blob: 5273bf0ac1134b36bf7d36b5a540cb919250d957 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000643an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000644an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000645
646LLVM function declarations consist of the "``declare``" keyword, an
647optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000648style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
649an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000650an optional ``unnamed_addr`` attribute, a return type, an optional
651:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000652name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000653:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
654and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000655
Bill Wendling6822ecb2013-10-27 05:09:12 +0000656A function definition contains a list of basic blocks, forming the CFG (Control
657Flow Graph) for the function. Each basic block may optionally start with a label
658(giving the basic block a symbol table entry), contains a list of instructions,
659and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
660function return). If an explicit label is not provided, a block is assigned an
661implicit numbered label, using the next value from the same counter as used for
662unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
663entry block does not have an explicit label, it will be assigned label "%0",
664then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666The first basic block in a function is special in two ways: it is
667immediately executed on entrance to the function, and it is not allowed
668to have predecessor basic blocks (i.e. there can not be any branches to
669the entry block of a function). Because the block can have no
670predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
671
672LLVM allows an explicit section to be specified for functions. If the
673target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000674Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000675
676An explicit alignment may be specified for a function. If not present,
677or if the alignment is set to zero, the alignment of the function is set
678by the target to whatever it feels convenient. If an explicit alignment
679is specified, the function is forced to have at least that much
680alignment. All alignments must be a power of 2.
681
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000682If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000683be significant and two identical functions can be merged.
684
685Syntax::
686
Nico Rieck7157bb72014-01-14 15:22:47 +0000687 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000688 [cconv] [ret attrs]
689 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000690 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000691 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000692 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000693
Sean Silva706fba52015-08-06 22:56:24 +0000694The argument list is a comma separated sequence of arguments where each
695argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000696
697Syntax::
698
699 <type> [parameter Attrs] [name]
700
701
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000702.. _langref_aliases:
703
Sean Silvab084af42012-12-07 10:36:55 +0000704Aliases
705-------
706
Rafael Espindola64c1e182014-06-03 02:41:57 +0000707Aliases, unlike function or variables, don't create any new data. They
708are just a new symbol and metadata for an existing position.
709
710Aliases have a name and an aliasee that is either a global value or a
711constant expression.
712
Nico Rieck7157bb72014-01-14 15:22:47 +0000713Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000714:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
715<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000716
717Syntax::
718
David Blaikie196582e2015-10-22 01:17:29 +0000719 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000720
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000721The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000722``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000724
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000725Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000726the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
727to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000728
Rafael Espindola64c1e182014-06-03 02:41:57 +0000729Since aliases are only a second name, some restrictions apply, of which
730some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732* The expression defining the aliasee must be computable at assembly
733 time. Since it is just a name, no relocations can be used.
734
735* No alias in the expression can be weak as the possibility of the
736 intermediate alias being overridden cannot be represented in an
737 object file.
738
739* No global value in the expression can be a declaration, since that
740 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000741
David Majnemerdad0a642014-06-27 18:19:56 +0000742.. _langref_comdats:
743
744Comdats
745-------
746
747Comdat IR provides access to COFF and ELF object file COMDAT functionality.
748
Sean Silvaa1190322015-08-06 22:56:48 +0000749Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000750specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000751that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000752aliasee computes to, if any.
753
754Comdats have a selection kind to provide input on how the linker should
755choose between keys in two different object files.
756
757Syntax::
758
759 $<Name> = comdat SelectionKind
760
761The selection kind must be one of the following:
762
763``any``
764 The linker may choose any COMDAT key, the choice is arbitrary.
765``exactmatch``
766 The linker may choose any COMDAT key but the sections must contain the
767 same data.
768``largest``
769 The linker will choose the section containing the largest COMDAT key.
770``noduplicates``
771 The linker requires that only section with this COMDAT key exist.
772``samesize``
773 The linker may choose any COMDAT key but the sections must contain the
774 same amount of data.
775
776Note that the Mach-O platform doesn't support COMDATs and ELF only supports
777``any`` as a selection kind.
778
779Here is an example of a COMDAT group where a function will only be selected if
780the COMDAT key's section is the largest:
781
782.. code-block:: llvm
783
784 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000786
Rafael Espindola83a362c2015-01-06 22:55:16 +0000787 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000788 ret void
789 }
790
Rafael Espindola83a362c2015-01-06 22:55:16 +0000791As a syntactic sugar the ``$name`` can be omitted if the name is the same as
792the global name:
793
794.. code-block:: llvm
795
796 $foo = comdat any
797 @foo = global i32 2, comdat
798
799
David Majnemerdad0a642014-06-27 18:19:56 +0000800In a COFF object file, this will create a COMDAT section with selection kind
801``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
802and another COMDAT section with selection kind
803``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000804section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000805
806There are some restrictions on the properties of the global object.
807It, or an alias to it, must have the same name as the COMDAT group when
808targeting COFF.
809The contents and size of this object may be used during link-time to determine
810which COMDAT groups get selected depending on the selection kind.
811Because the name of the object must match the name of the COMDAT group, the
812linkage of the global object must not be local; local symbols can get renamed
813if a collision occurs in the symbol table.
814
815The combined use of COMDATS and section attributes may yield surprising results.
816For example:
817
818.. code-block:: llvm
819
820 $foo = comdat any
821 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000822 @g1 = global i32 42, section "sec", comdat($foo)
823 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000824
825From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000826with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000827COMDAT groups and COMDATs, at the object file level, are represented by
828sections.
829
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000830Note that certain IR constructs like global variables and functions may
831create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000832COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000833in individual sections (e.g. when `-data-sections` or `-function-sections`
834is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000835
Sean Silvab084af42012-12-07 10:36:55 +0000836.. _namedmetadatastructure:
837
838Named Metadata
839--------------
840
841Named metadata is a collection of metadata. :ref:`Metadata
842nodes <metadata>` (but not metadata strings) are the only valid
843operands for a named metadata.
844
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000845#. Named metadata are represented as a string of characters with the
846 metadata prefix. The rules for metadata names are the same as for
847 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
848 are still valid, which allows any character to be part of a name.
849
Sean Silvab084af42012-12-07 10:36:55 +0000850Syntax::
851
852 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000853 !0 = !{!"zero"}
854 !1 = !{!"one"}
855 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000856 ; A named metadata.
857 !name = !{!0, !1, !2}
858
859.. _paramattrs:
860
861Parameter Attributes
862--------------------
863
864The return type and each parameter of a function type may have a set of
865*parameter attributes* associated with them. Parameter attributes are
866used to communicate additional information about the result or
867parameters of a function. Parameter attributes are considered to be part
868of the function, not of the function type, so functions with different
869parameter attributes can have the same function type.
870
871Parameter attributes are simple keywords that follow the type specified.
872If multiple parameter attributes are needed, they are space separated.
873For example:
874
875.. code-block:: llvm
876
877 declare i32 @printf(i8* noalias nocapture, ...)
878 declare i32 @atoi(i8 zeroext)
879 declare signext i8 @returns_signed_char()
880
881Note that any attributes for the function result (``nounwind``,
882``readonly``) come immediately after the argument list.
883
884Currently, only the following parameter attributes are defined:
885
886``zeroext``
887 This indicates to the code generator that the parameter or return
888 value should be zero-extended to the extent required by the target's
889 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
890 the caller (for a parameter) or the callee (for a return value).
891``signext``
892 This indicates to the code generator that the parameter or return
893 value should be sign-extended to the extent required by the target's
894 ABI (which is usually 32-bits) by the caller (for a parameter) or
895 the callee (for a return value).
896``inreg``
897 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000898 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000899 a function call or return (usually, by putting it in a register as
900 opposed to memory, though some targets use it to distinguish between
901 two different kinds of registers). Use of this attribute is
902 target-specific.
903``byval``
904 This indicates that the pointer parameter should really be passed by
905 value to the function. The attribute implies that a hidden copy of
906 the pointee is made between the caller and the callee, so the callee
907 is unable to modify the value in the caller. This attribute is only
908 valid on LLVM pointer arguments. It is generally used to pass
909 structs and arrays by value, but is also valid on pointers to
910 scalars. The copy is considered to belong to the caller not the
911 callee (for example, ``readonly`` functions should not write to
912 ``byval`` parameters). This is not a valid attribute for return
913 values.
914
915 The byval attribute also supports specifying an alignment with the
916 align attribute. It indicates the alignment of the stack slot to
917 form and the known alignment of the pointer specified to the call
918 site. If the alignment is not specified, then the code generator
919 makes a target-specific assumption.
920
Reid Klecknera534a382013-12-19 02:14:12 +0000921.. _attr_inalloca:
922
923``inalloca``
924
Reid Kleckner60d3a832014-01-16 22:59:24 +0000925 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000926 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000927 be a pointer to stack memory produced by an ``alloca`` instruction.
928 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000929 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000930 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000931
Reid Kleckner436c42e2014-01-17 23:58:17 +0000932 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000933 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000934 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000935 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000936 ``inalloca`` attribute also disables LLVM's implicit lowering of
937 large aggregate return values, which means that frontend authors
938 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000939
Reid Kleckner60d3a832014-01-16 22:59:24 +0000940 When the call site is reached, the argument allocation must have
941 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000942 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000943 space after an argument allocation and before its call site, but it
944 must be cleared off with :ref:`llvm.stackrestore
945 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000946
947 See :doc:`InAlloca` for more information on how to use this
948 attribute.
949
Sean Silvab084af42012-12-07 10:36:55 +0000950``sret``
951 This indicates that the pointer parameter specifies the address of a
952 structure that is the return value of the function in the source
953 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000954 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000955 not to trap and to be properly aligned. This may only be applied to
956 the first parameter. This is not a valid attribute for return
957 values.
Sean Silva1703e702014-04-08 21:06:22 +0000958
Hal Finkelccc70902014-07-22 16:58:55 +0000959``align <n>``
960 This indicates that the pointer value may be assumed by the optimizer to
961 have the specified alignment.
962
963 Note that this attribute has additional semantics when combined with the
964 ``byval`` attribute.
965
Sean Silva1703e702014-04-08 21:06:22 +0000966.. _noalias:
967
Sean Silvab084af42012-12-07 10:36:55 +0000968``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000969 This indicates that objects accessed via pointer values
970 :ref:`based <pointeraliasing>` on the argument or return value are not also
971 accessed, during the execution of the function, via pointer values not
972 *based* on the argument or return value. The attribute on a return value
973 also has additional semantics described below. The caller shares the
974 responsibility with the callee for ensuring that these requirements are met.
975 For further details, please see the discussion of the NoAlias response in
976 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000977
978 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000979 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000980
981 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000982 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
983 attribute on return values are stronger than the semantics of the attribute
984 when used on function arguments. On function return values, the ``noalias``
985 attribute indicates that the function acts like a system memory allocation
986 function, returning a pointer to allocated storage disjoint from the
987 storage for any other object accessible to the caller.
988
Sean Silvab084af42012-12-07 10:36:55 +0000989``nocapture``
990 This indicates that the callee does not make any copies of the
991 pointer that outlive the callee itself. This is not a valid
992 attribute for return values.
993
994.. _nest:
995
996``nest``
997 This indicates that the pointer parameter can be excised using the
998 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000999 attribute for return values and can only be applied to one parameter.
1000
1001``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001002 This indicates that the function always returns the argument as its return
1003 value. This is an optimization hint to the code generator when generating
1004 the caller, allowing tail call optimization and omission of register saves
1005 and restores in some cases; it is not checked or enforced when generating
1006 the callee. The parameter and the function return type must be valid
1007 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1008 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001009
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001010``nonnull``
1011 This indicates that the parameter or return pointer is not null. This
1012 attribute may only be applied to pointer typed parameters. This is not
1013 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001014 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001015 is non-null.
1016
Hal Finkelb0407ba2014-07-18 15:51:28 +00001017``dereferenceable(<n>)``
1018 This indicates that the parameter or return pointer is dereferenceable. This
1019 attribute may only be applied to pointer typed parameters. A pointer that
1020 is dereferenceable can be loaded from speculatively without a risk of
1021 trapping. The number of bytes known to be dereferenceable must be provided
1022 in parentheses. It is legal for the number of bytes to be less than the
1023 size of the pointee type. The ``nonnull`` attribute does not imply
1024 dereferenceability (consider a pointer to one element past the end of an
1025 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1026 ``addrspace(0)`` (which is the default address space).
1027
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001028``dereferenceable_or_null(<n>)``
1029 This indicates that the parameter or return value isn't both
1030 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001031 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001032 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1033 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1034 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1035 and in other address spaces ``dereferenceable_or_null(<n>)``
1036 implies that a pointer is at least one of ``dereferenceable(<n>)``
1037 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001038 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001039 pointer typed parameters.
1040
Sean Silvab084af42012-12-07 10:36:55 +00001041.. _gc:
1042
Philip Reamesf80bbff2015-02-25 23:45:20 +00001043Garbage Collector Strategy Names
1044--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001045
Philip Reamesf80bbff2015-02-25 23:45:20 +00001046Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001047string:
1048
1049.. code-block:: llvm
1050
1051 define void @f() gc "name" { ... }
1052
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001053The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001054<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001055strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001056named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001057garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001058which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001059
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001060.. _prefixdata:
1061
1062Prefix Data
1063-----------
1064
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001065Prefix data is data associated with a function which the code
1066generator will emit immediately before the function's entrypoint.
1067The purpose of this feature is to allow frontends to associate
1068language-specific runtime metadata with specific functions and make it
1069available through the function pointer while still allowing the
1070function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001071
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001072To access the data for a given function, a program may bitcast the
1073function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001074index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001075the prefix data. For instance, take the example of a function annotated
1076with a single ``i32``,
1077
1078.. code-block:: llvm
1079
1080 define void @f() prefix i32 123 { ... }
1081
1082The prefix data can be referenced as,
1083
1084.. code-block:: llvm
1085
David Blaikie16a97eb2015-03-04 22:02:58 +00001086 %0 = bitcast void* () @f to i32*
1087 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001088 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001089
1090Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001091of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001092beginning of the prefix data is aligned. This means that if the size
1093of the prefix data is not a multiple of the alignment size, the
1094function's entrypoint will not be aligned. If alignment of the
1095function's entrypoint is desired, padding must be added to the prefix
1096data.
1097
Sean Silvaa1190322015-08-06 22:56:48 +00001098A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001099to the ``available_externally`` linkage in that the data may be used by the
1100optimizers but will not be emitted in the object file.
1101
1102.. _prologuedata:
1103
1104Prologue Data
1105-------------
1106
1107The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1108be inserted prior to the function body. This can be used for enabling
1109function hot-patching and instrumentation.
1110
1111To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001112have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001113bytes which decode to a sequence of machine instructions, valid for the
1114module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001115the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001116the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001117definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001118makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001119
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001120A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001121which encodes the ``nop`` instruction:
1122
1123.. code-block:: llvm
1124
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001125 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001126
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001127Generally prologue data can be formed by encoding a relative branch instruction
1128which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001129x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1130
1131.. code-block:: llvm
1132
1133 %0 = type <{ i8, i8, i8* }>
1134
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001135 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001136
Sean Silvaa1190322015-08-06 22:56:48 +00001137A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138to the ``available_externally`` linkage in that the data may be used by the
1139optimizers but will not be emitted in the object file.
1140
David Majnemer7fddecc2015-06-17 20:52:32 +00001141.. _personalityfn:
1142
1143Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001144--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001145
1146The ``personality`` attribute permits functions to specify what function
1147to use for exception handling.
1148
Bill Wendling63b88192013-02-06 06:52:58 +00001149.. _attrgrp:
1150
1151Attribute Groups
1152----------------
1153
1154Attribute groups are groups of attributes that are referenced by objects within
1155the IR. They are important for keeping ``.ll`` files readable, because a lot of
1156functions will use the same set of attributes. In the degenerative case of a
1157``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1158group will capture the important command line flags used to build that file.
1159
1160An attribute group is a module-level object. To use an attribute group, an
1161object references the attribute group's ID (e.g. ``#37``). An object may refer
1162to more than one attribute group. In that situation, the attributes from the
1163different groups are merged.
1164
1165Here is an example of attribute groups for a function that should always be
1166inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1167
1168.. code-block:: llvm
1169
1170 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001171 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001172
1173 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001174 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001175
1176 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1177 define void @f() #0 #1 { ... }
1178
Sean Silvab084af42012-12-07 10:36:55 +00001179.. _fnattrs:
1180
1181Function Attributes
1182-------------------
1183
1184Function attributes are set to communicate additional information about
1185a function. Function attributes are considered to be part of the
1186function, not of the function type, so functions with different function
1187attributes can have the same function type.
1188
1189Function attributes are simple keywords that follow the type specified.
1190If multiple attributes are needed, they are space separated. For
1191example:
1192
1193.. code-block:: llvm
1194
1195 define void @f() noinline { ... }
1196 define void @f() alwaysinline { ... }
1197 define void @f() alwaysinline optsize { ... }
1198 define void @f() optsize { ... }
1199
Sean Silvab084af42012-12-07 10:36:55 +00001200``alignstack(<n>)``
1201 This attribute indicates that, when emitting the prologue and
1202 epilogue, the backend should forcibly align the stack pointer.
1203 Specify the desired alignment, which must be a power of two, in
1204 parentheses.
1205``alwaysinline``
1206 This attribute indicates that the inliner should attempt to inline
1207 this function into callers whenever possible, ignoring any active
1208 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001209``builtin``
1210 This indicates that the callee function at a call site should be
1211 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001212 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001213 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001214 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001215``cold``
1216 This attribute indicates that this function is rarely called. When
1217 computing edge weights, basic blocks post-dominated by a cold
1218 function call are also considered to be cold; and, thus, given low
1219 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001220``convergent``
1221 This attribute indicates that the callee is dependent on a convergent
1222 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001223 Transformations that are execution model agnostic may not make the execution
1224 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001225``inlinehint``
1226 This attribute indicates that the source code contained a hint that
1227 inlining this function is desirable (such as the "inline" keyword in
1228 C/C++). It is just a hint; it imposes no requirements on the
1229 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001230``jumptable``
1231 This attribute indicates that the function should be added to a
1232 jump-instruction table at code-generation time, and that all address-taken
1233 references to this function should be replaced with a reference to the
1234 appropriate jump-instruction-table function pointer. Note that this creates
1235 a new pointer for the original function, which means that code that depends
1236 on function-pointer identity can break. So, any function annotated with
1237 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001238``minsize``
1239 This attribute suggests that optimization passes and code generator
1240 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001241 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001242 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001243``naked``
1244 This attribute disables prologue / epilogue emission for the
1245 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001246``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001247 This indicates that the callee function at a call site is not recognized as
1248 a built-in function. LLVM will retain the original call and not replace it
1249 with equivalent code based on the semantics of the built-in function, unless
1250 the call site uses the ``builtin`` attribute. This is valid at call sites
1251 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001252``noduplicate``
1253 This attribute indicates that calls to the function cannot be
1254 duplicated. A call to a ``noduplicate`` function may be moved
1255 within its parent function, but may not be duplicated within
1256 its parent function.
1257
1258 A function containing a ``noduplicate`` call may still
1259 be an inlining candidate, provided that the call is not
1260 duplicated by inlining. That implies that the function has
1261 internal linkage and only has one call site, so the original
1262 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001263``noimplicitfloat``
1264 This attributes disables implicit floating point instructions.
1265``noinline``
1266 This attribute indicates that the inliner should never inline this
1267 function in any situation. This attribute may not be used together
1268 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001269``nonlazybind``
1270 This attribute suppresses lazy symbol binding for the function. This
1271 may make calls to the function faster, at the cost of extra program
1272 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001273``noredzone``
1274 This attribute indicates that the code generator should not use a
1275 red zone, even if the target-specific ABI normally permits it.
1276``noreturn``
1277 This function attribute indicates that the function never returns
1278 normally. This produces undefined behavior at runtime if the
1279 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001280``norecurse``
1281 This function attribute indicates that the function does not call itself
1282 either directly or indirectly down any possible call path. This produces
1283 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001284``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001285 This function attribute indicates that the function never raises an
1286 exception. If the function does raise an exception, its runtime
1287 behavior is undefined. However, functions marked nounwind may still
1288 trap or generate asynchronous exceptions. Exception handling schemes
1289 that are recognized by LLVM to handle asynchronous exceptions, such
1290 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291``optnone``
1292 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001293 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001294 exception of interprocedural optimization passes.
1295 This attribute cannot be used together with the ``alwaysinline``
1296 attribute; this attribute is also incompatible
1297 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001298
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 This attribute requires the ``noinline`` attribute to be specified on
1300 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001301 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001302 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001303``optsize``
1304 This attribute suggests that optimization passes and code generator
1305 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001306 and otherwise do optimizations specifically to reduce code size as
1307 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001308``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001309 On a function, this attribute indicates that the function computes its
1310 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001311 without dereferencing any pointer arguments or otherwise accessing
1312 any mutable state (e.g. memory, control registers, etc) visible to
1313 caller functions. It does not write through any pointer arguments
1314 (including ``byval`` arguments) and never changes any state visible
1315 to callers. This means that it cannot unwind exceptions by calling
1316 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001317
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001318 On an argument, this attribute indicates that the function does not
1319 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001320 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001321``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001322 On a function, this attribute indicates that the function does not write
1323 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001324 modify any state (e.g. memory, control registers, etc) visible to
1325 caller functions. It may dereference pointer arguments and read
1326 state that may be set in the caller. A readonly function always
1327 returns the same value (or unwinds an exception identically) when
1328 called with the same set of arguments and global state. It cannot
1329 unwind an exception by calling the ``C++`` exception throwing
1330 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001331
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001332 On an argument, this attribute indicates that the function does not write
1333 through this pointer argument, even though it may write to the memory that
1334 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001335``argmemonly``
1336 This attribute indicates that the only memory accesses inside function are
1337 loads and stores from objects pointed to by its pointer-typed arguments,
1338 with arbitrary offsets. Or in other words, all memory operations in the
1339 function can refer to memory only using pointers based on its function
1340 arguments.
1341 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1342 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001343``returns_twice``
1344 This attribute indicates that this function can return twice. The C
1345 ``setjmp`` is an example of such a function. The compiler disables
1346 some optimizations (like tail calls) in the caller of these
1347 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001348``safestack``
1349 This attribute indicates that
1350 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1351 protection is enabled for this function.
1352
1353 If a function that has a ``safestack`` attribute is inlined into a
1354 function that doesn't have a ``safestack`` attribute or which has an
1355 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1356 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001357``sanitize_address``
1358 This attribute indicates that AddressSanitizer checks
1359 (dynamic address safety analysis) are enabled for this function.
1360``sanitize_memory``
1361 This attribute indicates that MemorySanitizer checks (dynamic detection
1362 of accesses to uninitialized memory) are enabled for this function.
1363``sanitize_thread``
1364 This attribute indicates that ThreadSanitizer checks
1365 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001366``ssp``
1367 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001368 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001369 placed on the stack before the local variables that's checked upon
1370 return from the function to see if it has been overwritten. A
1371 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001372 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001373
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001374 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1375 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1376 - Calls to alloca() with variable sizes or constant sizes greater than
1377 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001378
Josh Magee24c7f062014-02-01 01:36:16 +00001379 Variables that are identified as requiring a protector will be arranged
1380 on the stack such that they are adjacent to the stack protector guard.
1381
Sean Silvab084af42012-12-07 10:36:55 +00001382 If a function that has an ``ssp`` attribute is inlined into a
1383 function that doesn't have an ``ssp`` attribute, then the resulting
1384 function will have an ``ssp`` attribute.
1385``sspreq``
1386 This attribute indicates that the function should *always* emit a
1387 stack smashing protector. This overrides the ``ssp`` function
1388 attribute.
1389
Josh Magee24c7f062014-02-01 01:36:16 +00001390 Variables that are identified as requiring a protector will be arranged
1391 on the stack such that they are adjacent to the stack protector guard.
1392 The specific layout rules are:
1393
1394 #. Large arrays and structures containing large arrays
1395 (``>= ssp-buffer-size``) are closest to the stack protector.
1396 #. Small arrays and structures containing small arrays
1397 (``< ssp-buffer-size``) are 2nd closest to the protector.
1398 #. Variables that have had their address taken are 3rd closest to the
1399 protector.
1400
Sean Silvab084af42012-12-07 10:36:55 +00001401 If a function that has an ``sspreq`` attribute is inlined into a
1402 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001403 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1404 an ``sspreq`` attribute.
1405``sspstrong``
1406 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001407 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001408 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001409 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001410
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001411 - Arrays of any size and type
1412 - Aggregates containing an array of any size and type.
1413 - Calls to alloca().
1414 - Local variables that have had their address taken.
1415
Josh Magee24c7f062014-02-01 01:36:16 +00001416 Variables that are identified as requiring a protector will be arranged
1417 on the stack such that they are adjacent to the stack protector guard.
1418 The specific layout rules are:
1419
1420 #. Large arrays and structures containing large arrays
1421 (``>= ssp-buffer-size``) are closest to the stack protector.
1422 #. Small arrays and structures containing small arrays
1423 (``< ssp-buffer-size``) are 2nd closest to the protector.
1424 #. Variables that have had their address taken are 3rd closest to the
1425 protector.
1426
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001427 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001428
1429 If a function that has an ``sspstrong`` attribute is inlined into a
1430 function that doesn't have an ``sspstrong`` attribute, then the
1431 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001432``"thunk"``
1433 This attribute indicates that the function will delegate to some other
1434 function with a tail call. The prototype of a thunk should not be used for
1435 optimization purposes. The caller is expected to cast the thunk prototype to
1436 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001437``uwtable``
1438 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001439 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001440 show that no exceptions passes by it. This is normally the case for
1441 the ELF x86-64 abi, but it can be disabled for some compilation
1442 units.
Sean Silvab084af42012-12-07 10:36:55 +00001443
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001444
1445.. _opbundles:
1446
1447Operand Bundles
1448---------------
1449
1450Note: operand bundles are a work in progress, and they should be
1451considered experimental at this time.
1452
1453Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001454with certain LLVM instructions (currently only ``call`` s and
1455``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001456incorrect and will change program semantics.
1457
1458Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001459
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001460 operand bundle set ::= '[' operand bundle ']'
1461 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1462 bundle operand ::= SSA value
1463 tag ::= string constant
1464
1465Operand bundles are **not** part of a function's signature, and a
1466given function may be called from multiple places with different kinds
1467of operand bundles. This reflects the fact that the operand bundles
1468are conceptually a part of the ``call`` (or ``invoke``), not the
1469callee being dispatched to.
1470
1471Operand bundles are a generic mechanism intended to support
1472runtime-introspection-like functionality for managed languages. While
1473the exact semantics of an operand bundle depend on the bundle tag,
1474there are certain limitations to how much the presence of an operand
1475bundle can influence the semantics of a program. These restrictions
1476are described as the semantics of an "unknown" operand bundle. As
1477long as the behavior of an operand bundle is describable within these
1478restrictions, LLVM does not need to have special knowledge of the
1479operand bundle to not miscompile programs containing it.
1480
David Majnemer34cacb42015-10-22 01:46:38 +00001481- The bundle operands for an unknown operand bundle escape in unknown
1482 ways before control is transferred to the callee or invokee.
1483- Calls and invokes with operand bundles have unknown read / write
1484 effect on the heap on entry and exit (even if the call target is
Sanjoy Das98a341b2015-10-22 03:12:22 +00001485 ``readnone`` or ``readonly``), unless they're overriden with
1486 callsite specific attributes.
1487- An operand bundle at a call site cannot change the implementation
1488 of the called function. Inter-procedural optimizations work as
1489 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001490
Sanjoy Dascdafd842015-11-11 21:38:02 +00001491More specific types of operand bundles are described below.
1492
1493Deoptimization Operand Bundles
1494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1495
1496Deoptimization operand bundles are characterized by the ``"deopt``
1497operand bundle tag. These operand bundles represent an alternate
1498"safe" continuation for the call site they're attached to, and can be
1499used by a suitable runtime to deoptimize the compiled frame at the
1500specified call site. Exact details of deoptimization is out of scope
1501for the language reference, but it usually involves rewriting a
1502compiled frame into a set of interpreted frames.
1503
1504From the compiler's perspective, deoptimization operand bundles make
1505the call sites they're attached to at least ``readonly``. They read
1506through all of their pointer typed operands (even if they're not
1507otherwise escaped) and the entire visible heap. Deoptimization
1508operand bundles do not capture their operands except during
1509deoptimization, in which case control will not be returned to the
1510compiled frame.
1511
Sean Silvab084af42012-12-07 10:36:55 +00001512.. _moduleasm:
1513
1514Module-Level Inline Assembly
1515----------------------------
1516
1517Modules may contain "module-level inline asm" blocks, which corresponds
1518to the GCC "file scope inline asm" blocks. These blocks are internally
1519concatenated by LLVM and treated as a single unit, but may be separated
1520in the ``.ll`` file if desired. The syntax is very simple:
1521
1522.. code-block:: llvm
1523
1524 module asm "inline asm code goes here"
1525 module asm "more can go here"
1526
1527The strings can contain any character by escaping non-printable
1528characters. The escape sequence used is simply "\\xx" where "xx" is the
1529two digit hex code for the number.
1530
James Y Knightbc832ed2015-07-08 18:08:36 +00001531Note that the assembly string *must* be parseable by LLVM's integrated assembler
1532(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001533
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001534.. _langref_datalayout:
1535
Sean Silvab084af42012-12-07 10:36:55 +00001536Data Layout
1537-----------
1538
1539A module may specify a target specific data layout string that specifies
1540how data is to be laid out in memory. The syntax for the data layout is
1541simply:
1542
1543.. code-block:: llvm
1544
1545 target datalayout = "layout specification"
1546
1547The *layout specification* consists of a list of specifications
1548separated by the minus sign character ('-'). Each specification starts
1549with a letter and may include other information after the letter to
1550define some aspect of the data layout. The specifications accepted are
1551as follows:
1552
1553``E``
1554 Specifies that the target lays out data in big-endian form. That is,
1555 the bits with the most significance have the lowest address
1556 location.
1557``e``
1558 Specifies that the target lays out data in little-endian form. That
1559 is, the bits with the least significance have the lowest address
1560 location.
1561``S<size>``
1562 Specifies the natural alignment of the stack in bits. Alignment
1563 promotion of stack variables is limited to the natural stack
1564 alignment to avoid dynamic stack realignment. The stack alignment
1565 must be a multiple of 8-bits. If omitted, the natural stack
1566 alignment defaults to "unspecified", which does not prevent any
1567 alignment promotions.
1568``p[n]:<size>:<abi>:<pref>``
1569 This specifies the *size* of a pointer and its ``<abi>`` and
1570 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001571 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001572 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001573 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001574``i<size>:<abi>:<pref>``
1575 This specifies the alignment for an integer type of a given bit
1576 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1577``v<size>:<abi>:<pref>``
1578 This specifies the alignment for a vector type of a given bit
1579 ``<size>``.
1580``f<size>:<abi>:<pref>``
1581 This specifies the alignment for a floating point type of a given bit
1582 ``<size>``. Only values of ``<size>`` that are supported by the target
1583 will work. 32 (float) and 64 (double) are supported on all targets; 80
1584 or 128 (different flavors of long double) are also supported on some
1585 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001586``a:<abi>:<pref>``
1587 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001588``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001589 If present, specifies that llvm names are mangled in the output. The
1590 options are
1591
1592 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1593 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1594 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1595 symbols get a ``_`` prefix.
1596 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1597 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001598 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1599 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001600``n<size1>:<size2>:<size3>...``
1601 This specifies a set of native integer widths for the target CPU in
1602 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1603 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1604 this set are considered to support most general arithmetic operations
1605 efficiently.
1606
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001607On every specification that takes a ``<abi>:<pref>``, specifying the
1608``<pref>`` alignment is optional. If omitted, the preceding ``:``
1609should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1610
Sean Silvab084af42012-12-07 10:36:55 +00001611When constructing the data layout for a given target, LLVM starts with a
1612default set of specifications which are then (possibly) overridden by
1613the specifications in the ``datalayout`` keyword. The default
1614specifications are given in this list:
1615
1616- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001617- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1618- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1619 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001620- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001621- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1622- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1623- ``i16:16:16`` - i16 is 16-bit aligned
1624- ``i32:32:32`` - i32 is 32-bit aligned
1625- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1626 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001627- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001628- ``f32:32:32`` - float is 32-bit aligned
1629- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001630- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001631- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1632- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001633- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001634
1635When LLVM is determining the alignment for a given type, it uses the
1636following rules:
1637
1638#. If the type sought is an exact match for one of the specifications,
1639 that specification is used.
1640#. If no match is found, and the type sought is an integer type, then
1641 the smallest integer type that is larger than the bitwidth of the
1642 sought type is used. If none of the specifications are larger than
1643 the bitwidth then the largest integer type is used. For example,
1644 given the default specifications above, the i7 type will use the
1645 alignment of i8 (next largest) while both i65 and i256 will use the
1646 alignment of i64 (largest specified).
1647#. If no match is found, and the type sought is a vector type, then the
1648 largest vector type that is smaller than the sought vector type will
1649 be used as a fall back. This happens because <128 x double> can be
1650 implemented in terms of 64 <2 x double>, for example.
1651
1652The function of the data layout string may not be what you expect.
1653Notably, this is not a specification from the frontend of what alignment
1654the code generator should use.
1655
1656Instead, if specified, the target data layout is required to match what
1657the ultimate *code generator* expects. This string is used by the
1658mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001659what the ultimate code generator uses. There is no way to generate IR
1660that does not embed this target-specific detail into the IR. If you
1661don't specify the string, the default specifications will be used to
1662generate a Data Layout and the optimization phases will operate
1663accordingly and introduce target specificity into the IR with respect to
1664these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001665
Bill Wendling5cc90842013-10-18 23:41:25 +00001666.. _langref_triple:
1667
1668Target Triple
1669-------------
1670
1671A module may specify a target triple string that describes the target
1672host. The syntax for the target triple is simply:
1673
1674.. code-block:: llvm
1675
1676 target triple = "x86_64-apple-macosx10.7.0"
1677
1678The *target triple* string consists of a series of identifiers delimited
1679by the minus sign character ('-'). The canonical forms are:
1680
1681::
1682
1683 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1684 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1685
1686This information is passed along to the backend so that it generates
1687code for the proper architecture. It's possible to override this on the
1688command line with the ``-mtriple`` command line option.
1689
Sean Silvab084af42012-12-07 10:36:55 +00001690.. _pointeraliasing:
1691
1692Pointer Aliasing Rules
1693----------------------
1694
1695Any memory access must be done through a pointer value associated with
1696an address range of the memory access, otherwise the behavior is
1697undefined. Pointer values are associated with address ranges according
1698to the following rules:
1699
1700- A pointer value is associated with the addresses associated with any
1701 value it is *based* on.
1702- An address of a global variable is associated with the address range
1703 of the variable's storage.
1704- The result value of an allocation instruction is associated with the
1705 address range of the allocated storage.
1706- A null pointer in the default address-space is associated with no
1707 address.
1708- An integer constant other than zero or a pointer value returned from
1709 a function not defined within LLVM may be associated with address
1710 ranges allocated through mechanisms other than those provided by
1711 LLVM. Such ranges shall not overlap with any ranges of addresses
1712 allocated by mechanisms provided by LLVM.
1713
1714A pointer value is *based* on another pointer value according to the
1715following rules:
1716
1717- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001718 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001719- The result value of a ``bitcast`` is *based* on the operand of the
1720 ``bitcast``.
1721- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1722 values that contribute (directly or indirectly) to the computation of
1723 the pointer's value.
1724- The "*based* on" relationship is transitive.
1725
1726Note that this definition of *"based"* is intentionally similar to the
1727definition of *"based"* in C99, though it is slightly weaker.
1728
1729LLVM IR does not associate types with memory. The result type of a
1730``load`` merely indicates the size and alignment of the memory from
1731which to load, as well as the interpretation of the value. The first
1732operand type of a ``store`` similarly only indicates the size and
1733alignment of the store.
1734
1735Consequently, type-based alias analysis, aka TBAA, aka
1736``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1737:ref:`Metadata <metadata>` may be used to encode additional information
1738which specialized optimization passes may use to implement type-based
1739alias analysis.
1740
1741.. _volatile:
1742
1743Volatile Memory Accesses
1744------------------------
1745
1746Certain memory accesses, such as :ref:`load <i_load>`'s,
1747:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1748marked ``volatile``. The optimizers must not change the number of
1749volatile operations or change their order of execution relative to other
1750volatile operations. The optimizers *may* change the order of volatile
1751operations relative to non-volatile operations. This is not Java's
1752"volatile" and has no cross-thread synchronization behavior.
1753
Andrew Trick89fc5a62013-01-30 21:19:35 +00001754IR-level volatile loads and stores cannot safely be optimized into
1755llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1756flagged volatile. Likewise, the backend should never split or merge
1757target-legal volatile load/store instructions.
1758
Andrew Trick7e6f9282013-01-31 00:49:39 +00001759.. admonition:: Rationale
1760
1761 Platforms may rely on volatile loads and stores of natively supported
1762 data width to be executed as single instruction. For example, in C
1763 this holds for an l-value of volatile primitive type with native
1764 hardware support, but not necessarily for aggregate types. The
1765 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001766 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001767 do not violate the frontend's contract with the language.
1768
Sean Silvab084af42012-12-07 10:36:55 +00001769.. _memmodel:
1770
1771Memory Model for Concurrent Operations
1772--------------------------------------
1773
1774The LLVM IR does not define any way to start parallel threads of
1775execution or to register signal handlers. Nonetheless, there are
1776platform-specific ways to create them, and we define LLVM IR's behavior
1777in their presence. This model is inspired by the C++0x memory model.
1778
1779For a more informal introduction to this model, see the :doc:`Atomics`.
1780
1781We define a *happens-before* partial order as the least partial order
1782that
1783
1784- Is a superset of single-thread program order, and
1785- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1786 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1787 techniques, like pthread locks, thread creation, thread joining,
1788 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1789 Constraints <ordering>`).
1790
1791Note that program order does not introduce *happens-before* edges
1792between a thread and signals executing inside that thread.
1793
1794Every (defined) read operation (load instructions, memcpy, atomic
1795loads/read-modify-writes, etc.) R reads a series of bytes written by
1796(defined) write operations (store instructions, atomic
1797stores/read-modify-writes, memcpy, etc.). For the purposes of this
1798section, initialized globals are considered to have a write of the
1799initializer which is atomic and happens before any other read or write
1800of the memory in question. For each byte of a read R, R\ :sub:`byte`
1801may see any write to the same byte, except:
1802
1803- If write\ :sub:`1` happens before write\ :sub:`2`, and
1804 write\ :sub:`2` happens before R\ :sub:`byte`, then
1805 R\ :sub:`byte` does not see write\ :sub:`1`.
1806- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1807 R\ :sub:`byte` does not see write\ :sub:`3`.
1808
1809Given that definition, R\ :sub:`byte` is defined as follows:
1810
1811- If R is volatile, the result is target-dependent. (Volatile is
1812 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001813 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001814 like normal memory. It does not generally provide cross-thread
1815 synchronization.)
1816- Otherwise, if there is no write to the same byte that happens before
1817 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1818- Otherwise, if R\ :sub:`byte` may see exactly one write,
1819 R\ :sub:`byte` returns the value written by that write.
1820- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1821 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1822 Memory Ordering Constraints <ordering>` section for additional
1823 constraints on how the choice is made.
1824- Otherwise R\ :sub:`byte` returns ``undef``.
1825
1826R returns the value composed of the series of bytes it read. This
1827implies that some bytes within the value may be ``undef`` **without**
1828the entire value being ``undef``. Note that this only defines the
1829semantics of the operation; it doesn't mean that targets will emit more
1830than one instruction to read the series of bytes.
1831
1832Note that in cases where none of the atomic intrinsics are used, this
1833model places only one restriction on IR transformations on top of what
1834is required for single-threaded execution: introducing a store to a byte
1835which might not otherwise be stored is not allowed in general.
1836(Specifically, in the case where another thread might write to and read
1837from an address, introducing a store can change a load that may see
1838exactly one write into a load that may see multiple writes.)
1839
1840.. _ordering:
1841
1842Atomic Memory Ordering Constraints
1843----------------------------------
1844
1845Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1846:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1847:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001848ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001849the same address they *synchronize with*. These semantics are borrowed
1850from Java and C++0x, but are somewhat more colloquial. If these
1851descriptions aren't precise enough, check those specs (see spec
1852references in the :doc:`atomics guide <Atomics>`).
1853:ref:`fence <i_fence>` instructions treat these orderings somewhat
1854differently since they don't take an address. See that instruction's
1855documentation for details.
1856
1857For a simpler introduction to the ordering constraints, see the
1858:doc:`Atomics`.
1859
1860``unordered``
1861 The set of values that can be read is governed by the happens-before
1862 partial order. A value cannot be read unless some operation wrote
1863 it. This is intended to provide a guarantee strong enough to model
1864 Java's non-volatile shared variables. This ordering cannot be
1865 specified for read-modify-write operations; it is not strong enough
1866 to make them atomic in any interesting way.
1867``monotonic``
1868 In addition to the guarantees of ``unordered``, there is a single
1869 total order for modifications by ``monotonic`` operations on each
1870 address. All modification orders must be compatible with the
1871 happens-before order. There is no guarantee that the modification
1872 orders can be combined to a global total order for the whole program
1873 (and this often will not be possible). The read in an atomic
1874 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1875 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1876 order immediately before the value it writes. If one atomic read
1877 happens before another atomic read of the same address, the later
1878 read must see the same value or a later value in the address's
1879 modification order. This disallows reordering of ``monotonic`` (or
1880 stronger) operations on the same address. If an address is written
1881 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1882 read that address repeatedly, the other threads must eventually see
1883 the write. This corresponds to the C++0x/C1x
1884 ``memory_order_relaxed``.
1885``acquire``
1886 In addition to the guarantees of ``monotonic``, a
1887 *synchronizes-with* edge may be formed with a ``release`` operation.
1888 This is intended to model C++'s ``memory_order_acquire``.
1889``release``
1890 In addition to the guarantees of ``monotonic``, if this operation
1891 writes a value which is subsequently read by an ``acquire``
1892 operation, it *synchronizes-with* that operation. (This isn't a
1893 complete description; see the C++0x definition of a release
1894 sequence.) This corresponds to the C++0x/C1x
1895 ``memory_order_release``.
1896``acq_rel`` (acquire+release)
1897 Acts as both an ``acquire`` and ``release`` operation on its
1898 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1899``seq_cst`` (sequentially consistent)
1900 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001901 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001902 writes), there is a global total order on all
1903 sequentially-consistent operations on all addresses, which is
1904 consistent with the *happens-before* partial order and with the
1905 modification orders of all the affected addresses. Each
1906 sequentially-consistent read sees the last preceding write to the
1907 same address in this global order. This corresponds to the C++0x/C1x
1908 ``memory_order_seq_cst`` and Java volatile.
1909
1910.. _singlethread:
1911
1912If an atomic operation is marked ``singlethread``, it only *synchronizes
1913with* or participates in modification and seq\_cst total orderings with
1914other operations running in the same thread (for example, in signal
1915handlers).
1916
1917.. _fastmath:
1918
1919Fast-Math Flags
1920---------------
1921
1922LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1923:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001924:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1925be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001926
1927``nnan``
1928 No NaNs - Allow optimizations to assume the arguments and result are not
1929 NaN. Such optimizations are required to retain defined behavior over
1930 NaNs, but the value of the result is undefined.
1931
1932``ninf``
1933 No Infs - Allow optimizations to assume the arguments and result are not
1934 +/-Inf. Such optimizations are required to retain defined behavior over
1935 +/-Inf, but the value of the result is undefined.
1936
1937``nsz``
1938 No Signed Zeros - Allow optimizations to treat the sign of a zero
1939 argument or result as insignificant.
1940
1941``arcp``
1942 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1943 argument rather than perform division.
1944
1945``fast``
1946 Fast - Allow algebraically equivalent transformations that may
1947 dramatically change results in floating point (e.g. reassociate). This
1948 flag implies all the others.
1949
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001950.. _uselistorder:
1951
1952Use-list Order Directives
1953-------------------------
1954
1955Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001956order to be recreated. ``<order-indexes>`` is a comma-separated list of
1957indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001958value's use-list is immediately sorted by these indexes.
1959
Sean Silvaa1190322015-08-06 22:56:48 +00001960Use-list directives may appear at function scope or global scope. They are not
1961instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001962function scope, they must appear after the terminator of the final basic block.
1963
1964If basic blocks have their address taken via ``blockaddress()`` expressions,
1965``uselistorder_bb`` can be used to reorder their use-lists from outside their
1966function's scope.
1967
1968:Syntax:
1969
1970::
1971
1972 uselistorder <ty> <value>, { <order-indexes> }
1973 uselistorder_bb @function, %block { <order-indexes> }
1974
1975:Examples:
1976
1977::
1978
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001979 define void @foo(i32 %arg1, i32 %arg2) {
1980 entry:
1981 ; ... instructions ...
1982 bb:
1983 ; ... instructions ...
1984
1985 ; At function scope.
1986 uselistorder i32 %arg1, { 1, 0, 2 }
1987 uselistorder label %bb, { 1, 0 }
1988 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001989
1990 ; At global scope.
1991 uselistorder i32* @global, { 1, 2, 0 }
1992 uselistorder i32 7, { 1, 0 }
1993 uselistorder i32 (i32) @bar, { 1, 0 }
1994 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1995
Sean Silvab084af42012-12-07 10:36:55 +00001996.. _typesystem:
1997
1998Type System
1999===========
2000
2001The LLVM type system is one of the most important features of the
2002intermediate representation. Being typed enables a number of
2003optimizations to be performed on the intermediate representation
2004directly, without having to do extra analyses on the side before the
2005transformation. A strong type system makes it easier to read the
2006generated code and enables novel analyses and transformations that are
2007not feasible to perform on normal three address code representations.
2008
Rafael Espindola08013342013-12-07 19:34:20 +00002009.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002010
Rafael Espindola08013342013-12-07 19:34:20 +00002011Void Type
2012---------
Sean Silvab084af42012-12-07 10:36:55 +00002013
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002014:Overview:
2015
Rafael Espindola08013342013-12-07 19:34:20 +00002016
2017The void type does not represent any value and has no size.
2018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Syntax:
2020
Rafael Espindola08013342013-12-07 19:34:20 +00002021
2022::
2023
2024 void
Sean Silvab084af42012-12-07 10:36:55 +00002025
2026
Rafael Espindola08013342013-12-07 19:34:20 +00002027.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002028
Rafael Espindola08013342013-12-07 19:34:20 +00002029Function Type
2030-------------
Sean Silvab084af42012-12-07 10:36:55 +00002031
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002032:Overview:
2033
Sean Silvab084af42012-12-07 10:36:55 +00002034
Rafael Espindola08013342013-12-07 19:34:20 +00002035The function type can be thought of as a function signature. It consists of a
2036return type and a list of formal parameter types. The return type of a function
2037type is a void type or first class type --- except for :ref:`label <t_label>`
2038and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002039
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002040:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002041
Rafael Espindola08013342013-12-07 19:34:20 +00002042::
Sean Silvab084af42012-12-07 10:36:55 +00002043
Rafael Espindola08013342013-12-07 19:34:20 +00002044 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002045
Rafael Espindola08013342013-12-07 19:34:20 +00002046...where '``<parameter list>``' is a comma-separated list of type
2047specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002048indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002049argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002050handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002051except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002052
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002053:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002054
Rafael Espindola08013342013-12-07 19:34:20 +00002055+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2056| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2057+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2058| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2059+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2060| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2061+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2062| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2063+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2064
2065.. _t_firstclass:
2066
2067First Class Types
2068-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002069
2070The :ref:`first class <t_firstclass>` types are perhaps the most important.
2071Values of these types are the only ones which can be produced by
2072instructions.
2073
Rafael Espindola08013342013-12-07 19:34:20 +00002074.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002075
Rafael Espindola08013342013-12-07 19:34:20 +00002076Single Value Types
2077^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002078
Rafael Espindola08013342013-12-07 19:34:20 +00002079These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002080
2081.. _t_integer:
2082
2083Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002084""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002085
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002086:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002087
2088The integer type is a very simple type that simply specifies an
2089arbitrary bit width for the integer type desired. Any bit width from 1
2090bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002093
2094::
2095
2096 iN
2097
2098The number of bits the integer will occupy is specified by the ``N``
2099value.
2100
2101Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002102*********
Sean Silvab084af42012-12-07 10:36:55 +00002103
2104+----------------+------------------------------------------------+
2105| ``i1`` | a single-bit integer. |
2106+----------------+------------------------------------------------+
2107| ``i32`` | a 32-bit integer. |
2108+----------------+------------------------------------------------+
2109| ``i1942652`` | a really big integer of over 1 million bits. |
2110+----------------+------------------------------------------------+
2111
2112.. _t_floating:
2113
2114Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002115""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002116
2117.. list-table::
2118 :header-rows: 1
2119
2120 * - Type
2121 - Description
2122
2123 * - ``half``
2124 - 16-bit floating point value
2125
2126 * - ``float``
2127 - 32-bit floating point value
2128
2129 * - ``double``
2130 - 64-bit floating point value
2131
2132 * - ``fp128``
2133 - 128-bit floating point value (112-bit mantissa)
2134
2135 * - ``x86_fp80``
2136 - 80-bit floating point value (X87)
2137
2138 * - ``ppc_fp128``
2139 - 128-bit floating point value (two 64-bits)
2140
Reid Kleckner9a16d082014-03-05 02:41:37 +00002141X86_mmx Type
2142""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002145
Reid Kleckner9a16d082014-03-05 02:41:37 +00002146The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002147machine. The operations allowed on it are quite limited: parameters and
2148return values, load and store, and bitcast. User-specified MMX
2149instructions are represented as intrinsic or asm calls with arguments
2150and/or results of this type. There are no arrays, vectors or constants
2151of this type.
2152
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002153:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002154
2155::
2156
Reid Kleckner9a16d082014-03-05 02:41:37 +00002157 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002158
Sean Silvab084af42012-12-07 10:36:55 +00002159
Rafael Espindola08013342013-12-07 19:34:20 +00002160.. _t_pointer:
2161
2162Pointer Type
2163""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002166
Rafael Espindola08013342013-12-07 19:34:20 +00002167The pointer type is used to specify memory locations. Pointers are
2168commonly used to reference objects in memory.
2169
2170Pointer types may have an optional address space attribute defining the
2171numbered address space where the pointed-to object resides. The default
2172address space is number zero. The semantics of non-zero address spaces
2173are target-specific.
2174
2175Note that LLVM does not permit pointers to void (``void*``) nor does it
2176permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002177
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002178:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002179
2180::
2181
Rafael Espindola08013342013-12-07 19:34:20 +00002182 <type> *
2183
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002184:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002185
2186+-------------------------+--------------------------------------------------------------------------------------------------------------+
2187| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2188+-------------------------+--------------------------------------------------------------------------------------------------------------+
2189| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2190+-------------------------+--------------------------------------------------------------------------------------------------------------+
2191| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2192+-------------------------+--------------------------------------------------------------------------------------------------------------+
2193
2194.. _t_vector:
2195
2196Vector Type
2197"""""""""""
2198
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002199:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002200
2201A vector type is a simple derived type that represents a vector of
2202elements. Vector types are used when multiple primitive data are
2203operated in parallel using a single instruction (SIMD). A vector type
2204requires a size (number of elements) and an underlying primitive data
2205type. Vector types are considered :ref:`first class <t_firstclass>`.
2206
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002207:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002208
2209::
2210
2211 < <# elements> x <elementtype> >
2212
2213The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002214elementtype may be any integer, floating point or pointer type. Vectors
2215of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002216
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002217:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002218
2219+-------------------+--------------------------------------------------+
2220| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2221+-------------------+--------------------------------------------------+
2222| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2223+-------------------+--------------------------------------------------+
2224| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2225+-------------------+--------------------------------------------------+
2226| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2227+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002228
2229.. _t_label:
2230
2231Label Type
2232^^^^^^^^^^
2233
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002234:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002235
2236The label type represents code labels.
2237
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002238:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002239
2240::
2241
2242 label
2243
David Majnemerb611e3f2015-08-14 05:09:07 +00002244.. _t_token:
2245
2246Token Type
2247^^^^^^^^^^
2248
2249:Overview:
2250
2251The token type is used when a value is associated with an instruction
2252but all uses of the value must not attempt to introspect or obscure it.
2253As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2254:ref:`select <i_select>` of type token.
2255
2256:Syntax:
2257
2258::
2259
2260 token
2261
2262
2263
Sean Silvab084af42012-12-07 10:36:55 +00002264.. _t_metadata:
2265
2266Metadata Type
2267^^^^^^^^^^^^^
2268
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002269:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002270
2271The metadata type represents embedded metadata. No derived types may be
2272created from metadata except for :ref:`function <t_function>` arguments.
2273
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002274:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002275
2276::
2277
2278 metadata
2279
Sean Silvab084af42012-12-07 10:36:55 +00002280.. _t_aggregate:
2281
2282Aggregate Types
2283^^^^^^^^^^^^^^^
2284
2285Aggregate Types are a subset of derived types that can contain multiple
2286member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2287aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2288aggregate types.
2289
2290.. _t_array:
2291
2292Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002293""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002294
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002295:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002296
2297The array type is a very simple derived type that arranges elements
2298sequentially in memory. The array type requires a size (number of
2299elements) and an underlying data type.
2300
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002301:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002302
2303::
2304
2305 [<# elements> x <elementtype>]
2306
2307The number of elements is a constant integer value; ``elementtype`` may
2308be any type with a size.
2309
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002310:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002311
2312+------------------+--------------------------------------+
2313| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2314+------------------+--------------------------------------+
2315| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2316+------------------+--------------------------------------+
2317| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2318+------------------+--------------------------------------+
2319
2320Here are some examples of multidimensional arrays:
2321
2322+-----------------------------+----------------------------------------------------------+
2323| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2324+-----------------------------+----------------------------------------------------------+
2325| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2326+-----------------------------+----------------------------------------------------------+
2327| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2328+-----------------------------+----------------------------------------------------------+
2329
2330There is no restriction on indexing beyond the end of the array implied
2331by a static type (though there are restrictions on indexing beyond the
2332bounds of an allocated object in some cases). This means that
2333single-dimension 'variable sized array' addressing can be implemented in
2334LLVM with a zero length array type. An implementation of 'pascal style
2335arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2336example.
2337
Sean Silvab084af42012-12-07 10:36:55 +00002338.. _t_struct:
2339
2340Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002341""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002342
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002343:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002344
2345The structure type is used to represent a collection of data members
2346together in memory. The elements of a structure may be any type that has
2347a size.
2348
2349Structures in memory are accessed using '``load``' and '``store``' by
2350getting a pointer to a field with the '``getelementptr``' instruction.
2351Structures in registers are accessed using the '``extractvalue``' and
2352'``insertvalue``' instructions.
2353
2354Structures may optionally be "packed" structures, which indicate that
2355the alignment of the struct is one byte, and that there is no padding
2356between the elements. In non-packed structs, padding between field types
2357is inserted as defined by the DataLayout string in the module, which is
2358required to match what the underlying code generator expects.
2359
2360Structures can either be "literal" or "identified". A literal structure
2361is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2362identified types are always defined at the top level with a name.
2363Literal types are uniqued by their contents and can never be recursive
2364or opaque since there is no way to write one. Identified types can be
2365recursive, can be opaqued, and are never uniqued.
2366
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002367:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002368
2369::
2370
2371 %T1 = type { <type list> } ; Identified normal struct type
2372 %T2 = type <{ <type list> }> ; Identified packed struct type
2373
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002374:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002375
2376+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2377| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2378+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002379| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002380+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2381| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2382+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2383
2384.. _t_opaque:
2385
2386Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002387""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002388
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002389:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002390
2391Opaque structure types are used to represent named structure types that
2392do not have a body specified. This corresponds (for example) to the C
2393notion of a forward declared structure.
2394
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002395:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002396
2397::
2398
2399 %X = type opaque
2400 %52 = type opaque
2401
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002402:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002403
2404+--------------+-------------------+
2405| ``opaque`` | An opaque type. |
2406+--------------+-------------------+
2407
Sean Silva1703e702014-04-08 21:06:22 +00002408.. _constants:
2409
Sean Silvab084af42012-12-07 10:36:55 +00002410Constants
2411=========
2412
2413LLVM has several different basic types of constants. This section
2414describes them all and their syntax.
2415
2416Simple Constants
2417----------------
2418
2419**Boolean constants**
2420 The two strings '``true``' and '``false``' are both valid constants
2421 of the ``i1`` type.
2422**Integer constants**
2423 Standard integers (such as '4') are constants of the
2424 :ref:`integer <t_integer>` type. Negative numbers may be used with
2425 integer types.
2426**Floating point constants**
2427 Floating point constants use standard decimal notation (e.g.
2428 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2429 hexadecimal notation (see below). The assembler requires the exact
2430 decimal value of a floating-point constant. For example, the
2431 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2432 decimal in binary. Floating point constants must have a :ref:`floating
2433 point <t_floating>` type.
2434**Null pointer constants**
2435 The identifier '``null``' is recognized as a null pointer constant
2436 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002437**Token constants**
2438 The identifier '``none``' is recognized as an empty token constant
2439 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002440
2441The one non-intuitive notation for constants is the hexadecimal form of
2442floating point constants. For example, the form
2443'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2444than) '``double 4.5e+15``'. The only time hexadecimal floating point
2445constants are required (and the only time that they are generated by the
2446disassembler) is when a floating point constant must be emitted but it
2447cannot be represented as a decimal floating point number in a reasonable
2448number of digits. For example, NaN's, infinities, and other special
2449values are represented in their IEEE hexadecimal format so that assembly
2450and disassembly do not cause any bits to change in the constants.
2451
2452When using the hexadecimal form, constants of types half, float, and
2453double are represented using the 16-digit form shown above (which
2454matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002455must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002456precision, respectively. Hexadecimal format is always used for long
2457double, and there are three forms of long double. The 80-bit format used
2458by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2459128-bit format used by PowerPC (two adjacent doubles) is represented by
2460``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002461represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2462will only work if they match the long double format on your target.
2463The IEEE 16-bit format (half precision) is represented by ``0xH``
2464followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2465(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002466
Reid Kleckner9a16d082014-03-05 02:41:37 +00002467There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002468
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002469.. _complexconstants:
2470
Sean Silvab084af42012-12-07 10:36:55 +00002471Complex Constants
2472-----------------
2473
2474Complex constants are a (potentially recursive) combination of simple
2475constants and smaller complex constants.
2476
2477**Structure constants**
2478 Structure constants are represented with notation similar to
2479 structure type definitions (a comma separated list of elements,
2480 surrounded by braces (``{}``)). For example:
2481 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2482 "``@G = external global i32``". Structure constants must have
2483 :ref:`structure type <t_struct>`, and the number and types of elements
2484 must match those specified by the type.
2485**Array constants**
2486 Array constants are represented with notation similar to array type
2487 definitions (a comma separated list of elements, surrounded by
2488 square brackets (``[]``)). For example:
2489 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2490 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002491 match those specified by the type. As a special case, character array
2492 constants may also be represented as a double-quoted string using the ``c``
2493 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002494**Vector constants**
2495 Vector constants are represented with notation similar to vector
2496 type definitions (a comma separated list of elements, surrounded by
2497 less-than/greater-than's (``<>``)). For example:
2498 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2499 must have :ref:`vector type <t_vector>`, and the number and types of
2500 elements must match those specified by the type.
2501**Zero initialization**
2502 The string '``zeroinitializer``' can be used to zero initialize a
2503 value to zero of *any* type, including scalar and
2504 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2505 having to print large zero initializers (e.g. for large arrays) and
2506 is always exactly equivalent to using explicit zero initializers.
2507**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002508 A metadata node is a constant tuple without types. For example:
2509 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002510 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2511 Unlike other typed constants that are meant to be interpreted as part of
2512 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002513 information such as debug info.
2514
2515Global Variable and Function Addresses
2516--------------------------------------
2517
2518The addresses of :ref:`global variables <globalvars>` and
2519:ref:`functions <functionstructure>` are always implicitly valid
2520(link-time) constants. These constants are explicitly referenced when
2521the :ref:`identifier for the global <identifiers>` is used and always have
2522:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2523file:
2524
2525.. code-block:: llvm
2526
2527 @X = global i32 17
2528 @Y = global i32 42
2529 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2530
2531.. _undefvalues:
2532
2533Undefined Values
2534----------------
2535
2536The string '``undef``' can be used anywhere a constant is expected, and
2537indicates that the user of the value may receive an unspecified
2538bit-pattern. Undefined values may be of any type (other than '``label``'
2539or '``void``') and be used anywhere a constant is permitted.
2540
2541Undefined values are useful because they indicate to the compiler that
2542the program is well defined no matter what value is used. This gives the
2543compiler more freedom to optimize. Here are some examples of
2544(potentially surprising) transformations that are valid (in pseudo IR):
2545
2546.. code-block:: llvm
2547
2548 %A = add %X, undef
2549 %B = sub %X, undef
2550 %C = xor %X, undef
2551 Safe:
2552 %A = undef
2553 %B = undef
2554 %C = undef
2555
2556This is safe because all of the output bits are affected by the undef
2557bits. Any output bit can have a zero or one depending on the input bits.
2558
2559.. code-block:: llvm
2560
2561 %A = or %X, undef
2562 %B = and %X, undef
2563 Safe:
2564 %A = -1
2565 %B = 0
2566 Unsafe:
2567 %A = undef
2568 %B = undef
2569
2570These logical operations have bits that are not always affected by the
2571input. For example, if ``%X`` has a zero bit, then the output of the
2572'``and``' operation will always be a zero for that bit, no matter what
2573the corresponding bit from the '``undef``' is. As such, it is unsafe to
2574optimize or assume that the result of the '``and``' is '``undef``'.
2575However, it is safe to assume that all bits of the '``undef``' could be
25760, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2577all the bits of the '``undef``' operand to the '``or``' could be set,
2578allowing the '``or``' to be folded to -1.
2579
2580.. code-block:: llvm
2581
2582 %A = select undef, %X, %Y
2583 %B = select undef, 42, %Y
2584 %C = select %X, %Y, undef
2585 Safe:
2586 %A = %X (or %Y)
2587 %B = 42 (or %Y)
2588 %C = %Y
2589 Unsafe:
2590 %A = undef
2591 %B = undef
2592 %C = undef
2593
2594This set of examples shows that undefined '``select``' (and conditional
2595branch) conditions can go *either way*, but they have to come from one
2596of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2597both known to have a clear low bit, then ``%A`` would have to have a
2598cleared low bit. However, in the ``%C`` example, the optimizer is
2599allowed to assume that the '``undef``' operand could be the same as
2600``%Y``, allowing the whole '``select``' to be eliminated.
2601
2602.. code-block:: llvm
2603
2604 %A = xor undef, undef
2605
2606 %B = undef
2607 %C = xor %B, %B
2608
2609 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002610 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002611 %F = icmp gte %D, 4
2612
2613 Safe:
2614 %A = undef
2615 %B = undef
2616 %C = undef
2617 %D = undef
2618 %E = undef
2619 %F = undef
2620
2621This example points out that two '``undef``' operands are not
2622necessarily the same. This can be surprising to people (and also matches
2623C semantics) where they assume that "``X^X``" is always zero, even if
2624``X`` is undefined. This isn't true for a number of reasons, but the
2625short answer is that an '``undef``' "variable" can arbitrarily change
2626its value over its "live range". This is true because the variable
2627doesn't actually *have a live range*. Instead, the value is logically
2628read from arbitrary registers that happen to be around when needed, so
2629the value is not necessarily consistent over time. In fact, ``%A`` and
2630``%C`` need to have the same semantics or the core LLVM "replace all
2631uses with" concept would not hold.
2632
2633.. code-block:: llvm
2634
2635 %A = fdiv undef, %X
2636 %B = fdiv %X, undef
2637 Safe:
2638 %A = undef
2639 b: unreachable
2640
2641These examples show the crucial difference between an *undefined value*
2642and *undefined behavior*. An undefined value (like '``undef``') is
2643allowed to have an arbitrary bit-pattern. This means that the ``%A``
2644operation can be constant folded to '``undef``', because the '``undef``'
2645could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2646However, in the second example, we can make a more aggressive
2647assumption: because the ``undef`` is allowed to be an arbitrary value,
2648we are allowed to assume that it could be zero. Since a divide by zero
2649has *undefined behavior*, we are allowed to assume that the operation
2650does not execute at all. This allows us to delete the divide and all
2651code after it. Because the undefined operation "can't happen", the
2652optimizer can assume that it occurs in dead code.
2653
2654.. code-block:: llvm
2655
2656 a: store undef -> %X
2657 b: store %X -> undef
2658 Safe:
2659 a: <deleted>
2660 b: unreachable
2661
2662These examples reiterate the ``fdiv`` example: a store *of* an undefined
2663value can be assumed to not have any effect; we can assume that the
2664value is overwritten with bits that happen to match what was already
2665there. However, a store *to* an undefined location could clobber
2666arbitrary memory, therefore, it has undefined behavior.
2667
2668.. _poisonvalues:
2669
2670Poison Values
2671-------------
2672
2673Poison values are similar to :ref:`undef values <undefvalues>`, however
2674they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002675that cannot evoke side effects has nevertheless detected a condition
2676that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002677
2678There is currently no way of representing a poison value in the IR; they
2679only exist when produced by operations such as :ref:`add <i_add>` with
2680the ``nsw`` flag.
2681
2682Poison value behavior is defined in terms of value *dependence*:
2683
2684- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2685- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2686 their dynamic predecessor basic block.
2687- Function arguments depend on the corresponding actual argument values
2688 in the dynamic callers of their functions.
2689- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2690 instructions that dynamically transfer control back to them.
2691- :ref:`Invoke <i_invoke>` instructions depend on the
2692 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2693 call instructions that dynamically transfer control back to them.
2694- Non-volatile loads and stores depend on the most recent stores to all
2695 of the referenced memory addresses, following the order in the IR
2696 (including loads and stores implied by intrinsics such as
2697 :ref:`@llvm.memcpy <int_memcpy>`.)
2698- An instruction with externally visible side effects depends on the
2699 most recent preceding instruction with externally visible side
2700 effects, following the order in the IR. (This includes :ref:`volatile
2701 operations <volatile>`.)
2702- An instruction *control-depends* on a :ref:`terminator
2703 instruction <terminators>` if the terminator instruction has
2704 multiple successors and the instruction is always executed when
2705 control transfers to one of the successors, and may not be executed
2706 when control is transferred to another.
2707- Additionally, an instruction also *control-depends* on a terminator
2708 instruction if the set of instructions it otherwise depends on would
2709 be different if the terminator had transferred control to a different
2710 successor.
2711- Dependence is transitive.
2712
Richard Smith32dbdf62014-07-31 04:25:36 +00002713Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2714with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002715on a poison value has undefined behavior.
2716
2717Here are some examples:
2718
2719.. code-block:: llvm
2720
2721 entry:
2722 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2723 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002724 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002725 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2726
2727 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002728 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002729
2730 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2731
2732 %narrowaddr = bitcast i32* @g to i16*
2733 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002734 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2735 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002736
2737 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2738 br i1 %cmp, label %true, label %end ; Branch to either destination.
2739
2740 true:
2741 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2742 ; it has undefined behavior.
2743 br label %end
2744
2745 end:
2746 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2747 ; Both edges into this PHI are
2748 ; control-dependent on %cmp, so this
2749 ; always results in a poison value.
2750
2751 store volatile i32 0, i32* @g ; This would depend on the store in %true
2752 ; if %cmp is true, or the store in %entry
2753 ; otherwise, so this is undefined behavior.
2754
2755 br i1 %cmp, label %second_true, label %second_end
2756 ; The same branch again, but this time the
2757 ; true block doesn't have side effects.
2758
2759 second_true:
2760 ; No side effects!
2761 ret void
2762
2763 second_end:
2764 store volatile i32 0, i32* @g ; This time, the instruction always depends
2765 ; on the store in %end. Also, it is
2766 ; control-equivalent to %end, so this is
2767 ; well-defined (ignoring earlier undefined
2768 ; behavior in this example).
2769
2770.. _blockaddress:
2771
2772Addresses of Basic Blocks
2773-------------------------
2774
2775``blockaddress(@function, %block)``
2776
2777The '``blockaddress``' constant computes the address of the specified
2778basic block in the specified function, and always has an ``i8*`` type.
2779Taking the address of the entry block is illegal.
2780
2781This value only has defined behavior when used as an operand to the
2782':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2783against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002784undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002785no label is equal to the null pointer. This may be passed around as an
2786opaque pointer sized value as long as the bits are not inspected. This
2787allows ``ptrtoint`` and arithmetic to be performed on these values so
2788long as the original value is reconstituted before the ``indirectbr``
2789instruction.
2790
2791Finally, some targets may provide defined semantics when using the value
2792as the operand to an inline assembly, but that is target specific.
2793
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002794.. _constantexprs:
2795
Sean Silvab084af42012-12-07 10:36:55 +00002796Constant Expressions
2797--------------------
2798
2799Constant expressions are used to allow expressions involving other
2800constants to be used as constants. Constant expressions may be of any
2801:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2802that does not have side effects (e.g. load and call are not supported).
2803The following is the syntax for constant expressions:
2804
2805``trunc (CST to TYPE)``
2806 Truncate a constant to another type. The bit size of CST must be
2807 larger than the bit size of TYPE. Both types must be integers.
2808``zext (CST to TYPE)``
2809 Zero extend a constant to another type. The bit size of CST must be
2810 smaller than the bit size of TYPE. Both types must be integers.
2811``sext (CST to TYPE)``
2812 Sign extend a constant to another type. The bit size of CST must be
2813 smaller than the bit size of TYPE. Both types must be integers.
2814``fptrunc (CST to TYPE)``
2815 Truncate a floating point constant to another floating point type.
2816 The size of CST must be larger than the size of TYPE. Both types
2817 must be floating point.
2818``fpext (CST to TYPE)``
2819 Floating point extend a constant to another type. The size of CST
2820 must be smaller or equal to the size of TYPE. Both types must be
2821 floating point.
2822``fptoui (CST to TYPE)``
2823 Convert a floating point constant to the corresponding unsigned
2824 integer constant. TYPE must be a scalar or vector integer type. CST
2825 must be of scalar or vector floating point type. Both CST and TYPE
2826 must be scalars, or vectors of the same number of elements. If the
2827 value won't fit in the integer type, the results are undefined.
2828``fptosi (CST to TYPE)``
2829 Convert a floating point constant to the corresponding signed
2830 integer constant. TYPE must be a scalar or vector integer type. CST
2831 must be of scalar or vector floating point type. Both CST and TYPE
2832 must be scalars, or vectors of the same number of elements. If the
2833 value won't fit in the integer type, the results are undefined.
2834``uitofp (CST to TYPE)``
2835 Convert an unsigned integer constant to the corresponding floating
2836 point constant. TYPE must be a scalar or vector floating point type.
2837 CST must be of scalar or vector integer type. Both CST and TYPE must
2838 be scalars, or vectors of the same number of elements. If the value
2839 won't fit in the floating point type, the results are undefined.
2840``sitofp (CST to TYPE)``
2841 Convert a signed integer constant to the corresponding floating
2842 point constant. TYPE must be a scalar or vector floating point type.
2843 CST must be of scalar or vector integer type. Both CST and TYPE must
2844 be scalars, or vectors of the same number of elements. If the value
2845 won't fit in the floating point type, the results are undefined.
2846``ptrtoint (CST to TYPE)``
2847 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002848 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002849 pointer type. The ``CST`` value is zero extended, truncated, or
2850 unchanged to make it fit in ``TYPE``.
2851``inttoptr (CST to TYPE)``
2852 Convert an integer constant to a pointer constant. TYPE must be a
2853 pointer type. CST must be of integer type. The CST value is zero
2854 extended, truncated, or unchanged to make it fit in a pointer size.
2855 This one is *really* dangerous!
2856``bitcast (CST to TYPE)``
2857 Convert a constant, CST, to another TYPE. The constraints of the
2858 operands are the same as those for the :ref:`bitcast
2859 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002860``addrspacecast (CST to TYPE)``
2861 Convert a constant pointer or constant vector of pointer, CST, to another
2862 TYPE in a different address space. The constraints of the operands are the
2863 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002864``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002865 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2866 constants. As with the :ref:`getelementptr <i_getelementptr>`
2867 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002868 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002869``select (COND, VAL1, VAL2)``
2870 Perform the :ref:`select operation <i_select>` on constants.
2871``icmp COND (VAL1, VAL2)``
2872 Performs the :ref:`icmp operation <i_icmp>` on constants.
2873``fcmp COND (VAL1, VAL2)``
2874 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2875``extractelement (VAL, IDX)``
2876 Perform the :ref:`extractelement operation <i_extractelement>` on
2877 constants.
2878``insertelement (VAL, ELT, IDX)``
2879 Perform the :ref:`insertelement operation <i_insertelement>` on
2880 constants.
2881``shufflevector (VEC1, VEC2, IDXMASK)``
2882 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2883 constants.
2884``extractvalue (VAL, IDX0, IDX1, ...)``
2885 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2886 constants. The index list is interpreted in a similar manner as
2887 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2888 least one index value must be specified.
2889``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2890 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2891 The index list is interpreted in a similar manner as indices in a
2892 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2893 value must be specified.
2894``OPCODE (LHS, RHS)``
2895 Perform the specified operation of the LHS and RHS constants. OPCODE
2896 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2897 binary <bitwiseops>` operations. The constraints on operands are
2898 the same as those for the corresponding instruction (e.g. no bitwise
2899 operations on floating point values are allowed).
2900
2901Other Values
2902============
2903
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002904.. _inlineasmexprs:
2905
Sean Silvab084af42012-12-07 10:36:55 +00002906Inline Assembler Expressions
2907----------------------------
2908
2909LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002910Inline Assembly <moduleasm>`) through the use of a special value. This value
2911represents the inline assembler as a template string (containing the
2912instructions to emit), a list of operand constraints (stored as a string), a
2913flag that indicates whether or not the inline asm expression has side effects,
2914and a flag indicating whether the function containing the asm needs to align its
2915stack conservatively.
2916
2917The template string supports argument substitution of the operands using "``$``"
2918followed by a number, to indicate substitution of the given register/memory
2919location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2920be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2921operand (See :ref:`inline-asm-modifiers`).
2922
2923A literal "``$``" may be included by using "``$$``" in the template. To include
2924other special characters into the output, the usual "``\XX``" escapes may be
2925used, just as in other strings. Note that after template substitution, the
2926resulting assembly string is parsed by LLVM's integrated assembler unless it is
2927disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2928syntax known to LLVM.
2929
2930LLVM's support for inline asm is modeled closely on the requirements of Clang's
2931GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2932modifier codes listed here are similar or identical to those in GCC's inline asm
2933support. However, to be clear, the syntax of the template and constraint strings
2934described here is *not* the same as the syntax accepted by GCC and Clang, and,
2935while most constraint letters are passed through as-is by Clang, some get
2936translated to other codes when converting from the C source to the LLVM
2937assembly.
2938
2939An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002940
2941.. code-block:: llvm
2942
2943 i32 (i32) asm "bswap $0", "=r,r"
2944
2945Inline assembler expressions may **only** be used as the callee operand
2946of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2947Thus, typically we have:
2948
2949.. code-block:: llvm
2950
2951 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2952
2953Inline asms with side effects not visible in the constraint list must be
2954marked as having side effects. This is done through the use of the
2955'``sideeffect``' keyword, like so:
2956
2957.. code-block:: llvm
2958
2959 call void asm sideeffect "eieio", ""()
2960
2961In some cases inline asms will contain code that will not work unless
2962the stack is aligned in some way, such as calls or SSE instructions on
2963x86, yet will not contain code that does that alignment within the asm.
2964The compiler should make conservative assumptions about what the asm
2965might contain and should generate its usual stack alignment code in the
2966prologue if the '``alignstack``' keyword is present:
2967
2968.. code-block:: llvm
2969
2970 call void asm alignstack "eieio", ""()
2971
2972Inline asms also support using non-standard assembly dialects. The
2973assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2974the inline asm is using the Intel dialect. Currently, ATT and Intel are
2975the only supported dialects. An example is:
2976
2977.. code-block:: llvm
2978
2979 call void asm inteldialect "eieio", ""()
2980
2981If multiple keywords appear the '``sideeffect``' keyword must come
2982first, the '``alignstack``' keyword second and the '``inteldialect``'
2983keyword last.
2984
James Y Knightbc832ed2015-07-08 18:08:36 +00002985Inline Asm Constraint String
2986^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2987
2988The constraint list is a comma-separated string, each element containing one or
2989more constraint codes.
2990
2991For each element in the constraint list an appropriate register or memory
2992operand will be chosen, and it will be made available to assembly template
2993string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2994second, etc.
2995
2996There are three different types of constraints, which are distinguished by a
2997prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2998constraints must always be given in that order: outputs first, then inputs, then
2999clobbers. They cannot be intermingled.
3000
3001There are also three different categories of constraint codes:
3002
3003- Register constraint. This is either a register class, or a fixed physical
3004 register. This kind of constraint will allocate a register, and if necessary,
3005 bitcast the argument or result to the appropriate type.
3006- Memory constraint. This kind of constraint is for use with an instruction
3007 taking a memory operand. Different constraints allow for different addressing
3008 modes used by the target.
3009- Immediate value constraint. This kind of constraint is for an integer or other
3010 immediate value which can be rendered directly into an instruction. The
3011 various target-specific constraints allow the selection of a value in the
3012 proper range for the instruction you wish to use it with.
3013
3014Output constraints
3015""""""""""""""""""
3016
3017Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3018indicates that the assembly will write to this operand, and the operand will
3019then be made available as a return value of the ``asm`` expression. Output
3020constraints do not consume an argument from the call instruction. (Except, see
3021below about indirect outputs).
3022
3023Normally, it is expected that no output locations are written to by the assembly
3024expression until *all* of the inputs have been read. As such, LLVM may assign
3025the same register to an output and an input. If this is not safe (e.g. if the
3026assembly contains two instructions, where the first writes to one output, and
3027the second reads an input and writes to a second output), then the "``&``"
3028modifier must be used (e.g. "``=&r``") to specify that the output is an
3029"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3030will not use the same register for any inputs (other than an input tied to this
3031output).
3032
3033Input constraints
3034"""""""""""""""""
3035
3036Input constraints do not have a prefix -- just the constraint codes. Each input
3037constraint will consume one argument from the call instruction. It is not
3038permitted for the asm to write to any input register or memory location (unless
3039that input is tied to an output). Note also that multiple inputs may all be
3040assigned to the same register, if LLVM can determine that they necessarily all
3041contain the same value.
3042
3043Instead of providing a Constraint Code, input constraints may also "tie"
3044themselves to an output constraint, by providing an integer as the constraint
3045string. Tied inputs still consume an argument from the call instruction, and
3046take up a position in the asm template numbering as is usual -- they will simply
3047be constrained to always use the same register as the output they've been tied
3048to. For example, a constraint string of "``=r,0``" says to assign a register for
3049output, and use that register as an input as well (it being the 0'th
3050constraint).
3051
3052It is permitted to tie an input to an "early-clobber" output. In that case, no
3053*other* input may share the same register as the input tied to the early-clobber
3054(even when the other input has the same value).
3055
3056You may only tie an input to an output which has a register constraint, not a
3057memory constraint. Only a single input may be tied to an output.
3058
3059There is also an "interesting" feature which deserves a bit of explanation: if a
3060register class constraint allocates a register which is too small for the value
3061type operand provided as input, the input value will be split into multiple
3062registers, and all of them passed to the inline asm.
3063
3064However, this feature is often not as useful as you might think.
3065
3066Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3067architectures that have instructions which operate on multiple consecutive
3068instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3069SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3070hardware then loads into both the named register, and the next register. This
3071feature of inline asm would not be useful to support that.)
3072
3073A few of the targets provide a template string modifier allowing explicit access
3074to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3075``D``). On such an architecture, you can actually access the second allocated
3076register (yet, still, not any subsequent ones). But, in that case, you're still
3077probably better off simply splitting the value into two separate operands, for
3078clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3079despite existing only for use with this feature, is not really a good idea to
3080use)
3081
3082Indirect inputs and outputs
3083"""""""""""""""""""""""""""
3084
3085Indirect output or input constraints can be specified by the "``*``" modifier
3086(which goes after the "``=``" in case of an output). This indicates that the asm
3087will write to or read from the contents of an *address* provided as an input
3088argument. (Note that in this way, indirect outputs act more like an *input* than
3089an output: just like an input, they consume an argument of the call expression,
3090rather than producing a return value. An indirect output constraint is an
3091"output" only in that the asm is expected to write to the contents of the input
3092memory location, instead of just read from it).
3093
3094This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3095address of a variable as a value.
3096
3097It is also possible to use an indirect *register* constraint, but only on output
3098(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3099value normally, and then, separately emit a store to the address provided as
3100input, after the provided inline asm. (It's not clear what value this
3101functionality provides, compared to writing the store explicitly after the asm
3102statement, and it can only produce worse code, since it bypasses many
3103optimization passes. I would recommend not using it.)
3104
3105
3106Clobber constraints
3107"""""""""""""""""""
3108
3109A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3110consume an input operand, nor generate an output. Clobbers cannot use any of the
3111general constraint code letters -- they may use only explicit register
3112constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3113"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3114memory locations -- not only the memory pointed to by a declared indirect
3115output.
3116
3117
3118Constraint Codes
3119""""""""""""""""
3120After a potential prefix comes constraint code, or codes.
3121
3122A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3123followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3124(e.g. "``{eax}``").
3125
3126The one and two letter constraint codes are typically chosen to be the same as
3127GCC's constraint codes.
3128
3129A single constraint may include one or more than constraint code in it, leaving
3130it up to LLVM to choose which one to use. This is included mainly for
3131compatibility with the translation of GCC inline asm coming from clang.
3132
3133There are two ways to specify alternatives, and either or both may be used in an
3134inline asm constraint list:
3135
31361) Append the codes to each other, making a constraint code set. E.g. "``im``"
3137 or "``{eax}m``". This means "choose any of the options in the set". The
3138 choice of constraint is made independently for each constraint in the
3139 constraint list.
3140
31412) Use "``|``" between constraint code sets, creating alternatives. Every
3142 constraint in the constraint list must have the same number of alternative
3143 sets. With this syntax, the same alternative in *all* of the items in the
3144 constraint list will be chosen together.
3145
3146Putting those together, you might have a two operand constraint string like
3147``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3148operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3149may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3150
3151However, the use of either of the alternatives features is *NOT* recommended, as
3152LLVM is not able to make an intelligent choice about which one to use. (At the
3153point it currently needs to choose, not enough information is available to do so
3154in a smart way.) Thus, it simply tries to make a choice that's most likely to
3155compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3156always choose to use memory, not registers). And, if given multiple registers,
3157or multiple register classes, it will simply choose the first one. (In fact, it
3158doesn't currently even ensure explicitly specified physical registers are
3159unique, so specifying multiple physical registers as alternatives, like
3160``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3161intended.)
3162
3163Supported Constraint Code List
3164""""""""""""""""""""""""""""""
3165
3166The constraint codes are, in general, expected to behave the same way they do in
3167GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3168inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3169and GCC likely indicates a bug in LLVM.
3170
3171Some constraint codes are typically supported by all targets:
3172
3173- ``r``: A register in the target's general purpose register class.
3174- ``m``: A memory address operand. It is target-specific what addressing modes
3175 are supported, typical examples are register, or register + register offset,
3176 or register + immediate offset (of some target-specific size).
3177- ``i``: An integer constant (of target-specific width). Allows either a simple
3178 immediate, or a relocatable value.
3179- ``n``: An integer constant -- *not* including relocatable values.
3180- ``s``: An integer constant, but allowing *only* relocatable values.
3181- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3182 useful to pass a label for an asm branch or call.
3183
3184 .. FIXME: but that surely isn't actually okay to jump out of an asm
3185 block without telling llvm about the control transfer???)
3186
3187- ``{register-name}``: Requires exactly the named physical register.
3188
3189Other constraints are target-specific:
3190
3191AArch64:
3192
3193- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3194- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3195 i.e. 0 to 4095 with optional shift by 12.
3196- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3197 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3198- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3199 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3200- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3201 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3202- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3203 32-bit register. This is a superset of ``K``: in addition to the bitmask
3204 immediate, also allows immediate integers which can be loaded with a single
3205 ``MOVZ`` or ``MOVL`` instruction.
3206- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3207 64-bit register. This is a superset of ``L``.
3208- ``Q``: Memory address operand must be in a single register (no
3209 offsets). (However, LLVM currently does this for the ``m`` constraint as
3210 well.)
3211- ``r``: A 32 or 64-bit integer register (W* or X*).
3212- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3213- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3214
3215AMDGPU:
3216
3217- ``r``: A 32 or 64-bit integer register.
3218- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3219- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3220
3221
3222All ARM modes:
3223
3224- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3225 operand. Treated the same as operand ``m``, at the moment.
3226
3227ARM and ARM's Thumb2 mode:
3228
3229- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3230- ``I``: An immediate integer valid for a data-processing instruction.
3231- ``J``: An immediate integer between -4095 and 4095.
3232- ``K``: An immediate integer whose bitwise inverse is valid for a
3233 data-processing instruction. (Can be used with template modifier "``B``" to
3234 print the inverted value).
3235- ``L``: An immediate integer whose negation is valid for a data-processing
3236 instruction. (Can be used with template modifier "``n``" to print the negated
3237 value).
3238- ``M``: A power of two or a integer between 0 and 32.
3239- ``N``: Invalid immediate constraint.
3240- ``O``: Invalid immediate constraint.
3241- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3242- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3243 as ``r``.
3244- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3245 invalid.
3246- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3247 ``d0-d31``, or ``q0-q15``.
3248- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3249 ``d0-d7``, or ``q0-q3``.
3250- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3251 ``s0-s31``.
3252
3253ARM's Thumb1 mode:
3254
3255- ``I``: An immediate integer between 0 and 255.
3256- ``J``: An immediate integer between -255 and -1.
3257- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3258 some amount.
3259- ``L``: An immediate integer between -7 and 7.
3260- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3261- ``N``: An immediate integer between 0 and 31.
3262- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3263- ``r``: A low 32-bit GPR register (``r0-r7``).
3264- ``l``: A low 32-bit GPR register (``r0-r7``).
3265- ``h``: A high GPR register (``r0-r7``).
3266- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3267 ``d0-d31``, or ``q0-q15``.
3268- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3269 ``d0-d7``, or ``q0-q3``.
3270- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3271 ``s0-s31``.
3272
3273
3274Hexagon:
3275
3276- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3277 at the moment.
3278- ``r``: A 32 or 64-bit register.
3279
3280MSP430:
3281
3282- ``r``: An 8 or 16-bit register.
3283
3284MIPS:
3285
3286- ``I``: An immediate signed 16-bit integer.
3287- ``J``: An immediate integer zero.
3288- ``K``: An immediate unsigned 16-bit integer.
3289- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3290- ``N``: An immediate integer between -65535 and -1.
3291- ``O``: An immediate signed 15-bit integer.
3292- ``P``: An immediate integer between 1 and 65535.
3293- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3294 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3295- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3296 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3297 ``m``.
3298- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3299 ``sc`` instruction on the given subtarget (details vary).
3300- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3301- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003302 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3303 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003304- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3305 ``25``).
3306- ``l``: The ``lo`` register, 32 or 64-bit.
3307- ``x``: Invalid.
3308
3309NVPTX:
3310
3311- ``b``: A 1-bit integer register.
3312- ``c`` or ``h``: A 16-bit integer register.
3313- ``r``: A 32-bit integer register.
3314- ``l`` or ``N``: A 64-bit integer register.
3315- ``f``: A 32-bit float register.
3316- ``d``: A 64-bit float register.
3317
3318
3319PowerPC:
3320
3321- ``I``: An immediate signed 16-bit integer.
3322- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3323- ``K``: An immediate unsigned 16-bit integer.
3324- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3325- ``M``: An immediate integer greater than 31.
3326- ``N``: An immediate integer that is an exact power of 2.
3327- ``O``: The immediate integer constant 0.
3328- ``P``: An immediate integer constant whose negation is a signed 16-bit
3329 constant.
3330- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3331 treated the same as ``m``.
3332- ``r``: A 32 or 64-bit integer register.
3333- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3334 ``R1-R31``).
3335- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3336 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3337- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3338 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3339 altivec vector register (``V0-V31``).
3340
3341 .. FIXME: is this a bug that v accepts QPX registers? I think this
3342 is supposed to only use the altivec vector registers?
3343
3344- ``y``: Condition register (``CR0-CR7``).
3345- ``wc``: An individual CR bit in a CR register.
3346- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3347 register set (overlapping both the floating-point and vector register files).
3348- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3349 set.
3350
3351Sparc:
3352
3353- ``I``: An immediate 13-bit signed integer.
3354- ``r``: A 32-bit integer register.
3355
3356SystemZ:
3357
3358- ``I``: An immediate unsigned 8-bit integer.
3359- ``J``: An immediate unsigned 12-bit integer.
3360- ``K``: An immediate signed 16-bit integer.
3361- ``L``: An immediate signed 20-bit integer.
3362- ``M``: An immediate integer 0x7fffffff.
3363- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3364 ``m``, at the moment.
3365- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3366- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3367 address context evaluates as zero).
3368- ``h``: A 32-bit value in the high part of a 64bit data register
3369 (LLVM-specific)
3370- ``f``: A 32, 64, or 128-bit floating point register.
3371
3372X86:
3373
3374- ``I``: An immediate integer between 0 and 31.
3375- ``J``: An immediate integer between 0 and 64.
3376- ``K``: An immediate signed 8-bit integer.
3377- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3378 0xffffffff.
3379- ``M``: An immediate integer between 0 and 3.
3380- ``N``: An immediate unsigned 8-bit integer.
3381- ``O``: An immediate integer between 0 and 127.
3382- ``e``: An immediate 32-bit signed integer.
3383- ``Z``: An immediate 32-bit unsigned integer.
3384- ``o``, ``v``: Treated the same as ``m``, at the moment.
3385- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3386 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3387 registers, and on X86-64, it is all of the integer registers.
3388- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3389 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3390- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3391- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3392 existed since i386, and can be accessed without the REX prefix.
3393- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3394- ``y``: A 64-bit MMX register, if MMX is enabled.
3395- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3396 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3397 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3398 512-bit vector operand in an AVX512 register, Otherwise, an error.
3399- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3400- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3401 32-bit mode, a 64-bit integer operand will get split into two registers). It
3402 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3403 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3404 you're better off splitting it yourself, before passing it to the asm
3405 statement.
3406
3407XCore:
3408
3409- ``r``: A 32-bit integer register.
3410
3411
3412.. _inline-asm-modifiers:
3413
3414Asm template argument modifiers
3415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3416
3417In the asm template string, modifiers can be used on the operand reference, like
3418"``${0:n}``".
3419
3420The modifiers are, in general, expected to behave the same way they do in
3421GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3422inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3423and GCC likely indicates a bug in LLVM.
3424
3425Target-independent:
3426
Sean Silvaa1190322015-08-06 22:56:48 +00003427- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003428 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3429- ``n``: Negate and print immediate integer constant unadorned, without the
3430 target-specific immediate punctuation (e.g. no ``$`` prefix).
3431- ``l``: Print as an unadorned label, without the target-specific label
3432 punctuation (e.g. no ``$`` prefix).
3433
3434AArch64:
3435
3436- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3437 instead of ``x30``, print ``w30``.
3438- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3439- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3440 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3441 ``v*``.
3442
3443AMDGPU:
3444
3445- ``r``: No effect.
3446
3447ARM:
3448
3449- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3450 register).
3451- ``P``: No effect.
3452- ``q``: No effect.
3453- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3454 as ``d4[1]`` instead of ``s9``)
3455- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3456 prefix.
3457- ``L``: Print the low 16-bits of an immediate integer constant.
3458- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3459 register operands subsequent to the specified one (!), so use carefully.
3460- ``Q``: Print the low-order register of a register-pair, or the low-order
3461 register of a two-register operand.
3462- ``R``: Print the high-order register of a register-pair, or the high-order
3463 register of a two-register operand.
3464- ``H``: Print the second register of a register-pair. (On a big-endian system,
3465 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3466 to ``R``.)
3467
3468 .. FIXME: H doesn't currently support printing the second register
3469 of a two-register operand.
3470
3471- ``e``: Print the low doubleword register of a NEON quad register.
3472- ``f``: Print the high doubleword register of a NEON quad register.
3473- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3474 adornment.
3475
3476Hexagon:
3477
3478- ``L``: Print the second register of a two-register operand. Requires that it
3479 has been allocated consecutively to the first.
3480
3481 .. FIXME: why is it restricted to consecutive ones? And there's
3482 nothing that ensures that happens, is there?
3483
3484- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3485 nothing. Used to print 'addi' vs 'add' instructions.
3486
3487MSP430:
3488
3489No additional modifiers.
3490
3491MIPS:
3492
3493- ``X``: Print an immediate integer as hexadecimal
3494- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3495- ``d``: Print an immediate integer as decimal.
3496- ``m``: Subtract one and print an immediate integer as decimal.
3497- ``z``: Print $0 if an immediate zero, otherwise print normally.
3498- ``L``: Print the low-order register of a two-register operand, or prints the
3499 address of the low-order word of a double-word memory operand.
3500
3501 .. FIXME: L seems to be missing memory operand support.
3502
3503- ``M``: Print the high-order register of a two-register operand, or prints the
3504 address of the high-order word of a double-word memory operand.
3505
3506 .. FIXME: M seems to be missing memory operand support.
3507
3508- ``D``: Print the second register of a two-register operand, or prints the
3509 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3510 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3511 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003512- ``w``: No effect. Provided for compatibility with GCC which requires this
3513 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3514 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003515
3516NVPTX:
3517
3518- ``r``: No effect.
3519
3520PowerPC:
3521
3522- ``L``: Print the second register of a two-register operand. Requires that it
3523 has been allocated consecutively to the first.
3524
3525 .. FIXME: why is it restricted to consecutive ones? And there's
3526 nothing that ensures that happens, is there?
3527
3528- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3529 nothing. Used to print 'addi' vs 'add' instructions.
3530- ``y``: For a memory operand, prints formatter for a two-register X-form
3531 instruction. (Currently always prints ``r0,OPERAND``).
3532- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3533 otherwise. (NOTE: LLVM does not support update form, so this will currently
3534 always print nothing)
3535- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3536 not support indexed form, so this will currently always print nothing)
3537
3538Sparc:
3539
3540- ``r``: No effect.
3541
3542SystemZ:
3543
3544SystemZ implements only ``n``, and does *not* support any of the other
3545target-independent modifiers.
3546
3547X86:
3548
3549- ``c``: Print an unadorned integer or symbol name. (The latter is
3550 target-specific behavior for this typically target-independent modifier).
3551- ``A``: Print a register name with a '``*``' before it.
3552- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3553 operand.
3554- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3555 memory operand.
3556- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3557 operand.
3558- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3559 operand.
3560- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3561 available, otherwise the 32-bit register name; do nothing on a memory operand.
3562- ``n``: Negate and print an unadorned integer, or, for operands other than an
3563 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3564 the operand. (The behavior for relocatable symbol expressions is a
3565 target-specific behavior for this typically target-independent modifier)
3566- ``H``: Print a memory reference with additional offset +8.
3567- ``P``: Print a memory reference or operand for use as the argument of a call
3568 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3569
3570XCore:
3571
3572No additional modifiers.
3573
3574
Sean Silvab084af42012-12-07 10:36:55 +00003575Inline Asm Metadata
3576^^^^^^^^^^^^^^^^^^^
3577
3578The call instructions that wrap inline asm nodes may have a
3579"``!srcloc``" MDNode attached to it that contains a list of constant
3580integers. If present, the code generator will use the integer as the
3581location cookie value when report errors through the ``LLVMContext``
3582error reporting mechanisms. This allows a front-end to correlate backend
3583errors that occur with inline asm back to the source code that produced
3584it. For example:
3585
3586.. code-block:: llvm
3587
3588 call void asm sideeffect "something bad", ""(), !srcloc !42
3589 ...
3590 !42 = !{ i32 1234567 }
3591
3592It is up to the front-end to make sense of the magic numbers it places
3593in the IR. If the MDNode contains multiple constants, the code generator
3594will use the one that corresponds to the line of the asm that the error
3595occurs on.
3596
3597.. _metadata:
3598
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003599Metadata
3600========
Sean Silvab084af42012-12-07 10:36:55 +00003601
3602LLVM IR allows metadata to be attached to instructions in the program
3603that can convey extra information about the code to the optimizers and
3604code generator. One example application of metadata is source-level
3605debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003606
Sean Silvaa1190322015-08-06 22:56:48 +00003607Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003608``call`` instruction, it uses the ``metadata`` type.
3609
3610All metadata are identified in syntax by a exclamation point ('``!``').
3611
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003612.. _metadata-string:
3613
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003614Metadata Nodes and Metadata Strings
3615-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003616
3617A metadata string is a string surrounded by double quotes. It can
3618contain any character by escaping non-printable characters with
3619"``\xx``" where "``xx``" is the two digit hex code. For example:
3620"``!"test\00"``".
3621
3622Metadata nodes are represented with notation similar to structure
3623constants (a comma separated list of elements, surrounded by braces and
3624preceded by an exclamation point). Metadata nodes can have any values as
3625their operand. For example:
3626
3627.. code-block:: llvm
3628
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003629 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003630
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003631Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3632
3633.. code-block:: llvm
3634
3635 !0 = distinct !{!"test\00", i32 10}
3636
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003637``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003638content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003639when metadata operands change.
3640
Sean Silvab084af42012-12-07 10:36:55 +00003641A :ref:`named metadata <namedmetadatastructure>` is a collection of
3642metadata nodes, which can be looked up in the module symbol table. For
3643example:
3644
3645.. code-block:: llvm
3646
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003647 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003648
3649Metadata can be used as function arguments. Here ``llvm.dbg.value``
3650function is using two metadata arguments:
3651
3652.. code-block:: llvm
3653
3654 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3655
Peter Collingbourne50108682015-11-06 02:41:02 +00003656Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3657to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003658
3659.. code-block:: llvm
3660
3661 %indvar.next = add i64 %indvar, 1, !dbg !21
3662
Peter Collingbourne50108682015-11-06 02:41:02 +00003663Metadata can also be attached to a function definition. Here metadata ``!22``
3664is attached to the ``foo`` function using the ``!dbg`` identifier:
3665
3666.. code-block:: llvm
3667
3668 define void @foo() !dbg !22 {
3669 ret void
3670 }
3671
Sean Silvab084af42012-12-07 10:36:55 +00003672More information about specific metadata nodes recognized by the
3673optimizers and code generator is found below.
3674
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003675.. _specialized-metadata:
3676
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003677Specialized Metadata Nodes
3678^^^^^^^^^^^^^^^^^^^^^^^^^^
3679
3680Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003681to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003682order.
3683
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003684These aren't inherently debug info centric, but currently all the specialized
3685metadata nodes are related to debug info.
3686
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003687.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003688
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003689DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003690"""""""""""""
3691
Sean Silvaa1190322015-08-06 22:56:48 +00003692``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003693``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3694tuples containing the debug info to be emitted along with the compile unit,
3695regardless of code optimizations (some nodes are only emitted if there are
3696references to them from instructions).
3697
3698.. code-block:: llvm
3699
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003700 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003701 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3702 splitDebugFilename: "abc.debug", emissionKind: 1,
3703 enums: !2, retainedTypes: !3, subprograms: !4,
3704 globals: !5, imports: !6)
3705
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003706Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003707specific compilation unit. File descriptors are defined using this scope.
3708These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003709keep track of subprograms, global variables, type information, and imported
3710entities (declarations and namespaces).
3711
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003712.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003713
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003714DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003715""""""
3716
Sean Silvaa1190322015-08-06 22:56:48 +00003717``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003718
3719.. code-block:: llvm
3720
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003721 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003722
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003723Files are sometimes used in ``scope:`` fields, and are the only valid target
3724for ``file:`` fields.
3725
Michael Kuperstein605308a2015-05-14 10:58:59 +00003726.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003727
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003728DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003729"""""""""""
3730
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003731``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003732``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003733
3734.. code-block:: llvm
3735
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003736 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003737 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003738 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003739
Sean Silvaa1190322015-08-06 22:56:48 +00003740The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003741following:
3742
3743.. code-block:: llvm
3744
3745 DW_ATE_address = 1
3746 DW_ATE_boolean = 2
3747 DW_ATE_float = 4
3748 DW_ATE_signed = 5
3749 DW_ATE_signed_char = 6
3750 DW_ATE_unsigned = 7
3751 DW_ATE_unsigned_char = 8
3752
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003753.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003754
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003755DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003756""""""""""""""""
3757
Sean Silvaa1190322015-08-06 22:56:48 +00003758``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003759refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003760types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003761represents a function with no return value (such as ``void foo() {}`` in C++).
3762
3763.. code-block:: llvm
3764
3765 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3766 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003767 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003768
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003769.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003770
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003771DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003772"""""""""""""
3773
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003774``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003775qualified types.
3776
3777.. code-block:: llvm
3778
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003779 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003780 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003781 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003782 align: 32)
3783
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003784The following ``tag:`` values are valid:
3785
3786.. code-block:: llvm
3787
3788 DW_TAG_formal_parameter = 5
3789 DW_TAG_member = 13
3790 DW_TAG_pointer_type = 15
3791 DW_TAG_reference_type = 16
3792 DW_TAG_typedef = 22
3793 DW_TAG_ptr_to_member_type = 31
3794 DW_TAG_const_type = 38
3795 DW_TAG_volatile_type = 53
3796 DW_TAG_restrict_type = 55
3797
3798``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003799<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3800is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003801``DW_TAG_formal_parameter`` is used to define a member which is a formal
3802argument of a subprogram.
3803
3804``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3805
3806``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3807``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3808``baseType:``.
3809
3810Note that the ``void *`` type is expressed as a type derived from NULL.
3811
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003812.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003813
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003814DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003815"""""""""""""""
3816
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003817``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003818structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003819
3820If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003821identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003822can refer to composite types indirectly via a :ref:`metadata string
3823<metadata-string>` that matches their identifier.
3824
3825.. code-block:: llvm
3826
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003827 !0 = !DIEnumerator(name: "SixKind", value: 7)
3828 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3829 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3830 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003831 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3832 elements: !{!0, !1, !2})
3833
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003834The following ``tag:`` values are valid:
3835
3836.. code-block:: llvm
3837
3838 DW_TAG_array_type = 1
3839 DW_TAG_class_type = 2
3840 DW_TAG_enumeration_type = 4
3841 DW_TAG_structure_type = 19
3842 DW_TAG_union_type = 23
3843 DW_TAG_subroutine_type = 21
3844 DW_TAG_inheritance = 28
3845
3846
3847For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003848descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003849level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003850array type is a native packed vector.
3851
3852For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003853descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003854value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003855``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003856
3857For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3858``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003859<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003860
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003861.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003862
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003863DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003864""""""""""
3865
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003866``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003867:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003868
3869.. code-block:: llvm
3870
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003871 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3872 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3873 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003874
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003875.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003876
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003877DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003878""""""""""""
3879
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003880``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3881variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003882
3883.. code-block:: llvm
3884
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003885 !0 = !DIEnumerator(name: "SixKind", value: 7)
3886 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3887 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890"""""""""""""""""""""""
3891
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003892``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003893language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003895
3896.. code-block:: llvm
3897
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003898 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003899
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003900DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003901""""""""""""""""""""""""
3902
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003904language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003905but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003906``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003907:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003908
3909.. code-block:: llvm
3910
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003911 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003912
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003913DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003914"""""""""""
3915
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003917
3918.. code-block:: llvm
3919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003922DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003923""""""""""""""""
3924
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003925``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003926
3927.. code-block:: llvm
3928
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003929 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003930 file: !2, line: 7, type: !3, isLocal: true,
3931 isDefinition: false, variable: i32* @foo,
3932 declaration: !4)
3933
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003934All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003935:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003938
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003939DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940""""""""""""
3941
Peter Collingbourne50108682015-11-06 02:41:02 +00003942``DISubprogram`` nodes represent functions from the source language. A
3943``DISubprogram`` may be attached to a function definition using ``!dbg``
3944metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
3945that must be retained, even if their IR counterparts are optimized out of
3946the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003947
3948.. code-block:: llvm
3949
Peter Collingbourne50108682015-11-06 02:41:02 +00003950 define void @_Z3foov() !dbg !0 {
3951 ...
3952 }
3953
3954 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
3955 file: !2, line: 7, type: !3, isLocal: true,
3956 isDefinition: false, scopeLine: 8,
3957 containingType: !4,
3958 virtuality: DW_VIRTUALITY_pure_virtual,
3959 virtualIndex: 10, flags: DIFlagPrototyped,
3960 isOptimized: true, templateParams: !5,
3961 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003963.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966""""""""""""""
3967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00003969<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00003970two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003971fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972
3973.. code-block:: llvm
3974
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003975 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003976
3977Usually lexical blocks are ``distinct`` to prevent node merging based on
3978operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003980.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003982DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983""""""""""""""""""
3984
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003985``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003986:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003987indicate textual inclusion, or the ``discriminator:`` field can be used to
3988discriminate between control flow within a single block in the source language.
3989
3990.. code-block:: llvm
3991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003992 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3993 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3994 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995
Michael Kuperstein605308a2015-05-14 10:58:59 +00003996.. _DILocation:
3997
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003998DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003999""""""""""
4000
Sean Silvaa1190322015-08-06 22:56:48 +00004001``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004002mandatory, and points at an :ref:`DILexicalBlockFile`, an
4003:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004004
4005.. code-block:: llvm
4006
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004007 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004008
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004009.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012"""""""""""""""
4013
Sean Silvaa1190322015-08-06 22:56:48 +00004014``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004015the ``arg:`` field is set to non-zero, then this variable is a subprogram
4016parameter, and it will be included in the ``variables:`` field of its
4017:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019.. code-block:: llvm
4020
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004021 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4022 type: !3, flags: DIFlagArtificial)
4023 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4024 type: !3)
4025 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004026
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028""""""""""""
4029
Sean Silvaa1190322015-08-06 22:56:48 +00004030``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004031:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4032describe how the referenced LLVM variable relates to the source language
4033variable.
4034
4035The current supported vocabulary is limited:
4036
4037- ``DW_OP_deref`` dereferences the working expression.
4038- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4039- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4040 here, respectively) of the variable piece from the working expression.
4041
4042.. code-block:: llvm
4043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044 !0 = !DIExpression(DW_OP_deref)
4045 !1 = !DIExpression(DW_OP_plus, 3)
4046 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4047 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050""""""""""""""
4051
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004052``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004053
4054.. code-block:: llvm
4055
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004056 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057 getter: "getFoo", attributes: 7, type: !2)
4058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004060""""""""""""""""
4061
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004062``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063compile unit.
4064
4065.. code-block:: llvm
4066
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004067 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004068 entity: !1, line: 7)
4069
Sean Silvab084af42012-12-07 10:36:55 +00004070'``tbaa``' Metadata
4071^^^^^^^^^^^^^^^^^^^
4072
4073In LLVM IR, memory does not have types, so LLVM's own type system is not
4074suitable for doing TBAA. Instead, metadata is added to the IR to
4075describe a type system of a higher level language. This can be used to
4076implement typical C/C++ TBAA, but it can also be used to implement
4077custom alias analysis behavior for other languages.
4078
4079The current metadata format is very simple. TBAA metadata nodes have up
4080to three fields, e.g.:
4081
4082.. code-block:: llvm
4083
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004084 !0 = !{ !"an example type tree" }
4085 !1 = !{ !"int", !0 }
4086 !2 = !{ !"float", !0 }
4087 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004088
4089The first field is an identity field. It can be any value, usually a
4090metadata string, which uniquely identifies the type. The most important
4091name in the tree is the name of the root node. Two trees with different
4092root node names are entirely disjoint, even if they have leaves with
4093common names.
4094
4095The second field identifies the type's parent node in the tree, or is
4096null or omitted for a root node. A type is considered to alias all of
4097its descendants and all of its ancestors in the tree. Also, a type is
4098considered to alias all types in other trees, so that bitcode produced
4099from multiple front-ends is handled conservatively.
4100
4101If the third field is present, it's an integer which if equal to 1
4102indicates that the type is "constant" (meaning
4103``pointsToConstantMemory`` should return true; see `other useful
4104AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4105
4106'``tbaa.struct``' Metadata
4107^^^^^^^^^^^^^^^^^^^^^^^^^^
4108
4109The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4110aggregate assignment operations in C and similar languages, however it
4111is defined to copy a contiguous region of memory, which is more than
4112strictly necessary for aggregate types which contain holes due to
4113padding. Also, it doesn't contain any TBAA information about the fields
4114of the aggregate.
4115
4116``!tbaa.struct`` metadata can describe which memory subregions in a
4117memcpy are padding and what the TBAA tags of the struct are.
4118
4119The current metadata format is very simple. ``!tbaa.struct`` metadata
4120nodes are a list of operands which are in conceptual groups of three.
4121For each group of three, the first operand gives the byte offset of a
4122field in bytes, the second gives its size in bytes, and the third gives
4123its tbaa tag. e.g.:
4124
4125.. code-block:: llvm
4126
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004127 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004128
4129This describes a struct with two fields. The first is at offset 0 bytes
4130with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4131and has size 4 bytes and has tbaa tag !2.
4132
4133Note that the fields need not be contiguous. In this example, there is a
41344 byte gap between the two fields. This gap represents padding which
4135does not carry useful data and need not be preserved.
4136
Hal Finkel94146652014-07-24 14:25:39 +00004137'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004139
4140``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4141noalias memory-access sets. This means that some collection of memory access
4142instructions (loads, stores, memory-accessing calls, etc.) that carry
4143``noalias`` metadata can specifically be specified not to alias with some other
4144collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004145Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004146a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004147of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004148subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004149instruction's ``noalias`` list, then the two memory accesses are assumed not to
4150alias.
Hal Finkel94146652014-07-24 14:25:39 +00004151
Hal Finkel029cde62014-07-25 15:50:02 +00004152The metadata identifying each domain is itself a list containing one or two
4153entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004154string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004155self-reference can be used to create globally unique domain names. A
4156descriptive string may optionally be provided as a second list entry.
4157
4158The metadata identifying each scope is also itself a list containing two or
4159three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004160is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004161self-reference can be used to create globally unique scope names. A metadata
4162reference to the scope's domain is the second entry. A descriptive string may
4163optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004164
4165For example,
4166
4167.. code-block:: llvm
4168
Hal Finkel029cde62014-07-25 15:50:02 +00004169 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004170 !0 = !{!0}
4171 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004172
Hal Finkel029cde62014-07-25 15:50:02 +00004173 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004174 !2 = !{!2, !0}
4175 !3 = !{!3, !0}
4176 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004177
Hal Finkel029cde62014-07-25 15:50:02 +00004178 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004179 !5 = !{!4} ; A list containing only scope !4
4180 !6 = !{!4, !3, !2}
4181 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004182
4183 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004184 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004185 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004186
Hal Finkel029cde62014-07-25 15:50:02 +00004187 ; These two instructions also don't alias (for domain !1, the set of scopes
4188 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004189 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004190 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004191
Adam Nemet0a8416f2015-05-11 08:30:28 +00004192 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004193 ; the !noalias list is not a superset of, or equal to, the scopes in the
4194 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004195 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004196 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004197
Sean Silvab084af42012-12-07 10:36:55 +00004198'``fpmath``' Metadata
4199^^^^^^^^^^^^^^^^^^^^^
4200
4201``fpmath`` metadata may be attached to any instruction of floating point
4202type. It can be used to express the maximum acceptable error in the
4203result of that instruction, in ULPs, thus potentially allowing the
4204compiler to use a more efficient but less accurate method of computing
4205it. ULP is defined as follows:
4206
4207 If ``x`` is a real number that lies between two finite consecutive
4208 floating-point numbers ``a`` and ``b``, without being equal to one
4209 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4210 distance between the two non-equal finite floating-point numbers
4211 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4212
4213The metadata node shall consist of a single positive floating point
4214number representing the maximum relative error, for example:
4215
4216.. code-block:: llvm
4217
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004218 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004219
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004220.. _range-metadata:
4221
Sean Silvab084af42012-12-07 10:36:55 +00004222'``range``' Metadata
4223^^^^^^^^^^^^^^^^^^^^
4224
Jingyue Wu37fcb592014-06-19 16:50:16 +00004225``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4226integer types. It expresses the possible ranges the loaded value or the value
4227returned by the called function at this call site is in. The ranges are
4228represented with a flattened list of integers. The loaded value or the value
4229returned is known to be in the union of the ranges defined by each consecutive
4230pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004231
4232- The type must match the type loaded by the instruction.
4233- The pair ``a,b`` represents the range ``[a,b)``.
4234- Both ``a`` and ``b`` are constants.
4235- The range is allowed to wrap.
4236- The range should not represent the full or empty set. That is,
4237 ``a!=b``.
4238
4239In addition, the pairs must be in signed order of the lower bound and
4240they must be non-contiguous.
4241
4242Examples:
4243
4244.. code-block:: llvm
4245
David Blaikiec7aabbb2015-03-04 22:06:14 +00004246 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4247 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004248 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4249 %d = invoke i8 @bar() to label %cont
4250 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004251 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004252 !0 = !{ i8 0, i8 2 }
4253 !1 = !{ i8 255, i8 2 }
4254 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4255 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004256
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004257'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004258^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004259
4260``unpredictable`` metadata may be attached to any branch or switch
4261instruction. It can be used to express the unpredictability of control
4262flow. Similar to the llvm.expect intrinsic, it may be used to alter
4263optimizations related to compare and branch instructions. The metadata
4264is treated as a boolean value; if it exists, it signals that the branch
4265or switch that it is attached to is completely unpredictable.
4266
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004267'``llvm.loop``'
4268^^^^^^^^^^^^^^^
4269
4270It is sometimes useful to attach information to loop constructs. Currently,
4271loop metadata is implemented as metadata attached to the branch instruction
4272in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004273guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004274specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004275
4276The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004277itself to avoid merging it with any other identifier metadata, e.g.,
4278during module linkage or function inlining. That is, each loop should refer
4279to their own identification metadata even if they reside in separate functions.
4280The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004281constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004282
4283.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004284
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004285 !0 = !{!0}
4286 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004287
Mark Heffernan893752a2014-07-18 19:24:51 +00004288The loop identifier metadata can be used to specify additional
4289per-loop metadata. Any operands after the first operand can be treated
4290as user-defined metadata. For example the ``llvm.loop.unroll.count``
4291suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004292
Paul Redmond5fdf8362013-05-28 20:00:34 +00004293.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004294
Paul Redmond5fdf8362013-05-28 20:00:34 +00004295 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4296 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004297 !0 = !{!0, !1}
4298 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004299
Mark Heffernan9d20e422014-07-21 23:11:03 +00004300'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004302
Mark Heffernan9d20e422014-07-21 23:11:03 +00004303Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4304used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004305vectorization width and interleave count. These metadata should be used in
4306conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004307``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4308optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004309it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004310which contains information about loop-carried memory dependencies can be helpful
4311in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004312
Mark Heffernan9d20e422014-07-21 23:11:03 +00004313'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004314^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4315
Mark Heffernan9d20e422014-07-21 23:11:03 +00004316This metadata suggests an interleave count to the loop interleaver.
4317The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004318second operand is an integer specifying the interleave count. For
4319example:
4320
4321.. code-block:: llvm
4322
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004323 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004324
Mark Heffernan9d20e422014-07-21 23:11:03 +00004325Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004326multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004327then the interleave count will be determined automatically.
4328
4329'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004331
4332This metadata selectively enables or disables vectorization for the loop. The
4333first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004334is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000043350 disables vectorization:
4336
4337.. code-block:: llvm
4338
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004339 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4340 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004341
4342'``llvm.loop.vectorize.width``' Metadata
4343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4344
4345This metadata sets the target width of the vectorizer. The first
4346operand is the string ``llvm.loop.vectorize.width`` and the second
4347operand is an integer specifying the width. For example:
4348
4349.. code-block:: llvm
4350
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004351 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004352
4353Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004354vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000043550 or if the loop does not have this metadata the width will be
4356determined automatically.
4357
4358'``llvm.loop.unroll``'
4359^^^^^^^^^^^^^^^^^^^^^^
4360
4361Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4362optimization hints such as the unroll factor. ``llvm.loop.unroll``
4363metadata should be used in conjunction with ``llvm.loop`` loop
4364identification metadata. The ``llvm.loop.unroll`` metadata are only
4365optimization hints and the unrolling will only be performed if the
4366optimizer believes it is safe to do so.
4367
Mark Heffernan893752a2014-07-18 19:24:51 +00004368'``llvm.loop.unroll.count``' Metadata
4369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4370
4371This metadata suggests an unroll factor to the loop unroller. The
4372first operand is the string ``llvm.loop.unroll.count`` and the second
4373operand is a positive integer specifying the unroll factor. For
4374example:
4375
4376.. code-block:: llvm
4377
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004378 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004379
4380If the trip count of the loop is less than the unroll count the loop
4381will be partially unrolled.
4382
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004383'``llvm.loop.unroll.disable``' Metadata
4384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4385
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004386This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004387which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004388
4389.. code-block:: llvm
4390
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004391 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004392
Kevin Qin715b01e2015-03-09 06:14:18 +00004393'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004394^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004395
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004396This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004397operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004398
4399.. code-block:: llvm
4400
4401 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4402
Mark Heffernan89391542015-08-10 17:28:08 +00004403'``llvm.loop.unroll.enable``' Metadata
4404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4405
4406This metadata suggests that the loop should be fully unrolled if the trip count
4407is known at compile time and partially unrolled if the trip count is not known
4408at compile time. The metadata has a single operand which is the string
4409``llvm.loop.unroll.enable``. For example:
4410
4411.. code-block:: llvm
4412
4413 !0 = !{!"llvm.loop.unroll.enable"}
4414
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004415'``llvm.loop.unroll.full``' Metadata
4416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4417
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004418This metadata suggests that the loop should be unrolled fully. The
4419metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004420For example:
4421
4422.. code-block:: llvm
4423
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004424 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004425
4426'``llvm.mem``'
4427^^^^^^^^^^^^^^^
4428
4429Metadata types used to annotate memory accesses with information helpful
4430for optimizations are prefixed with ``llvm.mem``.
4431
4432'``llvm.mem.parallel_loop_access``' Metadata
4433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4434
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004435The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4436or metadata containing a list of loop identifiers for nested loops.
4437The metadata is attached to memory accessing instructions and denotes that
4438no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004439with the same loop identifier.
4440
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004441Precisely, given two instructions ``m1`` and ``m2`` that both have the
4442``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4443set of loops associated with that metadata, respectively, then there is no loop
4444carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004445``L2``.
4446
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004447As a special case, if all memory accessing instructions in a loop have
4448``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4449loop has no loop carried memory dependences and is considered to be a parallel
4450loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004451
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004452Note that if not all memory access instructions have such metadata referring to
4453the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004454memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004455safe mechanism, this causes loops that were originally parallel to be considered
4456sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004457insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004458
4459Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004460both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004461metadata types that refer to the same loop identifier metadata.
4462
4463.. code-block:: llvm
4464
4465 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004466 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004467 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004468 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004469 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004470 ...
4471 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004472
4473 for.end:
4474 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004475 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004476
4477It is also possible to have nested parallel loops. In that case the
4478memory accesses refer to a list of loop identifier metadata nodes instead of
4479the loop identifier metadata node directly:
4480
4481.. code-block:: llvm
4482
4483 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004484 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004485 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004486 ...
4487 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004488
4489 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004490 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004491 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004492 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004493 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004494 ...
4495 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004496
4497 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004498 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004499 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004500 ...
4501 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004502
4503 outer.for.end: ; preds = %for.body
4504 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004505 !0 = !{!1, !2} ; a list of loop identifiers
4506 !1 = !{!1} ; an identifier for the inner loop
4507 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004508
Peter Collingbournee6909c82015-02-20 20:30:47 +00004509'``llvm.bitsets``'
4510^^^^^^^^^^^^^^^^^^
4511
4512The ``llvm.bitsets`` global metadata is used to implement
4513:doc:`bitsets <BitSets>`.
4514
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004515'``invariant.group``' Metadata
4516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4517
4518The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4519The existence of the ``invariant.group`` metadata on the instruction tells
4520the optimizer that every ``load`` and ``store`` to the same pointer operand
4521within the same invariant group can be assumed to load or store the same
4522value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4523when two pointers are considered the same).
4524
4525Examples:
4526
4527.. code-block:: llvm
4528
4529 @unknownPtr = external global i8
4530 ...
4531 %ptr = alloca i8
4532 store i8 42, i8* %ptr, !invariant.group !0
4533 call void @foo(i8* %ptr)
4534
4535 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4536 call void @foo(i8* %ptr)
4537 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4538
4539 %newPtr = call i8* @getPointer(i8* %ptr)
4540 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4541
4542 %unknownValue = load i8, i8* @unknownPtr
4543 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4544
4545 call void @foo(i8* %ptr)
4546 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4547 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4548
4549 ...
4550 declare void @foo(i8*)
4551 declare i8* @getPointer(i8*)
4552 declare i8* @llvm.invariant.group.barrier(i8*)
4553
4554 !0 = !{!"magic ptr"}
4555 !1 = !{!"other ptr"}
4556
4557
4558
Sean Silvab084af42012-12-07 10:36:55 +00004559Module Flags Metadata
4560=====================
4561
4562Information about the module as a whole is difficult to convey to LLVM's
4563subsystems. The LLVM IR isn't sufficient to transmit this information.
4564The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004565this. These flags are in the form of key / value pairs --- much like a
4566dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004567look it up.
4568
4569The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4570Each triplet has the following form:
4571
4572- The first element is a *behavior* flag, which specifies the behavior
4573 when two (or more) modules are merged together, and it encounters two
4574 (or more) metadata with the same ID. The supported behaviors are
4575 described below.
4576- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004577 metadata. Each module may only have one flag entry for each unique ID (not
4578 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004579- The third element is the value of the flag.
4580
4581When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004582``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4583each unique metadata ID string, there will be exactly one entry in the merged
4584modules ``llvm.module.flags`` metadata table, and the value for that entry will
4585be determined by the merge behavior flag, as described below. The only exception
4586is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004587
4588The following behaviors are supported:
4589
4590.. list-table::
4591 :header-rows: 1
4592 :widths: 10 90
4593
4594 * - Value
4595 - Behavior
4596
4597 * - 1
4598 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004599 Emits an error if two values disagree, otherwise the resulting value
4600 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004601
4602 * - 2
4603 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004604 Emits a warning if two values disagree. The result value will be the
4605 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004606
4607 * - 3
4608 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004609 Adds a requirement that another module flag be present and have a
4610 specified value after linking is performed. The value must be a
4611 metadata pair, where the first element of the pair is the ID of the
4612 module flag to be restricted, and the second element of the pair is
4613 the value the module flag should be restricted to. This behavior can
4614 be used to restrict the allowable results (via triggering of an
4615 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004616
4617 * - 4
4618 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004619 Uses the specified value, regardless of the behavior or value of the
4620 other module. If both modules specify **Override**, but the values
4621 differ, an error will be emitted.
4622
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004623 * - 5
4624 - **Append**
4625 Appends the two values, which are required to be metadata nodes.
4626
4627 * - 6
4628 - **AppendUnique**
4629 Appends the two values, which are required to be metadata
4630 nodes. However, duplicate entries in the second list are dropped
4631 during the append operation.
4632
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004633It is an error for a particular unique flag ID to have multiple behaviors,
4634except in the case of **Require** (which adds restrictions on another metadata
4635value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004636
4637An example of module flags:
4638
4639.. code-block:: llvm
4640
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004641 !0 = !{ i32 1, !"foo", i32 1 }
4642 !1 = !{ i32 4, !"bar", i32 37 }
4643 !2 = !{ i32 2, !"qux", i32 42 }
4644 !3 = !{ i32 3, !"qux",
4645 !{
4646 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004647 }
4648 }
4649 !llvm.module.flags = !{ !0, !1, !2, !3 }
4650
4651- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4652 if two or more ``!"foo"`` flags are seen is to emit an error if their
4653 values are not equal.
4654
4655- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4656 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004657 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004658
4659- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4660 behavior if two or more ``!"qux"`` flags are seen is to emit a
4661 warning if their values are not equal.
4662
4663- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4664
4665 ::
4666
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004667 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004668
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004669 The behavior is to emit an error if the ``llvm.module.flags`` does not
4670 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4671 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004672
4673Objective-C Garbage Collection Module Flags Metadata
4674----------------------------------------------------
4675
4676On the Mach-O platform, Objective-C stores metadata about garbage
4677collection in a special section called "image info". The metadata
4678consists of a version number and a bitmask specifying what types of
4679garbage collection are supported (if any) by the file. If two or more
4680modules are linked together their garbage collection metadata needs to
4681be merged rather than appended together.
4682
4683The Objective-C garbage collection module flags metadata consists of the
4684following key-value pairs:
4685
4686.. list-table::
4687 :header-rows: 1
4688 :widths: 30 70
4689
4690 * - Key
4691 - Value
4692
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004693 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004694 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004695
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004696 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004697 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004698 always 0.
4699
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004700 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004701 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004702 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4703 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4704 Objective-C ABI version 2.
4705
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004706 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004707 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004708 not. Valid values are 0, for no garbage collection, and 2, for garbage
4709 collection supported.
4710
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004711 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004712 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004713 If present, its value must be 6. This flag requires that the
4714 ``Objective-C Garbage Collection`` flag have the value 2.
4715
4716Some important flag interactions:
4717
4718- If a module with ``Objective-C Garbage Collection`` set to 0 is
4719 merged with a module with ``Objective-C Garbage Collection`` set to
4720 2, then the resulting module has the
4721 ``Objective-C Garbage Collection`` flag set to 0.
4722- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4723 merged with a module with ``Objective-C GC Only`` set to 6.
4724
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004725Automatic Linker Flags Module Flags Metadata
4726--------------------------------------------
4727
4728Some targets support embedding flags to the linker inside individual object
4729files. Typically this is used in conjunction with language extensions which
4730allow source files to explicitly declare the libraries they depend on, and have
4731these automatically be transmitted to the linker via object files.
4732
4733These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004734using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004735to be ``AppendUnique``, and the value for the key is expected to be a metadata
4736node which should be a list of other metadata nodes, each of which should be a
4737list of metadata strings defining linker options.
4738
4739For example, the following metadata section specifies two separate sets of
4740linker options, presumably to link against ``libz`` and the ``Cocoa``
4741framework::
4742
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004743 !0 = !{ i32 6, !"Linker Options",
4744 !{
4745 !{ !"-lz" },
4746 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004747 !llvm.module.flags = !{ !0 }
4748
4749The metadata encoding as lists of lists of options, as opposed to a collapsed
4750list of options, is chosen so that the IR encoding can use multiple option
4751strings to specify e.g., a single library, while still having that specifier be
4752preserved as an atomic element that can be recognized by a target specific
4753assembly writer or object file emitter.
4754
4755Each individual option is required to be either a valid option for the target's
4756linker, or an option that is reserved by the target specific assembly writer or
4757object file emitter. No other aspect of these options is defined by the IR.
4758
Oliver Stannard5dc29342014-06-20 10:08:11 +00004759C type width Module Flags Metadata
4760----------------------------------
4761
4762The ARM backend emits a section into each generated object file describing the
4763options that it was compiled with (in a compiler-independent way) to prevent
4764linking incompatible objects, and to allow automatic library selection. Some
4765of these options are not visible at the IR level, namely wchar_t width and enum
4766width.
4767
4768To pass this information to the backend, these options are encoded in module
4769flags metadata, using the following key-value pairs:
4770
4771.. list-table::
4772 :header-rows: 1
4773 :widths: 30 70
4774
4775 * - Key
4776 - Value
4777
4778 * - short_wchar
4779 - * 0 --- sizeof(wchar_t) == 4
4780 * 1 --- sizeof(wchar_t) == 2
4781
4782 * - short_enum
4783 - * 0 --- Enums are at least as large as an ``int``.
4784 * 1 --- Enums are stored in the smallest integer type which can
4785 represent all of its values.
4786
4787For example, the following metadata section specifies that the module was
4788compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4789enum is the smallest type which can represent all of its values::
4790
4791 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004792 !0 = !{i32 1, !"short_wchar", i32 1}
4793 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004794
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004795.. _intrinsicglobalvariables:
4796
Sean Silvab084af42012-12-07 10:36:55 +00004797Intrinsic Global Variables
4798==========================
4799
4800LLVM has a number of "magic" global variables that contain data that
4801affect code generation or other IR semantics. These are documented here.
4802All globals of this sort should have a section specified as
4803"``llvm.metadata``". This section and all globals that start with
4804"``llvm.``" are reserved for use by LLVM.
4805
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004806.. _gv_llvmused:
4807
Sean Silvab084af42012-12-07 10:36:55 +00004808The '``llvm.used``' Global Variable
4809-----------------------------------
4810
Rafael Espindola74f2e462013-04-22 14:58:02 +00004811The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004812:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004813pointers to named global variables, functions and aliases which may optionally
4814have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004815use of it is:
4816
4817.. code-block:: llvm
4818
4819 @X = global i8 4
4820 @Y = global i32 123
4821
4822 @llvm.used = appending global [2 x i8*] [
4823 i8* @X,
4824 i8* bitcast (i32* @Y to i8*)
4825 ], section "llvm.metadata"
4826
Rafael Espindola74f2e462013-04-22 14:58:02 +00004827If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4828and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004829symbol that it cannot see (which is why they have to be named). For example, if
4830a variable has internal linkage and no references other than that from the
4831``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4832references from inline asms and other things the compiler cannot "see", and
4833corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004834
4835On some targets, the code generator must emit a directive to the
4836assembler or object file to prevent the assembler and linker from
4837molesting the symbol.
4838
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004839.. _gv_llvmcompilerused:
4840
Sean Silvab084af42012-12-07 10:36:55 +00004841The '``llvm.compiler.used``' Global Variable
4842--------------------------------------------
4843
4844The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4845directive, except that it only prevents the compiler from touching the
4846symbol. On targets that support it, this allows an intelligent linker to
4847optimize references to the symbol without being impeded as it would be
4848by ``@llvm.used``.
4849
4850This is a rare construct that should only be used in rare circumstances,
4851and should not be exposed to source languages.
4852
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004853.. _gv_llvmglobalctors:
4854
Sean Silvab084af42012-12-07 10:36:55 +00004855The '``llvm.global_ctors``' Global Variable
4856-------------------------------------------
4857
4858.. code-block:: llvm
4859
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004860 %0 = type { i32, void ()*, i8* }
4861 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004862
4863The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004864functions, priorities, and an optional associated global or function.
4865The functions referenced by this array will be called in ascending order
4866of priority (i.e. lowest first) when the module is loaded. The order of
4867functions with the same priority is not defined.
4868
4869If the third field is present, non-null, and points to a global variable
4870or function, the initializer function will only run if the associated
4871data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004872
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004873.. _llvmglobaldtors:
4874
Sean Silvab084af42012-12-07 10:36:55 +00004875The '``llvm.global_dtors``' Global Variable
4876-------------------------------------------
4877
4878.. code-block:: llvm
4879
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004880 %0 = type { i32, void ()*, i8* }
4881 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004882
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004883The ``@llvm.global_dtors`` array contains a list of destructor
4884functions, priorities, and an optional associated global or function.
4885The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004886order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004887order of functions with the same priority is not defined.
4888
4889If the third field is present, non-null, and points to a global variable
4890or function, the destructor function will only run if the associated
4891data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004892
4893Instruction Reference
4894=====================
4895
4896The LLVM instruction set consists of several different classifications
4897of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4898instructions <binaryops>`, :ref:`bitwise binary
4899instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4900:ref:`other instructions <otherops>`.
4901
4902.. _terminators:
4903
4904Terminator Instructions
4905-----------------------
4906
4907As mentioned :ref:`previously <functionstructure>`, every basic block in a
4908program ends with a "Terminator" instruction, which indicates which
4909block should be executed after the current block is finished. These
4910terminator instructions typically yield a '``void``' value: they produce
4911control flow, not values (the one exception being the
4912':ref:`invoke <i_invoke>`' instruction).
4913
4914The terminator instructions are: ':ref:`ret <i_ret>`',
4915':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4916':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004917':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4918':ref:`catchendpad <i_catchendpad>`',
4919':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004920':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004921':ref:`cleanupret <i_cleanupret>`',
4922':ref:`terminatepad <i_terminatepad>`',
4923and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004924
4925.. _i_ret:
4926
4927'``ret``' Instruction
4928^^^^^^^^^^^^^^^^^^^^^
4929
4930Syntax:
4931"""""""
4932
4933::
4934
4935 ret <type> <value> ; Return a value from a non-void function
4936 ret void ; Return from void function
4937
4938Overview:
4939"""""""""
4940
4941The '``ret``' instruction is used to return control flow (and optionally
4942a value) from a function back to the caller.
4943
4944There are two forms of the '``ret``' instruction: one that returns a
4945value and then causes control flow, and one that just causes control
4946flow to occur.
4947
4948Arguments:
4949""""""""""
4950
4951The '``ret``' instruction optionally accepts a single argument, the
4952return value. The type of the return value must be a ':ref:`first
4953class <t_firstclass>`' type.
4954
4955A function is not :ref:`well formed <wellformed>` if it it has a non-void
4956return type and contains a '``ret``' instruction with no return value or
4957a return value with a type that does not match its type, or if it has a
4958void return type and contains a '``ret``' instruction with a return
4959value.
4960
4961Semantics:
4962""""""""""
4963
4964When the '``ret``' instruction is executed, control flow returns back to
4965the calling function's context. If the caller is a
4966":ref:`call <i_call>`" instruction, execution continues at the
4967instruction after the call. If the caller was an
4968":ref:`invoke <i_invoke>`" instruction, execution continues at the
4969beginning of the "normal" destination block. If the instruction returns
4970a value, that value shall set the call or invoke instruction's return
4971value.
4972
4973Example:
4974""""""""
4975
4976.. code-block:: llvm
4977
4978 ret i32 5 ; Return an integer value of 5
4979 ret void ; Return from a void function
4980 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4981
4982.. _i_br:
4983
4984'``br``' Instruction
4985^^^^^^^^^^^^^^^^^^^^
4986
4987Syntax:
4988"""""""
4989
4990::
4991
4992 br i1 <cond>, label <iftrue>, label <iffalse>
4993 br label <dest> ; Unconditional branch
4994
4995Overview:
4996"""""""""
4997
4998The '``br``' instruction is used to cause control flow to transfer to a
4999different basic block in the current function. There are two forms of
5000this instruction, corresponding to a conditional branch and an
5001unconditional branch.
5002
5003Arguments:
5004""""""""""
5005
5006The conditional branch form of the '``br``' instruction takes a single
5007'``i1``' value and two '``label``' values. The unconditional form of the
5008'``br``' instruction takes a single '``label``' value as a target.
5009
5010Semantics:
5011""""""""""
5012
5013Upon execution of a conditional '``br``' instruction, the '``i1``'
5014argument is evaluated. If the value is ``true``, control flows to the
5015'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5016to the '``iffalse``' ``label`` argument.
5017
5018Example:
5019""""""""
5020
5021.. code-block:: llvm
5022
5023 Test:
5024 %cond = icmp eq i32 %a, %b
5025 br i1 %cond, label %IfEqual, label %IfUnequal
5026 IfEqual:
5027 ret i32 1
5028 IfUnequal:
5029 ret i32 0
5030
5031.. _i_switch:
5032
5033'``switch``' Instruction
5034^^^^^^^^^^^^^^^^^^^^^^^^
5035
5036Syntax:
5037"""""""
5038
5039::
5040
5041 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5042
5043Overview:
5044"""""""""
5045
5046The '``switch``' instruction is used to transfer control flow to one of
5047several different places. It is a generalization of the '``br``'
5048instruction, allowing a branch to occur to one of many possible
5049destinations.
5050
5051Arguments:
5052""""""""""
5053
5054The '``switch``' instruction uses three parameters: an integer
5055comparison value '``value``', a default '``label``' destination, and an
5056array of pairs of comparison value constants and '``label``'s. The table
5057is not allowed to contain duplicate constant entries.
5058
5059Semantics:
5060""""""""""
5061
5062The ``switch`` instruction specifies a table of values and destinations.
5063When the '``switch``' instruction is executed, this table is searched
5064for the given value. If the value is found, control flow is transferred
5065to the corresponding destination; otherwise, control flow is transferred
5066to the default destination.
5067
5068Implementation:
5069"""""""""""""""
5070
5071Depending on properties of the target machine and the particular
5072``switch`` instruction, this instruction may be code generated in
5073different ways. For example, it could be generated as a series of
5074chained conditional branches or with a lookup table.
5075
5076Example:
5077""""""""
5078
5079.. code-block:: llvm
5080
5081 ; Emulate a conditional br instruction
5082 %Val = zext i1 %value to i32
5083 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5084
5085 ; Emulate an unconditional br instruction
5086 switch i32 0, label %dest [ ]
5087
5088 ; Implement a jump table:
5089 switch i32 %val, label %otherwise [ i32 0, label %onzero
5090 i32 1, label %onone
5091 i32 2, label %ontwo ]
5092
5093.. _i_indirectbr:
5094
5095'``indirectbr``' Instruction
5096^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5097
5098Syntax:
5099"""""""
5100
5101::
5102
5103 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5104
5105Overview:
5106"""""""""
5107
5108The '``indirectbr``' instruction implements an indirect branch to a
5109label within the current function, whose address is specified by
5110"``address``". Address must be derived from a
5111:ref:`blockaddress <blockaddress>` constant.
5112
5113Arguments:
5114""""""""""
5115
5116The '``address``' argument is the address of the label to jump to. The
5117rest of the arguments indicate the full set of possible destinations
5118that the address may point to. Blocks are allowed to occur multiple
5119times in the destination list, though this isn't particularly useful.
5120
5121This destination list is required so that dataflow analysis has an
5122accurate understanding of the CFG.
5123
5124Semantics:
5125""""""""""
5126
5127Control transfers to the block specified in the address argument. All
5128possible destination blocks must be listed in the label list, otherwise
5129this instruction has undefined behavior. This implies that jumps to
5130labels defined in other functions have undefined behavior as well.
5131
5132Implementation:
5133"""""""""""""""
5134
5135This is typically implemented with a jump through a register.
5136
5137Example:
5138""""""""
5139
5140.. code-block:: llvm
5141
5142 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5143
5144.. _i_invoke:
5145
5146'``invoke``' Instruction
5147^^^^^^^^^^^^^^^^^^^^^^^^
5148
5149Syntax:
5150"""""""
5151
5152::
5153
5154 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005155 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005156
5157Overview:
5158"""""""""
5159
5160The '``invoke``' instruction causes control to transfer to a specified
5161function, with the possibility of control flow transfer to either the
5162'``normal``' label or the '``exception``' label. If the callee function
5163returns with the "``ret``" instruction, control flow will return to the
5164"normal" label. If the callee (or any indirect callees) returns via the
5165":ref:`resume <i_resume>`" instruction or other exception handling
5166mechanism, control is interrupted and continued at the dynamically
5167nearest "exception" label.
5168
5169The '``exception``' label is a `landing
5170pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5171'``exception``' label is required to have the
5172":ref:`landingpad <i_landingpad>`" instruction, which contains the
5173information about the behavior of the program after unwinding happens,
5174as its first non-PHI instruction. The restrictions on the
5175"``landingpad``" instruction's tightly couples it to the "``invoke``"
5176instruction, so that the important information contained within the
5177"``landingpad``" instruction can't be lost through normal code motion.
5178
5179Arguments:
5180""""""""""
5181
5182This instruction requires several arguments:
5183
5184#. The optional "cconv" marker indicates which :ref:`calling
5185 convention <callingconv>` the call should use. If none is
5186 specified, the call defaults to using C calling conventions.
5187#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5188 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5189 are valid here.
5190#. '``ptr to function ty``': shall be the signature of the pointer to
5191 function value being invoked. In most cases, this is a direct
5192 function invocation, but indirect ``invoke``'s are just as possible,
5193 branching off an arbitrary pointer to function value.
5194#. '``function ptr val``': An LLVM value containing a pointer to a
5195 function to be invoked.
5196#. '``function args``': argument list whose types match the function
5197 signature argument types and parameter attributes. All arguments must
5198 be of :ref:`first class <t_firstclass>` type. If the function signature
5199 indicates the function accepts a variable number of arguments, the
5200 extra arguments can be specified.
5201#. '``normal label``': the label reached when the called function
5202 executes a '``ret``' instruction.
5203#. '``exception label``': the label reached when a callee returns via
5204 the :ref:`resume <i_resume>` instruction or other exception handling
5205 mechanism.
5206#. The optional :ref:`function attributes <fnattrs>` list. Only
5207 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5208 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005209#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005210
5211Semantics:
5212""""""""""
5213
5214This instruction is designed to operate as a standard '``call``'
5215instruction in most regards. The primary difference is that it
5216establishes an association with a label, which is used by the runtime
5217library to unwind the stack.
5218
5219This instruction is used in languages with destructors to ensure that
5220proper cleanup is performed in the case of either a ``longjmp`` or a
5221thrown exception. Additionally, this is important for implementation of
5222'``catch``' clauses in high-level languages that support them.
5223
5224For the purposes of the SSA form, the definition of the value returned
5225by the '``invoke``' instruction is deemed to occur on the edge from the
5226current block to the "normal" label. If the callee unwinds then no
5227return value is available.
5228
5229Example:
5230""""""""
5231
5232.. code-block:: llvm
5233
5234 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005235 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005236 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005237 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005238
5239.. _i_resume:
5240
5241'``resume``' Instruction
5242^^^^^^^^^^^^^^^^^^^^^^^^
5243
5244Syntax:
5245"""""""
5246
5247::
5248
5249 resume <type> <value>
5250
5251Overview:
5252"""""""""
5253
5254The '``resume``' instruction is a terminator instruction that has no
5255successors.
5256
5257Arguments:
5258""""""""""
5259
5260The '``resume``' instruction requires one argument, which must have the
5261same type as the result of any '``landingpad``' instruction in the same
5262function.
5263
5264Semantics:
5265""""""""""
5266
5267The '``resume``' instruction resumes propagation of an existing
5268(in-flight) exception whose unwinding was interrupted with a
5269:ref:`landingpad <i_landingpad>` instruction.
5270
5271Example:
5272""""""""
5273
5274.. code-block:: llvm
5275
5276 resume { i8*, i32 } %exn
5277
David Majnemer654e1302015-07-31 17:58:14 +00005278.. _i_catchpad:
5279
5280'``catchpad``' Instruction
5281^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5282
5283Syntax:
5284"""""""
5285
5286::
5287
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005288 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005289 to label <normal label> unwind label <exception label>
5290
5291Overview:
5292"""""""""
5293
5294The '``catchpad``' instruction is used by `LLVM's exception handling
5295system <ExceptionHandling.html#overview>`_ to specify that a basic block
5296is a catch block --- one where a personality routine attempts to transfer
5297control to catch an exception.
5298The ``args`` correspond to whatever information the personality
5299routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005300exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005301``catchpad`` is not an appropriate handler for the in-flight exception.
5302The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005303portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5304:ref:`token <t_token>` and is used to match the ``catchpad`` to
5305corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005306
5307Arguments:
5308""""""""""
5309
5310The instruction takes a list of arbitrary values which are interpreted
5311by the :ref:`personality function <personalityfn>`.
5312
5313The ``catchpad`` must be provided a ``normal`` label to transfer control
5314to if the ``catchpad`` matches the exception and an ``exception``
5315label to transfer control to if it doesn't.
5316
5317Semantics:
5318""""""""""
5319
David Majnemer654e1302015-07-31 17:58:14 +00005320When the call stack is being unwound due to an exception being thrown,
5321the exception is compared against the ``args``. If it doesn't match,
5322then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005323As with calling conventions, how the personality function results are
5324represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005325
5326The ``catchpad`` instruction has several restrictions:
5327
5328- A catch block is a basic block which is the unwind destination of
5329 an exceptional instruction.
5330- A catch block must have a '``catchpad``' instruction as its
5331 first non-PHI instruction.
5332- A catch block's ``exception`` edge must refer to a catch block or a
5333 catch-end block.
5334- There can be only one '``catchpad``' instruction within the
5335 catch block.
5336- A basic block that is not a catch block may not include a
5337 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005338- A catch block which has another catch block as a predecessor may not have
5339 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005340- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005341 ``ret`` without first executing a ``catchret`` that consumes the
5342 ``catchpad`` or unwinding through its ``catchendpad``.
5343- It is undefined behavior for control to transfer from a ``catchpad`` to
5344 itself without first executing a ``catchret`` that consumes the
5345 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005346
5347Example:
5348""""""""
5349
5350.. code-block:: llvm
5351
5352 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005353 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005354 to label %int.handler unwind label %terminate
5355
5356.. _i_catchendpad:
5357
5358'``catchendpad``' Instruction
5359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5360
5361Syntax:
5362"""""""
5363
5364::
5365
5366 catchendpad unwind label <nextaction>
5367 catchendpad unwind to caller
5368
5369Overview:
5370"""""""""
5371
5372The '``catchendpad``' instruction is used by `LLVM's exception handling
5373system <ExceptionHandling.html#overview>`_ to communicate to the
5374:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005375with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5376exception out of a catch handler is represented by unwinding through its
5377``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5378do not handle an exception is also represented by unwinding through their
5379``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005380
5381The ``nextaction`` label indicates where control should transfer to if
5382none of the ``catchpad`` instructions are suitable for catching the
5383in-flight exception.
5384
5385If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005386its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005387:ref:`personality function <personalityfn>` will continue processing
5388exception handling actions in the caller.
5389
5390Arguments:
5391""""""""""
5392
5393The instruction optionally takes a label, ``nextaction``, indicating
5394where control should transfer to if none of the preceding
5395``catchpad`` instructions are suitable for the in-flight exception.
5396
5397Semantics:
5398""""""""""
5399
5400When the call stack is being unwound due to an exception being thrown
5401and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005402control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005403present, control is transfered to the caller.
5404
5405The ``catchendpad`` instruction has several restrictions:
5406
5407- A catch-end block is a basic block which is the unwind destination of
5408 an exceptional instruction.
5409- A catch-end block must have a '``catchendpad``' instruction as its
5410 first non-PHI instruction.
5411- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005412 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005413- A basic block that is not a catch-end block may not include a
5414 '``catchendpad``' instruction.
5415- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005416- It is undefined behavior to execute a ``catchendpad`` if none of the
5417 '``catchpad``'s chained to it have been executed.
5418- It is undefined behavior to execute a ``catchendpad`` twice without an
5419 intervening execution of one or more of the '``catchpad``'s chained to it.
5420- It is undefined behavior to execute a ``catchendpad`` if, after the most
5421 recent execution of the normal successor edge of any ``catchpad`` chained
5422 to it, some ``catchret`` consuming that ``catchpad`` has already been
5423 executed.
5424- It is undefined behavior to execute a ``catchendpad`` if, after the most
5425 recent execution of the normal successor edge of any ``catchpad`` chained
5426 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5427 not had a corresponding
5428 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005429
5430Example:
5431""""""""
5432
5433.. code-block:: llvm
5434
5435 catchendpad unwind label %terminate
5436 catchendpad unwind to caller
5437
5438.. _i_catchret:
5439
5440'``catchret``' Instruction
5441^^^^^^^^^^^^^^^^^^^^^^^^^^
5442
5443Syntax:
5444"""""""
5445
5446::
5447
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005448 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005449
5450Overview:
5451"""""""""
5452
5453The '``catchret``' instruction is a terminator instruction that has a
5454single successor.
5455
5456
5457Arguments:
5458""""""""""
5459
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005460The first argument to a '``catchret``' indicates which ``catchpad`` it
5461exits. It must be a :ref:`catchpad <i_catchpad>`.
5462The second argument to a '``catchret``' specifies where control will
5463transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005464
5465Semantics:
5466""""""""""
5467
5468The '``catchret``' instruction ends the existing (in-flight) exception
5469whose unwinding was interrupted with a
5470:ref:`catchpad <i_catchpad>` instruction.
5471The :ref:`personality function <personalityfn>` gets a chance to execute
5472arbitrary code to, for example, run a C++ destructor.
5473Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005474It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005475
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005476It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5477not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005478
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005479It is undefined behavior to execute a ``catchret`` if, after the most recent
5480execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5481to the same ``catchpad`` has already been executed.
5482
5483It is undefined behavior to execute a ``catchret`` if, after the most recent
5484execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5485been executed but has not had a corresponding
5486``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005487
5488Example:
5489""""""""
5490
5491.. code-block:: llvm
5492
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005493 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005494
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005495.. _i_cleanupendpad:
5496
5497'``cleanupendpad``' Instruction
5498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5499
5500Syntax:
5501"""""""
5502
5503::
5504
5505 cleanupendpad <value> unwind label <nextaction>
5506 cleanupendpad <value> unwind to caller
5507
5508Overview:
5509"""""""""
5510
5511The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5512system <ExceptionHandling.html#overview>`_ to communicate to the
5513:ref:`personality function <personalityfn>` which invokes are associated
5514with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5515out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5516
5517The ``nextaction`` label indicates where control should unwind to next, in the
5518event that a cleanup is exited by means of an(other) exception being raised.
5519
5520If a ``nextaction`` label is not present, the instruction unwinds out of
5521its parent function. The
5522:ref:`personality function <personalityfn>` will continue processing
5523exception handling actions in the caller.
5524
5525Arguments:
5526""""""""""
5527
5528The '``cleanupendpad``' instruction requires one argument, which indicates
5529which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5530It also has an optional successor, ``nextaction``, indicating where control
5531should transfer to.
5532
5533Semantics:
5534""""""""""
5535
5536When and exception propagates to a ``cleanupendpad``, control is transfered to
5537``nextaction`` if it is present. If it is not present, control is transfered to
5538the caller.
5539
5540The ``cleanupendpad`` instruction has several restrictions:
5541
5542- A cleanup-end block is a basic block which is the unwind destination of
5543 an exceptional instruction.
5544- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5545 first non-PHI instruction.
5546- There can be only one '``cleanupendpad``' instruction within the
5547 cleanup-end block.
5548- A basic block that is not a cleanup-end block may not include a
5549 '``cleanupendpad``' instruction.
5550- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5551 has not been executed.
5552- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5553 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5554 consuming the same ``cleanuppad`` has already been executed.
5555- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5556 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5557 ``catchpad`` has been executed but has not had a corresponding
5558 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5559
5560Example:
5561""""""""
5562
5563.. code-block:: llvm
5564
5565 cleanupendpad %cleanup unwind label %terminate
5566 cleanupendpad %cleanup unwind to caller
5567
David Majnemer654e1302015-07-31 17:58:14 +00005568.. _i_cleanupret:
5569
5570'``cleanupret``' Instruction
5571^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5572
5573Syntax:
5574"""""""
5575
5576::
5577
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005578 cleanupret <value> unwind label <continue>
5579 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005580
5581Overview:
5582"""""""""
5583
5584The '``cleanupret``' instruction is a terminator instruction that has
5585an optional successor.
5586
5587
5588Arguments:
5589""""""""""
5590
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005591The '``cleanupret``' instruction requires one argument, which indicates
5592which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5593It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005594
5595Semantics:
5596""""""""""
5597
5598The '``cleanupret``' instruction indicates to the
5599:ref:`personality function <personalityfn>` that one
5600:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5601It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005602
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005603It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5604not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005605
5606It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5607execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5608consuming the same ``cleanuppad`` has already been executed.
5609
5610It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5611execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5612been executed but has not had a corresponding
5613``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005614
5615Example:
5616""""""""
5617
5618.. code-block:: llvm
5619
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005620 cleanupret %cleanup unwind to caller
5621 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005622
5623.. _i_terminatepad:
5624
5625'``terminatepad``' Instruction
5626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5627
5628Syntax:
5629"""""""
5630
5631::
5632
5633 terminatepad [<args>*] unwind label <exception label>
5634 terminatepad [<args>*] unwind to caller
5635
5636Overview:
5637"""""""""
5638
5639The '``terminatepad``' instruction is used by `LLVM's exception handling
5640system <ExceptionHandling.html#overview>`_ to specify that a basic block
5641is a terminate block --- one where a personality routine may decide to
5642terminate the program.
5643The ``args`` correspond to whatever information the personality
5644routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005645program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005646personality routine decides not to terminate the program for the
5647in-flight exception.
5648
5649Arguments:
5650""""""""""
5651
5652The instruction takes a list of arbitrary values which are interpreted
5653by the :ref:`personality function <personalityfn>`.
5654
5655The ``terminatepad`` may be given an ``exception`` label to
5656transfer control to if the in-flight exception matches the ``args``.
5657
5658Semantics:
5659""""""""""
5660
5661When the call stack is being unwound due to an exception being thrown,
5662the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005663then control is transfered to the ``exception`` basic block. Otherwise,
5664the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005665the first argument to ``terminatepad`` specifies what function the
5666personality should defer to in order to terminate the program.
5667
5668The ``terminatepad`` instruction has several restrictions:
5669
5670- A terminate block is a basic block which is the unwind destination of
5671 an exceptional instruction.
5672- A terminate block must have a '``terminatepad``' instruction as its
5673 first non-PHI instruction.
5674- There can be only one '``terminatepad``' instruction within the
5675 terminate block.
5676- A basic block that is not a terminate block may not include a
5677 '``terminatepad``' instruction.
5678
5679Example:
5680""""""""
5681
5682.. code-block:: llvm
5683
5684 ;; A terminate block which only permits integers.
5685 terminatepad [i8** @_ZTIi] unwind label %continue
5686
Sean Silvab084af42012-12-07 10:36:55 +00005687.. _i_unreachable:
5688
5689'``unreachable``' Instruction
5690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5691
5692Syntax:
5693"""""""
5694
5695::
5696
5697 unreachable
5698
5699Overview:
5700"""""""""
5701
5702The '``unreachable``' instruction has no defined semantics. This
5703instruction is used to inform the optimizer that a particular portion of
5704the code is not reachable. This can be used to indicate that the code
5705after a no-return function cannot be reached, and other facts.
5706
5707Semantics:
5708""""""""""
5709
5710The '``unreachable``' instruction has no defined semantics.
5711
5712.. _binaryops:
5713
5714Binary Operations
5715-----------------
5716
5717Binary operators are used to do most of the computation in a program.
5718They require two operands of the same type, execute an operation on
5719them, and produce a single value. The operands might represent multiple
5720data, as is the case with the :ref:`vector <t_vector>` data type. The
5721result value has the same type as its operands.
5722
5723There are several different binary operators:
5724
5725.. _i_add:
5726
5727'``add``' Instruction
5728^^^^^^^^^^^^^^^^^^^^^
5729
5730Syntax:
5731"""""""
5732
5733::
5734
Tim Northover675a0962014-06-13 14:24:23 +00005735 <result> = add <ty> <op1>, <op2> ; yields ty:result
5736 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5737 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5738 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005739
5740Overview:
5741"""""""""
5742
5743The '``add``' instruction returns the sum of its two operands.
5744
5745Arguments:
5746""""""""""
5747
5748The two arguments to the '``add``' instruction must be
5749:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5750arguments must have identical types.
5751
5752Semantics:
5753""""""""""
5754
5755The value produced is the integer sum of the two operands.
5756
5757If the sum has unsigned overflow, the result returned is the
5758mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5759the result.
5760
5761Because LLVM integers use a two's complement representation, this
5762instruction is appropriate for both signed and unsigned integers.
5763
5764``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5765respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5766result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5767unsigned and/or signed overflow, respectively, occurs.
5768
5769Example:
5770""""""""
5771
5772.. code-block:: llvm
5773
Tim Northover675a0962014-06-13 14:24:23 +00005774 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005775
5776.. _i_fadd:
5777
5778'``fadd``' Instruction
5779^^^^^^^^^^^^^^^^^^^^^^
5780
5781Syntax:
5782"""""""
5783
5784::
5785
Tim Northover675a0962014-06-13 14:24:23 +00005786 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005787
5788Overview:
5789"""""""""
5790
5791The '``fadd``' instruction returns the sum of its two operands.
5792
5793Arguments:
5794""""""""""
5795
5796The two arguments to the '``fadd``' instruction must be :ref:`floating
5797point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5798Both arguments must have identical types.
5799
5800Semantics:
5801""""""""""
5802
5803The value produced is the floating point sum of the two operands. This
5804instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5805which are optimization hints to enable otherwise unsafe floating point
5806optimizations:
5807
5808Example:
5809""""""""
5810
5811.. code-block:: llvm
5812
Tim Northover675a0962014-06-13 14:24:23 +00005813 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005814
5815'``sub``' Instruction
5816^^^^^^^^^^^^^^^^^^^^^
5817
5818Syntax:
5819"""""""
5820
5821::
5822
Tim Northover675a0962014-06-13 14:24:23 +00005823 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5824 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5825 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5826 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005827
5828Overview:
5829"""""""""
5830
5831The '``sub``' instruction returns the difference of its two operands.
5832
5833Note that the '``sub``' instruction is used to represent the '``neg``'
5834instruction present in most other intermediate representations.
5835
5836Arguments:
5837""""""""""
5838
5839The two arguments to the '``sub``' instruction must be
5840:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5841arguments must have identical types.
5842
5843Semantics:
5844""""""""""
5845
5846The value produced is the integer difference of the two operands.
5847
5848If the difference has unsigned overflow, the result returned is the
5849mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5850the result.
5851
5852Because LLVM integers use a two's complement representation, this
5853instruction is appropriate for both signed and unsigned integers.
5854
5855``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5856respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5857result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5858unsigned and/or signed overflow, respectively, occurs.
5859
5860Example:
5861""""""""
5862
5863.. code-block:: llvm
5864
Tim Northover675a0962014-06-13 14:24:23 +00005865 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5866 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005867
5868.. _i_fsub:
5869
5870'``fsub``' Instruction
5871^^^^^^^^^^^^^^^^^^^^^^
5872
5873Syntax:
5874"""""""
5875
5876::
5877
Tim Northover675a0962014-06-13 14:24:23 +00005878 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005879
5880Overview:
5881"""""""""
5882
5883The '``fsub``' instruction returns the difference of its two operands.
5884
5885Note that the '``fsub``' instruction is used to represent the '``fneg``'
5886instruction present in most other intermediate representations.
5887
5888Arguments:
5889""""""""""
5890
5891The two arguments to the '``fsub``' instruction must be :ref:`floating
5892point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5893Both arguments must have identical types.
5894
5895Semantics:
5896""""""""""
5897
5898The value produced is the floating point difference of the two operands.
5899This instruction can also take any number of :ref:`fast-math
5900flags <fastmath>`, which are optimization hints to enable otherwise
5901unsafe floating point optimizations:
5902
5903Example:
5904""""""""
5905
5906.. code-block:: llvm
5907
Tim Northover675a0962014-06-13 14:24:23 +00005908 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5909 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005910
5911'``mul``' Instruction
5912^^^^^^^^^^^^^^^^^^^^^
5913
5914Syntax:
5915"""""""
5916
5917::
5918
Tim Northover675a0962014-06-13 14:24:23 +00005919 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5920 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5921 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5922 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005923
5924Overview:
5925"""""""""
5926
5927The '``mul``' instruction returns the product of its two operands.
5928
5929Arguments:
5930""""""""""
5931
5932The two arguments to the '``mul``' instruction must be
5933:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5934arguments must have identical types.
5935
5936Semantics:
5937""""""""""
5938
5939The value produced is the integer product of the two operands.
5940
5941If the result of the multiplication has unsigned overflow, the result
5942returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5943bit width of the result.
5944
5945Because LLVM integers use a two's complement representation, and the
5946result is the same width as the operands, this instruction returns the
5947correct result for both signed and unsigned integers. If a full product
5948(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5949sign-extended or zero-extended as appropriate to the width of the full
5950product.
5951
5952``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5953respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5954result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5955unsigned and/or signed overflow, respectively, occurs.
5956
5957Example:
5958""""""""
5959
5960.. code-block:: llvm
5961
Tim Northover675a0962014-06-13 14:24:23 +00005962 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005963
5964.. _i_fmul:
5965
5966'``fmul``' Instruction
5967^^^^^^^^^^^^^^^^^^^^^^
5968
5969Syntax:
5970"""""""
5971
5972::
5973
Tim Northover675a0962014-06-13 14:24:23 +00005974 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005975
5976Overview:
5977"""""""""
5978
5979The '``fmul``' instruction returns the product of its two operands.
5980
5981Arguments:
5982""""""""""
5983
5984The two arguments to the '``fmul``' instruction must be :ref:`floating
5985point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5986Both arguments must have identical types.
5987
5988Semantics:
5989""""""""""
5990
5991The value produced is the floating point product of the two operands.
5992This instruction can also take any number of :ref:`fast-math
5993flags <fastmath>`, which are optimization hints to enable otherwise
5994unsafe floating point optimizations:
5995
5996Example:
5997""""""""
5998
5999.. code-block:: llvm
6000
Tim Northover675a0962014-06-13 14:24:23 +00006001 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006002
6003'``udiv``' Instruction
6004^^^^^^^^^^^^^^^^^^^^^^
6005
6006Syntax:
6007"""""""
6008
6009::
6010
Tim Northover675a0962014-06-13 14:24:23 +00006011 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6012 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006013
6014Overview:
6015"""""""""
6016
6017The '``udiv``' instruction returns the quotient of its two operands.
6018
6019Arguments:
6020""""""""""
6021
6022The two arguments to the '``udiv``' instruction must be
6023:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6024arguments must have identical types.
6025
6026Semantics:
6027""""""""""
6028
6029The value produced is the unsigned integer quotient of the two operands.
6030
6031Note that unsigned integer division and signed integer division are
6032distinct operations; for signed integer division, use '``sdiv``'.
6033
6034Division by zero leads to undefined behavior.
6035
6036If the ``exact`` keyword is present, the result value of the ``udiv`` is
6037a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6038such, "((a udiv exact b) mul b) == a").
6039
6040Example:
6041""""""""
6042
6043.. code-block:: llvm
6044
Tim Northover675a0962014-06-13 14:24:23 +00006045 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006046
6047'``sdiv``' Instruction
6048^^^^^^^^^^^^^^^^^^^^^^
6049
6050Syntax:
6051"""""""
6052
6053::
6054
Tim Northover675a0962014-06-13 14:24:23 +00006055 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6056 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006057
6058Overview:
6059"""""""""
6060
6061The '``sdiv``' instruction returns the quotient of its two operands.
6062
6063Arguments:
6064""""""""""
6065
6066The two arguments to the '``sdiv``' instruction must be
6067:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6068arguments must have identical types.
6069
6070Semantics:
6071""""""""""
6072
6073The value produced is the signed integer quotient of the two operands
6074rounded towards zero.
6075
6076Note that signed integer division and unsigned integer division are
6077distinct operations; for unsigned integer division, use '``udiv``'.
6078
6079Division by zero leads to undefined behavior. Overflow also leads to
6080undefined behavior; this is a rare case, but can occur, for example, by
6081doing a 32-bit division of -2147483648 by -1.
6082
6083If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6084a :ref:`poison value <poisonvalues>` if the result would be rounded.
6085
6086Example:
6087""""""""
6088
6089.. code-block:: llvm
6090
Tim Northover675a0962014-06-13 14:24:23 +00006091 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006092
6093.. _i_fdiv:
6094
6095'``fdiv``' Instruction
6096^^^^^^^^^^^^^^^^^^^^^^
6097
6098Syntax:
6099"""""""
6100
6101::
6102
Tim Northover675a0962014-06-13 14:24:23 +00006103 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006104
6105Overview:
6106"""""""""
6107
6108The '``fdiv``' instruction returns the quotient of its two operands.
6109
6110Arguments:
6111""""""""""
6112
6113The two arguments to the '``fdiv``' instruction must be :ref:`floating
6114point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6115Both arguments must have identical types.
6116
6117Semantics:
6118""""""""""
6119
6120The value produced is the floating point quotient of the two operands.
6121This instruction can also take any number of :ref:`fast-math
6122flags <fastmath>`, which are optimization hints to enable otherwise
6123unsafe floating point optimizations:
6124
6125Example:
6126""""""""
6127
6128.. code-block:: llvm
6129
Tim Northover675a0962014-06-13 14:24:23 +00006130 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006131
6132'``urem``' Instruction
6133^^^^^^^^^^^^^^^^^^^^^^
6134
6135Syntax:
6136"""""""
6137
6138::
6139
Tim Northover675a0962014-06-13 14:24:23 +00006140 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006141
6142Overview:
6143"""""""""
6144
6145The '``urem``' instruction returns the remainder from the unsigned
6146division of its two arguments.
6147
6148Arguments:
6149""""""""""
6150
6151The two arguments to the '``urem``' instruction must be
6152:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6153arguments must have identical types.
6154
6155Semantics:
6156""""""""""
6157
6158This instruction returns the unsigned integer *remainder* of a division.
6159This instruction always performs an unsigned division to get the
6160remainder.
6161
6162Note that unsigned integer remainder and signed integer remainder are
6163distinct operations; for signed integer remainder, use '``srem``'.
6164
6165Taking the remainder of a division by zero leads to undefined behavior.
6166
6167Example:
6168""""""""
6169
6170.. code-block:: llvm
6171
Tim Northover675a0962014-06-13 14:24:23 +00006172 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006173
6174'``srem``' Instruction
6175^^^^^^^^^^^^^^^^^^^^^^
6176
6177Syntax:
6178"""""""
6179
6180::
6181
Tim Northover675a0962014-06-13 14:24:23 +00006182 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006183
6184Overview:
6185"""""""""
6186
6187The '``srem``' instruction returns the remainder from the signed
6188division of its two operands. This instruction can also take
6189:ref:`vector <t_vector>` versions of the values in which case the elements
6190must be integers.
6191
6192Arguments:
6193""""""""""
6194
6195The two arguments to the '``srem``' instruction must be
6196:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6197arguments must have identical types.
6198
6199Semantics:
6200""""""""""
6201
6202This instruction returns the *remainder* of a division (where the result
6203is either zero or has the same sign as the dividend, ``op1``), not the
6204*modulo* operator (where the result is either zero or has the same sign
6205as the divisor, ``op2``) of a value. For more information about the
6206difference, see `The Math
6207Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6208table of how this is implemented in various languages, please see
6209`Wikipedia: modulo
6210operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6211
6212Note that signed integer remainder and unsigned integer remainder are
6213distinct operations; for unsigned integer remainder, use '``urem``'.
6214
6215Taking the remainder of a division by zero leads to undefined behavior.
6216Overflow also leads to undefined behavior; this is a rare case, but can
6217occur, for example, by taking the remainder of a 32-bit division of
6218-2147483648 by -1. (The remainder doesn't actually overflow, but this
6219rule lets srem be implemented using instructions that return both the
6220result of the division and the remainder.)
6221
6222Example:
6223""""""""
6224
6225.. code-block:: llvm
6226
Tim Northover675a0962014-06-13 14:24:23 +00006227 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006228
6229.. _i_frem:
6230
6231'``frem``' Instruction
6232^^^^^^^^^^^^^^^^^^^^^^
6233
6234Syntax:
6235"""""""
6236
6237::
6238
Tim Northover675a0962014-06-13 14:24:23 +00006239 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006240
6241Overview:
6242"""""""""
6243
6244The '``frem``' instruction returns the remainder from the division of
6245its two operands.
6246
6247Arguments:
6248""""""""""
6249
6250The two arguments to the '``frem``' instruction must be :ref:`floating
6251point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6252Both arguments must have identical types.
6253
6254Semantics:
6255""""""""""
6256
6257This instruction returns the *remainder* of a division. The remainder
6258has the same sign as the dividend. This instruction can also take any
6259number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6260to enable otherwise unsafe floating point optimizations:
6261
6262Example:
6263""""""""
6264
6265.. code-block:: llvm
6266
Tim Northover675a0962014-06-13 14:24:23 +00006267 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006268
6269.. _bitwiseops:
6270
6271Bitwise Binary Operations
6272-------------------------
6273
6274Bitwise binary operators are used to do various forms of bit-twiddling
6275in a program. They are generally very efficient instructions and can
6276commonly be strength reduced from other instructions. They require two
6277operands of the same type, execute an operation on them, and produce a
6278single value. The resulting value is the same type as its operands.
6279
6280'``shl``' Instruction
6281^^^^^^^^^^^^^^^^^^^^^
6282
6283Syntax:
6284"""""""
6285
6286::
6287
Tim Northover675a0962014-06-13 14:24:23 +00006288 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6289 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6290 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6291 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006292
6293Overview:
6294"""""""""
6295
6296The '``shl``' instruction returns the first operand shifted to the left
6297a specified number of bits.
6298
6299Arguments:
6300""""""""""
6301
6302Both arguments to the '``shl``' instruction must be the same
6303:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6304'``op2``' is treated as an unsigned value.
6305
6306Semantics:
6307""""""""""
6308
6309The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6310where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006311dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006312``op1``, the result is undefined. If the arguments are vectors, each
6313vector element of ``op1`` is shifted by the corresponding shift amount
6314in ``op2``.
6315
6316If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6317value <poisonvalues>` if it shifts out any non-zero bits. If the
6318``nsw`` keyword is present, then the shift produces a :ref:`poison
6319value <poisonvalues>` if it shifts out any bits that disagree with the
6320resultant sign bit. As such, NUW/NSW have the same semantics as they
6321would if the shift were expressed as a mul instruction with the same
6322nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6323
6324Example:
6325""""""""
6326
6327.. code-block:: llvm
6328
Tim Northover675a0962014-06-13 14:24:23 +00006329 <result> = shl i32 4, %var ; yields i32: 4 << %var
6330 <result> = shl i32 4, 2 ; yields i32: 16
6331 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006332 <result> = shl i32 1, 32 ; undefined
6333 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6334
6335'``lshr``' Instruction
6336^^^^^^^^^^^^^^^^^^^^^^
6337
6338Syntax:
6339"""""""
6340
6341::
6342
Tim Northover675a0962014-06-13 14:24:23 +00006343 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6344 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006345
6346Overview:
6347"""""""""
6348
6349The '``lshr``' instruction (logical shift right) returns the first
6350operand shifted to the right a specified number of bits with zero fill.
6351
6352Arguments:
6353""""""""""
6354
6355Both arguments to the '``lshr``' instruction must be the same
6356:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6357'``op2``' is treated as an unsigned value.
6358
6359Semantics:
6360""""""""""
6361
6362This instruction always performs a logical shift right operation. The
6363most significant bits of the result will be filled with zero bits after
6364the shift. If ``op2`` is (statically or dynamically) equal to or larger
6365than the number of bits in ``op1``, the result is undefined. If the
6366arguments are vectors, each vector element of ``op1`` is shifted by the
6367corresponding shift amount in ``op2``.
6368
6369If the ``exact`` keyword is present, the result value of the ``lshr`` is
6370a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6371non-zero.
6372
6373Example:
6374""""""""
6375
6376.. code-block:: llvm
6377
Tim Northover675a0962014-06-13 14:24:23 +00006378 <result> = lshr i32 4, 1 ; yields i32:result = 2
6379 <result> = lshr i32 4, 2 ; yields i32:result = 1
6380 <result> = lshr i8 4, 3 ; yields i8:result = 0
6381 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006382 <result> = lshr i32 1, 32 ; undefined
6383 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6384
6385'``ashr``' Instruction
6386^^^^^^^^^^^^^^^^^^^^^^
6387
6388Syntax:
6389"""""""
6390
6391::
6392
Tim Northover675a0962014-06-13 14:24:23 +00006393 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6394 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006395
6396Overview:
6397"""""""""
6398
6399The '``ashr``' instruction (arithmetic shift right) returns the first
6400operand shifted to the right a specified number of bits with sign
6401extension.
6402
6403Arguments:
6404""""""""""
6405
6406Both arguments to the '``ashr``' instruction must be the same
6407:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6408'``op2``' is treated as an unsigned value.
6409
6410Semantics:
6411""""""""""
6412
6413This instruction always performs an arithmetic shift right operation,
6414The most significant bits of the result will be filled with the sign bit
6415of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6416than the number of bits in ``op1``, the result is undefined. If the
6417arguments are vectors, each vector element of ``op1`` is shifted by the
6418corresponding shift amount in ``op2``.
6419
6420If the ``exact`` keyword is present, the result value of the ``ashr`` is
6421a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6422non-zero.
6423
6424Example:
6425""""""""
6426
6427.. code-block:: llvm
6428
Tim Northover675a0962014-06-13 14:24:23 +00006429 <result> = ashr i32 4, 1 ; yields i32:result = 2
6430 <result> = ashr i32 4, 2 ; yields i32:result = 1
6431 <result> = ashr i8 4, 3 ; yields i8:result = 0
6432 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006433 <result> = ashr i32 1, 32 ; undefined
6434 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6435
6436'``and``' Instruction
6437^^^^^^^^^^^^^^^^^^^^^
6438
6439Syntax:
6440"""""""
6441
6442::
6443
Tim Northover675a0962014-06-13 14:24:23 +00006444 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006445
6446Overview:
6447"""""""""
6448
6449The '``and``' instruction returns the bitwise logical and of its two
6450operands.
6451
6452Arguments:
6453""""""""""
6454
6455The two arguments to the '``and``' instruction must be
6456:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6457arguments must have identical types.
6458
6459Semantics:
6460""""""""""
6461
6462The truth table used for the '``and``' instruction is:
6463
6464+-----+-----+-----+
6465| In0 | In1 | Out |
6466+-----+-----+-----+
6467| 0 | 0 | 0 |
6468+-----+-----+-----+
6469| 0 | 1 | 0 |
6470+-----+-----+-----+
6471| 1 | 0 | 0 |
6472+-----+-----+-----+
6473| 1 | 1 | 1 |
6474+-----+-----+-----+
6475
6476Example:
6477""""""""
6478
6479.. code-block:: llvm
6480
Tim Northover675a0962014-06-13 14:24:23 +00006481 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6482 <result> = and i32 15, 40 ; yields i32:result = 8
6483 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006484
6485'``or``' Instruction
6486^^^^^^^^^^^^^^^^^^^^
6487
6488Syntax:
6489"""""""
6490
6491::
6492
Tim Northover675a0962014-06-13 14:24:23 +00006493 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006494
6495Overview:
6496"""""""""
6497
6498The '``or``' instruction returns the bitwise logical inclusive or of its
6499two operands.
6500
6501Arguments:
6502""""""""""
6503
6504The two arguments to the '``or``' instruction must be
6505:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6506arguments must have identical types.
6507
6508Semantics:
6509""""""""""
6510
6511The truth table used for the '``or``' instruction is:
6512
6513+-----+-----+-----+
6514| In0 | In1 | Out |
6515+-----+-----+-----+
6516| 0 | 0 | 0 |
6517+-----+-----+-----+
6518| 0 | 1 | 1 |
6519+-----+-----+-----+
6520| 1 | 0 | 1 |
6521+-----+-----+-----+
6522| 1 | 1 | 1 |
6523+-----+-----+-----+
6524
6525Example:
6526""""""""
6527
6528::
6529
Tim Northover675a0962014-06-13 14:24:23 +00006530 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6531 <result> = or i32 15, 40 ; yields i32:result = 47
6532 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006533
6534'``xor``' Instruction
6535^^^^^^^^^^^^^^^^^^^^^
6536
6537Syntax:
6538"""""""
6539
6540::
6541
Tim Northover675a0962014-06-13 14:24:23 +00006542 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006543
6544Overview:
6545"""""""""
6546
6547The '``xor``' instruction returns the bitwise logical exclusive or of
6548its two operands. The ``xor`` is used to implement the "one's
6549complement" operation, which is the "~" operator in C.
6550
6551Arguments:
6552""""""""""
6553
6554The two arguments to the '``xor``' instruction must be
6555:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6556arguments must have identical types.
6557
6558Semantics:
6559""""""""""
6560
6561The truth table used for the '``xor``' instruction is:
6562
6563+-----+-----+-----+
6564| In0 | In1 | Out |
6565+-----+-----+-----+
6566| 0 | 0 | 0 |
6567+-----+-----+-----+
6568| 0 | 1 | 1 |
6569+-----+-----+-----+
6570| 1 | 0 | 1 |
6571+-----+-----+-----+
6572| 1 | 1 | 0 |
6573+-----+-----+-----+
6574
6575Example:
6576""""""""
6577
6578.. code-block:: llvm
6579
Tim Northover675a0962014-06-13 14:24:23 +00006580 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6581 <result> = xor i32 15, 40 ; yields i32:result = 39
6582 <result> = xor i32 4, 8 ; yields i32:result = 12
6583 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006584
6585Vector Operations
6586-----------------
6587
6588LLVM supports several instructions to represent vector operations in a
6589target-independent manner. These instructions cover the element-access
6590and vector-specific operations needed to process vectors effectively.
6591While LLVM does directly support these vector operations, many
6592sophisticated algorithms will want to use target-specific intrinsics to
6593take full advantage of a specific target.
6594
6595.. _i_extractelement:
6596
6597'``extractelement``' Instruction
6598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6599
6600Syntax:
6601"""""""
6602
6603::
6604
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006605 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006606
6607Overview:
6608"""""""""
6609
6610The '``extractelement``' instruction extracts a single scalar element
6611from a vector at a specified index.
6612
6613Arguments:
6614""""""""""
6615
6616The first operand of an '``extractelement``' instruction is a value of
6617:ref:`vector <t_vector>` type. The second operand is an index indicating
6618the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006619variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006620
6621Semantics:
6622""""""""""
6623
6624The result is a scalar of the same type as the element type of ``val``.
6625Its value is the value at position ``idx`` of ``val``. If ``idx``
6626exceeds the length of ``val``, the results are undefined.
6627
6628Example:
6629""""""""
6630
6631.. code-block:: llvm
6632
6633 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6634
6635.. _i_insertelement:
6636
6637'``insertelement``' Instruction
6638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6639
6640Syntax:
6641"""""""
6642
6643::
6644
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006645 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006646
6647Overview:
6648"""""""""
6649
6650The '``insertelement``' instruction inserts a scalar element into a
6651vector at a specified index.
6652
6653Arguments:
6654""""""""""
6655
6656The first operand of an '``insertelement``' instruction is a value of
6657:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6658type must equal the element type of the first operand. The third operand
6659is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006660index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006661
6662Semantics:
6663""""""""""
6664
6665The result is a vector of the same type as ``val``. Its element values
6666are those of ``val`` except at position ``idx``, where it gets the value
6667``elt``. If ``idx`` exceeds the length of ``val``, the results are
6668undefined.
6669
6670Example:
6671""""""""
6672
6673.. code-block:: llvm
6674
6675 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6676
6677.. _i_shufflevector:
6678
6679'``shufflevector``' Instruction
6680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6681
6682Syntax:
6683"""""""
6684
6685::
6686
6687 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6688
6689Overview:
6690"""""""""
6691
6692The '``shufflevector``' instruction constructs a permutation of elements
6693from two input vectors, returning a vector with the same element type as
6694the input and length that is the same as the shuffle mask.
6695
6696Arguments:
6697""""""""""
6698
6699The first two operands of a '``shufflevector``' instruction are vectors
6700with the same type. The third argument is a shuffle mask whose element
6701type is always 'i32'. The result of the instruction is a vector whose
6702length is the same as the shuffle mask and whose element type is the
6703same as the element type of the first two operands.
6704
6705The shuffle mask operand is required to be a constant vector with either
6706constant integer or undef values.
6707
6708Semantics:
6709""""""""""
6710
6711The elements of the two input vectors are numbered from left to right
6712across both of the vectors. The shuffle mask operand specifies, for each
6713element of the result vector, which element of the two input vectors the
6714result element gets. The element selector may be undef (meaning "don't
6715care") and the second operand may be undef if performing a shuffle from
6716only one vector.
6717
6718Example:
6719""""""""
6720
6721.. code-block:: llvm
6722
6723 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6724 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6725 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6726 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6727 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6728 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6729 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6730 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6731
6732Aggregate Operations
6733--------------------
6734
6735LLVM supports several instructions for working with
6736:ref:`aggregate <t_aggregate>` values.
6737
6738.. _i_extractvalue:
6739
6740'``extractvalue``' Instruction
6741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6742
6743Syntax:
6744"""""""
6745
6746::
6747
6748 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6749
6750Overview:
6751"""""""""
6752
6753The '``extractvalue``' instruction extracts the value of a member field
6754from an :ref:`aggregate <t_aggregate>` value.
6755
6756Arguments:
6757""""""""""
6758
6759The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006760:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006761constant indices to specify which value to extract in a similar manner
6762as indices in a '``getelementptr``' instruction.
6763
6764The major differences to ``getelementptr`` indexing are:
6765
6766- Since the value being indexed is not a pointer, the first index is
6767 omitted and assumed to be zero.
6768- At least one index must be specified.
6769- Not only struct indices but also array indices must be in bounds.
6770
6771Semantics:
6772""""""""""
6773
6774The result is the value at the position in the aggregate specified by
6775the index operands.
6776
6777Example:
6778""""""""
6779
6780.. code-block:: llvm
6781
6782 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6783
6784.. _i_insertvalue:
6785
6786'``insertvalue``' Instruction
6787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6788
6789Syntax:
6790"""""""
6791
6792::
6793
6794 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6795
6796Overview:
6797"""""""""
6798
6799The '``insertvalue``' instruction inserts a value into a member field in
6800an :ref:`aggregate <t_aggregate>` value.
6801
6802Arguments:
6803""""""""""
6804
6805The first operand of an '``insertvalue``' instruction is a value of
6806:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6807a first-class value to insert. The following operands are constant
6808indices indicating the position at which to insert the value in a
6809similar manner as indices in a '``extractvalue``' instruction. The value
6810to insert must have the same type as the value identified by the
6811indices.
6812
6813Semantics:
6814""""""""""
6815
6816The result is an aggregate of the same type as ``val``. Its value is
6817that of ``val`` except that the value at the position specified by the
6818indices is that of ``elt``.
6819
6820Example:
6821""""""""
6822
6823.. code-block:: llvm
6824
6825 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6826 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006827 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006828
6829.. _memoryops:
6830
6831Memory Access and Addressing Operations
6832---------------------------------------
6833
6834A key design point of an SSA-based representation is how it represents
6835memory. In LLVM, no memory locations are in SSA form, which makes things
6836very simple. This section describes how to read, write, and allocate
6837memory in LLVM.
6838
6839.. _i_alloca:
6840
6841'``alloca``' Instruction
6842^^^^^^^^^^^^^^^^^^^^^^^^
6843
6844Syntax:
6845"""""""
6846
6847::
6848
Tim Northover675a0962014-06-13 14:24:23 +00006849 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006850
6851Overview:
6852"""""""""
6853
6854The '``alloca``' instruction allocates memory on the stack frame of the
6855currently executing function, to be automatically released when this
6856function returns to its caller. The object is always allocated in the
6857generic address space (address space zero).
6858
6859Arguments:
6860""""""""""
6861
6862The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6863bytes of memory on the runtime stack, returning a pointer of the
6864appropriate type to the program. If "NumElements" is specified, it is
6865the number of elements allocated, otherwise "NumElements" is defaulted
6866to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006867allocation is guaranteed to be aligned to at least that boundary. The
6868alignment may not be greater than ``1 << 29``. If not specified, or if
6869zero, the target can choose to align the allocation on any convenient
6870boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006871
6872'``type``' may be any sized type.
6873
6874Semantics:
6875""""""""""
6876
6877Memory is allocated; a pointer is returned. The operation is undefined
6878if there is insufficient stack space for the allocation. '``alloca``'d
6879memory is automatically released when the function returns. The
6880'``alloca``' instruction is commonly used to represent automatic
6881variables that must have an address available. When the function returns
6882(either with the ``ret`` or ``resume`` instructions), the memory is
6883reclaimed. Allocating zero bytes is legal, but the result is undefined.
6884The order in which memory is allocated (ie., which way the stack grows)
6885is not specified.
6886
6887Example:
6888""""""""
6889
6890.. code-block:: llvm
6891
Tim Northover675a0962014-06-13 14:24:23 +00006892 %ptr = alloca i32 ; yields i32*:ptr
6893 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6894 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6895 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006896
6897.. _i_load:
6898
6899'``load``' Instruction
6900^^^^^^^^^^^^^^^^^^^^^^
6901
6902Syntax:
6903"""""""
6904
6905::
6906
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006907 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006908 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006909 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006910 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006911 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006912
6913Overview:
6914"""""""""
6915
6916The '``load``' instruction is used to read from memory.
6917
6918Arguments:
6919""""""""""
6920
Eli Bendersky239a78b2013-04-17 20:17:08 +00006921The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006922from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006923class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6924then the optimizer is not allowed to modify the number or order of
6925execution of this ``load`` with other :ref:`volatile
6926operations <volatile>`.
6927
6928If the ``load`` is marked as ``atomic``, it takes an extra
6929:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6930``release`` and ``acq_rel`` orderings are not valid on ``load``
6931instructions. Atomic loads produce :ref:`defined <memmodel>` results
6932when they may see multiple atomic stores. The type of the pointee must
6933be an integer type whose bit width is a power of two greater than or
6934equal to eight and less than or equal to a target-specific size limit.
6935``align`` must be explicitly specified on atomic loads, and the load has
6936undefined behavior if the alignment is not set to a value which is at
6937least the size in bytes of the pointee. ``!nontemporal`` does not have
6938any defined semantics for atomic loads.
6939
6940The optional constant ``align`` argument specifies the alignment of the
6941operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006942or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006943alignment for the target. It is the responsibility of the code emitter
6944to ensure that the alignment information is correct. Overestimating the
6945alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006946may produce less efficient code. An alignment of 1 is always safe. The
6947maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006948
6949The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006950metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006951``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006952metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006953that this load is not expected to be reused in the cache. The code
6954generator may select special instructions to save cache bandwidth, such
6955as the ``MOVNT`` instruction on x86.
6956
6957The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006958metadata name ``<index>`` corresponding to a metadata node with no
6959entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006960instruction tells the optimizer and code generator that the address
6961operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006962Being invariant does not imply that a location is dereferenceable,
6963but it does imply that once the location is known dereferenceable
6964its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006965
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006966The optional ``!invariant.group`` metadata must reference a single metadata name
6967 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6968
Philip Reamescdb72f32014-10-20 22:40:55 +00006969The optional ``!nonnull`` metadata must reference a single
6970metadata name ``<index>`` corresponding to a metadata node with no
6971entries. The existence of the ``!nonnull`` metadata on the
6972instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006973never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006974on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006975to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006976
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006977The optional ``!dereferenceable`` metadata must reference a single metadata
6978name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006979entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006980tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006981The number of bytes known to be dereferenceable is specified by the integer
6982value in the metadata node. This is analogous to the ''dereferenceable''
6983attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006984to loads of a pointer type.
6985
6986The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006987metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6988``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006989instruction tells the optimizer that the value loaded is known to be either
6990dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006991The number of bytes known to be dereferenceable is specified by the integer
6992value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6993attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006994to loads of a pointer type.
6995
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006996The optional ``!align`` metadata must reference a single metadata name
6997``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6998The existence of the ``!align`` metadata on the instruction tells the
6999optimizer that the value loaded is known to be aligned to a boundary specified
7000by the integer value in the metadata node. The alignment must be a power of 2.
7001This is analogous to the ''align'' attribute on parameters and return values.
7002This metadata can only be applied to loads of a pointer type.
7003
Sean Silvab084af42012-12-07 10:36:55 +00007004Semantics:
7005""""""""""
7006
7007The location of memory pointed to is loaded. If the value being loaded
7008is of scalar type then the number of bytes read does not exceed the
7009minimum number of bytes needed to hold all bits of the type. For
7010example, loading an ``i24`` reads at most three bytes. When loading a
7011value of a type like ``i20`` with a size that is not an integral number
7012of bytes, the result is undefined if the value was not originally
7013written using a store of the same type.
7014
7015Examples:
7016"""""""""
7017
7018.. code-block:: llvm
7019
Tim Northover675a0962014-06-13 14:24:23 +00007020 %ptr = alloca i32 ; yields i32*:ptr
7021 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007022 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007023
7024.. _i_store:
7025
7026'``store``' Instruction
7027^^^^^^^^^^^^^^^^^^^^^^^
7028
7029Syntax:
7030"""""""
7031
7032::
7033
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007034 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7035 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007036
7037Overview:
7038"""""""""
7039
7040The '``store``' instruction is used to write to memory.
7041
7042Arguments:
7043""""""""""
7044
Eli Benderskyca380842013-04-17 17:17:20 +00007045There are two arguments to the ``store`` instruction: a value to store
7046and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007047operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007048the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007049then the optimizer is not allowed to modify the number or order of
7050execution of this ``store`` with other :ref:`volatile
7051operations <volatile>`.
7052
7053If the ``store`` is marked as ``atomic``, it takes an extra
7054:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7055``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
7056instructions. Atomic loads produce :ref:`defined <memmodel>` results
7057when they may see multiple atomic stores. The type of the pointee must
7058be an integer type whose bit width is a power of two greater than or
7059equal to eight and less than or equal to a target-specific size limit.
7060``align`` must be explicitly specified on atomic stores, and the store
7061has undefined behavior if the alignment is not set to a value which is
7062at least the size in bytes of the pointee. ``!nontemporal`` does not
7063have any defined semantics for atomic stores.
7064
Eli Benderskyca380842013-04-17 17:17:20 +00007065The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007066operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007067or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007068alignment for the target. It is the responsibility of the code emitter
7069to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007070alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007071alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007072safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007073
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007074The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007075name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007076value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007077tells the optimizer and code generator that this load is not expected to
7078be reused in the cache. The code generator may select special
7079instructions to save cache bandwidth, such as the MOVNT instruction on
7080x86.
7081
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007082The optional ``!invariant.group`` metadata must reference a
7083single metadata name ``<index>``. See ``invariant.group`` metadata.
7084
Sean Silvab084af42012-12-07 10:36:55 +00007085Semantics:
7086""""""""""
7087
Eli Benderskyca380842013-04-17 17:17:20 +00007088The contents of memory are updated to contain ``<value>`` at the
7089location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007090of scalar type then the number of bytes written does not exceed the
7091minimum number of bytes needed to hold all bits of the type. For
7092example, storing an ``i24`` writes at most three bytes. When writing a
7093value of a type like ``i20`` with a size that is not an integral number
7094of bytes, it is unspecified what happens to the extra bits that do not
7095belong to the type, but they will typically be overwritten.
7096
7097Example:
7098""""""""
7099
7100.. code-block:: llvm
7101
Tim Northover675a0962014-06-13 14:24:23 +00007102 %ptr = alloca i32 ; yields i32*:ptr
7103 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007104 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007105
7106.. _i_fence:
7107
7108'``fence``' Instruction
7109^^^^^^^^^^^^^^^^^^^^^^^
7110
7111Syntax:
7112"""""""
7113
7114::
7115
Tim Northover675a0962014-06-13 14:24:23 +00007116 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007117
7118Overview:
7119"""""""""
7120
7121The '``fence``' instruction is used to introduce happens-before edges
7122between operations.
7123
7124Arguments:
7125""""""""""
7126
7127'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7128defines what *synchronizes-with* edges they add. They can only be given
7129``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7130
7131Semantics:
7132""""""""""
7133
7134A fence A which has (at least) ``release`` ordering semantics
7135*synchronizes with* a fence B with (at least) ``acquire`` ordering
7136semantics if and only if there exist atomic operations X and Y, both
7137operating on some atomic object M, such that A is sequenced before X, X
7138modifies M (either directly or through some side effect of a sequence
7139headed by X), Y is sequenced before B, and Y observes M. This provides a
7140*happens-before* dependency between A and B. Rather than an explicit
7141``fence``, one (but not both) of the atomic operations X or Y might
7142provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7143still *synchronize-with* the explicit ``fence`` and establish the
7144*happens-before* edge.
7145
7146A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7147``acquire`` and ``release`` semantics specified above, participates in
7148the global program order of other ``seq_cst`` operations and/or fences.
7149
7150The optional ":ref:`singlethread <singlethread>`" argument specifies
7151that the fence only synchronizes with other fences in the same thread.
7152(This is useful for interacting with signal handlers.)
7153
7154Example:
7155""""""""
7156
7157.. code-block:: llvm
7158
Tim Northover675a0962014-06-13 14:24:23 +00007159 fence acquire ; yields void
7160 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007161
7162.. _i_cmpxchg:
7163
7164'``cmpxchg``' Instruction
7165^^^^^^^^^^^^^^^^^^^^^^^^^
7166
7167Syntax:
7168"""""""
7169
7170::
7171
Tim Northover675a0962014-06-13 14:24:23 +00007172 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007173
7174Overview:
7175"""""""""
7176
7177The '``cmpxchg``' instruction is used to atomically modify memory. It
7178loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007179equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007180
7181Arguments:
7182""""""""""
7183
7184There are three arguments to the '``cmpxchg``' instruction: an address
7185to operate on, a value to compare to the value currently be at that
7186address, and a new value to place at that address if the compared values
7187are equal. The type of '<cmp>' must be an integer type whose bit width
7188is a power of two greater than or equal to eight and less than or equal
7189to a target-specific size limit. '<cmp>' and '<new>' must have the same
7190type, and the type of '<pointer>' must be a pointer to that type. If the
7191``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7192to modify the number or order of execution of this ``cmpxchg`` with
7193other :ref:`volatile operations <volatile>`.
7194
Tim Northovere94a5182014-03-11 10:48:52 +00007195The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007196``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7197must be at least ``monotonic``, the ordering constraint on failure must be no
7198stronger than that on success, and the failure ordering cannot be either
7199``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007200
7201The optional "``singlethread``" argument declares that the ``cmpxchg``
7202is only atomic with respect to code (usually signal handlers) running in
7203the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7204respect to all other code in the system.
7205
7206The pointer passed into cmpxchg must have alignment greater than or
7207equal to the size in memory of the operand.
7208
7209Semantics:
7210""""""""""
7211
Tim Northover420a2162014-06-13 14:24:07 +00007212The contents of memory at the location specified by the '``<pointer>``' operand
7213is read and compared to '``<cmp>``'; if the read value is the equal, the
7214'``<new>``' is written. The original value at the location is returned, together
7215with a flag indicating success (true) or failure (false).
7216
7217If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7218permitted: the operation may not write ``<new>`` even if the comparison
7219matched.
7220
7221If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7222if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007223
Tim Northovere94a5182014-03-11 10:48:52 +00007224A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7225identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7226load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007227
7228Example:
7229""""""""
7230
7231.. code-block:: llvm
7232
7233 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007234 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007235 br label %loop
7236
7237 loop:
7238 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7239 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007240 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007241 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7242 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007243 br i1 %success, label %done, label %loop
7244
7245 done:
7246 ...
7247
7248.. _i_atomicrmw:
7249
7250'``atomicrmw``' Instruction
7251^^^^^^^^^^^^^^^^^^^^^^^^^^^
7252
7253Syntax:
7254"""""""
7255
7256::
7257
Tim Northover675a0962014-06-13 14:24:23 +00007258 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007259
7260Overview:
7261"""""""""
7262
7263The '``atomicrmw``' instruction is used to atomically modify memory.
7264
7265Arguments:
7266""""""""""
7267
7268There are three arguments to the '``atomicrmw``' instruction: an
7269operation to apply, an address whose value to modify, an argument to the
7270operation. The operation must be one of the following keywords:
7271
7272- xchg
7273- add
7274- sub
7275- and
7276- nand
7277- or
7278- xor
7279- max
7280- min
7281- umax
7282- umin
7283
7284The type of '<value>' must be an integer type whose bit width is a power
7285of two greater than or equal to eight and less than or equal to a
7286target-specific size limit. The type of the '``<pointer>``' operand must
7287be a pointer to that type. If the ``atomicrmw`` is marked as
7288``volatile``, then the optimizer is not allowed to modify the number or
7289order of execution of this ``atomicrmw`` with other :ref:`volatile
7290operations <volatile>`.
7291
7292Semantics:
7293""""""""""
7294
7295The contents of memory at the location specified by the '``<pointer>``'
7296operand are atomically read, modified, and written back. The original
7297value at the location is returned. The modification is specified by the
7298operation argument:
7299
7300- xchg: ``*ptr = val``
7301- add: ``*ptr = *ptr + val``
7302- sub: ``*ptr = *ptr - val``
7303- and: ``*ptr = *ptr & val``
7304- nand: ``*ptr = ~(*ptr & val)``
7305- or: ``*ptr = *ptr | val``
7306- xor: ``*ptr = *ptr ^ val``
7307- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7308- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7309- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7310 comparison)
7311- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7312 comparison)
7313
7314Example:
7315""""""""
7316
7317.. code-block:: llvm
7318
Tim Northover675a0962014-06-13 14:24:23 +00007319 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007320
7321.. _i_getelementptr:
7322
7323'``getelementptr``' Instruction
7324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7325
7326Syntax:
7327"""""""
7328
7329::
7330
David Blaikie16a97eb2015-03-04 22:02:58 +00007331 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7332 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7333 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007334
7335Overview:
7336"""""""""
7337
7338The '``getelementptr``' instruction is used to get the address of a
7339subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007340address calculation only and does not access memory. The instruction can also
7341be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007342
7343Arguments:
7344""""""""""
7345
David Blaikie16a97eb2015-03-04 22:02:58 +00007346The first argument is always a type used as the basis for the calculations.
7347The second argument is always a pointer or a vector of pointers, and is the
7348base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007349that indicate which of the elements of the aggregate object are indexed.
7350The interpretation of each index is dependent on the type being indexed
7351into. The first index always indexes the pointer value given as the
7352first argument, the second index indexes a value of the type pointed to
7353(not necessarily the value directly pointed to, since the first index
7354can be non-zero), etc. The first type indexed into must be a pointer
7355value, subsequent types can be arrays, vectors, and structs. Note that
7356subsequent types being indexed into can never be pointers, since that
7357would require loading the pointer before continuing calculation.
7358
7359The type of each index argument depends on the type it is indexing into.
7360When indexing into a (optionally packed) structure, only ``i32`` integer
7361**constants** are allowed (when using a vector of indices they must all
7362be the **same** ``i32`` integer constant). When indexing into an array,
7363pointer or vector, integers of any width are allowed, and they are not
7364required to be constant. These integers are treated as signed values
7365where relevant.
7366
7367For example, let's consider a C code fragment and how it gets compiled
7368to LLVM:
7369
7370.. code-block:: c
7371
7372 struct RT {
7373 char A;
7374 int B[10][20];
7375 char C;
7376 };
7377 struct ST {
7378 int X;
7379 double Y;
7380 struct RT Z;
7381 };
7382
7383 int *foo(struct ST *s) {
7384 return &s[1].Z.B[5][13];
7385 }
7386
7387The LLVM code generated by Clang is:
7388
7389.. code-block:: llvm
7390
7391 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7392 %struct.ST = type { i32, double, %struct.RT }
7393
7394 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7395 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007396 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007397 ret i32* %arrayidx
7398 }
7399
7400Semantics:
7401""""""""""
7402
7403In the example above, the first index is indexing into the
7404'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7405= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7406indexes into the third element of the structure, yielding a
7407'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7408structure. The third index indexes into the second element of the
7409structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7410dimensions of the array are subscripted into, yielding an '``i32``'
7411type. The '``getelementptr``' instruction returns a pointer to this
7412element, thus computing a value of '``i32*``' type.
7413
7414Note that it is perfectly legal to index partially through a structure,
7415returning a pointer to an inner element. Because of this, the LLVM code
7416for the given testcase is equivalent to:
7417
7418.. code-block:: llvm
7419
7420 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007421 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7422 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7423 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7424 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7425 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007426 ret i32* %t5
7427 }
7428
7429If the ``inbounds`` keyword is present, the result value of the
7430``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7431pointer is not an *in bounds* address of an allocated object, or if any
7432of the addresses that would be formed by successive addition of the
7433offsets implied by the indices to the base address with infinitely
7434precise signed arithmetic are not an *in bounds* address of that
7435allocated object. The *in bounds* addresses for an allocated object are
7436all the addresses that point into the object, plus the address one byte
7437past the end. In cases where the base is a vector of pointers the
7438``inbounds`` keyword applies to each of the computations element-wise.
7439
7440If the ``inbounds`` keyword is not present, the offsets are added to the
7441base address with silently-wrapping two's complement arithmetic. If the
7442offsets have a different width from the pointer, they are sign-extended
7443or truncated to the width of the pointer. The result value of the
7444``getelementptr`` may be outside the object pointed to by the base
7445pointer. The result value may not necessarily be used to access memory
7446though, even if it happens to point into allocated storage. See the
7447:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7448information.
7449
7450The getelementptr instruction is often confusing. For some more insight
7451into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7452
7453Example:
7454""""""""
7455
7456.. code-block:: llvm
7457
7458 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007459 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007460 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007461 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007462 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007463 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007464 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007465 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007466
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007467Vector of pointers:
7468"""""""""""""""""""
7469
7470The ``getelementptr`` returns a vector of pointers, instead of a single address,
7471when one or more of its arguments is a vector. In such cases, all vector
7472arguments should have the same number of elements, and every scalar argument
7473will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007474
7475.. code-block:: llvm
7476
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007477 ; All arguments are vectors:
7478 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7479 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007480
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007481 ; Add the same scalar offset to each pointer of a vector:
7482 ; A[i] = ptrs[i] + offset*sizeof(i8)
7483 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007484
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007485 ; Add distinct offsets to the same pointer:
7486 ; A[i] = ptr + offsets[i]*sizeof(i8)
7487 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007488
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007489 ; In all cases described above the type of the result is <4 x i8*>
7490
7491The two following instructions are equivalent:
7492
7493.. code-block:: llvm
7494
7495 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7496 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7497 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7498 <4 x i32> %ind4,
7499 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007500
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007501 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7502 i32 2, i32 1, <4 x i32> %ind4, i64 13
7503
7504Let's look at the C code, where the vector version of ``getelementptr``
7505makes sense:
7506
7507.. code-block:: c
7508
7509 // Let's assume that we vectorize the following loop:
7510 double *A, B; int *C;
7511 for (int i = 0; i < size; ++i) {
7512 A[i] = B[C[i]];
7513 }
7514
7515.. code-block:: llvm
7516
7517 ; get pointers for 8 elements from array B
7518 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7519 ; load 8 elements from array B into A
7520 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7521 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007522
7523Conversion Operations
7524---------------------
7525
7526The instructions in this category are the conversion instructions
7527(casting) which all take a single operand and a type. They perform
7528various bit conversions on the operand.
7529
7530'``trunc .. to``' Instruction
7531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7532
7533Syntax:
7534"""""""
7535
7536::
7537
7538 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7539
7540Overview:
7541"""""""""
7542
7543The '``trunc``' instruction truncates its operand to the type ``ty2``.
7544
7545Arguments:
7546""""""""""
7547
7548The '``trunc``' instruction takes a value to trunc, and a type to trunc
7549it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7550of the same number of integers. The bit size of the ``value`` must be
7551larger than the bit size of the destination type, ``ty2``. Equal sized
7552types are not allowed.
7553
7554Semantics:
7555""""""""""
7556
7557The '``trunc``' instruction truncates the high order bits in ``value``
7558and converts the remaining bits to ``ty2``. Since the source size must
7559be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7560It will always truncate bits.
7561
7562Example:
7563""""""""
7564
7565.. code-block:: llvm
7566
7567 %X = trunc i32 257 to i8 ; yields i8:1
7568 %Y = trunc i32 123 to i1 ; yields i1:true
7569 %Z = trunc i32 122 to i1 ; yields i1:false
7570 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7571
7572'``zext .. to``' Instruction
7573^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7574
7575Syntax:
7576"""""""
7577
7578::
7579
7580 <result> = zext <ty> <value> to <ty2> ; yields ty2
7581
7582Overview:
7583"""""""""
7584
7585The '``zext``' instruction zero extends its operand to type ``ty2``.
7586
7587Arguments:
7588""""""""""
7589
7590The '``zext``' instruction takes a value to cast, and a type to cast it
7591to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7592the same number of integers. The bit size of the ``value`` must be
7593smaller than the bit size of the destination type, ``ty2``.
7594
7595Semantics:
7596""""""""""
7597
7598The ``zext`` fills the high order bits of the ``value`` with zero bits
7599until it reaches the size of the destination type, ``ty2``.
7600
7601When zero extending from i1, the result will always be either 0 or 1.
7602
7603Example:
7604""""""""
7605
7606.. code-block:: llvm
7607
7608 %X = zext i32 257 to i64 ; yields i64:257
7609 %Y = zext i1 true to i32 ; yields i32:1
7610 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7611
7612'``sext .. to``' Instruction
7613^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7614
7615Syntax:
7616"""""""
7617
7618::
7619
7620 <result> = sext <ty> <value> to <ty2> ; yields ty2
7621
7622Overview:
7623"""""""""
7624
7625The '``sext``' sign extends ``value`` to the type ``ty2``.
7626
7627Arguments:
7628""""""""""
7629
7630The '``sext``' instruction takes a value to cast, and a type to cast it
7631to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7632the same number of integers. The bit size of the ``value`` must be
7633smaller than the bit size of the destination type, ``ty2``.
7634
7635Semantics:
7636""""""""""
7637
7638The '``sext``' instruction performs a sign extension by copying the sign
7639bit (highest order bit) of the ``value`` until it reaches the bit size
7640of the type ``ty2``.
7641
7642When sign extending from i1, the extension always results in -1 or 0.
7643
7644Example:
7645""""""""
7646
7647.. code-block:: llvm
7648
7649 %X = sext i8 -1 to i16 ; yields i16 :65535
7650 %Y = sext i1 true to i32 ; yields i32:-1
7651 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7652
7653'``fptrunc .. to``' Instruction
7654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7655
7656Syntax:
7657"""""""
7658
7659::
7660
7661 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7662
7663Overview:
7664"""""""""
7665
7666The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7667
7668Arguments:
7669""""""""""
7670
7671The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7672value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7673The size of ``value`` must be larger than the size of ``ty2``. This
7674implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7675
7676Semantics:
7677""""""""""
7678
Dan Liew50456fb2015-09-03 18:43:56 +00007679The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007680:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007681point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7682destination type, ``ty2``, then the results are undefined. If the cast produces
7683an inexact result, how rounding is performed (e.g. truncation, also known as
7684round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007685
7686Example:
7687""""""""
7688
7689.. code-block:: llvm
7690
7691 %X = fptrunc double 123.0 to float ; yields float:123.0
7692 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7693
7694'``fpext .. to``' Instruction
7695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7696
7697Syntax:
7698"""""""
7699
7700::
7701
7702 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7703
7704Overview:
7705"""""""""
7706
7707The '``fpext``' extends a floating point ``value`` to a larger floating
7708point value.
7709
7710Arguments:
7711""""""""""
7712
7713The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7714``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7715to. The source type must be smaller than the destination type.
7716
7717Semantics:
7718""""""""""
7719
7720The '``fpext``' instruction extends the ``value`` from a smaller
7721:ref:`floating point <t_floating>` type to a larger :ref:`floating
7722point <t_floating>` type. The ``fpext`` cannot be used to make a
7723*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7724*no-op cast* for a floating point cast.
7725
7726Example:
7727""""""""
7728
7729.. code-block:: llvm
7730
7731 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7732 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7733
7734'``fptoui .. to``' Instruction
7735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7736
7737Syntax:
7738"""""""
7739
7740::
7741
7742 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7743
7744Overview:
7745"""""""""
7746
7747The '``fptoui``' converts a floating point ``value`` to its unsigned
7748integer equivalent of type ``ty2``.
7749
7750Arguments:
7751""""""""""
7752
7753The '``fptoui``' instruction takes a value to cast, which must be a
7754scalar or vector :ref:`floating point <t_floating>` value, and a type to
7755cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7756``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7757type with the same number of elements as ``ty``
7758
7759Semantics:
7760""""""""""
7761
7762The '``fptoui``' instruction converts its :ref:`floating
7763point <t_floating>` operand into the nearest (rounding towards zero)
7764unsigned integer value. If the value cannot fit in ``ty2``, the results
7765are undefined.
7766
7767Example:
7768""""""""
7769
7770.. code-block:: llvm
7771
7772 %X = fptoui double 123.0 to i32 ; yields i32:123
7773 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7774 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7775
7776'``fptosi .. to``' Instruction
7777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7778
7779Syntax:
7780"""""""
7781
7782::
7783
7784 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7785
7786Overview:
7787"""""""""
7788
7789The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7790``value`` to type ``ty2``.
7791
7792Arguments:
7793""""""""""
7794
7795The '``fptosi``' instruction takes a value to cast, which must be a
7796scalar or vector :ref:`floating point <t_floating>` value, and a type to
7797cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7798``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7799type with the same number of elements as ``ty``
7800
7801Semantics:
7802""""""""""
7803
7804The '``fptosi``' instruction converts its :ref:`floating
7805point <t_floating>` operand into the nearest (rounding towards zero)
7806signed integer value. If the value cannot fit in ``ty2``, the results
7807are undefined.
7808
7809Example:
7810""""""""
7811
7812.. code-block:: llvm
7813
7814 %X = fptosi double -123.0 to i32 ; yields i32:-123
7815 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7816 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7817
7818'``uitofp .. to``' Instruction
7819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7820
7821Syntax:
7822"""""""
7823
7824::
7825
7826 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7827
7828Overview:
7829"""""""""
7830
7831The '``uitofp``' instruction regards ``value`` as an unsigned integer
7832and converts that value to the ``ty2`` type.
7833
7834Arguments:
7835""""""""""
7836
7837The '``uitofp``' instruction takes a value to cast, which must be a
7838scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7839``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7840``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7841type with the same number of elements as ``ty``
7842
7843Semantics:
7844""""""""""
7845
7846The '``uitofp``' instruction interprets its operand as an unsigned
7847integer quantity and converts it to the corresponding floating point
7848value. If the value cannot fit in the floating point value, the results
7849are undefined.
7850
7851Example:
7852""""""""
7853
7854.. code-block:: llvm
7855
7856 %X = uitofp i32 257 to float ; yields float:257.0
7857 %Y = uitofp i8 -1 to double ; yields double:255.0
7858
7859'``sitofp .. to``' Instruction
7860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7861
7862Syntax:
7863"""""""
7864
7865::
7866
7867 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7868
7869Overview:
7870"""""""""
7871
7872The '``sitofp``' instruction regards ``value`` as a signed integer and
7873converts that value to the ``ty2`` type.
7874
7875Arguments:
7876""""""""""
7877
7878The '``sitofp``' instruction takes a value to cast, which must be a
7879scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7880``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7881``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7882type with the same number of elements as ``ty``
7883
7884Semantics:
7885""""""""""
7886
7887The '``sitofp``' instruction interprets its operand as a signed integer
7888quantity and converts it to the corresponding floating point value. If
7889the value cannot fit in the floating point value, the results are
7890undefined.
7891
7892Example:
7893""""""""
7894
7895.. code-block:: llvm
7896
7897 %X = sitofp i32 257 to float ; yields float:257.0
7898 %Y = sitofp i8 -1 to double ; yields double:-1.0
7899
7900.. _i_ptrtoint:
7901
7902'``ptrtoint .. to``' Instruction
7903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7904
7905Syntax:
7906"""""""
7907
7908::
7909
7910 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7911
7912Overview:
7913"""""""""
7914
7915The '``ptrtoint``' instruction converts the pointer or a vector of
7916pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7917
7918Arguments:
7919""""""""""
7920
7921The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007922a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007923type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7924a vector of integers type.
7925
7926Semantics:
7927""""""""""
7928
7929The '``ptrtoint``' instruction converts ``value`` to integer type
7930``ty2`` by interpreting the pointer value as an integer and either
7931truncating or zero extending that value to the size of the integer type.
7932If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7933``value`` is larger than ``ty2`` then a truncation is done. If they are
7934the same size, then nothing is done (*no-op cast*) other than a type
7935change.
7936
7937Example:
7938""""""""
7939
7940.. code-block:: llvm
7941
7942 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7943 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7944 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7945
7946.. _i_inttoptr:
7947
7948'``inttoptr .. to``' Instruction
7949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7950
7951Syntax:
7952"""""""
7953
7954::
7955
7956 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7957
7958Overview:
7959"""""""""
7960
7961The '``inttoptr``' instruction converts an integer ``value`` to a
7962pointer type, ``ty2``.
7963
7964Arguments:
7965""""""""""
7966
7967The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7968cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7969type.
7970
7971Semantics:
7972""""""""""
7973
7974The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7975applying either a zero extension or a truncation depending on the size
7976of the integer ``value``. If ``value`` is larger than the size of a
7977pointer then a truncation is done. If ``value`` is smaller than the size
7978of a pointer then a zero extension is done. If they are the same size,
7979nothing is done (*no-op cast*).
7980
7981Example:
7982""""""""
7983
7984.. code-block:: llvm
7985
7986 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7987 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7988 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7989 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7990
7991.. _i_bitcast:
7992
7993'``bitcast .. to``' Instruction
7994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7995
7996Syntax:
7997"""""""
7998
7999::
8000
8001 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8002
8003Overview:
8004"""""""""
8005
8006The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8007changing any bits.
8008
8009Arguments:
8010""""""""""
8011
8012The '``bitcast``' instruction takes a value to cast, which must be a
8013non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008014also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8015bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008016identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008017also be a pointer of the same size. This instruction supports bitwise
8018conversion of vectors to integers and to vectors of other types (as
8019long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008020
8021Semantics:
8022""""""""""
8023
Matt Arsenault24b49c42013-07-31 17:49:08 +00008024The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8025is always a *no-op cast* because no bits change with this
8026conversion. The conversion is done as if the ``value`` had been stored
8027to memory and read back as type ``ty2``. Pointer (or vector of
8028pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008029pointers) types with the same address space through this instruction.
8030To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8031or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008032
8033Example:
8034""""""""
8035
8036.. code-block:: llvm
8037
8038 %X = bitcast i8 255 to i8 ; yields i8 :-1
8039 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8040 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8041 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8042
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008043.. _i_addrspacecast:
8044
8045'``addrspacecast .. to``' Instruction
8046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8047
8048Syntax:
8049"""""""
8050
8051::
8052
8053 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8054
8055Overview:
8056"""""""""
8057
8058The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8059address space ``n`` to type ``pty2`` in address space ``m``.
8060
8061Arguments:
8062""""""""""
8063
8064The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8065to cast and a pointer type to cast it to, which must have a different
8066address space.
8067
8068Semantics:
8069""""""""""
8070
8071The '``addrspacecast``' instruction converts the pointer value
8072``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008073value modification, depending on the target and the address space
8074pair. Pointer conversions within the same address space must be
8075performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008076conversion is legal then both result and operand refer to the same memory
8077location.
8078
8079Example:
8080""""""""
8081
8082.. code-block:: llvm
8083
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008084 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8085 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8086 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008087
Sean Silvab084af42012-12-07 10:36:55 +00008088.. _otherops:
8089
8090Other Operations
8091----------------
8092
8093The instructions in this category are the "miscellaneous" instructions,
8094which defy better classification.
8095
8096.. _i_icmp:
8097
8098'``icmp``' Instruction
8099^^^^^^^^^^^^^^^^^^^^^^
8100
8101Syntax:
8102"""""""
8103
8104::
8105
Tim Northover675a0962014-06-13 14:24:23 +00008106 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008107
8108Overview:
8109"""""""""
8110
8111The '``icmp``' instruction returns a boolean value or a vector of
8112boolean values based on comparison of its two integer, integer vector,
8113pointer, or pointer vector operands.
8114
8115Arguments:
8116""""""""""
8117
8118The '``icmp``' instruction takes three operands. The first operand is
8119the condition code indicating the kind of comparison to perform. It is
8120not a value, just a keyword. The possible condition code are:
8121
8122#. ``eq``: equal
8123#. ``ne``: not equal
8124#. ``ugt``: unsigned greater than
8125#. ``uge``: unsigned greater or equal
8126#. ``ult``: unsigned less than
8127#. ``ule``: unsigned less or equal
8128#. ``sgt``: signed greater than
8129#. ``sge``: signed greater or equal
8130#. ``slt``: signed less than
8131#. ``sle``: signed less or equal
8132
8133The remaining two arguments must be :ref:`integer <t_integer>` or
8134:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8135must also be identical types.
8136
8137Semantics:
8138""""""""""
8139
8140The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8141code given as ``cond``. The comparison performed always yields either an
8142:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8143
8144#. ``eq``: yields ``true`` if the operands are equal, ``false``
8145 otherwise. No sign interpretation is necessary or performed.
8146#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8147 otherwise. No sign interpretation is necessary or performed.
8148#. ``ugt``: interprets the operands as unsigned values and yields
8149 ``true`` if ``op1`` is greater than ``op2``.
8150#. ``uge``: interprets the operands as unsigned values and yields
8151 ``true`` if ``op1`` is greater than or equal to ``op2``.
8152#. ``ult``: interprets the operands as unsigned values and yields
8153 ``true`` if ``op1`` is less than ``op2``.
8154#. ``ule``: interprets the operands as unsigned values and yields
8155 ``true`` if ``op1`` is less than or equal to ``op2``.
8156#. ``sgt``: interprets the operands as signed values and yields ``true``
8157 if ``op1`` is greater than ``op2``.
8158#. ``sge``: interprets the operands as signed values and yields ``true``
8159 if ``op1`` is greater than or equal to ``op2``.
8160#. ``slt``: interprets the operands as signed values and yields ``true``
8161 if ``op1`` is less than ``op2``.
8162#. ``sle``: interprets the operands as signed values and yields ``true``
8163 if ``op1`` is less than or equal to ``op2``.
8164
8165If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8166are compared as if they were integers.
8167
8168If the operands are integer vectors, then they are compared element by
8169element. The result is an ``i1`` vector with the same number of elements
8170as the values being compared. Otherwise, the result is an ``i1``.
8171
8172Example:
8173""""""""
8174
8175.. code-block:: llvm
8176
8177 <result> = icmp eq i32 4, 5 ; yields: result=false
8178 <result> = icmp ne float* %X, %X ; yields: result=false
8179 <result> = icmp ult i16 4, 5 ; yields: result=true
8180 <result> = icmp sgt i16 4, 5 ; yields: result=false
8181 <result> = icmp ule i16 -4, 5 ; yields: result=false
8182 <result> = icmp sge i16 4, 5 ; yields: result=false
8183
8184Note that the code generator does not yet support vector types with the
8185``icmp`` instruction.
8186
8187.. _i_fcmp:
8188
8189'``fcmp``' Instruction
8190^^^^^^^^^^^^^^^^^^^^^^
8191
8192Syntax:
8193"""""""
8194
8195::
8196
James Molloy88eb5352015-07-10 12:52:00 +00008197 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008198
8199Overview:
8200"""""""""
8201
8202The '``fcmp``' instruction returns a boolean value or vector of boolean
8203values based on comparison of its operands.
8204
8205If the operands are floating point scalars, then the result type is a
8206boolean (:ref:`i1 <t_integer>`).
8207
8208If the operands are floating point vectors, then the result type is a
8209vector of boolean with the same number of elements as the operands being
8210compared.
8211
8212Arguments:
8213""""""""""
8214
8215The '``fcmp``' instruction takes three operands. The first operand is
8216the condition code indicating the kind of comparison to perform. It is
8217not a value, just a keyword. The possible condition code are:
8218
8219#. ``false``: no comparison, always returns false
8220#. ``oeq``: ordered and equal
8221#. ``ogt``: ordered and greater than
8222#. ``oge``: ordered and greater than or equal
8223#. ``olt``: ordered and less than
8224#. ``ole``: ordered and less than or equal
8225#. ``one``: ordered and not equal
8226#. ``ord``: ordered (no nans)
8227#. ``ueq``: unordered or equal
8228#. ``ugt``: unordered or greater than
8229#. ``uge``: unordered or greater than or equal
8230#. ``ult``: unordered or less than
8231#. ``ule``: unordered or less than or equal
8232#. ``une``: unordered or not equal
8233#. ``uno``: unordered (either nans)
8234#. ``true``: no comparison, always returns true
8235
8236*Ordered* means that neither operand is a QNAN while *unordered* means
8237that either operand may be a QNAN.
8238
8239Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8240point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8241type. They must have identical types.
8242
8243Semantics:
8244""""""""""
8245
8246The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8247condition code given as ``cond``. If the operands are vectors, then the
8248vectors are compared element by element. Each comparison performed
8249always yields an :ref:`i1 <t_integer>` result, as follows:
8250
8251#. ``false``: always yields ``false``, regardless of operands.
8252#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8253 is equal to ``op2``.
8254#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8255 is greater than ``op2``.
8256#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8257 is greater than or equal to ``op2``.
8258#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8259 is less than ``op2``.
8260#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8261 is less than or equal to ``op2``.
8262#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8263 is not equal to ``op2``.
8264#. ``ord``: yields ``true`` if both operands are not a QNAN.
8265#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8266 equal to ``op2``.
8267#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8268 greater than ``op2``.
8269#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8270 greater than or equal to ``op2``.
8271#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8272 less than ``op2``.
8273#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8274 less than or equal to ``op2``.
8275#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8276 not equal to ``op2``.
8277#. ``uno``: yields ``true`` if either operand is a QNAN.
8278#. ``true``: always yields ``true``, regardless of operands.
8279
James Molloy88eb5352015-07-10 12:52:00 +00008280The ``fcmp`` instruction can also optionally take any number of
8281:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8282otherwise unsafe floating point optimizations.
8283
8284Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8285only flags that have any effect on its semantics are those that allow
8286assumptions to be made about the values of input arguments; namely
8287``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8288
Sean Silvab084af42012-12-07 10:36:55 +00008289Example:
8290""""""""
8291
8292.. code-block:: llvm
8293
8294 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8295 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8296 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8297 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8298
8299Note that the code generator does not yet support vector types with the
8300``fcmp`` instruction.
8301
8302.. _i_phi:
8303
8304'``phi``' Instruction
8305^^^^^^^^^^^^^^^^^^^^^
8306
8307Syntax:
8308"""""""
8309
8310::
8311
8312 <result> = phi <ty> [ <val0>, <label0>], ...
8313
8314Overview:
8315"""""""""
8316
8317The '``phi``' instruction is used to implement the φ node in the SSA
8318graph representing the function.
8319
8320Arguments:
8321""""""""""
8322
8323The type of the incoming values is specified with the first type field.
8324After this, the '``phi``' instruction takes a list of pairs as
8325arguments, with one pair for each predecessor basic block of the current
8326block. Only values of :ref:`first class <t_firstclass>` type may be used as
8327the value arguments to the PHI node. Only labels may be used as the
8328label arguments.
8329
8330There must be no non-phi instructions between the start of a basic block
8331and the PHI instructions: i.e. PHI instructions must be first in a basic
8332block.
8333
8334For the purposes of the SSA form, the use of each incoming value is
8335deemed to occur on the edge from the corresponding predecessor block to
8336the current block (but after any definition of an '``invoke``'
8337instruction's return value on the same edge).
8338
8339Semantics:
8340""""""""""
8341
8342At runtime, the '``phi``' instruction logically takes on the value
8343specified by the pair corresponding to the predecessor basic block that
8344executed just prior to the current block.
8345
8346Example:
8347""""""""
8348
8349.. code-block:: llvm
8350
8351 Loop: ; Infinite loop that counts from 0 on up...
8352 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8353 %nextindvar = add i32 %indvar, 1
8354 br label %Loop
8355
8356.. _i_select:
8357
8358'``select``' Instruction
8359^^^^^^^^^^^^^^^^^^^^^^^^
8360
8361Syntax:
8362"""""""
8363
8364::
8365
8366 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8367
8368 selty is either i1 or {<N x i1>}
8369
8370Overview:
8371"""""""""
8372
8373The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008374condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008375
8376Arguments:
8377""""""""""
8378
8379The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8380values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008381class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008382
8383Semantics:
8384""""""""""
8385
8386If the condition is an i1 and it evaluates to 1, the instruction returns
8387the first value argument; otherwise, it returns the second value
8388argument.
8389
8390If the condition is a vector of i1, then the value arguments must be
8391vectors of the same size, and the selection is done element by element.
8392
David Majnemer40a0b592015-03-03 22:45:47 +00008393If the condition is an i1 and the value arguments are vectors of the
8394same size, then an entire vector is selected.
8395
Sean Silvab084af42012-12-07 10:36:55 +00008396Example:
8397""""""""
8398
8399.. code-block:: llvm
8400
8401 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8402
8403.. _i_call:
8404
8405'``call``' Instruction
8406^^^^^^^^^^^^^^^^^^^^^^
8407
8408Syntax:
8409"""""""
8410
8411::
8412
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008413 <result> = [tail | musttail | notail ] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008414 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008415
8416Overview:
8417"""""""""
8418
8419The '``call``' instruction represents a simple function call.
8420
8421Arguments:
8422""""""""""
8423
8424This instruction requires several arguments:
8425
Reid Kleckner5772b772014-04-24 20:14:34 +00008426#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008427 should perform tail call optimization. The ``tail`` marker is a hint that
8428 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008429 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008430 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008431
8432 #. The call will not cause unbounded stack growth if it is part of a
8433 recursive cycle in the call graph.
8434 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8435 forwarded in place.
8436
8437 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008438 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008439 rules:
8440
8441 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8442 or a pointer bitcast followed by a ret instruction.
8443 - The ret instruction must return the (possibly bitcasted) value
8444 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008445 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008446 parameters or return types may differ in pointee type, but not
8447 in address space.
8448 - The calling conventions of the caller and callee must match.
8449 - All ABI-impacting function attributes, such as sret, byval, inreg,
8450 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008451 - The callee must be varargs iff the caller is varargs. Bitcasting a
8452 non-varargs function to the appropriate varargs type is legal so
8453 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008454
8455 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8456 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008457
8458 - Caller and callee both have the calling convention ``fastcc``.
8459 - The call is in tail position (ret immediately follows call and ret
8460 uses value of call or is void).
8461 - Option ``-tailcallopt`` is enabled, or
8462 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008463 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008464 met. <CodeGenerator.html#tailcallopt>`_
8465
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008466#. The optional ``notail`` marker indicates that the optimizers should not add
8467 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8468 call optimization from being performed on the call.
8469
Sean Silvab084af42012-12-07 10:36:55 +00008470#. The optional "cconv" marker indicates which :ref:`calling
8471 convention <callingconv>` the call should use. If none is
8472 specified, the call defaults to using C calling conventions. The
8473 calling convention of the call must match the calling convention of
8474 the target function, or else the behavior is undefined.
8475#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8476 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8477 are valid here.
8478#. '``ty``': the type of the call instruction itself which is also the
8479 type of the return value. Functions that return no value are marked
8480 ``void``.
8481#. '``fnty``': shall be the signature of the pointer to function value
8482 being invoked. The argument types must match the types implied by
8483 this signature. This type can be omitted if the function is not
8484 varargs and if the function type does not return a pointer to a
8485 function.
8486#. '``fnptrval``': An LLVM value containing a pointer to a function to
8487 be invoked. In most cases, this is a direct function invocation, but
8488 indirect ``call``'s are just as possible, calling an arbitrary pointer
8489 to function value.
8490#. '``function args``': argument list whose types match the function
8491 signature argument types and parameter attributes. All arguments must
8492 be of :ref:`first class <t_firstclass>` type. If the function signature
8493 indicates the function accepts a variable number of arguments, the
8494 extra arguments can be specified.
8495#. The optional :ref:`function attributes <fnattrs>` list. Only
8496 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8497 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008498#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008499
8500Semantics:
8501""""""""""
8502
8503The '``call``' instruction is used to cause control flow to transfer to
8504a specified function, with its incoming arguments bound to the specified
8505values. Upon a '``ret``' instruction in the called function, control
8506flow continues with the instruction after the function call, and the
8507return value of the function is bound to the result argument.
8508
8509Example:
8510""""""""
8511
8512.. code-block:: llvm
8513
8514 %retval = call i32 @test(i32 %argc)
8515 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8516 %X = tail call i32 @foo() ; yields i32
8517 %Y = tail call fastcc i32 @foo() ; yields i32
8518 call void %foo(i8 97 signext)
8519
8520 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008521 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008522 %gr = extractvalue %struct.A %r, 0 ; yields i32
8523 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8524 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8525 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8526
8527llvm treats calls to some functions with names and arguments that match
8528the standard C99 library as being the C99 library functions, and may
8529perform optimizations or generate code for them under that assumption.
8530This is something we'd like to change in the future to provide better
8531support for freestanding environments and non-C-based languages.
8532
8533.. _i_va_arg:
8534
8535'``va_arg``' Instruction
8536^^^^^^^^^^^^^^^^^^^^^^^^
8537
8538Syntax:
8539"""""""
8540
8541::
8542
8543 <resultval> = va_arg <va_list*> <arglist>, <argty>
8544
8545Overview:
8546"""""""""
8547
8548The '``va_arg``' instruction is used to access arguments passed through
8549the "variable argument" area of a function call. It is used to implement
8550the ``va_arg`` macro in C.
8551
8552Arguments:
8553""""""""""
8554
8555This instruction takes a ``va_list*`` value and the type of the
8556argument. It returns a value of the specified argument type and
8557increments the ``va_list`` to point to the next argument. The actual
8558type of ``va_list`` is target specific.
8559
8560Semantics:
8561""""""""""
8562
8563The '``va_arg``' instruction loads an argument of the specified type
8564from the specified ``va_list`` and causes the ``va_list`` to point to
8565the next argument. For more information, see the variable argument
8566handling :ref:`Intrinsic Functions <int_varargs>`.
8567
8568It is legal for this instruction to be called in a function which does
8569not take a variable number of arguments, for example, the ``vfprintf``
8570function.
8571
8572``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8573function <intrinsics>` because it takes a type as an argument.
8574
8575Example:
8576""""""""
8577
8578See the :ref:`variable argument processing <int_varargs>` section.
8579
8580Note that the code generator does not yet fully support va\_arg on many
8581targets. Also, it does not currently support va\_arg with aggregate
8582types on any target.
8583
8584.. _i_landingpad:
8585
8586'``landingpad``' Instruction
8587^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8588
8589Syntax:
8590"""""""
8591
8592::
8593
David Majnemer7fddecc2015-06-17 20:52:32 +00008594 <resultval> = landingpad <resultty> <clause>+
8595 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008596
8597 <clause> := catch <type> <value>
8598 <clause> := filter <array constant type> <array constant>
8599
8600Overview:
8601"""""""""
8602
8603The '``landingpad``' instruction is used by `LLVM's exception handling
8604system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008605is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008606code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008607defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008608re-entry to the function. The ``resultval`` has the type ``resultty``.
8609
8610Arguments:
8611""""""""""
8612
David Majnemer7fddecc2015-06-17 20:52:32 +00008613The optional
Sean Silvab084af42012-12-07 10:36:55 +00008614``cleanup`` flag indicates that the landing pad block is a cleanup.
8615
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008616A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008617contains the global variable representing the "type" that may be caught
8618or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8619clause takes an array constant as its argument. Use
8620"``[0 x i8**] undef``" for a filter which cannot throw. The
8621'``landingpad``' instruction must contain *at least* one ``clause`` or
8622the ``cleanup`` flag.
8623
8624Semantics:
8625""""""""""
8626
8627The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008628:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008629therefore the "result type" of the ``landingpad`` instruction. As with
8630calling conventions, how the personality function results are
8631represented in LLVM IR is target specific.
8632
8633The clauses are applied in order from top to bottom. If two
8634``landingpad`` instructions are merged together through inlining, the
8635clauses from the calling function are appended to the list of clauses.
8636When the call stack is being unwound due to an exception being thrown,
8637the exception is compared against each ``clause`` in turn. If it doesn't
8638match any of the clauses, and the ``cleanup`` flag is not set, then
8639unwinding continues further up the call stack.
8640
8641The ``landingpad`` instruction has several restrictions:
8642
8643- A landing pad block is a basic block which is the unwind destination
8644 of an '``invoke``' instruction.
8645- A landing pad block must have a '``landingpad``' instruction as its
8646 first non-PHI instruction.
8647- There can be only one '``landingpad``' instruction within the landing
8648 pad block.
8649- A basic block that is not a landing pad block may not include a
8650 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008651
8652Example:
8653""""""""
8654
8655.. code-block:: llvm
8656
8657 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008658 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008659 catch i8** @_ZTIi
8660 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008661 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008662 cleanup
8663 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008664 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008665 catch i8** @_ZTIi
8666 filter [1 x i8**] [@_ZTId]
8667
David Majnemer654e1302015-07-31 17:58:14 +00008668.. _i_cleanuppad:
8669
8670'``cleanuppad``' Instruction
8671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8672
8673Syntax:
8674"""""""
8675
8676::
8677
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008678 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008679
8680Overview:
8681"""""""""
8682
8683The '``cleanuppad``' instruction is used by `LLVM's exception handling
8684system <ExceptionHandling.html#overview>`_ to specify that a basic block
8685is a cleanup block --- one where a personality routine attempts to
8686transfer control to run cleanup actions.
8687The ``args`` correspond to whatever additional
8688information the :ref:`personality function <personalityfn>` requires to
8689execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008690The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008691match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8692and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008693
8694Arguments:
8695""""""""""
8696
8697The instruction takes a list of arbitrary values which are interpreted
8698by the :ref:`personality function <personalityfn>`.
8699
8700Semantics:
8701""""""""""
8702
David Majnemer654e1302015-07-31 17:58:14 +00008703When the call stack is being unwound due to an exception being thrown,
8704the :ref:`personality function <personalityfn>` transfers control to the
8705``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008706As with calling conventions, how the personality function results are
8707represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008708
8709The ``cleanuppad`` instruction has several restrictions:
8710
8711- A cleanup block is a basic block which is the unwind destination of
8712 an exceptional instruction.
8713- A cleanup block must have a '``cleanuppad``' instruction as its
8714 first non-PHI instruction.
8715- There can be only one '``cleanuppad``' instruction within the
8716 cleanup block.
8717- A basic block that is not a cleanup block may not include a
8718 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008719- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8720 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008721- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008722 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8723 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008724- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008725 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8726 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008727
8728Example:
8729""""""""
8730
8731.. code-block:: llvm
8732
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008733 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008734
Sean Silvab084af42012-12-07 10:36:55 +00008735.. _intrinsics:
8736
8737Intrinsic Functions
8738===================
8739
8740LLVM supports the notion of an "intrinsic function". These functions
8741have well known names and semantics and are required to follow certain
8742restrictions. Overall, these intrinsics represent an extension mechanism
8743for the LLVM language that does not require changing all of the
8744transformations in LLVM when adding to the language (or the bitcode
8745reader/writer, the parser, etc...).
8746
8747Intrinsic function names must all start with an "``llvm.``" prefix. This
8748prefix is reserved in LLVM for intrinsic names; thus, function names may
8749not begin with this prefix. Intrinsic functions must always be external
8750functions: you cannot define the body of intrinsic functions. Intrinsic
8751functions may only be used in call or invoke instructions: it is illegal
8752to take the address of an intrinsic function. Additionally, because
8753intrinsic functions are part of the LLVM language, it is required if any
8754are added that they be documented here.
8755
8756Some intrinsic functions can be overloaded, i.e., the intrinsic
8757represents a family of functions that perform the same operation but on
8758different data types. Because LLVM can represent over 8 million
8759different integer types, overloading is used commonly to allow an
8760intrinsic function to operate on any integer type. One or more of the
8761argument types or the result type can be overloaded to accept any
8762integer type. Argument types may also be defined as exactly matching a
8763previous argument's type or the result type. This allows an intrinsic
8764function which accepts multiple arguments, but needs all of them to be
8765of the same type, to only be overloaded with respect to a single
8766argument or the result.
8767
8768Overloaded intrinsics will have the names of its overloaded argument
8769types encoded into its function name, each preceded by a period. Only
8770those types which are overloaded result in a name suffix. Arguments
8771whose type is matched against another type do not. For example, the
8772``llvm.ctpop`` function can take an integer of any width and returns an
8773integer of exactly the same integer width. This leads to a family of
8774functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8775``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8776overloaded, and only one type suffix is required. Because the argument's
8777type is matched against the return type, it does not require its own
8778name suffix.
8779
8780To learn how to add an intrinsic function, please see the `Extending
8781LLVM Guide <ExtendingLLVM.html>`_.
8782
8783.. _int_varargs:
8784
8785Variable Argument Handling Intrinsics
8786-------------------------------------
8787
8788Variable argument support is defined in LLVM with the
8789:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8790functions. These functions are related to the similarly named macros
8791defined in the ``<stdarg.h>`` header file.
8792
8793All of these functions operate on arguments that use a target-specific
8794value type "``va_list``". The LLVM assembly language reference manual
8795does not define what this type is, so all transformations should be
8796prepared to handle these functions regardless of the type used.
8797
8798This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8799variable argument handling intrinsic functions are used.
8800
8801.. code-block:: llvm
8802
Tim Northoverab60bb92014-11-02 01:21:51 +00008803 ; This struct is different for every platform. For most platforms,
8804 ; it is merely an i8*.
8805 %struct.va_list = type { i8* }
8806
8807 ; For Unix x86_64 platforms, va_list is the following struct:
8808 ; %struct.va_list = type { i32, i32, i8*, i8* }
8809
Sean Silvab084af42012-12-07 10:36:55 +00008810 define i32 @test(i32 %X, ...) {
8811 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008812 %ap = alloca %struct.va_list
8813 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008814 call void @llvm.va_start(i8* %ap2)
8815
8816 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008817 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008818
8819 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8820 %aq = alloca i8*
8821 %aq2 = bitcast i8** %aq to i8*
8822 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8823 call void @llvm.va_end(i8* %aq2)
8824
8825 ; Stop processing of arguments.
8826 call void @llvm.va_end(i8* %ap2)
8827 ret i32 %tmp
8828 }
8829
8830 declare void @llvm.va_start(i8*)
8831 declare void @llvm.va_copy(i8*, i8*)
8832 declare void @llvm.va_end(i8*)
8833
8834.. _int_va_start:
8835
8836'``llvm.va_start``' Intrinsic
8837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8838
8839Syntax:
8840"""""""
8841
8842::
8843
Nick Lewycky04f6de02013-09-11 22:04:52 +00008844 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008845
8846Overview:
8847"""""""""
8848
8849The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8850subsequent use by ``va_arg``.
8851
8852Arguments:
8853""""""""""
8854
8855The argument is a pointer to a ``va_list`` element to initialize.
8856
8857Semantics:
8858""""""""""
8859
8860The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8861available in C. In a target-dependent way, it initializes the
8862``va_list`` element to which the argument points, so that the next call
8863to ``va_arg`` will produce the first variable argument passed to the
8864function. Unlike the C ``va_start`` macro, this intrinsic does not need
8865to know the last argument of the function as the compiler can figure
8866that out.
8867
8868'``llvm.va_end``' Intrinsic
8869^^^^^^^^^^^^^^^^^^^^^^^^^^^
8870
8871Syntax:
8872"""""""
8873
8874::
8875
8876 declare void @llvm.va_end(i8* <arglist>)
8877
8878Overview:
8879"""""""""
8880
8881The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8882initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8883
8884Arguments:
8885""""""""""
8886
8887The argument is a pointer to a ``va_list`` to destroy.
8888
8889Semantics:
8890""""""""""
8891
8892The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8893available in C. In a target-dependent way, it destroys the ``va_list``
8894element to which the argument points. Calls to
8895:ref:`llvm.va_start <int_va_start>` and
8896:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8897``llvm.va_end``.
8898
8899.. _int_va_copy:
8900
8901'``llvm.va_copy``' Intrinsic
8902^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8903
8904Syntax:
8905"""""""
8906
8907::
8908
8909 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8910
8911Overview:
8912"""""""""
8913
8914The '``llvm.va_copy``' intrinsic copies the current argument position
8915from the source argument list to the destination argument list.
8916
8917Arguments:
8918""""""""""
8919
8920The first argument is a pointer to a ``va_list`` element to initialize.
8921The second argument is a pointer to a ``va_list`` element to copy from.
8922
8923Semantics:
8924""""""""""
8925
8926The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8927available in C. In a target-dependent way, it copies the source
8928``va_list`` element into the destination ``va_list`` element. This
8929intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8930arbitrarily complex and require, for example, memory allocation.
8931
8932Accurate Garbage Collection Intrinsics
8933--------------------------------------
8934
Philip Reamesc5b0f562015-02-25 23:52:06 +00008935LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008936(GC) requires the frontend to generate code containing appropriate intrinsic
8937calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008938intrinsics in a manner which is appropriate for the target collector.
8939
Sean Silvab084af42012-12-07 10:36:55 +00008940These intrinsics allow identification of :ref:`GC roots on the
8941stack <int_gcroot>`, as well as garbage collector implementations that
8942require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008943Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008944these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008945details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008946
Philip Reamesf80bbff2015-02-25 23:45:20 +00008947Experimental Statepoint Intrinsics
8948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8949
8950LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008951collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008952to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008953:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008954differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008955<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008956described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008957
8958.. _int_gcroot:
8959
8960'``llvm.gcroot``' Intrinsic
8961^^^^^^^^^^^^^^^^^^^^^^^^^^^
8962
8963Syntax:
8964"""""""
8965
8966::
8967
8968 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8969
8970Overview:
8971"""""""""
8972
8973The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8974the code generator, and allows some metadata to be associated with it.
8975
8976Arguments:
8977""""""""""
8978
8979The first argument specifies the address of a stack object that contains
8980the root pointer. The second pointer (which must be either a constant or
8981a global value address) contains the meta-data to be associated with the
8982root.
8983
8984Semantics:
8985""""""""""
8986
8987At runtime, a call to this intrinsic stores a null pointer into the
8988"ptrloc" location. At compile-time, the code generator generates
8989information to allow the runtime to find the pointer at GC safe points.
8990The '``llvm.gcroot``' intrinsic may only be used in a function which
8991:ref:`specifies a GC algorithm <gc>`.
8992
8993.. _int_gcread:
8994
8995'``llvm.gcread``' Intrinsic
8996^^^^^^^^^^^^^^^^^^^^^^^^^^^
8997
8998Syntax:
8999"""""""
9000
9001::
9002
9003 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9004
9005Overview:
9006"""""""""
9007
9008The '``llvm.gcread``' intrinsic identifies reads of references from heap
9009locations, allowing garbage collector implementations that require read
9010barriers.
9011
9012Arguments:
9013""""""""""
9014
9015The second argument is the address to read from, which should be an
9016address allocated from the garbage collector. The first object is a
9017pointer to the start of the referenced object, if needed by the language
9018runtime (otherwise null).
9019
9020Semantics:
9021""""""""""
9022
9023The '``llvm.gcread``' intrinsic has the same semantics as a load
9024instruction, but may be replaced with substantially more complex code by
9025the garbage collector runtime, as needed. The '``llvm.gcread``'
9026intrinsic may only be used in a function which :ref:`specifies a GC
9027algorithm <gc>`.
9028
9029.. _int_gcwrite:
9030
9031'``llvm.gcwrite``' Intrinsic
9032^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9033
9034Syntax:
9035"""""""
9036
9037::
9038
9039 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9040
9041Overview:
9042"""""""""
9043
9044The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9045locations, allowing garbage collector implementations that require write
9046barriers (such as generational or reference counting collectors).
9047
9048Arguments:
9049""""""""""
9050
9051The first argument is the reference to store, the second is the start of
9052the object to store it to, and the third is the address of the field of
9053Obj to store to. If the runtime does not require a pointer to the
9054object, Obj may be null.
9055
9056Semantics:
9057""""""""""
9058
9059The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9060instruction, but may be replaced with substantially more complex code by
9061the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9062intrinsic may only be used in a function which :ref:`specifies a GC
9063algorithm <gc>`.
9064
9065Code Generator Intrinsics
9066-------------------------
9067
9068These intrinsics are provided by LLVM to expose special features that
9069may only be implemented with code generator support.
9070
9071'``llvm.returnaddress``' Intrinsic
9072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9073
9074Syntax:
9075"""""""
9076
9077::
9078
9079 declare i8 *@llvm.returnaddress(i32 <level>)
9080
9081Overview:
9082"""""""""
9083
9084The '``llvm.returnaddress``' intrinsic attempts to compute a
9085target-specific value indicating the return address of the current
9086function or one of its callers.
9087
9088Arguments:
9089""""""""""
9090
9091The argument to this intrinsic indicates which function to return the
9092address for. Zero indicates the calling function, one indicates its
9093caller, etc. The argument is **required** to be a constant integer
9094value.
9095
9096Semantics:
9097""""""""""
9098
9099The '``llvm.returnaddress``' intrinsic either returns a pointer
9100indicating the return address of the specified call frame, or zero if it
9101cannot be identified. The value returned by this intrinsic is likely to
9102be incorrect or 0 for arguments other than zero, so it should only be
9103used for debugging purposes.
9104
9105Note that calling this intrinsic does not prevent function inlining or
9106other aggressive transformations, so the value returned may not be that
9107of the obvious source-language caller.
9108
9109'``llvm.frameaddress``' Intrinsic
9110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9111
9112Syntax:
9113"""""""
9114
9115::
9116
9117 declare i8* @llvm.frameaddress(i32 <level>)
9118
9119Overview:
9120"""""""""
9121
9122The '``llvm.frameaddress``' intrinsic attempts to return the
9123target-specific frame pointer value for the specified stack frame.
9124
9125Arguments:
9126""""""""""
9127
9128The argument to this intrinsic indicates which function to return the
9129frame pointer for. Zero indicates the calling function, one indicates
9130its caller, etc. The argument is **required** to be a constant integer
9131value.
9132
9133Semantics:
9134""""""""""
9135
9136The '``llvm.frameaddress``' intrinsic either returns a pointer
9137indicating the frame address of the specified call frame, or zero if it
9138cannot be identified. The value returned by this intrinsic is likely to
9139be incorrect or 0 for arguments other than zero, so it should only be
9140used for debugging purposes.
9141
9142Note that calling this intrinsic does not prevent function inlining or
9143other aggressive transformations, so the value returned may not be that
9144of the obvious source-language caller.
9145
Reid Kleckner60381792015-07-07 22:25:32 +00009146'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9148
9149Syntax:
9150"""""""
9151
9152::
9153
Reid Kleckner60381792015-07-07 22:25:32 +00009154 declare void @llvm.localescape(...)
9155 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009156
9157Overview:
9158"""""""""
9159
Reid Kleckner60381792015-07-07 22:25:32 +00009160The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9161allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009162live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009163computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009164
9165Arguments:
9166""""""""""
9167
Reid Kleckner60381792015-07-07 22:25:32 +00009168All arguments to '``llvm.localescape``' must be pointers to static allocas or
9169casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009170once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009171
Reid Kleckner60381792015-07-07 22:25:32 +00009172The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009173bitcasted pointer to a function defined in the current module. The code
9174generator cannot determine the frame allocation offset of functions defined in
9175other modules.
9176
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009177The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9178call frame that is currently live. The return value of '``llvm.localaddress``'
9179is one way to produce such a value, but various runtimes also expose a suitable
9180pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009181
Reid Kleckner60381792015-07-07 22:25:32 +00009182The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9183'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009184
Reid Klecknere9b89312015-01-13 00:48:10 +00009185Semantics:
9186""""""""""
9187
Reid Kleckner60381792015-07-07 22:25:32 +00009188These intrinsics allow a group of functions to share access to a set of local
9189stack allocations of a one parent function. The parent function may call the
9190'``llvm.localescape``' intrinsic once from the function entry block, and the
9191child functions can use '``llvm.localrecover``' to access the escaped allocas.
9192The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9193the escaped allocas are allocated, which would break attempts to use
9194'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009195
Renato Golinc7aea402014-05-06 16:51:25 +00009196.. _int_read_register:
9197.. _int_write_register:
9198
9199'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9201
9202Syntax:
9203"""""""
9204
9205::
9206
9207 declare i32 @llvm.read_register.i32(metadata)
9208 declare i64 @llvm.read_register.i64(metadata)
9209 declare void @llvm.write_register.i32(metadata, i32 @value)
9210 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009211 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009212
9213Overview:
9214"""""""""
9215
9216The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9217provides access to the named register. The register must be valid on
9218the architecture being compiled to. The type needs to be compatible
9219with the register being read.
9220
9221Semantics:
9222""""""""""
9223
9224The '``llvm.read_register``' intrinsic returns the current value of the
9225register, where possible. The '``llvm.write_register``' intrinsic sets
9226the current value of the register, where possible.
9227
9228This is useful to implement named register global variables that need
9229to always be mapped to a specific register, as is common practice on
9230bare-metal programs including OS kernels.
9231
9232The compiler doesn't check for register availability or use of the used
9233register in surrounding code, including inline assembly. Because of that,
9234allocatable registers are not supported.
9235
9236Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009237architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009238work is needed to support other registers and even more so, allocatable
9239registers.
9240
Sean Silvab084af42012-12-07 10:36:55 +00009241.. _int_stacksave:
9242
9243'``llvm.stacksave``' Intrinsic
9244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9245
9246Syntax:
9247"""""""
9248
9249::
9250
9251 declare i8* @llvm.stacksave()
9252
9253Overview:
9254"""""""""
9255
9256The '``llvm.stacksave``' intrinsic is used to remember the current state
9257of the function stack, for use with
9258:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9259implementing language features like scoped automatic variable sized
9260arrays in C99.
9261
9262Semantics:
9263""""""""""
9264
9265This intrinsic returns a opaque pointer value that can be passed to
9266:ref:`llvm.stackrestore <int_stackrestore>`. When an
9267``llvm.stackrestore`` intrinsic is executed with a value saved from
9268``llvm.stacksave``, it effectively restores the state of the stack to
9269the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9270practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9271were allocated after the ``llvm.stacksave`` was executed.
9272
9273.. _int_stackrestore:
9274
9275'``llvm.stackrestore``' Intrinsic
9276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9277
9278Syntax:
9279"""""""
9280
9281::
9282
9283 declare void @llvm.stackrestore(i8* %ptr)
9284
9285Overview:
9286"""""""""
9287
9288The '``llvm.stackrestore``' intrinsic is used to restore the state of
9289the function stack to the state it was in when the corresponding
9290:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9291useful for implementing language features like scoped automatic variable
9292sized arrays in C99.
9293
9294Semantics:
9295""""""""""
9296
9297See the description for :ref:`llvm.stacksave <int_stacksave>`.
9298
9299'``llvm.prefetch``' Intrinsic
9300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9301
9302Syntax:
9303"""""""
9304
9305::
9306
9307 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9308
9309Overview:
9310"""""""""
9311
9312The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9313insert a prefetch instruction if supported; otherwise, it is a noop.
9314Prefetches have no effect on the behavior of the program but can change
9315its performance characteristics.
9316
9317Arguments:
9318""""""""""
9319
9320``address`` is the address to be prefetched, ``rw`` is the specifier
9321determining if the fetch should be for a read (0) or write (1), and
9322``locality`` is a temporal locality specifier ranging from (0) - no
9323locality, to (3) - extremely local keep in cache. The ``cache type``
9324specifies whether the prefetch is performed on the data (1) or
9325instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9326arguments must be constant integers.
9327
9328Semantics:
9329""""""""""
9330
9331This intrinsic does not modify the behavior of the program. In
9332particular, prefetches cannot trap and do not produce a value. On
9333targets that support this intrinsic, the prefetch can provide hints to
9334the processor cache for better performance.
9335
9336'``llvm.pcmarker``' Intrinsic
9337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9338
9339Syntax:
9340"""""""
9341
9342::
9343
9344 declare void @llvm.pcmarker(i32 <id>)
9345
9346Overview:
9347"""""""""
9348
9349The '``llvm.pcmarker``' intrinsic is a method to export a Program
9350Counter (PC) in a region of code to simulators and other tools. The
9351method is target specific, but it is expected that the marker will use
9352exported symbols to transmit the PC of the marker. The marker makes no
9353guarantees that it will remain with any specific instruction after
9354optimizations. It is possible that the presence of a marker will inhibit
9355optimizations. The intended use is to be inserted after optimizations to
9356allow correlations of simulation runs.
9357
9358Arguments:
9359""""""""""
9360
9361``id`` is a numerical id identifying the marker.
9362
9363Semantics:
9364""""""""""
9365
9366This intrinsic does not modify the behavior of the program. Backends
9367that do not support this intrinsic may ignore it.
9368
9369'``llvm.readcyclecounter``' Intrinsic
9370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9371
9372Syntax:
9373"""""""
9374
9375::
9376
9377 declare i64 @llvm.readcyclecounter()
9378
9379Overview:
9380"""""""""
9381
9382The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9383counter register (or similar low latency, high accuracy clocks) on those
9384targets that support it. On X86, it should map to RDTSC. On Alpha, it
9385should map to RPCC. As the backing counters overflow quickly (on the
9386order of 9 seconds on alpha), this should only be used for small
9387timings.
9388
9389Semantics:
9390""""""""""
9391
9392When directly supported, reading the cycle counter should not modify any
9393memory. Implementations are allowed to either return a application
9394specific value or a system wide value. On backends without support, this
9395is lowered to a constant 0.
9396
Tim Northoverbc933082013-05-23 19:11:20 +00009397Note that runtime support may be conditional on the privilege-level code is
9398running at and the host platform.
9399
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009400'``llvm.clear_cache``' Intrinsic
9401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9402
9403Syntax:
9404"""""""
9405
9406::
9407
9408 declare void @llvm.clear_cache(i8*, i8*)
9409
9410Overview:
9411"""""""""
9412
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009413The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9414in the specified range to the execution unit of the processor. On
9415targets with non-unified instruction and data cache, the implementation
9416flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009417
9418Semantics:
9419""""""""""
9420
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009421On platforms with coherent instruction and data caches (e.g. x86), this
9422intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009423cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009424instructions or a system call, if cache flushing requires special
9425privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009426
Sean Silvad02bf3e2014-04-07 22:29:53 +00009427The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009428time library.
Renato Golin93010e62014-03-26 14:01:32 +00009429
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009430This instrinsic does *not* empty the instruction pipeline. Modifications
9431of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009432
Justin Bogner61ba2e32014-12-08 18:02:35 +00009433'``llvm.instrprof_increment``' Intrinsic
9434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9435
9436Syntax:
9437"""""""
9438
9439::
9440
9441 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9442 i32 <num-counters>, i32 <index>)
9443
9444Overview:
9445"""""""""
9446
9447The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9448frontend for use with instrumentation based profiling. These will be
9449lowered by the ``-instrprof`` pass to generate execution counts of a
9450program at runtime.
9451
9452Arguments:
9453""""""""""
9454
9455The first argument is a pointer to a global variable containing the
9456name of the entity being instrumented. This should generally be the
9457(mangled) function name for a set of counters.
9458
9459The second argument is a hash value that can be used by the consumer
9460of the profile data to detect changes to the instrumented source, and
9461the third is the number of counters associated with ``name``. It is an
9462error if ``hash`` or ``num-counters`` differ between two instances of
9463``instrprof_increment`` that refer to the same name.
9464
9465The last argument refers to which of the counters for ``name`` should
9466be incremented. It should be a value between 0 and ``num-counters``.
9467
9468Semantics:
9469""""""""""
9470
9471This intrinsic represents an increment of a profiling counter. It will
9472cause the ``-instrprof`` pass to generate the appropriate data
9473structures and the code to increment the appropriate value, in a
9474format that can be written out by a compiler runtime and consumed via
9475the ``llvm-profdata`` tool.
9476
Sean Silvab084af42012-12-07 10:36:55 +00009477Standard C Library Intrinsics
9478-----------------------------
9479
9480LLVM provides intrinsics for a few important standard C library
9481functions. These intrinsics allow source-language front-ends to pass
9482information about the alignment of the pointer arguments to the code
9483generator, providing opportunity for more efficient code generation.
9484
9485.. _int_memcpy:
9486
9487'``llvm.memcpy``' Intrinsic
9488^^^^^^^^^^^^^^^^^^^^^^^^^^^
9489
9490Syntax:
9491"""""""
9492
9493This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9494integer bit width and for different address spaces. Not all targets
9495support all bit widths however.
9496
9497::
9498
9499 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9500 i32 <len>, i32 <align>, i1 <isvolatile>)
9501 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9502 i64 <len>, i32 <align>, i1 <isvolatile>)
9503
9504Overview:
9505"""""""""
9506
9507The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9508source location to the destination location.
9509
9510Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9511intrinsics do not return a value, takes extra alignment/isvolatile
9512arguments and the pointers can be in specified address spaces.
9513
9514Arguments:
9515""""""""""
9516
9517The first argument is a pointer to the destination, the second is a
9518pointer to the source. The third argument is an integer argument
9519specifying the number of bytes to copy, the fourth argument is the
9520alignment of the source and destination locations, and the fifth is a
9521boolean indicating a volatile access.
9522
9523If the call to this intrinsic has an alignment value that is not 0 or 1,
9524then the caller guarantees that both the source and destination pointers
9525are aligned to that boundary.
9526
9527If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9528a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9529very cleanly specified and it is unwise to depend on it.
9530
9531Semantics:
9532""""""""""
9533
9534The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9535source location to the destination location, which are not allowed to
9536overlap. It copies "len" bytes of memory over. If the argument is known
9537to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009538argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009539
9540'``llvm.memmove``' Intrinsic
9541^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9542
9543Syntax:
9544"""""""
9545
9546This is an overloaded intrinsic. You can use llvm.memmove on any integer
9547bit width and for different address space. Not all targets support all
9548bit widths however.
9549
9550::
9551
9552 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9553 i32 <len>, i32 <align>, i1 <isvolatile>)
9554 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9555 i64 <len>, i32 <align>, i1 <isvolatile>)
9556
9557Overview:
9558"""""""""
9559
9560The '``llvm.memmove.*``' intrinsics move a block of memory from the
9561source location to the destination location. It is similar to the
9562'``llvm.memcpy``' intrinsic but allows the two memory locations to
9563overlap.
9564
9565Note that, unlike the standard libc function, the ``llvm.memmove.*``
9566intrinsics do not return a value, takes extra alignment/isvolatile
9567arguments and the pointers can be in specified address spaces.
9568
9569Arguments:
9570""""""""""
9571
9572The first argument is a pointer to the destination, the second is a
9573pointer to the source. The third argument is an integer argument
9574specifying the number of bytes to copy, the fourth argument is the
9575alignment of the source and destination locations, and the fifth is a
9576boolean indicating a volatile access.
9577
9578If the call to this intrinsic has an alignment value that is not 0 or 1,
9579then the caller guarantees that the source and destination pointers are
9580aligned to that boundary.
9581
9582If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9583is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9584not very cleanly specified and it is unwise to depend on it.
9585
9586Semantics:
9587""""""""""
9588
9589The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9590source location to the destination location, which may overlap. It
9591copies "len" bytes of memory over. If the argument is known to be
9592aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009593otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009594
9595'``llvm.memset.*``' Intrinsics
9596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9597
9598Syntax:
9599"""""""
9600
9601This is an overloaded intrinsic. You can use llvm.memset on any integer
9602bit width and for different address spaces. However, not all targets
9603support all bit widths.
9604
9605::
9606
9607 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9608 i32 <len>, i32 <align>, i1 <isvolatile>)
9609 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9610 i64 <len>, i32 <align>, i1 <isvolatile>)
9611
9612Overview:
9613"""""""""
9614
9615The '``llvm.memset.*``' intrinsics fill a block of memory with a
9616particular byte value.
9617
9618Note that, unlike the standard libc function, the ``llvm.memset``
9619intrinsic does not return a value and takes extra alignment/volatile
9620arguments. Also, the destination can be in an arbitrary address space.
9621
9622Arguments:
9623""""""""""
9624
9625The first argument is a pointer to the destination to fill, the second
9626is the byte value with which to fill it, the third argument is an
9627integer argument specifying the number of bytes to fill, and the fourth
9628argument is the known alignment of the destination location.
9629
9630If the call to this intrinsic has an alignment value that is not 0 or 1,
9631then the caller guarantees that the destination pointer is aligned to
9632that boundary.
9633
9634If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9635a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9636very cleanly specified and it is unwise to depend on it.
9637
9638Semantics:
9639""""""""""
9640
9641The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9642at the destination location. If the argument is known to be aligned to
9643some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009644it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009645
9646'``llvm.sqrt.*``' Intrinsic
9647^^^^^^^^^^^^^^^^^^^^^^^^^^^
9648
9649Syntax:
9650"""""""
9651
9652This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9653floating point or vector of floating point type. Not all targets support
9654all types however.
9655
9656::
9657
9658 declare float @llvm.sqrt.f32(float %Val)
9659 declare double @llvm.sqrt.f64(double %Val)
9660 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9661 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9662 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9663
9664Overview:
9665"""""""""
9666
9667The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9668returning the same value as the libm '``sqrt``' functions would. Unlike
9669``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9670negative numbers other than -0.0 (which allows for better optimization,
9671because there is no need to worry about errno being set).
9672``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9673
9674Arguments:
9675""""""""""
9676
9677The argument and return value are floating point numbers of the same
9678type.
9679
9680Semantics:
9681""""""""""
9682
9683This function returns the sqrt of the specified operand if it is a
9684nonnegative floating point number.
9685
9686'``llvm.powi.*``' Intrinsic
9687^^^^^^^^^^^^^^^^^^^^^^^^^^^
9688
9689Syntax:
9690"""""""
9691
9692This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9693floating point or vector of floating point type. Not all targets support
9694all types however.
9695
9696::
9697
9698 declare float @llvm.powi.f32(float %Val, i32 %power)
9699 declare double @llvm.powi.f64(double %Val, i32 %power)
9700 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9701 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9702 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9703
9704Overview:
9705"""""""""
9706
9707The '``llvm.powi.*``' intrinsics return the first operand raised to the
9708specified (positive or negative) power. The order of evaluation of
9709multiplications is not defined. When a vector of floating point type is
9710used, the second argument remains a scalar integer value.
9711
9712Arguments:
9713""""""""""
9714
9715The second argument is an integer power, and the first is a value to
9716raise to that power.
9717
9718Semantics:
9719""""""""""
9720
9721This function returns the first value raised to the second power with an
9722unspecified sequence of rounding operations.
9723
9724'``llvm.sin.*``' Intrinsic
9725^^^^^^^^^^^^^^^^^^^^^^^^^^
9726
9727Syntax:
9728"""""""
9729
9730This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9731floating point or vector of floating point type. Not all targets support
9732all types however.
9733
9734::
9735
9736 declare float @llvm.sin.f32(float %Val)
9737 declare double @llvm.sin.f64(double %Val)
9738 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9739 declare fp128 @llvm.sin.f128(fp128 %Val)
9740 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9741
9742Overview:
9743"""""""""
9744
9745The '``llvm.sin.*``' intrinsics return the sine of the operand.
9746
9747Arguments:
9748""""""""""
9749
9750The argument and return value are floating point numbers of the same
9751type.
9752
9753Semantics:
9754""""""""""
9755
9756This function returns the sine of the specified operand, returning the
9757same values as the libm ``sin`` functions would, and handles error
9758conditions in the same way.
9759
9760'``llvm.cos.*``' Intrinsic
9761^^^^^^^^^^^^^^^^^^^^^^^^^^
9762
9763Syntax:
9764"""""""
9765
9766This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9767floating point or vector of floating point type. Not all targets support
9768all types however.
9769
9770::
9771
9772 declare float @llvm.cos.f32(float %Val)
9773 declare double @llvm.cos.f64(double %Val)
9774 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9775 declare fp128 @llvm.cos.f128(fp128 %Val)
9776 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9777
9778Overview:
9779"""""""""
9780
9781The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9782
9783Arguments:
9784""""""""""
9785
9786The argument and return value are floating point numbers of the same
9787type.
9788
9789Semantics:
9790""""""""""
9791
9792This function returns the cosine of the specified operand, returning the
9793same values as the libm ``cos`` functions would, and handles error
9794conditions in the same way.
9795
9796'``llvm.pow.*``' Intrinsic
9797^^^^^^^^^^^^^^^^^^^^^^^^^^
9798
9799Syntax:
9800"""""""
9801
9802This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9803floating point or vector of floating point type. Not all targets support
9804all types however.
9805
9806::
9807
9808 declare float @llvm.pow.f32(float %Val, float %Power)
9809 declare double @llvm.pow.f64(double %Val, double %Power)
9810 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9811 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9812 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9813
9814Overview:
9815"""""""""
9816
9817The '``llvm.pow.*``' intrinsics return the first operand raised to the
9818specified (positive or negative) power.
9819
9820Arguments:
9821""""""""""
9822
9823The second argument is a floating point power, and the first is a value
9824to raise to that power.
9825
9826Semantics:
9827""""""""""
9828
9829This function returns the first value raised to the second power,
9830returning the same values as the libm ``pow`` functions would, and
9831handles error conditions in the same way.
9832
9833'``llvm.exp.*``' Intrinsic
9834^^^^^^^^^^^^^^^^^^^^^^^^^^
9835
9836Syntax:
9837"""""""
9838
9839This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9840floating point or vector of floating point type. Not all targets support
9841all types however.
9842
9843::
9844
9845 declare float @llvm.exp.f32(float %Val)
9846 declare double @llvm.exp.f64(double %Val)
9847 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9848 declare fp128 @llvm.exp.f128(fp128 %Val)
9849 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9850
9851Overview:
9852"""""""""
9853
9854The '``llvm.exp.*``' intrinsics perform the exp function.
9855
9856Arguments:
9857""""""""""
9858
9859The argument and return value are floating point numbers of the same
9860type.
9861
9862Semantics:
9863""""""""""
9864
9865This function returns the same values as the libm ``exp`` functions
9866would, and handles error conditions in the same way.
9867
9868'``llvm.exp2.*``' Intrinsic
9869^^^^^^^^^^^^^^^^^^^^^^^^^^^
9870
9871Syntax:
9872"""""""
9873
9874This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9875floating point or vector of floating point type. Not all targets support
9876all types however.
9877
9878::
9879
9880 declare float @llvm.exp2.f32(float %Val)
9881 declare double @llvm.exp2.f64(double %Val)
9882 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9883 declare fp128 @llvm.exp2.f128(fp128 %Val)
9884 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9885
9886Overview:
9887"""""""""
9888
9889The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9890
9891Arguments:
9892""""""""""
9893
9894The argument and return value are floating point numbers of the same
9895type.
9896
9897Semantics:
9898""""""""""
9899
9900This function returns the same values as the libm ``exp2`` functions
9901would, and handles error conditions in the same way.
9902
9903'``llvm.log.*``' Intrinsic
9904^^^^^^^^^^^^^^^^^^^^^^^^^^
9905
9906Syntax:
9907"""""""
9908
9909This is an overloaded intrinsic. You can use ``llvm.log`` on any
9910floating point or vector of floating point type. Not all targets support
9911all types however.
9912
9913::
9914
9915 declare float @llvm.log.f32(float %Val)
9916 declare double @llvm.log.f64(double %Val)
9917 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9918 declare fp128 @llvm.log.f128(fp128 %Val)
9919 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9920
9921Overview:
9922"""""""""
9923
9924The '``llvm.log.*``' intrinsics perform the log function.
9925
9926Arguments:
9927""""""""""
9928
9929The argument and return value are floating point numbers of the same
9930type.
9931
9932Semantics:
9933""""""""""
9934
9935This function returns the same values as the libm ``log`` functions
9936would, and handles error conditions in the same way.
9937
9938'``llvm.log10.*``' Intrinsic
9939^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9940
9941Syntax:
9942"""""""
9943
9944This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9945floating point or vector of floating point type. Not all targets support
9946all types however.
9947
9948::
9949
9950 declare float @llvm.log10.f32(float %Val)
9951 declare double @llvm.log10.f64(double %Val)
9952 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9953 declare fp128 @llvm.log10.f128(fp128 %Val)
9954 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9955
9956Overview:
9957"""""""""
9958
9959The '``llvm.log10.*``' intrinsics perform the log10 function.
9960
9961Arguments:
9962""""""""""
9963
9964The argument and return value are floating point numbers of the same
9965type.
9966
9967Semantics:
9968""""""""""
9969
9970This function returns the same values as the libm ``log10`` functions
9971would, and handles error conditions in the same way.
9972
9973'``llvm.log2.*``' Intrinsic
9974^^^^^^^^^^^^^^^^^^^^^^^^^^^
9975
9976Syntax:
9977"""""""
9978
9979This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9980floating point or vector of floating point type. Not all targets support
9981all types however.
9982
9983::
9984
9985 declare float @llvm.log2.f32(float %Val)
9986 declare double @llvm.log2.f64(double %Val)
9987 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9988 declare fp128 @llvm.log2.f128(fp128 %Val)
9989 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9990
9991Overview:
9992"""""""""
9993
9994The '``llvm.log2.*``' intrinsics perform the log2 function.
9995
9996Arguments:
9997""""""""""
9998
9999The argument and return value are floating point numbers of the same
10000type.
10001
10002Semantics:
10003""""""""""
10004
10005This function returns the same values as the libm ``log2`` functions
10006would, and handles error conditions in the same way.
10007
10008'``llvm.fma.*``' Intrinsic
10009^^^^^^^^^^^^^^^^^^^^^^^^^^
10010
10011Syntax:
10012"""""""
10013
10014This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10015floating point or vector of floating point type. Not all targets support
10016all types however.
10017
10018::
10019
10020 declare float @llvm.fma.f32(float %a, float %b, float %c)
10021 declare double @llvm.fma.f64(double %a, double %b, double %c)
10022 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10023 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10024 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10025
10026Overview:
10027"""""""""
10028
10029The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10030operation.
10031
10032Arguments:
10033""""""""""
10034
10035The argument and return value are floating point numbers of the same
10036type.
10037
10038Semantics:
10039""""""""""
10040
10041This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010042would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010043
10044'``llvm.fabs.*``' Intrinsic
10045^^^^^^^^^^^^^^^^^^^^^^^^^^^
10046
10047Syntax:
10048"""""""
10049
10050This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10051floating point or vector of floating point type. Not all targets support
10052all types however.
10053
10054::
10055
10056 declare float @llvm.fabs.f32(float %Val)
10057 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010058 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010059 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010060 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010061
10062Overview:
10063"""""""""
10064
10065The '``llvm.fabs.*``' intrinsics return the absolute value of the
10066operand.
10067
10068Arguments:
10069""""""""""
10070
10071The argument and return value are floating point numbers of the same
10072type.
10073
10074Semantics:
10075""""""""""
10076
10077This function returns the same values as the libm ``fabs`` functions
10078would, and handles error conditions in the same way.
10079
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010080'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010082
10083Syntax:
10084"""""""
10085
10086This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10087floating point or vector of floating point type. Not all targets support
10088all types however.
10089
10090::
10091
Matt Arsenault64313c92014-10-22 18:25:02 +000010092 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10093 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10094 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10095 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10096 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010097
10098Overview:
10099"""""""""
10100
10101The '``llvm.minnum.*``' intrinsics return the minimum of the two
10102arguments.
10103
10104
10105Arguments:
10106""""""""""
10107
10108The arguments and return value are floating point numbers of the same
10109type.
10110
10111Semantics:
10112""""""""""
10113
10114Follows the IEEE-754 semantics for minNum, which also match for libm's
10115fmin.
10116
10117If either operand is a NaN, returns the other non-NaN operand. Returns
10118NaN only if both operands are NaN. If the operands compare equal,
10119returns a value that compares equal to both operands. This means that
10120fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10121
10122'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010124
10125Syntax:
10126"""""""
10127
10128This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10129floating point or vector of floating point type. Not all targets support
10130all types however.
10131
10132::
10133
Matt Arsenault64313c92014-10-22 18:25:02 +000010134 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10135 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10136 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10137 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10138 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010139
10140Overview:
10141"""""""""
10142
10143The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10144arguments.
10145
10146
10147Arguments:
10148""""""""""
10149
10150The arguments and return value are floating point numbers of the same
10151type.
10152
10153Semantics:
10154""""""""""
10155Follows the IEEE-754 semantics for maxNum, which also match for libm's
10156fmax.
10157
10158If either operand is a NaN, returns the other non-NaN operand. Returns
10159NaN only if both operands are NaN. If the operands compare equal,
10160returns a value that compares equal to both operands. This means that
10161fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10162
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010163'``llvm.copysign.*``' Intrinsic
10164^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10165
10166Syntax:
10167"""""""
10168
10169This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10170floating point or vector of floating point type. Not all targets support
10171all types however.
10172
10173::
10174
10175 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10176 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10177 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10178 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10179 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10180
10181Overview:
10182"""""""""
10183
10184The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10185first operand and the sign of the second operand.
10186
10187Arguments:
10188""""""""""
10189
10190The arguments and return value are floating point numbers of the same
10191type.
10192
10193Semantics:
10194""""""""""
10195
10196This function returns the same values as the libm ``copysign``
10197functions would, and handles error conditions in the same way.
10198
Sean Silvab084af42012-12-07 10:36:55 +000010199'``llvm.floor.*``' Intrinsic
10200^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10201
10202Syntax:
10203"""""""
10204
10205This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10206floating point or vector of floating point type. Not all targets support
10207all types however.
10208
10209::
10210
10211 declare float @llvm.floor.f32(float %Val)
10212 declare double @llvm.floor.f64(double %Val)
10213 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10214 declare fp128 @llvm.floor.f128(fp128 %Val)
10215 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10216
10217Overview:
10218"""""""""
10219
10220The '``llvm.floor.*``' intrinsics return the floor of the operand.
10221
10222Arguments:
10223""""""""""
10224
10225The argument and return value are floating point numbers of the same
10226type.
10227
10228Semantics:
10229""""""""""
10230
10231This function returns the same values as the libm ``floor`` functions
10232would, and handles error conditions in the same way.
10233
10234'``llvm.ceil.*``' Intrinsic
10235^^^^^^^^^^^^^^^^^^^^^^^^^^^
10236
10237Syntax:
10238"""""""
10239
10240This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10241floating point or vector of floating point type. Not all targets support
10242all types however.
10243
10244::
10245
10246 declare float @llvm.ceil.f32(float %Val)
10247 declare double @llvm.ceil.f64(double %Val)
10248 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10249 declare fp128 @llvm.ceil.f128(fp128 %Val)
10250 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10251
10252Overview:
10253"""""""""
10254
10255The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10256
10257Arguments:
10258""""""""""
10259
10260The argument and return value are floating point numbers of the same
10261type.
10262
10263Semantics:
10264""""""""""
10265
10266This function returns the same values as the libm ``ceil`` functions
10267would, and handles error conditions in the same way.
10268
10269'``llvm.trunc.*``' Intrinsic
10270^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10271
10272Syntax:
10273"""""""
10274
10275This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10276floating point or vector of floating point type. Not all targets support
10277all types however.
10278
10279::
10280
10281 declare float @llvm.trunc.f32(float %Val)
10282 declare double @llvm.trunc.f64(double %Val)
10283 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10284 declare fp128 @llvm.trunc.f128(fp128 %Val)
10285 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10286
10287Overview:
10288"""""""""
10289
10290The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10291nearest integer not larger in magnitude than the operand.
10292
10293Arguments:
10294""""""""""
10295
10296The argument and return value are floating point numbers of the same
10297type.
10298
10299Semantics:
10300""""""""""
10301
10302This function returns the same values as the libm ``trunc`` functions
10303would, and handles error conditions in the same way.
10304
10305'``llvm.rint.*``' Intrinsic
10306^^^^^^^^^^^^^^^^^^^^^^^^^^^
10307
10308Syntax:
10309"""""""
10310
10311This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10312floating point or vector of floating point type. Not all targets support
10313all types however.
10314
10315::
10316
10317 declare float @llvm.rint.f32(float %Val)
10318 declare double @llvm.rint.f64(double %Val)
10319 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10320 declare fp128 @llvm.rint.f128(fp128 %Val)
10321 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10322
10323Overview:
10324"""""""""
10325
10326The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10327nearest integer. It may raise an inexact floating-point exception if the
10328operand isn't an integer.
10329
10330Arguments:
10331""""""""""
10332
10333The argument and return value are floating point numbers of the same
10334type.
10335
10336Semantics:
10337""""""""""
10338
10339This function returns the same values as the libm ``rint`` functions
10340would, and handles error conditions in the same way.
10341
10342'``llvm.nearbyint.*``' Intrinsic
10343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10344
10345Syntax:
10346"""""""
10347
10348This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10349floating point or vector of floating point type. Not all targets support
10350all types however.
10351
10352::
10353
10354 declare float @llvm.nearbyint.f32(float %Val)
10355 declare double @llvm.nearbyint.f64(double %Val)
10356 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10357 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10358 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10359
10360Overview:
10361"""""""""
10362
10363The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10364nearest integer.
10365
10366Arguments:
10367""""""""""
10368
10369The argument and return value are floating point numbers of the same
10370type.
10371
10372Semantics:
10373""""""""""
10374
10375This function returns the same values as the libm ``nearbyint``
10376functions would, and handles error conditions in the same way.
10377
Hal Finkel171817e2013-08-07 22:49:12 +000010378'``llvm.round.*``' Intrinsic
10379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10380
10381Syntax:
10382"""""""
10383
10384This is an overloaded intrinsic. You can use ``llvm.round`` on any
10385floating point or vector of floating point type. Not all targets support
10386all types however.
10387
10388::
10389
10390 declare float @llvm.round.f32(float %Val)
10391 declare double @llvm.round.f64(double %Val)
10392 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10393 declare fp128 @llvm.round.f128(fp128 %Val)
10394 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10395
10396Overview:
10397"""""""""
10398
10399The '``llvm.round.*``' intrinsics returns the operand rounded to the
10400nearest integer.
10401
10402Arguments:
10403""""""""""
10404
10405The argument and return value are floating point numbers of the same
10406type.
10407
10408Semantics:
10409""""""""""
10410
10411This function returns the same values as the libm ``round``
10412functions would, and handles error conditions in the same way.
10413
Sean Silvab084af42012-12-07 10:36:55 +000010414Bit Manipulation Intrinsics
10415---------------------------
10416
10417LLVM provides intrinsics for a few important bit manipulation
10418operations. These allow efficient code generation for some algorithms.
10419
James Molloy90111f72015-11-12 12:29:09 +000010420'``llvm.bitreverse.*``' Intrinsics
10421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10422
10423Syntax:
10424"""""""
10425
10426This is an overloaded intrinsic function. You can use bitreverse on any
10427integer type.
10428
10429::
10430
10431 declare i16 @llvm.bitreverse.i16(i16 <id>)
10432 declare i32 @llvm.bitreverse.i32(i32 <id>)
10433 declare i64 @llvm.bitreverse.i64(i64 <id>)
10434
10435Overview:
10436"""""""""
10437
10438The '``llvm.bitreverse``' family of intrinsics is used to reverse the
10439bitpattern of an integer value; for example ``0b1234567`` becomes
10440``0b7654321``.
10441
10442Semantics:
10443""""""""""
10444
10445The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10446``M`` in the input moved to bit ``N-M`` in the output.
10447
Sean Silvab084af42012-12-07 10:36:55 +000010448'``llvm.bswap.*``' Intrinsics
10449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10450
10451Syntax:
10452"""""""
10453
10454This is an overloaded intrinsic function. You can use bswap on any
10455integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10456
10457::
10458
10459 declare i16 @llvm.bswap.i16(i16 <id>)
10460 declare i32 @llvm.bswap.i32(i32 <id>)
10461 declare i64 @llvm.bswap.i64(i64 <id>)
10462
10463Overview:
10464"""""""""
10465
10466The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10467values with an even number of bytes (positive multiple of 16 bits).
10468These are useful for performing operations on data that is not in the
10469target's native byte order.
10470
10471Semantics:
10472""""""""""
10473
10474The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10475and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10476intrinsic returns an i32 value that has the four bytes of the input i32
10477swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10478returned i32 will have its bytes in 3, 2, 1, 0 order. The
10479``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10480concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10481respectively).
10482
10483'``llvm.ctpop.*``' Intrinsic
10484^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10485
10486Syntax:
10487"""""""
10488
10489This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10490bit width, or on any vector with integer elements. Not all targets
10491support all bit widths or vector types, however.
10492
10493::
10494
10495 declare i8 @llvm.ctpop.i8(i8 <src>)
10496 declare i16 @llvm.ctpop.i16(i16 <src>)
10497 declare i32 @llvm.ctpop.i32(i32 <src>)
10498 declare i64 @llvm.ctpop.i64(i64 <src>)
10499 declare i256 @llvm.ctpop.i256(i256 <src>)
10500 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10501
10502Overview:
10503"""""""""
10504
10505The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10506in a value.
10507
10508Arguments:
10509""""""""""
10510
10511The only argument is the value to be counted. The argument may be of any
10512integer type, or a vector with integer elements. The return type must
10513match the argument type.
10514
10515Semantics:
10516""""""""""
10517
10518The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10519each element of a vector.
10520
10521'``llvm.ctlz.*``' Intrinsic
10522^^^^^^^^^^^^^^^^^^^^^^^^^^^
10523
10524Syntax:
10525"""""""
10526
10527This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10528integer bit width, or any vector whose elements are integers. Not all
10529targets support all bit widths or vector types, however.
10530
10531::
10532
10533 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10534 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10535 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10536 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10537 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10538 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10539
10540Overview:
10541"""""""""
10542
10543The '``llvm.ctlz``' family of intrinsic functions counts the number of
10544leading zeros in a variable.
10545
10546Arguments:
10547""""""""""
10548
10549The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010550any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010551type must match the first argument type.
10552
10553The second argument must be a constant and is a flag to indicate whether
10554the intrinsic should ensure that a zero as the first argument produces a
10555defined result. Historically some architectures did not provide a
10556defined result for zero values as efficiently, and many algorithms are
10557now predicated on avoiding zero-value inputs.
10558
10559Semantics:
10560""""""""""
10561
10562The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10563zeros in a variable, or within each element of the vector. If
10564``src == 0`` then the result is the size in bits of the type of ``src``
10565if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10566``llvm.ctlz(i32 2) = 30``.
10567
10568'``llvm.cttz.*``' Intrinsic
10569^^^^^^^^^^^^^^^^^^^^^^^^^^^
10570
10571Syntax:
10572"""""""
10573
10574This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10575integer bit width, or any vector of integer elements. Not all targets
10576support all bit widths or vector types, however.
10577
10578::
10579
10580 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10581 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10582 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10583 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10584 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10585 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10586
10587Overview:
10588"""""""""
10589
10590The '``llvm.cttz``' family of intrinsic functions counts the number of
10591trailing zeros.
10592
10593Arguments:
10594""""""""""
10595
10596The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010597any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010598type must match the first argument type.
10599
10600The second argument must be a constant and is a flag to indicate whether
10601the intrinsic should ensure that a zero as the first argument produces a
10602defined result. Historically some architectures did not provide a
10603defined result for zero values as efficiently, and many algorithms are
10604now predicated on avoiding zero-value inputs.
10605
10606Semantics:
10607""""""""""
10608
10609The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10610zeros in a variable, or within each element of a vector. If ``src == 0``
10611then the result is the size in bits of the type of ``src`` if
10612``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10613``llvm.cttz(2) = 1``.
10614
Philip Reames34843ae2015-03-05 05:55:55 +000010615.. _int_overflow:
10616
Sean Silvab084af42012-12-07 10:36:55 +000010617Arithmetic with Overflow Intrinsics
10618-----------------------------------
10619
10620LLVM provides intrinsics for some arithmetic with overflow operations.
10621
10622'``llvm.sadd.with.overflow.*``' Intrinsics
10623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10624
10625Syntax:
10626"""""""
10627
10628This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10629on any integer bit width.
10630
10631::
10632
10633 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10634 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10635 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10636
10637Overview:
10638"""""""""
10639
10640The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10641a signed addition of the two arguments, and indicate whether an overflow
10642occurred during the signed summation.
10643
10644Arguments:
10645""""""""""
10646
10647The arguments (%a and %b) and the first element of the result structure
10648may be of integer types of any bit width, but they must have the same
10649bit width. The second element of the result structure must be of type
10650``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10651addition.
10652
10653Semantics:
10654""""""""""
10655
10656The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010657a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010658first element of which is the signed summation, and the second element
10659of which is a bit specifying if the signed summation resulted in an
10660overflow.
10661
10662Examples:
10663"""""""""
10664
10665.. code-block:: llvm
10666
10667 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10668 %sum = extractvalue {i32, i1} %res, 0
10669 %obit = extractvalue {i32, i1} %res, 1
10670 br i1 %obit, label %overflow, label %normal
10671
10672'``llvm.uadd.with.overflow.*``' Intrinsics
10673^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10674
10675Syntax:
10676"""""""
10677
10678This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10679on any integer bit width.
10680
10681::
10682
10683 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10684 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10685 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10686
10687Overview:
10688"""""""""
10689
10690The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10691an unsigned addition of the two arguments, and indicate whether a carry
10692occurred during the unsigned summation.
10693
10694Arguments:
10695""""""""""
10696
10697The arguments (%a and %b) and the first element of the result structure
10698may be of integer types of any bit width, but they must have the same
10699bit width. The second element of the result structure must be of type
10700``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10701addition.
10702
10703Semantics:
10704""""""""""
10705
10706The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010707an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010708first element of which is the sum, and the second element of which is a
10709bit specifying if the unsigned summation resulted in a carry.
10710
10711Examples:
10712"""""""""
10713
10714.. code-block:: llvm
10715
10716 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10717 %sum = extractvalue {i32, i1} %res, 0
10718 %obit = extractvalue {i32, i1} %res, 1
10719 br i1 %obit, label %carry, label %normal
10720
10721'``llvm.ssub.with.overflow.*``' Intrinsics
10722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10723
10724Syntax:
10725"""""""
10726
10727This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10728on any integer bit width.
10729
10730::
10731
10732 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10733 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10734 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10735
10736Overview:
10737"""""""""
10738
10739The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10740a signed subtraction of the two arguments, and indicate whether an
10741overflow occurred during the signed subtraction.
10742
10743Arguments:
10744""""""""""
10745
10746The arguments (%a and %b) and the first element of the result structure
10747may be of integer types of any bit width, but they must have the same
10748bit width. The second element of the result structure must be of type
10749``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10750subtraction.
10751
10752Semantics:
10753""""""""""
10754
10755The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010756a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010757first element of which is the subtraction, and the second element of
10758which is a bit specifying if the signed subtraction resulted in an
10759overflow.
10760
10761Examples:
10762"""""""""
10763
10764.. code-block:: llvm
10765
10766 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10767 %sum = extractvalue {i32, i1} %res, 0
10768 %obit = extractvalue {i32, i1} %res, 1
10769 br i1 %obit, label %overflow, label %normal
10770
10771'``llvm.usub.with.overflow.*``' Intrinsics
10772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10773
10774Syntax:
10775"""""""
10776
10777This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10778on any integer bit width.
10779
10780::
10781
10782 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10783 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10784 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10785
10786Overview:
10787"""""""""
10788
10789The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10790an unsigned subtraction of the two arguments, and indicate whether an
10791overflow occurred during the unsigned subtraction.
10792
10793Arguments:
10794""""""""""
10795
10796The arguments (%a and %b) and the first element of the result structure
10797may be of integer types of any bit width, but they must have the same
10798bit width. The second element of the result structure must be of type
10799``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10800subtraction.
10801
10802Semantics:
10803""""""""""
10804
10805The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010806an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010807the first element of which is the subtraction, and the second element of
10808which is a bit specifying if the unsigned subtraction resulted in an
10809overflow.
10810
10811Examples:
10812"""""""""
10813
10814.. code-block:: llvm
10815
10816 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10817 %sum = extractvalue {i32, i1} %res, 0
10818 %obit = extractvalue {i32, i1} %res, 1
10819 br i1 %obit, label %overflow, label %normal
10820
10821'``llvm.smul.with.overflow.*``' Intrinsics
10822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10823
10824Syntax:
10825"""""""
10826
10827This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10828on any integer bit width.
10829
10830::
10831
10832 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10833 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10834 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10835
10836Overview:
10837"""""""""
10838
10839The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10840a signed multiplication of the two arguments, and indicate whether an
10841overflow occurred during the signed multiplication.
10842
10843Arguments:
10844""""""""""
10845
10846The arguments (%a and %b) and the first element of the result structure
10847may be of integer types of any bit width, but they must have the same
10848bit width. The second element of the result structure must be of type
10849``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10850multiplication.
10851
10852Semantics:
10853""""""""""
10854
10855The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010856a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010857the first element of which is the multiplication, and the second element
10858of which is a bit specifying if the signed multiplication resulted in an
10859overflow.
10860
10861Examples:
10862"""""""""
10863
10864.. code-block:: llvm
10865
10866 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10867 %sum = extractvalue {i32, i1} %res, 0
10868 %obit = extractvalue {i32, i1} %res, 1
10869 br i1 %obit, label %overflow, label %normal
10870
10871'``llvm.umul.with.overflow.*``' Intrinsics
10872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10873
10874Syntax:
10875"""""""
10876
10877This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10878on any integer bit width.
10879
10880::
10881
10882 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10883 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10884 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10885
10886Overview:
10887"""""""""
10888
10889The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10890a unsigned multiplication of the two arguments, and indicate whether an
10891overflow occurred during the unsigned multiplication.
10892
10893Arguments:
10894""""""""""
10895
10896The arguments (%a and %b) and the first element of the result structure
10897may be of integer types of any bit width, but they must have the same
10898bit width. The second element of the result structure must be of type
10899``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10900multiplication.
10901
10902Semantics:
10903""""""""""
10904
10905The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010906an unsigned multiplication of the two arguments. They return a structure ---
10907the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010908element of which is a bit specifying if the unsigned multiplication
10909resulted in an overflow.
10910
10911Examples:
10912"""""""""
10913
10914.. code-block:: llvm
10915
10916 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10917 %sum = extractvalue {i32, i1} %res, 0
10918 %obit = extractvalue {i32, i1} %res, 1
10919 br i1 %obit, label %overflow, label %normal
10920
10921Specialised Arithmetic Intrinsics
10922---------------------------------
10923
Owen Anderson1056a922015-07-11 07:01:27 +000010924'``llvm.canonicalize.*``' Intrinsic
10925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10926
10927Syntax:
10928"""""""
10929
10930::
10931
10932 declare float @llvm.canonicalize.f32(float %a)
10933 declare double @llvm.canonicalize.f64(double %b)
10934
10935Overview:
10936"""""""""
10937
10938The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010939encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010940implementing certain numeric primitives such as frexp. The canonical encoding is
10941defined by IEEE-754-2008 to be:
10942
10943::
10944
10945 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010946 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010947 numbers, infinities, and NaNs, especially in decimal formats.
10948
10949This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010950conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010951according to section 6.2.
10952
10953Examples of non-canonical encodings:
10954
Sean Silvaa1190322015-08-06 22:56:48 +000010955- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010956 converted to a canonical representation per hardware-specific protocol.
10957- Many normal decimal floating point numbers have non-canonical alternative
10958 encodings.
10959- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10960 These are treated as non-canonical encodings of zero and with be flushed to
10961 a zero of the same sign by this operation.
10962
10963Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10964default exception handling must signal an invalid exception, and produce a
10965quiet NaN result.
10966
10967This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010968that the compiler does not constant fold the operation. Likewise, division by
109691.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010970-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10971
Sean Silvaa1190322015-08-06 22:56:48 +000010972``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010973
10974- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10975- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10976 to ``(x == y)``
10977
10978Additionally, the sign of zero must be conserved:
10979``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10980
10981The payload bits of a NaN must be conserved, with two exceptions.
10982First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010983must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010984usual methods.
10985
10986The canonicalization operation may be optimized away if:
10987
Sean Silvaa1190322015-08-06 22:56:48 +000010988- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010989 floating-point operation that is required by the standard to be canonical.
10990- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010991 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010992
Sean Silvab084af42012-12-07 10:36:55 +000010993'``llvm.fmuladd.*``' Intrinsic
10994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10995
10996Syntax:
10997"""""""
10998
10999::
11000
11001 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11002 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11003
11004Overview:
11005"""""""""
11006
11007The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011008expressions that can be fused if the code generator determines that (a) the
11009target instruction set has support for a fused operation, and (b) that the
11010fused operation is more efficient than the equivalent, separate pair of mul
11011and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011012
11013Arguments:
11014""""""""""
11015
11016The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11017multiplicands, a and b, and an addend c.
11018
11019Semantics:
11020""""""""""
11021
11022The expression:
11023
11024::
11025
11026 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11027
11028is equivalent to the expression a \* b + c, except that rounding will
11029not be performed between the multiplication and addition steps if the
11030code generator fuses the operations. Fusion is not guaranteed, even if
11031the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011032corresponding llvm.fma.\* intrinsic function should be used
11033instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011034
11035Examples:
11036"""""""""
11037
11038.. code-block:: llvm
11039
Tim Northover675a0962014-06-13 14:24:23 +000011040 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011041
James Molloy7395a812015-07-16 15:22:46 +000011042
11043'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
11044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11045
11046Syntax:
11047"""""""
11048This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
11049
11050.. code-block:: llvm
11051
11052 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
11053
11054
11055Overview:
11056"""""""""
11057
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011058The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
11059of the two operands, treating them both as unsigned integers. The intermediate
11060calculations are computed using infinitely precise unsigned arithmetic. The final
11061result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000011062
Mohammad Shahid18715532015-08-21 05:31:07 +000011063The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011064the two operands, treating them both as signed integers. If the result overflows, the
11065behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000011066
11067.. note::
11068
11069 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011070 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000011071 recommended for users to create them manually.
11072
11073Arguments:
11074""""""""""
11075
11076Both intrinsics take two integer of the same bitwidth.
11077
11078Semantics:
11079""""""""""
11080
11081The expression::
11082
11083 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11084
11085is equivalent to::
11086
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011087 %1 = zext <4 x i32> %a to <4 x i64>
11088 %2 = zext <4 x i32> %b to <4 x i64>
11089 %sub = sub <4 x i64> %1, %2
11090 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000011091
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011092and the expression::
James Molloy7395a812015-07-16 15:22:46 +000011093
11094 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11095
11096is equivalent to::
11097
11098 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011099 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000011100 %neg = sub nsw <4 x i32> zeroinitializer, %sub
11101 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
11102
11103
Sean Silvab084af42012-12-07 10:36:55 +000011104Half Precision Floating Point Intrinsics
11105----------------------------------------
11106
11107For most target platforms, half precision floating point is a
11108storage-only format. This means that it is a dense encoding (in memory)
11109but does not support computation in the format.
11110
11111This means that code must first load the half-precision floating point
11112value as an i16, then convert it to float with
11113:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11114then be performed on the float value (including extending to double
11115etc). To store the value back to memory, it is first converted to float
11116if needed, then converted to i16 with
11117:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11118i16 value.
11119
11120.. _int_convert_to_fp16:
11121
11122'``llvm.convert.to.fp16``' Intrinsic
11123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11124
11125Syntax:
11126"""""""
11127
11128::
11129
Tim Northoverfd7e4242014-07-17 10:51:23 +000011130 declare i16 @llvm.convert.to.fp16.f32(float %a)
11131 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011132
11133Overview:
11134"""""""""
11135
Tim Northoverfd7e4242014-07-17 10:51:23 +000011136The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11137conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011138
11139Arguments:
11140""""""""""
11141
11142The intrinsic function contains single argument - the value to be
11143converted.
11144
11145Semantics:
11146""""""""""
11147
Tim Northoverfd7e4242014-07-17 10:51:23 +000011148The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11149conventional floating point format to half precision floating point format. The
11150return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011151
11152Examples:
11153"""""""""
11154
11155.. code-block:: llvm
11156
Tim Northoverfd7e4242014-07-17 10:51:23 +000011157 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011158 store i16 %res, i16* @x, align 2
11159
11160.. _int_convert_from_fp16:
11161
11162'``llvm.convert.from.fp16``' Intrinsic
11163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11164
11165Syntax:
11166"""""""
11167
11168::
11169
Tim Northoverfd7e4242014-07-17 10:51:23 +000011170 declare float @llvm.convert.from.fp16.f32(i16 %a)
11171 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011172
11173Overview:
11174"""""""""
11175
11176The '``llvm.convert.from.fp16``' intrinsic function performs a
11177conversion from half precision floating point format to single precision
11178floating point format.
11179
11180Arguments:
11181""""""""""
11182
11183The intrinsic function contains single argument - the value to be
11184converted.
11185
11186Semantics:
11187""""""""""
11188
11189The '``llvm.convert.from.fp16``' intrinsic function performs a
11190conversion from half single precision floating point format to single
11191precision floating point format. The input half-float value is
11192represented by an ``i16`` value.
11193
11194Examples:
11195"""""""""
11196
11197.. code-block:: llvm
11198
David Blaikiec7aabbb2015-03-04 22:06:14 +000011199 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011200 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011201
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011202.. _dbg_intrinsics:
11203
Sean Silvab084af42012-12-07 10:36:55 +000011204Debugger Intrinsics
11205-------------------
11206
11207The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11208prefix), are described in the `LLVM Source Level
11209Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11210document.
11211
11212Exception Handling Intrinsics
11213-----------------------------
11214
11215The LLVM exception handling intrinsics (which all start with
11216``llvm.eh.`` prefix), are described in the `LLVM Exception
11217Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11218
11219.. _int_trampoline:
11220
11221Trampoline Intrinsics
11222---------------------
11223
11224These intrinsics make it possible to excise one parameter, marked with
11225the :ref:`nest <nest>` attribute, from a function. The result is a
11226callable function pointer lacking the nest parameter - the caller does
11227not need to provide a value for it. Instead, the value to use is stored
11228in advance in a "trampoline", a block of memory usually allocated on the
11229stack, which also contains code to splice the nest value into the
11230argument list. This is used to implement the GCC nested function address
11231extension.
11232
11233For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11234then the resulting function pointer has signature ``i32 (i32, i32)*``.
11235It can be created as follows:
11236
11237.. code-block:: llvm
11238
11239 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011240 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011241 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11242 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11243 %fp = bitcast i8* %p to i32 (i32, i32)*
11244
11245The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11246``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11247
11248.. _int_it:
11249
11250'``llvm.init.trampoline``' Intrinsic
11251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11252
11253Syntax:
11254"""""""
11255
11256::
11257
11258 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11259
11260Overview:
11261"""""""""
11262
11263This fills the memory pointed to by ``tramp`` with executable code,
11264turning it into a trampoline.
11265
11266Arguments:
11267""""""""""
11268
11269The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11270pointers. The ``tramp`` argument must point to a sufficiently large and
11271sufficiently aligned block of memory; this memory is written to by the
11272intrinsic. Note that the size and the alignment are target-specific -
11273LLVM currently provides no portable way of determining them, so a
11274front-end that generates this intrinsic needs to have some
11275target-specific knowledge. The ``func`` argument must hold a function
11276bitcast to an ``i8*``.
11277
11278Semantics:
11279""""""""""
11280
11281The block of memory pointed to by ``tramp`` is filled with target
11282dependent code, turning it into a function. Then ``tramp`` needs to be
11283passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11284be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11285function's signature is the same as that of ``func`` with any arguments
11286marked with the ``nest`` attribute removed. At most one such ``nest``
11287argument is allowed, and it must be of pointer type. Calling the new
11288function is equivalent to calling ``func`` with the same argument list,
11289but with ``nval`` used for the missing ``nest`` argument. If, after
11290calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11291modified, then the effect of any later call to the returned function
11292pointer is undefined.
11293
11294.. _int_at:
11295
11296'``llvm.adjust.trampoline``' Intrinsic
11297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11298
11299Syntax:
11300"""""""
11301
11302::
11303
11304 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11305
11306Overview:
11307"""""""""
11308
11309This performs any required machine-specific adjustment to the address of
11310a trampoline (passed as ``tramp``).
11311
11312Arguments:
11313""""""""""
11314
11315``tramp`` must point to a block of memory which already has trampoline
11316code filled in by a previous call to
11317:ref:`llvm.init.trampoline <int_it>`.
11318
11319Semantics:
11320""""""""""
11321
11322On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011323different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011324intrinsic returns the executable address corresponding to ``tramp``
11325after performing the required machine specific adjustments. The pointer
11326returned can then be :ref:`bitcast and executed <int_trampoline>`.
11327
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011328.. _int_mload_mstore:
11329
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011330Masked Vector Load and Store Intrinsics
11331---------------------------------------
11332
11333LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11334
11335.. _int_mload:
11336
11337'``llvm.masked.load.*``' Intrinsics
11338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11339
11340Syntax:
11341"""""""
11342This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11343
11344::
11345
11346 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11347 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11348
11349Overview:
11350"""""""""
11351
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011352Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011353
11354
11355Arguments:
11356""""""""""
11357
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011358The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011359
11360
11361Semantics:
11362""""""""""
11363
11364The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11365The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11366
11367
11368::
11369
11370 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011371
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011372 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011373 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011374 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011375
11376.. _int_mstore:
11377
11378'``llvm.masked.store.*``' Intrinsics
11379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11380
11381Syntax:
11382"""""""
11383This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11384
11385::
11386
11387 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11388 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11389
11390Overview:
11391"""""""""
11392
11393Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11394
11395Arguments:
11396""""""""""
11397
11398The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11399
11400
11401Semantics:
11402""""""""""
11403
11404The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11405The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11406
11407::
11408
11409 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011410
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011411 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011412 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011413 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11414 store <16 x float> %res, <16 x float>* %ptr, align 4
11415
11416
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011417Masked Vector Gather and Scatter Intrinsics
11418-------------------------------------------
11419
11420LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11421
11422.. _int_mgather:
11423
11424'``llvm.masked.gather.*``' Intrinsics
11425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11426
11427Syntax:
11428"""""""
11429This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11430
11431::
11432
11433 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11434 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11435
11436Overview:
11437"""""""""
11438
11439Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11440
11441
11442Arguments:
11443""""""""""
11444
11445The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11446
11447
11448Semantics:
11449""""""""""
11450
11451The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11452The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11453
11454
11455::
11456
11457 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11458
11459 ;; The gather with all-true mask is equivalent to the following instruction sequence
11460 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11461 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11462 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11463 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11464
11465 %val0 = load double, double* %ptr0, align 8
11466 %val1 = load double, double* %ptr1, align 8
11467 %val2 = load double, double* %ptr2, align 8
11468 %val3 = load double, double* %ptr3, align 8
11469
11470 %vec0 = insertelement <4 x double>undef, %val0, 0
11471 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11472 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11473 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11474
11475.. _int_mscatter:
11476
11477'``llvm.masked.scatter.*``' Intrinsics
11478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11479
11480Syntax:
11481"""""""
11482This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11483
11484::
11485
11486 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11487 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11488
11489Overview:
11490"""""""""
11491
11492Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11493
11494Arguments:
11495""""""""""
11496
11497The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11498
11499
11500Semantics:
11501""""""""""
11502
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011503The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011504
11505::
11506
11507 ;; This instruction unconditionaly stores data vector in multiple addresses
11508 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11509
11510 ;; It is equivalent to a list of scalar stores
11511 %val0 = extractelement <8 x i32> %value, i32 0
11512 %val1 = extractelement <8 x i32> %value, i32 1
11513 ..
11514 %val7 = extractelement <8 x i32> %value, i32 7
11515 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11516 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11517 ..
11518 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11519 ;; Note: the order of the following stores is important when they overlap:
11520 store i32 %val0, i32* %ptr0, align 4
11521 store i32 %val1, i32* %ptr1, align 4
11522 ..
11523 store i32 %val7, i32* %ptr7, align 4
11524
11525
Sean Silvab084af42012-12-07 10:36:55 +000011526Memory Use Markers
11527------------------
11528
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011529This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011530memory objects and ranges where variables are immutable.
11531
Reid Klecknera534a382013-12-19 02:14:12 +000011532.. _int_lifestart:
11533
Sean Silvab084af42012-12-07 10:36:55 +000011534'``llvm.lifetime.start``' Intrinsic
11535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11536
11537Syntax:
11538"""""""
11539
11540::
11541
11542 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11543
11544Overview:
11545"""""""""
11546
11547The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11548object's lifetime.
11549
11550Arguments:
11551""""""""""
11552
11553The first argument is a constant integer representing the size of the
11554object, or -1 if it is variable sized. The second argument is a pointer
11555to the object.
11556
11557Semantics:
11558""""""""""
11559
11560This intrinsic indicates that before this point in the code, the value
11561of the memory pointed to by ``ptr`` is dead. This means that it is known
11562to never be used and has an undefined value. A load from the pointer
11563that precedes this intrinsic can be replaced with ``'undef'``.
11564
Reid Klecknera534a382013-12-19 02:14:12 +000011565.. _int_lifeend:
11566
Sean Silvab084af42012-12-07 10:36:55 +000011567'``llvm.lifetime.end``' Intrinsic
11568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11569
11570Syntax:
11571"""""""
11572
11573::
11574
11575 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11576
11577Overview:
11578"""""""""
11579
11580The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11581object's lifetime.
11582
11583Arguments:
11584""""""""""
11585
11586The first argument is a constant integer representing the size of the
11587object, or -1 if it is variable sized. The second argument is a pointer
11588to the object.
11589
11590Semantics:
11591""""""""""
11592
11593This intrinsic indicates that after this point in the code, the value of
11594the memory pointed to by ``ptr`` is dead. This means that it is known to
11595never be used and has an undefined value. Any stores into the memory
11596object following this intrinsic may be removed as dead.
11597
11598'``llvm.invariant.start``' Intrinsic
11599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11600
11601Syntax:
11602"""""""
11603
11604::
11605
11606 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11607
11608Overview:
11609"""""""""
11610
11611The '``llvm.invariant.start``' intrinsic specifies that the contents of
11612a memory object will not change.
11613
11614Arguments:
11615""""""""""
11616
11617The first argument is a constant integer representing the size of the
11618object, or -1 if it is variable sized. The second argument is a pointer
11619to the object.
11620
11621Semantics:
11622""""""""""
11623
11624This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11625the return value, the referenced memory location is constant and
11626unchanging.
11627
11628'``llvm.invariant.end``' Intrinsic
11629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11630
11631Syntax:
11632"""""""
11633
11634::
11635
11636 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11637
11638Overview:
11639"""""""""
11640
11641The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11642memory object are mutable.
11643
11644Arguments:
11645""""""""""
11646
11647The first argument is the matching ``llvm.invariant.start`` intrinsic.
11648The second argument is a constant integer representing the size of the
11649object, or -1 if it is variable sized and the third argument is a
11650pointer to the object.
11651
11652Semantics:
11653""""""""""
11654
11655This intrinsic indicates that the memory is mutable again.
11656
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011657'``llvm.invariant.group.barrier``' Intrinsic
11658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11659
11660Syntax:
11661"""""""
11662
11663::
11664
11665 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11666
11667Overview:
11668"""""""""
11669
11670The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11671established by invariant.group metadata no longer holds, to obtain a new pointer
11672value that does not carry the invariant information.
11673
11674
11675Arguments:
11676""""""""""
11677
11678The ``llvm.invariant.group.barrier`` takes only one argument, which is
11679the pointer to the memory for which the ``invariant.group`` no longer holds.
11680
11681Semantics:
11682""""""""""
11683
11684Returns another pointer that aliases its argument but which is considered different
11685for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11686
Sean Silvab084af42012-12-07 10:36:55 +000011687General Intrinsics
11688------------------
11689
11690This class of intrinsics is designed to be generic and has no specific
11691purpose.
11692
11693'``llvm.var.annotation``' Intrinsic
11694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11695
11696Syntax:
11697"""""""
11698
11699::
11700
11701 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11702
11703Overview:
11704"""""""""
11705
11706The '``llvm.var.annotation``' intrinsic.
11707
11708Arguments:
11709""""""""""
11710
11711The first argument is a pointer to a value, the second is a pointer to a
11712global string, the third is a pointer to a global string which is the
11713source file name, and the last argument is the line number.
11714
11715Semantics:
11716""""""""""
11717
11718This intrinsic allows annotation of local variables with arbitrary
11719strings. This can be useful for special purpose optimizations that want
11720to look for these annotations. These have no other defined use; they are
11721ignored by code generation and optimization.
11722
Michael Gottesman88d18832013-03-26 00:34:27 +000011723'``llvm.ptr.annotation.*``' Intrinsic
11724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11725
11726Syntax:
11727"""""""
11728
11729This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11730pointer to an integer of any width. *NOTE* you must specify an address space for
11731the pointer. The identifier for the default address space is the integer
11732'``0``'.
11733
11734::
11735
11736 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11737 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11738 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11739 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11740 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11741
11742Overview:
11743"""""""""
11744
11745The '``llvm.ptr.annotation``' intrinsic.
11746
11747Arguments:
11748""""""""""
11749
11750The first argument is a pointer to an integer value of arbitrary bitwidth
11751(result of some expression), the second is a pointer to a global string, the
11752third is a pointer to a global string which is the source file name, and the
11753last argument is the line number. It returns the value of the first argument.
11754
11755Semantics:
11756""""""""""
11757
11758This intrinsic allows annotation of a pointer to an integer with arbitrary
11759strings. This can be useful for special purpose optimizations that want to look
11760for these annotations. These have no other defined use; they are ignored by code
11761generation and optimization.
11762
Sean Silvab084af42012-12-07 10:36:55 +000011763'``llvm.annotation.*``' Intrinsic
11764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11765
11766Syntax:
11767"""""""
11768
11769This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11770any integer bit width.
11771
11772::
11773
11774 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11775 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11776 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11777 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11778 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11779
11780Overview:
11781"""""""""
11782
11783The '``llvm.annotation``' intrinsic.
11784
11785Arguments:
11786""""""""""
11787
11788The first argument is an integer value (result of some expression), the
11789second is a pointer to a global string, the third is a pointer to a
11790global string which is the source file name, and the last argument is
11791the line number. It returns the value of the first argument.
11792
11793Semantics:
11794""""""""""
11795
11796This intrinsic allows annotations to be put on arbitrary expressions
11797with arbitrary strings. This can be useful for special purpose
11798optimizations that want to look for these annotations. These have no
11799other defined use; they are ignored by code generation and optimization.
11800
11801'``llvm.trap``' Intrinsic
11802^^^^^^^^^^^^^^^^^^^^^^^^^
11803
11804Syntax:
11805"""""""
11806
11807::
11808
11809 declare void @llvm.trap() noreturn nounwind
11810
11811Overview:
11812"""""""""
11813
11814The '``llvm.trap``' intrinsic.
11815
11816Arguments:
11817""""""""""
11818
11819None.
11820
11821Semantics:
11822""""""""""
11823
11824This intrinsic is lowered to the target dependent trap instruction. If
11825the target does not have a trap instruction, this intrinsic will be
11826lowered to a call of the ``abort()`` function.
11827
11828'``llvm.debugtrap``' Intrinsic
11829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11830
11831Syntax:
11832"""""""
11833
11834::
11835
11836 declare void @llvm.debugtrap() nounwind
11837
11838Overview:
11839"""""""""
11840
11841The '``llvm.debugtrap``' intrinsic.
11842
11843Arguments:
11844""""""""""
11845
11846None.
11847
11848Semantics:
11849""""""""""
11850
11851This intrinsic is lowered to code which is intended to cause an
11852execution trap with the intention of requesting the attention of a
11853debugger.
11854
11855'``llvm.stackprotector``' Intrinsic
11856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11857
11858Syntax:
11859"""""""
11860
11861::
11862
11863 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11864
11865Overview:
11866"""""""""
11867
11868The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11869onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11870is placed on the stack before local variables.
11871
11872Arguments:
11873""""""""""
11874
11875The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11876The first argument is the value loaded from the stack guard
11877``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11878enough space to hold the value of the guard.
11879
11880Semantics:
11881""""""""""
11882
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011883This intrinsic causes the prologue/epilogue inserter to force the position of
11884the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11885to ensure that if a local variable on the stack is overwritten, it will destroy
11886the value of the guard. When the function exits, the guard on the stack is
11887checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11888different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11889calling the ``__stack_chk_fail()`` function.
11890
11891'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011893
11894Syntax:
11895"""""""
11896
11897::
11898
11899 declare void @llvm.stackprotectorcheck(i8** <guard>)
11900
11901Overview:
11902"""""""""
11903
11904The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011905created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011906``__stack_chk_fail()`` function.
11907
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011908Arguments:
11909""""""""""
11910
11911The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11912the variable ``@__stack_chk_guard``.
11913
11914Semantics:
11915""""""""""
11916
11917This intrinsic is provided to perform the stack protector check by comparing
11918``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11919values do not match call the ``__stack_chk_fail()`` function.
11920
11921The reason to provide this as an IR level intrinsic instead of implementing it
11922via other IR operations is that in order to perform this operation at the IR
11923level without an intrinsic, one would need to create additional basic blocks to
11924handle the success/failure cases. This makes it difficult to stop the stack
11925protector check from disrupting sibling tail calls in Codegen. With this
11926intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011927codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011928
Sean Silvab084af42012-12-07 10:36:55 +000011929'``llvm.objectsize``' Intrinsic
11930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11931
11932Syntax:
11933"""""""
11934
11935::
11936
11937 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11938 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11939
11940Overview:
11941"""""""""
11942
11943The ``llvm.objectsize`` intrinsic is designed to provide information to
11944the optimizers to determine at compile time whether a) an operation
11945(like memcpy) will overflow a buffer that corresponds to an object, or
11946b) that a runtime check for overflow isn't necessary. An object in this
11947context means an allocation of a specific class, structure, array, or
11948other object.
11949
11950Arguments:
11951""""""""""
11952
11953The ``llvm.objectsize`` intrinsic takes two arguments. The first
11954argument is a pointer to or into the ``object``. The second argument is
11955a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11956or -1 (if false) when the object size is unknown. The second argument
11957only accepts constants.
11958
11959Semantics:
11960""""""""""
11961
11962The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11963the size of the object concerned. If the size cannot be determined at
11964compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11965on the ``min`` argument).
11966
11967'``llvm.expect``' Intrinsic
11968^^^^^^^^^^^^^^^^^^^^^^^^^^^
11969
11970Syntax:
11971"""""""
11972
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011973This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11974integer bit width.
11975
Sean Silvab084af42012-12-07 10:36:55 +000011976::
11977
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011978 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011979 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11980 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11981
11982Overview:
11983"""""""""
11984
11985The ``llvm.expect`` intrinsic provides information about expected (the
11986most probable) value of ``val``, which can be used by optimizers.
11987
11988Arguments:
11989""""""""""
11990
11991The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11992a value. The second argument is an expected value, this needs to be a
11993constant value, variables are not allowed.
11994
11995Semantics:
11996""""""""""
11997
11998This intrinsic is lowered to the ``val``.
11999
Philip Reamese0e90832015-04-26 22:23:12 +000012000.. _int_assume:
12001
Hal Finkel93046912014-07-25 21:13:35 +000012002'``llvm.assume``' Intrinsic
12003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12004
12005Syntax:
12006"""""""
12007
12008::
12009
12010 declare void @llvm.assume(i1 %cond)
12011
12012Overview:
12013"""""""""
12014
12015The ``llvm.assume`` allows the optimizer to assume that the provided
12016condition is true. This information can then be used in simplifying other parts
12017of the code.
12018
12019Arguments:
12020""""""""""
12021
12022The condition which the optimizer may assume is always true.
12023
12024Semantics:
12025""""""""""
12026
12027The intrinsic allows the optimizer to assume that the provided condition is
12028always true whenever the control flow reaches the intrinsic call. No code is
12029generated for this intrinsic, and instructions that contribute only to the
12030provided condition are not used for code generation. If the condition is
12031violated during execution, the behavior is undefined.
12032
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012033Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012034used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12035only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012036if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012037sufficient overall improvement in code quality. For this reason,
12038``llvm.assume`` should not be used to document basic mathematical invariants
12039that the optimizer can otherwise deduce or facts that are of little use to the
12040optimizer.
12041
Peter Collingbournee6909c82015-02-20 20:30:47 +000012042.. _bitset.test:
12043
12044'``llvm.bitset.test``' Intrinsic
12045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12046
12047Syntax:
12048"""""""
12049
12050::
12051
12052 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12053
12054
12055Arguments:
12056""""""""""
12057
12058The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012059metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012060
12061Overview:
12062"""""""""
12063
12064The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12065member of the given bitset.
12066
Sean Silvab084af42012-12-07 10:36:55 +000012067'``llvm.donothing``' Intrinsic
12068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12069
12070Syntax:
12071"""""""
12072
12073::
12074
12075 declare void @llvm.donothing() nounwind readnone
12076
12077Overview:
12078"""""""""
12079
Juergen Ributzkac9161192014-10-23 22:36:13 +000012080The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12081two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12082with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012083
12084Arguments:
12085""""""""""
12086
12087None.
12088
12089Semantics:
12090""""""""""
12091
12092This intrinsic does nothing, and it's removed by optimizers and ignored
12093by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012094
12095Stack Map Intrinsics
12096--------------------
12097
12098LLVM provides experimental intrinsics to support runtime patching
12099mechanisms commonly desired in dynamic language JITs. These intrinsics
12100are described in :doc:`StackMaps`.