and code generator
1302 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001303 and otherwise do optimizations specifically to reduce code size as
1304 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001305``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001306 On a function, this attribute indicates that the function computes its
1307 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001308 without dereferencing any pointer arguments or otherwise accessing
1309 any mutable state (e.g. memory, control registers, etc) visible to
1310 caller functions. It does not write through any pointer arguments
1311 (including ``byval`` arguments) and never changes any state visible
1312 to callers. This means that it cannot unwind exceptions by calling
1313 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001314
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001315 On an argument, this attribute indicates that the function does not
1316 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001317 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001318``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001319 On a function, this attribute indicates that the function does not write
1320 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001321 modify any state (e.g. memory, control registers, etc) visible to
1322 caller functions. It may dereference pointer arguments and read
1323 state that may be set in the caller. A readonly function always
1324 returns the same value (or unwinds an exception identically) when
1325 called with the same set of arguments and global state. It cannot
1326 unwind an exception by calling the ``C++`` exception throwing
1327 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001328
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On an argument, this attribute indicates that the function does not write
1330 through this pointer argument, even though it may write to the memory that
1331 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001332``argmemonly``
1333 This attribute indicates that the only memory accesses inside function are
1334 loads and stores from objects pointed to by its pointer-typed arguments,
1335 with arbitrary offsets. Or in other words, all memory operations in the
1336 function can refer to memory only using pointers based on its function
1337 arguments.
1338 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1339 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001340``returns_twice``
1341 This attribute indicates that this function can return twice. The C
1342 ``setjmp`` is an example of such a function. The compiler disables
1343 some optimizations (like tail calls) in the caller of these
1344 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001345``safestack``
1346 This attribute indicates that
1347 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1348 protection is enabled for this function.
1349
1350 If a function that has a ``safestack`` attribute is inlined into a
1351 function that doesn't have a ``safestack`` attribute or which has an
1352 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1353 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001354``sanitize_address``
1355 This attribute indicates that AddressSanitizer checks
1356 (dynamic address safety analysis) are enabled for this function.
1357``sanitize_memory``
1358 This attribute indicates that MemorySanitizer checks (dynamic detection
1359 of accesses to uninitialized memory) are enabled for this function.
1360``sanitize_thread``
1361 This attribute indicates that ThreadSanitizer checks
1362 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001363``ssp``
1364 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001365 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001366 placed on the stack before the local variables that's checked upon
1367 return from the function to see if it has been overwritten. A
1368 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001370
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001371 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1372 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1373 - Calls to alloca() with variable sizes or constant sizes greater than
1374 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378
Sean Silvab084af42012-12-07 10:36:55 +00001379 If a function that has an ``ssp`` attribute is inlined into a
1380 function that doesn't have an ``ssp`` attribute, then the resulting
1381 function will have an ``ssp`` attribute.
1382``sspreq``
1383 This attribute indicates that the function should *always* emit a
1384 stack smashing protector. This overrides the ``ssp`` function
1385 attribute.
1386
Josh Magee24c7f062014-02-01 01:36:16 +00001387 Variables that are identified as requiring a protector will be arranged
1388 on the stack such that they are adjacent to the stack protector guard.
1389 The specific layout rules are:
1390
1391 #. Large arrays and structures containing large arrays
1392 (``>= ssp-buffer-size``) are closest to the stack protector.
1393 #. Small arrays and structures containing small arrays
1394 (``< ssp-buffer-size``) are 2nd closest to the protector.
1395 #. Variables that have had their address taken are 3rd closest to the
1396 protector.
1397
Sean Silvab084af42012-12-07 10:36:55 +00001398 If a function that has an ``sspreq`` attribute is inlined into a
1399 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001400 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1401 an ``sspreq`` attribute.
1402``sspstrong``
1403 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001405 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001406 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001407
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001408 - Arrays of any size and type
1409 - Aggregates containing an array of any size and type.
1410 - Calls to alloca().
1411 - Local variables that have had their address taken.
1412
Josh Magee24c7f062014-02-01 01:36:16 +00001413 Variables that are identified as requiring a protector will be arranged
1414 on the stack such that they are adjacent to the stack protector guard.
1415 The specific layout rules are:
1416
1417 #. Large arrays and structures containing large arrays
1418 (``>= ssp-buffer-size``) are closest to the stack protector.
1419 #. Small arrays and structures containing small arrays
1420 (``< ssp-buffer-size``) are 2nd closest to the protector.
1421 #. Variables that have had their address taken are 3rd closest to the
1422 protector.
1423
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001424 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001425
1426 If a function that has an ``sspstrong`` attribute is inlined into a
1427 function that doesn't have an ``sspstrong`` attribute, then the
1428 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001429``"thunk"``
1430 This attribute indicates that the function will delegate to some other
1431 function with a tail call. The prototype of a thunk should not be used for
1432 optimization purposes. The caller is expected to cast the thunk prototype to
1433 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001434``uwtable``
1435 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001436 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001437 show that no exceptions passes by it. This is normally the case for
1438 the ELF x86-64 abi, but it can be disabled for some compilation
1439 units.
Sean Silvab084af42012-12-07 10:36:55 +00001440
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001441
1442.. _opbundles:
1443
1444Operand Bundles
1445---------------
1446
1447Note: operand bundles are a work in progress, and they should be
1448considered experimental at this time.
1449
1450Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001451with certain LLVM instructions (currently only ``call`` s and
1452``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001453incorrect and will change program semantics.
1454
1455Syntax::
1456 operand bundle set ::= '[' operand bundle ']'
1457 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1458 bundle operand ::= SSA value
1459 tag ::= string constant
1460
1461Operand bundles are **not** part of a function's signature, and a
1462given function may be called from multiple places with different kinds
1463of operand bundles. This reflects the fact that the operand bundles
1464are conceptually a part of the ``call`` (or ``invoke``), not the
1465callee being dispatched to.
1466
1467Operand bundles are a generic mechanism intended to support
1468runtime-introspection-like functionality for managed languages. While
1469the exact semantics of an operand bundle depend on the bundle tag,
1470there are certain limitations to how much the presence of an operand
1471bundle can influence the semantics of a program. These restrictions
1472are described as the semantics of an "unknown" operand bundle. As
1473long as the behavior of an operand bundle is describable within these
1474restrictions, LLVM does not need to have special knowledge of the
1475operand bundle to not miscompile programs containing it.
1476
1477 - The bundle operands for an unknown operand bundle escape in unknown
1478 ways before control is transferred to the callee or invokee.
1479
1480 - Calls and invokes with operand bundles have unknown read / write
1481 effect on the heap on entry and exit (even if the call target is
1482 ``readnone`` or ``readonly``).
1483
1484 - An operand bundle at a call site cannot change the implementation
1485 of the called function. Inter-procedural optimizations work as
1486 usual as long as they take into account the first two properties.
1487
Sean Silvab084af42012-12-07 10:36:55 +00001488.. _moduleasm:
1489
1490Module-Level Inline Assembly
1491----------------------------
1492
1493Modules may contain "module-level inline asm" blocks, which corresponds
1494to the GCC "file scope inline asm" blocks. These blocks are internally
1495concatenated by LLVM and treated as a single unit, but may be separated
1496in the ``.ll`` file if desired. The syntax is very simple:
1497
1498.. code-block:: llvm
1499
1500 module asm "inline asm code goes here"
1501 module asm "more can go here"
1502
1503The strings can contain any character by escaping non-printable
1504characters. The escape sequence used is simply "\\xx" where "xx" is the
1505two digit hex code for the number.
1506
James Y Knightbc832ed2015-07-08 18:08:36 +00001507Note that the assembly string *must* be parseable by LLVM's integrated assembler
1508(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001509
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001510.. _langref_datalayout:
1511
Sean Silvab084af42012-12-07 10:36:55 +00001512Data Layout
1513-----------
1514
1515A module may specify a target specific data layout string that specifies
1516how data is to be laid out in memory. The syntax for the data layout is
1517simply:
1518
1519.. code-block:: llvm
1520
1521 target datalayout = "layout specification"
1522
1523The *layout specification* consists of a list of specifications
1524separated by the minus sign character ('-'). Each specification starts
1525with a letter and may include other information after the letter to
1526define some aspect of the data layout. The specifications accepted are
1527as follows:
1528
1529``E``
1530 Specifies that the target lays out data in big-endian form. That is,
1531 the bits with the most significance have the lowest address
1532 location.
1533``e``
1534 Specifies that the target lays out data in little-endian form. That
1535 is, the bits with the least significance have the lowest address
1536 location.
1537``S<size>``
1538 Specifies the natural alignment of the stack in bits. Alignment
1539 promotion of stack variables is limited to the natural stack
1540 alignment to avoid dynamic stack realignment. The stack alignment
1541 must be a multiple of 8-bits. If omitted, the natural stack
1542 alignment defaults to "unspecified", which does not prevent any
1543 alignment promotions.
1544``p[n]:<size>:<abi>:<pref>``
1545 This specifies the *size* of a pointer and its ``<abi>`` and
1546 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001547 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001548 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001549 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001550``i<size>:<abi>:<pref>``
1551 This specifies the alignment for an integer type of a given bit
1552 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1553``v<size>:<abi>:<pref>``
1554 This specifies the alignment for a vector type of a given bit
1555 ``<size>``.
1556``f<size>:<abi>:<pref>``
1557 This specifies the alignment for a floating point type of a given bit
1558 ``<size>``. Only values of ``<size>`` that are supported by the target
1559 will work. 32 (float) and 64 (double) are supported on all targets; 80
1560 or 128 (different flavors of long double) are also supported on some
1561 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001562``a:<abi>:<pref>``
1563 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001564``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001565 If present, specifies that llvm names are mangled in the output. The
1566 options are
1567
1568 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1569 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1570 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1571 symbols get a ``_`` prefix.
1572 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1573 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001574``n<size1>:<size2>:<size3>...``
1575 This specifies a set of native integer widths for the target CPU in
1576 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1577 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1578 this set are considered to support most general arithmetic operations
1579 efficiently.
1580
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001581On every specification that takes a ``<abi>:<pref>``, specifying the
1582``<pref>`` alignment is optional. If omitted, the preceding ``:``
1583should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1584
Sean Silvab084af42012-12-07 10:36:55 +00001585When constructing the data layout for a given target, LLVM starts with a
1586default set of specifications which are then (possibly) overridden by
1587the specifications in the ``datalayout`` keyword. The default
1588specifications are given in this list:
1589
1590- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001591- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1592- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1593 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001594- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001595- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1596- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1597- ``i16:16:16`` - i16 is 16-bit aligned
1598- ``i32:32:32`` - i32 is 32-bit aligned
1599- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1600 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001601- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001602- ``f32:32:32`` - float is 32-bit aligned
1603- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001604- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001605- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1606- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001607- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001608
1609When LLVM is determining the alignment for a given type, it uses the
1610following rules:
1611
1612#. If the type sought is an exact match for one of the specifications,
1613 that specification is used.
1614#. If no match is found, and the type sought is an integer type, then
1615 the smallest integer type that is larger than the bitwidth of the
1616 sought type is used. If none of the specifications are larger than
1617 the bitwidth then the largest integer type is used. For example,
1618 given the default specifications above, the i7 type will use the
1619 alignment of i8 (next largest) while both i65 and i256 will use the
1620 alignment of i64 (largest specified).
1621#. If no match is found, and the type sought is a vector type, then the
1622 largest vector type that is smaller than the sought vector type will
1623 be used as a fall back. This happens because <128 x double> can be
1624 implemented in terms of 64 <2 x double>, for example.
1625
1626The function of the data layout string may not be what you expect.
1627Notably, this is not a specification from the frontend of what alignment
1628the code generator should use.
1629
1630Instead, if specified, the target data layout is required to match what
1631the ultimate *code generator* expects. This string is used by the
1632mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001633what the ultimate code generator uses. There is no way to generate IR
1634that does not embed this target-specific detail into the IR. If you
1635don't specify the string, the default specifications will be used to
1636generate a Data Layout and the optimization phases will operate
1637accordingly and introduce target specificity into the IR with respect to
1638these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001639
Bill Wendling5cc90842013-10-18 23:41:25 +00001640.. _langref_triple:
1641
1642Target Triple
1643-------------
1644
1645A module may specify a target triple string that describes the target
1646host. The syntax for the target triple is simply:
1647
1648.. code-block:: llvm
1649
1650 target triple = "x86_64-apple-macosx10.7.0"
1651
1652The *target triple* string consists of a series of identifiers delimited
1653by the minus sign character ('-'). The canonical forms are:
1654
1655::
1656
1657 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1658 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1659
1660This information is passed along to the backend so that it generates
1661code for the proper architecture. It's possible to override this on the
1662command line with the ``-mtriple`` command line option.
1663
Sean Silvab084af42012-12-07 10:36:55 +00001664.. _pointeraliasing:
1665
1666Pointer Aliasing Rules
1667----------------------
1668
1669Any memory access must be done through a pointer value associated with
1670an address range of the memory access, otherwise the behavior is
1671undefined. Pointer values are associated with address ranges according
1672to the following rules:
1673
1674- A pointer value is associated with the addresses associated with any
1675 value it is *based* on.
1676- An address of a global variable is associated with the address range
1677 of the variable's storage.
1678- The result value of an allocation instruction is associated with the
1679 address range of the allocated storage.
1680- A null pointer in the default address-space is associated with no
1681 address.
1682- An integer constant other than zero or a pointer value returned from
1683 a function not defined within LLVM may be associated with address
1684 ranges allocated through mechanisms other than those provided by
1685 LLVM. Such ranges shall not overlap with any ranges of addresses
1686 allocated by mechanisms provided by LLVM.
1687
1688A pointer value is *based* on another pointer value according to the
1689following rules:
1690
1691- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001692 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001693- The result value of a ``bitcast`` is *based* on the operand of the
1694 ``bitcast``.
1695- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1696 values that contribute (directly or indirectly) to the computation of
1697 the pointer's value.
1698- The "*based* on" relationship is transitive.
1699
1700Note that this definition of *"based"* is intentionally similar to the
1701definition of *"based"* in C99, though it is slightly weaker.
1702
1703LLVM IR does not associate types with memory. The result type of a
1704``load`` merely indicates the size and alignment of the memory from
1705which to load, as well as the interpretation of the value. The first
1706operand type of a ``store`` similarly only indicates the size and
1707alignment of the store.
1708
1709Consequently, type-based alias analysis, aka TBAA, aka
1710``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1711:ref:`Metadata <metadata>` may be used to encode additional information
1712which specialized optimization passes may use to implement type-based
1713alias analysis.
1714
1715.. _volatile:
1716
1717Volatile Memory Accesses
1718------------------------
1719
1720Certain memory accesses, such as :ref:`load <i_load>`'s,
1721:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1722marked ``volatile``. The optimizers must not change the number of
1723volatile operations or change their order of execution relative to other
1724volatile operations. The optimizers *may* change the order of volatile
1725operations relative to non-volatile operations. This is not Java's
1726"volatile" and has no cross-thread synchronization behavior.
1727
Andrew Trick89fc5a62013-01-30 21:19:35 +00001728IR-level volatile loads and stores cannot safely be optimized into
1729llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1730flagged volatile. Likewise, the backend should never split or merge
1731target-legal volatile load/store instructions.
1732
Andrew Trick7e6f9282013-01-31 00:49:39 +00001733.. admonition:: Rationale
1734
1735 Platforms may rely on volatile loads and stores of natively supported
1736 data width to be executed as single instruction. For example, in C
1737 this holds for an l-value of volatile primitive type with native
1738 hardware support, but not necessarily for aggregate types. The
1739 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001740 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001741 do not violate the frontend's contract with the language.
1742
Sean Silvab084af42012-12-07 10:36:55 +00001743.. _memmodel:
1744
1745Memory Model for Concurrent Operations
1746--------------------------------------
1747
1748The LLVM IR does not define any way to start parallel threads of
1749execution or to register signal handlers. Nonetheless, there are
1750platform-specific ways to create them, and we define LLVM IR's behavior
1751in their presence. This model is inspired by the C++0x memory model.
1752
1753For a more informal introduction to this model, see the :doc:`Atomics`.
1754
1755We define a *happens-before* partial order as the least partial order
1756that
1757
1758- Is a superset of single-thread program order, and
1759- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1760 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1761 techniques, like pthread locks, thread creation, thread joining,
1762 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1763 Constraints <ordering>`).
1764
1765Note that program order does not introduce *happens-before* edges
1766between a thread and signals executing inside that thread.
1767
1768Every (defined) read operation (load instructions, memcpy, atomic
1769loads/read-modify-writes, etc.) R reads a series of bytes written by
1770(defined) write operations (store instructions, atomic
1771stores/read-modify-writes, memcpy, etc.). For the purposes of this
1772section, initialized globals are considered to have a write of the
1773initializer which is atomic and happens before any other read or write
1774of the memory in question. For each byte of a read R, R\ :sub:`byte`
1775may see any write to the same byte, except:
1776
1777- If write\ :sub:`1` happens before write\ :sub:`2`, and
1778 write\ :sub:`2` happens before R\ :sub:`byte`, then
1779 R\ :sub:`byte` does not see write\ :sub:`1`.
1780- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1781 R\ :sub:`byte` does not see write\ :sub:`3`.
1782
1783Given that definition, R\ :sub:`byte` is defined as follows:
1784
1785- If R is volatile, the result is target-dependent. (Volatile is
1786 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001787 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001788 like normal memory. It does not generally provide cross-thread
1789 synchronization.)
1790- Otherwise, if there is no write to the same byte that happens before
1791 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1792- Otherwise, if R\ :sub:`byte` may see exactly one write,
1793 R\ :sub:`byte` returns the value written by that write.
1794- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1795 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1796 Memory Ordering Constraints <ordering>` section for additional
1797 constraints on how the choice is made.
1798- Otherwise R\ :sub:`byte` returns ``undef``.
1799
1800R returns the value composed of the series of bytes it read. This
1801implies that some bytes within the value may be ``undef`` **without**
1802the entire value being ``undef``. Note that this only defines the
1803semantics of the operation; it doesn't mean that targets will emit more
1804than one instruction to read the series of bytes.
1805
1806Note that in cases where none of the atomic intrinsics are used, this
1807model places only one restriction on IR transformations on top of what
1808is required for single-threaded execution: introducing a store to a byte
1809which might not otherwise be stored is not allowed in general.
1810(Specifically, in the case where another thread might write to and read
1811from an address, introducing a store can change a load that may see
1812exactly one write into a load that may see multiple writes.)
1813
1814.. _ordering:
1815
1816Atomic Memory Ordering Constraints
1817----------------------------------
1818
1819Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1820:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1821:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001822ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001823the same address they *synchronize with*. These semantics are borrowed
1824from Java and C++0x, but are somewhat more colloquial. If these
1825descriptions aren't precise enough, check those specs (see spec
1826references in the :doc:`atomics guide <Atomics>`).
1827:ref:`fence <i_fence>` instructions treat these orderings somewhat
1828differently since they don't take an address. See that instruction's
1829documentation for details.
1830
1831For a simpler introduction to the ordering constraints, see the
1832:doc:`Atomics`.
1833
1834``unordered``
1835 The set of values that can be read is governed by the happens-before
1836 partial order. A value cannot be read unless some operation wrote
1837 it. This is intended to provide a guarantee strong enough to model
1838 Java's non-volatile shared variables. This ordering cannot be
1839 specified for read-modify-write operations; it is not strong enough
1840 to make them atomic in any interesting way.
1841``monotonic``
1842 In addition to the guarantees of ``unordered``, there is a single
1843 total order for modifications by ``monotonic`` operations on each
1844 address. All modification orders must be compatible with the
1845 happens-before order. There is no guarantee that the modification
1846 orders can be combined to a global total order for the whole program
1847 (and this often will not be possible). The read in an atomic
1848 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1849 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1850 order immediately before the value it writes. If one atomic read
1851 happens before another atomic read of the same address, the later
1852 read must see the same value or a later value in the address's
1853 modification order. This disallows reordering of ``monotonic`` (or
1854 stronger) operations on the same address. If an address is written
1855 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1856 read that address repeatedly, the other threads must eventually see
1857 the write. This corresponds to the C++0x/C1x
1858 ``memory_order_relaxed``.
1859``acquire``
1860 In addition to the guarantees of ``monotonic``, a
1861 *synchronizes-with* edge may be formed with a ``release`` operation.
1862 This is intended to model C++'s ``memory_order_acquire``.
1863``release``
1864 In addition to the guarantees of ``monotonic``, if this operation
1865 writes a value which is subsequently read by an ``acquire``
1866 operation, it *synchronizes-with* that operation. (This isn't a
1867 complete description; see the C++0x definition of a release
1868 sequence.) This corresponds to the C++0x/C1x
1869 ``memory_order_release``.
1870``acq_rel`` (acquire+release)
1871 Acts as both an ``acquire`` and ``release`` operation on its
1872 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1873``seq_cst`` (sequentially consistent)
1874 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001875 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001876 writes), there is a global total order on all
1877 sequentially-consistent operations on all addresses, which is
1878 consistent with the *happens-before* partial order and with the
1879 modification orders of all the affected addresses. Each
1880 sequentially-consistent read sees the last preceding write to the
1881 same address in this global order. This corresponds to the C++0x/C1x
1882 ``memory_order_seq_cst`` and Java volatile.
1883
1884.. _singlethread:
1885
1886If an atomic operation is marked ``singlethread``, it only *synchronizes
1887with* or participates in modification and seq\_cst total orderings with
1888other operations running in the same thread (for example, in signal
1889handlers).
1890
1891.. _fastmath:
1892
1893Fast-Math Flags
1894---------------
1895
1896LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1897:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001898:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1899be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001900
1901``nnan``
1902 No NaNs - Allow optimizations to assume the arguments and result are not
1903 NaN. Such optimizations are required to retain defined behavior over
1904 NaNs, but the value of the result is undefined.
1905
1906``ninf``
1907 No Infs - Allow optimizations to assume the arguments and result are not
1908 +/-Inf. Such optimizations are required to retain defined behavior over
1909 +/-Inf, but the value of the result is undefined.
1910
1911``nsz``
1912 No Signed Zeros - Allow optimizations to treat the sign of a zero
1913 argument or result as insignificant.
1914
1915``arcp``
1916 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1917 argument rather than perform division.
1918
1919``fast``
1920 Fast - Allow algebraically equivalent transformations that may
1921 dramatically change results in floating point (e.g. reassociate). This
1922 flag implies all the others.
1923
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001924.. _uselistorder:
1925
1926Use-list Order Directives
1927-------------------------
1928
1929Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001930order to be recreated. ``<order-indexes>`` is a comma-separated list of
1931indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001932value's use-list is immediately sorted by these indexes.
1933
Sean Silvaa1190322015-08-06 22:56:48 +00001934Use-list directives may appear at function scope or global scope. They are not
1935instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001936function scope, they must appear after the terminator of the final basic block.
1937
1938If basic blocks have their address taken via ``blockaddress()`` expressions,
1939``uselistorder_bb`` can be used to reorder their use-lists from outside their
1940function's scope.
1941
1942:Syntax:
1943
1944::
1945
1946 uselistorder <ty> <value>, { <order-indexes> }
1947 uselistorder_bb @function, %block { <order-indexes> }
1948
1949:Examples:
1950
1951::
1952
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001953 define void @foo(i32 %arg1, i32 %arg2) {
1954 entry:
1955 ; ... instructions ...
1956 bb:
1957 ; ... instructions ...
1958
1959 ; At function scope.
1960 uselistorder i32 %arg1, { 1, 0, 2 }
1961 uselistorder label %bb, { 1, 0 }
1962 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001963
1964 ; At global scope.
1965 uselistorder i32* @global, { 1, 2, 0 }
1966 uselistorder i32 7, { 1, 0 }
1967 uselistorder i32 (i32) @bar, { 1, 0 }
1968 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1969
Sean Silvab084af42012-12-07 10:36:55 +00001970.. _typesystem:
1971
1972Type System
1973===========
1974
1975The LLVM type system is one of the most important features of the
1976intermediate representation. Being typed enables a number of
1977optimizations to be performed on the intermediate representation
1978directly, without having to do extra analyses on the side before the
1979transformation. A strong type system makes it easier to read the
1980generated code and enables novel analyses and transformations that are
1981not feasible to perform on normal three address code representations.
1982
Rafael Espindola08013342013-12-07 19:34:20 +00001983.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001984
Rafael Espindola08013342013-12-07 19:34:20 +00001985Void Type
1986---------
Sean Silvab084af42012-12-07 10:36:55 +00001987
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001988:Overview:
1989
Rafael Espindola08013342013-12-07 19:34:20 +00001990
1991The void type does not represent any value and has no size.
1992
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001993:Syntax:
1994
Rafael Espindola08013342013-12-07 19:34:20 +00001995
1996::
1997
1998 void
Sean Silvab084af42012-12-07 10:36:55 +00001999
2000
Rafael Espindola08013342013-12-07 19:34:20 +00002001.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola08013342013-12-07 19:34:20 +00002003Function Type
2004-------------
Sean Silvab084af42012-12-07 10:36:55 +00002005
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002006:Overview:
2007
Sean Silvab084af42012-12-07 10:36:55 +00002008
Rafael Espindola08013342013-12-07 19:34:20 +00002009The function type can be thought of as a function signature. It consists of a
2010return type and a list of formal parameter types. The return type of a function
2011type is a void type or first class type --- except for :ref:`label <t_label>`
2012and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002013
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002014:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002015
Rafael Espindola08013342013-12-07 19:34:20 +00002016::
Sean Silvab084af42012-12-07 10:36:55 +00002017
Rafael Espindola08013342013-12-07 19:34:20 +00002018 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002019
Rafael Espindola08013342013-12-07 19:34:20 +00002020...where '``<parameter list>``' is a comma-separated list of type
2021specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002022indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002023argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002024handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002025except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002026
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002027:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002028
Rafael Espindola08013342013-12-07 19:34:20 +00002029+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2030| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2031+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2032| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2033+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2034| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2035+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2036| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2037+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2038
2039.. _t_firstclass:
2040
2041First Class Types
2042-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002043
2044The :ref:`first class <t_firstclass>` types are perhaps the most important.
2045Values of these types are the only ones which can be produced by
2046instructions.
2047
Rafael Espindola08013342013-12-07 19:34:20 +00002048.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002049
Rafael Espindola08013342013-12-07 19:34:20 +00002050Single Value Types
2051^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002052
Rafael Espindola08013342013-12-07 19:34:20 +00002053These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002054
2055.. _t_integer:
2056
2057Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002058""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002059
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002060:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002061
2062The integer type is a very simple type that simply specifies an
2063arbitrary bit width for the integer type desired. Any bit width from 1
2064bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2065
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002066:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002067
2068::
2069
2070 iN
2071
2072The number of bits the integer will occupy is specified by the ``N``
2073value.
2074
2075Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002076*********
Sean Silvab084af42012-12-07 10:36:55 +00002077
2078+----------------+------------------------------------------------+
2079| ``i1`` | a single-bit integer. |
2080+----------------+------------------------------------------------+
2081| ``i32`` | a 32-bit integer. |
2082+----------------+------------------------------------------------+
2083| ``i1942652`` | a really big integer of over 1 million bits. |
2084+----------------+------------------------------------------------+
2085
2086.. _t_floating:
2087
2088Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002089""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002090
2091.. list-table::
2092 :header-rows: 1
2093
2094 * - Type
2095 - Description
2096
2097 * - ``half``
2098 - 16-bit floating point value
2099
2100 * - ``float``
2101 - 32-bit floating point value
2102
2103 * - ``double``
2104 - 64-bit floating point value
2105
2106 * - ``fp128``
2107 - 128-bit floating point value (112-bit mantissa)
2108
2109 * - ``x86_fp80``
2110 - 80-bit floating point value (X87)
2111
2112 * - ``ppc_fp128``
2113 - 128-bit floating point value (two 64-bits)
2114
Reid Kleckner9a16d082014-03-05 02:41:37 +00002115X86_mmx Type
2116""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002117
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002118:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002119
Reid Kleckner9a16d082014-03-05 02:41:37 +00002120The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002121machine. The operations allowed on it are quite limited: parameters and
2122return values, load and store, and bitcast. User-specified MMX
2123instructions are represented as intrinsic or asm calls with arguments
2124and/or results of this type. There are no arrays, vectors or constants
2125of this type.
2126
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002127:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002128
2129::
2130
Reid Kleckner9a16d082014-03-05 02:41:37 +00002131 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002132
Sean Silvab084af42012-12-07 10:36:55 +00002133
Rafael Espindola08013342013-12-07 19:34:20 +00002134.. _t_pointer:
2135
2136Pointer Type
2137""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002138
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002139:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002140
Rafael Espindola08013342013-12-07 19:34:20 +00002141The pointer type is used to specify memory locations. Pointers are
2142commonly used to reference objects in memory.
2143
2144Pointer types may have an optional address space attribute defining the
2145numbered address space where the pointed-to object resides. The default
2146address space is number zero. The semantics of non-zero address spaces
2147are target-specific.
2148
2149Note that LLVM does not permit pointers to void (``void*``) nor does it
2150permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002151
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002152:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002153
2154::
2155
Rafael Espindola08013342013-12-07 19:34:20 +00002156 <type> *
2157
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002158:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002159
2160+-------------------------+--------------------------------------------------------------------------------------------------------------+
2161| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2162+-------------------------+--------------------------------------------------------------------------------------------------------------+
2163| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2164+-------------------------+--------------------------------------------------------------------------------------------------------------+
2165| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2166+-------------------------+--------------------------------------------------------------------------------------------------------------+
2167
2168.. _t_vector:
2169
2170Vector Type
2171"""""""""""
2172
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002173:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002174
2175A vector type is a simple derived type that represents a vector of
2176elements. Vector types are used when multiple primitive data are
2177operated in parallel using a single instruction (SIMD). A vector type
2178requires a size (number of elements) and an underlying primitive data
2179type. Vector types are considered :ref:`first class <t_firstclass>`.
2180
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002181:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002182
2183::
2184
2185 < <# elements> x <elementtype> >
2186
2187The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002188elementtype may be any integer, floating point or pointer type. Vectors
2189of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002190
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002191:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002192
2193+-------------------+--------------------------------------------------+
2194| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2195+-------------------+--------------------------------------------------+
2196| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2197+-------------------+--------------------------------------------------+
2198| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2199+-------------------+--------------------------------------------------+
2200| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2201+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002202
2203.. _t_label:
2204
2205Label Type
2206^^^^^^^^^^
2207
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002208:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002209
2210The label type represents code labels.
2211
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002212:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002213
2214::
2215
2216 label
2217
David Majnemerb611e3f2015-08-14 05:09:07 +00002218.. _t_token:
2219
2220Token Type
2221^^^^^^^^^^
2222
2223:Overview:
2224
2225The token type is used when a value is associated with an instruction
2226but all uses of the value must not attempt to introspect or obscure it.
2227As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2228:ref:`select <i_select>` of type token.
2229
2230:Syntax:
2231
2232::
2233
2234 token
2235
2236
2237
Sean Silvab084af42012-12-07 10:36:55 +00002238.. _t_metadata:
2239
2240Metadata Type
2241^^^^^^^^^^^^^
2242
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002243:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002244
2245The metadata type represents embedded metadata. No derived types may be
2246created from metadata except for :ref:`function <t_function>` arguments.
2247
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002248:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002249
2250::
2251
2252 metadata
2253
Sean Silvab084af42012-12-07 10:36:55 +00002254.. _t_aggregate:
2255
2256Aggregate Types
2257^^^^^^^^^^^^^^^
2258
2259Aggregate Types are a subset of derived types that can contain multiple
2260member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2261aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2262aggregate types.
2263
2264.. _t_array:
2265
2266Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002267""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002268
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002269:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002270
2271The array type is a very simple derived type that arranges elements
2272sequentially in memory. The array type requires a size (number of
2273elements) and an underlying data type.
2274
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002275:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002276
2277::
2278
2279 [<# elements> x <elementtype>]
2280
2281The number of elements is a constant integer value; ``elementtype`` may
2282be any type with a size.
2283
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002284:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002285
2286+------------------+--------------------------------------+
2287| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2288+------------------+--------------------------------------+
2289| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2290+------------------+--------------------------------------+
2291| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2292+------------------+--------------------------------------+
2293
2294Here are some examples of multidimensional arrays:
2295
2296+-----------------------------+----------------------------------------------------------+
2297| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2298+-----------------------------+----------------------------------------------------------+
2299| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2300+-----------------------------+----------------------------------------------------------+
2301| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2302+-----------------------------+----------------------------------------------------------+
2303
2304There is no restriction on indexing beyond the end of the array implied
2305by a static type (though there are restrictions on indexing beyond the
2306bounds of an allocated object in some cases). This means that
2307single-dimension 'variable sized array' addressing can be implemented in
2308LLVM with a zero length array type. An implementation of 'pascal style
2309arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2310example.
2311
Sean Silvab084af42012-12-07 10:36:55 +00002312.. _t_struct:
2313
2314Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002315""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002316
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002317:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002318
2319The structure type is used to represent a collection of data members
2320together in memory. The elements of a structure may be any type that has
2321a size.
2322
2323Structures in memory are accessed using '``load``' and '``store``' by
2324getting a pointer to a field with the '``getelementptr``' instruction.
2325Structures in registers are accessed using the '``extractvalue``' and
2326'``insertvalue``' instructions.
2327
2328Structures may optionally be "packed" structures, which indicate that
2329the alignment of the struct is one byte, and that there is no padding
2330between the elements. In non-packed structs, padding between field types
2331is inserted as defined by the DataLayout string in the module, which is
2332required to match what the underlying code generator expects.
2333
2334Structures can either be "literal" or "identified". A literal structure
2335is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2336identified types are always defined at the top level with a name.
2337Literal types are uniqued by their contents and can never be recursive
2338or opaque since there is no way to write one. Identified types can be
2339recursive, can be opaqued, and are never uniqued.
2340
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002341:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002342
2343::
2344
2345 %T1 = type { <type list> } ; Identified normal struct type
2346 %T2 = type <{ <type list> }> ; Identified packed struct type
2347
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002348:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002349
2350+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2351| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2352+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002353| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002354+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2355| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2356+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2357
2358.. _t_opaque:
2359
2360Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002361""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002362
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002363:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002364
2365Opaque structure types are used to represent named structure types that
2366do not have a body specified. This corresponds (for example) to the C
2367notion of a forward declared structure.
2368
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002369:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002370
2371::
2372
2373 %X = type opaque
2374 %52 = type opaque
2375
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002376:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002377
2378+--------------+-------------------+
2379| ``opaque`` | An opaque type. |
2380+--------------+-------------------+
2381
Sean Silva1703e702014-04-08 21:06:22 +00002382.. _constants:
2383
Sean Silvab084af42012-12-07 10:36:55 +00002384Constants
2385=========
2386
2387LLVM has several different basic types of constants. This section
2388describes them all and their syntax.
2389
2390Simple Constants
2391----------------
2392
2393**Boolean constants**
2394 The two strings '``true``' and '``false``' are both valid constants
2395 of the ``i1`` type.
2396**Integer constants**
2397 Standard integers (such as '4') are constants of the
2398 :ref:`integer <t_integer>` type. Negative numbers may be used with
2399 integer types.
2400**Floating point constants**
2401 Floating point constants use standard decimal notation (e.g.
2402 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2403 hexadecimal notation (see below). The assembler requires the exact
2404 decimal value of a floating-point constant. For example, the
2405 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2406 decimal in binary. Floating point constants must have a :ref:`floating
2407 point <t_floating>` type.
2408**Null pointer constants**
2409 The identifier '``null``' is recognized as a null pointer constant
2410 and must be of :ref:`pointer type <t_pointer>`.
2411
2412The one non-intuitive notation for constants is the hexadecimal form of
2413floating point constants. For example, the form
2414'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2415than) '``double 4.5e+15``'. The only time hexadecimal floating point
2416constants are required (and the only time that they are generated by the
2417disassembler) is when a floating point constant must be emitted but it
2418cannot be represented as a decimal floating point number in a reasonable
2419number of digits. For example, NaN's, infinities, and other special
2420values are represented in their IEEE hexadecimal format so that assembly
2421and disassembly do not cause any bits to change in the constants.
2422
2423When using the hexadecimal form, constants of types half, float, and
2424double are represented using the 16-digit form shown above (which
2425matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002426must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002427precision, respectively. Hexadecimal format is always used for long
2428double, and there are three forms of long double. The 80-bit format used
2429by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2430128-bit format used by PowerPC (two adjacent doubles) is represented by
2431``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002432represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2433will only work if they match the long double format on your target.
2434The IEEE 16-bit format (half precision) is represented by ``0xH``
2435followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2436(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002437
Reid Kleckner9a16d082014-03-05 02:41:37 +00002438There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002439
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002440.. _complexconstants:
2441
Sean Silvab084af42012-12-07 10:36:55 +00002442Complex Constants
2443-----------------
2444
2445Complex constants are a (potentially recursive) combination of simple
2446constants and smaller complex constants.
2447
2448**Structure constants**
2449 Structure constants are represented with notation similar to
2450 structure type definitions (a comma separated list of elements,
2451 surrounded by braces (``{}``)). For example:
2452 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2453 "``@G = external global i32``". Structure constants must have
2454 :ref:`structure type <t_struct>`, and the number and types of elements
2455 must match those specified by the type.
2456**Array constants**
2457 Array constants are represented with notation similar to array type
2458 definitions (a comma separated list of elements, surrounded by
2459 square brackets (``[]``)). For example:
2460 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2461 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002462 match those specified by the type. As a special case, character array
2463 constants may also be represented as a double-quoted string using the ``c``
2464 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002465**Vector constants**
2466 Vector constants are represented with notation similar to vector
2467 type definitions (a comma separated list of elements, surrounded by
2468 less-than/greater-than's (``<>``)). For example:
2469 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2470 must have :ref:`vector type <t_vector>`, and the number and types of
2471 elements must match those specified by the type.
2472**Zero initialization**
2473 The string '``zeroinitializer``' can be used to zero initialize a
2474 value to zero of *any* type, including scalar and
2475 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2476 having to print large zero initializers (e.g. for large arrays) and
2477 is always exactly equivalent to using explicit zero initializers.
2478**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002479 A metadata node is a constant tuple without types. For example:
2480 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002481 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2482 Unlike other typed constants that are meant to be interpreted as part of
2483 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002484 information such as debug info.
2485
2486Global Variable and Function Addresses
2487--------------------------------------
2488
2489The addresses of :ref:`global variables <globalvars>` and
2490:ref:`functions <functionstructure>` are always implicitly valid
2491(link-time) constants. These constants are explicitly referenced when
2492the :ref:`identifier for the global <identifiers>` is used and always have
2493:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2494file:
2495
2496.. code-block:: llvm
2497
2498 @X = global i32 17
2499 @Y = global i32 42
2500 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2501
2502.. _undefvalues:
2503
2504Undefined Values
2505----------------
2506
2507The string '``undef``' can be used anywhere a constant is expected, and
2508indicates that the user of the value may receive an unspecified
2509bit-pattern. Undefined values may be of any type (other than '``label``'
2510or '``void``') and be used anywhere a constant is permitted.
2511
2512Undefined values are useful because they indicate to the compiler that
2513the program is well defined no matter what value is used. This gives the
2514compiler more freedom to optimize. Here are some examples of
2515(potentially surprising) transformations that are valid (in pseudo IR):
2516
2517.. code-block:: llvm
2518
2519 %A = add %X, undef
2520 %B = sub %X, undef
2521 %C = xor %X, undef
2522 Safe:
2523 %A = undef
2524 %B = undef
2525 %C = undef
2526
2527This is safe because all of the output bits are affected by the undef
2528bits. Any output bit can have a zero or one depending on the input bits.
2529
2530.. code-block:: llvm
2531
2532 %A = or %X, undef
2533 %B = and %X, undef
2534 Safe:
2535 %A = -1
2536 %B = 0
2537 Unsafe:
2538 %A = undef
2539 %B = undef
2540
2541These logical operations have bits that are not always affected by the
2542input. For example, if ``%X`` has a zero bit, then the output of the
2543'``and``' operation will always be a zero for that bit, no matter what
2544the corresponding bit from the '``undef``' is. As such, it is unsafe to
2545optimize or assume that the result of the '``and``' is '``undef``'.
2546However, it is safe to assume that all bits of the '``undef``' could be
25470, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2548all the bits of the '``undef``' operand to the '``or``' could be set,
2549allowing the '``or``' to be folded to -1.
2550
2551.. code-block:: llvm
2552
2553 %A = select undef, %X, %Y
2554 %B = select undef, 42, %Y
2555 %C = select %X, %Y, undef
2556 Safe:
2557 %A = %X (or %Y)
2558 %B = 42 (or %Y)
2559 %C = %Y
2560 Unsafe:
2561 %A = undef
2562 %B = undef
2563 %C = undef
2564
2565This set of examples shows that undefined '``select``' (and conditional
2566branch) conditions can go *either way*, but they have to come from one
2567of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2568both known to have a clear low bit, then ``%A`` would have to have a
2569cleared low bit. However, in the ``%C`` example, the optimizer is
2570allowed to assume that the '``undef``' operand could be the same as
2571``%Y``, allowing the whole '``select``' to be eliminated.
2572
2573.. code-block:: llvm
2574
2575 %A = xor undef, undef
2576
2577 %B = undef
2578 %C = xor %B, %B
2579
2580 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002581 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002582 %F = icmp gte %D, 4
2583
2584 Safe:
2585 %A = undef
2586 %B = undef
2587 %C = undef
2588 %D = undef
2589 %E = undef
2590 %F = undef
2591
2592This example points out that two '``undef``' operands are not
2593necessarily the same. This can be surprising to people (and also matches
2594C semantics) where they assume that "``X^X``" is always zero, even if
2595``X`` is undefined. This isn't true for a number of reasons, but the
2596short answer is that an '``undef``' "variable" can arbitrarily change
2597its value over its "live range". This is true because the variable
2598doesn't actually *have a live range*. Instead, the value is logically
2599read from arbitrary registers that happen to be around when needed, so
2600the value is not necessarily consistent over time. In fact, ``%A`` and
2601``%C`` need to have the same semantics or the core LLVM "replace all
2602uses with" concept would not hold.
2603
2604.. code-block:: llvm
2605
2606 %A = fdiv undef, %X
2607 %B = fdiv %X, undef
2608 Safe:
2609 %A = undef
2610 b: unreachable
2611
2612These examples show the crucial difference between an *undefined value*
2613and *undefined behavior*. An undefined value (like '``undef``') is
2614allowed to have an arbitrary bit-pattern. This means that the ``%A``
2615operation can be constant folded to '``undef``', because the '``undef``'
2616could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2617However, in the second example, we can make a more aggressive
2618assumption: because the ``undef`` is allowed to be an arbitrary value,
2619we are allowed to assume that it could be zero. Since a divide by zero
2620has *undefined behavior*, we are allowed to assume that the operation
2621does not execute at all. This allows us to delete the divide and all
2622code after it. Because the undefined operation "can't happen", the
2623optimizer can assume that it occurs in dead code.
2624
2625.. code-block:: llvm
2626
2627 a: store undef -> %X
2628 b: store %X -> undef
2629 Safe:
2630 a: <deleted>
2631 b: unreachable
2632
2633These examples reiterate the ``fdiv`` example: a store *of* an undefined
2634value can be assumed to not have any effect; we can assume that the
2635value is overwritten with bits that happen to match what was already
2636there. However, a store *to* an undefined location could clobber
2637arbitrary memory, therefore, it has undefined behavior.
2638
2639.. _poisonvalues:
2640
2641Poison Values
2642-------------
2643
2644Poison values are similar to :ref:`undef values <undefvalues>`, however
2645they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002646that cannot evoke side effects has nevertheless detected a condition
2647that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002648
2649There is currently no way of representing a poison value in the IR; they
2650only exist when produced by operations such as :ref:`add <i_add>` with
2651the ``nsw`` flag.
2652
2653Poison value behavior is defined in terms of value *dependence*:
2654
2655- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2656- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2657 their dynamic predecessor basic block.
2658- Function arguments depend on the corresponding actual argument values
2659 in the dynamic callers of their functions.
2660- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2661 instructions that dynamically transfer control back to them.
2662- :ref:`Invoke <i_invoke>` instructions depend on the
2663 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2664 call instructions that dynamically transfer control back to them.
2665- Non-volatile loads and stores depend on the most recent stores to all
2666 of the referenced memory addresses, following the order in the IR
2667 (including loads and stores implied by intrinsics such as
2668 :ref:`@llvm.memcpy <int_memcpy>`.)
2669- An instruction with externally visible side effects depends on the
2670 most recent preceding instruction with externally visible side
2671 effects, following the order in the IR. (This includes :ref:`volatile
2672 operations <volatile>`.)
2673- An instruction *control-depends* on a :ref:`terminator
2674 instruction <terminators>` if the terminator instruction has
2675 multiple successors and the instruction is always executed when
2676 control transfers to one of the successors, and may not be executed
2677 when control is transferred to another.
2678- Additionally, an instruction also *control-depends* on a terminator
2679 instruction if the set of instructions it otherwise depends on would
2680 be different if the terminator had transferred control to a different
2681 successor.
2682- Dependence is transitive.
2683
Richard Smith32dbdf62014-07-31 04:25:36 +00002684Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2685with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002686on a poison value has undefined behavior.
2687
2688Here are some examples:
2689
2690.. code-block:: llvm
2691
2692 entry:
2693 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2694 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002695 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002696 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2697
2698 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002699 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002700
2701 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2702
2703 %narrowaddr = bitcast i32* @g to i16*
2704 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002705 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2706 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002707
2708 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2709 br i1 %cmp, label %true, label %end ; Branch to either destination.
2710
2711 true:
2712 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2713 ; it has undefined behavior.
2714 br label %end
2715
2716 end:
2717 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2718 ; Both edges into this PHI are
2719 ; control-dependent on %cmp, so this
2720 ; always results in a poison value.
2721
2722 store volatile i32 0, i32* @g ; This would depend on the store in %true
2723 ; if %cmp is true, or the store in %entry
2724 ; otherwise, so this is undefined behavior.
2725
2726 br i1 %cmp, label %second_true, label %second_end
2727 ; The same branch again, but this time the
2728 ; true block doesn't have side effects.
2729
2730 second_true:
2731 ; No side effects!
2732 ret void
2733
2734 second_end:
2735 store volatile i32 0, i32* @g ; This time, the instruction always depends
2736 ; on the store in %end. Also, it is
2737 ; control-equivalent to %end, so this is
2738 ; well-defined (ignoring earlier undefined
2739 ; behavior in this example).
2740
2741.. _blockaddress:
2742
2743Addresses of Basic Blocks
2744-------------------------
2745
2746``blockaddress(@function, %block)``
2747
2748The '``blockaddress``' constant computes the address of the specified
2749basic block in the specified function, and always has an ``i8*`` type.
2750Taking the address of the entry block is illegal.
2751
2752This value only has defined behavior when used as an operand to the
2753':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2754against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002755undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002756no label is equal to the null pointer. This may be passed around as an
2757opaque pointer sized value as long as the bits are not inspected. This
2758allows ``ptrtoint`` and arithmetic to be performed on these values so
2759long as the original value is reconstituted before the ``indirectbr``
2760instruction.
2761
2762Finally, some targets may provide defined semantics when using the value
2763as the operand to an inline assembly, but that is target specific.
2764
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002765.. _constantexprs:
2766
Sean Silvab084af42012-12-07 10:36:55 +00002767Constant Expressions
2768--------------------
2769
2770Constant expressions are used to allow expressions involving other
2771constants to be used as constants. Constant expressions may be of any
2772:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2773that does not have side effects (e.g. load and call are not supported).
2774The following is the syntax for constant expressions:
2775
2776``trunc (CST to TYPE)``
2777 Truncate a constant to another type. The bit size of CST must be
2778 larger than the bit size of TYPE. Both types must be integers.
2779``zext (CST to TYPE)``
2780 Zero extend a constant to another type. The bit size of CST must be
2781 smaller than the bit size of TYPE. Both types must be integers.
2782``sext (CST to TYPE)``
2783 Sign extend a constant to another type. The bit size of CST must be
2784 smaller than the bit size of TYPE. Both types must be integers.
2785``fptrunc (CST to TYPE)``
2786 Truncate a floating point constant to another floating point type.
2787 The size of CST must be larger than the size of TYPE. Both types
2788 must be floating point.
2789``fpext (CST to TYPE)``
2790 Floating point extend a constant to another type. The size of CST
2791 must be smaller or equal to the size of TYPE. Both types must be
2792 floating point.
2793``fptoui (CST to TYPE)``
2794 Convert a floating point constant to the corresponding unsigned
2795 integer constant. TYPE must be a scalar or vector integer type. CST
2796 must be of scalar or vector floating point type. Both CST and TYPE
2797 must be scalars, or vectors of the same number of elements. If the
2798 value won't fit in the integer type, the results are undefined.
2799``fptosi (CST to TYPE)``
2800 Convert a floating point constant to the corresponding signed
2801 integer constant. TYPE must be a scalar or vector integer type. CST
2802 must be of scalar or vector floating point type. Both CST and TYPE
2803 must be scalars, or vectors of the same number of elements. If the
2804 value won't fit in the integer type, the results are undefined.
2805``uitofp (CST to TYPE)``
2806 Convert an unsigned integer constant to the corresponding floating
2807 point constant. TYPE must be a scalar or vector floating point type.
2808 CST must be of scalar or vector integer type. Both CST and TYPE must
2809 be scalars, or vectors of the same number of elements. If the value
2810 won't fit in the floating point type, the results are undefined.
2811``sitofp (CST to TYPE)``
2812 Convert a signed integer constant to the corresponding floating
2813 point constant. TYPE must be a scalar or vector floating point type.
2814 CST must be of scalar or vector integer type. Both CST and TYPE must
2815 be scalars, or vectors of the same number of elements. If the value
2816 won't fit in the floating point type, the results are undefined.
2817``ptrtoint (CST to TYPE)``
2818 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002819 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002820 pointer type. The ``CST`` value is zero extended, truncated, or
2821 unchanged to make it fit in ``TYPE``.
2822``inttoptr (CST to TYPE)``
2823 Convert an integer constant to a pointer constant. TYPE must be a
2824 pointer type. CST must be of integer type. The CST value is zero
2825 extended, truncated, or unchanged to make it fit in a pointer size.
2826 This one is *really* dangerous!
2827``bitcast (CST to TYPE)``
2828 Convert a constant, CST, to another TYPE. The constraints of the
2829 operands are the same as those for the :ref:`bitcast
2830 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002831``addrspacecast (CST to TYPE)``
2832 Convert a constant pointer or constant vector of pointer, CST, to another
2833 TYPE in a different address space. The constraints of the operands are the
2834 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002835``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002836 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2837 constants. As with the :ref:`getelementptr <i_getelementptr>`
2838 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002839 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002840``select (COND, VAL1, VAL2)``
2841 Perform the :ref:`select operation <i_select>` on constants.
2842``icmp COND (VAL1, VAL2)``
2843 Performs the :ref:`icmp operation <i_icmp>` on constants.
2844``fcmp COND (VAL1, VAL2)``
2845 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2846``extractelement (VAL, IDX)``
2847 Perform the :ref:`extractelement operation <i_extractelement>` on
2848 constants.
2849``insertelement (VAL, ELT, IDX)``
2850 Perform the :ref:`insertelement operation <i_insertelement>` on
2851 constants.
2852``shufflevector (VEC1, VEC2, IDXMASK)``
2853 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2854 constants.
2855``extractvalue (VAL, IDX0, IDX1, ...)``
2856 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2857 constants. The index list is interpreted in a similar manner as
2858 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2859 least one index value must be specified.
2860``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2861 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2862 The index list is interpreted in a similar manner as indices in a
2863 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2864 value must be specified.
2865``OPCODE (LHS, RHS)``
2866 Perform the specified operation of the LHS and RHS constants. OPCODE
2867 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2868 binary <bitwiseops>` operations. The constraints on operands are
2869 the same as those for the corresponding instruction (e.g. no bitwise
2870 operations on floating point values are allowed).
2871
2872Other Values
2873============
2874
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002875.. _inlineasmexprs:
2876
Sean Silvab084af42012-12-07 10:36:55 +00002877Inline Assembler Expressions
2878----------------------------
2879
2880LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002881Inline Assembly <moduleasm>`) through the use of a special value. This value
2882represents the inline assembler as a template string (containing the
2883instructions to emit), a list of operand constraints (stored as a string), a
2884flag that indicates whether or not the inline asm expression has side effects,
2885and a flag indicating whether the function containing the asm needs to align its
2886stack conservatively.
2887
2888The template string supports argument substitution of the operands using "``$``"
2889followed by a number, to indicate substitution of the given register/memory
2890location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2891be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2892operand (See :ref:`inline-asm-modifiers`).
2893
2894A literal "``$``" may be included by using "``$$``" in the template. To include
2895other special characters into the output, the usual "``\XX``" escapes may be
2896used, just as in other strings. Note that after template substitution, the
2897resulting assembly string is parsed by LLVM's integrated assembler unless it is
2898disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2899syntax known to LLVM.
2900
2901LLVM's support for inline asm is modeled closely on the requirements of Clang's
2902GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2903modifier codes listed here are similar or identical to those in GCC's inline asm
2904support. However, to be clear, the syntax of the template and constraint strings
2905described here is *not* the same as the syntax accepted by GCC and Clang, and,
2906while most constraint letters are passed through as-is by Clang, some get
2907translated to other codes when converting from the C source to the LLVM
2908assembly.
2909
2910An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002911
2912.. code-block:: llvm
2913
2914 i32 (i32) asm "bswap $0", "=r,r"
2915
2916Inline assembler expressions may **only** be used as the callee operand
2917of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2918Thus, typically we have:
2919
2920.. code-block:: llvm
2921
2922 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2923
2924Inline asms with side effects not visible in the constraint list must be
2925marked as having side effects. This is done through the use of the
2926'``sideeffect``' keyword, like so:
2927
2928.. code-block:: llvm
2929
2930 call void asm sideeffect "eieio", ""()
2931
2932In some cases inline asms will contain code that will not work unless
2933the stack is aligned in some way, such as calls or SSE instructions on
2934x86, yet will not contain code that does that alignment within the asm.
2935The compiler should make conservative assumptions about what the asm
2936might contain and should generate its usual stack alignment code in the
2937prologue if the '``alignstack``' keyword is present:
2938
2939.. code-block:: llvm
2940
2941 call void asm alignstack "eieio", ""()
2942
2943Inline asms also support using non-standard assembly dialects. The
2944assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2945the inline asm is using the Intel dialect. Currently, ATT and Intel are
2946the only supported dialects. An example is:
2947
2948.. code-block:: llvm
2949
2950 call void asm inteldialect "eieio", ""()
2951
2952If multiple keywords appear the '``sideeffect``' keyword must come
2953first, the '``alignstack``' keyword second and the '``inteldialect``'
2954keyword last.
2955
James Y Knightbc832ed2015-07-08 18:08:36 +00002956Inline Asm Constraint String
2957^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2958
2959The constraint list is a comma-separated string, each element containing one or
2960more constraint codes.
2961
2962For each element in the constraint list an appropriate register or memory
2963operand will be chosen, and it will be made available to assembly template
2964string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2965second, etc.
2966
2967There are three different types of constraints, which are distinguished by a
2968prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2969constraints must always be given in that order: outputs first, then inputs, then
2970clobbers. They cannot be intermingled.
2971
2972There are also three different categories of constraint codes:
2973
2974- Register constraint. This is either a register class, or a fixed physical
2975 register. This kind of constraint will allocate a register, and if necessary,
2976 bitcast the argument or result to the appropriate type.
2977- Memory constraint. This kind of constraint is for use with an instruction
2978 taking a memory operand. Different constraints allow for different addressing
2979 modes used by the target.
2980- Immediate value constraint. This kind of constraint is for an integer or other
2981 immediate value which can be rendered directly into an instruction. The
2982 various target-specific constraints allow the selection of a value in the
2983 proper range for the instruction you wish to use it with.
2984
2985Output constraints
2986""""""""""""""""""
2987
2988Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2989indicates that the assembly will write to this operand, and the operand will
2990then be made available as a return value of the ``asm`` expression. Output
2991constraints do not consume an argument from the call instruction. (Except, see
2992below about indirect outputs).
2993
2994Normally, it is expected that no output locations are written to by the assembly
2995expression until *all* of the inputs have been read. As such, LLVM may assign
2996the same register to an output and an input. If this is not safe (e.g. if the
2997assembly contains two instructions, where the first writes to one output, and
2998the second reads an input and writes to a second output), then the "``&``"
2999modifier must be used (e.g. "``=&r``") to specify that the output is an
3000"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3001will not use the same register for any inputs (other than an input tied to this
3002output).
3003
3004Input constraints
3005"""""""""""""""""
3006
3007Input constraints do not have a prefix -- just the constraint codes. Each input
3008constraint will consume one argument from the call instruction. It is not
3009permitted for the asm to write to any input register or memory location (unless
3010that input is tied to an output). Note also that multiple inputs may all be
3011assigned to the same register, if LLVM can determine that they necessarily all
3012contain the same value.
3013
3014Instead of providing a Constraint Code, input constraints may also "tie"
3015themselves to an output constraint, by providing an integer as the constraint
3016string. Tied inputs still consume an argument from the call instruction, and
3017take up a position in the asm template numbering as is usual -- they will simply
3018be constrained to always use the same register as the output they've been tied
3019to. For example, a constraint string of "``=r,0``" says to assign a register for
3020output, and use that register as an input as well (it being the 0'th
3021constraint).
3022
3023It is permitted to tie an input to an "early-clobber" output. In that case, no
3024*other* input may share the same register as the input tied to the early-clobber
3025(even when the other input has the same value).
3026
3027You may only tie an input to an output which has a register constraint, not a
3028memory constraint. Only a single input may be tied to an output.
3029
3030There is also an "interesting" feature which deserves a bit of explanation: if a
3031register class constraint allocates a register which is too small for the value
3032type operand provided as input, the input value will be split into multiple
3033registers, and all of them passed to the inline asm.
3034
3035However, this feature is often not as useful as you might think.
3036
3037Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3038architectures that have instructions which operate on multiple consecutive
3039instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3040SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3041hardware then loads into both the named register, and the next register. This
3042feature of inline asm would not be useful to support that.)
3043
3044A few of the targets provide a template string modifier allowing explicit access
3045to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3046``D``). On such an architecture, you can actually access the second allocated
3047register (yet, still, not any subsequent ones). But, in that case, you're still
3048probably better off simply splitting the value into two separate operands, for
3049clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3050despite existing only for use with this feature, is not really a good idea to
3051use)
3052
3053Indirect inputs and outputs
3054"""""""""""""""""""""""""""
3055
3056Indirect output or input constraints can be specified by the "``*``" modifier
3057(which goes after the "``=``" in case of an output). This indicates that the asm
3058will write to or read from the contents of an *address* provided as an input
3059argument. (Note that in this way, indirect outputs act more like an *input* than
3060an output: just like an input, they consume an argument of the call expression,
3061rather than producing a return value. An indirect output constraint is an
3062"output" only in that the asm is expected to write to the contents of the input
3063memory location, instead of just read from it).
3064
3065This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3066address of a variable as a value.
3067
3068It is also possible to use an indirect *register* constraint, but only on output
3069(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3070value normally, and then, separately emit a store to the address provided as
3071input, after the provided inline asm. (It's not clear what value this
3072functionality provides, compared to writing the store explicitly after the asm
3073statement, and it can only produce worse code, since it bypasses many
3074optimization passes. I would recommend not using it.)
3075
3076
3077Clobber constraints
3078"""""""""""""""""""
3079
3080A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3081consume an input operand, nor generate an output. Clobbers cannot use any of the
3082general constraint code letters -- they may use only explicit register
3083constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3084"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3085memory locations -- not only the memory pointed to by a declared indirect
3086output.
3087
3088
3089Constraint Codes
3090""""""""""""""""
3091After a potential prefix comes constraint code, or codes.
3092
3093A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3094followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3095(e.g. "``{eax}``").
3096
3097The one and two letter constraint codes are typically chosen to be the same as
3098GCC's constraint codes.
3099
3100A single constraint may include one or more than constraint code in it, leaving
3101it up to LLVM to choose which one to use. This is included mainly for
3102compatibility with the translation of GCC inline asm coming from clang.
3103
3104There are two ways to specify alternatives, and either or both may be used in an
3105inline asm constraint list:
3106
31071) Append the codes to each other, making a constraint code set. E.g. "``im``"
3108 or "``{eax}m``". This means "choose any of the options in the set". The
3109 choice of constraint is made independently for each constraint in the
3110 constraint list.
3111
31122) Use "``|``" between constraint code sets, creating alternatives. Every
3113 constraint in the constraint list must have the same number of alternative
3114 sets. With this syntax, the same alternative in *all* of the items in the
3115 constraint list will be chosen together.
3116
3117Putting those together, you might have a two operand constraint string like
3118``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3119operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3120may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3121
3122However, the use of either of the alternatives features is *NOT* recommended, as
3123LLVM is not able to make an intelligent choice about which one to use. (At the
3124point it currently needs to choose, not enough information is available to do so
3125in a smart way.) Thus, it simply tries to make a choice that's most likely to
3126compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3127always choose to use memory, not registers). And, if given multiple registers,
3128or multiple register classes, it will simply choose the first one. (In fact, it
3129doesn't currently even ensure explicitly specified physical registers are
3130unique, so specifying multiple physical registers as alternatives, like
3131``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3132intended.)
3133
3134Supported Constraint Code List
3135""""""""""""""""""""""""""""""
3136
3137The constraint codes are, in general, expected to behave the same way they do in
3138GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3139inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3140and GCC likely indicates a bug in LLVM.
3141
3142Some constraint codes are typically supported by all targets:
3143
3144- ``r``: A register in the target's general purpose register class.
3145- ``m``: A memory address operand. It is target-specific what addressing modes
3146 are supported, typical examples are register, or register + register offset,
3147 or register + immediate offset (of some target-specific size).
3148- ``i``: An integer constant (of target-specific width). Allows either a simple
3149 immediate, or a relocatable value.
3150- ``n``: An integer constant -- *not* including relocatable values.
3151- ``s``: An integer constant, but allowing *only* relocatable values.
3152- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3153 useful to pass a label for an asm branch or call.
3154
3155 .. FIXME: but that surely isn't actually okay to jump out of an asm
3156 block without telling llvm about the control transfer???)
3157
3158- ``{register-name}``: Requires exactly the named physical register.
3159
3160Other constraints are target-specific:
3161
3162AArch64:
3163
3164- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3165- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3166 i.e. 0 to 4095 with optional shift by 12.
3167- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3168 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3169- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3170 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3171- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3172 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3173- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3174 32-bit register. This is a superset of ``K``: in addition to the bitmask
3175 immediate, also allows immediate integers which can be loaded with a single
3176 ``MOVZ`` or ``MOVL`` instruction.
3177- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3178 64-bit register. This is a superset of ``L``.
3179- ``Q``: Memory address operand must be in a single register (no
3180 offsets). (However, LLVM currently does this for the ``m`` constraint as
3181 well.)
3182- ``r``: A 32 or 64-bit integer register (W* or X*).
3183- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3184- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3185
3186AMDGPU:
3187
3188- ``r``: A 32 or 64-bit integer register.
3189- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3190- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3191
3192
3193All ARM modes:
3194
3195- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3196 operand. Treated the same as operand ``m``, at the moment.
3197
3198ARM and ARM's Thumb2 mode:
3199
3200- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3201- ``I``: An immediate integer valid for a data-processing instruction.
3202- ``J``: An immediate integer between -4095 and 4095.
3203- ``K``: An immediate integer whose bitwise inverse is valid for a
3204 data-processing instruction. (Can be used with template modifier "``B``" to
3205 print the inverted value).
3206- ``L``: An immediate integer whose negation is valid for a data-processing
3207 instruction. (Can be used with template modifier "``n``" to print the negated
3208 value).
3209- ``M``: A power of two or a integer between 0 and 32.
3210- ``N``: Invalid immediate constraint.
3211- ``O``: Invalid immediate constraint.
3212- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3213- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3214 as ``r``.
3215- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3216 invalid.
3217- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3218 ``d0-d31``, or ``q0-q15``.
3219- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3220 ``d0-d7``, or ``q0-q3``.
3221- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3222 ``s0-s31``.
3223
3224ARM's Thumb1 mode:
3225
3226- ``I``: An immediate integer between 0 and 255.
3227- ``J``: An immediate integer between -255 and -1.
3228- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3229 some amount.
3230- ``L``: An immediate integer between -7 and 7.
3231- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3232- ``N``: An immediate integer between 0 and 31.
3233- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3234- ``r``: A low 32-bit GPR register (``r0-r7``).
3235- ``l``: A low 32-bit GPR register (``r0-r7``).
3236- ``h``: A high GPR register (``r0-r7``).
3237- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3238 ``d0-d31``, or ``q0-q15``.
3239- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3240 ``d0-d7``, or ``q0-q3``.
3241- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3242 ``s0-s31``.
3243
3244
3245Hexagon:
3246
3247- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3248 at the moment.
3249- ``r``: A 32 or 64-bit register.
3250
3251MSP430:
3252
3253- ``r``: An 8 or 16-bit register.
3254
3255MIPS:
3256
3257- ``I``: An immediate signed 16-bit integer.
3258- ``J``: An immediate integer zero.
3259- ``K``: An immediate unsigned 16-bit integer.
3260- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3261- ``N``: An immediate integer between -65535 and -1.
3262- ``O``: An immediate signed 15-bit integer.
3263- ``P``: An immediate integer between 1 and 65535.
3264- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3265 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3266- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3267 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3268 ``m``.
3269- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3270 ``sc`` instruction on the given subtarget (details vary).
3271- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3272- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003273 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3274 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003275- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3276 ``25``).
3277- ``l``: The ``lo`` register, 32 or 64-bit.
3278- ``x``: Invalid.
3279
3280NVPTX:
3281
3282- ``b``: A 1-bit integer register.
3283- ``c`` or ``h``: A 16-bit integer register.
3284- ``r``: A 32-bit integer register.
3285- ``l`` or ``N``: A 64-bit integer register.
3286- ``f``: A 32-bit float register.
3287- ``d``: A 64-bit float register.
3288
3289
3290PowerPC:
3291
3292- ``I``: An immediate signed 16-bit integer.
3293- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3294- ``K``: An immediate unsigned 16-bit integer.
3295- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3296- ``M``: An immediate integer greater than 31.
3297- ``N``: An immediate integer that is an exact power of 2.
3298- ``O``: The immediate integer constant 0.
3299- ``P``: An immediate integer constant whose negation is a signed 16-bit
3300 constant.
3301- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3302 treated the same as ``m``.
3303- ``r``: A 32 or 64-bit integer register.
3304- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3305 ``R1-R31``).
3306- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3307 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3308- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3309 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3310 altivec vector register (``V0-V31``).
3311
3312 .. FIXME: is this a bug that v accepts QPX registers? I think this
3313 is supposed to only use the altivec vector registers?
3314
3315- ``y``: Condition register (``CR0-CR7``).
3316- ``wc``: An individual CR bit in a CR register.
3317- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3318 register set (overlapping both the floating-point and vector register files).
3319- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3320 set.
3321
3322Sparc:
3323
3324- ``I``: An immediate 13-bit signed integer.
3325- ``r``: A 32-bit integer register.
3326
3327SystemZ:
3328
3329- ``I``: An immediate unsigned 8-bit integer.
3330- ``J``: An immediate unsigned 12-bit integer.
3331- ``K``: An immediate signed 16-bit integer.
3332- ``L``: An immediate signed 20-bit integer.
3333- ``M``: An immediate integer 0x7fffffff.
3334- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3335 ``m``, at the moment.
3336- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3337- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3338 address context evaluates as zero).
3339- ``h``: A 32-bit value in the high part of a 64bit data register
3340 (LLVM-specific)
3341- ``f``: A 32, 64, or 128-bit floating point register.
3342
3343X86:
3344
3345- ``I``: An immediate integer between 0 and 31.
3346- ``J``: An immediate integer between 0 and 64.
3347- ``K``: An immediate signed 8-bit integer.
3348- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3349 0xffffffff.
3350- ``M``: An immediate integer between 0 and 3.
3351- ``N``: An immediate unsigned 8-bit integer.
3352- ``O``: An immediate integer between 0 and 127.
3353- ``e``: An immediate 32-bit signed integer.
3354- ``Z``: An immediate 32-bit unsigned integer.
3355- ``o``, ``v``: Treated the same as ``m``, at the moment.
3356- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3357 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3358 registers, and on X86-64, it is all of the integer registers.
3359- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3360 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3361- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3362- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3363 existed since i386, and can be accessed without the REX prefix.
3364- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3365- ``y``: A 64-bit MMX register, if MMX is enabled.
3366- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3367 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3368 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3369 512-bit vector operand in an AVX512 register, Otherwise, an error.
3370- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3371- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3372 32-bit mode, a 64-bit integer operand will get split into two registers). It
3373 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3374 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3375 you're better off splitting it yourself, before passing it to the asm
3376 statement.
3377
3378XCore:
3379
3380- ``r``: A 32-bit integer register.
3381
3382
3383.. _inline-asm-modifiers:
3384
3385Asm template argument modifiers
3386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3387
3388In the asm template string, modifiers can be used on the operand reference, like
3389"``${0:n}``".
3390
3391The modifiers are, in general, expected to behave the same way they do in
3392GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3393inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3394and GCC likely indicates a bug in LLVM.
3395
3396Target-independent:
3397
Sean Silvaa1190322015-08-06 22:56:48 +00003398- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003399 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3400- ``n``: Negate and print immediate integer constant unadorned, without the
3401 target-specific immediate punctuation (e.g. no ``$`` prefix).
3402- ``l``: Print as an unadorned label, without the target-specific label
3403 punctuation (e.g. no ``$`` prefix).
3404
3405AArch64:
3406
3407- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3408 instead of ``x30``, print ``w30``.
3409- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3410- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3411 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3412 ``v*``.
3413
3414AMDGPU:
3415
3416- ``r``: No effect.
3417
3418ARM:
3419
3420- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3421 register).
3422- ``P``: No effect.
3423- ``q``: No effect.
3424- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3425 as ``d4[1]`` instead of ``s9``)
3426- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3427 prefix.
3428- ``L``: Print the low 16-bits of an immediate integer constant.
3429- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3430 register operands subsequent to the specified one (!), so use carefully.
3431- ``Q``: Print the low-order register of a register-pair, or the low-order
3432 register of a two-register operand.
3433- ``R``: Print the high-order register of a register-pair, or the high-order
3434 register of a two-register operand.
3435- ``H``: Print the second register of a register-pair. (On a big-endian system,
3436 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3437 to ``R``.)
3438
3439 .. FIXME: H doesn't currently support printing the second register
3440 of a two-register operand.
3441
3442- ``e``: Print the low doubleword register of a NEON quad register.
3443- ``f``: Print the high doubleword register of a NEON quad register.
3444- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3445 adornment.
3446
3447Hexagon:
3448
3449- ``L``: Print the second register of a two-register operand. Requires that it
3450 has been allocated consecutively to the first.
3451
3452 .. FIXME: why is it restricted to consecutive ones? And there's
3453 nothing that ensures that happens, is there?
3454
3455- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3456 nothing. Used to print 'addi' vs 'add' instructions.
3457
3458MSP430:
3459
3460No additional modifiers.
3461
3462MIPS:
3463
3464- ``X``: Print an immediate integer as hexadecimal
3465- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3466- ``d``: Print an immediate integer as decimal.
3467- ``m``: Subtract one and print an immediate integer as decimal.
3468- ``z``: Print $0 if an immediate zero, otherwise print normally.
3469- ``L``: Print the low-order register of a two-register operand, or prints the
3470 address of the low-order word of a double-word memory operand.
3471
3472 .. FIXME: L seems to be missing memory operand support.
3473
3474- ``M``: Print the high-order register of a two-register operand, or prints the
3475 address of the high-order word of a double-word memory operand.
3476
3477 .. FIXME: M seems to be missing memory operand support.
3478
3479- ``D``: Print the second register of a two-register operand, or prints the
3480 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3481 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3482 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003483- ``w``: No effect. Provided for compatibility with GCC which requires this
3484 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3485 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003486
3487NVPTX:
3488
3489- ``r``: No effect.
3490
3491PowerPC:
3492
3493- ``L``: Print the second register of a two-register operand. Requires that it
3494 has been allocated consecutively to the first.
3495
3496 .. FIXME: why is it restricted to consecutive ones? And there's
3497 nothing that ensures that happens, is there?
3498
3499- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3500 nothing. Used to print 'addi' vs 'add' instructions.
3501- ``y``: For a memory operand, prints formatter for a two-register X-form
3502 instruction. (Currently always prints ``r0,OPERAND``).
3503- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3504 otherwise. (NOTE: LLVM does not support update form, so this will currently
3505 always print nothing)
3506- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3507 not support indexed form, so this will currently always print nothing)
3508
3509Sparc:
3510
3511- ``r``: No effect.
3512
3513SystemZ:
3514
3515SystemZ implements only ``n``, and does *not* support any of the other
3516target-independent modifiers.
3517
3518X86:
3519
3520- ``c``: Print an unadorned integer or symbol name. (The latter is
3521 target-specific behavior for this typically target-independent modifier).
3522- ``A``: Print a register name with a '``*``' before it.
3523- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3524 operand.
3525- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3526 memory operand.
3527- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3528 operand.
3529- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3530 operand.
3531- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3532 available, otherwise the 32-bit register name; do nothing on a memory operand.
3533- ``n``: Negate and print an unadorned integer, or, for operands other than an
3534 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3535 the operand. (The behavior for relocatable symbol expressions is a
3536 target-specific behavior for this typically target-independent modifier)
3537- ``H``: Print a memory reference with additional offset +8.
3538- ``P``: Print a memory reference or operand for use as the argument of a call
3539 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3540
3541XCore:
3542
3543No additional modifiers.
3544
3545
Sean Silvab084af42012-12-07 10:36:55 +00003546Inline Asm Metadata
3547^^^^^^^^^^^^^^^^^^^
3548
3549The call instructions that wrap inline asm nodes may have a
3550"``!srcloc``" MDNode attached to it that contains a list of constant
3551integers. If present, the code generator will use the integer as the
3552location cookie value when report errors through the ``LLVMContext``
3553error reporting mechanisms. This allows a front-end to correlate backend
3554errors that occur with inline asm back to the source code that produced
3555it. For example:
3556
3557.. code-block:: llvm
3558
3559 call void asm sideeffect "something bad", ""(), !srcloc !42
3560 ...
3561 !42 = !{ i32 1234567 }
3562
3563It is up to the front-end to make sense of the magic numbers it places
3564in the IR. If the MDNode contains multiple constants, the code generator
3565will use the one that corresponds to the line of the asm that the error
3566occurs on.
3567
3568.. _metadata:
3569
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003570Metadata
3571========
Sean Silvab084af42012-12-07 10:36:55 +00003572
3573LLVM IR allows metadata to be attached to instructions in the program
3574that can convey extra information about the code to the optimizers and
3575code generator. One example application of metadata is source-level
3576debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003577
Sean Silvaa1190322015-08-06 22:56:48 +00003578Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003579``call`` instruction, it uses the ``metadata`` type.
3580
3581All metadata are identified in syntax by a exclamation point ('``!``').
3582
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003583.. _metadata-string:
3584
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003585Metadata Nodes and Metadata Strings
3586-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003587
3588A metadata string is a string surrounded by double quotes. It can
3589contain any character by escaping non-printable characters with
3590"``\xx``" where "``xx``" is the two digit hex code. For example:
3591"``!"test\00"``".
3592
3593Metadata nodes are represented with notation similar to structure
3594constants (a comma separated list of elements, surrounded by braces and
3595preceded by an exclamation point). Metadata nodes can have any values as
3596their operand. For example:
3597
3598.. code-block:: llvm
3599
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003600 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003601
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003602Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3603
3604.. code-block:: llvm
3605
3606 !0 = distinct !{!"test\00", i32 10}
3607
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003608``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003609content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003610when metadata operands change.
3611
Sean Silvab084af42012-12-07 10:36:55 +00003612A :ref:`named metadata <namedmetadatastructure>` is a collection of
3613metadata nodes, which can be looked up in the module symbol table. For
3614example:
3615
3616.. code-block:: llvm
3617
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003618 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003619
3620Metadata can be used as function arguments. Here ``llvm.dbg.value``
3621function is using two metadata arguments:
3622
3623.. code-block:: llvm
3624
3625 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3626
3627Metadata can be attached with an instruction. Here metadata ``!21`` is
3628attached to the ``add`` instruction using the ``!dbg`` identifier:
3629
3630.. code-block:: llvm
3631
3632 %indvar.next = add i64 %indvar, 1, !dbg !21
3633
3634More information about specific metadata nodes recognized by the
3635optimizers and code generator is found below.
3636
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003637.. _specialized-metadata:
3638
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003639Specialized Metadata Nodes
3640^^^^^^^^^^^^^^^^^^^^^^^^^^
3641
3642Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003643to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003644order.
3645
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003646These aren't inherently debug info centric, but currently all the specialized
3647metadata nodes are related to debug info.
3648
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003649.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003650
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003651DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003652"""""""""""""
3653
Sean Silvaa1190322015-08-06 22:56:48 +00003654``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003655``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3656tuples containing the debug info to be emitted along with the compile unit,
3657regardless of code optimizations (some nodes are only emitted if there are
3658references to them from instructions).
3659
3660.. code-block:: llvm
3661
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003662 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003663 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3664 splitDebugFilename: "abc.debug", emissionKind: 1,
3665 enums: !2, retainedTypes: !3, subprograms: !4,
3666 globals: !5, imports: !6)
3667
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003668Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003669specific compilation unit. File descriptors are defined using this scope.
3670These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003671keep track of subprograms, global variables, type information, and imported
3672entities (declarations and namespaces).
3673
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003674.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003675
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003676DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003677""""""
3678
Sean Silvaa1190322015-08-06 22:56:48 +00003679``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003680
3681.. code-block:: llvm
3682
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003683 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003684
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003685Files are sometimes used in ``scope:`` fields, and are the only valid target
3686for ``file:`` fields.
3687
Michael Kuperstein605308a2015-05-14 10:58:59 +00003688.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003689
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003690DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003691"""""""""""
3692
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003693``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003694``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003695
3696.. code-block:: llvm
3697
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003698 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003699 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003700 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003701
Sean Silvaa1190322015-08-06 22:56:48 +00003702The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003703following:
3704
3705.. code-block:: llvm
3706
3707 DW_ATE_address = 1
3708 DW_ATE_boolean = 2
3709 DW_ATE_float = 4
3710 DW_ATE_signed = 5
3711 DW_ATE_signed_char = 6
3712 DW_ATE_unsigned = 7
3713 DW_ATE_unsigned_char = 8
3714
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003715.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003716
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003717DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003718""""""""""""""""
3719
Sean Silvaa1190322015-08-06 22:56:48 +00003720``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003721refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003722types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003723represents a function with no return value (such as ``void foo() {}`` in C++).
3724
3725.. code-block:: llvm
3726
3727 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3728 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003729 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003730
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003731.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003732
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003733DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003734"""""""""""""
3735
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003736``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003737qualified types.
3738
3739.. code-block:: llvm
3740
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003741 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003742 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003743 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003744 align: 32)
3745
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003746The following ``tag:`` values are valid:
3747
3748.. code-block:: llvm
3749
3750 DW_TAG_formal_parameter = 5
3751 DW_TAG_member = 13
3752 DW_TAG_pointer_type = 15
3753 DW_TAG_reference_type = 16
3754 DW_TAG_typedef = 22
3755 DW_TAG_ptr_to_member_type = 31
3756 DW_TAG_const_type = 38
3757 DW_TAG_volatile_type = 53
3758 DW_TAG_restrict_type = 55
3759
3760``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003761<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3762is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003763``DW_TAG_formal_parameter`` is used to define a member which is a formal
3764argument of a subprogram.
3765
3766``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3767
3768``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3769``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3770``baseType:``.
3771
3772Note that the ``void *`` type is expressed as a type derived from NULL.
3773
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003774.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003775
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003776DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003777"""""""""""""""
3778
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003779``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003780structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003781
3782If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003783identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003784can refer to composite types indirectly via a :ref:`metadata string
3785<metadata-string>` that matches their identifier.
3786
3787.. code-block:: llvm
3788
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003789 !0 = !DIEnumerator(name: "SixKind", value: 7)
3790 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3791 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3792 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003793 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3794 elements: !{!0, !1, !2})
3795
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003796The following ``tag:`` values are valid:
3797
3798.. code-block:: llvm
3799
3800 DW_TAG_array_type = 1
3801 DW_TAG_class_type = 2
3802 DW_TAG_enumeration_type = 4
3803 DW_TAG_structure_type = 19
3804 DW_TAG_union_type = 23
3805 DW_TAG_subroutine_type = 21
3806 DW_TAG_inheritance = 28
3807
3808
3809For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003810descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003811level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003812array type is a native packed vector.
3813
3814For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003816value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003817``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003818
3819For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3820``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003821<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003822
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003823.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003824
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003825DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003826""""""""""
3827
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003828``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003829:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003830
3831.. code-block:: llvm
3832
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003833 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3834 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3835 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003836
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003838
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003839DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003840""""""""""""
3841
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003842``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3843variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003844
3845.. code-block:: llvm
3846
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003847 !0 = !DIEnumerator(name: "SixKind", value: 7)
3848 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3849 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003850
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003851DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003852"""""""""""""""""""""""
3853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003855language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003856:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003857
3858.. code-block:: llvm
3859
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003862DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003863""""""""""""""""""""""""
3864
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003865``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003866language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003867but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003868``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003869:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003870
3871.. code-block:: llvm
3872
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003873 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003874
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003875DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876"""""""""""
3877
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003878``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003879
3880.. code-block:: llvm
3881
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003882 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003885""""""""""""""""
3886
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003887``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003888
3889.. code-block:: llvm
3890
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003891 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892 file: !2, line: 7, type: !3, isLocal: true,
3893 isDefinition: false, variable: i32* @foo,
3894 declaration: !4)
3895
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003896All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003897:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003898
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003899.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003900
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003902""""""""""""
3903
Sean Silvaa1190322015-08-06 22:56:48 +00003904``DISubprogram`` nodes represent functions from the source language. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003905``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Sean Silvaa1190322015-08-06 22:56:48 +00003906retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003907``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003908
3909.. code-block:: llvm
3910
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003911 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003912 file: !2, line: 7, type: !3, isLocal: true,
3913 isDefinition: false, scopeLine: 8, containingType: !4,
3914 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3915 flags: DIFlagPrototyped, isOptimized: true,
3916 function: void ()* @_Z3foov,
3917 templateParams: !5, declaration: !6, variables: !7)
3918
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003919.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003920
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003921DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003922""""""""""""""
3923
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003924``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00003925<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00003926two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003927fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928
3929.. code-block:: llvm
3930
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003931 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003932
3933Usually lexical blocks are ``distinct`` to prevent node merging based on
3934operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003938DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939""""""""""""""""""
3940
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003941``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003942:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003943indicate textual inclusion, or the ``discriminator:`` field can be used to
3944discriminate between control flow within a single block in the source language.
3945
3946.. code-block:: llvm
3947
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003948 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3949 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3950 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003951
Michael Kuperstein605308a2015-05-14 10:58:59 +00003952.. _DILocation:
3953
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003954DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003955""""""""""
3956
Sean Silvaa1190322015-08-06 22:56:48 +00003957``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958mandatory, and points at an :ref:`DILexicalBlockFile`, an
3959:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003960
3961.. code-block:: llvm
3962
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003963 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003967DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003968"""""""""""""""
3969
Sean Silvaa1190322015-08-06 22:56:48 +00003970``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003971the ``arg:`` field is set to non-zero, then this variable is a subprogram
3972parameter, and it will be included in the ``variables:`` field of its
3973:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003974
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003975.. code-block:: llvm
3976
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003977 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
3978 type: !3, flags: DIFlagArtificial)
3979 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
3980 type: !3)
3981 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984""""""""""""
3985
Sean Silvaa1190322015-08-06 22:56:48 +00003986``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003987:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3988describe how the referenced LLVM variable relates to the source language
3989variable.
3990
3991The current supported vocabulary is limited:
3992
3993- ``DW_OP_deref`` dereferences the working expression.
3994- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3995- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3996 here, respectively) of the variable piece from the working expression.
3997
3998.. code-block:: llvm
3999
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004000 !0 = !DIExpression(DW_OP_deref)
4001 !1 = !DIExpression(DW_OP_plus, 3)
4002 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4003 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004004
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004005DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004006""""""""""""""
4007
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009
4010.. code-block:: llvm
4011
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013 getter: "getFoo", attributes: 7, type: !2)
4014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004016""""""""""""""""
4017
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004018``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019compile unit.
4020
4021.. code-block:: llvm
4022
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004023 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004024 entity: !1, line: 7)
4025
Sean Silvab084af42012-12-07 10:36:55 +00004026'``tbaa``' Metadata
4027^^^^^^^^^^^^^^^^^^^
4028
4029In LLVM IR, memory does not have types, so LLVM's own type system is not
4030suitable for doing TBAA. Instead, metadata is added to the IR to
4031describe a type system of a higher level language. This can be used to
4032implement typical C/C++ TBAA, but it can also be used to implement
4033custom alias analysis behavior for other languages.
4034
4035The current metadata format is very simple. TBAA metadata nodes have up
4036to three fields, e.g.:
4037
4038.. code-block:: llvm
4039
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004040 !0 = !{ !"an example type tree" }
4041 !1 = !{ !"int", !0 }
4042 !2 = !{ !"float", !0 }
4043 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004044
4045The first field is an identity field. It can be any value, usually a
4046metadata string, which uniquely identifies the type. The most important
4047name in the tree is the name of the root node. Two trees with different
4048root node names are entirely disjoint, even if they have leaves with
4049common names.
4050
4051The second field identifies the type's parent node in the tree, or is
4052null or omitted for a root node. A type is considered to alias all of
4053its descendants and all of its ancestors in the tree. Also, a type is
4054considered to alias all types in other trees, so that bitcode produced
4055from multiple front-ends is handled conservatively.
4056
4057If the third field is present, it's an integer which if equal to 1
4058indicates that the type is "constant" (meaning
4059``pointsToConstantMemory`` should return true; see `other useful
4060AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4061
4062'``tbaa.struct``' Metadata
4063^^^^^^^^^^^^^^^^^^^^^^^^^^
4064
4065The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4066aggregate assignment operations in C and similar languages, however it
4067is defined to copy a contiguous region of memory, which is more than
4068strictly necessary for aggregate types which contain holes due to
4069padding. Also, it doesn't contain any TBAA information about the fields
4070of the aggregate.
4071
4072``!tbaa.struct`` metadata can describe which memory subregions in a
4073memcpy are padding and what the TBAA tags of the struct are.
4074
4075The current metadata format is very simple. ``!tbaa.struct`` metadata
4076nodes are a list of operands which are in conceptual groups of three.
4077For each group of three, the first operand gives the byte offset of a
4078field in bytes, the second gives its size in bytes, and the third gives
4079its tbaa tag. e.g.:
4080
4081.. code-block:: llvm
4082
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004083 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004084
4085This describes a struct with two fields. The first is at offset 0 bytes
4086with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4087and has size 4 bytes and has tbaa tag !2.
4088
4089Note that the fields need not be contiguous. In this example, there is a
40904 byte gap between the two fields. This gap represents padding which
4091does not carry useful data and need not be preserved.
4092
Hal Finkel94146652014-07-24 14:25:39 +00004093'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004095
4096``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4097noalias memory-access sets. This means that some collection of memory access
4098instructions (loads, stores, memory-accessing calls, etc.) that carry
4099``noalias`` metadata can specifically be specified not to alias with some other
4100collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004101Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004102a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004103of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004104subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004105instruction's ``noalias`` list, then the two memory accesses are assumed not to
4106alias.
Hal Finkel94146652014-07-24 14:25:39 +00004107
Hal Finkel029cde62014-07-25 15:50:02 +00004108The metadata identifying each domain is itself a list containing one or two
4109entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004110string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004111self-reference can be used to create globally unique domain names. A
4112descriptive string may optionally be provided as a second list entry.
4113
4114The metadata identifying each scope is also itself a list containing two or
4115three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004116is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004117self-reference can be used to create globally unique scope names. A metadata
4118reference to the scope's domain is the second entry. A descriptive string may
4119optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004120
4121For example,
4122
4123.. code-block:: llvm
4124
Hal Finkel029cde62014-07-25 15:50:02 +00004125 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004126 !0 = !{!0}
4127 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004128
Hal Finkel029cde62014-07-25 15:50:02 +00004129 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004130 !2 = !{!2, !0}
4131 !3 = !{!3, !0}
4132 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004133
Hal Finkel029cde62014-07-25 15:50:02 +00004134 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004135 !5 = !{!4} ; A list containing only scope !4
4136 !6 = !{!4, !3, !2}
4137 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004138
4139 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004140 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004141 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004142
Hal Finkel029cde62014-07-25 15:50:02 +00004143 ; These two instructions also don't alias (for domain !1, the set of scopes
4144 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004145 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004146 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004147
Adam Nemet0a8416f2015-05-11 08:30:28 +00004148 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004149 ; the !noalias list is not a superset of, or equal to, the scopes in the
4150 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004151 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004152 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004153
Sean Silvab084af42012-12-07 10:36:55 +00004154'``fpmath``' Metadata
4155^^^^^^^^^^^^^^^^^^^^^
4156
4157``fpmath`` metadata may be attached to any instruction of floating point
4158type. It can be used to express the maximum acceptable error in the
4159result of that instruction, in ULPs, thus potentially allowing the
4160compiler to use a more efficient but less accurate method of computing
4161it. ULP is defined as follows:
4162
4163 If ``x`` is a real number that lies between two finite consecutive
4164 floating-point numbers ``a`` and ``b``, without being equal to one
4165 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4166 distance between the two non-equal finite floating-point numbers
4167 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4168
4169The metadata node shall consist of a single positive floating point
4170number representing the maximum relative error, for example:
4171
4172.. code-block:: llvm
4173
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004174 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004175
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004176.. _range-metadata:
4177
Sean Silvab084af42012-12-07 10:36:55 +00004178'``range``' Metadata
4179^^^^^^^^^^^^^^^^^^^^
4180
Jingyue Wu37fcb592014-06-19 16:50:16 +00004181``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4182integer types. It expresses the possible ranges the loaded value or the value
4183returned by the called function at this call site is in. The ranges are
4184represented with a flattened list of integers. The loaded value or the value
4185returned is known to be in the union of the ranges defined by each consecutive
4186pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004187
4188- The type must match the type loaded by the instruction.
4189- The pair ``a,b`` represents the range ``[a,b)``.
4190- Both ``a`` and ``b`` are constants.
4191- The range is allowed to wrap.
4192- The range should not represent the full or empty set. That is,
4193 ``a!=b``.
4194
4195In addition, the pairs must be in signed order of the lower bound and
4196they must be non-contiguous.
4197
4198Examples:
4199
4200.. code-block:: llvm
4201
David Blaikiec7aabbb2015-03-04 22:06:14 +00004202 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4203 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004204 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4205 %d = invoke i8 @bar() to label %cont
4206 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004207 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004208 !0 = !{ i8 0, i8 2 }
4209 !1 = !{ i8 255, i8 2 }
4210 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4211 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004212
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004213'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004214^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004215
4216``unpredictable`` metadata may be attached to any branch or switch
4217instruction. It can be used to express the unpredictability of control
4218flow. Similar to the llvm.expect intrinsic, it may be used to alter
4219optimizations related to compare and branch instructions. The metadata
4220is treated as a boolean value; if it exists, it signals that the branch
4221or switch that it is attached to is completely unpredictable.
4222
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004223'``llvm.loop``'
4224^^^^^^^^^^^^^^^
4225
4226It is sometimes useful to attach information to loop constructs. Currently,
4227loop metadata is implemented as metadata attached to the branch instruction
4228in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004229guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004230specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004231
4232The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004233itself to avoid merging it with any other identifier metadata, e.g.,
4234during module linkage or function inlining. That is, each loop should refer
4235to their own identification metadata even if they reside in separate functions.
4236The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004237constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004238
4239.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004240
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004241 !0 = !{!0}
4242 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004243
Mark Heffernan893752a2014-07-18 19:24:51 +00004244The loop identifier metadata can be used to specify additional
4245per-loop metadata. Any operands after the first operand can be treated
4246as user-defined metadata. For example the ``llvm.loop.unroll.count``
4247suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004248
Paul Redmond5fdf8362013-05-28 20:00:34 +00004249.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004250
Paul Redmond5fdf8362013-05-28 20:00:34 +00004251 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4252 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004253 !0 = !{!0, !1}
4254 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004255
Mark Heffernan9d20e422014-07-21 23:11:03 +00004256'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004258
Mark Heffernan9d20e422014-07-21 23:11:03 +00004259Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4260used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004261vectorization width and interleave count. These metadata should be used in
4262conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004263``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4264optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004265it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004266which contains information about loop-carried memory dependencies can be helpful
4267in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004268
Mark Heffernan9d20e422014-07-21 23:11:03 +00004269'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4271
Mark Heffernan9d20e422014-07-21 23:11:03 +00004272This metadata suggests an interleave count to the loop interleaver.
4273The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004274second operand is an integer specifying the interleave count. For
4275example:
4276
4277.. code-block:: llvm
4278
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004279 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004280
Mark Heffernan9d20e422014-07-21 23:11:03 +00004281Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004282multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004283then the interleave count will be determined automatically.
4284
4285'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004287
4288This metadata selectively enables or disables vectorization for the loop. The
4289first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004290is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000042910 disables vectorization:
4292
4293.. code-block:: llvm
4294
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004295 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4296 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004297
4298'``llvm.loop.vectorize.width``' Metadata
4299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4300
4301This metadata sets the target width of the vectorizer. The first
4302operand is the string ``llvm.loop.vectorize.width`` and the second
4303operand is an integer specifying the width. For example:
4304
4305.. code-block:: llvm
4306
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004307 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004308
4309Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004310vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000043110 or if the loop does not have this metadata the width will be
4312determined automatically.
4313
4314'``llvm.loop.unroll``'
4315^^^^^^^^^^^^^^^^^^^^^^
4316
4317Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4318optimization hints such as the unroll factor. ``llvm.loop.unroll``
4319metadata should be used in conjunction with ``llvm.loop`` loop
4320identification metadata. The ``llvm.loop.unroll`` metadata are only
4321optimization hints and the unrolling will only be performed if the
4322optimizer believes it is safe to do so.
4323
Mark Heffernan893752a2014-07-18 19:24:51 +00004324'``llvm.loop.unroll.count``' Metadata
4325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4326
4327This metadata suggests an unroll factor to the loop unroller. The
4328first operand is the string ``llvm.loop.unroll.count`` and the second
4329operand is a positive integer specifying the unroll factor. For
4330example:
4331
4332.. code-block:: llvm
4333
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004334 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004335
4336If the trip count of the loop is less than the unroll count the loop
4337will be partially unrolled.
4338
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004339'``llvm.loop.unroll.disable``' Metadata
4340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4341
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004342This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004343which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004344
4345.. code-block:: llvm
4346
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004347 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004348
Kevin Qin715b01e2015-03-09 06:14:18 +00004349'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004351
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004352This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004353operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004354
4355.. code-block:: llvm
4356
4357 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4358
Mark Heffernan89391542015-08-10 17:28:08 +00004359'``llvm.loop.unroll.enable``' Metadata
4360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4361
4362This metadata suggests that the loop should be fully unrolled if the trip count
4363is known at compile time and partially unrolled if the trip count is not known
4364at compile time. The metadata has a single operand which is the string
4365``llvm.loop.unroll.enable``. For example:
4366
4367.. code-block:: llvm
4368
4369 !0 = !{!"llvm.loop.unroll.enable"}
4370
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004371'``llvm.loop.unroll.full``' Metadata
4372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4373
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004374This metadata suggests that the loop should be unrolled fully. The
4375metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004376For example:
4377
4378.. code-block:: llvm
4379
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004380 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004381
4382'``llvm.mem``'
4383^^^^^^^^^^^^^^^
4384
4385Metadata types used to annotate memory accesses with information helpful
4386for optimizations are prefixed with ``llvm.mem``.
4387
4388'``llvm.mem.parallel_loop_access``' Metadata
4389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4390
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004391The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4392or metadata containing a list of loop identifiers for nested loops.
4393The metadata is attached to memory accessing instructions and denotes that
4394no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004395with the same loop identifier.
4396
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004397Precisely, given two instructions ``m1`` and ``m2`` that both have the
4398``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4399set of loops associated with that metadata, respectively, then there is no loop
4400carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004401``L2``.
4402
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004403As a special case, if all memory accessing instructions in a loop have
4404``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4405loop has no loop carried memory dependences and is considered to be a parallel
4406loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004407
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004408Note that if not all memory access instructions have such metadata referring to
4409the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004410memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004411safe mechanism, this causes loops that were originally parallel to be considered
4412sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004413insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004414
4415Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004416both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004417metadata types that refer to the same loop identifier metadata.
4418
4419.. code-block:: llvm
4420
4421 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004422 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004423 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004424 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004425 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004426 ...
4427 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004428
4429 for.end:
4430 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004431 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004432
4433It is also possible to have nested parallel loops. In that case the
4434memory accesses refer to a list of loop identifier metadata nodes instead of
4435the loop identifier metadata node directly:
4436
4437.. code-block:: llvm
4438
4439 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004440 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004441 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004442 ...
4443 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004444
4445 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004446 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004447 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004448 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004449 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004450 ...
4451 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004452
4453 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004454 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004455 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004456 ...
4457 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004458
4459 outer.for.end: ; preds = %for.body
4460 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004461 !0 = !{!1, !2} ; a list of loop identifiers
4462 !1 = !{!1} ; an identifier for the inner loop
4463 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004464
Peter Collingbournee6909c82015-02-20 20:30:47 +00004465'``llvm.bitsets``'
4466^^^^^^^^^^^^^^^^^^
4467
4468The ``llvm.bitsets`` global metadata is used to implement
4469:doc:`bitsets <BitSets>`.
4470
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004471'``invariant.group``' Metadata
4472^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4473
4474The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4475The existence of the ``invariant.group`` metadata on the instruction tells
4476the optimizer that every ``load`` and ``store`` to the same pointer operand
4477within the same invariant group can be assumed to load or store the same
4478value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4479when two pointers are considered the same).
4480
4481Examples:
4482
4483.. code-block:: llvm
4484
4485 @unknownPtr = external global i8
4486 ...
4487 %ptr = alloca i8
4488 store i8 42, i8* %ptr, !invariant.group !0
4489 call void @foo(i8* %ptr)
4490
4491 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4492 call void @foo(i8* %ptr)
4493 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4494
4495 %newPtr = call i8* @getPointer(i8* %ptr)
4496 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4497
4498 %unknownValue = load i8, i8* @unknownPtr
4499 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4500
4501 call void @foo(i8* %ptr)
4502 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4503 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4504
4505 ...
4506 declare void @foo(i8*)
4507 declare i8* @getPointer(i8*)
4508 declare i8* @llvm.invariant.group.barrier(i8*)
4509
4510 !0 = !{!"magic ptr"}
4511 !1 = !{!"other ptr"}
4512
4513
4514
Sean Silvab084af42012-12-07 10:36:55 +00004515Module Flags Metadata
4516=====================
4517
4518Information about the module as a whole is difficult to convey to LLVM's
4519subsystems. The LLVM IR isn't sufficient to transmit this information.
4520The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004521this. These flags are in the form of key / value pairs --- much like a
4522dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004523look it up.
4524
4525The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4526Each triplet has the following form:
4527
4528- The first element is a *behavior* flag, which specifies the behavior
4529 when two (or more) modules are merged together, and it encounters two
4530 (or more) metadata with the same ID. The supported behaviors are
4531 described below.
4532- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004533 metadata. Each module may only have one flag entry for each unique ID (not
4534 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004535- The third element is the value of the flag.
4536
4537When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004538``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4539each unique metadata ID string, there will be exactly one entry in the merged
4540modules ``llvm.module.flags`` metadata table, and the value for that entry will
4541be determined by the merge behavior flag, as described below. The only exception
4542is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004543
4544The following behaviors are supported:
4545
4546.. list-table::
4547 :header-rows: 1
4548 :widths: 10 90
4549
4550 * - Value
4551 - Behavior
4552
4553 * - 1
4554 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004555 Emits an error if two values disagree, otherwise the resulting value
4556 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004557
4558 * - 2
4559 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004560 Emits a warning if two values disagree. The result value will be the
4561 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004562
4563 * - 3
4564 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004565 Adds a requirement that another module flag be present and have a
4566 specified value after linking is performed. The value must be a
4567 metadata pair, where the first element of the pair is the ID of the
4568 module flag to be restricted, and the second element of the pair is
4569 the value the module flag should be restricted to. This behavior can
4570 be used to restrict the allowable results (via triggering of an
4571 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004572
4573 * - 4
4574 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004575 Uses the specified value, regardless of the behavior or value of the
4576 other module. If both modules specify **Override**, but the values
4577 differ, an error will be emitted.
4578
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004579 * - 5
4580 - **Append**
4581 Appends the two values, which are required to be metadata nodes.
4582
4583 * - 6
4584 - **AppendUnique**
4585 Appends the two values, which are required to be metadata
4586 nodes. However, duplicate entries in the second list are dropped
4587 during the append operation.
4588
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004589It is an error for a particular unique flag ID to have multiple behaviors,
4590except in the case of **Require** (which adds restrictions on another metadata
4591value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004592
4593An example of module flags:
4594
4595.. code-block:: llvm
4596
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004597 !0 = !{ i32 1, !"foo", i32 1 }
4598 !1 = !{ i32 4, !"bar", i32 37 }
4599 !2 = !{ i32 2, !"qux", i32 42 }
4600 !3 = !{ i32 3, !"qux",
4601 !{
4602 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004603 }
4604 }
4605 !llvm.module.flags = !{ !0, !1, !2, !3 }
4606
4607- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4608 if two or more ``!"foo"`` flags are seen is to emit an error if their
4609 values are not equal.
4610
4611- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4612 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004613 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004614
4615- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4616 behavior if two or more ``!"qux"`` flags are seen is to emit a
4617 warning if their values are not equal.
4618
4619- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4620
4621 ::
4622
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004623 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004624
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004625 The behavior is to emit an error if the ``llvm.module.flags`` does not
4626 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4627 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004628
4629Objective-C Garbage Collection Module Flags Metadata
4630----------------------------------------------------
4631
4632On the Mach-O platform, Objective-C stores metadata about garbage
4633collection in a special section called "image info". The metadata
4634consists of a version number and a bitmask specifying what types of
4635garbage collection are supported (if any) by the file. If two or more
4636modules are linked together their garbage collection metadata needs to
4637be merged rather than appended together.
4638
4639The Objective-C garbage collection module flags metadata consists of the
4640following key-value pairs:
4641
4642.. list-table::
4643 :header-rows: 1
4644 :widths: 30 70
4645
4646 * - Key
4647 - Value
4648
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004649 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004650 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004651
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004652 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004653 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004654 always 0.
4655
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004656 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004657 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004658 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4659 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4660 Objective-C ABI version 2.
4661
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004662 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004663 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004664 not. Valid values are 0, for no garbage collection, and 2, for garbage
4665 collection supported.
4666
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004667 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004668 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004669 If present, its value must be 6. This flag requires that the
4670 ``Objective-C Garbage Collection`` flag have the value 2.
4671
4672Some important flag interactions:
4673
4674- If a module with ``Objective-C Garbage Collection`` set to 0 is
4675 merged with a module with ``Objective-C Garbage Collection`` set to
4676 2, then the resulting module has the
4677 ``Objective-C Garbage Collection`` flag set to 0.
4678- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4679 merged with a module with ``Objective-C GC Only`` set to 6.
4680
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004681Automatic Linker Flags Module Flags Metadata
4682--------------------------------------------
4683
4684Some targets support embedding flags to the linker inside individual object
4685files. Typically this is used in conjunction with language extensions which
4686allow source files to explicitly declare the libraries they depend on, and have
4687these automatically be transmitted to the linker via object files.
4688
4689These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004690using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004691to be ``AppendUnique``, and the value for the key is expected to be a metadata
4692node which should be a list of other metadata nodes, each of which should be a
4693list of metadata strings defining linker options.
4694
4695For example, the following metadata section specifies two separate sets of
4696linker options, presumably to link against ``libz`` and the ``Cocoa``
4697framework::
4698
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004699 !0 = !{ i32 6, !"Linker Options",
4700 !{
4701 !{ !"-lz" },
4702 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004703 !llvm.module.flags = !{ !0 }
4704
4705The metadata encoding as lists of lists of options, as opposed to a collapsed
4706list of options, is chosen so that the IR encoding can use multiple option
4707strings to specify e.g., a single library, while still having that specifier be
4708preserved as an atomic element that can be recognized by a target specific
4709assembly writer or object file emitter.
4710
4711Each individual option is required to be either a valid option for the target's
4712linker, or an option that is reserved by the target specific assembly writer or
4713object file emitter. No other aspect of these options is defined by the IR.
4714
Oliver Stannard5dc29342014-06-20 10:08:11 +00004715C type width Module Flags Metadata
4716----------------------------------
4717
4718The ARM backend emits a section into each generated object file describing the
4719options that it was compiled with (in a compiler-independent way) to prevent
4720linking incompatible objects, and to allow automatic library selection. Some
4721of these options are not visible at the IR level, namely wchar_t width and enum
4722width.
4723
4724To pass this information to the backend, these options are encoded in module
4725flags metadata, using the following key-value pairs:
4726
4727.. list-table::
4728 :header-rows: 1
4729 :widths: 30 70
4730
4731 * - Key
4732 - Value
4733
4734 * - short_wchar
4735 - * 0 --- sizeof(wchar_t) == 4
4736 * 1 --- sizeof(wchar_t) == 2
4737
4738 * - short_enum
4739 - * 0 --- Enums are at least as large as an ``int``.
4740 * 1 --- Enums are stored in the smallest integer type which can
4741 represent all of its values.
4742
4743For example, the following metadata section specifies that the module was
4744compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4745enum is the smallest type which can represent all of its values::
4746
4747 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004748 !0 = !{i32 1, !"short_wchar", i32 1}
4749 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004750
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004751.. _intrinsicglobalvariables:
4752
Sean Silvab084af42012-12-07 10:36:55 +00004753Intrinsic Global Variables
4754==========================
4755
4756LLVM has a number of "magic" global variables that contain data that
4757affect code generation or other IR semantics. These are documented here.
4758All globals of this sort should have a section specified as
4759"``llvm.metadata``". This section and all globals that start with
4760"``llvm.``" are reserved for use by LLVM.
4761
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004762.. _gv_llvmused:
4763
Sean Silvab084af42012-12-07 10:36:55 +00004764The '``llvm.used``' Global Variable
4765-----------------------------------
4766
Rafael Espindola74f2e462013-04-22 14:58:02 +00004767The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004768:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004769pointers to named global variables, functions and aliases which may optionally
4770have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004771use of it is:
4772
4773.. code-block:: llvm
4774
4775 @X = global i8 4
4776 @Y = global i32 123
4777
4778 @llvm.used = appending global [2 x i8*] [
4779 i8* @X,
4780 i8* bitcast (i32* @Y to i8*)
4781 ], section "llvm.metadata"
4782
Rafael Espindola74f2e462013-04-22 14:58:02 +00004783If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4784and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004785symbol that it cannot see (which is why they have to be named). For example, if
4786a variable has internal linkage and no references other than that from the
4787``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4788references from inline asms and other things the compiler cannot "see", and
4789corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004790
4791On some targets, the code generator must emit a directive to the
4792assembler or object file to prevent the assembler and linker from
4793molesting the symbol.
4794
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004795.. _gv_llvmcompilerused:
4796
Sean Silvab084af42012-12-07 10:36:55 +00004797The '``llvm.compiler.used``' Global Variable
4798--------------------------------------------
4799
4800The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4801directive, except that it only prevents the compiler from touching the
4802symbol. On targets that support it, this allows an intelligent linker to
4803optimize references to the symbol without being impeded as it would be
4804by ``@llvm.used``.
4805
4806This is a rare construct that should only be used in rare circumstances,
4807and should not be exposed to source languages.
4808
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004809.. _gv_llvmglobalctors:
4810
Sean Silvab084af42012-12-07 10:36:55 +00004811The '``llvm.global_ctors``' Global Variable
4812-------------------------------------------
4813
4814.. code-block:: llvm
4815
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004816 %0 = type { i32, void ()*, i8* }
4817 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004818
4819The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004820functions, priorities, and an optional associated global or function.
4821The functions referenced by this array will be called in ascending order
4822of priority (i.e. lowest first) when the module is loaded. The order of
4823functions with the same priority is not defined.
4824
4825If the third field is present, non-null, and points to a global variable
4826or function, the initializer function will only run if the associated
4827data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004828
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004829.. _llvmglobaldtors:
4830
Sean Silvab084af42012-12-07 10:36:55 +00004831The '``llvm.global_dtors``' Global Variable
4832-------------------------------------------
4833
4834.. code-block:: llvm
4835
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004836 %0 = type { i32, void ()*, i8* }
4837 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004838
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004839The ``@llvm.global_dtors`` array contains a list of destructor
4840functions, priorities, and an optional associated global or function.
4841The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004842order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004843order of functions with the same priority is not defined.
4844
4845If the third field is present, non-null, and points to a global variable
4846or function, the destructor function will only run if the associated
4847data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004848
4849Instruction Reference
4850=====================
4851
4852The LLVM instruction set consists of several different classifications
4853of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4854instructions <binaryops>`, :ref:`bitwise binary
4855instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4856:ref:`other instructions <otherops>`.
4857
4858.. _terminators:
4859
4860Terminator Instructions
4861-----------------------
4862
4863As mentioned :ref:`previously <functionstructure>`, every basic block in a
4864program ends with a "Terminator" instruction, which indicates which
4865block should be executed after the current block is finished. These
4866terminator instructions typically yield a '``void``' value: they produce
4867control flow, not values (the one exception being the
4868':ref:`invoke <i_invoke>`' instruction).
4869
4870The terminator instructions are: ':ref:`ret <i_ret>`',
4871':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4872':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004873':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4874':ref:`catchendpad <i_catchendpad>`',
4875':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004876':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004877':ref:`cleanupret <i_cleanupret>`',
4878':ref:`terminatepad <i_terminatepad>`',
4879and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004880
4881.. _i_ret:
4882
4883'``ret``' Instruction
4884^^^^^^^^^^^^^^^^^^^^^
4885
4886Syntax:
4887"""""""
4888
4889::
4890
4891 ret <type> <value> ; Return a value from a non-void function
4892 ret void ; Return from void function
4893
4894Overview:
4895"""""""""
4896
4897The '``ret``' instruction is used to return control flow (and optionally
4898a value) from a function back to the caller.
4899
4900There are two forms of the '``ret``' instruction: one that returns a
4901value and then causes control flow, and one that just causes control
4902flow to occur.
4903
4904Arguments:
4905""""""""""
4906
4907The '``ret``' instruction optionally accepts a single argument, the
4908return value. The type of the return value must be a ':ref:`first
4909class <t_firstclass>`' type.
4910
4911A function is not :ref:`well formed <wellformed>` if it it has a non-void
4912return type and contains a '``ret``' instruction with no return value or
4913a return value with a type that does not match its type, or if it has a
4914void return type and contains a '``ret``' instruction with a return
4915value.
4916
4917Semantics:
4918""""""""""
4919
4920When the '``ret``' instruction is executed, control flow returns back to
4921the calling function's context. If the caller is a
4922":ref:`call <i_call>`" instruction, execution continues at the
4923instruction after the call. If the caller was an
4924":ref:`invoke <i_invoke>`" instruction, execution continues at the
4925beginning of the "normal" destination block. If the instruction returns
4926a value, that value shall set the call or invoke instruction's return
4927value.
4928
4929Example:
4930""""""""
4931
4932.. code-block:: llvm
4933
4934 ret i32 5 ; Return an integer value of 5
4935 ret void ; Return from a void function
4936 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4937
4938.. _i_br:
4939
4940'``br``' Instruction
4941^^^^^^^^^^^^^^^^^^^^
4942
4943Syntax:
4944"""""""
4945
4946::
4947
4948 br i1 <cond>, label <iftrue>, label <iffalse>
4949 br label <dest> ; Unconditional branch
4950
4951Overview:
4952"""""""""
4953
4954The '``br``' instruction is used to cause control flow to transfer to a
4955different basic block in the current function. There are two forms of
4956this instruction, corresponding to a conditional branch and an
4957unconditional branch.
4958
4959Arguments:
4960""""""""""
4961
4962The conditional branch form of the '``br``' instruction takes a single
4963'``i1``' value and two '``label``' values. The unconditional form of the
4964'``br``' instruction takes a single '``label``' value as a target.
4965
4966Semantics:
4967""""""""""
4968
4969Upon execution of a conditional '``br``' instruction, the '``i1``'
4970argument is evaluated. If the value is ``true``, control flows to the
4971'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4972to the '``iffalse``' ``label`` argument.
4973
4974Example:
4975""""""""
4976
4977.. code-block:: llvm
4978
4979 Test:
4980 %cond = icmp eq i32 %a, %b
4981 br i1 %cond, label %IfEqual, label %IfUnequal
4982 IfEqual:
4983 ret i32 1
4984 IfUnequal:
4985 ret i32 0
4986
4987.. _i_switch:
4988
4989'``switch``' Instruction
4990^^^^^^^^^^^^^^^^^^^^^^^^
4991
4992Syntax:
4993"""""""
4994
4995::
4996
4997 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4998
4999Overview:
5000"""""""""
5001
5002The '``switch``' instruction is used to transfer control flow to one of
5003several different places. It is a generalization of the '``br``'
5004instruction, allowing a branch to occur to one of many possible
5005destinations.
5006
5007Arguments:
5008""""""""""
5009
5010The '``switch``' instruction uses three parameters: an integer
5011comparison value '``value``', a default '``label``' destination, and an
5012array of pairs of comparison value constants and '``label``'s. The table
5013is not allowed to contain duplicate constant entries.
5014
5015Semantics:
5016""""""""""
5017
5018The ``switch`` instruction specifies a table of values and destinations.
5019When the '``switch``' instruction is executed, this table is searched
5020for the given value. If the value is found, control flow is transferred
5021to the corresponding destination; otherwise, control flow is transferred
5022to the default destination.
5023
5024Implementation:
5025"""""""""""""""
5026
5027Depending on properties of the target machine and the particular
5028``switch`` instruction, this instruction may be code generated in
5029different ways. For example, it could be generated as a series of
5030chained conditional branches or with a lookup table.
5031
5032Example:
5033""""""""
5034
5035.. code-block:: llvm
5036
5037 ; Emulate a conditional br instruction
5038 %Val = zext i1 %value to i32
5039 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5040
5041 ; Emulate an unconditional br instruction
5042 switch i32 0, label %dest [ ]
5043
5044 ; Implement a jump table:
5045 switch i32 %val, label %otherwise [ i32 0, label %onzero
5046 i32 1, label %onone
5047 i32 2, label %ontwo ]
5048
5049.. _i_indirectbr:
5050
5051'``indirectbr``' Instruction
5052^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5053
5054Syntax:
5055"""""""
5056
5057::
5058
5059 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5060
5061Overview:
5062"""""""""
5063
5064The '``indirectbr``' instruction implements an indirect branch to a
5065label within the current function, whose address is specified by
5066"``address``". Address must be derived from a
5067:ref:`blockaddress <blockaddress>` constant.
5068
5069Arguments:
5070""""""""""
5071
5072The '``address``' argument is the address of the label to jump to. The
5073rest of the arguments indicate the full set of possible destinations
5074that the address may point to. Blocks are allowed to occur multiple
5075times in the destination list, though this isn't particularly useful.
5076
5077This destination list is required so that dataflow analysis has an
5078accurate understanding of the CFG.
5079
5080Semantics:
5081""""""""""
5082
5083Control transfers to the block specified in the address argument. All
5084possible destination blocks must be listed in the label list, otherwise
5085this instruction has undefined behavior. This implies that jumps to
5086labels defined in other functions have undefined behavior as well.
5087
5088Implementation:
5089"""""""""""""""
5090
5091This is typically implemented with a jump through a register.
5092
5093Example:
5094""""""""
5095
5096.. code-block:: llvm
5097
5098 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5099
5100.. _i_invoke:
5101
5102'``invoke``' Instruction
5103^^^^^^^^^^^^^^^^^^^^^^^^
5104
5105Syntax:
5106"""""""
5107
5108::
5109
5110 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005111 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005112
5113Overview:
5114"""""""""
5115
5116The '``invoke``' instruction causes control to transfer to a specified
5117function, with the possibility of control flow transfer to either the
5118'``normal``' label or the '``exception``' label. If the callee function
5119returns with the "``ret``" instruction, control flow will return to the
5120"normal" label. If the callee (or any indirect callees) returns via the
5121":ref:`resume <i_resume>`" instruction or other exception handling
5122mechanism, control is interrupted and continued at the dynamically
5123nearest "exception" label.
5124
5125The '``exception``' label is a `landing
5126pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5127'``exception``' label is required to have the
5128":ref:`landingpad <i_landingpad>`" instruction, which contains the
5129information about the behavior of the program after unwinding happens,
5130as its first non-PHI instruction. The restrictions on the
5131"``landingpad``" instruction's tightly couples it to the "``invoke``"
5132instruction, so that the important information contained within the
5133"``landingpad``" instruction can't be lost through normal code motion.
5134
5135Arguments:
5136""""""""""
5137
5138This instruction requires several arguments:
5139
5140#. The optional "cconv" marker indicates which :ref:`calling
5141 convention <callingconv>` the call should use. If none is
5142 specified, the call defaults to using C calling conventions.
5143#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5144 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5145 are valid here.
5146#. '``ptr to function ty``': shall be the signature of the pointer to
5147 function value being invoked. In most cases, this is a direct
5148 function invocation, but indirect ``invoke``'s are just as possible,
5149 branching off an arbitrary pointer to function value.
5150#. '``function ptr val``': An LLVM value containing a pointer to a
5151 function to be invoked.
5152#. '``function args``': argument list whose types match the function
5153 signature argument types and parameter attributes. All arguments must
5154 be of :ref:`first class <t_firstclass>` type. If the function signature
5155 indicates the function accepts a variable number of arguments, the
5156 extra arguments can be specified.
5157#. '``normal label``': the label reached when the called function
5158 executes a '``ret``' instruction.
5159#. '``exception label``': the label reached when a callee returns via
5160 the :ref:`resume <i_resume>` instruction or other exception handling
5161 mechanism.
5162#. The optional :ref:`function attributes <fnattrs>` list. Only
5163 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5164 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005165#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005166
5167Semantics:
5168""""""""""
5169
5170This instruction is designed to operate as a standard '``call``'
5171instruction in most regards. The primary difference is that it
5172establishes an association with a label, which is used by the runtime
5173library to unwind the stack.
5174
5175This instruction is used in languages with destructors to ensure that
5176proper cleanup is performed in the case of either a ``longjmp`` or a
5177thrown exception. Additionally, this is important for implementation of
5178'``catch``' clauses in high-level languages that support them.
5179
5180For the purposes of the SSA form, the definition of the value returned
5181by the '``invoke``' instruction is deemed to occur on the edge from the
5182current block to the "normal" label. If the callee unwinds then no
5183return value is available.
5184
5185Example:
5186""""""""
5187
5188.. code-block:: llvm
5189
5190 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005191 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005192 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005193 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005194
5195.. _i_resume:
5196
5197'``resume``' Instruction
5198^^^^^^^^^^^^^^^^^^^^^^^^
5199
5200Syntax:
5201"""""""
5202
5203::
5204
5205 resume <type> <value>
5206
5207Overview:
5208"""""""""
5209
5210The '``resume``' instruction is a terminator instruction that has no
5211successors.
5212
5213Arguments:
5214""""""""""
5215
5216The '``resume``' instruction requires one argument, which must have the
5217same type as the result of any '``landingpad``' instruction in the same
5218function.
5219
5220Semantics:
5221""""""""""
5222
5223The '``resume``' instruction resumes propagation of an existing
5224(in-flight) exception whose unwinding was interrupted with a
5225:ref:`landingpad <i_landingpad>` instruction.
5226
5227Example:
5228""""""""
5229
5230.. code-block:: llvm
5231
5232 resume { i8*, i32 } %exn
5233
David Majnemer654e1302015-07-31 17:58:14 +00005234.. _i_catchpad:
5235
5236'``catchpad``' Instruction
5237^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5238
5239Syntax:
5240"""""""
5241
5242::
5243
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005244 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005245 to label <normal label> unwind label <exception label>
5246
5247Overview:
5248"""""""""
5249
5250The '``catchpad``' instruction is used by `LLVM's exception handling
5251system <ExceptionHandling.html#overview>`_ to specify that a basic block
5252is a catch block --- one where a personality routine attempts to transfer
5253control to catch an exception.
5254The ``args`` correspond to whatever information the personality
5255routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005256exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005257``catchpad`` is not an appropriate handler for the in-flight exception.
5258The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005259portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5260:ref:`token <t_token>` and is used to match the ``catchpad`` to
5261corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005262
5263Arguments:
5264""""""""""
5265
5266The instruction takes a list of arbitrary values which are interpreted
5267by the :ref:`personality function <personalityfn>`.
5268
5269The ``catchpad`` must be provided a ``normal`` label to transfer control
5270to if the ``catchpad`` matches the exception and an ``exception``
5271label to transfer control to if it doesn't.
5272
5273Semantics:
5274""""""""""
5275
David Majnemer654e1302015-07-31 17:58:14 +00005276When the call stack is being unwound due to an exception being thrown,
5277the exception is compared against the ``args``. If it doesn't match,
5278then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005279As with calling conventions, how the personality function results are
5280represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005281
5282The ``catchpad`` instruction has several restrictions:
5283
5284- A catch block is a basic block which is the unwind destination of
5285 an exceptional instruction.
5286- A catch block must have a '``catchpad``' instruction as its
5287 first non-PHI instruction.
5288- A catch block's ``exception`` edge must refer to a catch block or a
5289 catch-end block.
5290- There can be only one '``catchpad``' instruction within the
5291 catch block.
5292- A basic block that is not a catch block may not include a
5293 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005294- A catch block which has another catch block as a predecessor may not have
5295 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005296- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005297 ``ret`` without first executing a ``catchret`` that consumes the
5298 ``catchpad`` or unwinding through its ``catchendpad``.
5299- It is undefined behavior for control to transfer from a ``catchpad`` to
5300 itself without first executing a ``catchret`` that consumes the
5301 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005302
5303Example:
5304""""""""
5305
5306.. code-block:: llvm
5307
5308 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005309 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005310 to label %int.handler unwind label %terminate
5311
5312.. _i_catchendpad:
5313
5314'``catchendpad``' Instruction
5315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5316
5317Syntax:
5318"""""""
5319
5320::
5321
5322 catchendpad unwind label <nextaction>
5323 catchendpad unwind to caller
5324
5325Overview:
5326"""""""""
5327
5328The '``catchendpad``' instruction is used by `LLVM's exception handling
5329system <ExceptionHandling.html#overview>`_ to communicate to the
5330:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005331with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5332exception out of a catch handler is represented by unwinding through its
5333``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5334do not handle an exception is also represented by unwinding through their
5335``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005336
5337The ``nextaction`` label indicates where control should transfer to if
5338none of the ``catchpad`` instructions are suitable for catching the
5339in-flight exception.
5340
5341If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005342its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005343:ref:`personality function <personalityfn>` will continue processing
5344exception handling actions in the caller.
5345
5346Arguments:
5347""""""""""
5348
5349The instruction optionally takes a label, ``nextaction``, indicating
5350where control should transfer to if none of the preceding
5351``catchpad`` instructions are suitable for the in-flight exception.
5352
5353Semantics:
5354""""""""""
5355
5356When the call stack is being unwound due to an exception being thrown
5357and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005358control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005359present, control is transfered to the caller.
5360
5361The ``catchendpad`` instruction has several restrictions:
5362
5363- A catch-end block is a basic block which is the unwind destination of
5364 an exceptional instruction.
5365- A catch-end block must have a '``catchendpad``' instruction as its
5366 first non-PHI instruction.
5367- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005368 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005369- A basic block that is not a catch-end block may not include a
5370 '``catchendpad``' instruction.
5371- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005372- It is undefined behavior to execute a ``catchendpad`` if none of the
5373 '``catchpad``'s chained to it have been executed.
5374- It is undefined behavior to execute a ``catchendpad`` twice without an
5375 intervening execution of one or more of the '``catchpad``'s chained to it.
5376- It is undefined behavior to execute a ``catchendpad`` if, after the most
5377 recent execution of the normal successor edge of any ``catchpad`` chained
5378 to it, some ``catchret`` consuming that ``catchpad`` has already been
5379 executed.
5380- It is undefined behavior to execute a ``catchendpad`` if, after the most
5381 recent execution of the normal successor edge of any ``catchpad`` chained
5382 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5383 not had a corresponding
5384 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005385
5386Example:
5387""""""""
5388
5389.. code-block:: llvm
5390
5391 catchendpad unwind label %terminate
5392 catchendpad unwind to caller
5393
5394.. _i_catchret:
5395
5396'``catchret``' Instruction
5397^^^^^^^^^^^^^^^^^^^^^^^^^^
5398
5399Syntax:
5400"""""""
5401
5402::
5403
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005404 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005405
5406Overview:
5407"""""""""
5408
5409The '``catchret``' instruction is a terminator instruction that has a
5410single successor.
5411
5412
5413Arguments:
5414""""""""""
5415
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005416The first argument to a '``catchret``' indicates which ``catchpad`` it
5417exits. It must be a :ref:`catchpad <i_catchpad>`.
5418The second argument to a '``catchret``' specifies where control will
5419transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005420
5421Semantics:
5422""""""""""
5423
5424The '``catchret``' instruction ends the existing (in-flight) exception
5425whose unwinding was interrupted with a
5426:ref:`catchpad <i_catchpad>` instruction.
5427The :ref:`personality function <personalityfn>` gets a chance to execute
5428arbitrary code to, for example, run a C++ destructor.
5429Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005430It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005431
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005432It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5433not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005434
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005435It is undefined behavior to execute a ``catchret`` if, after the most recent
5436execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5437to the same ``catchpad`` has already been executed.
5438
5439It is undefined behavior to execute a ``catchret`` if, after the most recent
5440execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5441been executed but has not had a corresponding
5442``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005443
5444Example:
5445""""""""
5446
5447.. code-block:: llvm
5448
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005449 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005450
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005451.. _i_cleanupendpad:
5452
5453'``cleanupendpad``' Instruction
5454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5455
5456Syntax:
5457"""""""
5458
5459::
5460
5461 cleanupendpad <value> unwind label <nextaction>
5462 cleanupendpad <value> unwind to caller
5463
5464Overview:
5465"""""""""
5466
5467The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5468system <ExceptionHandling.html#overview>`_ to communicate to the
5469:ref:`personality function <personalityfn>` which invokes are associated
5470with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5471out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5472
5473The ``nextaction`` label indicates where control should unwind to next, in the
5474event that a cleanup is exited by means of an(other) exception being raised.
5475
5476If a ``nextaction`` label is not present, the instruction unwinds out of
5477its parent function. The
5478:ref:`personality function <personalityfn>` will continue processing
5479exception handling actions in the caller.
5480
5481Arguments:
5482""""""""""
5483
5484The '``cleanupendpad``' instruction requires one argument, which indicates
5485which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5486It also has an optional successor, ``nextaction``, indicating where control
5487should transfer to.
5488
5489Semantics:
5490""""""""""
5491
5492When and exception propagates to a ``cleanupendpad``, control is transfered to
5493``nextaction`` if it is present. If it is not present, control is transfered to
5494the caller.
5495
5496The ``cleanupendpad`` instruction has several restrictions:
5497
5498- A cleanup-end block is a basic block which is the unwind destination of
5499 an exceptional instruction.
5500- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5501 first non-PHI instruction.
5502- There can be only one '``cleanupendpad``' instruction within the
5503 cleanup-end block.
5504- A basic block that is not a cleanup-end block may not include a
5505 '``cleanupendpad``' instruction.
5506- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5507 has not been executed.
5508- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5509 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5510 consuming the same ``cleanuppad`` has already been executed.
5511- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5512 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5513 ``catchpad`` has been executed but has not had a corresponding
5514 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5515
5516Example:
5517""""""""
5518
5519.. code-block:: llvm
5520
5521 cleanupendpad %cleanup unwind label %terminate
5522 cleanupendpad %cleanup unwind to caller
5523
David Majnemer654e1302015-07-31 17:58:14 +00005524.. _i_cleanupret:
5525
5526'``cleanupret``' Instruction
5527^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5528
5529Syntax:
5530"""""""
5531
5532::
5533
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005534 cleanupret <value> unwind label <continue>
5535 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005536
5537Overview:
5538"""""""""
5539
5540The '``cleanupret``' instruction is a terminator instruction that has
5541an optional successor.
5542
5543
5544Arguments:
5545""""""""""
5546
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005547The '``cleanupret``' instruction requires one argument, which indicates
5548which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5549It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005550
5551Semantics:
5552""""""""""
5553
5554The '``cleanupret``' instruction indicates to the
5555:ref:`personality function <personalityfn>` that one
5556:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5557It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005558
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005559It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5560not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005561
5562It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5563execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5564consuming the same ``cleanuppad`` has already been executed.
5565
5566It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5567execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5568been executed but has not had a corresponding
5569``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005570
5571Example:
5572""""""""
5573
5574.. code-block:: llvm
5575
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005576 cleanupret %cleanup unwind to caller
5577 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005578
5579.. _i_terminatepad:
5580
5581'``terminatepad``' Instruction
5582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5583
5584Syntax:
5585"""""""
5586
5587::
5588
5589 terminatepad [<args>*] unwind label <exception label>
5590 terminatepad [<args>*] unwind to caller
5591
5592Overview:
5593"""""""""
5594
5595The '``terminatepad``' instruction is used by `LLVM's exception handling
5596system <ExceptionHandling.html#overview>`_ to specify that a basic block
5597is a terminate block --- one where a personality routine may decide to
5598terminate the program.
5599The ``args`` correspond to whatever information the personality
5600routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005601program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005602personality routine decides not to terminate the program for the
5603in-flight exception.
5604
5605Arguments:
5606""""""""""
5607
5608The instruction takes a list of arbitrary values which are interpreted
5609by the :ref:`personality function <personalityfn>`.
5610
5611The ``terminatepad`` may be given an ``exception`` label to
5612transfer control to if the in-flight exception matches the ``args``.
5613
5614Semantics:
5615""""""""""
5616
5617When the call stack is being unwound due to an exception being thrown,
5618the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005619then control is transfered to the ``exception`` basic block. Otherwise,
5620the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005621the first argument to ``terminatepad`` specifies what function the
5622personality should defer to in order to terminate the program.
5623
5624The ``terminatepad`` instruction has several restrictions:
5625
5626- A terminate block is a basic block which is the unwind destination of
5627 an exceptional instruction.
5628- A terminate block must have a '``terminatepad``' instruction as its
5629 first non-PHI instruction.
5630- There can be only one '``terminatepad``' instruction within the
5631 terminate block.
5632- A basic block that is not a terminate block may not include a
5633 '``terminatepad``' instruction.
5634
5635Example:
5636""""""""
5637
5638.. code-block:: llvm
5639
5640 ;; A terminate block which only permits integers.
5641 terminatepad [i8** @_ZTIi] unwind label %continue
5642
Sean Silvab084af42012-12-07 10:36:55 +00005643.. _i_unreachable:
5644
5645'``unreachable``' Instruction
5646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5647
5648Syntax:
5649"""""""
5650
5651::
5652
5653 unreachable
5654
5655Overview:
5656"""""""""
5657
5658The '``unreachable``' instruction has no defined semantics. This
5659instruction is used to inform the optimizer that a particular portion of
5660the code is not reachable. This can be used to indicate that the code
5661after a no-return function cannot be reached, and other facts.
5662
5663Semantics:
5664""""""""""
5665
5666The '``unreachable``' instruction has no defined semantics.
5667
5668.. _binaryops:
5669
5670Binary Operations
5671-----------------
5672
5673Binary operators are used to do most of the computation in a program.
5674They require two operands of the same type, execute an operation on
5675them, and produce a single value. The operands might represent multiple
5676data, as is the case with the :ref:`vector <t_vector>` data type. The
5677result value has the same type as its operands.
5678
5679There are several different binary operators:
5680
5681.. _i_add:
5682
5683'``add``' Instruction
5684^^^^^^^^^^^^^^^^^^^^^
5685
5686Syntax:
5687"""""""
5688
5689::
5690
Tim Northover675a0962014-06-13 14:24:23 +00005691 <result> = add <ty> <op1>, <op2> ; yields ty:result
5692 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5693 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5694 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005695
5696Overview:
5697"""""""""
5698
5699The '``add``' instruction returns the sum of its two operands.
5700
5701Arguments:
5702""""""""""
5703
5704The two arguments to the '``add``' instruction must be
5705:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5706arguments must have identical types.
5707
5708Semantics:
5709""""""""""
5710
5711The value produced is the integer sum of the two operands.
5712
5713If the sum has unsigned overflow, the result returned is the
5714mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5715the result.
5716
5717Because LLVM integers use a two's complement representation, this
5718instruction is appropriate for both signed and unsigned integers.
5719
5720``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5721respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5722result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5723unsigned and/or signed overflow, respectively, occurs.
5724
5725Example:
5726""""""""
5727
5728.. code-block:: llvm
5729
Tim Northover675a0962014-06-13 14:24:23 +00005730 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005731
5732.. _i_fadd:
5733
5734'``fadd``' Instruction
5735^^^^^^^^^^^^^^^^^^^^^^
5736
5737Syntax:
5738"""""""
5739
5740::
5741
Tim Northover675a0962014-06-13 14:24:23 +00005742 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005743
5744Overview:
5745"""""""""
5746
5747The '``fadd``' instruction returns the sum of its two operands.
5748
5749Arguments:
5750""""""""""
5751
5752The two arguments to the '``fadd``' instruction must be :ref:`floating
5753point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5754Both arguments must have identical types.
5755
5756Semantics:
5757""""""""""
5758
5759The value produced is the floating point sum of the two operands. This
5760instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5761which are optimization hints to enable otherwise unsafe floating point
5762optimizations:
5763
5764Example:
5765""""""""
5766
5767.. code-block:: llvm
5768
Tim Northover675a0962014-06-13 14:24:23 +00005769 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005770
5771'``sub``' Instruction
5772^^^^^^^^^^^^^^^^^^^^^
5773
5774Syntax:
5775"""""""
5776
5777::
5778
Tim Northover675a0962014-06-13 14:24:23 +00005779 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5780 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5781 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5782 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005783
5784Overview:
5785"""""""""
5786
5787The '``sub``' instruction returns the difference of its two operands.
5788
5789Note that the '``sub``' instruction is used to represent the '``neg``'
5790instruction present in most other intermediate representations.
5791
5792Arguments:
5793""""""""""
5794
5795The two arguments to the '``sub``' instruction must be
5796:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5797arguments must have identical types.
5798
5799Semantics:
5800""""""""""
5801
5802The value produced is the integer difference of the two operands.
5803
5804If the difference has unsigned overflow, the result returned is the
5805mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5806the result.
5807
5808Because LLVM integers use a two's complement representation, this
5809instruction is appropriate for both signed and unsigned integers.
5810
5811``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5812respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5813result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5814unsigned and/or signed overflow, respectively, occurs.
5815
5816Example:
5817""""""""
5818
5819.. code-block:: llvm
5820
Tim Northover675a0962014-06-13 14:24:23 +00005821 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5822 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005823
5824.. _i_fsub:
5825
5826'``fsub``' Instruction
5827^^^^^^^^^^^^^^^^^^^^^^
5828
5829Syntax:
5830"""""""
5831
5832::
5833
Tim Northover675a0962014-06-13 14:24:23 +00005834 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005835
5836Overview:
5837"""""""""
5838
5839The '``fsub``' instruction returns the difference of its two operands.
5840
5841Note that the '``fsub``' instruction is used to represent the '``fneg``'
5842instruction present in most other intermediate representations.
5843
5844Arguments:
5845""""""""""
5846
5847The two arguments to the '``fsub``' instruction must be :ref:`floating
5848point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5849Both arguments must have identical types.
5850
5851Semantics:
5852""""""""""
5853
5854The value produced is the floating point difference of the two operands.
5855This instruction can also take any number of :ref:`fast-math
5856flags <fastmath>`, which are optimization hints to enable otherwise
5857unsafe floating point optimizations:
5858
5859Example:
5860""""""""
5861
5862.. code-block:: llvm
5863
Tim Northover675a0962014-06-13 14:24:23 +00005864 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5865 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005866
5867'``mul``' Instruction
5868^^^^^^^^^^^^^^^^^^^^^
5869
5870Syntax:
5871"""""""
5872
5873::
5874
Tim Northover675a0962014-06-13 14:24:23 +00005875 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5876 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5877 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5878 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005879
5880Overview:
5881"""""""""
5882
5883The '``mul``' instruction returns the product of its two operands.
5884
5885Arguments:
5886""""""""""
5887
5888The two arguments to the '``mul``' instruction must be
5889:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5890arguments must have identical types.
5891
5892Semantics:
5893""""""""""
5894
5895The value produced is the integer product of the two operands.
5896
5897If the result of the multiplication has unsigned overflow, the result
5898returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5899bit width of the result.
5900
5901Because LLVM integers use a two's complement representation, and the
5902result is the same width as the operands, this instruction returns the
5903correct result for both signed and unsigned integers. If a full product
5904(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5905sign-extended or zero-extended as appropriate to the width of the full
5906product.
5907
5908``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5909respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5910result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5911unsigned and/or signed overflow, respectively, occurs.
5912
5913Example:
5914""""""""
5915
5916.. code-block:: llvm
5917
Tim Northover675a0962014-06-13 14:24:23 +00005918 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005919
5920.. _i_fmul:
5921
5922'``fmul``' Instruction
5923^^^^^^^^^^^^^^^^^^^^^^
5924
5925Syntax:
5926"""""""
5927
5928::
5929
Tim Northover675a0962014-06-13 14:24:23 +00005930 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005931
5932Overview:
5933"""""""""
5934
5935The '``fmul``' instruction returns the product of its two operands.
5936
5937Arguments:
5938""""""""""
5939
5940The two arguments to the '``fmul``' instruction must be :ref:`floating
5941point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5942Both arguments must have identical types.
5943
5944Semantics:
5945""""""""""
5946
5947The value produced is the floating point product of the two operands.
5948This instruction can also take any number of :ref:`fast-math
5949flags <fastmath>`, which are optimization hints to enable otherwise
5950unsafe floating point optimizations:
5951
5952Example:
5953""""""""
5954
5955.. code-block:: llvm
5956
Tim Northover675a0962014-06-13 14:24:23 +00005957 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005958
5959'``udiv``' Instruction
5960^^^^^^^^^^^^^^^^^^^^^^
5961
5962Syntax:
5963"""""""
5964
5965::
5966
Tim Northover675a0962014-06-13 14:24:23 +00005967 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5968 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005969
5970Overview:
5971"""""""""
5972
5973The '``udiv``' instruction returns the quotient of its two operands.
5974
5975Arguments:
5976""""""""""
5977
5978The two arguments to the '``udiv``' instruction must be
5979:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5980arguments must have identical types.
5981
5982Semantics:
5983""""""""""
5984
5985The value produced is the unsigned integer quotient of the two operands.
5986
5987Note that unsigned integer division and signed integer division are
5988distinct operations; for signed integer division, use '``sdiv``'.
5989
5990Division by zero leads to undefined behavior.
5991
5992If the ``exact`` keyword is present, the result value of the ``udiv`` is
5993a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5994such, "((a udiv exact b) mul b) == a").
5995
5996Example:
5997""""""""
5998
5999.. code-block:: llvm
6000
Tim Northover675a0962014-06-13 14:24:23 +00006001 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006002
6003'``sdiv``' Instruction
6004^^^^^^^^^^^^^^^^^^^^^^
6005
6006Syntax:
6007"""""""
6008
6009::
6010
Tim Northover675a0962014-06-13 14:24:23 +00006011 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6012 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006013
6014Overview:
6015"""""""""
6016
6017The '``sdiv``' instruction returns the quotient of its two operands.
6018
6019Arguments:
6020""""""""""
6021
6022The two arguments to the '``sdiv``' instruction must be
6023:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6024arguments must have identical types.
6025
6026Semantics:
6027""""""""""
6028
6029The value produced is the signed integer quotient of the two operands
6030rounded towards zero.
6031
6032Note that signed integer division and unsigned integer division are
6033distinct operations; for unsigned integer division, use '``udiv``'.
6034
6035Division by zero leads to undefined behavior. Overflow also leads to
6036undefined behavior; this is a rare case, but can occur, for example, by
6037doing a 32-bit division of -2147483648 by -1.
6038
6039If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6040a :ref:`poison value <poisonvalues>` if the result would be rounded.
6041
6042Example:
6043""""""""
6044
6045.. code-block:: llvm
6046
Tim Northover675a0962014-06-13 14:24:23 +00006047 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006048
6049.. _i_fdiv:
6050
6051'``fdiv``' Instruction
6052^^^^^^^^^^^^^^^^^^^^^^
6053
6054Syntax:
6055"""""""
6056
6057::
6058
Tim Northover675a0962014-06-13 14:24:23 +00006059 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006060
6061Overview:
6062"""""""""
6063
6064The '``fdiv``' instruction returns the quotient of its two operands.
6065
6066Arguments:
6067""""""""""
6068
6069The two arguments to the '``fdiv``' instruction must be :ref:`floating
6070point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6071Both arguments must have identical types.
6072
6073Semantics:
6074""""""""""
6075
6076The value produced is the floating point quotient of the two operands.
6077This instruction can also take any number of :ref:`fast-math
6078flags <fastmath>`, which are optimization hints to enable otherwise
6079unsafe floating point optimizations:
6080
6081Example:
6082""""""""
6083
6084.. code-block:: llvm
6085
Tim Northover675a0962014-06-13 14:24:23 +00006086 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006087
6088'``urem``' Instruction
6089^^^^^^^^^^^^^^^^^^^^^^
6090
6091Syntax:
6092"""""""
6093
6094::
6095
Tim Northover675a0962014-06-13 14:24:23 +00006096 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006097
6098Overview:
6099"""""""""
6100
6101The '``urem``' instruction returns the remainder from the unsigned
6102division of its two arguments.
6103
6104Arguments:
6105""""""""""
6106
6107The two arguments to the '``urem``' instruction must be
6108:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6109arguments must have identical types.
6110
6111Semantics:
6112""""""""""
6113
6114This instruction returns the unsigned integer *remainder* of a division.
6115This instruction always performs an unsigned division to get the
6116remainder.
6117
6118Note that unsigned integer remainder and signed integer remainder are
6119distinct operations; for signed integer remainder, use '``srem``'.
6120
6121Taking the remainder of a division by zero leads to undefined behavior.
6122
6123Example:
6124""""""""
6125
6126.. code-block:: llvm
6127
Tim Northover675a0962014-06-13 14:24:23 +00006128 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006129
6130'``srem``' Instruction
6131^^^^^^^^^^^^^^^^^^^^^^
6132
6133Syntax:
6134"""""""
6135
6136::
6137
Tim Northover675a0962014-06-13 14:24:23 +00006138 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006139
6140Overview:
6141"""""""""
6142
6143The '``srem``' instruction returns the remainder from the signed
6144division of its two operands. This instruction can also take
6145:ref:`vector <t_vector>` versions of the values in which case the elements
6146must be integers.
6147
6148Arguments:
6149""""""""""
6150
6151The two arguments to the '``srem``' instruction must be
6152:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6153arguments must have identical types.
6154
6155Semantics:
6156""""""""""
6157
6158This instruction returns the *remainder* of a division (where the result
6159is either zero or has the same sign as the dividend, ``op1``), not the
6160*modulo* operator (where the result is either zero or has the same sign
6161as the divisor, ``op2``) of a value. For more information about the
6162difference, see `The Math
6163Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6164table of how this is implemented in various languages, please see
6165`Wikipedia: modulo
6166operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6167
6168Note that signed integer remainder and unsigned integer remainder are
6169distinct operations; for unsigned integer remainder, use '``urem``'.
6170
6171Taking the remainder of a division by zero leads to undefined behavior.
6172Overflow also leads to undefined behavior; this is a rare case, but can
6173occur, for example, by taking the remainder of a 32-bit division of
6174-2147483648 by -1. (The remainder doesn't actually overflow, but this
6175rule lets srem be implemented using instructions that return both the
6176result of the division and the remainder.)
6177
6178Example:
6179""""""""
6180
6181.. code-block:: llvm
6182
Tim Northover675a0962014-06-13 14:24:23 +00006183 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006184
6185.. _i_frem:
6186
6187'``frem``' Instruction
6188^^^^^^^^^^^^^^^^^^^^^^
6189
6190Syntax:
6191"""""""
6192
6193::
6194
Tim Northover675a0962014-06-13 14:24:23 +00006195 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006196
6197Overview:
6198"""""""""
6199
6200The '``frem``' instruction returns the remainder from the division of
6201its two operands.
6202
6203Arguments:
6204""""""""""
6205
6206The two arguments to the '``frem``' instruction must be :ref:`floating
6207point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6208Both arguments must have identical types.
6209
6210Semantics:
6211""""""""""
6212
6213This instruction returns the *remainder* of a division. The remainder
6214has the same sign as the dividend. This instruction can also take any
6215number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6216to enable otherwise unsafe floating point optimizations:
6217
6218Example:
6219""""""""
6220
6221.. code-block:: llvm
6222
Tim Northover675a0962014-06-13 14:24:23 +00006223 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006224
6225.. _bitwiseops:
6226
6227Bitwise Binary Operations
6228-------------------------
6229
6230Bitwise binary operators are used to do various forms of bit-twiddling
6231in a program. They are generally very efficient instructions and can
6232commonly be strength reduced from other instructions. They require two
6233operands of the same type, execute an operation on them, and produce a
6234single value. The resulting value is the same type as its operands.
6235
6236'``shl``' Instruction
6237^^^^^^^^^^^^^^^^^^^^^
6238
6239Syntax:
6240"""""""
6241
6242::
6243
Tim Northover675a0962014-06-13 14:24:23 +00006244 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6245 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6246 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6247 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006248
6249Overview:
6250"""""""""
6251
6252The '``shl``' instruction returns the first operand shifted to the left
6253a specified number of bits.
6254
6255Arguments:
6256""""""""""
6257
6258Both arguments to the '``shl``' instruction must be the same
6259:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6260'``op2``' is treated as an unsigned value.
6261
6262Semantics:
6263""""""""""
6264
6265The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6266where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006267dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006268``op1``, the result is undefined. If the arguments are vectors, each
6269vector element of ``op1`` is shifted by the corresponding shift amount
6270in ``op2``.
6271
6272If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6273value <poisonvalues>` if it shifts out any non-zero bits. If the
6274``nsw`` keyword is present, then the shift produces a :ref:`poison
6275value <poisonvalues>` if it shifts out any bits that disagree with the
6276resultant sign bit. As such, NUW/NSW have the same semantics as they
6277would if the shift were expressed as a mul instruction with the same
6278nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6279
6280Example:
6281""""""""
6282
6283.. code-block:: llvm
6284
Tim Northover675a0962014-06-13 14:24:23 +00006285 <result> = shl i32 4, %var ; yields i32: 4 << %var
6286 <result> = shl i32 4, 2 ; yields i32: 16
6287 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006288 <result> = shl i32 1, 32 ; undefined
6289 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6290
6291'``lshr``' Instruction
6292^^^^^^^^^^^^^^^^^^^^^^
6293
6294Syntax:
6295"""""""
6296
6297::
6298
Tim Northover675a0962014-06-13 14:24:23 +00006299 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6300 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006301
6302Overview:
6303"""""""""
6304
6305The '``lshr``' instruction (logical shift right) returns the first
6306operand shifted to the right a specified number of bits with zero fill.
6307
6308Arguments:
6309""""""""""
6310
6311Both arguments to the '``lshr``' instruction must be the same
6312:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6313'``op2``' is treated as an unsigned value.
6314
6315Semantics:
6316""""""""""
6317
6318This instruction always performs a logical shift right operation. The
6319most significant bits of the result will be filled with zero bits after
6320the shift. If ``op2`` is (statically or dynamically) equal to or larger
6321than the number of bits in ``op1``, the result is undefined. If the
6322arguments are vectors, each vector element of ``op1`` is shifted by the
6323corresponding shift amount in ``op2``.
6324
6325If the ``exact`` keyword is present, the result value of the ``lshr`` is
6326a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6327non-zero.
6328
6329Example:
6330""""""""
6331
6332.. code-block:: llvm
6333
Tim Northover675a0962014-06-13 14:24:23 +00006334 <result> = lshr i32 4, 1 ; yields i32:result = 2
6335 <result> = lshr i32 4, 2 ; yields i32:result = 1
6336 <result> = lshr i8 4, 3 ; yields i8:result = 0
6337 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006338 <result> = lshr i32 1, 32 ; undefined
6339 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6340
6341'``ashr``' Instruction
6342^^^^^^^^^^^^^^^^^^^^^^
6343
6344Syntax:
6345"""""""
6346
6347::
6348
Tim Northover675a0962014-06-13 14:24:23 +00006349 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6350 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006351
6352Overview:
6353"""""""""
6354
6355The '``ashr``' instruction (arithmetic shift right) returns the first
6356operand shifted to the right a specified number of bits with sign
6357extension.
6358
6359Arguments:
6360""""""""""
6361
6362Both arguments to the '``ashr``' instruction must be the same
6363:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6364'``op2``' is treated as an unsigned value.
6365
6366Semantics:
6367""""""""""
6368
6369This instruction always performs an arithmetic shift right operation,
6370The most significant bits of the result will be filled with the sign bit
6371of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6372than the number of bits in ``op1``, the result is undefined. If the
6373arguments are vectors, each vector element of ``op1`` is shifted by the
6374corresponding shift amount in ``op2``.
6375
6376If the ``exact`` keyword is present, the result value of the ``ashr`` is
6377a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6378non-zero.
6379
6380Example:
6381""""""""
6382
6383.. code-block:: llvm
6384
Tim Northover675a0962014-06-13 14:24:23 +00006385 <result> = ashr i32 4, 1 ; yields i32:result = 2
6386 <result> = ashr i32 4, 2 ; yields i32:result = 1
6387 <result> = ashr i8 4, 3 ; yields i8:result = 0
6388 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006389 <result> = ashr i32 1, 32 ; undefined
6390 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6391
6392'``and``' Instruction
6393^^^^^^^^^^^^^^^^^^^^^
6394
6395Syntax:
6396"""""""
6397
6398::
6399
Tim Northover675a0962014-06-13 14:24:23 +00006400 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006401
6402Overview:
6403"""""""""
6404
6405The '``and``' instruction returns the bitwise logical and of its two
6406operands.
6407
6408Arguments:
6409""""""""""
6410
6411The two arguments to the '``and``' instruction must be
6412:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6413arguments must have identical types.
6414
6415Semantics:
6416""""""""""
6417
6418The truth table used for the '``and``' instruction is:
6419
6420+-----+-----+-----+
6421| In0 | In1 | Out |
6422+-----+-----+-----+
6423| 0 | 0 | 0 |
6424+-----+-----+-----+
6425| 0 | 1 | 0 |
6426+-----+-----+-----+
6427| 1 | 0 | 0 |
6428+-----+-----+-----+
6429| 1 | 1 | 1 |
6430+-----+-----+-----+
6431
6432Example:
6433""""""""
6434
6435.. code-block:: llvm
6436
Tim Northover675a0962014-06-13 14:24:23 +00006437 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6438 <result> = and i32 15, 40 ; yields i32:result = 8
6439 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006440
6441'``or``' Instruction
6442^^^^^^^^^^^^^^^^^^^^
6443
6444Syntax:
6445"""""""
6446
6447::
6448
Tim Northover675a0962014-06-13 14:24:23 +00006449 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006450
6451Overview:
6452"""""""""
6453
6454The '``or``' instruction returns the bitwise logical inclusive or of its
6455two operands.
6456
6457Arguments:
6458""""""""""
6459
6460The two arguments to the '``or``' instruction must be
6461:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6462arguments must have identical types.
6463
6464Semantics:
6465""""""""""
6466
6467The truth table used for the '``or``' instruction is:
6468
6469+-----+-----+-----+
6470| In0 | In1 | Out |
6471+-----+-----+-----+
6472| 0 | 0 | 0 |
6473+-----+-----+-----+
6474| 0 | 1 | 1 |
6475+-----+-----+-----+
6476| 1 | 0 | 1 |
6477+-----+-----+-----+
6478| 1 | 1 | 1 |
6479+-----+-----+-----+
6480
6481Example:
6482""""""""
6483
6484::
6485
Tim Northover675a0962014-06-13 14:24:23 +00006486 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6487 <result> = or i32 15, 40 ; yields i32:result = 47
6488 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006489
6490'``xor``' Instruction
6491^^^^^^^^^^^^^^^^^^^^^
6492
6493Syntax:
6494"""""""
6495
6496::
6497
Tim Northover675a0962014-06-13 14:24:23 +00006498 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006499
6500Overview:
6501"""""""""
6502
6503The '``xor``' instruction returns the bitwise logical exclusive or of
6504its two operands. The ``xor`` is used to implement the "one's
6505complement" operation, which is the "~" operator in C.
6506
6507Arguments:
6508""""""""""
6509
6510The two arguments to the '``xor``' instruction must be
6511:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6512arguments must have identical types.
6513
6514Semantics:
6515""""""""""
6516
6517The truth table used for the '``xor``' instruction is:
6518
6519+-----+-----+-----+
6520| In0 | In1 | Out |
6521+-----+-----+-----+
6522| 0 | 0 | 0 |
6523+-----+-----+-----+
6524| 0 | 1 | 1 |
6525+-----+-----+-----+
6526| 1 | 0 | 1 |
6527+-----+-----+-----+
6528| 1 | 1 | 0 |
6529+-----+-----+-----+
6530
6531Example:
6532""""""""
6533
6534.. code-block:: llvm
6535
Tim Northover675a0962014-06-13 14:24:23 +00006536 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6537 <result> = xor i32 15, 40 ; yields i32:result = 39
6538 <result> = xor i32 4, 8 ; yields i32:result = 12
6539 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006540
6541Vector Operations
6542-----------------
6543
6544LLVM supports several instructions to represent vector operations in a
6545target-independent manner. These instructions cover the element-access
6546and vector-specific operations needed to process vectors effectively.
6547While LLVM does directly support these vector operations, many
6548sophisticated algorithms will want to use target-specific intrinsics to
6549take full advantage of a specific target.
6550
6551.. _i_extractelement:
6552
6553'``extractelement``' Instruction
6554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6555
6556Syntax:
6557"""""""
6558
6559::
6560
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006561 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006562
6563Overview:
6564"""""""""
6565
6566The '``extractelement``' instruction extracts a single scalar element
6567from a vector at a specified index.
6568
6569Arguments:
6570""""""""""
6571
6572The first operand of an '``extractelement``' instruction is a value of
6573:ref:`vector <t_vector>` type. The second operand is an index indicating
6574the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006575variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006576
6577Semantics:
6578""""""""""
6579
6580The result is a scalar of the same type as the element type of ``val``.
6581Its value is the value at position ``idx`` of ``val``. If ``idx``
6582exceeds the length of ``val``, the results are undefined.
6583
6584Example:
6585""""""""
6586
6587.. code-block:: llvm
6588
6589 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6590
6591.. _i_insertelement:
6592
6593'``insertelement``' Instruction
6594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6595
6596Syntax:
6597"""""""
6598
6599::
6600
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006601 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006602
6603Overview:
6604"""""""""
6605
6606The '``insertelement``' instruction inserts a scalar element into a
6607vector at a specified index.
6608
6609Arguments:
6610""""""""""
6611
6612The first operand of an '``insertelement``' instruction is a value of
6613:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6614type must equal the element type of the first operand. The third operand
6615is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006616index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006617
6618Semantics:
6619""""""""""
6620
6621The result is a vector of the same type as ``val``. Its element values
6622are those of ``val`` except at position ``idx``, where it gets the value
6623``elt``. If ``idx`` exceeds the length of ``val``, the results are
6624undefined.
6625
6626Example:
6627""""""""
6628
6629.. code-block:: llvm
6630
6631 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6632
6633.. _i_shufflevector:
6634
6635'``shufflevector``' Instruction
6636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6637
6638Syntax:
6639"""""""
6640
6641::
6642
6643 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6644
6645Overview:
6646"""""""""
6647
6648The '``shufflevector``' instruction constructs a permutation of elements
6649from two input vectors, returning a vector with the same element type as
6650the input and length that is the same as the shuffle mask.
6651
6652Arguments:
6653""""""""""
6654
6655The first two operands of a '``shufflevector``' instruction are vectors
6656with the same type. The third argument is a shuffle mask whose element
6657type is always 'i32'. The result of the instruction is a vector whose
6658length is the same as the shuffle mask and whose element type is the
6659same as the element type of the first two operands.
6660
6661The shuffle mask operand is required to be a constant vector with either
6662constant integer or undef values.
6663
6664Semantics:
6665""""""""""
6666
6667The elements of the two input vectors are numbered from left to right
6668across both of the vectors. The shuffle mask operand specifies, for each
6669element of the result vector, which element of the two input vectors the
6670result element gets. The element selector may be undef (meaning "don't
6671care") and the second operand may be undef if performing a shuffle from
6672only one vector.
6673
6674Example:
6675""""""""
6676
6677.. code-block:: llvm
6678
6679 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6680 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6681 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6682 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6683 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6684 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6685 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6686 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6687
6688Aggregate Operations
6689--------------------
6690
6691LLVM supports several instructions for working with
6692:ref:`aggregate <t_aggregate>` values.
6693
6694.. _i_extractvalue:
6695
6696'``extractvalue``' Instruction
6697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6698
6699Syntax:
6700"""""""
6701
6702::
6703
6704 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6705
6706Overview:
6707"""""""""
6708
6709The '``extractvalue``' instruction extracts the value of a member field
6710from an :ref:`aggregate <t_aggregate>` value.
6711
6712Arguments:
6713""""""""""
6714
6715The first operand of an '``extractvalue``' instruction is a value of
6716:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6717constant indices to specify which value to extract in a similar manner
6718as indices in a '``getelementptr``' instruction.
6719
6720The major differences to ``getelementptr`` indexing are:
6721
6722- Since the value being indexed is not a pointer, the first index is
6723 omitted and assumed to be zero.
6724- At least one index must be specified.
6725- Not only struct indices but also array indices must be in bounds.
6726
6727Semantics:
6728""""""""""
6729
6730The result is the value at the position in the aggregate specified by
6731the index operands.
6732
6733Example:
6734""""""""
6735
6736.. code-block:: llvm
6737
6738 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6739
6740.. _i_insertvalue:
6741
6742'``insertvalue``' Instruction
6743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6744
6745Syntax:
6746"""""""
6747
6748::
6749
6750 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6751
6752Overview:
6753"""""""""
6754
6755The '``insertvalue``' instruction inserts a value into a member field in
6756an :ref:`aggregate <t_aggregate>` value.
6757
6758Arguments:
6759""""""""""
6760
6761The first operand of an '``insertvalue``' instruction is a value of
6762:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6763a first-class value to insert. The following operands are constant
6764indices indicating the position at which to insert the value in a
6765similar manner as indices in a '``extractvalue``' instruction. The value
6766to insert must have the same type as the value identified by the
6767indices.
6768
6769Semantics:
6770""""""""""
6771
6772The result is an aggregate of the same type as ``val``. Its value is
6773that of ``val`` except that the value at the position specified by the
6774indices is that of ``elt``.
6775
6776Example:
6777""""""""
6778
6779.. code-block:: llvm
6780
6781 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6782 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006783 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006784
6785.. _memoryops:
6786
6787Memory Access and Addressing Operations
6788---------------------------------------
6789
6790A key design point of an SSA-based representation is how it represents
6791memory. In LLVM, no memory locations are in SSA form, which makes things
6792very simple. This section describes how to read, write, and allocate
6793memory in LLVM.
6794
6795.. _i_alloca:
6796
6797'``alloca``' Instruction
6798^^^^^^^^^^^^^^^^^^^^^^^^
6799
6800Syntax:
6801"""""""
6802
6803::
6804
Tim Northover675a0962014-06-13 14:24:23 +00006805 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006806
6807Overview:
6808"""""""""
6809
6810The '``alloca``' instruction allocates memory on the stack frame of the
6811currently executing function, to be automatically released when this
6812function returns to its caller. The object is always allocated in the
6813generic address space (address space zero).
6814
6815Arguments:
6816""""""""""
6817
6818The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6819bytes of memory on the runtime stack, returning a pointer of the
6820appropriate type to the program. If "NumElements" is specified, it is
6821the number of elements allocated, otherwise "NumElements" is defaulted
6822to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006823allocation is guaranteed to be aligned to at least that boundary. The
6824alignment may not be greater than ``1 << 29``. If not specified, or if
6825zero, the target can choose to align the allocation on any convenient
6826boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006827
6828'``type``' may be any sized type.
6829
6830Semantics:
6831""""""""""
6832
6833Memory is allocated; a pointer is returned. The operation is undefined
6834if there is insufficient stack space for the allocation. '``alloca``'d
6835memory is automatically released when the function returns. The
6836'``alloca``' instruction is commonly used to represent automatic
6837variables that must have an address available. When the function returns
6838(either with the ``ret`` or ``resume`` instructions), the memory is
6839reclaimed. Allocating zero bytes is legal, but the result is undefined.
6840The order in which memory is allocated (ie., which way the stack grows)
6841is not specified.
6842
6843Example:
6844""""""""
6845
6846.. code-block:: llvm
6847
Tim Northover675a0962014-06-13 14:24:23 +00006848 %ptr = alloca i32 ; yields i32*:ptr
6849 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6850 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6851 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006852
6853.. _i_load:
6854
6855'``load``' Instruction
6856^^^^^^^^^^^^^^^^^^^^^^
6857
6858Syntax:
6859"""""""
6860
6861::
6862
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006863 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006864 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006865 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006866 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006867 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006868
6869Overview:
6870"""""""""
6871
6872The '``load``' instruction is used to read from memory.
6873
6874Arguments:
6875""""""""""
6876
Eli Bendersky239a78b2013-04-17 20:17:08 +00006877The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006878from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006879class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6880then the optimizer is not allowed to modify the number or order of
6881execution of this ``load`` with other :ref:`volatile
6882operations <volatile>`.
6883
6884If the ``load`` is marked as ``atomic``, it takes an extra
6885:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6886``release`` and ``acq_rel`` orderings are not valid on ``load``
6887instructions. Atomic loads produce :ref:`defined <memmodel>` results
6888when they may see multiple atomic stores. The type of the pointee must
6889be an integer type whose bit width is a power of two greater than or
6890equal to eight and less than or equal to a target-specific size limit.
6891``align`` must be explicitly specified on atomic loads, and the load has
6892undefined behavior if the alignment is not set to a value which is at
6893least the size in bytes of the pointee. ``!nontemporal`` does not have
6894any defined semantics for atomic loads.
6895
6896The optional constant ``align`` argument specifies the alignment of the
6897operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006898or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006899alignment for the target. It is the responsibility of the code emitter
6900to ensure that the alignment information is correct. Overestimating the
6901alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006902may produce less efficient code. An alignment of 1 is always safe. The
6903maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006904
6905The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006906metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006907``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006908metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006909that this load is not expected to be reused in the cache. The code
6910generator may select special instructions to save cache bandwidth, such
6911as the ``MOVNT`` instruction on x86.
6912
6913The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006914metadata name ``<index>`` corresponding to a metadata node with no
6915entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006916instruction tells the optimizer and code generator that the address
6917operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006918Being invariant does not imply that a location is dereferenceable,
6919but it does imply that once the location is known dereferenceable
6920its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006921
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006922The optional ``!invariant.group`` metadata must reference a single metadata name
6923 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6924
Philip Reamescdb72f32014-10-20 22:40:55 +00006925The optional ``!nonnull`` metadata must reference a single
6926metadata name ``<index>`` corresponding to a metadata node with no
6927entries. The existence of the ``!nonnull`` metadata on the
6928instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006929never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006930on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006931to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006932
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006933The optional ``!dereferenceable`` metadata must reference a single metadata
6934name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006935entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006936tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006937The number of bytes known to be dereferenceable is specified by the integer
6938value in the metadata node. This is analogous to the ''dereferenceable''
6939attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006940to loads of a pointer type.
6941
6942The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006943metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6944``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006945instruction tells the optimizer that the value loaded is known to be either
6946dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006947The number of bytes known to be dereferenceable is specified by the integer
6948value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6949attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006950to loads of a pointer type.
6951
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006952The optional ``!align`` metadata must reference a single metadata name
6953``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6954The existence of the ``!align`` metadata on the instruction tells the
6955optimizer that the value loaded is known to be aligned to a boundary specified
6956by the integer value in the metadata node. The alignment must be a power of 2.
6957This is analogous to the ''align'' attribute on parameters and return values.
6958This metadata can only be applied to loads of a pointer type.
6959
Sean Silvab084af42012-12-07 10:36:55 +00006960Semantics:
6961""""""""""
6962
6963The location of memory pointed to is loaded. If the value being loaded
6964is of scalar type then the number of bytes read does not exceed the
6965minimum number of bytes needed to hold all bits of the type. For
6966example, loading an ``i24`` reads at most three bytes. When loading a
6967value of a type like ``i20`` with a size that is not an integral number
6968of bytes, the result is undefined if the value was not originally
6969written using a store of the same type.
6970
6971Examples:
6972"""""""""
6973
6974.. code-block:: llvm
6975
Tim Northover675a0962014-06-13 14:24:23 +00006976 %ptr = alloca i32 ; yields i32*:ptr
6977 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006978 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006979
6980.. _i_store:
6981
6982'``store``' Instruction
6983^^^^^^^^^^^^^^^^^^^^^^^
6984
6985Syntax:
6986"""""""
6987
6988::
6989
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006990 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6991 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006992
6993Overview:
6994"""""""""
6995
6996The '``store``' instruction is used to write to memory.
6997
6998Arguments:
6999""""""""""
7000
Eli Benderskyca380842013-04-17 17:17:20 +00007001There are two arguments to the ``store`` instruction: a value to store
7002and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007003operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007004the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007005then the optimizer is not allowed to modify the number or order of
7006execution of this ``store`` with other :ref:`volatile
7007operations <volatile>`.
7008
7009If the ``store`` is marked as ``atomic``, it takes an extra
7010:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7011``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
7012instructions. Atomic loads produce :ref:`defined <memmodel>` results
7013when they may see multiple atomic stores. The type of the pointee must
7014be an integer type whose bit width is a power of two greater than or
7015equal to eight and less than or equal to a target-specific size limit.
7016``align`` must be explicitly specified on atomic stores, and the store
7017has undefined behavior if the alignment is not set to a value which is
7018at least the size in bytes of the pointee. ``!nontemporal`` does not
7019have any defined semantics for atomic stores.
7020
Eli Benderskyca380842013-04-17 17:17:20 +00007021The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007022operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007023or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007024alignment for the target. It is the responsibility of the code emitter
7025to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007026alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007027alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007028safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007029
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007030The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007031name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007032value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007033tells the optimizer and code generator that this load is not expected to
7034be reused in the cache. The code generator may select special
7035instructions to save cache bandwidth, such as the MOVNT instruction on
7036x86.
7037
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007038The optional ``!invariant.group`` metadata must reference a
7039single metadata name ``<index>``. See ``invariant.group`` metadata.
7040
Sean Silvab084af42012-12-07 10:36:55 +00007041Semantics:
7042""""""""""
7043
Eli Benderskyca380842013-04-17 17:17:20 +00007044The contents of memory are updated to contain ``<value>`` at the
7045location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007046of scalar type then the number of bytes written does not exceed the
7047minimum number of bytes needed to hold all bits of the type. For
7048example, storing an ``i24`` writes at most three bytes. When writing a
7049value of a type like ``i20`` with a size that is not an integral number
7050of bytes, it is unspecified what happens to the extra bits that do not
7051belong to the type, but they will typically be overwritten.
7052
7053Example:
7054""""""""
7055
7056.. code-block:: llvm
7057
Tim Northover675a0962014-06-13 14:24:23 +00007058 %ptr = alloca i32 ; yields i32*:ptr
7059 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007060 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007061
7062.. _i_fence:
7063
7064'``fence``' Instruction
7065^^^^^^^^^^^^^^^^^^^^^^^
7066
7067Syntax:
7068"""""""
7069
7070::
7071
Tim Northover675a0962014-06-13 14:24:23 +00007072 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007073
7074Overview:
7075"""""""""
7076
7077The '``fence``' instruction is used to introduce happens-before edges
7078between operations.
7079
7080Arguments:
7081""""""""""
7082
7083'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7084defines what *synchronizes-with* edges they add. They can only be given
7085``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7086
7087Semantics:
7088""""""""""
7089
7090A fence A which has (at least) ``release`` ordering semantics
7091*synchronizes with* a fence B with (at least) ``acquire`` ordering
7092semantics if and only if there exist atomic operations X and Y, both
7093operating on some atomic object M, such that A is sequenced before X, X
7094modifies M (either directly or through some side effect of a sequence
7095headed by X), Y is sequenced before B, and Y observes M. This provides a
7096*happens-before* dependency between A and B. Rather than an explicit
7097``fence``, one (but not both) of the atomic operations X or Y might
7098provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7099still *synchronize-with* the explicit ``fence`` and establish the
7100*happens-before* edge.
7101
7102A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7103``acquire`` and ``release`` semantics specified above, participates in
7104the global program order of other ``seq_cst`` operations and/or fences.
7105
7106The optional ":ref:`singlethread <singlethread>`" argument specifies
7107that the fence only synchronizes with other fences in the same thread.
7108(This is useful for interacting with signal handlers.)
7109
7110Example:
7111""""""""
7112
7113.. code-block:: llvm
7114
Tim Northover675a0962014-06-13 14:24:23 +00007115 fence acquire ; yields void
7116 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007117
7118.. _i_cmpxchg:
7119
7120'``cmpxchg``' Instruction
7121^^^^^^^^^^^^^^^^^^^^^^^^^
7122
7123Syntax:
7124"""""""
7125
7126::
7127
Tim Northover675a0962014-06-13 14:24:23 +00007128 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007129
7130Overview:
7131"""""""""
7132
7133The '``cmpxchg``' instruction is used to atomically modify memory. It
7134loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007135equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007136
7137Arguments:
7138""""""""""
7139
7140There are three arguments to the '``cmpxchg``' instruction: an address
7141to operate on, a value to compare to the value currently be at that
7142address, and a new value to place at that address if the compared values
7143are equal. The type of '<cmp>' must be an integer type whose bit width
7144is a power of two greater than or equal to eight and less than or equal
7145to a target-specific size limit. '<cmp>' and '<new>' must have the same
7146type, and the type of '<pointer>' must be a pointer to that type. If the
7147``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7148to modify the number or order of execution of this ``cmpxchg`` with
7149other :ref:`volatile operations <volatile>`.
7150
Tim Northovere94a5182014-03-11 10:48:52 +00007151The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007152``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7153must be at least ``monotonic``, the ordering constraint on failure must be no
7154stronger than that on success, and the failure ordering cannot be either
7155``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007156
7157The optional "``singlethread``" argument declares that the ``cmpxchg``
7158is only atomic with respect to code (usually signal handlers) running in
7159the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7160respect to all other code in the system.
7161
7162The pointer passed into cmpxchg must have alignment greater than or
7163equal to the size in memory of the operand.
7164
7165Semantics:
7166""""""""""
7167
Tim Northover420a2162014-06-13 14:24:07 +00007168The contents of memory at the location specified by the '``<pointer>``' operand
7169is read and compared to '``<cmp>``'; if the read value is the equal, the
7170'``<new>``' is written. The original value at the location is returned, together
7171with a flag indicating success (true) or failure (false).
7172
7173If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7174permitted: the operation may not write ``<new>`` even if the comparison
7175matched.
7176
7177If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7178if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007179
Tim Northovere94a5182014-03-11 10:48:52 +00007180A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7181identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7182load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007183
7184Example:
7185""""""""
7186
7187.. code-block:: llvm
7188
7189 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007190 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007191 br label %loop
7192
7193 loop:
7194 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7195 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007196 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007197 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7198 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007199 br i1 %success, label %done, label %loop
7200
7201 done:
7202 ...
7203
7204.. _i_atomicrmw:
7205
7206'``atomicrmw``' Instruction
7207^^^^^^^^^^^^^^^^^^^^^^^^^^^
7208
7209Syntax:
7210"""""""
7211
7212::
7213
Tim Northover675a0962014-06-13 14:24:23 +00007214 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007215
7216Overview:
7217"""""""""
7218
7219The '``atomicrmw``' instruction is used to atomically modify memory.
7220
7221Arguments:
7222""""""""""
7223
7224There are three arguments to the '``atomicrmw``' instruction: an
7225operation to apply, an address whose value to modify, an argument to the
7226operation. The operation must be one of the following keywords:
7227
7228- xchg
7229- add
7230- sub
7231- and
7232- nand
7233- or
7234- xor
7235- max
7236- min
7237- umax
7238- umin
7239
7240The type of '<value>' must be an integer type whose bit width is a power
7241of two greater than or equal to eight and less than or equal to a
7242target-specific size limit. The type of the '``<pointer>``' operand must
7243be a pointer to that type. If the ``atomicrmw`` is marked as
7244``volatile``, then the optimizer is not allowed to modify the number or
7245order of execution of this ``atomicrmw`` with other :ref:`volatile
7246operations <volatile>`.
7247
7248Semantics:
7249""""""""""
7250
7251The contents of memory at the location specified by the '``<pointer>``'
7252operand are atomically read, modified, and written back. The original
7253value at the location is returned. The modification is specified by the
7254operation argument:
7255
7256- xchg: ``*ptr = val``
7257- add: ``*ptr = *ptr + val``
7258- sub: ``*ptr = *ptr - val``
7259- and: ``*ptr = *ptr & val``
7260- nand: ``*ptr = ~(*ptr & val)``
7261- or: ``*ptr = *ptr | val``
7262- xor: ``*ptr = *ptr ^ val``
7263- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7264- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7265- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7266 comparison)
7267- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7268 comparison)
7269
7270Example:
7271""""""""
7272
7273.. code-block:: llvm
7274
Tim Northover675a0962014-06-13 14:24:23 +00007275 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007276
7277.. _i_getelementptr:
7278
7279'``getelementptr``' Instruction
7280^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7281
7282Syntax:
7283"""""""
7284
7285::
7286
David Blaikie16a97eb2015-03-04 22:02:58 +00007287 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7288 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7289 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007290
7291Overview:
7292"""""""""
7293
7294The '``getelementptr``' instruction is used to get the address of a
7295subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007296address calculation only and does not access memory. The instruction can also
7297be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007298
7299Arguments:
7300""""""""""
7301
David Blaikie16a97eb2015-03-04 22:02:58 +00007302The first argument is always a type used as the basis for the calculations.
7303The second argument is always a pointer or a vector of pointers, and is the
7304base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007305that indicate which of the elements of the aggregate object are indexed.
7306The interpretation of each index is dependent on the type being indexed
7307into. The first index always indexes the pointer value given as the
7308first argument, the second index indexes a value of the type pointed to
7309(not necessarily the value directly pointed to, since the first index
7310can be non-zero), etc. The first type indexed into must be a pointer
7311value, subsequent types can be arrays, vectors, and structs. Note that
7312subsequent types being indexed into can never be pointers, since that
7313would require loading the pointer before continuing calculation.
7314
7315The type of each index argument depends on the type it is indexing into.
7316When indexing into a (optionally packed) structure, only ``i32`` integer
7317**constants** are allowed (when using a vector of indices they must all
7318be the **same** ``i32`` integer constant). When indexing into an array,
7319pointer or vector, integers of any width are allowed, and they are not
7320required to be constant. These integers are treated as signed values
7321where relevant.
7322
7323For example, let's consider a C code fragment and how it gets compiled
7324to LLVM:
7325
7326.. code-block:: c
7327
7328 struct RT {
7329 char A;
7330 int B[10][20];
7331 char C;
7332 };
7333 struct ST {
7334 int X;
7335 double Y;
7336 struct RT Z;
7337 };
7338
7339 int *foo(struct ST *s) {
7340 return &s[1].Z.B[5][13];
7341 }
7342
7343The LLVM code generated by Clang is:
7344
7345.. code-block:: llvm
7346
7347 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7348 %struct.ST = type { i32, double, %struct.RT }
7349
7350 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7351 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007352 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007353 ret i32* %arrayidx
7354 }
7355
7356Semantics:
7357""""""""""
7358
7359In the example above, the first index is indexing into the
7360'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7361= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7362indexes into the third element of the structure, yielding a
7363'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7364structure. The third index indexes into the second element of the
7365structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7366dimensions of the array are subscripted into, yielding an '``i32``'
7367type. The '``getelementptr``' instruction returns a pointer to this
7368element, thus computing a value of '``i32*``' type.
7369
7370Note that it is perfectly legal to index partially through a structure,
7371returning a pointer to an inner element. Because of this, the LLVM code
7372for the given testcase is equivalent to:
7373
7374.. code-block:: llvm
7375
7376 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007377 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7378 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7379 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7380 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7381 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007382 ret i32* %t5
7383 }
7384
7385If the ``inbounds`` keyword is present, the result value of the
7386``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7387pointer is not an *in bounds* address of an allocated object, or if any
7388of the addresses that would be formed by successive addition of the
7389offsets implied by the indices to the base address with infinitely
7390precise signed arithmetic are not an *in bounds* address of that
7391allocated object. The *in bounds* addresses for an allocated object are
7392all the addresses that point into the object, plus the address one byte
7393past the end. In cases where the base is a vector of pointers the
7394``inbounds`` keyword applies to each of the computations element-wise.
7395
7396If the ``inbounds`` keyword is not present, the offsets are added to the
7397base address with silently-wrapping two's complement arithmetic. If the
7398offsets have a different width from the pointer, they are sign-extended
7399or truncated to the width of the pointer. The result value of the
7400``getelementptr`` may be outside the object pointed to by the base
7401pointer. The result value may not necessarily be used to access memory
7402though, even if it happens to point into allocated storage. See the
7403:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7404information.
7405
7406The getelementptr instruction is often confusing. For some more insight
7407into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7408
7409Example:
7410""""""""
7411
7412.. code-block:: llvm
7413
7414 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007415 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007416 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007417 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007418 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007419 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007420 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007421 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007422
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007423Vector of pointers:
7424"""""""""""""""""""
7425
7426The ``getelementptr`` returns a vector of pointers, instead of a single address,
7427when one or more of its arguments is a vector. In such cases, all vector
7428arguments should have the same number of elements, and every scalar argument
7429will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007430
7431.. code-block:: llvm
7432
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007433 ; All arguments are vectors:
7434 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7435 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007436
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007437 ; Add the same scalar offset to each pointer of a vector:
7438 ; A[i] = ptrs[i] + offset*sizeof(i8)
7439 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007440
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007441 ; Add distinct offsets to the same pointer:
7442 ; A[i] = ptr + offsets[i]*sizeof(i8)
7443 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007444
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007445 ; In all cases described above the type of the result is <4 x i8*>
7446
7447The two following instructions are equivalent:
7448
7449.. code-block:: llvm
7450
7451 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7452 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7453 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7454 <4 x i32> %ind4,
7455 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007456
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007457 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7458 i32 2, i32 1, <4 x i32> %ind4, i64 13
7459
7460Let's look at the C code, where the vector version of ``getelementptr``
7461makes sense:
7462
7463.. code-block:: c
7464
7465 // Let's assume that we vectorize the following loop:
7466 double *A, B; int *C;
7467 for (int i = 0; i < size; ++i) {
7468 A[i] = B[C[i]];
7469 }
7470
7471.. code-block:: llvm
7472
7473 ; get pointers for 8 elements from array B
7474 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7475 ; load 8 elements from array B into A
7476 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7477 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007478
7479Conversion Operations
7480---------------------
7481
7482The instructions in this category are the conversion instructions
7483(casting) which all take a single operand and a type. They perform
7484various bit conversions on the operand.
7485
7486'``trunc .. to``' Instruction
7487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7488
7489Syntax:
7490"""""""
7491
7492::
7493
7494 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7495
7496Overview:
7497"""""""""
7498
7499The '``trunc``' instruction truncates its operand to the type ``ty2``.
7500
7501Arguments:
7502""""""""""
7503
7504The '``trunc``' instruction takes a value to trunc, and a type to trunc
7505it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7506of the same number of integers. The bit size of the ``value`` must be
7507larger than the bit size of the destination type, ``ty2``. Equal sized
7508types are not allowed.
7509
7510Semantics:
7511""""""""""
7512
7513The '``trunc``' instruction truncates the high order bits in ``value``
7514and converts the remaining bits to ``ty2``. Since the source size must
7515be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7516It will always truncate bits.
7517
7518Example:
7519""""""""
7520
7521.. code-block:: llvm
7522
7523 %X = trunc i32 257 to i8 ; yields i8:1
7524 %Y = trunc i32 123 to i1 ; yields i1:true
7525 %Z = trunc i32 122 to i1 ; yields i1:false
7526 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7527
7528'``zext .. to``' Instruction
7529^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7530
7531Syntax:
7532"""""""
7533
7534::
7535
7536 <result> = zext <ty> <value> to <ty2> ; yields ty2
7537
7538Overview:
7539"""""""""
7540
7541The '``zext``' instruction zero extends its operand to type ``ty2``.
7542
7543Arguments:
7544""""""""""
7545
7546The '``zext``' instruction takes a value to cast, and a type to cast it
7547to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7548the same number of integers. The bit size of the ``value`` must be
7549smaller than the bit size of the destination type, ``ty2``.
7550
7551Semantics:
7552""""""""""
7553
7554The ``zext`` fills the high order bits of the ``value`` with zero bits
7555until it reaches the size of the destination type, ``ty2``.
7556
7557When zero extending from i1, the result will always be either 0 or 1.
7558
7559Example:
7560""""""""
7561
7562.. code-block:: llvm
7563
7564 %X = zext i32 257 to i64 ; yields i64:257
7565 %Y = zext i1 true to i32 ; yields i32:1
7566 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7567
7568'``sext .. to``' Instruction
7569^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7570
7571Syntax:
7572"""""""
7573
7574::
7575
7576 <result> = sext <ty> <value> to <ty2> ; yields ty2
7577
7578Overview:
7579"""""""""
7580
7581The '``sext``' sign extends ``value`` to the type ``ty2``.
7582
7583Arguments:
7584""""""""""
7585
7586The '``sext``' instruction takes a value to cast, and a type to cast it
7587to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7588the same number of integers. The bit size of the ``value`` must be
7589smaller than the bit size of the destination type, ``ty2``.
7590
7591Semantics:
7592""""""""""
7593
7594The '``sext``' instruction performs a sign extension by copying the sign
7595bit (highest order bit) of the ``value`` until it reaches the bit size
7596of the type ``ty2``.
7597
7598When sign extending from i1, the extension always results in -1 or 0.
7599
7600Example:
7601""""""""
7602
7603.. code-block:: llvm
7604
7605 %X = sext i8 -1 to i16 ; yields i16 :65535
7606 %Y = sext i1 true to i32 ; yields i32:-1
7607 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7608
7609'``fptrunc .. to``' Instruction
7610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7611
7612Syntax:
7613"""""""
7614
7615::
7616
7617 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7618
7619Overview:
7620"""""""""
7621
7622The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7623
7624Arguments:
7625""""""""""
7626
7627The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7628value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7629The size of ``value`` must be larger than the size of ``ty2``. This
7630implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7631
7632Semantics:
7633""""""""""
7634
Dan Liew50456fb2015-09-03 18:43:56 +00007635The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007636:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007637point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7638destination type, ``ty2``, then the results are undefined. If the cast produces
7639an inexact result, how rounding is performed (e.g. truncation, also known as
7640round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007641
7642Example:
7643""""""""
7644
7645.. code-block:: llvm
7646
7647 %X = fptrunc double 123.0 to float ; yields float:123.0
7648 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7649
7650'``fpext .. to``' Instruction
7651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7652
7653Syntax:
7654"""""""
7655
7656::
7657
7658 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7659
7660Overview:
7661"""""""""
7662
7663The '``fpext``' extends a floating point ``value`` to a larger floating
7664point value.
7665
7666Arguments:
7667""""""""""
7668
7669The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7670``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7671to. The source type must be smaller than the destination type.
7672
7673Semantics:
7674""""""""""
7675
7676The '``fpext``' instruction extends the ``value`` from a smaller
7677:ref:`floating point <t_floating>` type to a larger :ref:`floating
7678point <t_floating>` type. The ``fpext`` cannot be used to make a
7679*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7680*no-op cast* for a floating point cast.
7681
7682Example:
7683""""""""
7684
7685.. code-block:: llvm
7686
7687 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7688 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7689
7690'``fptoui .. to``' Instruction
7691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7692
7693Syntax:
7694"""""""
7695
7696::
7697
7698 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7699
7700Overview:
7701"""""""""
7702
7703The '``fptoui``' converts a floating point ``value`` to its unsigned
7704integer equivalent of type ``ty2``.
7705
7706Arguments:
7707""""""""""
7708
7709The '``fptoui``' instruction takes a value to cast, which must be a
7710scalar or vector :ref:`floating point <t_floating>` value, and a type to
7711cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7712``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7713type with the same number of elements as ``ty``
7714
7715Semantics:
7716""""""""""
7717
7718The '``fptoui``' instruction converts its :ref:`floating
7719point <t_floating>` operand into the nearest (rounding towards zero)
7720unsigned integer value. If the value cannot fit in ``ty2``, the results
7721are undefined.
7722
7723Example:
7724""""""""
7725
7726.. code-block:: llvm
7727
7728 %X = fptoui double 123.0 to i32 ; yields i32:123
7729 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7730 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7731
7732'``fptosi .. to``' Instruction
7733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7734
7735Syntax:
7736"""""""
7737
7738::
7739
7740 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7741
7742Overview:
7743"""""""""
7744
7745The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7746``value`` to type ``ty2``.
7747
7748Arguments:
7749""""""""""
7750
7751The '``fptosi``' instruction takes a value to cast, which must be a
7752scalar or vector :ref:`floating point <t_floating>` value, and a type to
7753cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7754``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7755type with the same number of elements as ``ty``
7756
7757Semantics:
7758""""""""""
7759
7760The '``fptosi``' instruction converts its :ref:`floating
7761point <t_floating>` operand into the nearest (rounding towards zero)
7762signed integer value. If the value cannot fit in ``ty2``, the results
7763are undefined.
7764
7765Example:
7766""""""""
7767
7768.. code-block:: llvm
7769
7770 %X = fptosi double -123.0 to i32 ; yields i32:-123
7771 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7772 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7773
7774'``uitofp .. to``' Instruction
7775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7776
7777Syntax:
7778"""""""
7779
7780::
7781
7782 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7783
7784Overview:
7785"""""""""
7786
7787The '``uitofp``' instruction regards ``value`` as an unsigned integer
7788and converts that value to the ``ty2`` type.
7789
7790Arguments:
7791""""""""""
7792
7793The '``uitofp``' instruction takes a value to cast, which must be a
7794scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7795``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7796``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7797type with the same number of elements as ``ty``
7798
7799Semantics:
7800""""""""""
7801
7802The '``uitofp``' instruction interprets its operand as an unsigned
7803integer quantity and converts it to the corresponding floating point
7804value. If the value cannot fit in the floating point value, the results
7805are undefined.
7806
7807Example:
7808""""""""
7809
7810.. code-block:: llvm
7811
7812 %X = uitofp i32 257 to float ; yields float:257.0
7813 %Y = uitofp i8 -1 to double ; yields double:255.0
7814
7815'``sitofp .. to``' Instruction
7816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7817
7818Syntax:
7819"""""""
7820
7821::
7822
7823 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7824
7825Overview:
7826"""""""""
7827
7828The '``sitofp``' instruction regards ``value`` as a signed integer and
7829converts that value to the ``ty2`` type.
7830
7831Arguments:
7832""""""""""
7833
7834The '``sitofp``' instruction takes a value to cast, which must be a
7835scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7836``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7837``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7838type with the same number of elements as ``ty``
7839
7840Semantics:
7841""""""""""
7842
7843The '``sitofp``' instruction interprets its operand as a signed integer
7844quantity and converts it to the corresponding floating point value. If
7845the value cannot fit in the floating point value, the results are
7846undefined.
7847
7848Example:
7849""""""""
7850
7851.. code-block:: llvm
7852
7853 %X = sitofp i32 257 to float ; yields float:257.0
7854 %Y = sitofp i8 -1 to double ; yields double:-1.0
7855
7856.. _i_ptrtoint:
7857
7858'``ptrtoint .. to``' Instruction
7859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7860
7861Syntax:
7862"""""""
7863
7864::
7865
7866 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7867
7868Overview:
7869"""""""""
7870
7871The '``ptrtoint``' instruction converts the pointer or a vector of
7872pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7873
7874Arguments:
7875""""""""""
7876
7877The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007878a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007879type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7880a vector of integers type.
7881
7882Semantics:
7883""""""""""
7884
7885The '``ptrtoint``' instruction converts ``value`` to integer type
7886``ty2`` by interpreting the pointer value as an integer and either
7887truncating or zero extending that value to the size of the integer type.
7888If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7889``value`` is larger than ``ty2`` then a truncation is done. If they are
7890the same size, then nothing is done (*no-op cast*) other than a type
7891change.
7892
7893Example:
7894""""""""
7895
7896.. code-block:: llvm
7897
7898 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7899 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7900 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7901
7902.. _i_inttoptr:
7903
7904'``inttoptr .. to``' Instruction
7905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7906
7907Syntax:
7908"""""""
7909
7910::
7911
7912 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7913
7914Overview:
7915"""""""""
7916
7917The '``inttoptr``' instruction converts an integer ``value`` to a
7918pointer type, ``ty2``.
7919
7920Arguments:
7921""""""""""
7922
7923The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7924cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7925type.
7926
7927Semantics:
7928""""""""""
7929
7930The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7931applying either a zero extension or a truncation depending on the size
7932of the integer ``value``. If ``value`` is larger than the size of a
7933pointer then a truncation is done. If ``value`` is smaller than the size
7934of a pointer then a zero extension is done. If they are the same size,
7935nothing is done (*no-op cast*).
7936
7937Example:
7938""""""""
7939
7940.. code-block:: llvm
7941
7942 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7943 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7944 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7945 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7946
7947.. _i_bitcast:
7948
7949'``bitcast .. to``' Instruction
7950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7951
7952Syntax:
7953"""""""
7954
7955::
7956
7957 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7958
7959Overview:
7960"""""""""
7961
7962The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7963changing any bits.
7964
7965Arguments:
7966""""""""""
7967
7968The '``bitcast``' instruction takes a value to cast, which must be a
7969non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007970also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7971bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007972identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007973also be a pointer of the same size. This instruction supports bitwise
7974conversion of vectors to integers and to vectors of other types (as
7975long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007976
7977Semantics:
7978""""""""""
7979
Matt Arsenault24b49c42013-07-31 17:49:08 +00007980The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7981is always a *no-op cast* because no bits change with this
7982conversion. The conversion is done as if the ``value`` had been stored
7983to memory and read back as type ``ty2``. Pointer (or vector of
7984pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007985pointers) types with the same address space through this instruction.
7986To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7987or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007988
7989Example:
7990""""""""
7991
7992.. code-block:: llvm
7993
7994 %X = bitcast i8 255 to i8 ; yields i8 :-1
7995 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7996 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7997 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7998
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007999.. _i_addrspacecast:
8000
8001'``addrspacecast .. to``' Instruction
8002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8003
8004Syntax:
8005"""""""
8006
8007::
8008
8009 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8010
8011Overview:
8012"""""""""
8013
8014The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8015address space ``n`` to type ``pty2`` in address space ``m``.
8016
8017Arguments:
8018""""""""""
8019
8020The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8021to cast and a pointer type to cast it to, which must have a different
8022address space.
8023
8024Semantics:
8025""""""""""
8026
8027The '``addrspacecast``' instruction converts the pointer value
8028``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008029value modification, depending on the target and the address space
8030pair. Pointer conversions within the same address space must be
8031performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008032conversion is legal then both result and operand refer to the same memory
8033location.
8034
8035Example:
8036""""""""
8037
8038.. code-block:: llvm
8039
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008040 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8041 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8042 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008043
Sean Silvab084af42012-12-07 10:36:55 +00008044.. _otherops:
8045
8046Other Operations
8047----------------
8048
8049The instructions in this category are the "miscellaneous" instructions,
8050which defy better classification.
8051
8052.. _i_icmp:
8053
8054'``icmp``' Instruction
8055^^^^^^^^^^^^^^^^^^^^^^
8056
8057Syntax:
8058"""""""
8059
8060::
8061
Tim Northover675a0962014-06-13 14:24:23 +00008062 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008063
8064Overview:
8065"""""""""
8066
8067The '``icmp``' instruction returns a boolean value or a vector of
8068boolean values based on comparison of its two integer, integer vector,
8069pointer, or pointer vector operands.
8070
8071Arguments:
8072""""""""""
8073
8074The '``icmp``' instruction takes three operands. The first operand is
8075the condition code indicating the kind of comparison to perform. It is
8076not a value, just a keyword. The possible condition code are:
8077
8078#. ``eq``: equal
8079#. ``ne``: not equal
8080#. ``ugt``: unsigned greater than
8081#. ``uge``: unsigned greater or equal
8082#. ``ult``: unsigned less than
8083#. ``ule``: unsigned less or equal
8084#. ``sgt``: signed greater than
8085#. ``sge``: signed greater or equal
8086#. ``slt``: signed less than
8087#. ``sle``: signed less or equal
8088
8089The remaining two arguments must be :ref:`integer <t_integer>` or
8090:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8091must also be identical types.
8092
8093Semantics:
8094""""""""""
8095
8096The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8097code given as ``cond``. The comparison performed always yields either an
8098:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8099
8100#. ``eq``: yields ``true`` if the operands are equal, ``false``
8101 otherwise. No sign interpretation is necessary or performed.
8102#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8103 otherwise. No sign interpretation is necessary or performed.
8104#. ``ugt``: interprets the operands as unsigned values and yields
8105 ``true`` if ``op1`` is greater than ``op2``.
8106#. ``uge``: interprets the operands as unsigned values and yields
8107 ``true`` if ``op1`` is greater than or equal to ``op2``.
8108#. ``ult``: interprets the operands as unsigned values and yields
8109 ``true`` if ``op1`` is less than ``op2``.
8110#. ``ule``: interprets the operands as unsigned values and yields
8111 ``true`` if ``op1`` is less than or equal to ``op2``.
8112#. ``sgt``: interprets the operands as signed values and yields ``true``
8113 if ``op1`` is greater than ``op2``.
8114#. ``sge``: interprets the operands as signed values and yields ``true``
8115 if ``op1`` is greater than or equal to ``op2``.
8116#. ``slt``: interprets the operands as signed values and yields ``true``
8117 if ``op1`` is less than ``op2``.
8118#. ``sle``: interprets the operands as signed values and yields ``true``
8119 if ``op1`` is less than or equal to ``op2``.
8120
8121If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8122are compared as if they were integers.
8123
8124If the operands are integer vectors, then they are compared element by
8125element. The result is an ``i1`` vector with the same number of elements
8126as the values being compared. Otherwise, the result is an ``i1``.
8127
8128Example:
8129""""""""
8130
8131.. code-block:: llvm
8132
8133 <result> = icmp eq i32 4, 5 ; yields: result=false
8134 <result> = icmp ne float* %X, %X ; yields: result=false
8135 <result> = icmp ult i16 4, 5 ; yields: result=true
8136 <result> = icmp sgt i16 4, 5 ; yields: result=false
8137 <result> = icmp ule i16 -4, 5 ; yields: result=false
8138 <result> = icmp sge i16 4, 5 ; yields: result=false
8139
8140Note that the code generator does not yet support vector types with the
8141``icmp`` instruction.
8142
8143.. _i_fcmp:
8144
8145'``fcmp``' Instruction
8146^^^^^^^^^^^^^^^^^^^^^^
8147
8148Syntax:
8149"""""""
8150
8151::
8152
James Molloy88eb5352015-07-10 12:52:00 +00008153 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008154
8155Overview:
8156"""""""""
8157
8158The '``fcmp``' instruction returns a boolean value or vector of boolean
8159values based on comparison of its operands.
8160
8161If the operands are floating point scalars, then the result type is a
8162boolean (:ref:`i1 <t_integer>`).
8163
8164If the operands are floating point vectors, then the result type is a
8165vector of boolean with the same number of elements as the operands being
8166compared.
8167
8168Arguments:
8169""""""""""
8170
8171The '``fcmp``' instruction takes three operands. The first operand is
8172the condition code indicating the kind of comparison to perform. It is
8173not a value, just a keyword. The possible condition code are:
8174
8175#. ``false``: no comparison, always returns false
8176#. ``oeq``: ordered and equal
8177#. ``ogt``: ordered and greater than
8178#. ``oge``: ordered and greater than or equal
8179#. ``olt``: ordered and less than
8180#. ``ole``: ordered and less than or equal
8181#. ``one``: ordered and not equal
8182#. ``ord``: ordered (no nans)
8183#. ``ueq``: unordered or equal
8184#. ``ugt``: unordered or greater than
8185#. ``uge``: unordered or greater than or equal
8186#. ``ult``: unordered or less than
8187#. ``ule``: unordered or less than or equal
8188#. ``une``: unordered or not equal
8189#. ``uno``: unordered (either nans)
8190#. ``true``: no comparison, always returns true
8191
8192*Ordered* means that neither operand is a QNAN while *unordered* means
8193that either operand may be a QNAN.
8194
8195Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8196point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8197type. They must have identical types.
8198
8199Semantics:
8200""""""""""
8201
8202The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8203condition code given as ``cond``. If the operands are vectors, then the
8204vectors are compared element by element. Each comparison performed
8205always yields an :ref:`i1 <t_integer>` result, as follows:
8206
8207#. ``false``: always yields ``false``, regardless of operands.
8208#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8209 is equal to ``op2``.
8210#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8211 is greater than ``op2``.
8212#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8213 is greater than or equal to ``op2``.
8214#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8215 is less than ``op2``.
8216#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8217 is less than or equal to ``op2``.
8218#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8219 is not equal to ``op2``.
8220#. ``ord``: yields ``true`` if both operands are not a QNAN.
8221#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8222 equal to ``op2``.
8223#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8224 greater than ``op2``.
8225#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8226 greater than or equal to ``op2``.
8227#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8228 less than ``op2``.
8229#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8230 less than or equal to ``op2``.
8231#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8232 not equal to ``op2``.
8233#. ``uno``: yields ``true`` if either operand is a QNAN.
8234#. ``true``: always yields ``true``, regardless of operands.
8235
James Molloy88eb5352015-07-10 12:52:00 +00008236The ``fcmp`` instruction can also optionally take any number of
8237:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8238otherwise unsafe floating point optimizations.
8239
8240Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8241only flags that have any effect on its semantics are those that allow
8242assumptions to be made about the values of input arguments; namely
8243``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8244
Sean Silvab084af42012-12-07 10:36:55 +00008245Example:
8246""""""""
8247
8248.. code-block:: llvm
8249
8250 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8251 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8252 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8253 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8254
8255Note that the code generator does not yet support vector types with the
8256``fcmp`` instruction.
8257
8258.. _i_phi:
8259
8260'``phi``' Instruction
8261^^^^^^^^^^^^^^^^^^^^^
8262
8263Syntax:
8264"""""""
8265
8266::
8267
8268 <result> = phi <ty> [ <val0>, <label0>], ...
8269
8270Overview:
8271"""""""""
8272
8273The '``phi``' instruction is used to implement the φ node in the SSA
8274graph representing the function.
8275
8276Arguments:
8277""""""""""
8278
8279The type of the incoming values is specified with the first type field.
8280After this, the '``phi``' instruction takes a list of pairs as
8281arguments, with one pair for each predecessor basic block of the current
8282block. Only values of :ref:`first class <t_firstclass>` type may be used as
8283the value arguments to the PHI node. Only labels may be used as the
8284label arguments.
8285
8286There must be no non-phi instructions between the start of a basic block
8287and the PHI instructions: i.e. PHI instructions must be first in a basic
8288block.
8289
8290For the purposes of the SSA form, the use of each incoming value is
8291deemed to occur on the edge from the corresponding predecessor block to
8292the current block (but after any definition of an '``invoke``'
8293instruction's return value on the same edge).
8294
8295Semantics:
8296""""""""""
8297
8298At runtime, the '``phi``' instruction logically takes on the value
8299specified by the pair corresponding to the predecessor basic block that
8300executed just prior to the current block.
8301
8302Example:
8303""""""""
8304
8305.. code-block:: llvm
8306
8307 Loop: ; Infinite loop that counts from 0 on up...
8308 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8309 %nextindvar = add i32 %indvar, 1
8310 br label %Loop
8311
8312.. _i_select:
8313
8314'``select``' Instruction
8315^^^^^^^^^^^^^^^^^^^^^^^^
8316
8317Syntax:
8318"""""""
8319
8320::
8321
8322 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8323
8324 selty is either i1 or {<N x i1>}
8325
8326Overview:
8327"""""""""
8328
8329The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008330condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008331
8332Arguments:
8333""""""""""
8334
8335The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8336values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008337class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008338
8339Semantics:
8340""""""""""
8341
8342If the condition is an i1 and it evaluates to 1, the instruction returns
8343the first value argument; otherwise, it returns the second value
8344argument.
8345
8346If the condition is a vector of i1, then the value arguments must be
8347vectors of the same size, and the selection is done element by element.
8348
David Majnemer40a0b592015-03-03 22:45:47 +00008349If the condition is an i1 and the value arguments are vectors of the
8350same size, then an entire vector is selected.
8351
Sean Silvab084af42012-12-07 10:36:55 +00008352Example:
8353""""""""
8354
8355.. code-block:: llvm
8356
8357 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8358
8359.. _i_call:
8360
8361'``call``' Instruction
8362^^^^^^^^^^^^^^^^^^^^^^
8363
8364Syntax:
8365"""""""
8366
8367::
8368
Reid Kleckner5772b772014-04-24 20:14:34 +00008369 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008370 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008371
8372Overview:
8373"""""""""
8374
8375The '``call``' instruction represents a simple function call.
8376
8377Arguments:
8378""""""""""
8379
8380This instruction requires several arguments:
8381
Reid Kleckner5772b772014-04-24 20:14:34 +00008382#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008383 should perform tail call optimization. The ``tail`` marker is a hint that
8384 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008385 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008386 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008387
8388 #. The call will not cause unbounded stack growth if it is part of a
8389 recursive cycle in the call graph.
8390 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8391 forwarded in place.
8392
8393 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008394 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008395 rules:
8396
8397 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8398 or a pointer bitcast followed by a ret instruction.
8399 - The ret instruction must return the (possibly bitcasted) value
8400 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008401 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008402 parameters or return types may differ in pointee type, but not
8403 in address space.
8404 - The calling conventions of the caller and callee must match.
8405 - All ABI-impacting function attributes, such as sret, byval, inreg,
8406 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008407 - The callee must be varargs iff the caller is varargs. Bitcasting a
8408 non-varargs function to the appropriate varargs type is legal so
8409 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008410
8411 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8412 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008413
8414 - Caller and callee both have the calling convention ``fastcc``.
8415 - The call is in tail position (ret immediately follows call and ret
8416 uses value of call or is void).
8417 - Option ``-tailcallopt`` is enabled, or
8418 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008419 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008420 met. <CodeGenerator.html#tailcallopt>`_
8421
8422#. The optional "cconv" marker indicates which :ref:`calling
8423 convention <callingconv>` the call should use. If none is
8424 specified, the call defaults to using C calling conventions. The
8425 calling convention of the call must match the calling convention of
8426 the target function, or else the behavior is undefined.
8427#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8428 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8429 are valid here.
8430#. '``ty``': the type of the call instruction itself which is also the
8431 type of the return value. Functions that return no value are marked
8432 ``void``.
8433#. '``fnty``': shall be the signature of the pointer to function value
8434 being invoked. The argument types must match the types implied by
8435 this signature. This type can be omitted if the function is not
8436 varargs and if the function type does not return a pointer to a
8437 function.
8438#. '``fnptrval``': An LLVM value containing a pointer to a function to
8439 be invoked. In most cases, this is a direct function invocation, but
8440 indirect ``call``'s are just as possible, calling an arbitrary pointer
8441 to function value.
8442#. '``function args``': argument list whose types match the function
8443 signature argument types and parameter attributes. All arguments must
8444 be of :ref:`first class <t_firstclass>` type. If the function signature
8445 indicates the function accepts a variable number of arguments, the
8446 extra arguments can be specified.
8447#. The optional :ref:`function attributes <fnattrs>` list. Only
8448 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8449 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008450#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008451
8452Semantics:
8453""""""""""
8454
8455The '``call``' instruction is used to cause control flow to transfer to
8456a specified function, with its incoming arguments bound to the specified
8457values. Upon a '``ret``' instruction in the called function, control
8458flow continues with the instruction after the function call, and the
8459return value of the function is bound to the result argument.
8460
8461Example:
8462""""""""
8463
8464.. code-block:: llvm
8465
8466 %retval = call i32 @test(i32 %argc)
8467 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8468 %X = tail call i32 @foo() ; yields i32
8469 %Y = tail call fastcc i32 @foo() ; yields i32
8470 call void %foo(i8 97 signext)
8471
8472 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008473 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008474 %gr = extractvalue %struct.A %r, 0 ; yields i32
8475 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8476 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8477 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8478
8479llvm treats calls to some functions with names and arguments that match
8480the standard C99 library as being the C99 library functions, and may
8481perform optimizations or generate code for them under that assumption.
8482This is something we'd like to change in the future to provide better
8483support for freestanding environments and non-C-based languages.
8484
8485.. _i_va_arg:
8486
8487'``va_arg``' Instruction
8488^^^^^^^^^^^^^^^^^^^^^^^^
8489
8490Syntax:
8491"""""""
8492
8493::
8494
8495 <resultval> = va_arg <va_list*> <arglist>, <argty>
8496
8497Overview:
8498"""""""""
8499
8500The '``va_arg``' instruction is used to access arguments passed through
8501the "variable argument" area of a function call. It is used to implement
8502the ``va_arg`` macro in C.
8503
8504Arguments:
8505""""""""""
8506
8507This instruction takes a ``va_list*`` value and the type of the
8508argument. It returns a value of the specified argument type and
8509increments the ``va_list`` to point to the next argument. The actual
8510type of ``va_list`` is target specific.
8511
8512Semantics:
8513""""""""""
8514
8515The '``va_arg``' instruction loads an argument of the specified type
8516from the specified ``va_list`` and causes the ``va_list`` to point to
8517the next argument. For more information, see the variable argument
8518handling :ref:`Intrinsic Functions <int_varargs>`.
8519
8520It is legal for this instruction to be called in a function which does
8521not take a variable number of arguments, for example, the ``vfprintf``
8522function.
8523
8524``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8525function <intrinsics>` because it takes a type as an argument.
8526
8527Example:
8528""""""""
8529
8530See the :ref:`variable argument processing <int_varargs>` section.
8531
8532Note that the code generator does not yet fully support va\_arg on many
8533targets. Also, it does not currently support va\_arg with aggregate
8534types on any target.
8535
8536.. _i_landingpad:
8537
8538'``landingpad``' Instruction
8539^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8540
8541Syntax:
8542"""""""
8543
8544::
8545
David Majnemer7fddecc2015-06-17 20:52:32 +00008546 <resultval> = landingpad <resultty> <clause>+
8547 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008548
8549 <clause> := catch <type> <value>
8550 <clause> := filter <array constant type> <array constant>
8551
8552Overview:
8553"""""""""
8554
8555The '``landingpad``' instruction is used by `LLVM's exception handling
8556system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008557is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008558code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008559defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008560re-entry to the function. The ``resultval`` has the type ``resultty``.
8561
8562Arguments:
8563""""""""""
8564
David Majnemer7fddecc2015-06-17 20:52:32 +00008565The optional
Sean Silvab084af42012-12-07 10:36:55 +00008566``cleanup`` flag indicates that the landing pad block is a cleanup.
8567
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008568A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008569contains the global variable representing the "type" that may be caught
8570or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8571clause takes an array constant as its argument. Use
8572"``[0 x i8**] undef``" for a filter which cannot throw. The
8573'``landingpad``' instruction must contain *at least* one ``clause`` or
8574the ``cleanup`` flag.
8575
8576Semantics:
8577""""""""""
8578
8579The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008580:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008581therefore the "result type" of the ``landingpad`` instruction. As with
8582calling conventions, how the personality function results are
8583represented in LLVM IR is target specific.
8584
8585The clauses are applied in order from top to bottom. If two
8586``landingpad`` instructions are merged together through inlining, the
8587clauses from the calling function are appended to the list of clauses.
8588When the call stack is being unwound due to an exception being thrown,
8589the exception is compared against each ``clause`` in turn. If it doesn't
8590match any of the clauses, and the ``cleanup`` flag is not set, then
8591unwinding continues further up the call stack.
8592
8593The ``landingpad`` instruction has several restrictions:
8594
8595- A landing pad block is a basic block which is the unwind destination
8596 of an '``invoke``' instruction.
8597- A landing pad block must have a '``landingpad``' instruction as its
8598 first non-PHI instruction.
8599- There can be only one '``landingpad``' instruction within the landing
8600 pad block.
8601- A basic block that is not a landing pad block may not include a
8602 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008603
8604Example:
8605""""""""
8606
8607.. code-block:: llvm
8608
8609 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008610 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008611 catch i8** @_ZTIi
8612 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008613 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008614 cleanup
8615 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008616 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008617 catch i8** @_ZTIi
8618 filter [1 x i8**] [@_ZTId]
8619
David Majnemer654e1302015-07-31 17:58:14 +00008620.. _i_cleanuppad:
8621
8622'``cleanuppad``' Instruction
8623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8624
8625Syntax:
8626"""""""
8627
8628::
8629
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008630 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008631
8632Overview:
8633"""""""""
8634
8635The '``cleanuppad``' instruction is used by `LLVM's exception handling
8636system <ExceptionHandling.html#overview>`_ to specify that a basic block
8637is a cleanup block --- one where a personality routine attempts to
8638transfer control to run cleanup actions.
8639The ``args`` correspond to whatever additional
8640information the :ref:`personality function <personalityfn>` requires to
8641execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008642The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008643match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8644and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008645
8646Arguments:
8647""""""""""
8648
8649The instruction takes a list of arbitrary values which are interpreted
8650by the :ref:`personality function <personalityfn>`.
8651
8652Semantics:
8653""""""""""
8654
David Majnemer654e1302015-07-31 17:58:14 +00008655When the call stack is being unwound due to an exception being thrown,
8656the :ref:`personality function <personalityfn>` transfers control to the
8657``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008658As with calling conventions, how the personality function results are
8659represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008660
8661The ``cleanuppad`` instruction has several restrictions:
8662
8663- A cleanup block is a basic block which is the unwind destination of
8664 an exceptional instruction.
8665- A cleanup block must have a '``cleanuppad``' instruction as its
8666 first non-PHI instruction.
8667- There can be only one '``cleanuppad``' instruction within the
8668 cleanup block.
8669- A basic block that is not a cleanup block may not include a
8670 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008671- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8672 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008673- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008674 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8675 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008676- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008677 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8678 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008679
8680Example:
8681""""""""
8682
8683.. code-block:: llvm
8684
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008685 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008686
Sean Silvab084af42012-12-07 10:36:55 +00008687.. _intrinsics:
8688
8689Intrinsic Functions
8690===================
8691
8692LLVM supports the notion of an "intrinsic function". These functions
8693have well known names and semantics and are required to follow certain
8694restrictions. Overall, these intrinsics represent an extension mechanism
8695for the LLVM language that does not require changing all of the
8696transformations in LLVM when adding to the language (or the bitcode
8697reader/writer, the parser, etc...).
8698
8699Intrinsic function names must all start with an "``llvm.``" prefix. This
8700prefix is reserved in LLVM for intrinsic names; thus, function names may
8701not begin with this prefix. Intrinsic functions must always be external
8702functions: you cannot define the body of intrinsic functions. Intrinsic
8703functions may only be used in call or invoke instructions: it is illegal
8704to take the address of an intrinsic function. Additionally, because
8705intrinsic functions are part of the LLVM language, it is required if any
8706are added that they be documented here.
8707
8708Some intrinsic functions can be overloaded, i.e., the intrinsic
8709represents a family of functions that perform the same operation but on
8710different data types. Because LLVM can represent over 8 million
8711different integer types, overloading is used commonly to allow an
8712intrinsic function to operate on any integer type. One or more of the
8713argument types or the result type can be overloaded to accept any
8714integer type. Argument types may also be defined as exactly matching a
8715previous argument's type or the result type. This allows an intrinsic
8716function which accepts multiple arguments, but needs all of them to be
8717of the same type, to only be overloaded with respect to a single
8718argument or the result.
8719
8720Overloaded intrinsics will have the names of its overloaded argument
8721types encoded into its function name, each preceded by a period. Only
8722those types which are overloaded result in a name suffix. Arguments
8723whose type is matched against another type do not. For example, the
8724``llvm.ctpop`` function can take an integer of any width and returns an
8725integer of exactly the same integer width. This leads to a family of
8726functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8727``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8728overloaded, and only one type suffix is required. Because the argument's
8729type is matched against the return type, it does not require its own
8730name suffix.
8731
8732To learn how to add an intrinsic function, please see the `Extending
8733LLVM Guide <ExtendingLLVM.html>`_.
8734
8735.. _int_varargs:
8736
8737Variable Argument Handling Intrinsics
8738-------------------------------------
8739
8740Variable argument support is defined in LLVM with the
8741:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8742functions. These functions are related to the similarly named macros
8743defined in the ``<stdarg.h>`` header file.
8744
8745All of these functions operate on arguments that use a target-specific
8746value type "``va_list``". The LLVM assembly language reference manual
8747does not define what this type is, so all transformations should be
8748prepared to handle these functions regardless of the type used.
8749
8750This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8751variable argument handling intrinsic functions are used.
8752
8753.. code-block:: llvm
8754
Tim Northoverab60bb92014-11-02 01:21:51 +00008755 ; This struct is different for every platform. For most platforms,
8756 ; it is merely an i8*.
8757 %struct.va_list = type { i8* }
8758
8759 ; For Unix x86_64 platforms, va_list is the following struct:
8760 ; %struct.va_list = type { i32, i32, i8*, i8* }
8761
Sean Silvab084af42012-12-07 10:36:55 +00008762 define i32 @test(i32 %X, ...) {
8763 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008764 %ap = alloca %struct.va_list
8765 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008766 call void @llvm.va_start(i8* %ap2)
8767
8768 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008769 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008770
8771 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8772 %aq = alloca i8*
8773 %aq2 = bitcast i8** %aq to i8*
8774 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8775 call void @llvm.va_end(i8* %aq2)
8776
8777 ; Stop processing of arguments.
8778 call void @llvm.va_end(i8* %ap2)
8779 ret i32 %tmp
8780 }
8781
8782 declare void @llvm.va_start(i8*)
8783 declare void @llvm.va_copy(i8*, i8*)
8784 declare void @llvm.va_end(i8*)
8785
8786.. _int_va_start:
8787
8788'``llvm.va_start``' Intrinsic
8789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8790
8791Syntax:
8792"""""""
8793
8794::
8795
Nick Lewycky04f6de02013-09-11 22:04:52 +00008796 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008797
8798Overview:
8799"""""""""
8800
8801The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8802subsequent use by ``va_arg``.
8803
8804Arguments:
8805""""""""""
8806
8807The argument is a pointer to a ``va_list`` element to initialize.
8808
8809Semantics:
8810""""""""""
8811
8812The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8813available in C. In a target-dependent way, it initializes the
8814``va_list`` element to which the argument points, so that the next call
8815to ``va_arg`` will produce the first variable argument passed to the
8816function. Unlike the C ``va_start`` macro, this intrinsic does not need
8817to know the last argument of the function as the compiler can figure
8818that out.
8819
8820'``llvm.va_end``' Intrinsic
8821^^^^^^^^^^^^^^^^^^^^^^^^^^^
8822
8823Syntax:
8824"""""""
8825
8826::
8827
8828 declare void @llvm.va_end(i8* <arglist>)
8829
8830Overview:
8831"""""""""
8832
8833The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8834initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8835
8836Arguments:
8837""""""""""
8838
8839The argument is a pointer to a ``va_list`` to destroy.
8840
8841Semantics:
8842""""""""""
8843
8844The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8845available in C. In a target-dependent way, it destroys the ``va_list``
8846element to which the argument points. Calls to
8847:ref:`llvm.va_start <int_va_start>` and
8848:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8849``llvm.va_end``.
8850
8851.. _int_va_copy:
8852
8853'``llvm.va_copy``' Intrinsic
8854^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8855
8856Syntax:
8857"""""""
8858
8859::
8860
8861 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8862
8863Overview:
8864"""""""""
8865
8866The '``llvm.va_copy``' intrinsic copies the current argument position
8867from the source argument list to the destination argument list.
8868
8869Arguments:
8870""""""""""
8871
8872The first argument is a pointer to a ``va_list`` element to initialize.
8873The second argument is a pointer to a ``va_list`` element to copy from.
8874
8875Semantics:
8876""""""""""
8877
8878The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8879available in C. In a target-dependent way, it copies the source
8880``va_list`` element into the destination ``va_list`` element. This
8881intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8882arbitrarily complex and require, for example, memory allocation.
8883
8884Accurate Garbage Collection Intrinsics
8885--------------------------------------
8886
Philip Reamesc5b0f562015-02-25 23:52:06 +00008887LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008888(GC) requires the frontend to generate code containing appropriate intrinsic
8889calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008890intrinsics in a manner which is appropriate for the target collector.
8891
Sean Silvab084af42012-12-07 10:36:55 +00008892These intrinsics allow identification of :ref:`GC roots on the
8893stack <int_gcroot>`, as well as garbage collector implementations that
8894require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008895Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008896these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008897details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008898
Philip Reamesf80bbff2015-02-25 23:45:20 +00008899Experimental Statepoint Intrinsics
8900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8901
8902LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008903collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008904to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008905:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008906differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008907<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008908described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008909
8910.. _int_gcroot:
8911
8912'``llvm.gcroot``' Intrinsic
8913^^^^^^^^^^^^^^^^^^^^^^^^^^^
8914
8915Syntax:
8916"""""""
8917
8918::
8919
8920 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8921
8922Overview:
8923"""""""""
8924
8925The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8926the code generator, and allows some metadata to be associated with it.
8927
8928Arguments:
8929""""""""""
8930
8931The first argument specifies the address of a stack object that contains
8932the root pointer. The second pointer (which must be either a constant or
8933a global value address) contains the meta-data to be associated with the
8934root.
8935
8936Semantics:
8937""""""""""
8938
8939At runtime, a call to this intrinsic stores a null pointer into the
8940"ptrloc" location. At compile-time, the code generator generates
8941information to allow the runtime to find the pointer at GC safe points.
8942The '``llvm.gcroot``' intrinsic may only be used in a function which
8943:ref:`specifies a GC algorithm <gc>`.
8944
8945.. _int_gcread:
8946
8947'``llvm.gcread``' Intrinsic
8948^^^^^^^^^^^^^^^^^^^^^^^^^^^
8949
8950Syntax:
8951"""""""
8952
8953::
8954
8955 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8956
8957Overview:
8958"""""""""
8959
8960The '``llvm.gcread``' intrinsic identifies reads of references from heap
8961locations, allowing garbage collector implementations that require read
8962barriers.
8963
8964Arguments:
8965""""""""""
8966
8967The second argument is the address to read from, which should be an
8968address allocated from the garbage collector. The first object is a
8969pointer to the start of the referenced object, if needed by the language
8970runtime (otherwise null).
8971
8972Semantics:
8973""""""""""
8974
8975The '``llvm.gcread``' intrinsic has the same semantics as a load
8976instruction, but may be replaced with substantially more complex code by
8977the garbage collector runtime, as needed. The '``llvm.gcread``'
8978intrinsic may only be used in a function which :ref:`specifies a GC
8979algorithm <gc>`.
8980
8981.. _int_gcwrite:
8982
8983'``llvm.gcwrite``' Intrinsic
8984^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8985
8986Syntax:
8987"""""""
8988
8989::
8990
8991 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8992
8993Overview:
8994"""""""""
8995
8996The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8997locations, allowing garbage collector implementations that require write
8998barriers (such as generational or reference counting collectors).
8999
9000Arguments:
9001""""""""""
9002
9003The first argument is the reference to store, the second is the start of
9004the object to store it to, and the third is the address of the field of
9005Obj to store to. If the runtime does not require a pointer to the
9006object, Obj may be null.
9007
9008Semantics:
9009""""""""""
9010
9011The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9012instruction, but may be replaced with substantially more complex code by
9013the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9014intrinsic may only be used in a function which :ref:`specifies a GC
9015algorithm <gc>`.
9016
9017Code Generator Intrinsics
9018-------------------------
9019
9020These intrinsics are provided by LLVM to expose special features that
9021may only be implemented with code generator support.
9022
9023'``llvm.returnaddress``' Intrinsic
9024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9025
9026Syntax:
9027"""""""
9028
9029::
9030
9031 declare i8 *@llvm.returnaddress(i32 <level>)
9032
9033Overview:
9034"""""""""
9035
9036The '``llvm.returnaddress``' intrinsic attempts to compute a
9037target-specific value indicating the return address of the current
9038function or one of its callers.
9039
9040Arguments:
9041""""""""""
9042
9043The argument to this intrinsic indicates which function to return the
9044address for. Zero indicates the calling function, one indicates its
9045caller, etc. The argument is **required** to be a constant integer
9046value.
9047
9048Semantics:
9049""""""""""
9050
9051The '``llvm.returnaddress``' intrinsic either returns a pointer
9052indicating the return address of the specified call frame, or zero if it
9053cannot be identified. The value returned by this intrinsic is likely to
9054be incorrect or 0 for arguments other than zero, so it should only be
9055used for debugging purposes.
9056
9057Note that calling this intrinsic does not prevent function inlining or
9058other aggressive transformations, so the value returned may not be that
9059of the obvious source-language caller.
9060
9061'``llvm.frameaddress``' Intrinsic
9062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9063
9064Syntax:
9065"""""""
9066
9067::
9068
9069 declare i8* @llvm.frameaddress(i32 <level>)
9070
9071Overview:
9072"""""""""
9073
9074The '``llvm.frameaddress``' intrinsic attempts to return the
9075target-specific frame pointer value for the specified stack frame.
9076
9077Arguments:
9078""""""""""
9079
9080The argument to this intrinsic indicates which function to return the
9081frame pointer for. Zero indicates the calling function, one indicates
9082its caller, etc. The argument is **required** to be a constant integer
9083value.
9084
9085Semantics:
9086""""""""""
9087
9088The '``llvm.frameaddress``' intrinsic either returns a pointer
9089indicating the frame address of the specified call frame, or zero if it
9090cannot be identified. The value returned by this intrinsic is likely to
9091be incorrect or 0 for arguments other than zero, so it should only be
9092used for debugging purposes.
9093
9094Note that calling this intrinsic does not prevent function inlining or
9095other aggressive transformations, so the value returned may not be that
9096of the obvious source-language caller.
9097
Reid Kleckner60381792015-07-07 22:25:32 +00009098'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9100
9101Syntax:
9102"""""""
9103
9104::
9105
Reid Kleckner60381792015-07-07 22:25:32 +00009106 declare void @llvm.localescape(...)
9107 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009108
9109Overview:
9110"""""""""
9111
Reid Kleckner60381792015-07-07 22:25:32 +00009112The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9113allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009114live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009115computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009116
9117Arguments:
9118""""""""""
9119
Reid Kleckner60381792015-07-07 22:25:32 +00009120All arguments to '``llvm.localescape``' must be pointers to static allocas or
9121casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009122once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009123
Reid Kleckner60381792015-07-07 22:25:32 +00009124The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009125bitcasted pointer to a function defined in the current module. The code
9126generator cannot determine the frame allocation offset of functions defined in
9127other modules.
9128
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009129The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9130call frame that is currently live. The return value of '``llvm.localaddress``'
9131is one way to produce such a value, but various runtimes also expose a suitable
9132pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009133
Reid Kleckner60381792015-07-07 22:25:32 +00009134The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9135'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009136
Reid Klecknere9b89312015-01-13 00:48:10 +00009137Semantics:
9138""""""""""
9139
Reid Kleckner60381792015-07-07 22:25:32 +00009140These intrinsics allow a group of functions to share access to a set of local
9141stack allocations of a one parent function. The parent function may call the
9142'``llvm.localescape``' intrinsic once from the function entry block, and the
9143child functions can use '``llvm.localrecover``' to access the escaped allocas.
9144The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9145the escaped allocas are allocated, which would break attempts to use
9146'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009147
Renato Golinc7aea402014-05-06 16:51:25 +00009148.. _int_read_register:
9149.. _int_write_register:
9150
9151'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9153
9154Syntax:
9155"""""""
9156
9157::
9158
9159 declare i32 @llvm.read_register.i32(metadata)
9160 declare i64 @llvm.read_register.i64(metadata)
9161 declare void @llvm.write_register.i32(metadata, i32 @value)
9162 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009163 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009164
9165Overview:
9166"""""""""
9167
9168The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9169provides access to the named register. The register must be valid on
9170the architecture being compiled to. The type needs to be compatible
9171with the register being read.
9172
9173Semantics:
9174""""""""""
9175
9176The '``llvm.read_register``' intrinsic returns the current value of the
9177register, where possible. The '``llvm.write_register``' intrinsic sets
9178the current value of the register, where possible.
9179
9180This is useful to implement named register global variables that need
9181to always be mapped to a specific register, as is common practice on
9182bare-metal programs including OS kernels.
9183
9184The compiler doesn't check for register availability or use of the used
9185register in surrounding code, including inline assembly. Because of that,
9186allocatable registers are not supported.
9187
9188Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009189architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009190work is needed to support other registers and even more so, allocatable
9191registers.
9192
Sean Silvab084af42012-12-07 10:36:55 +00009193.. _int_stacksave:
9194
9195'``llvm.stacksave``' Intrinsic
9196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9197
9198Syntax:
9199"""""""
9200
9201::
9202
9203 declare i8* @llvm.stacksave()
9204
9205Overview:
9206"""""""""
9207
9208The '``llvm.stacksave``' intrinsic is used to remember the current state
9209of the function stack, for use with
9210:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9211implementing language features like scoped automatic variable sized
9212arrays in C99.
9213
9214Semantics:
9215""""""""""
9216
9217This intrinsic returns a opaque pointer value that can be passed to
9218:ref:`llvm.stackrestore <int_stackrestore>`. When an
9219``llvm.stackrestore`` intrinsic is executed with a value saved from
9220``llvm.stacksave``, it effectively restores the state of the stack to
9221the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9222practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9223were allocated after the ``llvm.stacksave`` was executed.
9224
9225.. _int_stackrestore:
9226
9227'``llvm.stackrestore``' Intrinsic
9228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9229
9230Syntax:
9231"""""""
9232
9233::
9234
9235 declare void @llvm.stackrestore(i8* %ptr)
9236
9237Overview:
9238"""""""""
9239
9240The '``llvm.stackrestore``' intrinsic is used to restore the state of
9241the function stack to the state it was in when the corresponding
9242:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9243useful for implementing language features like scoped automatic variable
9244sized arrays in C99.
9245
9246Semantics:
9247""""""""""
9248
9249See the description for :ref:`llvm.stacksave <int_stacksave>`.
9250
9251'``llvm.prefetch``' Intrinsic
9252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9253
9254Syntax:
9255"""""""
9256
9257::
9258
9259 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9260
9261Overview:
9262"""""""""
9263
9264The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9265insert a prefetch instruction if supported; otherwise, it is a noop.
9266Prefetches have no effect on the behavior of the program but can change
9267its performance characteristics.
9268
9269Arguments:
9270""""""""""
9271
9272``address`` is the address to be prefetched, ``rw`` is the specifier
9273determining if the fetch should be for a read (0) or write (1), and
9274``locality`` is a temporal locality specifier ranging from (0) - no
9275locality, to (3) - extremely local keep in cache. The ``cache type``
9276specifies whether the prefetch is performed on the data (1) or
9277instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9278arguments must be constant integers.
9279
9280Semantics:
9281""""""""""
9282
9283This intrinsic does not modify the behavior of the program. In
9284particular, prefetches cannot trap and do not produce a value. On
9285targets that support this intrinsic, the prefetch can provide hints to
9286the processor cache for better performance.
9287
9288'``llvm.pcmarker``' Intrinsic
9289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9290
9291Syntax:
9292"""""""
9293
9294::
9295
9296 declare void @llvm.pcmarker(i32 <id>)
9297
9298Overview:
9299"""""""""
9300
9301The '``llvm.pcmarker``' intrinsic is a method to export a Program
9302Counter (PC) in a region of code to simulators and other tools. The
9303method is target specific, but it is expected that the marker will use
9304exported symbols to transmit the PC of the marker. The marker makes no
9305guarantees that it will remain with any specific instruction after
9306optimizations. It is possible that the presence of a marker will inhibit
9307optimizations. The intended use is to be inserted after optimizations to
9308allow correlations of simulation runs.
9309
9310Arguments:
9311""""""""""
9312
9313``id`` is a numerical id identifying the marker.
9314
9315Semantics:
9316""""""""""
9317
9318This intrinsic does not modify the behavior of the program. Backends
9319that do not support this intrinsic may ignore it.
9320
9321'``llvm.readcyclecounter``' Intrinsic
9322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9323
9324Syntax:
9325"""""""
9326
9327::
9328
9329 declare i64 @llvm.readcyclecounter()
9330
9331Overview:
9332"""""""""
9333
9334The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9335counter register (or similar low latency, high accuracy clocks) on those
9336targets that support it. On X86, it should map to RDTSC. On Alpha, it
9337should map to RPCC. As the backing counters overflow quickly (on the
9338order of 9 seconds on alpha), this should only be used for small
9339timings.
9340
9341Semantics:
9342""""""""""
9343
9344When directly supported, reading the cycle counter should not modify any
9345memory. Implementations are allowed to either return a application
9346specific value or a system wide value. On backends without support, this
9347is lowered to a constant 0.
9348
Tim Northoverbc933082013-05-23 19:11:20 +00009349Note that runtime support may be conditional on the privilege-level code is
9350running at and the host platform.
9351
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009352'``llvm.clear_cache``' Intrinsic
9353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9354
9355Syntax:
9356"""""""
9357
9358::
9359
9360 declare void @llvm.clear_cache(i8*, i8*)
9361
9362Overview:
9363"""""""""
9364
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009365The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9366in the specified range to the execution unit of the processor. On
9367targets with non-unified instruction and data cache, the implementation
9368flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009369
9370Semantics:
9371""""""""""
9372
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009373On platforms with coherent instruction and data caches (e.g. x86), this
9374intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009375cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009376instructions or a system call, if cache flushing requires special
9377privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009378
Sean Silvad02bf3e2014-04-07 22:29:53 +00009379The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009380time library.
Renato Golin93010e62014-03-26 14:01:32 +00009381
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009382This instrinsic does *not* empty the instruction pipeline. Modifications
9383of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009384
Justin Bogner61ba2e32014-12-08 18:02:35 +00009385'``llvm.instrprof_increment``' Intrinsic
9386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9387
9388Syntax:
9389"""""""
9390
9391::
9392
9393 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9394 i32 <num-counters>, i32 <index>)
9395
9396Overview:
9397"""""""""
9398
9399The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9400frontend for use with instrumentation based profiling. These will be
9401lowered by the ``-instrprof`` pass to generate execution counts of a
9402program at runtime.
9403
9404Arguments:
9405""""""""""
9406
9407The first argument is a pointer to a global variable containing the
9408name of the entity being instrumented. This should generally be the
9409(mangled) function name for a set of counters.
9410
9411The second argument is a hash value that can be used by the consumer
9412of the profile data to detect changes to the instrumented source, and
9413the third is the number of counters associated with ``name``. It is an
9414error if ``hash`` or ``num-counters`` differ between two instances of
9415``instrprof_increment`` that refer to the same name.
9416
9417The last argument refers to which of the counters for ``name`` should
9418be incremented. It should be a value between 0 and ``num-counters``.
9419
9420Semantics:
9421""""""""""
9422
9423This intrinsic represents an increment of a profiling counter. It will
9424cause the ``-instrprof`` pass to generate the appropriate data
9425structures and the code to increment the appropriate value, in a
9426format that can be written out by a compiler runtime and consumed via
9427the ``llvm-profdata`` tool.
9428
Sean Silvab084af42012-12-07 10:36:55 +00009429Standard C Library Intrinsics
9430-----------------------------
9431
9432LLVM provides intrinsics for a few important standard C library
9433functions. These intrinsics allow source-language front-ends to pass
9434information about the alignment of the pointer arguments to the code
9435generator, providing opportunity for more efficient code generation.
9436
9437.. _int_memcpy:
9438
9439'``llvm.memcpy``' Intrinsic
9440^^^^^^^^^^^^^^^^^^^^^^^^^^^
9441
9442Syntax:
9443"""""""
9444
9445This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9446integer bit width and for different address spaces. Not all targets
9447support all bit widths however.
9448
9449::
9450
9451 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9452 i32 <len>, i32 <align>, i1 <isvolatile>)
9453 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9454 i64 <len>, i32 <align>, i1 <isvolatile>)
9455
9456Overview:
9457"""""""""
9458
9459The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9460source location to the destination location.
9461
9462Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9463intrinsics do not return a value, takes extra alignment/isvolatile
9464arguments and the pointers can be in specified address spaces.
9465
9466Arguments:
9467""""""""""
9468
9469The first argument is a pointer to the destination, the second is a
9470pointer to the source. The third argument is an integer argument
9471specifying the number of bytes to copy, the fourth argument is the
9472alignment of the source and destination locations, and the fifth is a
9473boolean indicating a volatile access.
9474
9475If the call to this intrinsic has an alignment value that is not 0 or 1,
9476then the caller guarantees that both the source and destination pointers
9477are aligned to that boundary.
9478
9479If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9480a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9481very cleanly specified and it is unwise to depend on it.
9482
9483Semantics:
9484""""""""""
9485
9486The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9487source location to the destination location, which are not allowed to
9488overlap. It copies "len" bytes of memory over. If the argument is known
9489to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009490argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009491
9492'``llvm.memmove``' Intrinsic
9493^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9494
9495Syntax:
9496"""""""
9497
9498This is an overloaded intrinsic. You can use llvm.memmove on any integer
9499bit width and for different address space. Not all targets support all
9500bit widths however.
9501
9502::
9503
9504 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9505 i32 <len>, i32 <align>, i1 <isvolatile>)
9506 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9507 i64 <len>, i32 <align>, i1 <isvolatile>)
9508
9509Overview:
9510"""""""""
9511
9512The '``llvm.memmove.*``' intrinsics move a block of memory from the
9513source location to the destination location. It is similar to the
9514'``llvm.memcpy``' intrinsic but allows the two memory locations to
9515overlap.
9516
9517Note that, unlike the standard libc function, the ``llvm.memmove.*``
9518intrinsics do not return a value, takes extra alignment/isvolatile
9519arguments and the pointers can be in specified address spaces.
9520
9521Arguments:
9522""""""""""
9523
9524The first argument is a pointer to the destination, the second is a
9525pointer to the source. The third argument is an integer argument
9526specifying the number of bytes to copy, the fourth argument is the
9527alignment of the source and destination locations, and the fifth is a
9528boolean indicating a volatile access.
9529
9530If the call to this intrinsic has an alignment value that is not 0 or 1,
9531then the caller guarantees that the source and destination pointers are
9532aligned to that boundary.
9533
9534If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9535is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9536not very cleanly specified and it is unwise to depend on it.
9537
9538Semantics:
9539""""""""""
9540
9541The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9542source location to the destination location, which may overlap. It
9543copies "len" bytes of memory over. If the argument is known to be
9544aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009545otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009546
9547'``llvm.memset.*``' Intrinsics
9548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9549
9550Syntax:
9551"""""""
9552
9553This is an overloaded intrinsic. You can use llvm.memset on any integer
9554bit width and for different address spaces. However, not all targets
9555support all bit widths.
9556
9557::
9558
9559 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9560 i32 <len>, i32 <align>, i1 <isvolatile>)
9561 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9562 i64 <len>, i32 <align>, i1 <isvolatile>)
9563
9564Overview:
9565"""""""""
9566
9567The '``llvm.memset.*``' intrinsics fill a block of memory with a
9568particular byte value.
9569
9570Note that, unlike the standard libc function, the ``llvm.memset``
9571intrinsic does not return a value and takes extra alignment/volatile
9572arguments. Also, the destination can be in an arbitrary address space.
9573
9574Arguments:
9575""""""""""
9576
9577The first argument is a pointer to the destination to fill, the second
9578is the byte value with which to fill it, the third argument is an
9579integer argument specifying the number of bytes to fill, and the fourth
9580argument is the known alignment of the destination location.
9581
9582If the call to this intrinsic has an alignment value that is not 0 or 1,
9583then the caller guarantees that the destination pointer is aligned to
9584that boundary.
9585
9586If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9587a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9588very cleanly specified and it is unwise to depend on it.
9589
9590Semantics:
9591""""""""""
9592
9593The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9594at the destination location. If the argument is known to be aligned to
9595some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009596it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009597
9598'``llvm.sqrt.*``' Intrinsic
9599^^^^^^^^^^^^^^^^^^^^^^^^^^^
9600
9601Syntax:
9602"""""""
9603
9604This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9605floating point or vector of floating point type. Not all targets support
9606all types however.
9607
9608::
9609
9610 declare float @llvm.sqrt.f32(float %Val)
9611 declare double @llvm.sqrt.f64(double %Val)
9612 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9613 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9614 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9615
9616Overview:
9617"""""""""
9618
9619The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9620returning the same value as the libm '``sqrt``' functions would. Unlike
9621``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9622negative numbers other than -0.0 (which allows for better optimization,
9623because there is no need to worry about errno being set).
9624``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9625
9626Arguments:
9627""""""""""
9628
9629The argument and return value are floating point numbers of the same
9630type.
9631
9632Semantics:
9633""""""""""
9634
9635This function returns the sqrt of the specified operand if it is a
9636nonnegative floating point number.
9637
9638'``llvm.powi.*``' Intrinsic
9639^^^^^^^^^^^^^^^^^^^^^^^^^^^
9640
9641Syntax:
9642"""""""
9643
9644This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9645floating point or vector of floating point type. Not all targets support
9646all types however.
9647
9648::
9649
9650 declare float @llvm.powi.f32(float %Val, i32 %power)
9651 declare double @llvm.powi.f64(double %Val, i32 %power)
9652 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9653 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9654 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9655
9656Overview:
9657"""""""""
9658
9659The '``llvm.powi.*``' intrinsics return the first operand raised to the
9660specified (positive or negative) power. The order of evaluation of
9661multiplications is not defined. When a vector of floating point type is
9662used, the second argument remains a scalar integer value.
9663
9664Arguments:
9665""""""""""
9666
9667The second argument is an integer power, and the first is a value to
9668raise to that power.
9669
9670Semantics:
9671""""""""""
9672
9673This function returns the first value raised to the second power with an
9674unspecified sequence of rounding operations.
9675
9676'``llvm.sin.*``' Intrinsic
9677^^^^^^^^^^^^^^^^^^^^^^^^^^
9678
9679Syntax:
9680"""""""
9681
9682This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9683floating point or vector of floating point type. Not all targets support
9684all types however.
9685
9686::
9687
9688 declare float @llvm.sin.f32(float %Val)
9689 declare double @llvm.sin.f64(double %Val)
9690 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9691 declare fp128 @llvm.sin.f128(fp128 %Val)
9692 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9693
9694Overview:
9695"""""""""
9696
9697The '``llvm.sin.*``' intrinsics return the sine of the operand.
9698
9699Arguments:
9700""""""""""
9701
9702The argument and return value are floating point numbers of the same
9703type.
9704
9705Semantics:
9706""""""""""
9707
9708This function returns the sine of the specified operand, returning the
9709same values as the libm ``sin`` functions would, and handles error
9710conditions in the same way.
9711
9712'``llvm.cos.*``' Intrinsic
9713^^^^^^^^^^^^^^^^^^^^^^^^^^
9714
9715Syntax:
9716"""""""
9717
9718This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9719floating point or vector of floating point type. Not all targets support
9720all types however.
9721
9722::
9723
9724 declare float @llvm.cos.f32(float %Val)
9725 declare double @llvm.cos.f64(double %Val)
9726 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9727 declare fp128 @llvm.cos.f128(fp128 %Val)
9728 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9729
9730Overview:
9731"""""""""
9732
9733The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9734
9735Arguments:
9736""""""""""
9737
9738The argument and return value are floating point numbers of the same
9739type.
9740
9741Semantics:
9742""""""""""
9743
9744This function returns the cosine of the specified operand, returning the
9745same values as the libm ``cos`` functions would, and handles error
9746conditions in the same way.
9747
9748'``llvm.pow.*``' Intrinsic
9749^^^^^^^^^^^^^^^^^^^^^^^^^^
9750
9751Syntax:
9752"""""""
9753
9754This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9755floating point or vector of floating point type. Not all targets support
9756all types however.
9757
9758::
9759
9760 declare float @llvm.pow.f32(float %Val, float %Power)
9761 declare double @llvm.pow.f64(double %Val, double %Power)
9762 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9763 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9764 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9765
9766Overview:
9767"""""""""
9768
9769The '``llvm.pow.*``' intrinsics return the first operand raised to the
9770specified (positive or negative) power.
9771
9772Arguments:
9773""""""""""
9774
9775The second argument is a floating point power, and the first is a value
9776to raise to that power.
9777
9778Semantics:
9779""""""""""
9780
9781This function returns the first value raised to the second power,
9782returning the same values as the libm ``pow`` functions would, and
9783handles error conditions in the same way.
9784
9785'``llvm.exp.*``' Intrinsic
9786^^^^^^^^^^^^^^^^^^^^^^^^^^
9787
9788Syntax:
9789"""""""
9790
9791This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9792floating point or vector of floating point type. Not all targets support
9793all types however.
9794
9795::
9796
9797 declare float @llvm.exp.f32(float %Val)
9798 declare double @llvm.exp.f64(double %Val)
9799 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9800 declare fp128 @llvm.exp.f128(fp128 %Val)
9801 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9802
9803Overview:
9804"""""""""
9805
9806The '``llvm.exp.*``' intrinsics perform the exp function.
9807
9808Arguments:
9809""""""""""
9810
9811The argument and return value are floating point numbers of the same
9812type.
9813
9814Semantics:
9815""""""""""
9816
9817This function returns the same values as the libm ``exp`` functions
9818would, and handles error conditions in the same way.
9819
9820'``llvm.exp2.*``' Intrinsic
9821^^^^^^^^^^^^^^^^^^^^^^^^^^^
9822
9823Syntax:
9824"""""""
9825
9826This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9827floating point or vector of floating point type. Not all targets support
9828all types however.
9829
9830::
9831
9832 declare float @llvm.exp2.f32(float %Val)
9833 declare double @llvm.exp2.f64(double %Val)
9834 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9835 declare fp128 @llvm.exp2.f128(fp128 %Val)
9836 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9837
9838Overview:
9839"""""""""
9840
9841The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9842
9843Arguments:
9844""""""""""
9845
9846The argument and return value are floating point numbers of the same
9847type.
9848
9849Semantics:
9850""""""""""
9851
9852This function returns the same values as the libm ``exp2`` functions
9853would, and handles error conditions in the same way.
9854
9855'``llvm.log.*``' Intrinsic
9856^^^^^^^^^^^^^^^^^^^^^^^^^^
9857
9858Syntax:
9859"""""""
9860
9861This is an overloaded intrinsic. You can use ``llvm.log`` on any
9862floating point or vector of floating point type. Not all targets support
9863all types however.
9864
9865::
9866
9867 declare float @llvm.log.f32(float %Val)
9868 declare double @llvm.log.f64(double %Val)
9869 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9870 declare fp128 @llvm.log.f128(fp128 %Val)
9871 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9872
9873Overview:
9874"""""""""
9875
9876The '``llvm.log.*``' intrinsics perform the log function.
9877
9878Arguments:
9879""""""""""
9880
9881The argument and return value are floating point numbers of the same
9882type.
9883
9884Semantics:
9885""""""""""
9886
9887This function returns the same values as the libm ``log`` functions
9888would, and handles error conditions in the same way.
9889
9890'``llvm.log10.*``' Intrinsic
9891^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9892
9893Syntax:
9894"""""""
9895
9896This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9897floating point or vector of floating point type. Not all targets support
9898all types however.
9899
9900::
9901
9902 declare float @llvm.log10.f32(float %Val)
9903 declare double @llvm.log10.f64(double %Val)
9904 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9905 declare fp128 @llvm.log10.f128(fp128 %Val)
9906 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9907
9908Overview:
9909"""""""""
9910
9911The '``llvm.log10.*``' intrinsics perform the log10 function.
9912
9913Arguments:
9914""""""""""
9915
9916The argument and return value are floating point numbers of the same
9917type.
9918
9919Semantics:
9920""""""""""
9921
9922This function returns the same values as the libm ``log10`` functions
9923would, and handles error conditions in the same way.
9924
9925'``llvm.log2.*``' Intrinsic
9926^^^^^^^^^^^^^^^^^^^^^^^^^^^
9927
9928Syntax:
9929"""""""
9930
9931This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9932floating point or vector of floating point type. Not all targets support
9933all types however.
9934
9935::
9936
9937 declare float @llvm.log2.f32(float %Val)
9938 declare double @llvm.log2.f64(double %Val)
9939 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9940 declare fp128 @llvm.log2.f128(fp128 %Val)
9941 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9942
9943Overview:
9944"""""""""
9945
9946The '``llvm.log2.*``' intrinsics perform the log2 function.
9947
9948Arguments:
9949""""""""""
9950
9951The argument and return value are floating point numbers of the same
9952type.
9953
9954Semantics:
9955""""""""""
9956
9957This function returns the same values as the libm ``log2`` functions
9958would, and handles error conditions in the same way.
9959
9960'``llvm.fma.*``' Intrinsic
9961^^^^^^^^^^^^^^^^^^^^^^^^^^
9962
9963Syntax:
9964"""""""
9965
9966This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9967floating point or vector of floating point type. Not all targets support
9968all types however.
9969
9970::
9971
9972 declare float @llvm.fma.f32(float %a, float %b, float %c)
9973 declare double @llvm.fma.f64(double %a, double %b, double %c)
9974 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9975 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9976 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9977
9978Overview:
9979"""""""""
9980
9981The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9982operation.
9983
9984Arguments:
9985""""""""""
9986
9987The argument and return value are floating point numbers of the same
9988type.
9989
9990Semantics:
9991""""""""""
9992
9993This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009994would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009995
9996'``llvm.fabs.*``' Intrinsic
9997^^^^^^^^^^^^^^^^^^^^^^^^^^^
9998
9999Syntax:
10000"""""""
10001
10002This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10003floating point or vector of floating point type. Not all targets support
10004all types however.
10005
10006::
10007
10008 declare float @llvm.fabs.f32(float %Val)
10009 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010010 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010011 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010012 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010013
10014Overview:
10015"""""""""
10016
10017The '``llvm.fabs.*``' intrinsics return the absolute value of the
10018operand.
10019
10020Arguments:
10021""""""""""
10022
10023The argument and return value are floating point numbers of the same
10024type.
10025
10026Semantics:
10027""""""""""
10028
10029This function returns the same values as the libm ``fabs`` functions
10030would, and handles error conditions in the same way.
10031
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010032'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010034
10035Syntax:
10036"""""""
10037
10038This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10039floating point or vector of floating point type. Not all targets support
10040all types however.
10041
10042::
10043
Matt Arsenault64313c92014-10-22 18:25:02 +000010044 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10045 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10046 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10047 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10048 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010049
10050Overview:
10051"""""""""
10052
10053The '``llvm.minnum.*``' intrinsics return the minimum of the two
10054arguments.
10055
10056
10057Arguments:
10058""""""""""
10059
10060The arguments and return value are floating point numbers of the same
10061type.
10062
10063Semantics:
10064""""""""""
10065
10066Follows the IEEE-754 semantics for minNum, which also match for libm's
10067fmin.
10068
10069If either operand is a NaN, returns the other non-NaN operand. Returns
10070NaN only if both operands are NaN. If the operands compare equal,
10071returns a value that compares equal to both operands. This means that
10072fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10073
10074'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010076
10077Syntax:
10078"""""""
10079
10080This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10081floating point or vector of floating point type. Not all targets support
10082all types however.
10083
10084::
10085
Matt Arsenault64313c92014-10-22 18:25:02 +000010086 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10087 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10088 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10089 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10090 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010091
10092Overview:
10093"""""""""
10094
10095The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10096arguments.
10097
10098
10099Arguments:
10100""""""""""
10101
10102The arguments and return value are floating point numbers of the same
10103type.
10104
10105Semantics:
10106""""""""""
10107Follows the IEEE-754 semantics for maxNum, which also match for libm's
10108fmax.
10109
10110If either operand is a NaN, returns the other non-NaN operand. Returns
10111NaN only if both operands are NaN. If the operands compare equal,
10112returns a value that compares equal to both operands. This means that
10113fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10114
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010115'``llvm.copysign.*``' Intrinsic
10116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10117
10118Syntax:
10119"""""""
10120
10121This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10122floating point or vector of floating point type. Not all targets support
10123all types however.
10124
10125::
10126
10127 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10128 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10129 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10130 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10131 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10132
10133Overview:
10134"""""""""
10135
10136The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10137first operand and the sign of the second operand.
10138
10139Arguments:
10140""""""""""
10141
10142The arguments and return value are floating point numbers of the same
10143type.
10144
10145Semantics:
10146""""""""""
10147
10148This function returns the same values as the libm ``copysign``
10149functions would, and handles error conditions in the same way.
10150
Sean Silvab084af42012-12-07 10:36:55 +000010151'``llvm.floor.*``' Intrinsic
10152^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10153
10154Syntax:
10155"""""""
10156
10157This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10158floating point or vector of floating point type. Not all targets support
10159all types however.
10160
10161::
10162
10163 declare float @llvm.floor.f32(float %Val)
10164 declare double @llvm.floor.f64(double %Val)
10165 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10166 declare fp128 @llvm.floor.f128(fp128 %Val)
10167 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10168
10169Overview:
10170"""""""""
10171
10172The '``llvm.floor.*``' intrinsics return the floor of the operand.
10173
10174Arguments:
10175""""""""""
10176
10177The argument and return value are floating point numbers of the same
10178type.
10179
10180Semantics:
10181""""""""""
10182
10183This function returns the same values as the libm ``floor`` functions
10184would, and handles error conditions in the same way.
10185
10186'``llvm.ceil.*``' Intrinsic
10187^^^^^^^^^^^^^^^^^^^^^^^^^^^
10188
10189Syntax:
10190"""""""
10191
10192This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10193floating point or vector of floating point type. Not all targets support
10194all types however.
10195
10196::
10197
10198 declare float @llvm.ceil.f32(float %Val)
10199 declare double @llvm.ceil.f64(double %Val)
10200 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10201 declare fp128 @llvm.ceil.f128(fp128 %Val)
10202 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10203
10204Overview:
10205"""""""""
10206
10207The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10208
10209Arguments:
10210""""""""""
10211
10212The argument and return value are floating point numbers of the same
10213type.
10214
10215Semantics:
10216""""""""""
10217
10218This function returns the same values as the libm ``ceil`` functions
10219would, and handles error conditions in the same way.
10220
10221'``llvm.trunc.*``' Intrinsic
10222^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10223
10224Syntax:
10225"""""""
10226
10227This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10228floating point or vector of floating point type. Not all targets support
10229all types however.
10230
10231::
10232
10233 declare float @llvm.trunc.f32(float %Val)
10234 declare double @llvm.trunc.f64(double %Val)
10235 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10236 declare fp128 @llvm.trunc.f128(fp128 %Val)
10237 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10238
10239Overview:
10240"""""""""
10241
10242The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10243nearest integer not larger in magnitude than the operand.
10244
10245Arguments:
10246""""""""""
10247
10248The argument and return value are floating point numbers of the same
10249type.
10250
10251Semantics:
10252""""""""""
10253
10254This function returns the same values as the libm ``trunc`` functions
10255would, and handles error conditions in the same way.
10256
10257'``llvm.rint.*``' Intrinsic
10258^^^^^^^^^^^^^^^^^^^^^^^^^^^
10259
10260Syntax:
10261"""""""
10262
10263This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10264floating point or vector of floating point type. Not all targets support
10265all types however.
10266
10267::
10268
10269 declare float @llvm.rint.f32(float %Val)
10270 declare double @llvm.rint.f64(double %Val)
10271 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10272 declare fp128 @llvm.rint.f128(fp128 %Val)
10273 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10274
10275Overview:
10276"""""""""
10277
10278The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10279nearest integer. It may raise an inexact floating-point exception if the
10280operand isn't an integer.
10281
10282Arguments:
10283""""""""""
10284
10285The argument and return value are floating point numbers of the same
10286type.
10287
10288Semantics:
10289""""""""""
10290
10291This function returns the same values as the libm ``rint`` functions
10292would, and handles error conditions in the same way.
10293
10294'``llvm.nearbyint.*``' Intrinsic
10295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10296
10297Syntax:
10298"""""""
10299
10300This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10301floating point or vector of floating point type. Not all targets support
10302all types however.
10303
10304::
10305
10306 declare float @llvm.nearbyint.f32(float %Val)
10307 declare double @llvm.nearbyint.f64(double %Val)
10308 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10309 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10310 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10311
10312Overview:
10313"""""""""
10314
10315The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10316nearest integer.
10317
10318Arguments:
10319""""""""""
10320
10321The argument and return value are floating point numbers of the same
10322type.
10323
10324Semantics:
10325""""""""""
10326
10327This function returns the same values as the libm ``nearbyint``
10328functions would, and handles error conditions in the same way.
10329
Hal Finkel171817e2013-08-07 22:49:12 +000010330'``llvm.round.*``' Intrinsic
10331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10332
10333Syntax:
10334"""""""
10335
10336This is an overloaded intrinsic. You can use ``llvm.round`` on any
10337floating point or vector of floating point type. Not all targets support
10338all types however.
10339
10340::
10341
10342 declare float @llvm.round.f32(float %Val)
10343 declare double @llvm.round.f64(double %Val)
10344 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10345 declare fp128 @llvm.round.f128(fp128 %Val)
10346 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10347
10348Overview:
10349"""""""""
10350
10351The '``llvm.round.*``' intrinsics returns the operand rounded to the
10352nearest integer.
10353
10354Arguments:
10355""""""""""
10356
10357The argument and return value are floating point numbers of the same
10358type.
10359
10360Semantics:
10361""""""""""
10362
10363This function returns the same values as the libm ``round``
10364functions would, and handles error conditions in the same way.
10365
Sean Silvab084af42012-12-07 10:36:55 +000010366Bit Manipulation Intrinsics
10367---------------------------
10368
10369LLVM provides intrinsics for a few important bit manipulation
10370operations. These allow efficient code generation for some algorithms.
10371
10372'``llvm.bswap.*``' Intrinsics
10373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10374
10375Syntax:
10376"""""""
10377
10378This is an overloaded intrinsic function. You can use bswap on any
10379integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10380
10381::
10382
10383 declare i16 @llvm.bswap.i16(i16 <id>)
10384 declare i32 @llvm.bswap.i32(i32 <id>)
10385 declare i64 @llvm.bswap.i64(i64 <id>)
10386
10387Overview:
10388"""""""""
10389
10390The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10391values with an even number of bytes (positive multiple of 16 bits).
10392These are useful for performing operations on data that is not in the
10393target's native byte order.
10394
10395Semantics:
10396""""""""""
10397
10398The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10399and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10400intrinsic returns an i32 value that has the four bytes of the input i32
10401swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10402returned i32 will have its bytes in 3, 2, 1, 0 order. The
10403``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10404concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10405respectively).
10406
10407'``llvm.ctpop.*``' Intrinsic
10408^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10409
10410Syntax:
10411"""""""
10412
10413This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10414bit width, or on any vector with integer elements. Not all targets
10415support all bit widths or vector types, however.
10416
10417::
10418
10419 declare i8 @llvm.ctpop.i8(i8 <src>)
10420 declare i16 @llvm.ctpop.i16(i16 <src>)
10421 declare i32 @llvm.ctpop.i32(i32 <src>)
10422 declare i64 @llvm.ctpop.i64(i64 <src>)
10423 declare i256 @llvm.ctpop.i256(i256 <src>)
10424 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10425
10426Overview:
10427"""""""""
10428
10429The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10430in a value.
10431
10432Arguments:
10433""""""""""
10434
10435The only argument is the value to be counted. The argument may be of any
10436integer type, or a vector with integer elements. The return type must
10437match the argument type.
10438
10439Semantics:
10440""""""""""
10441
10442The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10443each element of a vector.
10444
10445'``llvm.ctlz.*``' Intrinsic
10446^^^^^^^^^^^^^^^^^^^^^^^^^^^
10447
10448Syntax:
10449"""""""
10450
10451This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10452integer bit width, or any vector whose elements are integers. Not all
10453targets support all bit widths or vector types, however.
10454
10455::
10456
10457 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10458 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10459 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10460 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10461 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10462 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10463
10464Overview:
10465"""""""""
10466
10467The '``llvm.ctlz``' family of intrinsic functions counts the number of
10468leading zeros in a variable.
10469
10470Arguments:
10471""""""""""
10472
10473The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010474any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010475type must match the first argument type.
10476
10477The second argument must be a constant and is a flag to indicate whether
10478the intrinsic should ensure that a zero as the first argument produces a
10479defined result. Historically some architectures did not provide a
10480defined result for zero values as efficiently, and many algorithms are
10481now predicated on avoiding zero-value inputs.
10482
10483Semantics:
10484""""""""""
10485
10486The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10487zeros in a variable, or within each element of the vector. If
10488``src == 0`` then the result is the size in bits of the type of ``src``
10489if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10490``llvm.ctlz(i32 2) = 30``.
10491
10492'``llvm.cttz.*``' Intrinsic
10493^^^^^^^^^^^^^^^^^^^^^^^^^^^
10494
10495Syntax:
10496"""""""
10497
10498This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10499integer bit width, or any vector of integer elements. Not all targets
10500support all bit widths or vector types, however.
10501
10502::
10503
10504 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10505 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10506 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10507 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10508 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10509 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10510
10511Overview:
10512"""""""""
10513
10514The '``llvm.cttz``' family of intrinsic functions counts the number of
10515trailing zeros.
10516
10517Arguments:
10518""""""""""
10519
10520The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010521any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010522type must match the first argument type.
10523
10524The second argument must be a constant and is a flag to indicate whether
10525the intrinsic should ensure that a zero as the first argument produces a
10526defined result. Historically some architectures did not provide a
10527defined result for zero values as efficiently, and many algorithms are
10528now predicated on avoiding zero-value inputs.
10529
10530Semantics:
10531""""""""""
10532
10533The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10534zeros in a variable, or within each element of a vector. If ``src == 0``
10535then the result is the size in bits of the type of ``src`` if
10536``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10537``llvm.cttz(2) = 1``.
10538
Philip Reames34843ae2015-03-05 05:55:55 +000010539.. _int_overflow:
10540
Sean Silvab084af42012-12-07 10:36:55 +000010541Arithmetic with Overflow Intrinsics
10542-----------------------------------
10543
10544LLVM provides intrinsics for some arithmetic with overflow operations.
10545
10546'``llvm.sadd.with.overflow.*``' Intrinsics
10547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10548
10549Syntax:
10550"""""""
10551
10552This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10553on any integer bit width.
10554
10555::
10556
10557 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10558 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10559 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10560
10561Overview:
10562"""""""""
10563
10564The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10565a signed addition of the two arguments, and indicate whether an overflow
10566occurred during the signed summation.
10567
10568Arguments:
10569""""""""""
10570
10571The arguments (%a and %b) and the first element of the result structure
10572may be of integer types of any bit width, but they must have the same
10573bit width. The second element of the result structure must be of type
10574``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10575addition.
10576
10577Semantics:
10578""""""""""
10579
10580The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010581a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010582first element of which is the signed summation, and the second element
10583of which is a bit specifying if the signed summation resulted in an
10584overflow.
10585
10586Examples:
10587"""""""""
10588
10589.. code-block:: llvm
10590
10591 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10592 %sum = extractvalue {i32, i1} %res, 0
10593 %obit = extractvalue {i32, i1} %res, 1
10594 br i1 %obit, label %overflow, label %normal
10595
10596'``llvm.uadd.with.overflow.*``' Intrinsics
10597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10598
10599Syntax:
10600"""""""
10601
10602This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10603on any integer bit width.
10604
10605::
10606
10607 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10608 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10609 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10610
10611Overview:
10612"""""""""
10613
10614The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10615an unsigned addition of the two arguments, and indicate whether a carry
10616occurred during the unsigned summation.
10617
10618Arguments:
10619""""""""""
10620
10621The arguments (%a and %b) and the first element of the result structure
10622may be of integer types of any bit width, but they must have the same
10623bit width. The second element of the result structure must be of type
10624``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10625addition.
10626
10627Semantics:
10628""""""""""
10629
10630The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010631an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010632first element of which is the sum, and the second element of which is a
10633bit specifying if the unsigned summation resulted in a carry.
10634
10635Examples:
10636"""""""""
10637
10638.. code-block:: llvm
10639
10640 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10641 %sum = extractvalue {i32, i1} %res, 0
10642 %obit = extractvalue {i32, i1} %res, 1
10643 br i1 %obit, label %carry, label %normal
10644
10645'``llvm.ssub.with.overflow.*``' Intrinsics
10646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10647
10648Syntax:
10649"""""""
10650
10651This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10652on any integer bit width.
10653
10654::
10655
10656 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10657 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10658 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10659
10660Overview:
10661"""""""""
10662
10663The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10664a signed subtraction of the two arguments, and indicate whether an
10665overflow occurred during the signed subtraction.
10666
10667Arguments:
10668""""""""""
10669
10670The arguments (%a and %b) and the first element of the result structure
10671may be of integer types of any bit width, but they must have the same
10672bit width. The second element of the result structure must be of type
10673``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10674subtraction.
10675
10676Semantics:
10677""""""""""
10678
10679The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010680a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010681first element of which is the subtraction, and the second element of
10682which is a bit specifying if the signed subtraction resulted in an
10683overflow.
10684
10685Examples:
10686"""""""""
10687
10688.. code-block:: llvm
10689
10690 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10691 %sum = extractvalue {i32, i1} %res, 0
10692 %obit = extractvalue {i32, i1} %res, 1
10693 br i1 %obit, label %overflow, label %normal
10694
10695'``llvm.usub.with.overflow.*``' Intrinsics
10696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10697
10698Syntax:
10699"""""""
10700
10701This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10702on any integer bit width.
10703
10704::
10705
10706 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10707 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10708 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10709
10710Overview:
10711"""""""""
10712
10713The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10714an unsigned subtraction of the two arguments, and indicate whether an
10715overflow occurred during the unsigned subtraction.
10716
10717Arguments:
10718""""""""""
10719
10720The arguments (%a and %b) and the first element of the result structure
10721may be of integer types of any bit width, but they must have the same
10722bit width. The second element of the result structure must be of type
10723``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10724subtraction.
10725
10726Semantics:
10727""""""""""
10728
10729The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010730an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010731the first element of which is the subtraction, and the second element of
10732which is a bit specifying if the unsigned subtraction resulted in an
10733overflow.
10734
10735Examples:
10736"""""""""
10737
10738.. code-block:: llvm
10739
10740 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10741 %sum = extractvalue {i32, i1} %res, 0
10742 %obit = extractvalue {i32, i1} %res, 1
10743 br i1 %obit, label %overflow, label %normal
10744
10745'``llvm.smul.with.overflow.*``' Intrinsics
10746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10747
10748Syntax:
10749"""""""
10750
10751This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10752on any integer bit width.
10753
10754::
10755
10756 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10757 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10758 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10759
10760Overview:
10761"""""""""
10762
10763The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10764a signed multiplication of the two arguments, and indicate whether an
10765overflow occurred during the signed multiplication.
10766
10767Arguments:
10768""""""""""
10769
10770The arguments (%a and %b) and the first element of the result structure
10771may be of integer types of any bit width, but they must have the same
10772bit width. The second element of the result structure must be of type
10773``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10774multiplication.
10775
10776Semantics:
10777""""""""""
10778
10779The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010780a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010781the first element of which is the multiplication, and the second element
10782of which is a bit specifying if the signed multiplication resulted in an
10783overflow.
10784
10785Examples:
10786"""""""""
10787
10788.. code-block:: llvm
10789
10790 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10791 %sum = extractvalue {i32, i1} %res, 0
10792 %obit = extractvalue {i32, i1} %res, 1
10793 br i1 %obit, label %overflow, label %normal
10794
10795'``llvm.umul.with.overflow.*``' Intrinsics
10796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10797
10798Syntax:
10799"""""""
10800
10801This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10802on any integer bit width.
10803
10804::
10805
10806 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10807 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10808 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10809
10810Overview:
10811"""""""""
10812
10813The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10814a unsigned multiplication of the two arguments, and indicate whether an
10815overflow occurred during the unsigned multiplication.
10816
10817Arguments:
10818""""""""""
10819
10820The arguments (%a and %b) and the first element of the result structure
10821may be of integer types of any bit width, but they must have the same
10822bit width. The second element of the result structure must be of type
10823``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10824multiplication.
10825
10826Semantics:
10827""""""""""
10828
10829The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010830an unsigned multiplication of the two arguments. They return a structure ---
10831the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010832element of which is a bit specifying if the unsigned multiplication
10833resulted in an overflow.
10834
10835Examples:
10836"""""""""
10837
10838.. code-block:: llvm
10839
10840 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10841 %sum = extractvalue {i32, i1} %res, 0
10842 %obit = extractvalue {i32, i1} %res, 1
10843 br i1 %obit, label %overflow, label %normal
10844
10845Specialised Arithmetic Intrinsics
10846---------------------------------
10847
Owen Anderson1056a922015-07-11 07:01:27 +000010848'``llvm.canonicalize.*``' Intrinsic
10849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10850
10851Syntax:
10852"""""""
10853
10854::
10855
10856 declare float @llvm.canonicalize.f32(float %a)
10857 declare double @llvm.canonicalize.f64(double %b)
10858
10859Overview:
10860"""""""""
10861
10862The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010863encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010864implementing certain numeric primitives such as frexp. The canonical encoding is
10865defined by IEEE-754-2008 to be:
10866
10867::
10868
10869 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010870 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010871 numbers, infinities, and NaNs, especially in decimal formats.
10872
10873This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010874conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010875according to section 6.2.
10876
10877Examples of non-canonical encodings:
10878
Sean Silvaa1190322015-08-06 22:56:48 +000010879- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010880 converted to a canonical representation per hardware-specific protocol.
10881- Many normal decimal floating point numbers have non-canonical alternative
10882 encodings.
10883- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10884 These are treated as non-canonical encodings of zero and with be flushed to
10885 a zero of the same sign by this operation.
10886
10887Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10888default exception handling must signal an invalid exception, and produce a
10889quiet NaN result.
10890
10891This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010892that the compiler does not constant fold the operation. Likewise, division by
108931.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010894-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10895
Sean Silvaa1190322015-08-06 22:56:48 +000010896``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010897
10898- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10899- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10900 to ``(x == y)``
10901
10902Additionally, the sign of zero must be conserved:
10903``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10904
10905The payload bits of a NaN must be conserved, with two exceptions.
10906First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010907must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010908usual methods.
10909
10910The canonicalization operation may be optimized away if:
10911
Sean Silvaa1190322015-08-06 22:56:48 +000010912- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010913 floating-point operation that is required by the standard to be canonical.
10914- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010915 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010916
Sean Silvab084af42012-12-07 10:36:55 +000010917'``llvm.fmuladd.*``' Intrinsic
10918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10919
10920Syntax:
10921"""""""
10922
10923::
10924
10925 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10926 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10927
10928Overview:
10929"""""""""
10930
10931The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010932expressions that can be fused if the code generator determines that (a) the
10933target instruction set has support for a fused operation, and (b) that the
10934fused operation is more efficient than the equivalent, separate pair of mul
10935and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010936
10937Arguments:
10938""""""""""
10939
10940The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10941multiplicands, a and b, and an addend c.
10942
10943Semantics:
10944""""""""""
10945
10946The expression:
10947
10948::
10949
10950 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10951
10952is equivalent to the expression a \* b + c, except that rounding will
10953not be performed between the multiplication and addition steps if the
10954code generator fuses the operations. Fusion is not guaranteed, even if
10955the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010956corresponding llvm.fma.\* intrinsic function should be used
10957instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010958
10959Examples:
10960"""""""""
10961
10962.. code-block:: llvm
10963
Tim Northover675a0962014-06-13 14:24:23 +000010964 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010965
James Molloy7395a812015-07-16 15:22:46 +000010966
10967'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10969
10970Syntax:
10971"""""""
10972This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10973
10974.. code-block:: llvm
10975
10976 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10977
10978
10979Overview:
10980"""""""""
10981
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010982The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
10983of the two operands, treating them both as unsigned integers. The intermediate
10984calculations are computed using infinitely precise unsigned arithmetic. The final
10985result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000010986
Mohammad Shahid18715532015-08-21 05:31:07 +000010987The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010988the two operands, treating them both as signed integers. If the result overflows, the
10989behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000010990
10991.. note::
10992
10993 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010994 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000010995 recommended for users to create them manually.
10996
10997Arguments:
10998""""""""""
10999
11000Both intrinsics take two integer of the same bitwidth.
11001
11002Semantics:
11003""""""""""
11004
11005The expression::
11006
11007 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11008
11009is equivalent to::
11010
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011011 %1 = zext <4 x i32> %a to <4 x i64>
11012 %2 = zext <4 x i32> %b to <4 x i64>
11013 %sub = sub <4 x i64> %1, %2
11014 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000011015
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011016and the expression::
James Molloy7395a812015-07-16 15:22:46 +000011017
11018 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11019
11020is equivalent to::
11021
11022 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011023 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000011024 %neg = sub nsw <4 x i32> zeroinitializer, %sub
11025 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
11026
11027
Sean Silvab084af42012-12-07 10:36:55 +000011028Half Precision Floating Point Intrinsics
11029----------------------------------------
11030
11031For most target platforms, half precision floating point is a
11032storage-only format. This means that it is a dense encoding (in memory)
11033but does not support computation in the format.
11034
11035This means that code must first load the half-precision floating point
11036value as an i16, then convert it to float with
11037:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11038then be performed on the float value (including extending to double
11039etc). To store the value back to memory, it is first converted to float
11040if needed, then converted to i16 with
11041:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11042i16 value.
11043
11044.. _int_convert_to_fp16:
11045
11046'``llvm.convert.to.fp16``' Intrinsic
11047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11048
11049Syntax:
11050"""""""
11051
11052::
11053
Tim Northoverfd7e4242014-07-17 10:51:23 +000011054 declare i16 @llvm.convert.to.fp16.f32(float %a)
11055 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011056
11057Overview:
11058"""""""""
11059
Tim Northoverfd7e4242014-07-17 10:51:23 +000011060The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11061conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011062
11063Arguments:
11064""""""""""
11065
11066The intrinsic function contains single argument - the value to be
11067converted.
11068
11069Semantics:
11070""""""""""
11071
Tim Northoverfd7e4242014-07-17 10:51:23 +000011072The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11073conventional floating point format to half precision floating point format. The
11074return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011075
11076Examples:
11077"""""""""
11078
11079.. code-block:: llvm
11080
Tim Northoverfd7e4242014-07-17 10:51:23 +000011081 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011082 store i16 %res, i16* @x, align 2
11083
11084.. _int_convert_from_fp16:
11085
11086'``llvm.convert.from.fp16``' Intrinsic
11087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11088
11089Syntax:
11090"""""""
11091
11092::
11093
Tim Northoverfd7e4242014-07-17 10:51:23 +000011094 declare float @llvm.convert.from.fp16.f32(i16 %a)
11095 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011096
11097Overview:
11098"""""""""
11099
11100The '``llvm.convert.from.fp16``' intrinsic function performs a
11101conversion from half precision floating point format to single precision
11102floating point format.
11103
11104Arguments:
11105""""""""""
11106
11107The intrinsic function contains single argument - the value to be
11108converted.
11109
11110Semantics:
11111""""""""""
11112
11113The '``llvm.convert.from.fp16``' intrinsic function performs a
11114conversion from half single precision floating point format to single
11115precision floating point format. The input half-float value is
11116represented by an ``i16`` value.
11117
11118Examples:
11119"""""""""
11120
11121.. code-block:: llvm
11122
David Blaikiec7aabbb2015-03-04 22:06:14 +000011123 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011124 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011125
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011126.. _dbg_intrinsics:
11127
Sean Silvab084af42012-12-07 10:36:55 +000011128Debugger Intrinsics
11129-------------------
11130
11131The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11132prefix), are described in the `LLVM Source Level
11133Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11134document.
11135
11136Exception Handling Intrinsics
11137-----------------------------
11138
11139The LLVM exception handling intrinsics (which all start with
11140``llvm.eh.`` prefix), are described in the `LLVM Exception
11141Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11142
11143.. _int_trampoline:
11144
11145Trampoline Intrinsics
11146---------------------
11147
11148These intrinsics make it possible to excise one parameter, marked with
11149the :ref:`nest <nest>` attribute, from a function. The result is a
11150callable function pointer lacking the nest parameter - the caller does
11151not need to provide a value for it. Instead, the value to use is stored
11152in advance in a "trampoline", a block of memory usually allocated on the
11153stack, which also contains code to splice the nest value into the
11154argument list. This is used to implement the GCC nested function address
11155extension.
11156
11157For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11158then the resulting function pointer has signature ``i32 (i32, i32)*``.
11159It can be created as follows:
11160
11161.. code-block:: llvm
11162
11163 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011164 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011165 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11166 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11167 %fp = bitcast i8* %p to i32 (i32, i32)*
11168
11169The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11170``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11171
11172.. _int_it:
11173
11174'``llvm.init.trampoline``' Intrinsic
11175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11176
11177Syntax:
11178"""""""
11179
11180::
11181
11182 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11183
11184Overview:
11185"""""""""
11186
11187This fills the memory pointed to by ``tramp`` with executable code,
11188turning it into a trampoline.
11189
11190Arguments:
11191""""""""""
11192
11193The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11194pointers. The ``tramp`` argument must point to a sufficiently large and
11195sufficiently aligned block of memory; this memory is written to by the
11196intrinsic. Note that the size and the alignment are target-specific -
11197LLVM currently provides no portable way of determining them, so a
11198front-end that generates this intrinsic needs to have some
11199target-specific knowledge. The ``func`` argument must hold a function
11200bitcast to an ``i8*``.
11201
11202Semantics:
11203""""""""""
11204
11205The block of memory pointed to by ``tramp`` is filled with target
11206dependent code, turning it into a function. Then ``tramp`` needs to be
11207passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11208be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11209function's signature is the same as that of ``func`` with any arguments
11210marked with the ``nest`` attribute removed. At most one such ``nest``
11211argument is allowed, and it must be of pointer type. Calling the new
11212function is equivalent to calling ``func`` with the same argument list,
11213but with ``nval`` used for the missing ``nest`` argument. If, after
11214calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11215modified, then the effect of any later call to the returned function
11216pointer is undefined.
11217
11218.. _int_at:
11219
11220'``llvm.adjust.trampoline``' Intrinsic
11221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11222
11223Syntax:
11224"""""""
11225
11226::
11227
11228 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11229
11230Overview:
11231"""""""""
11232
11233This performs any required machine-specific adjustment to the address of
11234a trampoline (passed as ``tramp``).
11235
11236Arguments:
11237""""""""""
11238
11239``tramp`` must point to a block of memory which already has trampoline
11240code filled in by a previous call to
11241:ref:`llvm.init.trampoline <int_it>`.
11242
11243Semantics:
11244""""""""""
11245
11246On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011247different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011248intrinsic returns the executable address corresponding to ``tramp``
11249after performing the required machine specific adjustments. The pointer
11250returned can then be :ref:`bitcast and executed <int_trampoline>`.
11251
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011252.. _int_mload_mstore:
11253
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011254Masked Vector Load and Store Intrinsics
11255---------------------------------------
11256
11257LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11258
11259.. _int_mload:
11260
11261'``llvm.masked.load.*``' Intrinsics
11262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11263
11264Syntax:
11265"""""""
11266This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11267
11268::
11269
11270 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11271 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11272
11273Overview:
11274"""""""""
11275
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011276Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011277
11278
11279Arguments:
11280""""""""""
11281
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011282The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011283
11284
11285Semantics:
11286""""""""""
11287
11288The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11289The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11290
11291
11292::
11293
11294 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011295
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011296 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011297 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011298 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011299
11300.. _int_mstore:
11301
11302'``llvm.masked.store.*``' Intrinsics
11303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11304
11305Syntax:
11306"""""""
11307This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11308
11309::
11310
11311 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11312 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11313
11314Overview:
11315"""""""""
11316
11317Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11318
11319Arguments:
11320""""""""""
11321
11322The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11323
11324
11325Semantics:
11326""""""""""
11327
11328The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11329The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11330
11331::
11332
11333 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011334
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011335 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011336 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011337 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11338 store <16 x float> %res, <16 x float>* %ptr, align 4
11339
11340
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011341Masked Vector Gather and Scatter Intrinsics
11342-------------------------------------------
11343
11344LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11345
11346.. _int_mgather:
11347
11348'``llvm.masked.gather.*``' Intrinsics
11349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11350
11351Syntax:
11352"""""""
11353This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11354
11355::
11356
11357 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11358 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11359
11360Overview:
11361"""""""""
11362
11363Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11364
11365
11366Arguments:
11367""""""""""
11368
11369The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11370
11371
11372Semantics:
11373""""""""""
11374
11375The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11376The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11377
11378
11379::
11380
11381 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11382
11383 ;; The gather with all-true mask is equivalent to the following instruction sequence
11384 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11385 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11386 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11387 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11388
11389 %val0 = load double, double* %ptr0, align 8
11390 %val1 = load double, double* %ptr1, align 8
11391 %val2 = load double, double* %ptr2, align 8
11392 %val3 = load double, double* %ptr3, align 8
11393
11394 %vec0 = insertelement <4 x double>undef, %val0, 0
11395 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11396 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11397 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11398
11399.. _int_mscatter:
11400
11401'``llvm.masked.scatter.*``' Intrinsics
11402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11403
11404Syntax:
11405"""""""
11406This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11407
11408::
11409
11410 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11411 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11412
11413Overview:
11414"""""""""
11415
11416Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11417
11418Arguments:
11419""""""""""
11420
11421The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11422
11423
11424Semantics:
11425""""""""""
11426
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011427The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011428
11429::
11430
11431 ;; This instruction unconditionaly stores data vector in multiple addresses
11432 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11433
11434 ;; It is equivalent to a list of scalar stores
11435 %val0 = extractelement <8 x i32> %value, i32 0
11436 %val1 = extractelement <8 x i32> %value, i32 1
11437 ..
11438 %val7 = extractelement <8 x i32> %value, i32 7
11439 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11440 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11441 ..
11442 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11443 ;; Note: the order of the following stores is important when they overlap:
11444 store i32 %val0, i32* %ptr0, align 4
11445 store i32 %val1, i32* %ptr1, align 4
11446 ..
11447 store i32 %val7, i32* %ptr7, align 4
11448
11449
Sean Silvab084af42012-12-07 10:36:55 +000011450Memory Use Markers
11451------------------
11452
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011453This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011454memory objects and ranges where variables are immutable.
11455
Reid Klecknera534a382013-12-19 02:14:12 +000011456.. _int_lifestart:
11457
Sean Silvab084af42012-12-07 10:36:55 +000011458'``llvm.lifetime.start``' Intrinsic
11459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11460
11461Syntax:
11462"""""""
11463
11464::
11465
11466 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11467
11468Overview:
11469"""""""""
11470
11471The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11472object's lifetime.
11473
11474Arguments:
11475""""""""""
11476
11477The first argument is a constant integer representing the size of the
11478object, or -1 if it is variable sized. The second argument is a pointer
11479to the object.
11480
11481Semantics:
11482""""""""""
11483
11484This intrinsic indicates that before this point in the code, the value
11485of the memory pointed to by ``ptr`` is dead. This means that it is known
11486to never be used and has an undefined value. A load from the pointer
11487that precedes this intrinsic can be replaced with ``'undef'``.
11488
Reid Klecknera534a382013-12-19 02:14:12 +000011489.. _int_lifeend:
11490
Sean Silvab084af42012-12-07 10:36:55 +000011491'``llvm.lifetime.end``' Intrinsic
11492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11493
11494Syntax:
11495"""""""
11496
11497::
11498
11499 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11500
11501Overview:
11502"""""""""
11503
11504The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11505object's lifetime.
11506
11507Arguments:
11508""""""""""
11509
11510The first argument is a constant integer representing the size of the
11511object, or -1 if it is variable sized. The second argument is a pointer
11512to the object.
11513
11514Semantics:
11515""""""""""
11516
11517This intrinsic indicates that after this point in the code, the value of
11518the memory pointed to by ``ptr`` is dead. This means that it is known to
11519never be used and has an undefined value. Any stores into the memory
11520object following this intrinsic may be removed as dead.
11521
11522'``llvm.invariant.start``' Intrinsic
11523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11524
11525Syntax:
11526"""""""
11527
11528::
11529
11530 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11531
11532Overview:
11533"""""""""
11534
11535The '``llvm.invariant.start``' intrinsic specifies that the contents of
11536a memory object will not change.
11537
11538Arguments:
11539""""""""""
11540
11541The first argument is a constant integer representing the size of the
11542object, or -1 if it is variable sized. The second argument is a pointer
11543to the object.
11544
11545Semantics:
11546""""""""""
11547
11548This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11549the return value, the referenced memory location is constant and
11550unchanging.
11551
11552'``llvm.invariant.end``' Intrinsic
11553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11554
11555Syntax:
11556"""""""
11557
11558::
11559
11560 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11561
11562Overview:
11563"""""""""
11564
11565The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11566memory object are mutable.
11567
11568Arguments:
11569""""""""""
11570
11571The first argument is the matching ``llvm.invariant.start`` intrinsic.
11572The second argument is a constant integer representing the size of the
11573object, or -1 if it is variable sized and the third argument is a
11574pointer to the object.
11575
11576Semantics:
11577""""""""""
11578
11579This intrinsic indicates that the memory is mutable again.
11580
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011581'``llvm.invariant.group.barrier``' Intrinsic
11582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11583
11584Syntax:
11585"""""""
11586
11587::
11588
11589 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11590
11591Overview:
11592"""""""""
11593
11594The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11595established by invariant.group metadata no longer holds, to obtain a new pointer
11596value that does not carry the invariant information.
11597
11598
11599Arguments:
11600""""""""""
11601
11602The ``llvm.invariant.group.barrier`` takes only one argument, which is
11603the pointer to the memory for which the ``invariant.group`` no longer holds.
11604
11605Semantics:
11606""""""""""
11607
11608Returns another pointer that aliases its argument but which is considered different
11609for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11610
Sean Silvab084af42012-12-07 10:36:55 +000011611General Intrinsics
11612------------------
11613
11614This class of intrinsics is designed to be generic and has no specific
11615purpose.
11616
11617'``llvm.var.annotation``' Intrinsic
11618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11619
11620Syntax:
11621"""""""
11622
11623::
11624
11625 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11626
11627Overview:
11628"""""""""
11629
11630The '``llvm.var.annotation``' intrinsic.
11631
11632Arguments:
11633""""""""""
11634
11635The first argument is a pointer to a value, the second is a pointer to a
11636global string, the third is a pointer to a global string which is the
11637source file name, and the last argument is the line number.
11638
11639Semantics:
11640""""""""""
11641
11642This intrinsic allows annotation of local variables with arbitrary
11643strings. This can be useful for special purpose optimizations that want
11644to look for these annotations. These have no other defined use; they are
11645ignored by code generation and optimization.
11646
Michael Gottesman88d18832013-03-26 00:34:27 +000011647'``llvm.ptr.annotation.*``' Intrinsic
11648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11649
11650Syntax:
11651"""""""
11652
11653This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11654pointer to an integer of any width. *NOTE* you must specify an address space for
11655the pointer. The identifier for the default address space is the integer
11656'``0``'.
11657
11658::
11659
11660 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11661 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11662 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11663 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11664 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11665
11666Overview:
11667"""""""""
11668
11669The '``llvm.ptr.annotation``' intrinsic.
11670
11671Arguments:
11672""""""""""
11673
11674The first argument is a pointer to an integer value of arbitrary bitwidth
11675(result of some expression), the second is a pointer to a global string, the
11676third is a pointer to a global string which is the source file name, and the
11677last argument is the line number. It returns the value of the first argument.
11678
11679Semantics:
11680""""""""""
11681
11682This intrinsic allows annotation of a pointer to an integer with arbitrary
11683strings. This can be useful for special purpose optimizations that want to look
11684for these annotations. These have no other defined use; they are ignored by code
11685generation and optimization.
11686
Sean Silvab084af42012-12-07 10:36:55 +000011687'``llvm.annotation.*``' Intrinsic
11688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11689
11690Syntax:
11691"""""""
11692
11693This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11694any integer bit width.
11695
11696::
11697
11698 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11699 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11700 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11701 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11702 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11703
11704Overview:
11705"""""""""
11706
11707The '``llvm.annotation``' intrinsic.
11708
11709Arguments:
11710""""""""""
11711
11712The first argument is an integer value (result of some expression), the
11713second is a pointer to a global string, the third is a pointer to a
11714global string which is the source file name, and the last argument is
11715the line number. It returns the value of the first argument.
11716
11717Semantics:
11718""""""""""
11719
11720This intrinsic allows annotations to be put on arbitrary expressions
11721with arbitrary strings. This can be useful for special purpose
11722optimizations that want to look for these annotations. These have no
11723other defined use; they are ignored by code generation and optimization.
11724
11725'``llvm.trap``' Intrinsic
11726^^^^^^^^^^^^^^^^^^^^^^^^^
11727
11728Syntax:
11729"""""""
11730
11731::
11732
11733 declare void @llvm.trap() noreturn nounwind
11734
11735Overview:
11736"""""""""
11737
11738The '``llvm.trap``' intrinsic.
11739
11740Arguments:
11741""""""""""
11742
11743None.
11744
11745Semantics:
11746""""""""""
11747
11748This intrinsic is lowered to the target dependent trap instruction. If
11749the target does not have a trap instruction, this intrinsic will be
11750lowered to a call of the ``abort()`` function.
11751
11752'``llvm.debugtrap``' Intrinsic
11753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11754
11755Syntax:
11756"""""""
11757
11758::
11759
11760 declare void @llvm.debugtrap() nounwind
11761
11762Overview:
11763"""""""""
11764
11765The '``llvm.debugtrap``' intrinsic.
11766
11767Arguments:
11768""""""""""
11769
11770None.
11771
11772Semantics:
11773""""""""""
11774
11775This intrinsic is lowered to code which is intended to cause an
11776execution trap with the intention of requesting the attention of a
11777debugger.
11778
11779'``llvm.stackprotector``' Intrinsic
11780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11781
11782Syntax:
11783"""""""
11784
11785::
11786
11787 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11788
11789Overview:
11790"""""""""
11791
11792The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11793onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11794is placed on the stack before local variables.
11795
11796Arguments:
11797""""""""""
11798
11799The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11800The first argument is the value loaded from the stack guard
11801``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11802enough space to hold the value of the guard.
11803
11804Semantics:
11805""""""""""
11806
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011807This intrinsic causes the prologue/epilogue inserter to force the position of
11808the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11809to ensure that if a local variable on the stack is overwritten, it will destroy
11810the value of the guard. When the function exits, the guard on the stack is
11811checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11812different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11813calling the ``__stack_chk_fail()`` function.
11814
11815'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011817
11818Syntax:
11819"""""""
11820
11821::
11822
11823 declare void @llvm.stackprotectorcheck(i8** <guard>)
11824
11825Overview:
11826"""""""""
11827
11828The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011829created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011830``__stack_chk_fail()`` function.
11831
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011832Arguments:
11833""""""""""
11834
11835The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11836the variable ``@__stack_chk_guard``.
11837
11838Semantics:
11839""""""""""
11840
11841This intrinsic is provided to perform the stack protector check by comparing
11842``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11843values do not match call the ``__stack_chk_fail()`` function.
11844
11845The reason to provide this as an IR level intrinsic instead of implementing it
11846via other IR operations is that in order to perform this operation at the IR
11847level without an intrinsic, one would need to create additional basic blocks to
11848handle the success/failure cases. This makes it difficult to stop the stack
11849protector check from disrupting sibling tail calls in Codegen. With this
11850intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011851codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011852
Sean Silvab084af42012-12-07 10:36:55 +000011853'``llvm.objectsize``' Intrinsic
11854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11855
11856Syntax:
11857"""""""
11858
11859::
11860
11861 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11862 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11863
11864Overview:
11865"""""""""
11866
11867The ``llvm.objectsize`` intrinsic is designed to provide information to
11868the optimizers to determine at compile time whether a) an operation
11869(like memcpy) will overflow a buffer that corresponds to an object, or
11870b) that a runtime check for overflow isn't necessary. An object in this
11871context means an allocation of a specific class, structure, array, or
11872other object.
11873
11874Arguments:
11875""""""""""
11876
11877The ``llvm.objectsize`` intrinsic takes two arguments. The first
11878argument is a pointer to or into the ``object``. The second argument is
11879a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11880or -1 (if false) when the object size is unknown. The second argument
11881only accepts constants.
11882
11883Semantics:
11884""""""""""
11885
11886The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11887the size of the object concerned. If the size cannot be determined at
11888compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11889on the ``min`` argument).
11890
11891'``llvm.expect``' Intrinsic
11892^^^^^^^^^^^^^^^^^^^^^^^^^^^
11893
11894Syntax:
11895"""""""
11896
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011897This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11898integer bit width.
11899
Sean Silvab084af42012-12-07 10:36:55 +000011900::
11901
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011902 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011903 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11904 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11905
11906Overview:
11907"""""""""
11908
11909The ``llvm.expect`` intrinsic provides information about expected (the
11910most probable) value of ``val``, which can be used by optimizers.
11911
11912Arguments:
11913""""""""""
11914
11915The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11916a value. The second argument is an expected value, this needs to be a
11917constant value, variables are not allowed.
11918
11919Semantics:
11920""""""""""
11921
11922This intrinsic is lowered to the ``val``.
11923
Philip Reamese0e90832015-04-26 22:23:12 +000011924.. _int_assume:
11925
Hal Finkel93046912014-07-25 21:13:35 +000011926'``llvm.assume``' Intrinsic
11927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11928
11929Syntax:
11930"""""""
11931
11932::
11933
11934 declare void @llvm.assume(i1 %cond)
11935
11936Overview:
11937"""""""""
11938
11939The ``llvm.assume`` allows the optimizer to assume that the provided
11940condition is true. This information can then be used in simplifying other parts
11941of the code.
11942
11943Arguments:
11944""""""""""
11945
11946The condition which the optimizer may assume is always true.
11947
11948Semantics:
11949""""""""""
11950
11951The intrinsic allows the optimizer to assume that the provided condition is
11952always true whenever the control flow reaches the intrinsic call. No code is
11953generated for this intrinsic, and instructions that contribute only to the
11954provided condition are not used for code generation. If the condition is
11955violated during execution, the behavior is undefined.
11956
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011957Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011958used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11959only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011960if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011961sufficient overall improvement in code quality. For this reason,
11962``llvm.assume`` should not be used to document basic mathematical invariants
11963that the optimizer can otherwise deduce or facts that are of little use to the
11964optimizer.
11965
Peter Collingbournee6909c82015-02-20 20:30:47 +000011966.. _bitset.test:
11967
11968'``llvm.bitset.test``' Intrinsic
11969^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11970
11971Syntax:
11972"""""""
11973
11974::
11975
11976 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11977
11978
11979Arguments:
11980""""""""""
11981
11982The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000011983metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000011984
11985Overview:
11986"""""""""
11987
11988The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11989member of the given bitset.
11990
Sean Silvab084af42012-12-07 10:36:55 +000011991'``llvm.donothing``' Intrinsic
11992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11993
11994Syntax:
11995"""""""
11996
11997::
11998
11999 declare void @llvm.donothing() nounwind readnone
12000
12001Overview:
12002"""""""""
12003
Juergen Ributzkac9161192014-10-23 22:36:13 +000012004The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12005two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12006with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012007
12008Arguments:
12009""""""""""
12010
12011None.
12012
12013Semantics:
12014""""""""""
12015
12016This intrinsic does nothing, and it's removed by optimizers and ignored
12017by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012018
12019Stack Map Intrinsics
12020--------------------
12021
12022LLVM provides experimental intrinsics to support runtime patching
12023mechanisms commonly desired in dynamic language JITs. These intrinsics
12024are described in :doc:`StackMaps`.