blob: 525b01c87ac5baa7567ccca25c98f8bb27d8f284 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Sean Silva706fba52015-08-06 22:56:24 +0000693The argument list is a comma separated sequence of arguments where each
694argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
David Blaikie196582e2015-10-22 01:17:29 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Sean Silvaa1190322015-08-06 22:56:48 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000750that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000825with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000831COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000897 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000932 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000933 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000941 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001030 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001037 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001073index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001090of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
Sean Silvaa1190322015-08-06 22:56:48 +00001097A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001111have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001116definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Sean Silvaa1190322015-08-06 22:56:48 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001222 Transformations that are execution model agnostic may not make the execution
1223 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001224``inlinehint``
1225 This attribute indicates that the source code contained a hint that
1226 inlining this function is desirable (such as the "inline" keyword in
1227 C/C++). It is just a hint; it imposes no requirements on the
1228 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001229``jumptable``
1230 This attribute indicates that the function should be added to a
1231 jump-instruction table at code-generation time, and that all address-taken
1232 references to this function should be replaced with a reference to the
1233 appropriate jump-instruction-table function pointer. Note that this creates
1234 a new pointer for the original function, which means that code that depends
1235 on function-pointer identity can break. So, any function annotated with
1236 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001237``minsize``
1238 This attribute suggests that optimization passes and code generator
1239 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001240 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001241 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001242``naked``
1243 This attribute disables prologue / epilogue emission for the
1244 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001245``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001246 This indicates that the callee function at a call site is not recognized as
1247 a built-in function. LLVM will retain the original call and not replace it
1248 with equivalent code based on the semantics of the built-in function, unless
1249 the call site uses the ``builtin`` attribute. This is valid at call sites
1250 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001251``noduplicate``
1252 This attribute indicates that calls to the function cannot be
1253 duplicated. A call to a ``noduplicate`` function may be moved
1254 within its parent function, but may not be duplicated within
1255 its parent function.
1256
1257 A function containing a ``noduplicate`` call may still
1258 be an inlining candidate, provided that the call is not
1259 duplicated by inlining. That implies that the function has
1260 internal linkage and only has one call site, so the original
1261 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001262``noimplicitfloat``
1263 This attributes disables implicit floating point instructions.
1264``noinline``
1265 This attribute indicates that the inliner should never inline this
1266 function in any situation. This attribute may not be used together
1267 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001268``nonlazybind``
1269 This attribute suppresses lazy symbol binding for the function. This
1270 may make calls to the function faster, at the cost of extra program
1271 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001272``noredzone``
1273 This attribute indicates that the code generator should not use a
1274 red zone, even if the target-specific ABI normally permits it.
1275``noreturn``
1276 This function attribute indicates that the function never returns
1277 normally. This produces undefined behavior at runtime if the
1278 function ever does dynamically return.
1279``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001280 This function attribute indicates that the function never raises an
1281 exception. If the function does raise an exception, its runtime
1282 behavior is undefined. However, functions marked nounwind may still
1283 trap or generate asynchronous exceptions. Exception handling schemes
1284 that are recognized by LLVM to handle asynchronous exceptions, such
1285 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001286``optnone``
1287 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001288 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001289 exception of interprocedural optimization passes.
1290 This attribute cannot be used together with the ``alwaysinline``
1291 attribute; this attribute is also incompatible
1292 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001293
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001294 This attribute requires the ``noinline`` attribute to be specified on
1295 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001296 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001297 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001298``optsize``
1299 This attribute suggests that optimization passes and code generator
1300 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001301 and otherwise do optimizations specifically to reduce code size as
1302 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001303``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001304 On a function, this attribute indicates that the function computes its
1305 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001306 without dereferencing any pointer arguments or otherwise accessing
1307 any mutable state (e.g. memory, control registers, etc) visible to
1308 caller functions. It does not write through any pointer arguments
1309 (including ``byval`` arguments) and never changes any state visible
1310 to callers. This means that it cannot unwind exceptions by calling
1311 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001312
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001313 On an argument, this attribute indicates that the function does not
1314 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001315 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001316``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001317 On a function, this attribute indicates that the function does not write
1318 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001319 modify any state (e.g. memory, control registers, etc) visible to
1320 caller functions. It may dereference pointer arguments and read
1321 state that may be set in the caller. A readonly function always
1322 returns the same value (or unwinds an exception identically) when
1323 called with the same set of arguments and global state. It cannot
1324 unwind an exception by calling the ``C++`` exception throwing
1325 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001326
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001327 On an argument, this attribute indicates that the function does not write
1328 through this pointer argument, even though it may write to the memory that
1329 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001330``argmemonly``
1331 This attribute indicates that the only memory accesses inside function are
1332 loads and stores from objects pointed to by its pointer-typed arguments,
1333 with arbitrary offsets. Or in other words, all memory operations in the
1334 function can refer to memory only using pointers based on its function
1335 arguments.
1336 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1337 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001338``returns_twice``
1339 This attribute indicates that this function can return twice. The C
1340 ``setjmp`` is an example of such a function. The compiler disables
1341 some optimizations (like tail calls) in the caller of these
1342 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001343``safestack``
1344 This attribute indicates that
1345 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1346 protection is enabled for this function.
1347
1348 If a function that has a ``safestack`` attribute is inlined into a
1349 function that doesn't have a ``safestack`` attribute or which has an
1350 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1351 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001352``sanitize_address``
1353 This attribute indicates that AddressSanitizer checks
1354 (dynamic address safety analysis) are enabled for this function.
1355``sanitize_memory``
1356 This attribute indicates that MemorySanitizer checks (dynamic detection
1357 of accesses to uninitialized memory) are enabled for this function.
1358``sanitize_thread``
1359 This attribute indicates that ThreadSanitizer checks
1360 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001361``ssp``
1362 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001363 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001364 placed on the stack before the local variables that's checked upon
1365 return from the function to see if it has been overwritten. A
1366 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001367 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001368
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1370 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1371 - Calls to alloca() with variable sizes or constant sizes greater than
1372 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001373
Josh Magee24c7f062014-02-01 01:36:16 +00001374 Variables that are identified as requiring a protector will be arranged
1375 on the stack such that they are adjacent to the stack protector guard.
1376
Sean Silvab084af42012-12-07 10:36:55 +00001377 If a function that has an ``ssp`` attribute is inlined into a
1378 function that doesn't have an ``ssp`` attribute, then the resulting
1379 function will have an ``ssp`` attribute.
1380``sspreq``
1381 This attribute indicates that the function should *always* emit a
1382 stack smashing protector. This overrides the ``ssp`` function
1383 attribute.
1384
Josh Magee24c7f062014-02-01 01:36:16 +00001385 Variables that are identified as requiring a protector will be arranged
1386 on the stack such that they are adjacent to the stack protector guard.
1387 The specific layout rules are:
1388
1389 #. Large arrays and structures containing large arrays
1390 (``>= ssp-buffer-size``) are closest to the stack protector.
1391 #. Small arrays and structures containing small arrays
1392 (``< ssp-buffer-size``) are 2nd closest to the protector.
1393 #. Variables that have had their address taken are 3rd closest to the
1394 protector.
1395
Sean Silvab084af42012-12-07 10:36:55 +00001396 If a function that has an ``sspreq`` attribute is inlined into a
1397 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001398 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1399 an ``sspreq`` attribute.
1400``sspstrong``
1401 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001402 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001403 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001405
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001406 - Arrays of any size and type
1407 - Aggregates containing an array of any size and type.
1408 - Calls to alloca().
1409 - Local variables that have had their address taken.
1410
Josh Magee24c7f062014-02-01 01:36:16 +00001411 Variables that are identified as requiring a protector will be arranged
1412 on the stack such that they are adjacent to the stack protector guard.
1413 The specific layout rules are:
1414
1415 #. Large arrays and structures containing large arrays
1416 (``>= ssp-buffer-size``) are closest to the stack protector.
1417 #. Small arrays and structures containing small arrays
1418 (``< ssp-buffer-size``) are 2nd closest to the protector.
1419 #. Variables that have had their address taken are 3rd closest to the
1420 protector.
1421
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001422 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001423
1424 If a function that has an ``sspstrong`` attribute is inlined into a
1425 function that doesn't have an ``sspstrong`` attribute, then the
1426 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001427``"thunk"``
1428 This attribute indicates that the function will delegate to some other
1429 function with a tail call. The prototype of a thunk should not be used for
1430 optimization purposes. The caller is expected to cast the thunk prototype to
1431 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001432``uwtable``
1433 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001434 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001435 show that no exceptions passes by it. This is normally the case for
1436 the ELF x86-64 abi, but it can be disabled for some compilation
1437 units.
Sean Silvab084af42012-12-07 10:36:55 +00001438
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001439
1440.. _opbundles:
1441
1442Operand Bundles
1443---------------
1444
1445Note: operand bundles are a work in progress, and they should be
1446considered experimental at this time.
1447
1448Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001449with certain LLVM instructions (currently only ``call`` s and
1450``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001451incorrect and will change program semantics.
1452
1453Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001454
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001455 operand bundle set ::= '[' operand bundle ']'
1456 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1457 bundle operand ::= SSA value
1458 tag ::= string constant
1459
1460Operand bundles are **not** part of a function's signature, and a
1461given function may be called from multiple places with different kinds
1462of operand bundles. This reflects the fact that the operand bundles
1463are conceptually a part of the ``call`` (or ``invoke``), not the
1464callee being dispatched to.
1465
1466Operand bundles are a generic mechanism intended to support
1467runtime-introspection-like functionality for managed languages. While
1468the exact semantics of an operand bundle depend on the bundle tag,
1469there are certain limitations to how much the presence of an operand
1470bundle can influence the semantics of a program. These restrictions
1471are described as the semantics of an "unknown" operand bundle. As
1472long as the behavior of an operand bundle is describable within these
1473restrictions, LLVM does not need to have special knowledge of the
1474operand bundle to not miscompile programs containing it.
1475
David Majnemer34cacb42015-10-22 01:46:38 +00001476- The bundle operands for an unknown operand bundle escape in unknown
1477 ways before control is transferred to the callee or invokee.
1478- Calls and invokes with operand bundles have unknown read / write
1479 effect on the heap on entry and exit (even if the call target is
1480 ``readnone`` or ``readonly``).
1481- An operand bundle at a call site cannot change the implementation
1482 of the called function. Inter-procedural optimizations work as
1483 usual as long as they take into account the first two properties.
Sanjoy Das98a341b2015-10-22 03:12:22 +00001484- The bundle operands for an unknown operand bundle escape in unknown
1485 ways before control is transferred to the callee or invokee.
1486- Calls and invokes with operand bundles have unknown read / write
1487 effect on the heap on entry and exit (even if the call target is
1488 ``readnone`` or ``readonly``), unless they're overriden with
1489 callsite specific attributes.
1490- An operand bundle at a call site cannot change the implementation
1491 of the called function. Inter-procedural optimizations work as
1492 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001493
Sean Silvab084af42012-12-07 10:36:55 +00001494.. _moduleasm:
1495
1496Module-Level Inline Assembly
1497----------------------------
1498
1499Modules may contain "module-level inline asm" blocks, which corresponds
1500to the GCC "file scope inline asm" blocks. These blocks are internally
1501concatenated by LLVM and treated as a single unit, but may be separated
1502in the ``.ll`` file if desired. The syntax is very simple:
1503
1504.. code-block:: llvm
1505
1506 module asm "inline asm code goes here"
1507 module asm "more can go here"
1508
1509The strings can contain any character by escaping non-printable
1510characters. The escape sequence used is simply "\\xx" where "xx" is the
1511two digit hex code for the number.
1512
James Y Knightbc832ed2015-07-08 18:08:36 +00001513Note that the assembly string *must* be parseable by LLVM's integrated assembler
1514(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001515
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001516.. _langref_datalayout:
1517
Sean Silvab084af42012-12-07 10:36:55 +00001518Data Layout
1519-----------
1520
1521A module may specify a target specific data layout string that specifies
1522how data is to be laid out in memory. The syntax for the data layout is
1523simply:
1524
1525.. code-block:: llvm
1526
1527 target datalayout = "layout specification"
1528
1529The *layout specification* consists of a list of specifications
1530separated by the minus sign character ('-'). Each specification starts
1531with a letter and may include other information after the letter to
1532define some aspect of the data layout. The specifications accepted are
1533as follows:
1534
1535``E``
1536 Specifies that the target lays out data in big-endian form. That is,
1537 the bits with the most significance have the lowest address
1538 location.
1539``e``
1540 Specifies that the target lays out data in little-endian form. That
1541 is, the bits with the least significance have the lowest address
1542 location.
1543``S<size>``
1544 Specifies the natural alignment of the stack in bits. Alignment
1545 promotion of stack variables is limited to the natural stack
1546 alignment to avoid dynamic stack realignment. The stack alignment
1547 must be a multiple of 8-bits. If omitted, the natural stack
1548 alignment defaults to "unspecified", which does not prevent any
1549 alignment promotions.
1550``p[n]:<size>:<abi>:<pref>``
1551 This specifies the *size* of a pointer and its ``<abi>`` and
1552 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001553 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001554 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001555 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001556``i<size>:<abi>:<pref>``
1557 This specifies the alignment for an integer type of a given bit
1558 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1559``v<size>:<abi>:<pref>``
1560 This specifies the alignment for a vector type of a given bit
1561 ``<size>``.
1562``f<size>:<abi>:<pref>``
1563 This specifies the alignment for a floating point type of a given bit
1564 ``<size>``. Only values of ``<size>`` that are supported by the target
1565 will work. 32 (float) and 64 (double) are supported on all targets; 80
1566 or 128 (different flavors of long double) are also supported on some
1567 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001568``a:<abi>:<pref>``
1569 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001570``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001571 If present, specifies that llvm names are mangled in the output. The
1572 options are
1573
1574 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1575 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1576 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1577 symbols get a ``_`` prefix.
1578 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1579 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001580``n<size1>:<size2>:<size3>...``
1581 This specifies a set of native integer widths for the target CPU in
1582 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1583 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1584 this set are considered to support most general arithmetic operations
1585 efficiently.
1586
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001587On every specification that takes a ``<abi>:<pref>``, specifying the
1588``<pref>`` alignment is optional. If omitted, the preceding ``:``
1589should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1590
Sean Silvab084af42012-12-07 10:36:55 +00001591When constructing the data layout for a given target, LLVM starts with a
1592default set of specifications which are then (possibly) overridden by
1593the specifications in the ``datalayout`` keyword. The default
1594specifications are given in this list:
1595
1596- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001597- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1598- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1599 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001600- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001601- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1602- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1603- ``i16:16:16`` - i16 is 16-bit aligned
1604- ``i32:32:32`` - i32 is 32-bit aligned
1605- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1606 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001607- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001608- ``f32:32:32`` - float is 32-bit aligned
1609- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001610- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001611- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1612- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001613- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001614
1615When LLVM is determining the alignment for a given type, it uses the
1616following rules:
1617
1618#. If the type sought is an exact match for one of the specifications,
1619 that specification is used.
1620#. If no match is found, and the type sought is an integer type, then
1621 the smallest integer type that is larger than the bitwidth of the
1622 sought type is used. If none of the specifications are larger than
1623 the bitwidth then the largest integer type is used. For example,
1624 given the default specifications above, the i7 type will use the
1625 alignment of i8 (next largest) while both i65 and i256 will use the
1626 alignment of i64 (largest specified).
1627#. If no match is found, and the type sought is a vector type, then the
1628 largest vector type that is smaller than the sought vector type will
1629 be used as a fall back. This happens because <128 x double> can be
1630 implemented in terms of 64 <2 x double>, for example.
1631
1632The function of the data layout string may not be what you expect.
1633Notably, this is not a specification from the frontend of what alignment
1634the code generator should use.
1635
1636Instead, if specified, the target data layout is required to match what
1637the ultimate *code generator* expects. This string is used by the
1638mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001639what the ultimate code generator uses. There is no way to generate IR
1640that does not embed this target-specific detail into the IR. If you
1641don't specify the string, the default specifications will be used to
1642generate a Data Layout and the optimization phases will operate
1643accordingly and introduce target specificity into the IR with respect to
1644these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001645
Bill Wendling5cc90842013-10-18 23:41:25 +00001646.. _langref_triple:
1647
1648Target Triple
1649-------------
1650
1651A module may specify a target triple string that describes the target
1652host. The syntax for the target triple is simply:
1653
1654.. code-block:: llvm
1655
1656 target triple = "x86_64-apple-macosx10.7.0"
1657
1658The *target triple* string consists of a series of identifiers delimited
1659by the minus sign character ('-'). The canonical forms are:
1660
1661::
1662
1663 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1664 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1665
1666This information is passed along to the backend so that it generates
1667code for the proper architecture. It's possible to override this on the
1668command line with the ``-mtriple`` command line option.
1669
Sean Silvab084af42012-12-07 10:36:55 +00001670.. _pointeraliasing:
1671
1672Pointer Aliasing Rules
1673----------------------
1674
1675Any memory access must be done through a pointer value associated with
1676an address range of the memory access, otherwise the behavior is
1677undefined. Pointer values are associated with address ranges according
1678to the following rules:
1679
1680- A pointer value is associated with the addresses associated with any
1681 value it is *based* on.
1682- An address of a global variable is associated with the address range
1683 of the variable's storage.
1684- The result value of an allocation instruction is associated with the
1685 address range of the allocated storage.
1686- A null pointer in the default address-space is associated with no
1687 address.
1688- An integer constant other than zero or a pointer value returned from
1689 a function not defined within LLVM may be associated with address
1690 ranges allocated through mechanisms other than those provided by
1691 LLVM. Such ranges shall not overlap with any ranges of addresses
1692 allocated by mechanisms provided by LLVM.
1693
1694A pointer value is *based* on another pointer value according to the
1695following rules:
1696
1697- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001698 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001699- The result value of a ``bitcast`` is *based* on the operand of the
1700 ``bitcast``.
1701- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1702 values that contribute (directly or indirectly) to the computation of
1703 the pointer's value.
1704- The "*based* on" relationship is transitive.
1705
1706Note that this definition of *"based"* is intentionally similar to the
1707definition of *"based"* in C99, though it is slightly weaker.
1708
1709LLVM IR does not associate types with memory. The result type of a
1710``load`` merely indicates the size and alignment of the memory from
1711which to load, as well as the interpretation of the value. The first
1712operand type of a ``store`` similarly only indicates the size and
1713alignment of the store.
1714
1715Consequently, type-based alias analysis, aka TBAA, aka
1716``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1717:ref:`Metadata <metadata>` may be used to encode additional information
1718which specialized optimization passes may use to implement type-based
1719alias analysis.
1720
1721.. _volatile:
1722
1723Volatile Memory Accesses
1724------------------------
1725
1726Certain memory accesses, such as :ref:`load <i_load>`'s,
1727:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1728marked ``volatile``. The optimizers must not change the number of
1729volatile operations or change their order of execution relative to other
1730volatile operations. The optimizers *may* change the order of volatile
1731operations relative to non-volatile operations. This is not Java's
1732"volatile" and has no cross-thread synchronization behavior.
1733
Andrew Trick89fc5a62013-01-30 21:19:35 +00001734IR-level volatile loads and stores cannot safely be optimized into
1735llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1736flagged volatile. Likewise, the backend should never split or merge
1737target-legal volatile load/store instructions.
1738
Andrew Trick7e6f9282013-01-31 00:49:39 +00001739.. admonition:: Rationale
1740
1741 Platforms may rely on volatile loads and stores of natively supported
1742 data width to be executed as single instruction. For example, in C
1743 this holds for an l-value of volatile primitive type with native
1744 hardware support, but not necessarily for aggregate types. The
1745 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001746 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001747 do not violate the frontend's contract with the language.
1748
Sean Silvab084af42012-12-07 10:36:55 +00001749.. _memmodel:
1750
1751Memory Model for Concurrent Operations
1752--------------------------------------
1753
1754The LLVM IR does not define any way to start parallel threads of
1755execution or to register signal handlers. Nonetheless, there are
1756platform-specific ways to create them, and we define LLVM IR's behavior
1757in their presence. This model is inspired by the C++0x memory model.
1758
1759For a more informal introduction to this model, see the :doc:`Atomics`.
1760
1761We define a *happens-before* partial order as the least partial order
1762that
1763
1764- Is a superset of single-thread program order, and
1765- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1766 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1767 techniques, like pthread locks, thread creation, thread joining,
1768 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1769 Constraints <ordering>`).
1770
1771Note that program order does not introduce *happens-before* edges
1772between a thread and signals executing inside that thread.
1773
1774Every (defined) read operation (load instructions, memcpy, atomic
1775loads/read-modify-writes, etc.) R reads a series of bytes written by
1776(defined) write operations (store instructions, atomic
1777stores/read-modify-writes, memcpy, etc.). For the purposes of this
1778section, initialized globals are considered to have a write of the
1779initializer which is atomic and happens before any other read or write
1780of the memory in question. For each byte of a read R, R\ :sub:`byte`
1781may see any write to the same byte, except:
1782
1783- If write\ :sub:`1` happens before write\ :sub:`2`, and
1784 write\ :sub:`2` happens before R\ :sub:`byte`, then
1785 R\ :sub:`byte` does not see write\ :sub:`1`.
1786- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1787 R\ :sub:`byte` does not see write\ :sub:`3`.
1788
1789Given that definition, R\ :sub:`byte` is defined as follows:
1790
1791- If R is volatile, the result is target-dependent. (Volatile is
1792 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001793 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001794 like normal memory. It does not generally provide cross-thread
1795 synchronization.)
1796- Otherwise, if there is no write to the same byte that happens before
1797 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1798- Otherwise, if R\ :sub:`byte` may see exactly one write,
1799 R\ :sub:`byte` returns the value written by that write.
1800- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1801 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1802 Memory Ordering Constraints <ordering>` section for additional
1803 constraints on how the choice is made.
1804- Otherwise R\ :sub:`byte` returns ``undef``.
1805
1806R returns the value composed of the series of bytes it read. This
1807implies that some bytes within the value may be ``undef`` **without**
1808the entire value being ``undef``. Note that this only defines the
1809semantics of the operation; it doesn't mean that targets will emit more
1810than one instruction to read the series of bytes.
1811
1812Note that in cases where none of the atomic intrinsics are used, this
1813model places only one restriction on IR transformations on top of what
1814is required for single-threaded execution: introducing a store to a byte
1815which might not otherwise be stored is not allowed in general.
1816(Specifically, in the case where another thread might write to and read
1817from an address, introducing a store can change a load that may see
1818exactly one write into a load that may see multiple writes.)
1819
1820.. _ordering:
1821
1822Atomic Memory Ordering Constraints
1823----------------------------------
1824
1825Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1826:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1827:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001828ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001829the same address they *synchronize with*. These semantics are borrowed
1830from Java and C++0x, but are somewhat more colloquial. If these
1831descriptions aren't precise enough, check those specs (see spec
1832references in the :doc:`atomics guide <Atomics>`).
1833:ref:`fence <i_fence>` instructions treat these orderings somewhat
1834differently since they don't take an address. See that instruction's
1835documentation for details.
1836
1837For a simpler introduction to the ordering constraints, see the
1838:doc:`Atomics`.
1839
1840``unordered``
1841 The set of values that can be read is governed by the happens-before
1842 partial order. A value cannot be read unless some operation wrote
1843 it. This is intended to provide a guarantee strong enough to model
1844 Java's non-volatile shared variables. This ordering cannot be
1845 specified for read-modify-write operations; it is not strong enough
1846 to make them atomic in any interesting way.
1847``monotonic``
1848 In addition to the guarantees of ``unordered``, there is a single
1849 total order for modifications by ``monotonic`` operations on each
1850 address. All modification orders must be compatible with the
1851 happens-before order. There is no guarantee that the modification
1852 orders can be combined to a global total order for the whole program
1853 (and this often will not be possible). The read in an atomic
1854 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1855 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1856 order immediately before the value it writes. If one atomic read
1857 happens before another atomic read of the same address, the later
1858 read must see the same value or a later value in the address's
1859 modification order. This disallows reordering of ``monotonic`` (or
1860 stronger) operations on the same address. If an address is written
1861 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1862 read that address repeatedly, the other threads must eventually see
1863 the write. This corresponds to the C++0x/C1x
1864 ``memory_order_relaxed``.
1865``acquire``
1866 In addition to the guarantees of ``monotonic``, a
1867 *synchronizes-with* edge may be formed with a ``release`` operation.
1868 This is intended to model C++'s ``memory_order_acquire``.
1869``release``
1870 In addition to the guarantees of ``monotonic``, if this operation
1871 writes a value which is subsequently read by an ``acquire``
1872 operation, it *synchronizes-with* that operation. (This isn't a
1873 complete description; see the C++0x definition of a release
1874 sequence.) This corresponds to the C++0x/C1x
1875 ``memory_order_release``.
1876``acq_rel`` (acquire+release)
1877 Acts as both an ``acquire`` and ``release`` operation on its
1878 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1879``seq_cst`` (sequentially consistent)
1880 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001881 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001882 writes), there is a global total order on all
1883 sequentially-consistent operations on all addresses, which is
1884 consistent with the *happens-before* partial order and with the
1885 modification orders of all the affected addresses. Each
1886 sequentially-consistent read sees the last preceding write to the
1887 same address in this global order. This corresponds to the C++0x/C1x
1888 ``memory_order_seq_cst`` and Java volatile.
1889
1890.. _singlethread:
1891
1892If an atomic operation is marked ``singlethread``, it only *synchronizes
1893with* or participates in modification and seq\_cst total orderings with
1894other operations running in the same thread (for example, in signal
1895handlers).
1896
1897.. _fastmath:
1898
1899Fast-Math Flags
1900---------------
1901
1902LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1903:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001904:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1905be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001906
1907``nnan``
1908 No NaNs - Allow optimizations to assume the arguments and result are not
1909 NaN. Such optimizations are required to retain defined behavior over
1910 NaNs, but the value of the result is undefined.
1911
1912``ninf``
1913 No Infs - Allow optimizations to assume the arguments and result are not
1914 +/-Inf. Such optimizations are required to retain defined behavior over
1915 +/-Inf, but the value of the result is undefined.
1916
1917``nsz``
1918 No Signed Zeros - Allow optimizations to treat the sign of a zero
1919 argument or result as insignificant.
1920
1921``arcp``
1922 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1923 argument rather than perform division.
1924
1925``fast``
1926 Fast - Allow algebraically equivalent transformations that may
1927 dramatically change results in floating point (e.g. reassociate). This
1928 flag implies all the others.
1929
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001930.. _uselistorder:
1931
1932Use-list Order Directives
1933-------------------------
1934
1935Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001936order to be recreated. ``<order-indexes>`` is a comma-separated list of
1937indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001938value's use-list is immediately sorted by these indexes.
1939
Sean Silvaa1190322015-08-06 22:56:48 +00001940Use-list directives may appear at function scope or global scope. They are not
1941instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001942function scope, they must appear after the terminator of the final basic block.
1943
1944If basic blocks have their address taken via ``blockaddress()`` expressions,
1945``uselistorder_bb`` can be used to reorder their use-lists from outside their
1946function's scope.
1947
1948:Syntax:
1949
1950::
1951
1952 uselistorder <ty> <value>, { <order-indexes> }
1953 uselistorder_bb @function, %block { <order-indexes> }
1954
1955:Examples:
1956
1957::
1958
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001959 define void @foo(i32 %arg1, i32 %arg2) {
1960 entry:
1961 ; ... instructions ...
1962 bb:
1963 ; ... instructions ...
1964
1965 ; At function scope.
1966 uselistorder i32 %arg1, { 1, 0, 2 }
1967 uselistorder label %bb, { 1, 0 }
1968 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001969
1970 ; At global scope.
1971 uselistorder i32* @global, { 1, 2, 0 }
1972 uselistorder i32 7, { 1, 0 }
1973 uselistorder i32 (i32) @bar, { 1, 0 }
1974 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1975
Sean Silvab084af42012-12-07 10:36:55 +00001976.. _typesystem:
1977
1978Type System
1979===========
1980
1981The LLVM type system is one of the most important features of the
1982intermediate representation. Being typed enables a number of
1983optimizations to be performed on the intermediate representation
1984directly, without having to do extra analyses on the side before the
1985transformation. A strong type system makes it easier to read the
1986generated code and enables novel analyses and transformations that are
1987not feasible to perform on normal three address code representations.
1988
Rafael Espindola08013342013-12-07 19:34:20 +00001989.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001990
Rafael Espindola08013342013-12-07 19:34:20 +00001991Void Type
1992---------
Sean Silvab084af42012-12-07 10:36:55 +00001993
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001994:Overview:
1995
Rafael Espindola08013342013-12-07 19:34:20 +00001996
1997The void type does not represent any value and has no size.
1998
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001999:Syntax:
2000
Rafael Espindola08013342013-12-07 19:34:20 +00002001
2002::
2003
2004 void
Sean Silvab084af42012-12-07 10:36:55 +00002005
2006
Rafael Espindola08013342013-12-07 19:34:20 +00002007.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002008
Rafael Espindola08013342013-12-07 19:34:20 +00002009Function Type
2010-------------
Sean Silvab084af42012-12-07 10:36:55 +00002011
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002012:Overview:
2013
Sean Silvab084af42012-12-07 10:36:55 +00002014
Rafael Espindola08013342013-12-07 19:34:20 +00002015The function type can be thought of as a function signature. It consists of a
2016return type and a list of formal parameter types. The return type of a function
2017type is a void type or first class type --- except for :ref:`label <t_label>`
2018and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002019
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002020:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002021
Rafael Espindola08013342013-12-07 19:34:20 +00002022::
Sean Silvab084af42012-12-07 10:36:55 +00002023
Rafael Espindola08013342013-12-07 19:34:20 +00002024 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002025
Rafael Espindola08013342013-12-07 19:34:20 +00002026...where '``<parameter list>``' is a comma-separated list of type
2027specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002028indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002029argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002030handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002031except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002032
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002033:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002034
Rafael Espindola08013342013-12-07 19:34:20 +00002035+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2036| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2037+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2038| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2039+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2040| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2041+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2042| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2043+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2044
2045.. _t_firstclass:
2046
2047First Class Types
2048-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002049
2050The :ref:`first class <t_firstclass>` types are perhaps the most important.
2051Values of these types are the only ones which can be produced by
2052instructions.
2053
Rafael Espindola08013342013-12-07 19:34:20 +00002054.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002055
Rafael Espindola08013342013-12-07 19:34:20 +00002056Single Value Types
2057^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002058
Rafael Espindola08013342013-12-07 19:34:20 +00002059These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002060
2061.. _t_integer:
2062
2063Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002064""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002065
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002066:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002067
2068The integer type is a very simple type that simply specifies an
2069arbitrary bit width for the integer type desired. Any bit width from 1
2070bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2071
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002072:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002073
2074::
2075
2076 iN
2077
2078The number of bits the integer will occupy is specified by the ``N``
2079value.
2080
2081Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002082*********
Sean Silvab084af42012-12-07 10:36:55 +00002083
2084+----------------+------------------------------------------------+
2085| ``i1`` | a single-bit integer. |
2086+----------------+------------------------------------------------+
2087| ``i32`` | a 32-bit integer. |
2088+----------------+------------------------------------------------+
2089| ``i1942652`` | a really big integer of over 1 million bits. |
2090+----------------+------------------------------------------------+
2091
2092.. _t_floating:
2093
2094Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002095""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002096
2097.. list-table::
2098 :header-rows: 1
2099
2100 * - Type
2101 - Description
2102
2103 * - ``half``
2104 - 16-bit floating point value
2105
2106 * - ``float``
2107 - 32-bit floating point value
2108
2109 * - ``double``
2110 - 64-bit floating point value
2111
2112 * - ``fp128``
2113 - 128-bit floating point value (112-bit mantissa)
2114
2115 * - ``x86_fp80``
2116 - 80-bit floating point value (X87)
2117
2118 * - ``ppc_fp128``
2119 - 128-bit floating point value (two 64-bits)
2120
Reid Kleckner9a16d082014-03-05 02:41:37 +00002121X86_mmx Type
2122""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002123
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002124:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002125
Reid Kleckner9a16d082014-03-05 02:41:37 +00002126The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002127machine. The operations allowed on it are quite limited: parameters and
2128return values, load and store, and bitcast. User-specified MMX
2129instructions are represented as intrinsic or asm calls with arguments
2130and/or results of this type. There are no arrays, vectors or constants
2131of this type.
2132
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002133:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002134
2135::
2136
Reid Kleckner9a16d082014-03-05 02:41:37 +00002137 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002138
Sean Silvab084af42012-12-07 10:36:55 +00002139
Rafael Espindola08013342013-12-07 19:34:20 +00002140.. _t_pointer:
2141
2142Pointer Type
2143""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002144
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002145:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002146
Rafael Espindola08013342013-12-07 19:34:20 +00002147The pointer type is used to specify memory locations. Pointers are
2148commonly used to reference objects in memory.
2149
2150Pointer types may have an optional address space attribute defining the
2151numbered address space where the pointed-to object resides. The default
2152address space is number zero. The semantics of non-zero address spaces
2153are target-specific.
2154
2155Note that LLVM does not permit pointers to void (``void*``) nor does it
2156permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002157
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002158:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002159
2160::
2161
Rafael Espindola08013342013-12-07 19:34:20 +00002162 <type> *
2163
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002164:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002165
2166+-------------------------+--------------------------------------------------------------------------------------------------------------+
2167| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2168+-------------------------+--------------------------------------------------------------------------------------------------------------+
2169| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2170+-------------------------+--------------------------------------------------------------------------------------------------------------+
2171| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2172+-------------------------+--------------------------------------------------------------------------------------------------------------+
2173
2174.. _t_vector:
2175
2176Vector Type
2177"""""""""""
2178
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002179:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002180
2181A vector type is a simple derived type that represents a vector of
2182elements. Vector types are used when multiple primitive data are
2183operated in parallel using a single instruction (SIMD). A vector type
2184requires a size (number of elements) and an underlying primitive data
2185type. Vector types are considered :ref:`first class <t_firstclass>`.
2186
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002187:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002188
2189::
2190
2191 < <# elements> x <elementtype> >
2192
2193The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002194elementtype may be any integer, floating point or pointer type. Vectors
2195of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002196
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002197:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002198
2199+-------------------+--------------------------------------------------+
2200| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2201+-------------------+--------------------------------------------------+
2202| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2203+-------------------+--------------------------------------------------+
2204| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2205+-------------------+--------------------------------------------------+
2206| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2207+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002208
2209.. _t_label:
2210
2211Label Type
2212^^^^^^^^^^
2213
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002214:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002215
2216The label type represents code labels.
2217
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002218:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002219
2220::
2221
2222 label
2223
David Majnemerb611e3f2015-08-14 05:09:07 +00002224.. _t_token:
2225
2226Token Type
2227^^^^^^^^^^
2228
2229:Overview:
2230
2231The token type is used when a value is associated with an instruction
2232but all uses of the value must not attempt to introspect or obscure it.
2233As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2234:ref:`select <i_select>` of type token.
2235
2236:Syntax:
2237
2238::
2239
2240 token
2241
2242
2243
Sean Silvab084af42012-12-07 10:36:55 +00002244.. _t_metadata:
2245
2246Metadata Type
2247^^^^^^^^^^^^^
2248
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002249:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002250
2251The metadata type represents embedded metadata. No derived types may be
2252created from metadata except for :ref:`function <t_function>` arguments.
2253
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002254:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002255
2256::
2257
2258 metadata
2259
Sean Silvab084af42012-12-07 10:36:55 +00002260.. _t_aggregate:
2261
2262Aggregate Types
2263^^^^^^^^^^^^^^^
2264
2265Aggregate Types are a subset of derived types that can contain multiple
2266member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2267aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2268aggregate types.
2269
2270.. _t_array:
2271
2272Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002273""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002274
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002275:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002276
2277The array type is a very simple derived type that arranges elements
2278sequentially in memory. The array type requires a size (number of
2279elements) and an underlying data type.
2280
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002281:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002282
2283::
2284
2285 [<# elements> x <elementtype>]
2286
2287The number of elements is a constant integer value; ``elementtype`` may
2288be any type with a size.
2289
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002290:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002291
2292+------------------+--------------------------------------+
2293| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2294+------------------+--------------------------------------+
2295| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2296+------------------+--------------------------------------+
2297| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2298+------------------+--------------------------------------+
2299
2300Here are some examples of multidimensional arrays:
2301
2302+-----------------------------+----------------------------------------------------------+
2303| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2304+-----------------------------+----------------------------------------------------------+
2305| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2306+-----------------------------+----------------------------------------------------------+
2307| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2308+-----------------------------+----------------------------------------------------------+
2309
2310There is no restriction on indexing beyond the end of the array implied
2311by a static type (though there are restrictions on indexing beyond the
2312bounds of an allocated object in some cases). This means that
2313single-dimension 'variable sized array' addressing can be implemented in
2314LLVM with a zero length array type. An implementation of 'pascal style
2315arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2316example.
2317
Sean Silvab084af42012-12-07 10:36:55 +00002318.. _t_struct:
2319
2320Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002321""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002322
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002323:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002324
2325The structure type is used to represent a collection of data members
2326together in memory. The elements of a structure may be any type that has
2327a size.
2328
2329Structures in memory are accessed using '``load``' and '``store``' by
2330getting a pointer to a field with the '``getelementptr``' instruction.
2331Structures in registers are accessed using the '``extractvalue``' and
2332'``insertvalue``' instructions.
2333
2334Structures may optionally be "packed" structures, which indicate that
2335the alignment of the struct is one byte, and that there is no padding
2336between the elements. In non-packed structs, padding between field types
2337is inserted as defined by the DataLayout string in the module, which is
2338required to match what the underlying code generator expects.
2339
2340Structures can either be "literal" or "identified". A literal structure
2341is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2342identified types are always defined at the top level with a name.
2343Literal types are uniqued by their contents and can never be recursive
2344or opaque since there is no way to write one. Identified types can be
2345recursive, can be opaqued, and are never uniqued.
2346
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002347:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002348
2349::
2350
2351 %T1 = type { <type list> } ; Identified normal struct type
2352 %T2 = type <{ <type list> }> ; Identified packed struct type
2353
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002354:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002355
2356+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2357| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2358+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002359| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002360+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2361| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2362+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2363
2364.. _t_opaque:
2365
2366Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002367""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002368
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002369:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002370
2371Opaque structure types are used to represent named structure types that
2372do not have a body specified. This corresponds (for example) to the C
2373notion of a forward declared structure.
2374
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002375:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002376
2377::
2378
2379 %X = type opaque
2380 %52 = type opaque
2381
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002382:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002383
2384+--------------+-------------------+
2385| ``opaque`` | An opaque type. |
2386+--------------+-------------------+
2387
Sean Silva1703e702014-04-08 21:06:22 +00002388.. _constants:
2389
Sean Silvab084af42012-12-07 10:36:55 +00002390Constants
2391=========
2392
2393LLVM has several different basic types of constants. This section
2394describes them all and their syntax.
2395
2396Simple Constants
2397----------------
2398
2399**Boolean constants**
2400 The two strings '``true``' and '``false``' are both valid constants
2401 of the ``i1`` type.
2402**Integer constants**
2403 Standard integers (such as '4') are constants of the
2404 :ref:`integer <t_integer>` type. Negative numbers may be used with
2405 integer types.
2406**Floating point constants**
2407 Floating point constants use standard decimal notation (e.g.
2408 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2409 hexadecimal notation (see below). The assembler requires the exact
2410 decimal value of a floating-point constant. For example, the
2411 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2412 decimal in binary. Floating point constants must have a :ref:`floating
2413 point <t_floating>` type.
2414**Null pointer constants**
2415 The identifier '``null``' is recognized as a null pointer constant
2416 and must be of :ref:`pointer type <t_pointer>`.
2417
2418The one non-intuitive notation for constants is the hexadecimal form of
2419floating point constants. For example, the form
2420'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2421than) '``double 4.5e+15``'. The only time hexadecimal floating point
2422constants are required (and the only time that they are generated by the
2423disassembler) is when a floating point constant must be emitted but it
2424cannot be represented as a decimal floating point number in a reasonable
2425number of digits. For example, NaN's, infinities, and other special
2426values are represented in their IEEE hexadecimal format so that assembly
2427and disassembly do not cause any bits to change in the constants.
2428
2429When using the hexadecimal form, constants of types half, float, and
2430double are represented using the 16-digit form shown above (which
2431matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002432must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002433precision, respectively. Hexadecimal format is always used for long
2434double, and there are three forms of long double. The 80-bit format used
2435by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2436128-bit format used by PowerPC (two adjacent doubles) is represented by
2437``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002438represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2439will only work if they match the long double format on your target.
2440The IEEE 16-bit format (half precision) is represented by ``0xH``
2441followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2442(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002443
Reid Kleckner9a16d082014-03-05 02:41:37 +00002444There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002445
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002446.. _complexconstants:
2447
Sean Silvab084af42012-12-07 10:36:55 +00002448Complex Constants
2449-----------------
2450
2451Complex constants are a (potentially recursive) combination of simple
2452constants and smaller complex constants.
2453
2454**Structure constants**
2455 Structure constants are represented with notation similar to
2456 structure type definitions (a comma separated list of elements,
2457 surrounded by braces (``{}``)). For example:
2458 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2459 "``@G = external global i32``". Structure constants must have
2460 :ref:`structure type <t_struct>`, and the number and types of elements
2461 must match those specified by the type.
2462**Array constants**
2463 Array constants are represented with notation similar to array type
2464 definitions (a comma separated list of elements, surrounded by
2465 square brackets (``[]``)). For example:
2466 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2467 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002468 match those specified by the type. As a special case, character array
2469 constants may also be represented as a double-quoted string using the ``c``
2470 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002471**Vector constants**
2472 Vector constants are represented with notation similar to vector
2473 type definitions (a comma separated list of elements, surrounded by
2474 less-than/greater-than's (``<>``)). For example:
2475 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2476 must have :ref:`vector type <t_vector>`, and the number and types of
2477 elements must match those specified by the type.
2478**Zero initialization**
2479 The string '``zeroinitializer``' can be used to zero initialize a
2480 value to zero of *any* type, including scalar and
2481 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2482 having to print large zero initializers (e.g. for large arrays) and
2483 is always exactly equivalent to using explicit zero initializers.
2484**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002485 A metadata node is a constant tuple without types. For example:
2486 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002487 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2488 Unlike other typed constants that are meant to be interpreted as part of
2489 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002490 information such as debug info.
2491
2492Global Variable and Function Addresses
2493--------------------------------------
2494
2495The addresses of :ref:`global variables <globalvars>` and
2496:ref:`functions <functionstructure>` are always implicitly valid
2497(link-time) constants. These constants are explicitly referenced when
2498the :ref:`identifier for the global <identifiers>` is used and always have
2499:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2500file:
2501
2502.. code-block:: llvm
2503
2504 @X = global i32 17
2505 @Y = global i32 42
2506 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2507
2508.. _undefvalues:
2509
2510Undefined Values
2511----------------
2512
2513The string '``undef``' can be used anywhere a constant is expected, and
2514indicates that the user of the value may receive an unspecified
2515bit-pattern. Undefined values may be of any type (other than '``label``'
2516or '``void``') and be used anywhere a constant is permitted.
2517
2518Undefined values are useful because they indicate to the compiler that
2519the program is well defined no matter what value is used. This gives the
2520compiler more freedom to optimize. Here are some examples of
2521(potentially surprising) transformations that are valid (in pseudo IR):
2522
2523.. code-block:: llvm
2524
2525 %A = add %X, undef
2526 %B = sub %X, undef
2527 %C = xor %X, undef
2528 Safe:
2529 %A = undef
2530 %B = undef
2531 %C = undef
2532
2533This is safe because all of the output bits are affected by the undef
2534bits. Any output bit can have a zero or one depending on the input bits.
2535
2536.. code-block:: llvm
2537
2538 %A = or %X, undef
2539 %B = and %X, undef
2540 Safe:
2541 %A = -1
2542 %B = 0
2543 Unsafe:
2544 %A = undef
2545 %B = undef
2546
2547These logical operations have bits that are not always affected by the
2548input. For example, if ``%X`` has a zero bit, then the output of the
2549'``and``' operation will always be a zero for that bit, no matter what
2550the corresponding bit from the '``undef``' is. As such, it is unsafe to
2551optimize or assume that the result of the '``and``' is '``undef``'.
2552However, it is safe to assume that all bits of the '``undef``' could be
25530, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2554all the bits of the '``undef``' operand to the '``or``' could be set,
2555allowing the '``or``' to be folded to -1.
2556
2557.. code-block:: llvm
2558
2559 %A = select undef, %X, %Y
2560 %B = select undef, 42, %Y
2561 %C = select %X, %Y, undef
2562 Safe:
2563 %A = %X (or %Y)
2564 %B = 42 (or %Y)
2565 %C = %Y
2566 Unsafe:
2567 %A = undef
2568 %B = undef
2569 %C = undef
2570
2571This set of examples shows that undefined '``select``' (and conditional
2572branch) conditions can go *either way*, but they have to come from one
2573of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2574both known to have a clear low bit, then ``%A`` would have to have a
2575cleared low bit. However, in the ``%C`` example, the optimizer is
2576allowed to assume that the '``undef``' operand could be the same as
2577``%Y``, allowing the whole '``select``' to be eliminated.
2578
2579.. code-block:: llvm
2580
2581 %A = xor undef, undef
2582
2583 %B = undef
2584 %C = xor %B, %B
2585
2586 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002587 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002588 %F = icmp gte %D, 4
2589
2590 Safe:
2591 %A = undef
2592 %B = undef
2593 %C = undef
2594 %D = undef
2595 %E = undef
2596 %F = undef
2597
2598This example points out that two '``undef``' operands are not
2599necessarily the same. This can be surprising to people (and also matches
2600C semantics) where they assume that "``X^X``" is always zero, even if
2601``X`` is undefined. This isn't true for a number of reasons, but the
2602short answer is that an '``undef``' "variable" can arbitrarily change
2603its value over its "live range". This is true because the variable
2604doesn't actually *have a live range*. Instead, the value is logically
2605read from arbitrary registers that happen to be around when needed, so
2606the value is not necessarily consistent over time. In fact, ``%A`` and
2607``%C`` need to have the same semantics or the core LLVM "replace all
2608uses with" concept would not hold.
2609
2610.. code-block:: llvm
2611
2612 %A = fdiv undef, %X
2613 %B = fdiv %X, undef
2614 Safe:
2615 %A = undef
2616 b: unreachable
2617
2618These examples show the crucial difference between an *undefined value*
2619and *undefined behavior*. An undefined value (like '``undef``') is
2620allowed to have an arbitrary bit-pattern. This means that the ``%A``
2621operation can be constant folded to '``undef``', because the '``undef``'
2622could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2623However, in the second example, we can make a more aggressive
2624assumption: because the ``undef`` is allowed to be an arbitrary value,
2625we are allowed to assume that it could be zero. Since a divide by zero
2626has *undefined behavior*, we are allowed to assume that the operation
2627does not execute at all. This allows us to delete the divide and all
2628code after it. Because the undefined operation "can't happen", the
2629optimizer can assume that it occurs in dead code.
2630
2631.. code-block:: llvm
2632
2633 a: store undef -> %X
2634 b: store %X -> undef
2635 Safe:
2636 a: <deleted>
2637 b: unreachable
2638
2639These examples reiterate the ``fdiv`` example: a store *of* an undefined
2640value can be assumed to not have any effect; we can assume that the
2641value is overwritten with bits that happen to match what was already
2642there. However, a store *to* an undefined location could clobber
2643arbitrary memory, therefore, it has undefined behavior.
2644
2645.. _poisonvalues:
2646
2647Poison Values
2648-------------
2649
2650Poison values are similar to :ref:`undef values <undefvalues>`, however
2651they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002652that cannot evoke side effects has nevertheless detected a condition
2653that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002654
2655There is currently no way of representing a poison value in the IR; they
2656only exist when produced by operations such as :ref:`add <i_add>` with
2657the ``nsw`` flag.
2658
2659Poison value behavior is defined in terms of value *dependence*:
2660
2661- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2662- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2663 their dynamic predecessor basic block.
2664- Function arguments depend on the corresponding actual argument values
2665 in the dynamic callers of their functions.
2666- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2667 instructions that dynamically transfer control back to them.
2668- :ref:`Invoke <i_invoke>` instructions depend on the
2669 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2670 call instructions that dynamically transfer control back to them.
2671- Non-volatile loads and stores depend on the most recent stores to all
2672 of the referenced memory addresses, following the order in the IR
2673 (including loads and stores implied by intrinsics such as
2674 :ref:`@llvm.memcpy <int_memcpy>`.)
2675- An instruction with externally visible side effects depends on the
2676 most recent preceding instruction with externally visible side
2677 effects, following the order in the IR. (This includes :ref:`volatile
2678 operations <volatile>`.)
2679- An instruction *control-depends* on a :ref:`terminator
2680 instruction <terminators>` if the terminator instruction has
2681 multiple successors and the instruction is always executed when
2682 control transfers to one of the successors, and may not be executed
2683 when control is transferred to another.
2684- Additionally, an instruction also *control-depends* on a terminator
2685 instruction if the set of instructions it otherwise depends on would
2686 be different if the terminator had transferred control to a different
2687 successor.
2688- Dependence is transitive.
2689
Richard Smith32dbdf62014-07-31 04:25:36 +00002690Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2691with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002692on a poison value has undefined behavior.
2693
2694Here are some examples:
2695
2696.. code-block:: llvm
2697
2698 entry:
2699 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2700 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002701 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002702 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2703
2704 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002705 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002706
2707 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2708
2709 %narrowaddr = bitcast i32* @g to i16*
2710 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002711 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2712 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002713
2714 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2715 br i1 %cmp, label %true, label %end ; Branch to either destination.
2716
2717 true:
2718 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2719 ; it has undefined behavior.
2720 br label %end
2721
2722 end:
2723 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2724 ; Both edges into this PHI are
2725 ; control-dependent on %cmp, so this
2726 ; always results in a poison value.
2727
2728 store volatile i32 0, i32* @g ; This would depend on the store in %true
2729 ; if %cmp is true, or the store in %entry
2730 ; otherwise, so this is undefined behavior.
2731
2732 br i1 %cmp, label %second_true, label %second_end
2733 ; The same branch again, but this time the
2734 ; true block doesn't have side effects.
2735
2736 second_true:
2737 ; No side effects!
2738 ret void
2739
2740 second_end:
2741 store volatile i32 0, i32* @g ; This time, the instruction always depends
2742 ; on the store in %end. Also, it is
2743 ; control-equivalent to %end, so this is
2744 ; well-defined (ignoring earlier undefined
2745 ; behavior in this example).
2746
2747.. _blockaddress:
2748
2749Addresses of Basic Blocks
2750-------------------------
2751
2752``blockaddress(@function, %block)``
2753
2754The '``blockaddress``' constant computes the address of the specified
2755basic block in the specified function, and always has an ``i8*`` type.
2756Taking the address of the entry block is illegal.
2757
2758This value only has defined behavior when used as an operand to the
2759':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2760against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002761undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002762no label is equal to the null pointer. This may be passed around as an
2763opaque pointer sized value as long as the bits are not inspected. This
2764allows ``ptrtoint`` and arithmetic to be performed on these values so
2765long as the original value is reconstituted before the ``indirectbr``
2766instruction.
2767
2768Finally, some targets may provide defined semantics when using the value
2769as the operand to an inline assembly, but that is target specific.
2770
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002771.. _constantexprs:
2772
Sean Silvab084af42012-12-07 10:36:55 +00002773Constant Expressions
2774--------------------
2775
2776Constant expressions are used to allow expressions involving other
2777constants to be used as constants. Constant expressions may be of any
2778:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2779that does not have side effects (e.g. load and call are not supported).
2780The following is the syntax for constant expressions:
2781
2782``trunc (CST to TYPE)``
2783 Truncate a constant to another type. The bit size of CST must be
2784 larger than the bit size of TYPE. Both types must be integers.
2785``zext (CST to TYPE)``
2786 Zero extend a constant to another type. The bit size of CST must be
2787 smaller than the bit size of TYPE. Both types must be integers.
2788``sext (CST to TYPE)``
2789 Sign extend a constant to another type. The bit size of CST must be
2790 smaller than the bit size of TYPE. Both types must be integers.
2791``fptrunc (CST to TYPE)``
2792 Truncate a floating point constant to another floating point type.
2793 The size of CST must be larger than the size of TYPE. Both types
2794 must be floating point.
2795``fpext (CST to TYPE)``
2796 Floating point extend a constant to another type. The size of CST
2797 must be smaller or equal to the size of TYPE. Both types must be
2798 floating point.
2799``fptoui (CST to TYPE)``
2800 Convert a floating point constant to the corresponding unsigned
2801 integer constant. TYPE must be a scalar or vector integer type. CST
2802 must be of scalar or vector floating point type. Both CST and TYPE
2803 must be scalars, or vectors of the same number of elements. If the
2804 value won't fit in the integer type, the results are undefined.
2805``fptosi (CST to TYPE)``
2806 Convert a floating point constant to the corresponding signed
2807 integer constant. TYPE must be a scalar or vector integer type. CST
2808 must be of scalar or vector floating point type. Both CST and TYPE
2809 must be scalars, or vectors of the same number of elements. If the
2810 value won't fit in the integer type, the results are undefined.
2811``uitofp (CST to TYPE)``
2812 Convert an unsigned integer constant to the corresponding floating
2813 point constant. TYPE must be a scalar or vector floating point type.
2814 CST must be of scalar or vector integer type. Both CST and TYPE must
2815 be scalars, or vectors of the same number of elements. If the value
2816 won't fit in the floating point type, the results are undefined.
2817``sitofp (CST to TYPE)``
2818 Convert a signed integer constant to the corresponding floating
2819 point constant. TYPE must be a scalar or vector floating point type.
2820 CST must be of scalar or vector integer type. Both CST and TYPE must
2821 be scalars, or vectors of the same number of elements. If the value
2822 won't fit in the floating point type, the results are undefined.
2823``ptrtoint (CST to TYPE)``
2824 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002825 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002826 pointer type. The ``CST`` value is zero extended, truncated, or
2827 unchanged to make it fit in ``TYPE``.
2828``inttoptr (CST to TYPE)``
2829 Convert an integer constant to a pointer constant. TYPE must be a
2830 pointer type. CST must be of integer type. The CST value is zero
2831 extended, truncated, or unchanged to make it fit in a pointer size.
2832 This one is *really* dangerous!
2833``bitcast (CST to TYPE)``
2834 Convert a constant, CST, to another TYPE. The constraints of the
2835 operands are the same as those for the :ref:`bitcast
2836 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002837``addrspacecast (CST to TYPE)``
2838 Convert a constant pointer or constant vector of pointer, CST, to another
2839 TYPE in a different address space. The constraints of the operands are the
2840 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002841``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002842 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2843 constants. As with the :ref:`getelementptr <i_getelementptr>`
2844 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002845 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002846``select (COND, VAL1, VAL2)``
2847 Perform the :ref:`select operation <i_select>` on constants.
2848``icmp COND (VAL1, VAL2)``
2849 Performs the :ref:`icmp operation <i_icmp>` on constants.
2850``fcmp COND (VAL1, VAL2)``
2851 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2852``extractelement (VAL, IDX)``
2853 Perform the :ref:`extractelement operation <i_extractelement>` on
2854 constants.
2855``insertelement (VAL, ELT, IDX)``
2856 Perform the :ref:`insertelement operation <i_insertelement>` on
2857 constants.
2858``shufflevector (VEC1, VEC2, IDXMASK)``
2859 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2860 constants.
2861``extractvalue (VAL, IDX0, IDX1, ...)``
2862 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2863 constants. The index list is interpreted in a similar manner as
2864 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2865 least one index value must be specified.
2866``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2867 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2868 The index list is interpreted in a similar manner as indices in a
2869 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2870 value must be specified.
2871``OPCODE (LHS, RHS)``
2872 Perform the specified operation of the LHS and RHS constants. OPCODE
2873 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2874 binary <bitwiseops>` operations. The constraints on operands are
2875 the same as those for the corresponding instruction (e.g. no bitwise
2876 operations on floating point values are allowed).
2877
2878Other Values
2879============
2880
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002881.. _inlineasmexprs:
2882
Sean Silvab084af42012-12-07 10:36:55 +00002883Inline Assembler Expressions
2884----------------------------
2885
2886LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002887Inline Assembly <moduleasm>`) through the use of a special value. This value
2888represents the inline assembler as a template string (containing the
2889instructions to emit), a list of operand constraints (stored as a string), a
2890flag that indicates whether or not the inline asm expression has side effects,
2891and a flag indicating whether the function containing the asm needs to align its
2892stack conservatively.
2893
2894The template string supports argument substitution of the operands using "``$``"
2895followed by a number, to indicate substitution of the given register/memory
2896location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2897be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2898operand (See :ref:`inline-asm-modifiers`).
2899
2900A literal "``$``" may be included by using "``$$``" in the template. To include
2901other special characters into the output, the usual "``\XX``" escapes may be
2902used, just as in other strings. Note that after template substitution, the
2903resulting assembly string is parsed by LLVM's integrated assembler unless it is
2904disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2905syntax known to LLVM.
2906
2907LLVM's support for inline asm is modeled closely on the requirements of Clang's
2908GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2909modifier codes listed here are similar or identical to those in GCC's inline asm
2910support. However, to be clear, the syntax of the template and constraint strings
2911described here is *not* the same as the syntax accepted by GCC and Clang, and,
2912while most constraint letters are passed through as-is by Clang, some get
2913translated to other codes when converting from the C source to the LLVM
2914assembly.
2915
2916An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002917
2918.. code-block:: llvm
2919
2920 i32 (i32) asm "bswap $0", "=r,r"
2921
2922Inline assembler expressions may **only** be used as the callee operand
2923of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2924Thus, typically we have:
2925
2926.. code-block:: llvm
2927
2928 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2929
2930Inline asms with side effects not visible in the constraint list must be
2931marked as having side effects. This is done through the use of the
2932'``sideeffect``' keyword, like so:
2933
2934.. code-block:: llvm
2935
2936 call void asm sideeffect "eieio", ""()
2937
2938In some cases inline asms will contain code that will not work unless
2939the stack is aligned in some way, such as calls or SSE instructions on
2940x86, yet will not contain code that does that alignment within the asm.
2941The compiler should make conservative assumptions about what the asm
2942might contain and should generate its usual stack alignment code in the
2943prologue if the '``alignstack``' keyword is present:
2944
2945.. code-block:: llvm
2946
2947 call void asm alignstack "eieio", ""()
2948
2949Inline asms also support using non-standard assembly dialects. The
2950assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2951the inline asm is using the Intel dialect. Currently, ATT and Intel are
2952the only supported dialects. An example is:
2953
2954.. code-block:: llvm
2955
2956 call void asm inteldialect "eieio", ""()
2957
2958If multiple keywords appear the '``sideeffect``' keyword must come
2959first, the '``alignstack``' keyword second and the '``inteldialect``'
2960keyword last.
2961
James Y Knightbc832ed2015-07-08 18:08:36 +00002962Inline Asm Constraint String
2963^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2964
2965The constraint list is a comma-separated string, each element containing one or
2966more constraint codes.
2967
2968For each element in the constraint list an appropriate register or memory
2969operand will be chosen, and it will be made available to assembly template
2970string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2971second, etc.
2972
2973There are three different types of constraints, which are distinguished by a
2974prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2975constraints must always be given in that order: outputs first, then inputs, then
2976clobbers. They cannot be intermingled.
2977
2978There are also three different categories of constraint codes:
2979
2980- Register constraint. This is either a register class, or a fixed physical
2981 register. This kind of constraint will allocate a register, and if necessary,
2982 bitcast the argument or result to the appropriate type.
2983- Memory constraint. This kind of constraint is for use with an instruction
2984 taking a memory operand. Different constraints allow for different addressing
2985 modes used by the target.
2986- Immediate value constraint. This kind of constraint is for an integer or other
2987 immediate value which can be rendered directly into an instruction. The
2988 various target-specific constraints allow the selection of a value in the
2989 proper range for the instruction you wish to use it with.
2990
2991Output constraints
2992""""""""""""""""""
2993
2994Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2995indicates that the assembly will write to this operand, and the operand will
2996then be made available as a return value of the ``asm`` expression. Output
2997constraints do not consume an argument from the call instruction. (Except, see
2998below about indirect outputs).
2999
3000Normally, it is expected that no output locations are written to by the assembly
3001expression until *all* of the inputs have been read. As such, LLVM may assign
3002the same register to an output and an input. If this is not safe (e.g. if the
3003assembly contains two instructions, where the first writes to one output, and
3004the second reads an input and writes to a second output), then the "``&``"
3005modifier must be used (e.g. "``=&r``") to specify that the output is an
3006"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3007will not use the same register for any inputs (other than an input tied to this
3008output).
3009
3010Input constraints
3011"""""""""""""""""
3012
3013Input constraints do not have a prefix -- just the constraint codes. Each input
3014constraint will consume one argument from the call instruction. It is not
3015permitted for the asm to write to any input register or memory location (unless
3016that input is tied to an output). Note also that multiple inputs may all be
3017assigned to the same register, if LLVM can determine that they necessarily all
3018contain the same value.
3019
3020Instead of providing a Constraint Code, input constraints may also "tie"
3021themselves to an output constraint, by providing an integer as the constraint
3022string. Tied inputs still consume an argument from the call instruction, and
3023take up a position in the asm template numbering as is usual -- they will simply
3024be constrained to always use the same register as the output they've been tied
3025to. For example, a constraint string of "``=r,0``" says to assign a register for
3026output, and use that register as an input as well (it being the 0'th
3027constraint).
3028
3029It is permitted to tie an input to an "early-clobber" output. In that case, no
3030*other* input may share the same register as the input tied to the early-clobber
3031(even when the other input has the same value).
3032
3033You may only tie an input to an output which has a register constraint, not a
3034memory constraint. Only a single input may be tied to an output.
3035
3036There is also an "interesting" feature which deserves a bit of explanation: if a
3037register class constraint allocates a register which is too small for the value
3038type operand provided as input, the input value will be split into multiple
3039registers, and all of them passed to the inline asm.
3040
3041However, this feature is often not as useful as you might think.
3042
3043Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3044architectures that have instructions which operate on multiple consecutive
3045instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3046SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3047hardware then loads into both the named register, and the next register. This
3048feature of inline asm would not be useful to support that.)
3049
3050A few of the targets provide a template string modifier allowing explicit access
3051to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3052``D``). On such an architecture, you can actually access the second allocated
3053register (yet, still, not any subsequent ones). But, in that case, you're still
3054probably better off simply splitting the value into two separate operands, for
3055clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3056despite existing only for use with this feature, is not really a good idea to
3057use)
3058
3059Indirect inputs and outputs
3060"""""""""""""""""""""""""""
3061
3062Indirect output or input constraints can be specified by the "``*``" modifier
3063(which goes after the "``=``" in case of an output). This indicates that the asm
3064will write to or read from the contents of an *address* provided as an input
3065argument. (Note that in this way, indirect outputs act more like an *input* than
3066an output: just like an input, they consume an argument of the call expression,
3067rather than producing a return value. An indirect output constraint is an
3068"output" only in that the asm is expected to write to the contents of the input
3069memory location, instead of just read from it).
3070
3071This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3072address of a variable as a value.
3073
3074It is also possible to use an indirect *register* constraint, but only on output
3075(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3076value normally, and then, separately emit a store to the address provided as
3077input, after the provided inline asm. (It's not clear what value this
3078functionality provides, compared to writing the store explicitly after the asm
3079statement, and it can only produce worse code, since it bypasses many
3080optimization passes. I would recommend not using it.)
3081
3082
3083Clobber constraints
3084"""""""""""""""""""
3085
3086A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3087consume an input operand, nor generate an output. Clobbers cannot use any of the
3088general constraint code letters -- they may use only explicit register
3089constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3090"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3091memory locations -- not only the memory pointed to by a declared indirect
3092output.
3093
3094
3095Constraint Codes
3096""""""""""""""""
3097After a potential prefix comes constraint code, or codes.
3098
3099A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3100followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3101(e.g. "``{eax}``").
3102
3103The one and two letter constraint codes are typically chosen to be the same as
3104GCC's constraint codes.
3105
3106A single constraint may include one or more than constraint code in it, leaving
3107it up to LLVM to choose which one to use. This is included mainly for
3108compatibility with the translation of GCC inline asm coming from clang.
3109
3110There are two ways to specify alternatives, and either or both may be used in an
3111inline asm constraint list:
3112
31131) Append the codes to each other, making a constraint code set. E.g. "``im``"
3114 or "``{eax}m``". This means "choose any of the options in the set". The
3115 choice of constraint is made independently for each constraint in the
3116 constraint list.
3117
31182) Use "``|``" between constraint code sets, creating alternatives. Every
3119 constraint in the constraint list must have the same number of alternative
3120 sets. With this syntax, the same alternative in *all* of the items in the
3121 constraint list will be chosen together.
3122
3123Putting those together, you might have a two operand constraint string like
3124``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3125operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3126may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3127
3128However, the use of either of the alternatives features is *NOT* recommended, as
3129LLVM is not able to make an intelligent choice about which one to use. (At the
3130point it currently needs to choose, not enough information is available to do so
3131in a smart way.) Thus, it simply tries to make a choice that's most likely to
3132compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3133always choose to use memory, not registers). And, if given multiple registers,
3134or multiple register classes, it will simply choose the first one. (In fact, it
3135doesn't currently even ensure explicitly specified physical registers are
3136unique, so specifying multiple physical registers as alternatives, like
3137``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3138intended.)
3139
3140Supported Constraint Code List
3141""""""""""""""""""""""""""""""
3142
3143The constraint codes are, in general, expected to behave the same way they do in
3144GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3145inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3146and GCC likely indicates a bug in LLVM.
3147
3148Some constraint codes are typically supported by all targets:
3149
3150- ``r``: A register in the target's general purpose register class.
3151- ``m``: A memory address operand. It is target-specific what addressing modes
3152 are supported, typical examples are register, or register + register offset,
3153 or register + immediate offset (of some target-specific size).
3154- ``i``: An integer constant (of target-specific width). Allows either a simple
3155 immediate, or a relocatable value.
3156- ``n``: An integer constant -- *not* including relocatable values.
3157- ``s``: An integer constant, but allowing *only* relocatable values.
3158- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3159 useful to pass a label for an asm branch or call.
3160
3161 .. FIXME: but that surely isn't actually okay to jump out of an asm
3162 block without telling llvm about the control transfer???)
3163
3164- ``{register-name}``: Requires exactly the named physical register.
3165
3166Other constraints are target-specific:
3167
3168AArch64:
3169
3170- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3171- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3172 i.e. 0 to 4095 with optional shift by 12.
3173- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3174 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3175- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3176 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3177- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3178 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3179- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3180 32-bit register. This is a superset of ``K``: in addition to the bitmask
3181 immediate, also allows immediate integers which can be loaded with a single
3182 ``MOVZ`` or ``MOVL`` instruction.
3183- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3184 64-bit register. This is a superset of ``L``.
3185- ``Q``: Memory address operand must be in a single register (no
3186 offsets). (However, LLVM currently does this for the ``m`` constraint as
3187 well.)
3188- ``r``: A 32 or 64-bit integer register (W* or X*).
3189- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3190- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3191
3192AMDGPU:
3193
3194- ``r``: A 32 or 64-bit integer register.
3195- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3196- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3197
3198
3199All ARM modes:
3200
3201- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3202 operand. Treated the same as operand ``m``, at the moment.
3203
3204ARM and ARM's Thumb2 mode:
3205
3206- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3207- ``I``: An immediate integer valid for a data-processing instruction.
3208- ``J``: An immediate integer between -4095 and 4095.
3209- ``K``: An immediate integer whose bitwise inverse is valid for a
3210 data-processing instruction. (Can be used with template modifier "``B``" to
3211 print the inverted value).
3212- ``L``: An immediate integer whose negation is valid for a data-processing
3213 instruction. (Can be used with template modifier "``n``" to print the negated
3214 value).
3215- ``M``: A power of two or a integer between 0 and 32.
3216- ``N``: Invalid immediate constraint.
3217- ``O``: Invalid immediate constraint.
3218- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3219- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3220 as ``r``.
3221- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3222 invalid.
3223- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3224 ``d0-d31``, or ``q0-q15``.
3225- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3226 ``d0-d7``, or ``q0-q3``.
3227- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3228 ``s0-s31``.
3229
3230ARM's Thumb1 mode:
3231
3232- ``I``: An immediate integer between 0 and 255.
3233- ``J``: An immediate integer between -255 and -1.
3234- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3235 some amount.
3236- ``L``: An immediate integer between -7 and 7.
3237- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3238- ``N``: An immediate integer between 0 and 31.
3239- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3240- ``r``: A low 32-bit GPR register (``r0-r7``).
3241- ``l``: A low 32-bit GPR register (``r0-r7``).
3242- ``h``: A high GPR register (``r0-r7``).
3243- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3244 ``d0-d31``, or ``q0-q15``.
3245- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3246 ``d0-d7``, or ``q0-q3``.
3247- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3248 ``s0-s31``.
3249
3250
3251Hexagon:
3252
3253- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3254 at the moment.
3255- ``r``: A 32 or 64-bit register.
3256
3257MSP430:
3258
3259- ``r``: An 8 or 16-bit register.
3260
3261MIPS:
3262
3263- ``I``: An immediate signed 16-bit integer.
3264- ``J``: An immediate integer zero.
3265- ``K``: An immediate unsigned 16-bit integer.
3266- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3267- ``N``: An immediate integer between -65535 and -1.
3268- ``O``: An immediate signed 15-bit integer.
3269- ``P``: An immediate integer between 1 and 65535.
3270- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3271 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3272- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3273 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3274 ``m``.
3275- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3276 ``sc`` instruction on the given subtarget (details vary).
3277- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3278- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003279 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3280 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003281- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3282 ``25``).
3283- ``l``: The ``lo`` register, 32 or 64-bit.
3284- ``x``: Invalid.
3285
3286NVPTX:
3287
3288- ``b``: A 1-bit integer register.
3289- ``c`` or ``h``: A 16-bit integer register.
3290- ``r``: A 32-bit integer register.
3291- ``l`` or ``N``: A 64-bit integer register.
3292- ``f``: A 32-bit float register.
3293- ``d``: A 64-bit float register.
3294
3295
3296PowerPC:
3297
3298- ``I``: An immediate signed 16-bit integer.
3299- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3300- ``K``: An immediate unsigned 16-bit integer.
3301- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3302- ``M``: An immediate integer greater than 31.
3303- ``N``: An immediate integer that is an exact power of 2.
3304- ``O``: The immediate integer constant 0.
3305- ``P``: An immediate integer constant whose negation is a signed 16-bit
3306 constant.
3307- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3308 treated the same as ``m``.
3309- ``r``: A 32 or 64-bit integer register.
3310- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3311 ``R1-R31``).
3312- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3313 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3314- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3315 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3316 altivec vector register (``V0-V31``).
3317
3318 .. FIXME: is this a bug that v accepts QPX registers? I think this
3319 is supposed to only use the altivec vector registers?
3320
3321- ``y``: Condition register (``CR0-CR7``).
3322- ``wc``: An individual CR bit in a CR register.
3323- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3324 register set (overlapping both the floating-point and vector register files).
3325- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3326 set.
3327
3328Sparc:
3329
3330- ``I``: An immediate 13-bit signed integer.
3331- ``r``: A 32-bit integer register.
3332
3333SystemZ:
3334
3335- ``I``: An immediate unsigned 8-bit integer.
3336- ``J``: An immediate unsigned 12-bit integer.
3337- ``K``: An immediate signed 16-bit integer.
3338- ``L``: An immediate signed 20-bit integer.
3339- ``M``: An immediate integer 0x7fffffff.
3340- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3341 ``m``, at the moment.
3342- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3343- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3344 address context evaluates as zero).
3345- ``h``: A 32-bit value in the high part of a 64bit data register
3346 (LLVM-specific)
3347- ``f``: A 32, 64, or 128-bit floating point register.
3348
3349X86:
3350
3351- ``I``: An immediate integer between 0 and 31.
3352- ``J``: An immediate integer between 0 and 64.
3353- ``K``: An immediate signed 8-bit integer.
3354- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3355 0xffffffff.
3356- ``M``: An immediate integer between 0 and 3.
3357- ``N``: An immediate unsigned 8-bit integer.
3358- ``O``: An immediate integer between 0 and 127.
3359- ``e``: An immediate 32-bit signed integer.
3360- ``Z``: An immediate 32-bit unsigned integer.
3361- ``o``, ``v``: Treated the same as ``m``, at the moment.
3362- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3363 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3364 registers, and on X86-64, it is all of the integer registers.
3365- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3366 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3367- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3368- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3369 existed since i386, and can be accessed without the REX prefix.
3370- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3371- ``y``: A 64-bit MMX register, if MMX is enabled.
3372- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3373 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3374 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3375 512-bit vector operand in an AVX512 register, Otherwise, an error.
3376- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3377- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3378 32-bit mode, a 64-bit integer operand will get split into two registers). It
3379 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3380 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3381 you're better off splitting it yourself, before passing it to the asm
3382 statement.
3383
3384XCore:
3385
3386- ``r``: A 32-bit integer register.
3387
3388
3389.. _inline-asm-modifiers:
3390
3391Asm template argument modifiers
3392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3393
3394In the asm template string, modifiers can be used on the operand reference, like
3395"``${0:n}``".
3396
3397The modifiers are, in general, expected to behave the same way they do in
3398GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3399inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3400and GCC likely indicates a bug in LLVM.
3401
3402Target-independent:
3403
Sean Silvaa1190322015-08-06 22:56:48 +00003404- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003405 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3406- ``n``: Negate and print immediate integer constant unadorned, without the
3407 target-specific immediate punctuation (e.g. no ``$`` prefix).
3408- ``l``: Print as an unadorned label, without the target-specific label
3409 punctuation (e.g. no ``$`` prefix).
3410
3411AArch64:
3412
3413- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3414 instead of ``x30``, print ``w30``.
3415- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3416- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3417 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3418 ``v*``.
3419
3420AMDGPU:
3421
3422- ``r``: No effect.
3423
3424ARM:
3425
3426- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3427 register).
3428- ``P``: No effect.
3429- ``q``: No effect.
3430- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3431 as ``d4[1]`` instead of ``s9``)
3432- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3433 prefix.
3434- ``L``: Print the low 16-bits of an immediate integer constant.
3435- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3436 register operands subsequent to the specified one (!), so use carefully.
3437- ``Q``: Print the low-order register of a register-pair, or the low-order
3438 register of a two-register operand.
3439- ``R``: Print the high-order register of a register-pair, or the high-order
3440 register of a two-register operand.
3441- ``H``: Print the second register of a register-pair. (On a big-endian system,
3442 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3443 to ``R``.)
3444
3445 .. FIXME: H doesn't currently support printing the second register
3446 of a two-register operand.
3447
3448- ``e``: Print the low doubleword register of a NEON quad register.
3449- ``f``: Print the high doubleword register of a NEON quad register.
3450- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3451 adornment.
3452
3453Hexagon:
3454
3455- ``L``: Print the second register of a two-register operand. Requires that it
3456 has been allocated consecutively to the first.
3457
3458 .. FIXME: why is it restricted to consecutive ones? And there's
3459 nothing that ensures that happens, is there?
3460
3461- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3462 nothing. Used to print 'addi' vs 'add' instructions.
3463
3464MSP430:
3465
3466No additional modifiers.
3467
3468MIPS:
3469
3470- ``X``: Print an immediate integer as hexadecimal
3471- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3472- ``d``: Print an immediate integer as decimal.
3473- ``m``: Subtract one and print an immediate integer as decimal.
3474- ``z``: Print $0 if an immediate zero, otherwise print normally.
3475- ``L``: Print the low-order register of a two-register operand, or prints the
3476 address of the low-order word of a double-word memory operand.
3477
3478 .. FIXME: L seems to be missing memory operand support.
3479
3480- ``M``: Print the high-order register of a two-register operand, or prints the
3481 address of the high-order word of a double-word memory operand.
3482
3483 .. FIXME: M seems to be missing memory operand support.
3484
3485- ``D``: Print the second register of a two-register operand, or prints the
3486 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3487 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3488 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003489- ``w``: No effect. Provided for compatibility with GCC which requires this
3490 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3491 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003492
3493NVPTX:
3494
3495- ``r``: No effect.
3496
3497PowerPC:
3498
3499- ``L``: Print the second register of a two-register operand. Requires that it
3500 has been allocated consecutively to the first.
3501
3502 .. FIXME: why is it restricted to consecutive ones? And there's
3503 nothing that ensures that happens, is there?
3504
3505- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3506 nothing. Used to print 'addi' vs 'add' instructions.
3507- ``y``: For a memory operand, prints formatter for a two-register X-form
3508 instruction. (Currently always prints ``r0,OPERAND``).
3509- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3510 otherwise. (NOTE: LLVM does not support update form, so this will currently
3511 always print nothing)
3512- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3513 not support indexed form, so this will currently always print nothing)
3514
3515Sparc:
3516
3517- ``r``: No effect.
3518
3519SystemZ:
3520
3521SystemZ implements only ``n``, and does *not* support any of the other
3522target-independent modifiers.
3523
3524X86:
3525
3526- ``c``: Print an unadorned integer or symbol name. (The latter is
3527 target-specific behavior for this typically target-independent modifier).
3528- ``A``: Print a register name with a '``*``' before it.
3529- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3530 operand.
3531- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3532 memory operand.
3533- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3534 operand.
3535- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3536 operand.
3537- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3538 available, otherwise the 32-bit register name; do nothing on a memory operand.
3539- ``n``: Negate and print an unadorned integer, or, for operands other than an
3540 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3541 the operand. (The behavior for relocatable symbol expressions is a
3542 target-specific behavior for this typically target-independent modifier)
3543- ``H``: Print a memory reference with additional offset +8.
3544- ``P``: Print a memory reference or operand for use as the argument of a call
3545 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3546
3547XCore:
3548
3549No additional modifiers.
3550
3551
Sean Silvab084af42012-12-07 10:36:55 +00003552Inline Asm Metadata
3553^^^^^^^^^^^^^^^^^^^
3554
3555The call instructions that wrap inline asm nodes may have a
3556"``!srcloc``" MDNode attached to it that contains a list of constant
3557integers. If present, the code generator will use the integer as the
3558location cookie value when report errors through the ``LLVMContext``
3559error reporting mechanisms. This allows a front-end to correlate backend
3560errors that occur with inline asm back to the source code that produced
3561it. For example:
3562
3563.. code-block:: llvm
3564
3565 call void asm sideeffect "something bad", ""(), !srcloc !42
3566 ...
3567 !42 = !{ i32 1234567 }
3568
3569It is up to the front-end to make sense of the magic numbers it places
3570in the IR. If the MDNode contains multiple constants, the code generator
3571will use the one that corresponds to the line of the asm that the error
3572occurs on.
3573
3574.. _metadata:
3575
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003576Metadata
3577========
Sean Silvab084af42012-12-07 10:36:55 +00003578
3579LLVM IR allows metadata to be attached to instructions in the program
3580that can convey extra information about the code to the optimizers and
3581code generator. One example application of metadata is source-level
3582debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003583
Sean Silvaa1190322015-08-06 22:56:48 +00003584Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003585``call`` instruction, it uses the ``metadata`` type.
3586
3587All metadata are identified in syntax by a exclamation point ('``!``').
3588
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003589.. _metadata-string:
3590
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003591Metadata Nodes and Metadata Strings
3592-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003593
3594A metadata string is a string surrounded by double quotes. It can
3595contain any character by escaping non-printable characters with
3596"``\xx``" where "``xx``" is the two digit hex code. For example:
3597"``!"test\00"``".
3598
3599Metadata nodes are represented with notation similar to structure
3600constants (a comma separated list of elements, surrounded by braces and
3601preceded by an exclamation point). Metadata nodes can have any values as
3602their operand. For example:
3603
3604.. code-block:: llvm
3605
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003606 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003607
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003608Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3609
3610.. code-block:: llvm
3611
3612 !0 = distinct !{!"test\00", i32 10}
3613
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003614``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003615content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003616when metadata operands change.
3617
Sean Silvab084af42012-12-07 10:36:55 +00003618A :ref:`named metadata <namedmetadatastructure>` is a collection of
3619metadata nodes, which can be looked up in the module symbol table. For
3620example:
3621
3622.. code-block:: llvm
3623
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003624 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003625
3626Metadata can be used as function arguments. Here ``llvm.dbg.value``
3627function is using two metadata arguments:
3628
3629.. code-block:: llvm
3630
3631 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3632
3633Metadata can be attached with an instruction. Here metadata ``!21`` is
3634attached to the ``add`` instruction using the ``!dbg`` identifier:
3635
3636.. code-block:: llvm
3637
3638 %indvar.next = add i64 %indvar, 1, !dbg !21
3639
3640More information about specific metadata nodes recognized by the
3641optimizers and code generator is found below.
3642
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003643.. _specialized-metadata:
3644
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003645Specialized Metadata Nodes
3646^^^^^^^^^^^^^^^^^^^^^^^^^^
3647
3648Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003649to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003650order.
3651
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003652These aren't inherently debug info centric, but currently all the specialized
3653metadata nodes are related to debug info.
3654
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003655.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003656
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003657DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003658"""""""""""""
3659
Sean Silvaa1190322015-08-06 22:56:48 +00003660``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003661``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3662tuples containing the debug info to be emitted along with the compile unit,
3663regardless of code optimizations (some nodes are only emitted if there are
3664references to them from instructions).
3665
3666.. code-block:: llvm
3667
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003668 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003669 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3670 splitDebugFilename: "abc.debug", emissionKind: 1,
3671 enums: !2, retainedTypes: !3, subprograms: !4,
3672 globals: !5, imports: !6)
3673
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003674Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003675specific compilation unit. File descriptors are defined using this scope.
3676These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003677keep track of subprograms, global variables, type information, and imported
3678entities (declarations and namespaces).
3679
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003680.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003681
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003682DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003683""""""
3684
Sean Silvaa1190322015-08-06 22:56:48 +00003685``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003686
3687.. code-block:: llvm
3688
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003689 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003690
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003691Files are sometimes used in ``scope:`` fields, and are the only valid target
3692for ``file:`` fields.
3693
Michael Kuperstein605308a2015-05-14 10:58:59 +00003694.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003695
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003696DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003697"""""""""""
3698
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003699``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003700``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003701
3702.. code-block:: llvm
3703
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003704 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003705 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003706 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003707
Sean Silvaa1190322015-08-06 22:56:48 +00003708The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003709following:
3710
3711.. code-block:: llvm
3712
3713 DW_ATE_address = 1
3714 DW_ATE_boolean = 2
3715 DW_ATE_float = 4
3716 DW_ATE_signed = 5
3717 DW_ATE_signed_char = 6
3718 DW_ATE_unsigned = 7
3719 DW_ATE_unsigned_char = 8
3720
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003721.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003722
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003723DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003724""""""""""""""""
3725
Sean Silvaa1190322015-08-06 22:56:48 +00003726``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003727refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003728types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003729represents a function with no return value (such as ``void foo() {}`` in C++).
3730
3731.. code-block:: llvm
3732
3733 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3734 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003735 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003736
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003737.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003738
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003739DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003740"""""""""""""
3741
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003742``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003743qualified types.
3744
3745.. code-block:: llvm
3746
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003747 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003748 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003749 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003750 align: 32)
3751
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003752The following ``tag:`` values are valid:
3753
3754.. code-block:: llvm
3755
3756 DW_TAG_formal_parameter = 5
3757 DW_TAG_member = 13
3758 DW_TAG_pointer_type = 15
3759 DW_TAG_reference_type = 16
3760 DW_TAG_typedef = 22
3761 DW_TAG_ptr_to_member_type = 31
3762 DW_TAG_const_type = 38
3763 DW_TAG_volatile_type = 53
3764 DW_TAG_restrict_type = 55
3765
3766``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003767<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3768is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003769``DW_TAG_formal_parameter`` is used to define a member which is a formal
3770argument of a subprogram.
3771
3772``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3773
3774``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3775``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3776``baseType:``.
3777
3778Note that the ``void *`` type is expressed as a type derived from NULL.
3779
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003780.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003781
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003782DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783"""""""""""""""
3784
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003785``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003786structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003787
3788If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003789identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790can refer to composite types indirectly via a :ref:`metadata string
3791<metadata-string>` that matches their identifier.
3792
3793.. code-block:: llvm
3794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795 !0 = !DIEnumerator(name: "SixKind", value: 7)
3796 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3797 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3798 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003799 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3800 elements: !{!0, !1, !2})
3801
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003802The following ``tag:`` values are valid:
3803
3804.. code-block:: llvm
3805
3806 DW_TAG_array_type = 1
3807 DW_TAG_class_type = 2
3808 DW_TAG_enumeration_type = 4
3809 DW_TAG_structure_type = 19
3810 DW_TAG_union_type = 23
3811 DW_TAG_subroutine_type = 21
3812 DW_TAG_inheritance = 28
3813
3814
3815For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003816descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003817level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003818array type is a native packed vector.
3819
3820For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003821descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003822value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003823``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003824
3825For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3826``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003827<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003828
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003829.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003830
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003831DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832""""""""""
3833
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003834``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003835:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003836
3837.. code-block:: llvm
3838
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003839 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3840 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3841 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003842
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003843.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003844
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003845DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003846""""""""""""
3847
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003848``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3849variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003850
3851.. code-block:: llvm
3852
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003853 !0 = !DIEnumerator(name: "SixKind", value: 7)
3854 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3855 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003856
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003857DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003858"""""""""""""""""""""""
3859
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003861language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003862:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003863
3864.. code-block:: llvm
3865
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003866 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003867
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003868DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003869""""""""""""""""""""""""
3870
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003871``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003872language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003874``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003875:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876
3877.. code-block:: llvm
3878
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003879 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003880
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003881DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003882"""""""""""
3883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003885
3886.. code-block:: llvm
3887
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003888 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003889
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003890DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003891""""""""""""""""
3892
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003893``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003894
3895.. code-block:: llvm
3896
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003897 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003898 file: !2, line: 7, type: !3, isLocal: true,
3899 isDefinition: false, variable: i32* @foo,
3900 declaration: !4)
3901
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003902All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003904
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003905.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003906
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003907DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003908""""""""""""
3909
Sean Silvaa1190322015-08-06 22:56:48 +00003910``DISubprogram`` nodes represent functions from the source language. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003911``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Sean Silvaa1190322015-08-06 22:56:48 +00003912retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003913``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003914
3915.. code-block:: llvm
3916
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003918 file: !2, line: 7, type: !3, isLocal: true,
3919 isDefinition: false, scopeLine: 8, containingType: !4,
3920 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3921 flags: DIFlagPrototyped, isOptimized: true,
3922 function: void ()* @_Z3foov,
3923 templateParams: !5, declaration: !6, variables: !7)
3924
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003925.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003926
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003927DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928""""""""""""""
3929
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003930``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00003931<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00003932two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003933fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003934
3935.. code-block:: llvm
3936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003938
3939Usually lexical blocks are ``distinct`` to prevent node merging based on
3940operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003942.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003943
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003944DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003945""""""""""""""""""
3946
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003947``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003948:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949indicate textual inclusion, or the ``discriminator:`` field can be used to
3950discriminate between control flow within a single block in the source language.
3951
3952.. code-block:: llvm
3953
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003954 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3955 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3956 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957
Michael Kuperstein605308a2015-05-14 10:58:59 +00003958.. _DILocation:
3959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003961""""""""""
3962
Sean Silvaa1190322015-08-06 22:56:48 +00003963``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003964mandatory, and points at an :ref:`DILexicalBlockFile`, an
3965:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003966
3967.. code-block:: llvm
3968
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003969 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003970
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003971.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003973DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003974"""""""""""""""
3975
Sean Silvaa1190322015-08-06 22:56:48 +00003976``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003977the ``arg:`` field is set to non-zero, then this variable is a subprogram
3978parameter, and it will be included in the ``variables:`` field of its
3979:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003980
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981.. code-block:: llvm
3982
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003983 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
3984 type: !3, flags: DIFlagArtificial)
3985 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
3986 type: !3)
3987 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003988
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003989DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003990""""""""""""
3991
Sean Silvaa1190322015-08-06 22:56:48 +00003992``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003993:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3994describe how the referenced LLVM variable relates to the source language
3995variable.
3996
3997The current supported vocabulary is limited:
3998
3999- ``DW_OP_deref`` dereferences the working expression.
4000- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4001- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4002 here, respectively) of the variable piece from the working expression.
4003
4004.. code-block:: llvm
4005
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004006 !0 = !DIExpression(DW_OP_deref)
4007 !1 = !DIExpression(DW_OP_plus, 3)
4008 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4009 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004011DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012""""""""""""""
4013
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004014``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015
4016.. code-block:: llvm
4017
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004018 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019 getter: "getFoo", attributes: 7, type: !2)
4020
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004021DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004022""""""""""""""""
4023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004024``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004025compile unit.
4026
4027.. code-block:: llvm
4028
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004029 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030 entity: !1, line: 7)
4031
Sean Silvab084af42012-12-07 10:36:55 +00004032'``tbaa``' Metadata
4033^^^^^^^^^^^^^^^^^^^
4034
4035In LLVM IR, memory does not have types, so LLVM's own type system is not
4036suitable for doing TBAA. Instead, metadata is added to the IR to
4037describe a type system of a higher level language. This can be used to
4038implement typical C/C++ TBAA, but it can also be used to implement
4039custom alias analysis behavior for other languages.
4040
4041The current metadata format is very simple. TBAA metadata nodes have up
4042to three fields, e.g.:
4043
4044.. code-block:: llvm
4045
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004046 !0 = !{ !"an example type tree" }
4047 !1 = !{ !"int", !0 }
4048 !2 = !{ !"float", !0 }
4049 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004050
4051The first field is an identity field. It can be any value, usually a
4052metadata string, which uniquely identifies the type. The most important
4053name in the tree is the name of the root node. Two trees with different
4054root node names are entirely disjoint, even if they have leaves with
4055common names.
4056
4057The second field identifies the type's parent node in the tree, or is
4058null or omitted for a root node. A type is considered to alias all of
4059its descendants and all of its ancestors in the tree. Also, a type is
4060considered to alias all types in other trees, so that bitcode produced
4061from multiple front-ends is handled conservatively.
4062
4063If the third field is present, it's an integer which if equal to 1
4064indicates that the type is "constant" (meaning
4065``pointsToConstantMemory`` should return true; see `other useful
4066AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4067
4068'``tbaa.struct``' Metadata
4069^^^^^^^^^^^^^^^^^^^^^^^^^^
4070
4071The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4072aggregate assignment operations in C and similar languages, however it
4073is defined to copy a contiguous region of memory, which is more than
4074strictly necessary for aggregate types which contain holes due to
4075padding. Also, it doesn't contain any TBAA information about the fields
4076of the aggregate.
4077
4078``!tbaa.struct`` metadata can describe which memory subregions in a
4079memcpy are padding and what the TBAA tags of the struct are.
4080
4081The current metadata format is very simple. ``!tbaa.struct`` metadata
4082nodes are a list of operands which are in conceptual groups of three.
4083For each group of three, the first operand gives the byte offset of a
4084field in bytes, the second gives its size in bytes, and the third gives
4085its tbaa tag. e.g.:
4086
4087.. code-block:: llvm
4088
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004089 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004090
4091This describes a struct with two fields. The first is at offset 0 bytes
4092with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4093and has size 4 bytes and has tbaa tag !2.
4094
4095Note that the fields need not be contiguous. In this example, there is a
40964 byte gap between the two fields. This gap represents padding which
4097does not carry useful data and need not be preserved.
4098
Hal Finkel94146652014-07-24 14:25:39 +00004099'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004101
4102``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4103noalias memory-access sets. This means that some collection of memory access
4104instructions (loads, stores, memory-accessing calls, etc.) that carry
4105``noalias`` metadata can specifically be specified not to alias with some other
4106collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004107Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004108a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004109of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004110subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004111instruction's ``noalias`` list, then the two memory accesses are assumed not to
4112alias.
Hal Finkel94146652014-07-24 14:25:39 +00004113
Hal Finkel029cde62014-07-25 15:50:02 +00004114The metadata identifying each domain is itself a list containing one or two
4115entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004116string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004117self-reference can be used to create globally unique domain names. A
4118descriptive string may optionally be provided as a second list entry.
4119
4120The metadata identifying each scope is also itself a list containing two or
4121three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004122is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004123self-reference can be used to create globally unique scope names. A metadata
4124reference to the scope's domain is the second entry. A descriptive string may
4125optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004126
4127For example,
4128
4129.. code-block:: llvm
4130
Hal Finkel029cde62014-07-25 15:50:02 +00004131 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004132 !0 = !{!0}
4133 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004134
Hal Finkel029cde62014-07-25 15:50:02 +00004135 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004136 !2 = !{!2, !0}
4137 !3 = !{!3, !0}
4138 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004139
Hal Finkel029cde62014-07-25 15:50:02 +00004140 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004141 !5 = !{!4} ; A list containing only scope !4
4142 !6 = !{!4, !3, !2}
4143 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004144
4145 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004146 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004147 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004148
Hal Finkel029cde62014-07-25 15:50:02 +00004149 ; These two instructions also don't alias (for domain !1, the set of scopes
4150 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004151 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004152 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004153
Adam Nemet0a8416f2015-05-11 08:30:28 +00004154 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004155 ; the !noalias list is not a superset of, or equal to, the scopes in the
4156 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004157 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004158 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004159
Sean Silvab084af42012-12-07 10:36:55 +00004160'``fpmath``' Metadata
4161^^^^^^^^^^^^^^^^^^^^^
4162
4163``fpmath`` metadata may be attached to any instruction of floating point
4164type. It can be used to express the maximum acceptable error in the
4165result of that instruction, in ULPs, thus potentially allowing the
4166compiler to use a more efficient but less accurate method of computing
4167it. ULP is defined as follows:
4168
4169 If ``x`` is a real number that lies between two finite consecutive
4170 floating-point numbers ``a`` and ``b``, without being equal to one
4171 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4172 distance between the two non-equal finite floating-point numbers
4173 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4174
4175The metadata node shall consist of a single positive floating point
4176number representing the maximum relative error, for example:
4177
4178.. code-block:: llvm
4179
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004180 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004181
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004182.. _range-metadata:
4183
Sean Silvab084af42012-12-07 10:36:55 +00004184'``range``' Metadata
4185^^^^^^^^^^^^^^^^^^^^
4186
Jingyue Wu37fcb592014-06-19 16:50:16 +00004187``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4188integer types. It expresses the possible ranges the loaded value or the value
4189returned by the called function at this call site is in. The ranges are
4190represented with a flattened list of integers. The loaded value or the value
4191returned is known to be in the union of the ranges defined by each consecutive
4192pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004193
4194- The type must match the type loaded by the instruction.
4195- The pair ``a,b`` represents the range ``[a,b)``.
4196- Both ``a`` and ``b`` are constants.
4197- The range is allowed to wrap.
4198- The range should not represent the full or empty set. That is,
4199 ``a!=b``.
4200
4201In addition, the pairs must be in signed order of the lower bound and
4202they must be non-contiguous.
4203
4204Examples:
4205
4206.. code-block:: llvm
4207
David Blaikiec7aabbb2015-03-04 22:06:14 +00004208 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4209 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004210 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4211 %d = invoke i8 @bar() to label %cont
4212 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004213 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004214 !0 = !{ i8 0, i8 2 }
4215 !1 = !{ i8 255, i8 2 }
4216 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4217 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004218
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004219'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004220^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004221
4222``unpredictable`` metadata may be attached to any branch or switch
4223instruction. It can be used to express the unpredictability of control
4224flow. Similar to the llvm.expect intrinsic, it may be used to alter
4225optimizations related to compare and branch instructions. The metadata
4226is treated as a boolean value; if it exists, it signals that the branch
4227or switch that it is attached to is completely unpredictable.
4228
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004229'``llvm.loop``'
4230^^^^^^^^^^^^^^^
4231
4232It is sometimes useful to attach information to loop constructs. Currently,
4233loop metadata is implemented as metadata attached to the branch instruction
4234in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004235guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004236specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004237
4238The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004239itself to avoid merging it with any other identifier metadata, e.g.,
4240during module linkage or function inlining. That is, each loop should refer
4241to their own identification metadata even if they reside in separate functions.
4242The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004243constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004244
4245.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004246
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004247 !0 = !{!0}
4248 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004249
Mark Heffernan893752a2014-07-18 19:24:51 +00004250The loop identifier metadata can be used to specify additional
4251per-loop metadata. Any operands after the first operand can be treated
4252as user-defined metadata. For example the ``llvm.loop.unroll.count``
4253suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004254
Paul Redmond5fdf8362013-05-28 20:00:34 +00004255.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004256
Paul Redmond5fdf8362013-05-28 20:00:34 +00004257 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4258 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004259 !0 = !{!0, !1}
4260 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004261
Mark Heffernan9d20e422014-07-21 23:11:03 +00004262'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004264
Mark Heffernan9d20e422014-07-21 23:11:03 +00004265Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4266used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004267vectorization width and interleave count. These metadata should be used in
4268conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004269``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4270optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004271it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004272which contains information about loop-carried memory dependencies can be helpful
4273in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004274
Mark Heffernan9d20e422014-07-21 23:11:03 +00004275'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4277
Mark Heffernan9d20e422014-07-21 23:11:03 +00004278This metadata suggests an interleave count to the loop interleaver.
4279The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004280second operand is an integer specifying the interleave count. For
4281example:
4282
4283.. code-block:: llvm
4284
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004285 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004286
Mark Heffernan9d20e422014-07-21 23:11:03 +00004287Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004288multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004289then the interleave count will be determined automatically.
4290
4291'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004293
4294This metadata selectively enables or disables vectorization for the loop. The
4295first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004296is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000042970 disables vectorization:
4298
4299.. code-block:: llvm
4300
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004301 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4302 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004303
4304'``llvm.loop.vectorize.width``' Metadata
4305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4306
4307This metadata sets the target width of the vectorizer. The first
4308operand is the string ``llvm.loop.vectorize.width`` and the second
4309operand is an integer specifying the width. For example:
4310
4311.. code-block:: llvm
4312
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004313 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004314
4315Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004316vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000043170 or if the loop does not have this metadata the width will be
4318determined automatically.
4319
4320'``llvm.loop.unroll``'
4321^^^^^^^^^^^^^^^^^^^^^^
4322
4323Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4324optimization hints such as the unroll factor. ``llvm.loop.unroll``
4325metadata should be used in conjunction with ``llvm.loop`` loop
4326identification metadata. The ``llvm.loop.unroll`` metadata are only
4327optimization hints and the unrolling will only be performed if the
4328optimizer believes it is safe to do so.
4329
Mark Heffernan893752a2014-07-18 19:24:51 +00004330'``llvm.loop.unroll.count``' Metadata
4331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4332
4333This metadata suggests an unroll factor to the loop unroller. The
4334first operand is the string ``llvm.loop.unroll.count`` and the second
4335operand is a positive integer specifying the unroll factor. For
4336example:
4337
4338.. code-block:: llvm
4339
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004340 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004341
4342If the trip count of the loop is less than the unroll count the loop
4343will be partially unrolled.
4344
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004345'``llvm.loop.unroll.disable``' Metadata
4346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4347
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004348This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004349which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004350
4351.. code-block:: llvm
4352
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004353 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004354
Kevin Qin715b01e2015-03-09 06:14:18 +00004355'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004357
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004358This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004359operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004360
4361.. code-block:: llvm
4362
4363 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4364
Mark Heffernan89391542015-08-10 17:28:08 +00004365'``llvm.loop.unroll.enable``' Metadata
4366^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4367
4368This metadata suggests that the loop should be fully unrolled if the trip count
4369is known at compile time and partially unrolled if the trip count is not known
4370at compile time. The metadata has a single operand which is the string
4371``llvm.loop.unroll.enable``. For example:
4372
4373.. code-block:: llvm
4374
4375 !0 = !{!"llvm.loop.unroll.enable"}
4376
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004377'``llvm.loop.unroll.full``' Metadata
4378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4379
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004380This metadata suggests that the loop should be unrolled fully. The
4381metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004382For example:
4383
4384.. code-block:: llvm
4385
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004386 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004387
4388'``llvm.mem``'
4389^^^^^^^^^^^^^^^
4390
4391Metadata types used to annotate memory accesses with information helpful
4392for optimizations are prefixed with ``llvm.mem``.
4393
4394'``llvm.mem.parallel_loop_access``' Metadata
4395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4396
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004397The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4398or metadata containing a list of loop identifiers for nested loops.
4399The metadata is attached to memory accessing instructions and denotes that
4400no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004401with the same loop identifier.
4402
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004403Precisely, given two instructions ``m1`` and ``m2`` that both have the
4404``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4405set of loops associated with that metadata, respectively, then there is no loop
4406carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004407``L2``.
4408
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004409As a special case, if all memory accessing instructions in a loop have
4410``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4411loop has no loop carried memory dependences and is considered to be a parallel
4412loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004413
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004414Note that if not all memory access instructions have such metadata referring to
4415the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004416memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004417safe mechanism, this causes loops that were originally parallel to be considered
4418sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004419insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004420
4421Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004422both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004423metadata types that refer to the same loop identifier metadata.
4424
4425.. code-block:: llvm
4426
4427 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004428 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004429 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004430 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004431 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004432 ...
4433 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004434
4435 for.end:
4436 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004437 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004438
4439It is also possible to have nested parallel loops. In that case the
4440memory accesses refer to a list of loop identifier metadata nodes instead of
4441the loop identifier metadata node directly:
4442
4443.. code-block:: llvm
4444
4445 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004446 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004447 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004448 ...
4449 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004450
4451 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004452 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004453 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004454 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004455 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004456 ...
4457 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004458
4459 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004460 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004461 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004462 ...
4463 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004464
4465 outer.for.end: ; preds = %for.body
4466 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004467 !0 = !{!1, !2} ; a list of loop identifiers
4468 !1 = !{!1} ; an identifier for the inner loop
4469 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004470
Peter Collingbournee6909c82015-02-20 20:30:47 +00004471'``llvm.bitsets``'
4472^^^^^^^^^^^^^^^^^^
4473
4474The ``llvm.bitsets`` global metadata is used to implement
4475:doc:`bitsets <BitSets>`.
4476
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004477'``invariant.group``' Metadata
4478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4479
4480The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4481The existence of the ``invariant.group`` metadata on the instruction tells
4482the optimizer that every ``load`` and ``store`` to the same pointer operand
4483within the same invariant group can be assumed to load or store the same
4484value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4485when two pointers are considered the same).
4486
4487Examples:
4488
4489.. code-block:: llvm
4490
4491 @unknownPtr = external global i8
4492 ...
4493 %ptr = alloca i8
4494 store i8 42, i8* %ptr, !invariant.group !0
4495 call void @foo(i8* %ptr)
4496
4497 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4498 call void @foo(i8* %ptr)
4499 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4500
4501 %newPtr = call i8* @getPointer(i8* %ptr)
4502 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4503
4504 %unknownValue = load i8, i8* @unknownPtr
4505 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4506
4507 call void @foo(i8* %ptr)
4508 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4509 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4510
4511 ...
4512 declare void @foo(i8*)
4513 declare i8* @getPointer(i8*)
4514 declare i8* @llvm.invariant.group.barrier(i8*)
4515
4516 !0 = !{!"magic ptr"}
4517 !1 = !{!"other ptr"}
4518
4519
4520
Sean Silvab084af42012-12-07 10:36:55 +00004521Module Flags Metadata
4522=====================
4523
4524Information about the module as a whole is difficult to convey to LLVM's
4525subsystems. The LLVM IR isn't sufficient to transmit this information.
4526The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004527this. These flags are in the form of key / value pairs --- much like a
4528dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004529look it up.
4530
4531The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4532Each triplet has the following form:
4533
4534- The first element is a *behavior* flag, which specifies the behavior
4535 when two (or more) modules are merged together, and it encounters two
4536 (or more) metadata with the same ID. The supported behaviors are
4537 described below.
4538- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004539 metadata. Each module may only have one flag entry for each unique ID (not
4540 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004541- The third element is the value of the flag.
4542
4543When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004544``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4545each unique metadata ID string, there will be exactly one entry in the merged
4546modules ``llvm.module.flags`` metadata table, and the value for that entry will
4547be determined by the merge behavior flag, as described below. The only exception
4548is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004549
4550The following behaviors are supported:
4551
4552.. list-table::
4553 :header-rows: 1
4554 :widths: 10 90
4555
4556 * - Value
4557 - Behavior
4558
4559 * - 1
4560 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004561 Emits an error if two values disagree, otherwise the resulting value
4562 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004563
4564 * - 2
4565 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004566 Emits a warning if two values disagree. The result value will be the
4567 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004568
4569 * - 3
4570 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004571 Adds a requirement that another module flag be present and have a
4572 specified value after linking is performed. The value must be a
4573 metadata pair, where the first element of the pair is the ID of the
4574 module flag to be restricted, and the second element of the pair is
4575 the value the module flag should be restricted to. This behavior can
4576 be used to restrict the allowable results (via triggering of an
4577 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004578
4579 * - 4
4580 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004581 Uses the specified value, regardless of the behavior or value of the
4582 other module. If both modules specify **Override**, but the values
4583 differ, an error will be emitted.
4584
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004585 * - 5
4586 - **Append**
4587 Appends the two values, which are required to be metadata nodes.
4588
4589 * - 6
4590 - **AppendUnique**
4591 Appends the two values, which are required to be metadata
4592 nodes. However, duplicate entries in the second list are dropped
4593 during the append operation.
4594
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004595It is an error for a particular unique flag ID to have multiple behaviors,
4596except in the case of **Require** (which adds restrictions on another metadata
4597value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004598
4599An example of module flags:
4600
4601.. code-block:: llvm
4602
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004603 !0 = !{ i32 1, !"foo", i32 1 }
4604 !1 = !{ i32 4, !"bar", i32 37 }
4605 !2 = !{ i32 2, !"qux", i32 42 }
4606 !3 = !{ i32 3, !"qux",
4607 !{
4608 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004609 }
4610 }
4611 !llvm.module.flags = !{ !0, !1, !2, !3 }
4612
4613- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4614 if two or more ``!"foo"`` flags are seen is to emit an error if their
4615 values are not equal.
4616
4617- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4618 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004619 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004620
4621- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4622 behavior if two or more ``!"qux"`` flags are seen is to emit a
4623 warning if their values are not equal.
4624
4625- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4626
4627 ::
4628
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004629 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004630
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004631 The behavior is to emit an error if the ``llvm.module.flags`` does not
4632 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4633 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004634
4635Objective-C Garbage Collection Module Flags Metadata
4636----------------------------------------------------
4637
4638On the Mach-O platform, Objective-C stores metadata about garbage
4639collection in a special section called "image info". The metadata
4640consists of a version number and a bitmask specifying what types of
4641garbage collection are supported (if any) by the file. If two or more
4642modules are linked together their garbage collection metadata needs to
4643be merged rather than appended together.
4644
4645The Objective-C garbage collection module flags metadata consists of the
4646following key-value pairs:
4647
4648.. list-table::
4649 :header-rows: 1
4650 :widths: 30 70
4651
4652 * - Key
4653 - Value
4654
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004655 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004656 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004657
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004658 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004659 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004660 always 0.
4661
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004662 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004663 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004664 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4665 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4666 Objective-C ABI version 2.
4667
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004668 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004669 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004670 not. Valid values are 0, for no garbage collection, and 2, for garbage
4671 collection supported.
4672
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004673 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004674 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004675 If present, its value must be 6. This flag requires that the
4676 ``Objective-C Garbage Collection`` flag have the value 2.
4677
4678Some important flag interactions:
4679
4680- If a module with ``Objective-C Garbage Collection`` set to 0 is
4681 merged with a module with ``Objective-C Garbage Collection`` set to
4682 2, then the resulting module has the
4683 ``Objective-C Garbage Collection`` flag set to 0.
4684- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4685 merged with a module with ``Objective-C GC Only`` set to 6.
4686
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004687Automatic Linker Flags Module Flags Metadata
4688--------------------------------------------
4689
4690Some targets support embedding flags to the linker inside individual object
4691files. Typically this is used in conjunction with language extensions which
4692allow source files to explicitly declare the libraries they depend on, and have
4693these automatically be transmitted to the linker via object files.
4694
4695These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004696using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004697to be ``AppendUnique``, and the value for the key is expected to be a metadata
4698node which should be a list of other metadata nodes, each of which should be a
4699list of metadata strings defining linker options.
4700
4701For example, the following metadata section specifies two separate sets of
4702linker options, presumably to link against ``libz`` and the ``Cocoa``
4703framework::
4704
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004705 !0 = !{ i32 6, !"Linker Options",
4706 !{
4707 !{ !"-lz" },
4708 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004709 !llvm.module.flags = !{ !0 }
4710
4711The metadata encoding as lists of lists of options, as opposed to a collapsed
4712list of options, is chosen so that the IR encoding can use multiple option
4713strings to specify e.g., a single library, while still having that specifier be
4714preserved as an atomic element that can be recognized by a target specific
4715assembly writer or object file emitter.
4716
4717Each individual option is required to be either a valid option for the target's
4718linker, or an option that is reserved by the target specific assembly writer or
4719object file emitter. No other aspect of these options is defined by the IR.
4720
Oliver Stannard5dc29342014-06-20 10:08:11 +00004721C type width Module Flags Metadata
4722----------------------------------
4723
4724The ARM backend emits a section into each generated object file describing the
4725options that it was compiled with (in a compiler-independent way) to prevent
4726linking incompatible objects, and to allow automatic library selection. Some
4727of these options are not visible at the IR level, namely wchar_t width and enum
4728width.
4729
4730To pass this information to the backend, these options are encoded in module
4731flags metadata, using the following key-value pairs:
4732
4733.. list-table::
4734 :header-rows: 1
4735 :widths: 30 70
4736
4737 * - Key
4738 - Value
4739
4740 * - short_wchar
4741 - * 0 --- sizeof(wchar_t) == 4
4742 * 1 --- sizeof(wchar_t) == 2
4743
4744 * - short_enum
4745 - * 0 --- Enums are at least as large as an ``int``.
4746 * 1 --- Enums are stored in the smallest integer type which can
4747 represent all of its values.
4748
4749For example, the following metadata section specifies that the module was
4750compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4751enum is the smallest type which can represent all of its values::
4752
4753 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004754 !0 = !{i32 1, !"short_wchar", i32 1}
4755 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004756
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004757.. _intrinsicglobalvariables:
4758
Sean Silvab084af42012-12-07 10:36:55 +00004759Intrinsic Global Variables
4760==========================
4761
4762LLVM has a number of "magic" global variables that contain data that
4763affect code generation or other IR semantics. These are documented here.
4764All globals of this sort should have a section specified as
4765"``llvm.metadata``". This section and all globals that start with
4766"``llvm.``" are reserved for use by LLVM.
4767
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004768.. _gv_llvmused:
4769
Sean Silvab084af42012-12-07 10:36:55 +00004770The '``llvm.used``' Global Variable
4771-----------------------------------
4772
Rafael Espindola74f2e462013-04-22 14:58:02 +00004773The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004774:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004775pointers to named global variables, functions and aliases which may optionally
4776have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004777use of it is:
4778
4779.. code-block:: llvm
4780
4781 @X = global i8 4
4782 @Y = global i32 123
4783
4784 @llvm.used = appending global [2 x i8*] [
4785 i8* @X,
4786 i8* bitcast (i32* @Y to i8*)
4787 ], section "llvm.metadata"
4788
Rafael Espindola74f2e462013-04-22 14:58:02 +00004789If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4790and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004791symbol that it cannot see (which is why they have to be named). For example, if
4792a variable has internal linkage and no references other than that from the
4793``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4794references from inline asms and other things the compiler cannot "see", and
4795corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004796
4797On some targets, the code generator must emit a directive to the
4798assembler or object file to prevent the assembler and linker from
4799molesting the symbol.
4800
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004801.. _gv_llvmcompilerused:
4802
Sean Silvab084af42012-12-07 10:36:55 +00004803The '``llvm.compiler.used``' Global Variable
4804--------------------------------------------
4805
4806The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4807directive, except that it only prevents the compiler from touching the
4808symbol. On targets that support it, this allows an intelligent linker to
4809optimize references to the symbol without being impeded as it would be
4810by ``@llvm.used``.
4811
4812This is a rare construct that should only be used in rare circumstances,
4813and should not be exposed to source languages.
4814
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004815.. _gv_llvmglobalctors:
4816
Sean Silvab084af42012-12-07 10:36:55 +00004817The '``llvm.global_ctors``' Global Variable
4818-------------------------------------------
4819
4820.. code-block:: llvm
4821
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004822 %0 = type { i32, void ()*, i8* }
4823 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004824
4825The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004826functions, priorities, and an optional associated global or function.
4827The functions referenced by this array will be called in ascending order
4828of priority (i.e. lowest first) when the module is loaded. The order of
4829functions with the same priority is not defined.
4830
4831If the third field is present, non-null, and points to a global variable
4832or function, the initializer function will only run if the associated
4833data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004834
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004835.. _llvmglobaldtors:
4836
Sean Silvab084af42012-12-07 10:36:55 +00004837The '``llvm.global_dtors``' Global Variable
4838-------------------------------------------
4839
4840.. code-block:: llvm
4841
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004842 %0 = type { i32, void ()*, i8* }
4843 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004844
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004845The ``@llvm.global_dtors`` array contains a list of destructor
4846functions, priorities, and an optional associated global or function.
4847The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004848order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004849order of functions with the same priority is not defined.
4850
4851If the third field is present, non-null, and points to a global variable
4852or function, the destructor function will only run if the associated
4853data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004854
4855Instruction Reference
4856=====================
4857
4858The LLVM instruction set consists of several different classifications
4859of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4860instructions <binaryops>`, :ref:`bitwise binary
4861instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4862:ref:`other instructions <otherops>`.
4863
4864.. _terminators:
4865
4866Terminator Instructions
4867-----------------------
4868
4869As mentioned :ref:`previously <functionstructure>`, every basic block in a
4870program ends with a "Terminator" instruction, which indicates which
4871block should be executed after the current block is finished. These
4872terminator instructions typically yield a '``void``' value: they produce
4873control flow, not values (the one exception being the
4874':ref:`invoke <i_invoke>`' instruction).
4875
4876The terminator instructions are: ':ref:`ret <i_ret>`',
4877':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4878':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004879':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4880':ref:`catchendpad <i_catchendpad>`',
4881':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004882':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004883':ref:`cleanupret <i_cleanupret>`',
4884':ref:`terminatepad <i_terminatepad>`',
4885and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004886
4887.. _i_ret:
4888
4889'``ret``' Instruction
4890^^^^^^^^^^^^^^^^^^^^^
4891
4892Syntax:
4893"""""""
4894
4895::
4896
4897 ret <type> <value> ; Return a value from a non-void function
4898 ret void ; Return from void function
4899
4900Overview:
4901"""""""""
4902
4903The '``ret``' instruction is used to return control flow (and optionally
4904a value) from a function back to the caller.
4905
4906There are two forms of the '``ret``' instruction: one that returns a
4907value and then causes control flow, and one that just causes control
4908flow to occur.
4909
4910Arguments:
4911""""""""""
4912
4913The '``ret``' instruction optionally accepts a single argument, the
4914return value. The type of the return value must be a ':ref:`first
4915class <t_firstclass>`' type.
4916
4917A function is not :ref:`well formed <wellformed>` if it it has a non-void
4918return type and contains a '``ret``' instruction with no return value or
4919a return value with a type that does not match its type, or if it has a
4920void return type and contains a '``ret``' instruction with a return
4921value.
4922
4923Semantics:
4924""""""""""
4925
4926When the '``ret``' instruction is executed, control flow returns back to
4927the calling function's context. If the caller is a
4928":ref:`call <i_call>`" instruction, execution continues at the
4929instruction after the call. If the caller was an
4930":ref:`invoke <i_invoke>`" instruction, execution continues at the
4931beginning of the "normal" destination block. If the instruction returns
4932a value, that value shall set the call or invoke instruction's return
4933value.
4934
4935Example:
4936""""""""
4937
4938.. code-block:: llvm
4939
4940 ret i32 5 ; Return an integer value of 5
4941 ret void ; Return from a void function
4942 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4943
4944.. _i_br:
4945
4946'``br``' Instruction
4947^^^^^^^^^^^^^^^^^^^^
4948
4949Syntax:
4950"""""""
4951
4952::
4953
4954 br i1 <cond>, label <iftrue>, label <iffalse>
4955 br label <dest> ; Unconditional branch
4956
4957Overview:
4958"""""""""
4959
4960The '``br``' instruction is used to cause control flow to transfer to a
4961different basic block in the current function. There are two forms of
4962this instruction, corresponding to a conditional branch and an
4963unconditional branch.
4964
4965Arguments:
4966""""""""""
4967
4968The conditional branch form of the '``br``' instruction takes a single
4969'``i1``' value and two '``label``' values. The unconditional form of the
4970'``br``' instruction takes a single '``label``' value as a target.
4971
4972Semantics:
4973""""""""""
4974
4975Upon execution of a conditional '``br``' instruction, the '``i1``'
4976argument is evaluated. If the value is ``true``, control flows to the
4977'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4978to the '``iffalse``' ``label`` argument.
4979
4980Example:
4981""""""""
4982
4983.. code-block:: llvm
4984
4985 Test:
4986 %cond = icmp eq i32 %a, %b
4987 br i1 %cond, label %IfEqual, label %IfUnequal
4988 IfEqual:
4989 ret i32 1
4990 IfUnequal:
4991 ret i32 0
4992
4993.. _i_switch:
4994
4995'``switch``' Instruction
4996^^^^^^^^^^^^^^^^^^^^^^^^
4997
4998Syntax:
4999"""""""
5000
5001::
5002
5003 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5004
5005Overview:
5006"""""""""
5007
5008The '``switch``' instruction is used to transfer control flow to one of
5009several different places. It is a generalization of the '``br``'
5010instruction, allowing a branch to occur to one of many possible
5011destinations.
5012
5013Arguments:
5014""""""""""
5015
5016The '``switch``' instruction uses three parameters: an integer
5017comparison value '``value``', a default '``label``' destination, and an
5018array of pairs of comparison value constants and '``label``'s. The table
5019is not allowed to contain duplicate constant entries.
5020
5021Semantics:
5022""""""""""
5023
5024The ``switch`` instruction specifies a table of values and destinations.
5025When the '``switch``' instruction is executed, this table is searched
5026for the given value. If the value is found, control flow is transferred
5027to the corresponding destination; otherwise, control flow is transferred
5028to the default destination.
5029
5030Implementation:
5031"""""""""""""""
5032
5033Depending on properties of the target machine and the particular
5034``switch`` instruction, this instruction may be code generated in
5035different ways. For example, it could be generated as a series of
5036chained conditional branches or with a lookup table.
5037
5038Example:
5039""""""""
5040
5041.. code-block:: llvm
5042
5043 ; Emulate a conditional br instruction
5044 %Val = zext i1 %value to i32
5045 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5046
5047 ; Emulate an unconditional br instruction
5048 switch i32 0, label %dest [ ]
5049
5050 ; Implement a jump table:
5051 switch i32 %val, label %otherwise [ i32 0, label %onzero
5052 i32 1, label %onone
5053 i32 2, label %ontwo ]
5054
5055.. _i_indirectbr:
5056
5057'``indirectbr``' Instruction
5058^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5059
5060Syntax:
5061"""""""
5062
5063::
5064
5065 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5066
5067Overview:
5068"""""""""
5069
5070The '``indirectbr``' instruction implements an indirect branch to a
5071label within the current function, whose address is specified by
5072"``address``". Address must be derived from a
5073:ref:`blockaddress <blockaddress>` constant.
5074
5075Arguments:
5076""""""""""
5077
5078The '``address``' argument is the address of the label to jump to. The
5079rest of the arguments indicate the full set of possible destinations
5080that the address may point to. Blocks are allowed to occur multiple
5081times in the destination list, though this isn't particularly useful.
5082
5083This destination list is required so that dataflow analysis has an
5084accurate understanding of the CFG.
5085
5086Semantics:
5087""""""""""
5088
5089Control transfers to the block specified in the address argument. All
5090possible destination blocks must be listed in the label list, otherwise
5091this instruction has undefined behavior. This implies that jumps to
5092labels defined in other functions have undefined behavior as well.
5093
5094Implementation:
5095"""""""""""""""
5096
5097This is typically implemented with a jump through a register.
5098
5099Example:
5100""""""""
5101
5102.. code-block:: llvm
5103
5104 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5105
5106.. _i_invoke:
5107
5108'``invoke``' Instruction
5109^^^^^^^^^^^^^^^^^^^^^^^^
5110
5111Syntax:
5112"""""""
5113
5114::
5115
5116 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005117 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005118
5119Overview:
5120"""""""""
5121
5122The '``invoke``' instruction causes control to transfer to a specified
5123function, with the possibility of control flow transfer to either the
5124'``normal``' label or the '``exception``' label. If the callee function
5125returns with the "``ret``" instruction, control flow will return to the
5126"normal" label. If the callee (or any indirect callees) returns via the
5127":ref:`resume <i_resume>`" instruction or other exception handling
5128mechanism, control is interrupted and continued at the dynamically
5129nearest "exception" label.
5130
5131The '``exception``' label is a `landing
5132pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5133'``exception``' label is required to have the
5134":ref:`landingpad <i_landingpad>`" instruction, which contains the
5135information about the behavior of the program after unwinding happens,
5136as its first non-PHI instruction. The restrictions on the
5137"``landingpad``" instruction's tightly couples it to the "``invoke``"
5138instruction, so that the important information contained within the
5139"``landingpad``" instruction can't be lost through normal code motion.
5140
5141Arguments:
5142""""""""""
5143
5144This instruction requires several arguments:
5145
5146#. The optional "cconv" marker indicates which :ref:`calling
5147 convention <callingconv>` the call should use. If none is
5148 specified, the call defaults to using C calling conventions.
5149#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5150 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5151 are valid here.
5152#. '``ptr to function ty``': shall be the signature of the pointer to
5153 function value being invoked. In most cases, this is a direct
5154 function invocation, but indirect ``invoke``'s are just as possible,
5155 branching off an arbitrary pointer to function value.
5156#. '``function ptr val``': An LLVM value containing a pointer to a
5157 function to be invoked.
5158#. '``function args``': argument list whose types match the function
5159 signature argument types and parameter attributes. All arguments must
5160 be of :ref:`first class <t_firstclass>` type. If the function signature
5161 indicates the function accepts a variable number of arguments, the
5162 extra arguments can be specified.
5163#. '``normal label``': the label reached when the called function
5164 executes a '``ret``' instruction.
5165#. '``exception label``': the label reached when a callee returns via
5166 the :ref:`resume <i_resume>` instruction or other exception handling
5167 mechanism.
5168#. The optional :ref:`function attributes <fnattrs>` list. Only
5169 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5170 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005171#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005172
5173Semantics:
5174""""""""""
5175
5176This instruction is designed to operate as a standard '``call``'
5177instruction in most regards. The primary difference is that it
5178establishes an association with a label, which is used by the runtime
5179library to unwind the stack.
5180
5181This instruction is used in languages with destructors to ensure that
5182proper cleanup is performed in the case of either a ``longjmp`` or a
5183thrown exception. Additionally, this is important for implementation of
5184'``catch``' clauses in high-level languages that support them.
5185
5186For the purposes of the SSA form, the definition of the value returned
5187by the '``invoke``' instruction is deemed to occur on the edge from the
5188current block to the "normal" label. If the callee unwinds then no
5189return value is available.
5190
5191Example:
5192""""""""
5193
5194.. code-block:: llvm
5195
5196 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005197 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005198 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005199 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005200
5201.. _i_resume:
5202
5203'``resume``' Instruction
5204^^^^^^^^^^^^^^^^^^^^^^^^
5205
5206Syntax:
5207"""""""
5208
5209::
5210
5211 resume <type> <value>
5212
5213Overview:
5214"""""""""
5215
5216The '``resume``' instruction is a terminator instruction that has no
5217successors.
5218
5219Arguments:
5220""""""""""
5221
5222The '``resume``' instruction requires one argument, which must have the
5223same type as the result of any '``landingpad``' instruction in the same
5224function.
5225
5226Semantics:
5227""""""""""
5228
5229The '``resume``' instruction resumes propagation of an existing
5230(in-flight) exception whose unwinding was interrupted with a
5231:ref:`landingpad <i_landingpad>` instruction.
5232
5233Example:
5234""""""""
5235
5236.. code-block:: llvm
5237
5238 resume { i8*, i32 } %exn
5239
David Majnemer654e1302015-07-31 17:58:14 +00005240.. _i_catchpad:
5241
5242'``catchpad``' Instruction
5243^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5244
5245Syntax:
5246"""""""
5247
5248::
5249
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005250 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005251 to label <normal label> unwind label <exception label>
5252
5253Overview:
5254"""""""""
5255
5256The '``catchpad``' instruction is used by `LLVM's exception handling
5257system <ExceptionHandling.html#overview>`_ to specify that a basic block
5258is a catch block --- one where a personality routine attempts to transfer
5259control to catch an exception.
5260The ``args`` correspond to whatever information the personality
5261routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005262exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005263``catchpad`` is not an appropriate handler for the in-flight exception.
5264The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005265portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5266:ref:`token <t_token>` and is used to match the ``catchpad`` to
5267corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005268
5269Arguments:
5270""""""""""
5271
5272The instruction takes a list of arbitrary values which are interpreted
5273by the :ref:`personality function <personalityfn>`.
5274
5275The ``catchpad`` must be provided a ``normal`` label to transfer control
5276to if the ``catchpad`` matches the exception and an ``exception``
5277label to transfer control to if it doesn't.
5278
5279Semantics:
5280""""""""""
5281
David Majnemer654e1302015-07-31 17:58:14 +00005282When the call stack is being unwound due to an exception being thrown,
5283the exception is compared against the ``args``. If it doesn't match,
5284then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005285As with calling conventions, how the personality function results are
5286represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005287
5288The ``catchpad`` instruction has several restrictions:
5289
5290- A catch block is a basic block which is the unwind destination of
5291 an exceptional instruction.
5292- A catch block must have a '``catchpad``' instruction as its
5293 first non-PHI instruction.
5294- A catch block's ``exception`` edge must refer to a catch block or a
5295 catch-end block.
5296- There can be only one '``catchpad``' instruction within the
5297 catch block.
5298- A basic block that is not a catch block may not include a
5299 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005300- A catch block which has another catch block as a predecessor may not have
5301 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005302- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005303 ``ret`` without first executing a ``catchret`` that consumes the
5304 ``catchpad`` or unwinding through its ``catchendpad``.
5305- It is undefined behavior for control to transfer from a ``catchpad`` to
5306 itself without first executing a ``catchret`` that consumes the
5307 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005308
5309Example:
5310""""""""
5311
5312.. code-block:: llvm
5313
5314 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005315 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005316 to label %int.handler unwind label %terminate
5317
5318.. _i_catchendpad:
5319
5320'``catchendpad``' Instruction
5321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5322
5323Syntax:
5324"""""""
5325
5326::
5327
5328 catchendpad unwind label <nextaction>
5329 catchendpad unwind to caller
5330
5331Overview:
5332"""""""""
5333
5334The '``catchendpad``' instruction is used by `LLVM's exception handling
5335system <ExceptionHandling.html#overview>`_ to communicate to the
5336:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005337with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5338exception out of a catch handler is represented by unwinding through its
5339``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5340do not handle an exception is also represented by unwinding through their
5341``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005342
5343The ``nextaction`` label indicates where control should transfer to if
5344none of the ``catchpad`` instructions are suitable for catching the
5345in-flight exception.
5346
5347If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005348its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005349:ref:`personality function <personalityfn>` will continue processing
5350exception handling actions in the caller.
5351
5352Arguments:
5353""""""""""
5354
5355The instruction optionally takes a label, ``nextaction``, indicating
5356where control should transfer to if none of the preceding
5357``catchpad`` instructions are suitable for the in-flight exception.
5358
5359Semantics:
5360""""""""""
5361
5362When the call stack is being unwound due to an exception being thrown
5363and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005364control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005365present, control is transfered to the caller.
5366
5367The ``catchendpad`` instruction has several restrictions:
5368
5369- A catch-end block is a basic block which is the unwind destination of
5370 an exceptional instruction.
5371- A catch-end block must have a '``catchendpad``' instruction as its
5372 first non-PHI instruction.
5373- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005374 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005375- A basic block that is not a catch-end block may not include a
5376 '``catchendpad``' instruction.
5377- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005378- It is undefined behavior to execute a ``catchendpad`` if none of the
5379 '``catchpad``'s chained to it have been executed.
5380- It is undefined behavior to execute a ``catchendpad`` twice without an
5381 intervening execution of one or more of the '``catchpad``'s chained to it.
5382- It is undefined behavior to execute a ``catchendpad`` if, after the most
5383 recent execution of the normal successor edge of any ``catchpad`` chained
5384 to it, some ``catchret`` consuming that ``catchpad`` has already been
5385 executed.
5386- It is undefined behavior to execute a ``catchendpad`` if, after the most
5387 recent execution of the normal successor edge of any ``catchpad`` chained
5388 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5389 not had a corresponding
5390 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005391
5392Example:
5393""""""""
5394
5395.. code-block:: llvm
5396
5397 catchendpad unwind label %terminate
5398 catchendpad unwind to caller
5399
5400.. _i_catchret:
5401
5402'``catchret``' Instruction
5403^^^^^^^^^^^^^^^^^^^^^^^^^^
5404
5405Syntax:
5406"""""""
5407
5408::
5409
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005410 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005411
5412Overview:
5413"""""""""
5414
5415The '``catchret``' instruction is a terminator instruction that has a
5416single successor.
5417
5418
5419Arguments:
5420""""""""""
5421
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005422The first argument to a '``catchret``' indicates which ``catchpad`` it
5423exits. It must be a :ref:`catchpad <i_catchpad>`.
5424The second argument to a '``catchret``' specifies where control will
5425transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005426
5427Semantics:
5428""""""""""
5429
5430The '``catchret``' instruction ends the existing (in-flight) exception
5431whose unwinding was interrupted with a
5432:ref:`catchpad <i_catchpad>` instruction.
5433The :ref:`personality function <personalityfn>` gets a chance to execute
5434arbitrary code to, for example, run a C++ destructor.
5435Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005436It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005437
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005438It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5439not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005440
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005441It is undefined behavior to execute a ``catchret`` if, after the most recent
5442execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5443to the same ``catchpad`` has already been executed.
5444
5445It is undefined behavior to execute a ``catchret`` if, after the most recent
5446execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5447been executed but has not had a corresponding
5448``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005449
5450Example:
5451""""""""
5452
5453.. code-block:: llvm
5454
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005455 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005456
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005457.. _i_cleanupendpad:
5458
5459'``cleanupendpad``' Instruction
5460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5461
5462Syntax:
5463"""""""
5464
5465::
5466
5467 cleanupendpad <value> unwind label <nextaction>
5468 cleanupendpad <value> unwind to caller
5469
5470Overview:
5471"""""""""
5472
5473The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5474system <ExceptionHandling.html#overview>`_ to communicate to the
5475:ref:`personality function <personalityfn>` which invokes are associated
5476with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5477out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5478
5479The ``nextaction`` label indicates where control should unwind to next, in the
5480event that a cleanup is exited by means of an(other) exception being raised.
5481
5482If a ``nextaction`` label is not present, the instruction unwinds out of
5483its parent function. The
5484:ref:`personality function <personalityfn>` will continue processing
5485exception handling actions in the caller.
5486
5487Arguments:
5488""""""""""
5489
5490The '``cleanupendpad``' instruction requires one argument, which indicates
5491which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5492It also has an optional successor, ``nextaction``, indicating where control
5493should transfer to.
5494
5495Semantics:
5496""""""""""
5497
5498When and exception propagates to a ``cleanupendpad``, control is transfered to
5499``nextaction`` if it is present. If it is not present, control is transfered to
5500the caller.
5501
5502The ``cleanupendpad`` instruction has several restrictions:
5503
5504- A cleanup-end block is a basic block which is the unwind destination of
5505 an exceptional instruction.
5506- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5507 first non-PHI instruction.
5508- There can be only one '``cleanupendpad``' instruction within the
5509 cleanup-end block.
5510- A basic block that is not a cleanup-end block may not include a
5511 '``cleanupendpad``' instruction.
5512- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5513 has not been executed.
5514- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5515 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5516 consuming the same ``cleanuppad`` has already been executed.
5517- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5518 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5519 ``catchpad`` has been executed but has not had a corresponding
5520 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5521
5522Example:
5523""""""""
5524
5525.. code-block:: llvm
5526
5527 cleanupendpad %cleanup unwind label %terminate
5528 cleanupendpad %cleanup unwind to caller
5529
David Majnemer654e1302015-07-31 17:58:14 +00005530.. _i_cleanupret:
5531
5532'``cleanupret``' Instruction
5533^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5534
5535Syntax:
5536"""""""
5537
5538::
5539
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005540 cleanupret <value> unwind label <continue>
5541 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005542
5543Overview:
5544"""""""""
5545
5546The '``cleanupret``' instruction is a terminator instruction that has
5547an optional successor.
5548
5549
5550Arguments:
5551""""""""""
5552
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005553The '``cleanupret``' instruction requires one argument, which indicates
5554which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5555It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005556
5557Semantics:
5558""""""""""
5559
5560The '``cleanupret``' instruction indicates to the
5561:ref:`personality function <personalityfn>` that one
5562:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5563It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005564
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005565It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5566not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005567
5568It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5569execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5570consuming the same ``cleanuppad`` has already been executed.
5571
5572It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5573execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5574been executed but has not had a corresponding
5575``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005576
5577Example:
5578""""""""
5579
5580.. code-block:: llvm
5581
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005582 cleanupret %cleanup unwind to caller
5583 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005584
5585.. _i_terminatepad:
5586
5587'``terminatepad``' Instruction
5588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5589
5590Syntax:
5591"""""""
5592
5593::
5594
5595 terminatepad [<args>*] unwind label <exception label>
5596 terminatepad [<args>*] unwind to caller
5597
5598Overview:
5599"""""""""
5600
5601The '``terminatepad``' instruction is used by `LLVM's exception handling
5602system <ExceptionHandling.html#overview>`_ to specify that a basic block
5603is a terminate block --- one where a personality routine may decide to
5604terminate the program.
5605The ``args`` correspond to whatever information the personality
5606routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005607program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005608personality routine decides not to terminate the program for the
5609in-flight exception.
5610
5611Arguments:
5612""""""""""
5613
5614The instruction takes a list of arbitrary values which are interpreted
5615by the :ref:`personality function <personalityfn>`.
5616
5617The ``terminatepad`` may be given an ``exception`` label to
5618transfer control to if the in-flight exception matches the ``args``.
5619
5620Semantics:
5621""""""""""
5622
5623When the call stack is being unwound due to an exception being thrown,
5624the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005625then control is transfered to the ``exception`` basic block. Otherwise,
5626the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005627the first argument to ``terminatepad`` specifies what function the
5628personality should defer to in order to terminate the program.
5629
5630The ``terminatepad`` instruction has several restrictions:
5631
5632- A terminate block is a basic block which is the unwind destination of
5633 an exceptional instruction.
5634- A terminate block must have a '``terminatepad``' instruction as its
5635 first non-PHI instruction.
5636- There can be only one '``terminatepad``' instruction within the
5637 terminate block.
5638- A basic block that is not a terminate block may not include a
5639 '``terminatepad``' instruction.
5640
5641Example:
5642""""""""
5643
5644.. code-block:: llvm
5645
5646 ;; A terminate block which only permits integers.
5647 terminatepad [i8** @_ZTIi] unwind label %continue
5648
Sean Silvab084af42012-12-07 10:36:55 +00005649.. _i_unreachable:
5650
5651'``unreachable``' Instruction
5652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5653
5654Syntax:
5655"""""""
5656
5657::
5658
5659 unreachable
5660
5661Overview:
5662"""""""""
5663
5664The '``unreachable``' instruction has no defined semantics. This
5665instruction is used to inform the optimizer that a particular portion of
5666the code is not reachable. This can be used to indicate that the code
5667after a no-return function cannot be reached, and other facts.
5668
5669Semantics:
5670""""""""""
5671
5672The '``unreachable``' instruction has no defined semantics.
5673
5674.. _binaryops:
5675
5676Binary Operations
5677-----------------
5678
5679Binary operators are used to do most of the computation in a program.
5680They require two operands of the same type, execute an operation on
5681them, and produce a single value. The operands might represent multiple
5682data, as is the case with the :ref:`vector <t_vector>` data type. The
5683result value has the same type as its operands.
5684
5685There are several different binary operators:
5686
5687.. _i_add:
5688
5689'``add``' Instruction
5690^^^^^^^^^^^^^^^^^^^^^
5691
5692Syntax:
5693"""""""
5694
5695::
5696
Tim Northover675a0962014-06-13 14:24:23 +00005697 <result> = add <ty> <op1>, <op2> ; yields ty:result
5698 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5699 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5700 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005701
5702Overview:
5703"""""""""
5704
5705The '``add``' instruction returns the sum of its two operands.
5706
5707Arguments:
5708""""""""""
5709
5710The two arguments to the '``add``' instruction must be
5711:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5712arguments must have identical types.
5713
5714Semantics:
5715""""""""""
5716
5717The value produced is the integer sum of the two operands.
5718
5719If the sum has unsigned overflow, the result returned is the
5720mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5721the result.
5722
5723Because LLVM integers use a two's complement representation, this
5724instruction is appropriate for both signed and unsigned integers.
5725
5726``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5727respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5728result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5729unsigned and/or signed overflow, respectively, occurs.
5730
5731Example:
5732""""""""
5733
5734.. code-block:: llvm
5735
Tim Northover675a0962014-06-13 14:24:23 +00005736 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005737
5738.. _i_fadd:
5739
5740'``fadd``' Instruction
5741^^^^^^^^^^^^^^^^^^^^^^
5742
5743Syntax:
5744"""""""
5745
5746::
5747
Tim Northover675a0962014-06-13 14:24:23 +00005748 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005749
5750Overview:
5751"""""""""
5752
5753The '``fadd``' instruction returns the sum of its two operands.
5754
5755Arguments:
5756""""""""""
5757
5758The two arguments to the '``fadd``' instruction must be :ref:`floating
5759point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5760Both arguments must have identical types.
5761
5762Semantics:
5763""""""""""
5764
5765The value produced is the floating point sum of the two operands. This
5766instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5767which are optimization hints to enable otherwise unsafe floating point
5768optimizations:
5769
5770Example:
5771""""""""
5772
5773.. code-block:: llvm
5774
Tim Northover675a0962014-06-13 14:24:23 +00005775 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005776
5777'``sub``' Instruction
5778^^^^^^^^^^^^^^^^^^^^^
5779
5780Syntax:
5781"""""""
5782
5783::
5784
Tim Northover675a0962014-06-13 14:24:23 +00005785 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5786 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5787 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5788 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005789
5790Overview:
5791"""""""""
5792
5793The '``sub``' instruction returns the difference of its two operands.
5794
5795Note that the '``sub``' instruction is used to represent the '``neg``'
5796instruction present in most other intermediate representations.
5797
5798Arguments:
5799""""""""""
5800
5801The two arguments to the '``sub``' instruction must be
5802:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5803arguments must have identical types.
5804
5805Semantics:
5806""""""""""
5807
5808The value produced is the integer difference of the two operands.
5809
5810If the difference has unsigned overflow, the result returned is the
5811mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5812the result.
5813
5814Because LLVM integers use a two's complement representation, this
5815instruction is appropriate for both signed and unsigned integers.
5816
5817``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5818respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5819result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5820unsigned and/or signed overflow, respectively, occurs.
5821
5822Example:
5823""""""""
5824
5825.. code-block:: llvm
5826
Tim Northover675a0962014-06-13 14:24:23 +00005827 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5828 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005829
5830.. _i_fsub:
5831
5832'``fsub``' Instruction
5833^^^^^^^^^^^^^^^^^^^^^^
5834
5835Syntax:
5836"""""""
5837
5838::
5839
Tim Northover675a0962014-06-13 14:24:23 +00005840 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005841
5842Overview:
5843"""""""""
5844
5845The '``fsub``' instruction returns the difference of its two operands.
5846
5847Note that the '``fsub``' instruction is used to represent the '``fneg``'
5848instruction present in most other intermediate representations.
5849
5850Arguments:
5851""""""""""
5852
5853The two arguments to the '``fsub``' instruction must be :ref:`floating
5854point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5855Both arguments must have identical types.
5856
5857Semantics:
5858""""""""""
5859
5860The value produced is the floating point difference of the two operands.
5861This instruction can also take any number of :ref:`fast-math
5862flags <fastmath>`, which are optimization hints to enable otherwise
5863unsafe floating point optimizations:
5864
5865Example:
5866""""""""
5867
5868.. code-block:: llvm
5869
Tim Northover675a0962014-06-13 14:24:23 +00005870 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5871 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005872
5873'``mul``' Instruction
5874^^^^^^^^^^^^^^^^^^^^^
5875
5876Syntax:
5877"""""""
5878
5879::
5880
Tim Northover675a0962014-06-13 14:24:23 +00005881 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5882 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5883 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5884 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005885
5886Overview:
5887"""""""""
5888
5889The '``mul``' instruction returns the product of its two operands.
5890
5891Arguments:
5892""""""""""
5893
5894The two arguments to the '``mul``' instruction must be
5895:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5896arguments must have identical types.
5897
5898Semantics:
5899""""""""""
5900
5901The value produced is the integer product of the two operands.
5902
5903If the result of the multiplication has unsigned overflow, the result
5904returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5905bit width of the result.
5906
5907Because LLVM integers use a two's complement representation, and the
5908result is the same width as the operands, this instruction returns the
5909correct result for both signed and unsigned integers. If a full product
5910(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5911sign-extended or zero-extended as appropriate to the width of the full
5912product.
5913
5914``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5915respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5916result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5917unsigned and/or signed overflow, respectively, occurs.
5918
5919Example:
5920""""""""
5921
5922.. code-block:: llvm
5923
Tim Northover675a0962014-06-13 14:24:23 +00005924 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005925
5926.. _i_fmul:
5927
5928'``fmul``' Instruction
5929^^^^^^^^^^^^^^^^^^^^^^
5930
5931Syntax:
5932"""""""
5933
5934::
5935
Tim Northover675a0962014-06-13 14:24:23 +00005936 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005937
5938Overview:
5939"""""""""
5940
5941The '``fmul``' instruction returns the product of its two operands.
5942
5943Arguments:
5944""""""""""
5945
5946The two arguments to the '``fmul``' instruction must be :ref:`floating
5947point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5948Both arguments must have identical types.
5949
5950Semantics:
5951""""""""""
5952
5953The value produced is the floating point product of the two operands.
5954This instruction can also take any number of :ref:`fast-math
5955flags <fastmath>`, which are optimization hints to enable otherwise
5956unsafe floating point optimizations:
5957
5958Example:
5959""""""""
5960
5961.. code-block:: llvm
5962
Tim Northover675a0962014-06-13 14:24:23 +00005963 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005964
5965'``udiv``' Instruction
5966^^^^^^^^^^^^^^^^^^^^^^
5967
5968Syntax:
5969"""""""
5970
5971::
5972
Tim Northover675a0962014-06-13 14:24:23 +00005973 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5974 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005975
5976Overview:
5977"""""""""
5978
5979The '``udiv``' instruction returns the quotient of its two operands.
5980
5981Arguments:
5982""""""""""
5983
5984The two arguments to the '``udiv``' instruction must be
5985:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5986arguments must have identical types.
5987
5988Semantics:
5989""""""""""
5990
5991The value produced is the unsigned integer quotient of the two operands.
5992
5993Note that unsigned integer division and signed integer division are
5994distinct operations; for signed integer division, use '``sdiv``'.
5995
5996Division by zero leads to undefined behavior.
5997
5998If the ``exact`` keyword is present, the result value of the ``udiv`` is
5999a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6000such, "((a udiv exact b) mul b) == a").
6001
6002Example:
6003""""""""
6004
6005.. code-block:: llvm
6006
Tim Northover675a0962014-06-13 14:24:23 +00006007 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006008
6009'``sdiv``' Instruction
6010^^^^^^^^^^^^^^^^^^^^^^
6011
6012Syntax:
6013"""""""
6014
6015::
6016
Tim Northover675a0962014-06-13 14:24:23 +00006017 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6018 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006019
6020Overview:
6021"""""""""
6022
6023The '``sdiv``' instruction returns the quotient of its two operands.
6024
6025Arguments:
6026""""""""""
6027
6028The two arguments to the '``sdiv``' instruction must be
6029:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6030arguments must have identical types.
6031
6032Semantics:
6033""""""""""
6034
6035The value produced is the signed integer quotient of the two operands
6036rounded towards zero.
6037
6038Note that signed integer division and unsigned integer division are
6039distinct operations; for unsigned integer division, use '``udiv``'.
6040
6041Division by zero leads to undefined behavior. Overflow also leads to
6042undefined behavior; this is a rare case, but can occur, for example, by
6043doing a 32-bit division of -2147483648 by -1.
6044
6045If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6046a :ref:`poison value <poisonvalues>` if the result would be rounded.
6047
6048Example:
6049""""""""
6050
6051.. code-block:: llvm
6052
Tim Northover675a0962014-06-13 14:24:23 +00006053 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006054
6055.. _i_fdiv:
6056
6057'``fdiv``' Instruction
6058^^^^^^^^^^^^^^^^^^^^^^
6059
6060Syntax:
6061"""""""
6062
6063::
6064
Tim Northover675a0962014-06-13 14:24:23 +00006065 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006066
6067Overview:
6068"""""""""
6069
6070The '``fdiv``' instruction returns the quotient of its two operands.
6071
6072Arguments:
6073""""""""""
6074
6075The two arguments to the '``fdiv``' instruction must be :ref:`floating
6076point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6077Both arguments must have identical types.
6078
6079Semantics:
6080""""""""""
6081
6082The value produced is the floating point quotient of the two operands.
6083This instruction can also take any number of :ref:`fast-math
6084flags <fastmath>`, which are optimization hints to enable otherwise
6085unsafe floating point optimizations:
6086
6087Example:
6088""""""""
6089
6090.. code-block:: llvm
6091
Tim Northover675a0962014-06-13 14:24:23 +00006092 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006093
6094'``urem``' Instruction
6095^^^^^^^^^^^^^^^^^^^^^^
6096
6097Syntax:
6098"""""""
6099
6100::
6101
Tim Northover675a0962014-06-13 14:24:23 +00006102 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006103
6104Overview:
6105"""""""""
6106
6107The '``urem``' instruction returns the remainder from the unsigned
6108division of its two arguments.
6109
6110Arguments:
6111""""""""""
6112
6113The two arguments to the '``urem``' instruction must be
6114:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6115arguments must have identical types.
6116
6117Semantics:
6118""""""""""
6119
6120This instruction returns the unsigned integer *remainder* of a division.
6121This instruction always performs an unsigned division to get the
6122remainder.
6123
6124Note that unsigned integer remainder and signed integer remainder are
6125distinct operations; for signed integer remainder, use '``srem``'.
6126
6127Taking the remainder of a division by zero leads to undefined behavior.
6128
6129Example:
6130""""""""
6131
6132.. code-block:: llvm
6133
Tim Northover675a0962014-06-13 14:24:23 +00006134 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006135
6136'``srem``' Instruction
6137^^^^^^^^^^^^^^^^^^^^^^
6138
6139Syntax:
6140"""""""
6141
6142::
6143
Tim Northover675a0962014-06-13 14:24:23 +00006144 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006145
6146Overview:
6147"""""""""
6148
6149The '``srem``' instruction returns the remainder from the signed
6150division of its two operands. This instruction can also take
6151:ref:`vector <t_vector>` versions of the values in which case the elements
6152must be integers.
6153
6154Arguments:
6155""""""""""
6156
6157The two arguments to the '``srem``' instruction must be
6158:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6159arguments must have identical types.
6160
6161Semantics:
6162""""""""""
6163
6164This instruction returns the *remainder* of a division (where the result
6165is either zero or has the same sign as the dividend, ``op1``), not the
6166*modulo* operator (where the result is either zero or has the same sign
6167as the divisor, ``op2``) of a value. For more information about the
6168difference, see `The Math
6169Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6170table of how this is implemented in various languages, please see
6171`Wikipedia: modulo
6172operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6173
6174Note that signed integer remainder and unsigned integer remainder are
6175distinct operations; for unsigned integer remainder, use '``urem``'.
6176
6177Taking the remainder of a division by zero leads to undefined behavior.
6178Overflow also leads to undefined behavior; this is a rare case, but can
6179occur, for example, by taking the remainder of a 32-bit division of
6180-2147483648 by -1. (The remainder doesn't actually overflow, but this
6181rule lets srem be implemented using instructions that return both the
6182result of the division and the remainder.)
6183
6184Example:
6185""""""""
6186
6187.. code-block:: llvm
6188
Tim Northover675a0962014-06-13 14:24:23 +00006189 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006190
6191.. _i_frem:
6192
6193'``frem``' Instruction
6194^^^^^^^^^^^^^^^^^^^^^^
6195
6196Syntax:
6197"""""""
6198
6199::
6200
Tim Northover675a0962014-06-13 14:24:23 +00006201 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006202
6203Overview:
6204"""""""""
6205
6206The '``frem``' instruction returns the remainder from the division of
6207its two operands.
6208
6209Arguments:
6210""""""""""
6211
6212The two arguments to the '``frem``' instruction must be :ref:`floating
6213point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6214Both arguments must have identical types.
6215
6216Semantics:
6217""""""""""
6218
6219This instruction returns the *remainder* of a division. The remainder
6220has the same sign as the dividend. This instruction can also take any
6221number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6222to enable otherwise unsafe floating point optimizations:
6223
6224Example:
6225""""""""
6226
6227.. code-block:: llvm
6228
Tim Northover675a0962014-06-13 14:24:23 +00006229 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006230
6231.. _bitwiseops:
6232
6233Bitwise Binary Operations
6234-------------------------
6235
6236Bitwise binary operators are used to do various forms of bit-twiddling
6237in a program. They are generally very efficient instructions and can
6238commonly be strength reduced from other instructions. They require two
6239operands of the same type, execute an operation on them, and produce a
6240single value. The resulting value is the same type as its operands.
6241
6242'``shl``' Instruction
6243^^^^^^^^^^^^^^^^^^^^^
6244
6245Syntax:
6246"""""""
6247
6248::
6249
Tim Northover675a0962014-06-13 14:24:23 +00006250 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6251 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6252 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6253 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006254
6255Overview:
6256"""""""""
6257
6258The '``shl``' instruction returns the first operand shifted to the left
6259a specified number of bits.
6260
6261Arguments:
6262""""""""""
6263
6264Both arguments to the '``shl``' instruction must be the same
6265:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6266'``op2``' is treated as an unsigned value.
6267
6268Semantics:
6269""""""""""
6270
6271The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6272where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006273dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006274``op1``, the result is undefined. If the arguments are vectors, each
6275vector element of ``op1`` is shifted by the corresponding shift amount
6276in ``op2``.
6277
6278If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6279value <poisonvalues>` if it shifts out any non-zero bits. If the
6280``nsw`` keyword is present, then the shift produces a :ref:`poison
6281value <poisonvalues>` if it shifts out any bits that disagree with the
6282resultant sign bit. As such, NUW/NSW have the same semantics as they
6283would if the shift were expressed as a mul instruction with the same
6284nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6285
6286Example:
6287""""""""
6288
6289.. code-block:: llvm
6290
Tim Northover675a0962014-06-13 14:24:23 +00006291 <result> = shl i32 4, %var ; yields i32: 4 << %var
6292 <result> = shl i32 4, 2 ; yields i32: 16
6293 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006294 <result> = shl i32 1, 32 ; undefined
6295 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6296
6297'``lshr``' Instruction
6298^^^^^^^^^^^^^^^^^^^^^^
6299
6300Syntax:
6301"""""""
6302
6303::
6304
Tim Northover675a0962014-06-13 14:24:23 +00006305 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6306 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006307
6308Overview:
6309"""""""""
6310
6311The '``lshr``' instruction (logical shift right) returns the first
6312operand shifted to the right a specified number of bits with zero fill.
6313
6314Arguments:
6315""""""""""
6316
6317Both arguments to the '``lshr``' instruction must be the same
6318:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6319'``op2``' is treated as an unsigned value.
6320
6321Semantics:
6322""""""""""
6323
6324This instruction always performs a logical shift right operation. The
6325most significant bits of the result will be filled with zero bits after
6326the shift. If ``op2`` is (statically or dynamically) equal to or larger
6327than the number of bits in ``op1``, the result is undefined. If the
6328arguments are vectors, each vector element of ``op1`` is shifted by the
6329corresponding shift amount in ``op2``.
6330
6331If the ``exact`` keyword is present, the result value of the ``lshr`` is
6332a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6333non-zero.
6334
6335Example:
6336""""""""
6337
6338.. code-block:: llvm
6339
Tim Northover675a0962014-06-13 14:24:23 +00006340 <result> = lshr i32 4, 1 ; yields i32:result = 2
6341 <result> = lshr i32 4, 2 ; yields i32:result = 1
6342 <result> = lshr i8 4, 3 ; yields i8:result = 0
6343 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006344 <result> = lshr i32 1, 32 ; undefined
6345 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6346
6347'``ashr``' Instruction
6348^^^^^^^^^^^^^^^^^^^^^^
6349
6350Syntax:
6351"""""""
6352
6353::
6354
Tim Northover675a0962014-06-13 14:24:23 +00006355 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6356 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006357
6358Overview:
6359"""""""""
6360
6361The '``ashr``' instruction (arithmetic shift right) returns the first
6362operand shifted to the right a specified number of bits with sign
6363extension.
6364
6365Arguments:
6366""""""""""
6367
6368Both arguments to the '``ashr``' instruction must be the same
6369:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6370'``op2``' is treated as an unsigned value.
6371
6372Semantics:
6373""""""""""
6374
6375This instruction always performs an arithmetic shift right operation,
6376The most significant bits of the result will be filled with the sign bit
6377of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6378than the number of bits in ``op1``, the result is undefined. If the
6379arguments are vectors, each vector element of ``op1`` is shifted by the
6380corresponding shift amount in ``op2``.
6381
6382If the ``exact`` keyword is present, the result value of the ``ashr`` is
6383a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6384non-zero.
6385
6386Example:
6387""""""""
6388
6389.. code-block:: llvm
6390
Tim Northover675a0962014-06-13 14:24:23 +00006391 <result> = ashr i32 4, 1 ; yields i32:result = 2
6392 <result> = ashr i32 4, 2 ; yields i32:result = 1
6393 <result> = ashr i8 4, 3 ; yields i8:result = 0
6394 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006395 <result> = ashr i32 1, 32 ; undefined
6396 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6397
6398'``and``' Instruction
6399^^^^^^^^^^^^^^^^^^^^^
6400
6401Syntax:
6402"""""""
6403
6404::
6405
Tim Northover675a0962014-06-13 14:24:23 +00006406 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006407
6408Overview:
6409"""""""""
6410
6411The '``and``' instruction returns the bitwise logical and of its two
6412operands.
6413
6414Arguments:
6415""""""""""
6416
6417The two arguments to the '``and``' instruction must be
6418:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6419arguments must have identical types.
6420
6421Semantics:
6422""""""""""
6423
6424The truth table used for the '``and``' instruction is:
6425
6426+-----+-----+-----+
6427| In0 | In1 | Out |
6428+-----+-----+-----+
6429| 0 | 0 | 0 |
6430+-----+-----+-----+
6431| 0 | 1 | 0 |
6432+-----+-----+-----+
6433| 1 | 0 | 0 |
6434+-----+-----+-----+
6435| 1 | 1 | 1 |
6436+-----+-----+-----+
6437
6438Example:
6439""""""""
6440
6441.. code-block:: llvm
6442
Tim Northover675a0962014-06-13 14:24:23 +00006443 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6444 <result> = and i32 15, 40 ; yields i32:result = 8
6445 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006446
6447'``or``' Instruction
6448^^^^^^^^^^^^^^^^^^^^
6449
6450Syntax:
6451"""""""
6452
6453::
6454
Tim Northover675a0962014-06-13 14:24:23 +00006455 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006456
6457Overview:
6458"""""""""
6459
6460The '``or``' instruction returns the bitwise logical inclusive or of its
6461two operands.
6462
6463Arguments:
6464""""""""""
6465
6466The two arguments to the '``or``' instruction must be
6467:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6468arguments must have identical types.
6469
6470Semantics:
6471""""""""""
6472
6473The truth table used for the '``or``' instruction is:
6474
6475+-----+-----+-----+
6476| In0 | In1 | Out |
6477+-----+-----+-----+
6478| 0 | 0 | 0 |
6479+-----+-----+-----+
6480| 0 | 1 | 1 |
6481+-----+-----+-----+
6482| 1 | 0 | 1 |
6483+-----+-----+-----+
6484| 1 | 1 | 1 |
6485+-----+-----+-----+
6486
6487Example:
6488""""""""
6489
6490::
6491
Tim Northover675a0962014-06-13 14:24:23 +00006492 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6493 <result> = or i32 15, 40 ; yields i32:result = 47
6494 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006495
6496'``xor``' Instruction
6497^^^^^^^^^^^^^^^^^^^^^
6498
6499Syntax:
6500"""""""
6501
6502::
6503
Tim Northover675a0962014-06-13 14:24:23 +00006504 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006505
6506Overview:
6507"""""""""
6508
6509The '``xor``' instruction returns the bitwise logical exclusive or of
6510its two operands. The ``xor`` is used to implement the "one's
6511complement" operation, which is the "~" operator in C.
6512
6513Arguments:
6514""""""""""
6515
6516The two arguments to the '``xor``' instruction must be
6517:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6518arguments must have identical types.
6519
6520Semantics:
6521""""""""""
6522
6523The truth table used for the '``xor``' instruction is:
6524
6525+-----+-----+-----+
6526| In0 | In1 | Out |
6527+-----+-----+-----+
6528| 0 | 0 | 0 |
6529+-----+-----+-----+
6530| 0 | 1 | 1 |
6531+-----+-----+-----+
6532| 1 | 0 | 1 |
6533+-----+-----+-----+
6534| 1 | 1 | 0 |
6535+-----+-----+-----+
6536
6537Example:
6538""""""""
6539
6540.. code-block:: llvm
6541
Tim Northover675a0962014-06-13 14:24:23 +00006542 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6543 <result> = xor i32 15, 40 ; yields i32:result = 39
6544 <result> = xor i32 4, 8 ; yields i32:result = 12
6545 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006546
6547Vector Operations
6548-----------------
6549
6550LLVM supports several instructions to represent vector operations in a
6551target-independent manner. These instructions cover the element-access
6552and vector-specific operations needed to process vectors effectively.
6553While LLVM does directly support these vector operations, many
6554sophisticated algorithms will want to use target-specific intrinsics to
6555take full advantage of a specific target.
6556
6557.. _i_extractelement:
6558
6559'``extractelement``' Instruction
6560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6561
6562Syntax:
6563"""""""
6564
6565::
6566
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006567 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006568
6569Overview:
6570"""""""""
6571
6572The '``extractelement``' instruction extracts a single scalar element
6573from a vector at a specified index.
6574
6575Arguments:
6576""""""""""
6577
6578The first operand of an '``extractelement``' instruction is a value of
6579:ref:`vector <t_vector>` type. The second operand is an index indicating
6580the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006581variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006582
6583Semantics:
6584""""""""""
6585
6586The result is a scalar of the same type as the element type of ``val``.
6587Its value is the value at position ``idx`` of ``val``. If ``idx``
6588exceeds the length of ``val``, the results are undefined.
6589
6590Example:
6591""""""""
6592
6593.. code-block:: llvm
6594
6595 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6596
6597.. _i_insertelement:
6598
6599'``insertelement``' Instruction
6600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6601
6602Syntax:
6603"""""""
6604
6605::
6606
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006607 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006608
6609Overview:
6610"""""""""
6611
6612The '``insertelement``' instruction inserts a scalar element into a
6613vector at a specified index.
6614
6615Arguments:
6616""""""""""
6617
6618The first operand of an '``insertelement``' instruction is a value of
6619:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6620type must equal the element type of the first operand. The third operand
6621is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006622index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006623
6624Semantics:
6625""""""""""
6626
6627The result is a vector of the same type as ``val``. Its element values
6628are those of ``val`` except at position ``idx``, where it gets the value
6629``elt``. If ``idx`` exceeds the length of ``val``, the results are
6630undefined.
6631
6632Example:
6633""""""""
6634
6635.. code-block:: llvm
6636
6637 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6638
6639.. _i_shufflevector:
6640
6641'``shufflevector``' Instruction
6642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6643
6644Syntax:
6645"""""""
6646
6647::
6648
6649 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6650
6651Overview:
6652"""""""""
6653
6654The '``shufflevector``' instruction constructs a permutation of elements
6655from two input vectors, returning a vector with the same element type as
6656the input and length that is the same as the shuffle mask.
6657
6658Arguments:
6659""""""""""
6660
6661The first two operands of a '``shufflevector``' instruction are vectors
6662with the same type. The third argument is a shuffle mask whose element
6663type is always 'i32'. The result of the instruction is a vector whose
6664length is the same as the shuffle mask and whose element type is the
6665same as the element type of the first two operands.
6666
6667The shuffle mask operand is required to be a constant vector with either
6668constant integer or undef values.
6669
6670Semantics:
6671""""""""""
6672
6673The elements of the two input vectors are numbered from left to right
6674across both of the vectors. The shuffle mask operand specifies, for each
6675element of the result vector, which element of the two input vectors the
6676result element gets. The element selector may be undef (meaning "don't
6677care") and the second operand may be undef if performing a shuffle from
6678only one vector.
6679
6680Example:
6681""""""""
6682
6683.. code-block:: llvm
6684
6685 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6686 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6687 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6688 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6689 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6690 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6691 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6692 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6693
6694Aggregate Operations
6695--------------------
6696
6697LLVM supports several instructions for working with
6698:ref:`aggregate <t_aggregate>` values.
6699
6700.. _i_extractvalue:
6701
6702'``extractvalue``' Instruction
6703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6704
6705Syntax:
6706"""""""
6707
6708::
6709
6710 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6711
6712Overview:
6713"""""""""
6714
6715The '``extractvalue``' instruction extracts the value of a member field
6716from an :ref:`aggregate <t_aggregate>` value.
6717
6718Arguments:
6719""""""""""
6720
6721The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006722:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006723constant indices to specify which value to extract in a similar manner
6724as indices in a '``getelementptr``' instruction.
6725
6726The major differences to ``getelementptr`` indexing are:
6727
6728- Since the value being indexed is not a pointer, the first index is
6729 omitted and assumed to be zero.
6730- At least one index must be specified.
6731- Not only struct indices but also array indices must be in bounds.
6732
6733Semantics:
6734""""""""""
6735
6736The result is the value at the position in the aggregate specified by
6737the index operands.
6738
6739Example:
6740""""""""
6741
6742.. code-block:: llvm
6743
6744 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6745
6746.. _i_insertvalue:
6747
6748'``insertvalue``' Instruction
6749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6750
6751Syntax:
6752"""""""
6753
6754::
6755
6756 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6757
6758Overview:
6759"""""""""
6760
6761The '``insertvalue``' instruction inserts a value into a member field in
6762an :ref:`aggregate <t_aggregate>` value.
6763
6764Arguments:
6765""""""""""
6766
6767The first operand of an '``insertvalue``' instruction is a value of
6768:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6769a first-class value to insert. The following operands are constant
6770indices indicating the position at which to insert the value in a
6771similar manner as indices in a '``extractvalue``' instruction. The value
6772to insert must have the same type as the value identified by the
6773indices.
6774
6775Semantics:
6776""""""""""
6777
6778The result is an aggregate of the same type as ``val``. Its value is
6779that of ``val`` except that the value at the position specified by the
6780indices is that of ``elt``.
6781
6782Example:
6783""""""""
6784
6785.. code-block:: llvm
6786
6787 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6788 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006789 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006790
6791.. _memoryops:
6792
6793Memory Access and Addressing Operations
6794---------------------------------------
6795
6796A key design point of an SSA-based representation is how it represents
6797memory. In LLVM, no memory locations are in SSA form, which makes things
6798very simple. This section describes how to read, write, and allocate
6799memory in LLVM.
6800
6801.. _i_alloca:
6802
6803'``alloca``' Instruction
6804^^^^^^^^^^^^^^^^^^^^^^^^
6805
6806Syntax:
6807"""""""
6808
6809::
6810
Tim Northover675a0962014-06-13 14:24:23 +00006811 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006812
6813Overview:
6814"""""""""
6815
6816The '``alloca``' instruction allocates memory on the stack frame of the
6817currently executing function, to be automatically released when this
6818function returns to its caller. The object is always allocated in the
6819generic address space (address space zero).
6820
6821Arguments:
6822""""""""""
6823
6824The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6825bytes of memory on the runtime stack, returning a pointer of the
6826appropriate type to the program. If "NumElements" is specified, it is
6827the number of elements allocated, otherwise "NumElements" is defaulted
6828to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006829allocation is guaranteed to be aligned to at least that boundary. The
6830alignment may not be greater than ``1 << 29``. If not specified, or if
6831zero, the target can choose to align the allocation on any convenient
6832boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006833
6834'``type``' may be any sized type.
6835
6836Semantics:
6837""""""""""
6838
6839Memory is allocated; a pointer is returned. The operation is undefined
6840if there is insufficient stack space for the allocation. '``alloca``'d
6841memory is automatically released when the function returns. The
6842'``alloca``' instruction is commonly used to represent automatic
6843variables that must have an address available. When the function returns
6844(either with the ``ret`` or ``resume`` instructions), the memory is
6845reclaimed. Allocating zero bytes is legal, but the result is undefined.
6846The order in which memory is allocated (ie., which way the stack grows)
6847is not specified.
6848
6849Example:
6850""""""""
6851
6852.. code-block:: llvm
6853
Tim Northover675a0962014-06-13 14:24:23 +00006854 %ptr = alloca i32 ; yields i32*:ptr
6855 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6856 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6857 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006858
6859.. _i_load:
6860
6861'``load``' Instruction
6862^^^^^^^^^^^^^^^^^^^^^^
6863
6864Syntax:
6865"""""""
6866
6867::
6868
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006869 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006870 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006871 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006872 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006873 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006874
6875Overview:
6876"""""""""
6877
6878The '``load``' instruction is used to read from memory.
6879
6880Arguments:
6881""""""""""
6882
Eli Bendersky239a78b2013-04-17 20:17:08 +00006883The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006884from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006885class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6886then the optimizer is not allowed to modify the number or order of
6887execution of this ``load`` with other :ref:`volatile
6888operations <volatile>`.
6889
6890If the ``load`` is marked as ``atomic``, it takes an extra
6891:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6892``release`` and ``acq_rel`` orderings are not valid on ``load``
6893instructions. Atomic loads produce :ref:`defined <memmodel>` results
6894when they may see multiple atomic stores. The type of the pointee must
6895be an integer type whose bit width is a power of two greater than or
6896equal to eight and less than or equal to a target-specific size limit.
6897``align`` must be explicitly specified on atomic loads, and the load has
6898undefined behavior if the alignment is not set to a value which is at
6899least the size in bytes of the pointee. ``!nontemporal`` does not have
6900any defined semantics for atomic loads.
6901
6902The optional constant ``align`` argument specifies the alignment of the
6903operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006904or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006905alignment for the target. It is the responsibility of the code emitter
6906to ensure that the alignment information is correct. Overestimating the
6907alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006908may produce less efficient code. An alignment of 1 is always safe. The
6909maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006910
6911The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006912metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006913``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006914metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006915that this load is not expected to be reused in the cache. The code
6916generator may select special instructions to save cache bandwidth, such
6917as the ``MOVNT`` instruction on x86.
6918
6919The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006920metadata name ``<index>`` corresponding to a metadata node with no
6921entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006922instruction tells the optimizer and code generator that the address
6923operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006924Being invariant does not imply that a location is dereferenceable,
6925but it does imply that once the location is known dereferenceable
6926its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006927
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006928The optional ``!invariant.group`` metadata must reference a single metadata name
6929 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6930
Philip Reamescdb72f32014-10-20 22:40:55 +00006931The optional ``!nonnull`` metadata must reference a single
6932metadata name ``<index>`` corresponding to a metadata node with no
6933entries. The existence of the ``!nonnull`` metadata on the
6934instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006935never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006936on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006937to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006938
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006939The optional ``!dereferenceable`` metadata must reference a single metadata
6940name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006941entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006942tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006943The number of bytes known to be dereferenceable is specified by the integer
6944value in the metadata node. This is analogous to the ''dereferenceable''
6945attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006946to loads of a pointer type.
6947
6948The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006949metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6950``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006951instruction tells the optimizer that the value loaded is known to be either
6952dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006953The number of bytes known to be dereferenceable is specified by the integer
6954value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6955attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006956to loads of a pointer type.
6957
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006958The optional ``!align`` metadata must reference a single metadata name
6959``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6960The existence of the ``!align`` metadata on the instruction tells the
6961optimizer that the value loaded is known to be aligned to a boundary specified
6962by the integer value in the metadata node. The alignment must be a power of 2.
6963This is analogous to the ''align'' attribute on parameters and return values.
6964This metadata can only be applied to loads of a pointer type.
6965
Sean Silvab084af42012-12-07 10:36:55 +00006966Semantics:
6967""""""""""
6968
6969The location of memory pointed to is loaded. If the value being loaded
6970is of scalar type then the number of bytes read does not exceed the
6971minimum number of bytes needed to hold all bits of the type. For
6972example, loading an ``i24`` reads at most three bytes. When loading a
6973value of a type like ``i20`` with a size that is not an integral number
6974of bytes, the result is undefined if the value was not originally
6975written using a store of the same type.
6976
6977Examples:
6978"""""""""
6979
6980.. code-block:: llvm
6981
Tim Northover675a0962014-06-13 14:24:23 +00006982 %ptr = alloca i32 ; yields i32*:ptr
6983 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006984 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006985
6986.. _i_store:
6987
6988'``store``' Instruction
6989^^^^^^^^^^^^^^^^^^^^^^^
6990
6991Syntax:
6992"""""""
6993
6994::
6995
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006996 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6997 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006998
6999Overview:
7000"""""""""
7001
7002The '``store``' instruction is used to write to memory.
7003
7004Arguments:
7005""""""""""
7006
Eli Benderskyca380842013-04-17 17:17:20 +00007007There are two arguments to the ``store`` instruction: a value to store
7008and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007009operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007010the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007011then the optimizer is not allowed to modify the number or order of
7012execution of this ``store`` with other :ref:`volatile
7013operations <volatile>`.
7014
7015If the ``store`` is marked as ``atomic``, it takes an extra
7016:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7017``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
7018instructions. Atomic loads produce :ref:`defined <memmodel>` results
7019when they may see multiple atomic stores. The type of the pointee must
7020be an integer type whose bit width is a power of two greater than or
7021equal to eight and less than or equal to a target-specific size limit.
7022``align`` must be explicitly specified on atomic stores, and the store
7023has undefined behavior if the alignment is not set to a value which is
7024at least the size in bytes of the pointee. ``!nontemporal`` does not
7025have any defined semantics for atomic stores.
7026
Eli Benderskyca380842013-04-17 17:17:20 +00007027The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007028operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007029or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007030alignment for the target. It is the responsibility of the code emitter
7031to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007032alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007033alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007034safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007035
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007036The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007037name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007038value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007039tells the optimizer and code generator that this load is not expected to
7040be reused in the cache. The code generator may select special
7041instructions to save cache bandwidth, such as the MOVNT instruction on
7042x86.
7043
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007044The optional ``!invariant.group`` metadata must reference a
7045single metadata name ``<index>``. See ``invariant.group`` metadata.
7046
Sean Silvab084af42012-12-07 10:36:55 +00007047Semantics:
7048""""""""""
7049
Eli Benderskyca380842013-04-17 17:17:20 +00007050The contents of memory are updated to contain ``<value>`` at the
7051location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007052of scalar type then the number of bytes written does not exceed the
7053minimum number of bytes needed to hold all bits of the type. For
7054example, storing an ``i24`` writes at most three bytes. When writing a
7055value of a type like ``i20`` with a size that is not an integral number
7056of bytes, it is unspecified what happens to the extra bits that do not
7057belong to the type, but they will typically be overwritten.
7058
7059Example:
7060""""""""
7061
7062.. code-block:: llvm
7063
Tim Northover675a0962014-06-13 14:24:23 +00007064 %ptr = alloca i32 ; yields i32*:ptr
7065 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007066 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007067
7068.. _i_fence:
7069
7070'``fence``' Instruction
7071^^^^^^^^^^^^^^^^^^^^^^^
7072
7073Syntax:
7074"""""""
7075
7076::
7077
Tim Northover675a0962014-06-13 14:24:23 +00007078 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007079
7080Overview:
7081"""""""""
7082
7083The '``fence``' instruction is used to introduce happens-before edges
7084between operations.
7085
7086Arguments:
7087""""""""""
7088
7089'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7090defines what *synchronizes-with* edges they add. They can only be given
7091``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7092
7093Semantics:
7094""""""""""
7095
7096A fence A which has (at least) ``release`` ordering semantics
7097*synchronizes with* a fence B with (at least) ``acquire`` ordering
7098semantics if and only if there exist atomic operations X and Y, both
7099operating on some atomic object M, such that A is sequenced before X, X
7100modifies M (either directly or through some side effect of a sequence
7101headed by X), Y is sequenced before B, and Y observes M. This provides a
7102*happens-before* dependency between A and B. Rather than an explicit
7103``fence``, one (but not both) of the atomic operations X or Y might
7104provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7105still *synchronize-with* the explicit ``fence`` and establish the
7106*happens-before* edge.
7107
7108A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7109``acquire`` and ``release`` semantics specified above, participates in
7110the global program order of other ``seq_cst`` operations and/or fences.
7111
7112The optional ":ref:`singlethread <singlethread>`" argument specifies
7113that the fence only synchronizes with other fences in the same thread.
7114(This is useful for interacting with signal handlers.)
7115
7116Example:
7117""""""""
7118
7119.. code-block:: llvm
7120
Tim Northover675a0962014-06-13 14:24:23 +00007121 fence acquire ; yields void
7122 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007123
7124.. _i_cmpxchg:
7125
7126'``cmpxchg``' Instruction
7127^^^^^^^^^^^^^^^^^^^^^^^^^
7128
7129Syntax:
7130"""""""
7131
7132::
7133
Tim Northover675a0962014-06-13 14:24:23 +00007134 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007135
7136Overview:
7137"""""""""
7138
7139The '``cmpxchg``' instruction is used to atomically modify memory. It
7140loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007141equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007142
7143Arguments:
7144""""""""""
7145
7146There are three arguments to the '``cmpxchg``' instruction: an address
7147to operate on, a value to compare to the value currently be at that
7148address, and a new value to place at that address if the compared values
7149are equal. The type of '<cmp>' must be an integer type whose bit width
7150is a power of two greater than or equal to eight and less than or equal
7151to a target-specific size limit. '<cmp>' and '<new>' must have the same
7152type, and the type of '<pointer>' must be a pointer to that type. If the
7153``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7154to modify the number or order of execution of this ``cmpxchg`` with
7155other :ref:`volatile operations <volatile>`.
7156
Tim Northovere94a5182014-03-11 10:48:52 +00007157The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007158``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7159must be at least ``monotonic``, the ordering constraint on failure must be no
7160stronger than that on success, and the failure ordering cannot be either
7161``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007162
7163The optional "``singlethread``" argument declares that the ``cmpxchg``
7164is only atomic with respect to code (usually signal handlers) running in
7165the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7166respect to all other code in the system.
7167
7168The pointer passed into cmpxchg must have alignment greater than or
7169equal to the size in memory of the operand.
7170
7171Semantics:
7172""""""""""
7173
Tim Northover420a2162014-06-13 14:24:07 +00007174The contents of memory at the location specified by the '``<pointer>``' operand
7175is read and compared to '``<cmp>``'; if the read value is the equal, the
7176'``<new>``' is written. The original value at the location is returned, together
7177with a flag indicating success (true) or failure (false).
7178
7179If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7180permitted: the operation may not write ``<new>`` even if the comparison
7181matched.
7182
7183If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7184if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007185
Tim Northovere94a5182014-03-11 10:48:52 +00007186A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7187identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7188load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007189
7190Example:
7191""""""""
7192
7193.. code-block:: llvm
7194
7195 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007196 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007197 br label %loop
7198
7199 loop:
7200 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7201 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007202 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007203 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7204 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007205 br i1 %success, label %done, label %loop
7206
7207 done:
7208 ...
7209
7210.. _i_atomicrmw:
7211
7212'``atomicrmw``' Instruction
7213^^^^^^^^^^^^^^^^^^^^^^^^^^^
7214
7215Syntax:
7216"""""""
7217
7218::
7219
Tim Northover675a0962014-06-13 14:24:23 +00007220 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007221
7222Overview:
7223"""""""""
7224
7225The '``atomicrmw``' instruction is used to atomically modify memory.
7226
7227Arguments:
7228""""""""""
7229
7230There are three arguments to the '``atomicrmw``' instruction: an
7231operation to apply, an address whose value to modify, an argument to the
7232operation. The operation must be one of the following keywords:
7233
7234- xchg
7235- add
7236- sub
7237- and
7238- nand
7239- or
7240- xor
7241- max
7242- min
7243- umax
7244- umin
7245
7246The type of '<value>' must be an integer type whose bit width is a power
7247of two greater than or equal to eight and less than or equal to a
7248target-specific size limit. The type of the '``<pointer>``' operand must
7249be a pointer to that type. If the ``atomicrmw`` is marked as
7250``volatile``, then the optimizer is not allowed to modify the number or
7251order of execution of this ``atomicrmw`` with other :ref:`volatile
7252operations <volatile>`.
7253
7254Semantics:
7255""""""""""
7256
7257The contents of memory at the location specified by the '``<pointer>``'
7258operand are atomically read, modified, and written back. The original
7259value at the location is returned. The modification is specified by the
7260operation argument:
7261
7262- xchg: ``*ptr = val``
7263- add: ``*ptr = *ptr + val``
7264- sub: ``*ptr = *ptr - val``
7265- and: ``*ptr = *ptr & val``
7266- nand: ``*ptr = ~(*ptr & val)``
7267- or: ``*ptr = *ptr | val``
7268- xor: ``*ptr = *ptr ^ val``
7269- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7270- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7271- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7272 comparison)
7273- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7274 comparison)
7275
7276Example:
7277""""""""
7278
7279.. code-block:: llvm
7280
Tim Northover675a0962014-06-13 14:24:23 +00007281 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007282
7283.. _i_getelementptr:
7284
7285'``getelementptr``' Instruction
7286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7287
7288Syntax:
7289"""""""
7290
7291::
7292
David Blaikie16a97eb2015-03-04 22:02:58 +00007293 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7294 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7295 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007296
7297Overview:
7298"""""""""
7299
7300The '``getelementptr``' instruction is used to get the address of a
7301subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007302address calculation only and does not access memory. The instruction can also
7303be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007304
7305Arguments:
7306""""""""""
7307
David Blaikie16a97eb2015-03-04 22:02:58 +00007308The first argument is always a type used as the basis for the calculations.
7309The second argument is always a pointer or a vector of pointers, and is the
7310base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007311that indicate which of the elements of the aggregate object are indexed.
7312The interpretation of each index is dependent on the type being indexed
7313into. The first index always indexes the pointer value given as the
7314first argument, the second index indexes a value of the type pointed to
7315(not necessarily the value directly pointed to, since the first index
7316can be non-zero), etc. The first type indexed into must be a pointer
7317value, subsequent types can be arrays, vectors, and structs. Note that
7318subsequent types being indexed into can never be pointers, since that
7319would require loading the pointer before continuing calculation.
7320
7321The type of each index argument depends on the type it is indexing into.
7322When indexing into a (optionally packed) structure, only ``i32`` integer
7323**constants** are allowed (when using a vector of indices they must all
7324be the **same** ``i32`` integer constant). When indexing into an array,
7325pointer or vector, integers of any width are allowed, and they are not
7326required to be constant. These integers are treated as signed values
7327where relevant.
7328
7329For example, let's consider a C code fragment and how it gets compiled
7330to LLVM:
7331
7332.. code-block:: c
7333
7334 struct RT {
7335 char A;
7336 int B[10][20];
7337 char C;
7338 };
7339 struct ST {
7340 int X;
7341 double Y;
7342 struct RT Z;
7343 };
7344
7345 int *foo(struct ST *s) {
7346 return &s[1].Z.B[5][13];
7347 }
7348
7349The LLVM code generated by Clang is:
7350
7351.. code-block:: llvm
7352
7353 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7354 %struct.ST = type { i32, double, %struct.RT }
7355
7356 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7357 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007358 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007359 ret i32* %arrayidx
7360 }
7361
7362Semantics:
7363""""""""""
7364
7365In the example above, the first index is indexing into the
7366'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7367= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7368indexes into the third element of the structure, yielding a
7369'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7370structure. The third index indexes into the second element of the
7371structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7372dimensions of the array are subscripted into, yielding an '``i32``'
7373type. The '``getelementptr``' instruction returns a pointer to this
7374element, thus computing a value of '``i32*``' type.
7375
7376Note that it is perfectly legal to index partially through a structure,
7377returning a pointer to an inner element. Because of this, the LLVM code
7378for the given testcase is equivalent to:
7379
7380.. code-block:: llvm
7381
7382 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007383 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7384 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7385 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7386 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7387 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007388 ret i32* %t5
7389 }
7390
7391If the ``inbounds`` keyword is present, the result value of the
7392``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7393pointer is not an *in bounds* address of an allocated object, or if any
7394of the addresses that would be formed by successive addition of the
7395offsets implied by the indices to the base address with infinitely
7396precise signed arithmetic are not an *in bounds* address of that
7397allocated object. The *in bounds* addresses for an allocated object are
7398all the addresses that point into the object, plus the address one byte
7399past the end. In cases where the base is a vector of pointers the
7400``inbounds`` keyword applies to each of the computations element-wise.
7401
7402If the ``inbounds`` keyword is not present, the offsets are added to the
7403base address with silently-wrapping two's complement arithmetic. If the
7404offsets have a different width from the pointer, they are sign-extended
7405or truncated to the width of the pointer. The result value of the
7406``getelementptr`` may be outside the object pointed to by the base
7407pointer. The result value may not necessarily be used to access memory
7408though, even if it happens to point into allocated storage. See the
7409:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7410information.
7411
7412The getelementptr instruction is often confusing. For some more insight
7413into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7414
7415Example:
7416""""""""
7417
7418.. code-block:: llvm
7419
7420 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007421 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007422 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007423 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007424 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007425 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007426 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007427 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007428
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007429Vector of pointers:
7430"""""""""""""""""""
7431
7432The ``getelementptr`` returns a vector of pointers, instead of a single address,
7433when one or more of its arguments is a vector. In such cases, all vector
7434arguments should have the same number of elements, and every scalar argument
7435will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007436
7437.. code-block:: llvm
7438
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007439 ; All arguments are vectors:
7440 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7441 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007442
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007443 ; Add the same scalar offset to each pointer of a vector:
7444 ; A[i] = ptrs[i] + offset*sizeof(i8)
7445 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007446
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007447 ; Add distinct offsets to the same pointer:
7448 ; A[i] = ptr + offsets[i]*sizeof(i8)
7449 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007450
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007451 ; In all cases described above the type of the result is <4 x i8*>
7452
7453The two following instructions are equivalent:
7454
7455.. code-block:: llvm
7456
7457 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7458 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7459 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7460 <4 x i32> %ind4,
7461 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007462
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007463 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7464 i32 2, i32 1, <4 x i32> %ind4, i64 13
7465
7466Let's look at the C code, where the vector version of ``getelementptr``
7467makes sense:
7468
7469.. code-block:: c
7470
7471 // Let's assume that we vectorize the following loop:
7472 double *A, B; int *C;
7473 for (int i = 0; i < size; ++i) {
7474 A[i] = B[C[i]];
7475 }
7476
7477.. code-block:: llvm
7478
7479 ; get pointers for 8 elements from array B
7480 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7481 ; load 8 elements from array B into A
7482 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7483 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007484
7485Conversion Operations
7486---------------------
7487
7488The instructions in this category are the conversion instructions
7489(casting) which all take a single operand and a type. They perform
7490various bit conversions on the operand.
7491
7492'``trunc .. to``' Instruction
7493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7494
7495Syntax:
7496"""""""
7497
7498::
7499
7500 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7501
7502Overview:
7503"""""""""
7504
7505The '``trunc``' instruction truncates its operand to the type ``ty2``.
7506
7507Arguments:
7508""""""""""
7509
7510The '``trunc``' instruction takes a value to trunc, and a type to trunc
7511it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7512of the same number of integers. The bit size of the ``value`` must be
7513larger than the bit size of the destination type, ``ty2``. Equal sized
7514types are not allowed.
7515
7516Semantics:
7517""""""""""
7518
7519The '``trunc``' instruction truncates the high order bits in ``value``
7520and converts the remaining bits to ``ty2``. Since the source size must
7521be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7522It will always truncate bits.
7523
7524Example:
7525""""""""
7526
7527.. code-block:: llvm
7528
7529 %X = trunc i32 257 to i8 ; yields i8:1
7530 %Y = trunc i32 123 to i1 ; yields i1:true
7531 %Z = trunc i32 122 to i1 ; yields i1:false
7532 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7533
7534'``zext .. to``' Instruction
7535^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7536
7537Syntax:
7538"""""""
7539
7540::
7541
7542 <result> = zext <ty> <value> to <ty2> ; yields ty2
7543
7544Overview:
7545"""""""""
7546
7547The '``zext``' instruction zero extends its operand to type ``ty2``.
7548
7549Arguments:
7550""""""""""
7551
7552The '``zext``' instruction takes a value to cast, and a type to cast it
7553to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7554the same number of integers. The bit size of the ``value`` must be
7555smaller than the bit size of the destination type, ``ty2``.
7556
7557Semantics:
7558""""""""""
7559
7560The ``zext`` fills the high order bits of the ``value`` with zero bits
7561until it reaches the size of the destination type, ``ty2``.
7562
7563When zero extending from i1, the result will always be either 0 or 1.
7564
7565Example:
7566""""""""
7567
7568.. code-block:: llvm
7569
7570 %X = zext i32 257 to i64 ; yields i64:257
7571 %Y = zext i1 true to i32 ; yields i32:1
7572 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7573
7574'``sext .. to``' Instruction
7575^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7576
7577Syntax:
7578"""""""
7579
7580::
7581
7582 <result> = sext <ty> <value> to <ty2> ; yields ty2
7583
7584Overview:
7585"""""""""
7586
7587The '``sext``' sign extends ``value`` to the type ``ty2``.
7588
7589Arguments:
7590""""""""""
7591
7592The '``sext``' instruction takes a value to cast, and a type to cast it
7593to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7594the same number of integers. The bit size of the ``value`` must be
7595smaller than the bit size of the destination type, ``ty2``.
7596
7597Semantics:
7598""""""""""
7599
7600The '``sext``' instruction performs a sign extension by copying the sign
7601bit (highest order bit) of the ``value`` until it reaches the bit size
7602of the type ``ty2``.
7603
7604When sign extending from i1, the extension always results in -1 or 0.
7605
7606Example:
7607""""""""
7608
7609.. code-block:: llvm
7610
7611 %X = sext i8 -1 to i16 ; yields i16 :65535
7612 %Y = sext i1 true to i32 ; yields i32:-1
7613 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7614
7615'``fptrunc .. to``' Instruction
7616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7617
7618Syntax:
7619"""""""
7620
7621::
7622
7623 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7624
7625Overview:
7626"""""""""
7627
7628The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7629
7630Arguments:
7631""""""""""
7632
7633The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7634value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7635The size of ``value`` must be larger than the size of ``ty2``. This
7636implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7637
7638Semantics:
7639""""""""""
7640
Dan Liew50456fb2015-09-03 18:43:56 +00007641The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007642:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007643point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7644destination type, ``ty2``, then the results are undefined. If the cast produces
7645an inexact result, how rounding is performed (e.g. truncation, also known as
7646round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007647
7648Example:
7649""""""""
7650
7651.. code-block:: llvm
7652
7653 %X = fptrunc double 123.0 to float ; yields float:123.0
7654 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7655
7656'``fpext .. to``' Instruction
7657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7658
7659Syntax:
7660"""""""
7661
7662::
7663
7664 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7665
7666Overview:
7667"""""""""
7668
7669The '``fpext``' extends a floating point ``value`` to a larger floating
7670point value.
7671
7672Arguments:
7673""""""""""
7674
7675The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7676``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7677to. The source type must be smaller than the destination type.
7678
7679Semantics:
7680""""""""""
7681
7682The '``fpext``' instruction extends the ``value`` from a smaller
7683:ref:`floating point <t_floating>` type to a larger :ref:`floating
7684point <t_floating>` type. The ``fpext`` cannot be used to make a
7685*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7686*no-op cast* for a floating point cast.
7687
7688Example:
7689""""""""
7690
7691.. code-block:: llvm
7692
7693 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7694 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7695
7696'``fptoui .. to``' Instruction
7697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7698
7699Syntax:
7700"""""""
7701
7702::
7703
7704 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7705
7706Overview:
7707"""""""""
7708
7709The '``fptoui``' converts a floating point ``value`` to its unsigned
7710integer equivalent of type ``ty2``.
7711
7712Arguments:
7713""""""""""
7714
7715The '``fptoui``' instruction takes a value to cast, which must be a
7716scalar or vector :ref:`floating point <t_floating>` value, and a type to
7717cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7718``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7719type with the same number of elements as ``ty``
7720
7721Semantics:
7722""""""""""
7723
7724The '``fptoui``' instruction converts its :ref:`floating
7725point <t_floating>` operand into the nearest (rounding towards zero)
7726unsigned integer value. If the value cannot fit in ``ty2``, the results
7727are undefined.
7728
7729Example:
7730""""""""
7731
7732.. code-block:: llvm
7733
7734 %X = fptoui double 123.0 to i32 ; yields i32:123
7735 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7736 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7737
7738'``fptosi .. to``' Instruction
7739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7740
7741Syntax:
7742"""""""
7743
7744::
7745
7746 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7747
7748Overview:
7749"""""""""
7750
7751The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7752``value`` to type ``ty2``.
7753
7754Arguments:
7755""""""""""
7756
7757The '``fptosi``' instruction takes a value to cast, which must be a
7758scalar or vector :ref:`floating point <t_floating>` value, and a type to
7759cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7760``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7761type with the same number of elements as ``ty``
7762
7763Semantics:
7764""""""""""
7765
7766The '``fptosi``' instruction converts its :ref:`floating
7767point <t_floating>` operand into the nearest (rounding towards zero)
7768signed integer value. If the value cannot fit in ``ty2``, the results
7769are undefined.
7770
7771Example:
7772""""""""
7773
7774.. code-block:: llvm
7775
7776 %X = fptosi double -123.0 to i32 ; yields i32:-123
7777 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7778 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7779
7780'``uitofp .. to``' Instruction
7781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7782
7783Syntax:
7784"""""""
7785
7786::
7787
7788 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7789
7790Overview:
7791"""""""""
7792
7793The '``uitofp``' instruction regards ``value`` as an unsigned integer
7794and converts that value to the ``ty2`` type.
7795
7796Arguments:
7797""""""""""
7798
7799The '``uitofp``' instruction takes a value to cast, which must be a
7800scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7801``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7802``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7803type with the same number of elements as ``ty``
7804
7805Semantics:
7806""""""""""
7807
7808The '``uitofp``' instruction interprets its operand as an unsigned
7809integer quantity and converts it to the corresponding floating point
7810value. If the value cannot fit in the floating point value, the results
7811are undefined.
7812
7813Example:
7814""""""""
7815
7816.. code-block:: llvm
7817
7818 %X = uitofp i32 257 to float ; yields float:257.0
7819 %Y = uitofp i8 -1 to double ; yields double:255.0
7820
7821'``sitofp .. to``' Instruction
7822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7823
7824Syntax:
7825"""""""
7826
7827::
7828
7829 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7830
7831Overview:
7832"""""""""
7833
7834The '``sitofp``' instruction regards ``value`` as a signed integer and
7835converts that value to the ``ty2`` type.
7836
7837Arguments:
7838""""""""""
7839
7840The '``sitofp``' instruction takes a value to cast, which must be a
7841scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7842``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7843``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7844type with the same number of elements as ``ty``
7845
7846Semantics:
7847""""""""""
7848
7849The '``sitofp``' instruction interprets its operand as a signed integer
7850quantity and converts it to the corresponding floating point value. If
7851the value cannot fit in the floating point value, the results are
7852undefined.
7853
7854Example:
7855""""""""
7856
7857.. code-block:: llvm
7858
7859 %X = sitofp i32 257 to float ; yields float:257.0
7860 %Y = sitofp i8 -1 to double ; yields double:-1.0
7861
7862.. _i_ptrtoint:
7863
7864'``ptrtoint .. to``' Instruction
7865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7866
7867Syntax:
7868"""""""
7869
7870::
7871
7872 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7873
7874Overview:
7875"""""""""
7876
7877The '``ptrtoint``' instruction converts the pointer or a vector of
7878pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7879
7880Arguments:
7881""""""""""
7882
7883The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007884a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007885type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7886a vector of integers type.
7887
7888Semantics:
7889""""""""""
7890
7891The '``ptrtoint``' instruction converts ``value`` to integer type
7892``ty2`` by interpreting the pointer value as an integer and either
7893truncating or zero extending that value to the size of the integer type.
7894If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7895``value`` is larger than ``ty2`` then a truncation is done. If they are
7896the same size, then nothing is done (*no-op cast*) other than a type
7897change.
7898
7899Example:
7900""""""""
7901
7902.. code-block:: llvm
7903
7904 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7905 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7906 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7907
7908.. _i_inttoptr:
7909
7910'``inttoptr .. to``' Instruction
7911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7912
7913Syntax:
7914"""""""
7915
7916::
7917
7918 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7919
7920Overview:
7921"""""""""
7922
7923The '``inttoptr``' instruction converts an integer ``value`` to a
7924pointer type, ``ty2``.
7925
7926Arguments:
7927""""""""""
7928
7929The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7930cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7931type.
7932
7933Semantics:
7934""""""""""
7935
7936The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7937applying either a zero extension or a truncation depending on the size
7938of the integer ``value``. If ``value`` is larger than the size of a
7939pointer then a truncation is done. If ``value`` is smaller than the size
7940of a pointer then a zero extension is done. If they are the same size,
7941nothing is done (*no-op cast*).
7942
7943Example:
7944""""""""
7945
7946.. code-block:: llvm
7947
7948 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7949 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7950 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7951 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7952
7953.. _i_bitcast:
7954
7955'``bitcast .. to``' Instruction
7956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7957
7958Syntax:
7959"""""""
7960
7961::
7962
7963 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7964
7965Overview:
7966"""""""""
7967
7968The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7969changing any bits.
7970
7971Arguments:
7972""""""""""
7973
7974The '``bitcast``' instruction takes a value to cast, which must be a
7975non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007976also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7977bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007978identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007979also be a pointer of the same size. This instruction supports bitwise
7980conversion of vectors to integers and to vectors of other types (as
7981long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007982
7983Semantics:
7984""""""""""
7985
Matt Arsenault24b49c42013-07-31 17:49:08 +00007986The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7987is always a *no-op cast* because no bits change with this
7988conversion. The conversion is done as if the ``value`` had been stored
7989to memory and read back as type ``ty2``. Pointer (or vector of
7990pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007991pointers) types with the same address space through this instruction.
7992To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7993or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007994
7995Example:
7996""""""""
7997
7998.. code-block:: llvm
7999
8000 %X = bitcast i8 255 to i8 ; yields i8 :-1
8001 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8002 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8003 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8004
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008005.. _i_addrspacecast:
8006
8007'``addrspacecast .. to``' Instruction
8008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8009
8010Syntax:
8011"""""""
8012
8013::
8014
8015 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8016
8017Overview:
8018"""""""""
8019
8020The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8021address space ``n`` to type ``pty2`` in address space ``m``.
8022
8023Arguments:
8024""""""""""
8025
8026The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8027to cast and a pointer type to cast it to, which must have a different
8028address space.
8029
8030Semantics:
8031""""""""""
8032
8033The '``addrspacecast``' instruction converts the pointer value
8034``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008035value modification, depending on the target and the address space
8036pair. Pointer conversions within the same address space must be
8037performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008038conversion is legal then both result and operand refer to the same memory
8039location.
8040
8041Example:
8042""""""""
8043
8044.. code-block:: llvm
8045
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008046 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8047 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8048 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008049
Sean Silvab084af42012-12-07 10:36:55 +00008050.. _otherops:
8051
8052Other Operations
8053----------------
8054
8055The instructions in this category are the "miscellaneous" instructions,
8056which defy better classification.
8057
8058.. _i_icmp:
8059
8060'``icmp``' Instruction
8061^^^^^^^^^^^^^^^^^^^^^^
8062
8063Syntax:
8064"""""""
8065
8066::
8067
Tim Northover675a0962014-06-13 14:24:23 +00008068 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008069
8070Overview:
8071"""""""""
8072
8073The '``icmp``' instruction returns a boolean value or a vector of
8074boolean values based on comparison of its two integer, integer vector,
8075pointer, or pointer vector operands.
8076
8077Arguments:
8078""""""""""
8079
8080The '``icmp``' instruction takes three operands. The first operand is
8081the condition code indicating the kind of comparison to perform. It is
8082not a value, just a keyword. The possible condition code are:
8083
8084#. ``eq``: equal
8085#. ``ne``: not equal
8086#. ``ugt``: unsigned greater than
8087#. ``uge``: unsigned greater or equal
8088#. ``ult``: unsigned less than
8089#. ``ule``: unsigned less or equal
8090#. ``sgt``: signed greater than
8091#. ``sge``: signed greater or equal
8092#. ``slt``: signed less than
8093#. ``sle``: signed less or equal
8094
8095The remaining two arguments must be :ref:`integer <t_integer>` or
8096:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8097must also be identical types.
8098
8099Semantics:
8100""""""""""
8101
8102The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8103code given as ``cond``. The comparison performed always yields either an
8104:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8105
8106#. ``eq``: yields ``true`` if the operands are equal, ``false``
8107 otherwise. No sign interpretation is necessary or performed.
8108#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8109 otherwise. No sign interpretation is necessary or performed.
8110#. ``ugt``: interprets the operands as unsigned values and yields
8111 ``true`` if ``op1`` is greater than ``op2``.
8112#. ``uge``: interprets the operands as unsigned values and yields
8113 ``true`` if ``op1`` is greater than or equal to ``op2``.
8114#. ``ult``: interprets the operands as unsigned values and yields
8115 ``true`` if ``op1`` is less than ``op2``.
8116#. ``ule``: interprets the operands as unsigned values and yields
8117 ``true`` if ``op1`` is less than or equal to ``op2``.
8118#. ``sgt``: interprets the operands as signed values and yields ``true``
8119 if ``op1`` is greater than ``op2``.
8120#. ``sge``: interprets the operands as signed values and yields ``true``
8121 if ``op1`` is greater than or equal to ``op2``.
8122#. ``slt``: interprets the operands as signed values and yields ``true``
8123 if ``op1`` is less than ``op2``.
8124#. ``sle``: interprets the operands as signed values and yields ``true``
8125 if ``op1`` is less than or equal to ``op2``.
8126
8127If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8128are compared as if they were integers.
8129
8130If the operands are integer vectors, then they are compared element by
8131element. The result is an ``i1`` vector with the same number of elements
8132as the values being compared. Otherwise, the result is an ``i1``.
8133
8134Example:
8135""""""""
8136
8137.. code-block:: llvm
8138
8139 <result> = icmp eq i32 4, 5 ; yields: result=false
8140 <result> = icmp ne float* %X, %X ; yields: result=false
8141 <result> = icmp ult i16 4, 5 ; yields: result=true
8142 <result> = icmp sgt i16 4, 5 ; yields: result=false
8143 <result> = icmp ule i16 -4, 5 ; yields: result=false
8144 <result> = icmp sge i16 4, 5 ; yields: result=false
8145
8146Note that the code generator does not yet support vector types with the
8147``icmp`` instruction.
8148
8149.. _i_fcmp:
8150
8151'``fcmp``' Instruction
8152^^^^^^^^^^^^^^^^^^^^^^
8153
8154Syntax:
8155"""""""
8156
8157::
8158
James Molloy88eb5352015-07-10 12:52:00 +00008159 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008160
8161Overview:
8162"""""""""
8163
8164The '``fcmp``' instruction returns a boolean value or vector of boolean
8165values based on comparison of its operands.
8166
8167If the operands are floating point scalars, then the result type is a
8168boolean (:ref:`i1 <t_integer>`).
8169
8170If the operands are floating point vectors, then the result type is a
8171vector of boolean with the same number of elements as the operands being
8172compared.
8173
8174Arguments:
8175""""""""""
8176
8177The '``fcmp``' instruction takes three operands. The first operand is
8178the condition code indicating the kind of comparison to perform. It is
8179not a value, just a keyword. The possible condition code are:
8180
8181#. ``false``: no comparison, always returns false
8182#. ``oeq``: ordered and equal
8183#. ``ogt``: ordered and greater than
8184#. ``oge``: ordered and greater than or equal
8185#. ``olt``: ordered and less than
8186#. ``ole``: ordered and less than or equal
8187#. ``one``: ordered and not equal
8188#. ``ord``: ordered (no nans)
8189#. ``ueq``: unordered or equal
8190#. ``ugt``: unordered or greater than
8191#. ``uge``: unordered or greater than or equal
8192#. ``ult``: unordered or less than
8193#. ``ule``: unordered or less than or equal
8194#. ``une``: unordered or not equal
8195#. ``uno``: unordered (either nans)
8196#. ``true``: no comparison, always returns true
8197
8198*Ordered* means that neither operand is a QNAN while *unordered* means
8199that either operand may be a QNAN.
8200
8201Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8202point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8203type. They must have identical types.
8204
8205Semantics:
8206""""""""""
8207
8208The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8209condition code given as ``cond``. If the operands are vectors, then the
8210vectors are compared element by element. Each comparison performed
8211always yields an :ref:`i1 <t_integer>` result, as follows:
8212
8213#. ``false``: always yields ``false``, regardless of operands.
8214#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8215 is equal to ``op2``.
8216#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8217 is greater than ``op2``.
8218#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8219 is greater than or equal to ``op2``.
8220#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8221 is less than ``op2``.
8222#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8223 is less than or equal to ``op2``.
8224#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8225 is not equal to ``op2``.
8226#. ``ord``: yields ``true`` if both operands are not a QNAN.
8227#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8228 equal to ``op2``.
8229#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8230 greater than ``op2``.
8231#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8232 greater than or equal to ``op2``.
8233#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8234 less than ``op2``.
8235#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8236 less than or equal to ``op2``.
8237#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8238 not equal to ``op2``.
8239#. ``uno``: yields ``true`` if either operand is a QNAN.
8240#. ``true``: always yields ``true``, regardless of operands.
8241
James Molloy88eb5352015-07-10 12:52:00 +00008242The ``fcmp`` instruction can also optionally take any number of
8243:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8244otherwise unsafe floating point optimizations.
8245
8246Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8247only flags that have any effect on its semantics are those that allow
8248assumptions to be made about the values of input arguments; namely
8249``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8250
Sean Silvab084af42012-12-07 10:36:55 +00008251Example:
8252""""""""
8253
8254.. code-block:: llvm
8255
8256 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8257 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8258 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8259 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8260
8261Note that the code generator does not yet support vector types with the
8262``fcmp`` instruction.
8263
8264.. _i_phi:
8265
8266'``phi``' Instruction
8267^^^^^^^^^^^^^^^^^^^^^
8268
8269Syntax:
8270"""""""
8271
8272::
8273
8274 <result> = phi <ty> [ <val0>, <label0>], ...
8275
8276Overview:
8277"""""""""
8278
8279The '``phi``' instruction is used to implement the φ node in the SSA
8280graph representing the function.
8281
8282Arguments:
8283""""""""""
8284
8285The type of the incoming values is specified with the first type field.
8286After this, the '``phi``' instruction takes a list of pairs as
8287arguments, with one pair for each predecessor basic block of the current
8288block. Only values of :ref:`first class <t_firstclass>` type may be used as
8289the value arguments to the PHI node. Only labels may be used as the
8290label arguments.
8291
8292There must be no non-phi instructions between the start of a basic block
8293and the PHI instructions: i.e. PHI instructions must be first in a basic
8294block.
8295
8296For the purposes of the SSA form, the use of each incoming value is
8297deemed to occur on the edge from the corresponding predecessor block to
8298the current block (but after any definition of an '``invoke``'
8299instruction's return value on the same edge).
8300
8301Semantics:
8302""""""""""
8303
8304At runtime, the '``phi``' instruction logically takes on the value
8305specified by the pair corresponding to the predecessor basic block that
8306executed just prior to the current block.
8307
8308Example:
8309""""""""
8310
8311.. code-block:: llvm
8312
8313 Loop: ; Infinite loop that counts from 0 on up...
8314 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8315 %nextindvar = add i32 %indvar, 1
8316 br label %Loop
8317
8318.. _i_select:
8319
8320'``select``' Instruction
8321^^^^^^^^^^^^^^^^^^^^^^^^
8322
8323Syntax:
8324"""""""
8325
8326::
8327
8328 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8329
8330 selty is either i1 or {<N x i1>}
8331
8332Overview:
8333"""""""""
8334
8335The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008336condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008337
8338Arguments:
8339""""""""""
8340
8341The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8342values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008343class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008344
8345Semantics:
8346""""""""""
8347
8348If the condition is an i1 and it evaluates to 1, the instruction returns
8349the first value argument; otherwise, it returns the second value
8350argument.
8351
8352If the condition is a vector of i1, then the value arguments must be
8353vectors of the same size, and the selection is done element by element.
8354
David Majnemer40a0b592015-03-03 22:45:47 +00008355If the condition is an i1 and the value arguments are vectors of the
8356same size, then an entire vector is selected.
8357
Sean Silvab084af42012-12-07 10:36:55 +00008358Example:
8359""""""""
8360
8361.. code-block:: llvm
8362
8363 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8364
8365.. _i_call:
8366
8367'``call``' Instruction
8368^^^^^^^^^^^^^^^^^^^^^^
8369
8370Syntax:
8371"""""""
8372
8373::
8374
Reid Kleckner5772b772014-04-24 20:14:34 +00008375 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008376 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008377
8378Overview:
8379"""""""""
8380
8381The '``call``' instruction represents a simple function call.
8382
8383Arguments:
8384""""""""""
8385
8386This instruction requires several arguments:
8387
Reid Kleckner5772b772014-04-24 20:14:34 +00008388#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008389 should perform tail call optimization. The ``tail`` marker is a hint that
8390 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008391 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008392 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008393
8394 #. The call will not cause unbounded stack growth if it is part of a
8395 recursive cycle in the call graph.
8396 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8397 forwarded in place.
8398
8399 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008400 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008401 rules:
8402
8403 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8404 or a pointer bitcast followed by a ret instruction.
8405 - The ret instruction must return the (possibly bitcasted) value
8406 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008407 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008408 parameters or return types may differ in pointee type, but not
8409 in address space.
8410 - The calling conventions of the caller and callee must match.
8411 - All ABI-impacting function attributes, such as sret, byval, inreg,
8412 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008413 - The callee must be varargs iff the caller is varargs. Bitcasting a
8414 non-varargs function to the appropriate varargs type is legal so
8415 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008416
8417 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8418 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008419
8420 - Caller and callee both have the calling convention ``fastcc``.
8421 - The call is in tail position (ret immediately follows call and ret
8422 uses value of call or is void).
8423 - Option ``-tailcallopt`` is enabled, or
8424 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008425 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008426 met. <CodeGenerator.html#tailcallopt>`_
8427
8428#. The optional "cconv" marker indicates which :ref:`calling
8429 convention <callingconv>` the call should use. If none is
8430 specified, the call defaults to using C calling conventions. The
8431 calling convention of the call must match the calling convention of
8432 the target function, or else the behavior is undefined.
8433#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8434 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8435 are valid here.
8436#. '``ty``': the type of the call instruction itself which is also the
8437 type of the return value. Functions that return no value are marked
8438 ``void``.
8439#. '``fnty``': shall be the signature of the pointer to function value
8440 being invoked. The argument types must match the types implied by
8441 this signature. This type can be omitted if the function is not
8442 varargs and if the function type does not return a pointer to a
8443 function.
8444#. '``fnptrval``': An LLVM value containing a pointer to a function to
8445 be invoked. In most cases, this is a direct function invocation, but
8446 indirect ``call``'s are just as possible, calling an arbitrary pointer
8447 to function value.
8448#. '``function args``': argument list whose types match the function
8449 signature argument types and parameter attributes. All arguments must
8450 be of :ref:`first class <t_firstclass>` type. If the function signature
8451 indicates the function accepts a variable number of arguments, the
8452 extra arguments can be specified.
8453#. The optional :ref:`function attributes <fnattrs>` list. Only
8454 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8455 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008456#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008457
8458Semantics:
8459""""""""""
8460
8461The '``call``' instruction is used to cause control flow to transfer to
8462a specified function, with its incoming arguments bound to the specified
8463values. Upon a '``ret``' instruction in the called function, control
8464flow continues with the instruction after the function call, and the
8465return value of the function is bound to the result argument.
8466
8467Example:
8468""""""""
8469
8470.. code-block:: llvm
8471
8472 %retval = call i32 @test(i32 %argc)
8473 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8474 %X = tail call i32 @foo() ; yields i32
8475 %Y = tail call fastcc i32 @foo() ; yields i32
8476 call void %foo(i8 97 signext)
8477
8478 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008479 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008480 %gr = extractvalue %struct.A %r, 0 ; yields i32
8481 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8482 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8483 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8484
8485llvm treats calls to some functions with names and arguments that match
8486the standard C99 library as being the C99 library functions, and may
8487perform optimizations or generate code for them under that assumption.
8488This is something we'd like to change in the future to provide better
8489support for freestanding environments and non-C-based languages.
8490
8491.. _i_va_arg:
8492
8493'``va_arg``' Instruction
8494^^^^^^^^^^^^^^^^^^^^^^^^
8495
8496Syntax:
8497"""""""
8498
8499::
8500
8501 <resultval> = va_arg <va_list*> <arglist>, <argty>
8502
8503Overview:
8504"""""""""
8505
8506The '``va_arg``' instruction is used to access arguments passed through
8507the "variable argument" area of a function call. It is used to implement
8508the ``va_arg`` macro in C.
8509
8510Arguments:
8511""""""""""
8512
8513This instruction takes a ``va_list*`` value and the type of the
8514argument. It returns a value of the specified argument type and
8515increments the ``va_list`` to point to the next argument. The actual
8516type of ``va_list`` is target specific.
8517
8518Semantics:
8519""""""""""
8520
8521The '``va_arg``' instruction loads an argument of the specified type
8522from the specified ``va_list`` and causes the ``va_list`` to point to
8523the next argument. For more information, see the variable argument
8524handling :ref:`Intrinsic Functions <int_varargs>`.
8525
8526It is legal for this instruction to be called in a function which does
8527not take a variable number of arguments, for example, the ``vfprintf``
8528function.
8529
8530``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8531function <intrinsics>` because it takes a type as an argument.
8532
8533Example:
8534""""""""
8535
8536See the :ref:`variable argument processing <int_varargs>` section.
8537
8538Note that the code generator does not yet fully support va\_arg on many
8539targets. Also, it does not currently support va\_arg with aggregate
8540types on any target.
8541
8542.. _i_landingpad:
8543
8544'``landingpad``' Instruction
8545^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8546
8547Syntax:
8548"""""""
8549
8550::
8551
David Majnemer7fddecc2015-06-17 20:52:32 +00008552 <resultval> = landingpad <resultty> <clause>+
8553 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008554
8555 <clause> := catch <type> <value>
8556 <clause> := filter <array constant type> <array constant>
8557
8558Overview:
8559"""""""""
8560
8561The '``landingpad``' instruction is used by `LLVM's exception handling
8562system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008563is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008564code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008565defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008566re-entry to the function. The ``resultval`` has the type ``resultty``.
8567
8568Arguments:
8569""""""""""
8570
David Majnemer7fddecc2015-06-17 20:52:32 +00008571The optional
Sean Silvab084af42012-12-07 10:36:55 +00008572``cleanup`` flag indicates that the landing pad block is a cleanup.
8573
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008574A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008575contains the global variable representing the "type" that may be caught
8576or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8577clause takes an array constant as its argument. Use
8578"``[0 x i8**] undef``" for a filter which cannot throw. The
8579'``landingpad``' instruction must contain *at least* one ``clause`` or
8580the ``cleanup`` flag.
8581
8582Semantics:
8583""""""""""
8584
8585The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008586:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008587therefore the "result type" of the ``landingpad`` instruction. As with
8588calling conventions, how the personality function results are
8589represented in LLVM IR is target specific.
8590
8591The clauses are applied in order from top to bottom. If two
8592``landingpad`` instructions are merged together through inlining, the
8593clauses from the calling function are appended to the list of clauses.
8594When the call stack is being unwound due to an exception being thrown,
8595the exception is compared against each ``clause`` in turn. If it doesn't
8596match any of the clauses, and the ``cleanup`` flag is not set, then
8597unwinding continues further up the call stack.
8598
8599The ``landingpad`` instruction has several restrictions:
8600
8601- A landing pad block is a basic block which is the unwind destination
8602 of an '``invoke``' instruction.
8603- A landing pad block must have a '``landingpad``' instruction as its
8604 first non-PHI instruction.
8605- There can be only one '``landingpad``' instruction within the landing
8606 pad block.
8607- A basic block that is not a landing pad block may not include a
8608 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008609
8610Example:
8611""""""""
8612
8613.. code-block:: llvm
8614
8615 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008616 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008617 catch i8** @_ZTIi
8618 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008619 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008620 cleanup
8621 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008622 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008623 catch i8** @_ZTIi
8624 filter [1 x i8**] [@_ZTId]
8625
David Majnemer654e1302015-07-31 17:58:14 +00008626.. _i_cleanuppad:
8627
8628'``cleanuppad``' Instruction
8629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8630
8631Syntax:
8632"""""""
8633
8634::
8635
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008636 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008637
8638Overview:
8639"""""""""
8640
8641The '``cleanuppad``' instruction is used by `LLVM's exception handling
8642system <ExceptionHandling.html#overview>`_ to specify that a basic block
8643is a cleanup block --- one where a personality routine attempts to
8644transfer control to run cleanup actions.
8645The ``args`` correspond to whatever additional
8646information the :ref:`personality function <personalityfn>` requires to
8647execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008648The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008649match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8650and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008651
8652Arguments:
8653""""""""""
8654
8655The instruction takes a list of arbitrary values which are interpreted
8656by the :ref:`personality function <personalityfn>`.
8657
8658Semantics:
8659""""""""""
8660
David Majnemer654e1302015-07-31 17:58:14 +00008661When the call stack is being unwound due to an exception being thrown,
8662the :ref:`personality function <personalityfn>` transfers control to the
8663``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008664As with calling conventions, how the personality function results are
8665represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008666
8667The ``cleanuppad`` instruction has several restrictions:
8668
8669- A cleanup block is a basic block which is the unwind destination of
8670 an exceptional instruction.
8671- A cleanup block must have a '``cleanuppad``' instruction as its
8672 first non-PHI instruction.
8673- There can be only one '``cleanuppad``' instruction within the
8674 cleanup block.
8675- A basic block that is not a cleanup block may not include a
8676 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008677- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8678 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008679- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008680 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8681 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008682- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008683 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8684 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008685
8686Example:
8687""""""""
8688
8689.. code-block:: llvm
8690
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008691 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008692
Sean Silvab084af42012-12-07 10:36:55 +00008693.. _intrinsics:
8694
8695Intrinsic Functions
8696===================
8697
8698LLVM supports the notion of an "intrinsic function". These functions
8699have well known names and semantics and are required to follow certain
8700restrictions. Overall, these intrinsics represent an extension mechanism
8701for the LLVM language that does not require changing all of the
8702transformations in LLVM when adding to the language (or the bitcode
8703reader/writer, the parser, etc...).
8704
8705Intrinsic function names must all start with an "``llvm.``" prefix. This
8706prefix is reserved in LLVM for intrinsic names; thus, function names may
8707not begin with this prefix. Intrinsic functions must always be external
8708functions: you cannot define the body of intrinsic functions. Intrinsic
8709functions may only be used in call or invoke instructions: it is illegal
8710to take the address of an intrinsic function. Additionally, because
8711intrinsic functions are part of the LLVM language, it is required if any
8712are added that they be documented here.
8713
8714Some intrinsic functions can be overloaded, i.e., the intrinsic
8715represents a family of functions that perform the same operation but on
8716different data types. Because LLVM can represent over 8 million
8717different integer types, overloading is used commonly to allow an
8718intrinsic function to operate on any integer type. One or more of the
8719argument types or the result type can be overloaded to accept any
8720integer type. Argument types may also be defined as exactly matching a
8721previous argument's type or the result type. This allows an intrinsic
8722function which accepts multiple arguments, but needs all of them to be
8723of the same type, to only be overloaded with respect to a single
8724argument or the result.
8725
8726Overloaded intrinsics will have the names of its overloaded argument
8727types encoded into its function name, each preceded by a period. Only
8728those types which are overloaded result in a name suffix. Arguments
8729whose type is matched against another type do not. For example, the
8730``llvm.ctpop`` function can take an integer of any width and returns an
8731integer of exactly the same integer width. This leads to a family of
8732functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8733``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8734overloaded, and only one type suffix is required. Because the argument's
8735type is matched against the return type, it does not require its own
8736name suffix.
8737
8738To learn how to add an intrinsic function, please see the `Extending
8739LLVM Guide <ExtendingLLVM.html>`_.
8740
8741.. _int_varargs:
8742
8743Variable Argument Handling Intrinsics
8744-------------------------------------
8745
8746Variable argument support is defined in LLVM with the
8747:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8748functions. These functions are related to the similarly named macros
8749defined in the ``<stdarg.h>`` header file.
8750
8751All of these functions operate on arguments that use a target-specific
8752value type "``va_list``". The LLVM assembly language reference manual
8753does not define what this type is, so all transformations should be
8754prepared to handle these functions regardless of the type used.
8755
8756This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8757variable argument handling intrinsic functions are used.
8758
8759.. code-block:: llvm
8760
Tim Northoverab60bb92014-11-02 01:21:51 +00008761 ; This struct is different for every platform. For most platforms,
8762 ; it is merely an i8*.
8763 %struct.va_list = type { i8* }
8764
8765 ; For Unix x86_64 platforms, va_list is the following struct:
8766 ; %struct.va_list = type { i32, i32, i8*, i8* }
8767
Sean Silvab084af42012-12-07 10:36:55 +00008768 define i32 @test(i32 %X, ...) {
8769 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008770 %ap = alloca %struct.va_list
8771 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008772 call void @llvm.va_start(i8* %ap2)
8773
8774 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008775 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008776
8777 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8778 %aq = alloca i8*
8779 %aq2 = bitcast i8** %aq to i8*
8780 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8781 call void @llvm.va_end(i8* %aq2)
8782
8783 ; Stop processing of arguments.
8784 call void @llvm.va_end(i8* %ap2)
8785 ret i32 %tmp
8786 }
8787
8788 declare void @llvm.va_start(i8*)
8789 declare void @llvm.va_copy(i8*, i8*)
8790 declare void @llvm.va_end(i8*)
8791
8792.. _int_va_start:
8793
8794'``llvm.va_start``' Intrinsic
8795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8796
8797Syntax:
8798"""""""
8799
8800::
8801
Nick Lewycky04f6de02013-09-11 22:04:52 +00008802 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008803
8804Overview:
8805"""""""""
8806
8807The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8808subsequent use by ``va_arg``.
8809
8810Arguments:
8811""""""""""
8812
8813The argument is a pointer to a ``va_list`` element to initialize.
8814
8815Semantics:
8816""""""""""
8817
8818The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8819available in C. In a target-dependent way, it initializes the
8820``va_list`` element to which the argument points, so that the next call
8821to ``va_arg`` will produce the first variable argument passed to the
8822function. Unlike the C ``va_start`` macro, this intrinsic does not need
8823to know the last argument of the function as the compiler can figure
8824that out.
8825
8826'``llvm.va_end``' Intrinsic
8827^^^^^^^^^^^^^^^^^^^^^^^^^^^
8828
8829Syntax:
8830"""""""
8831
8832::
8833
8834 declare void @llvm.va_end(i8* <arglist>)
8835
8836Overview:
8837"""""""""
8838
8839The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8840initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8841
8842Arguments:
8843""""""""""
8844
8845The argument is a pointer to a ``va_list`` to destroy.
8846
8847Semantics:
8848""""""""""
8849
8850The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8851available in C. In a target-dependent way, it destroys the ``va_list``
8852element to which the argument points. Calls to
8853:ref:`llvm.va_start <int_va_start>` and
8854:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8855``llvm.va_end``.
8856
8857.. _int_va_copy:
8858
8859'``llvm.va_copy``' Intrinsic
8860^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8861
8862Syntax:
8863"""""""
8864
8865::
8866
8867 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8868
8869Overview:
8870"""""""""
8871
8872The '``llvm.va_copy``' intrinsic copies the current argument position
8873from the source argument list to the destination argument list.
8874
8875Arguments:
8876""""""""""
8877
8878The first argument is a pointer to a ``va_list`` element to initialize.
8879The second argument is a pointer to a ``va_list`` element to copy from.
8880
8881Semantics:
8882""""""""""
8883
8884The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8885available in C. In a target-dependent way, it copies the source
8886``va_list`` element into the destination ``va_list`` element. This
8887intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8888arbitrarily complex and require, for example, memory allocation.
8889
8890Accurate Garbage Collection Intrinsics
8891--------------------------------------
8892
Philip Reamesc5b0f562015-02-25 23:52:06 +00008893LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008894(GC) requires the frontend to generate code containing appropriate intrinsic
8895calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008896intrinsics in a manner which is appropriate for the target collector.
8897
Sean Silvab084af42012-12-07 10:36:55 +00008898These intrinsics allow identification of :ref:`GC roots on the
8899stack <int_gcroot>`, as well as garbage collector implementations that
8900require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008901Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008902these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008903details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008904
Philip Reamesf80bbff2015-02-25 23:45:20 +00008905Experimental Statepoint Intrinsics
8906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8907
8908LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008909collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008910to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008911:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008912differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008913<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008914described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008915
8916.. _int_gcroot:
8917
8918'``llvm.gcroot``' Intrinsic
8919^^^^^^^^^^^^^^^^^^^^^^^^^^^
8920
8921Syntax:
8922"""""""
8923
8924::
8925
8926 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8927
8928Overview:
8929"""""""""
8930
8931The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8932the code generator, and allows some metadata to be associated with it.
8933
8934Arguments:
8935""""""""""
8936
8937The first argument specifies the address of a stack object that contains
8938the root pointer. The second pointer (which must be either a constant or
8939a global value address) contains the meta-data to be associated with the
8940root.
8941
8942Semantics:
8943""""""""""
8944
8945At runtime, a call to this intrinsic stores a null pointer into the
8946"ptrloc" location. At compile-time, the code generator generates
8947information to allow the runtime to find the pointer at GC safe points.
8948The '``llvm.gcroot``' intrinsic may only be used in a function which
8949:ref:`specifies a GC algorithm <gc>`.
8950
8951.. _int_gcread:
8952
8953'``llvm.gcread``' Intrinsic
8954^^^^^^^^^^^^^^^^^^^^^^^^^^^
8955
8956Syntax:
8957"""""""
8958
8959::
8960
8961 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8962
8963Overview:
8964"""""""""
8965
8966The '``llvm.gcread``' intrinsic identifies reads of references from heap
8967locations, allowing garbage collector implementations that require read
8968barriers.
8969
8970Arguments:
8971""""""""""
8972
8973The second argument is the address to read from, which should be an
8974address allocated from the garbage collector. The first object is a
8975pointer to the start of the referenced object, if needed by the language
8976runtime (otherwise null).
8977
8978Semantics:
8979""""""""""
8980
8981The '``llvm.gcread``' intrinsic has the same semantics as a load
8982instruction, but may be replaced with substantially more complex code by
8983the garbage collector runtime, as needed. The '``llvm.gcread``'
8984intrinsic may only be used in a function which :ref:`specifies a GC
8985algorithm <gc>`.
8986
8987.. _int_gcwrite:
8988
8989'``llvm.gcwrite``' Intrinsic
8990^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8991
8992Syntax:
8993"""""""
8994
8995::
8996
8997 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8998
8999Overview:
9000"""""""""
9001
9002The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9003locations, allowing garbage collector implementations that require write
9004barriers (such as generational or reference counting collectors).
9005
9006Arguments:
9007""""""""""
9008
9009The first argument is the reference to store, the second is the start of
9010the object to store it to, and the third is the address of the field of
9011Obj to store to. If the runtime does not require a pointer to the
9012object, Obj may be null.
9013
9014Semantics:
9015""""""""""
9016
9017The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9018instruction, but may be replaced with substantially more complex code by
9019the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9020intrinsic may only be used in a function which :ref:`specifies a GC
9021algorithm <gc>`.
9022
9023Code Generator Intrinsics
9024-------------------------
9025
9026These intrinsics are provided by LLVM to expose special features that
9027may only be implemented with code generator support.
9028
9029'``llvm.returnaddress``' Intrinsic
9030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9031
9032Syntax:
9033"""""""
9034
9035::
9036
9037 declare i8 *@llvm.returnaddress(i32 <level>)
9038
9039Overview:
9040"""""""""
9041
9042The '``llvm.returnaddress``' intrinsic attempts to compute a
9043target-specific value indicating the return address of the current
9044function or one of its callers.
9045
9046Arguments:
9047""""""""""
9048
9049The argument to this intrinsic indicates which function to return the
9050address for. Zero indicates the calling function, one indicates its
9051caller, etc. The argument is **required** to be a constant integer
9052value.
9053
9054Semantics:
9055""""""""""
9056
9057The '``llvm.returnaddress``' intrinsic either returns a pointer
9058indicating the return address of the specified call frame, or zero if it
9059cannot be identified. The value returned by this intrinsic is likely to
9060be incorrect or 0 for arguments other than zero, so it should only be
9061used for debugging purposes.
9062
9063Note that calling this intrinsic does not prevent function inlining or
9064other aggressive transformations, so the value returned may not be that
9065of the obvious source-language caller.
9066
9067'``llvm.frameaddress``' Intrinsic
9068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9069
9070Syntax:
9071"""""""
9072
9073::
9074
9075 declare i8* @llvm.frameaddress(i32 <level>)
9076
9077Overview:
9078"""""""""
9079
9080The '``llvm.frameaddress``' intrinsic attempts to return the
9081target-specific frame pointer value for the specified stack frame.
9082
9083Arguments:
9084""""""""""
9085
9086The argument to this intrinsic indicates which function to return the
9087frame pointer for. Zero indicates the calling function, one indicates
9088its caller, etc. The argument is **required** to be a constant integer
9089value.
9090
9091Semantics:
9092""""""""""
9093
9094The '``llvm.frameaddress``' intrinsic either returns a pointer
9095indicating the frame address of the specified call frame, or zero if it
9096cannot be identified. The value returned by this intrinsic is likely to
9097be incorrect or 0 for arguments other than zero, so it should only be
9098used for debugging purposes.
9099
9100Note that calling this intrinsic does not prevent function inlining or
9101other aggressive transformations, so the value returned may not be that
9102of the obvious source-language caller.
9103
Reid Kleckner60381792015-07-07 22:25:32 +00009104'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9106
9107Syntax:
9108"""""""
9109
9110::
9111
Reid Kleckner60381792015-07-07 22:25:32 +00009112 declare void @llvm.localescape(...)
9113 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009114
9115Overview:
9116"""""""""
9117
Reid Kleckner60381792015-07-07 22:25:32 +00009118The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9119allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009120live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009121computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009122
9123Arguments:
9124""""""""""
9125
Reid Kleckner60381792015-07-07 22:25:32 +00009126All arguments to '``llvm.localescape``' must be pointers to static allocas or
9127casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009128once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009129
Reid Kleckner60381792015-07-07 22:25:32 +00009130The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009131bitcasted pointer to a function defined in the current module. The code
9132generator cannot determine the frame allocation offset of functions defined in
9133other modules.
9134
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009135The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9136call frame that is currently live. The return value of '``llvm.localaddress``'
9137is one way to produce such a value, but various runtimes also expose a suitable
9138pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009139
Reid Kleckner60381792015-07-07 22:25:32 +00009140The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9141'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009142
Reid Klecknere9b89312015-01-13 00:48:10 +00009143Semantics:
9144""""""""""
9145
Reid Kleckner60381792015-07-07 22:25:32 +00009146These intrinsics allow a group of functions to share access to a set of local
9147stack allocations of a one parent function. The parent function may call the
9148'``llvm.localescape``' intrinsic once from the function entry block, and the
9149child functions can use '``llvm.localrecover``' to access the escaped allocas.
9150The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9151the escaped allocas are allocated, which would break attempts to use
9152'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009153
Renato Golinc7aea402014-05-06 16:51:25 +00009154.. _int_read_register:
9155.. _int_write_register:
9156
9157'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9158^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9159
9160Syntax:
9161"""""""
9162
9163::
9164
9165 declare i32 @llvm.read_register.i32(metadata)
9166 declare i64 @llvm.read_register.i64(metadata)
9167 declare void @llvm.write_register.i32(metadata, i32 @value)
9168 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009169 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009170
9171Overview:
9172"""""""""
9173
9174The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9175provides access to the named register. The register must be valid on
9176the architecture being compiled to. The type needs to be compatible
9177with the register being read.
9178
9179Semantics:
9180""""""""""
9181
9182The '``llvm.read_register``' intrinsic returns the current value of the
9183register, where possible. The '``llvm.write_register``' intrinsic sets
9184the current value of the register, where possible.
9185
9186This is useful to implement named register global variables that need
9187to always be mapped to a specific register, as is common practice on
9188bare-metal programs including OS kernels.
9189
9190The compiler doesn't check for register availability or use of the used
9191register in surrounding code, including inline assembly. Because of that,
9192allocatable registers are not supported.
9193
9194Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009195architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009196work is needed to support other registers and even more so, allocatable
9197registers.
9198
Sean Silvab084af42012-12-07 10:36:55 +00009199.. _int_stacksave:
9200
9201'``llvm.stacksave``' Intrinsic
9202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9203
9204Syntax:
9205"""""""
9206
9207::
9208
9209 declare i8* @llvm.stacksave()
9210
9211Overview:
9212"""""""""
9213
9214The '``llvm.stacksave``' intrinsic is used to remember the current state
9215of the function stack, for use with
9216:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9217implementing language features like scoped automatic variable sized
9218arrays in C99.
9219
9220Semantics:
9221""""""""""
9222
9223This intrinsic returns a opaque pointer value that can be passed to
9224:ref:`llvm.stackrestore <int_stackrestore>`. When an
9225``llvm.stackrestore`` intrinsic is executed with a value saved from
9226``llvm.stacksave``, it effectively restores the state of the stack to
9227the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9228practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9229were allocated after the ``llvm.stacksave`` was executed.
9230
9231.. _int_stackrestore:
9232
9233'``llvm.stackrestore``' Intrinsic
9234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9235
9236Syntax:
9237"""""""
9238
9239::
9240
9241 declare void @llvm.stackrestore(i8* %ptr)
9242
9243Overview:
9244"""""""""
9245
9246The '``llvm.stackrestore``' intrinsic is used to restore the state of
9247the function stack to the state it was in when the corresponding
9248:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9249useful for implementing language features like scoped automatic variable
9250sized arrays in C99.
9251
9252Semantics:
9253""""""""""
9254
9255See the description for :ref:`llvm.stacksave <int_stacksave>`.
9256
9257'``llvm.prefetch``' Intrinsic
9258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9259
9260Syntax:
9261"""""""
9262
9263::
9264
9265 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9266
9267Overview:
9268"""""""""
9269
9270The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9271insert a prefetch instruction if supported; otherwise, it is a noop.
9272Prefetches have no effect on the behavior of the program but can change
9273its performance characteristics.
9274
9275Arguments:
9276""""""""""
9277
9278``address`` is the address to be prefetched, ``rw`` is the specifier
9279determining if the fetch should be for a read (0) or write (1), and
9280``locality`` is a temporal locality specifier ranging from (0) - no
9281locality, to (3) - extremely local keep in cache. The ``cache type``
9282specifies whether the prefetch is performed on the data (1) or
9283instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9284arguments must be constant integers.
9285
9286Semantics:
9287""""""""""
9288
9289This intrinsic does not modify the behavior of the program. In
9290particular, prefetches cannot trap and do not produce a value. On
9291targets that support this intrinsic, the prefetch can provide hints to
9292the processor cache for better performance.
9293
9294'``llvm.pcmarker``' Intrinsic
9295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9296
9297Syntax:
9298"""""""
9299
9300::
9301
9302 declare void @llvm.pcmarker(i32 <id>)
9303
9304Overview:
9305"""""""""
9306
9307The '``llvm.pcmarker``' intrinsic is a method to export a Program
9308Counter (PC) in a region of code to simulators and other tools. The
9309method is target specific, but it is expected that the marker will use
9310exported symbols to transmit the PC of the marker. The marker makes no
9311guarantees that it will remain with any specific instruction after
9312optimizations. It is possible that the presence of a marker will inhibit
9313optimizations. The intended use is to be inserted after optimizations to
9314allow correlations of simulation runs.
9315
9316Arguments:
9317""""""""""
9318
9319``id`` is a numerical id identifying the marker.
9320
9321Semantics:
9322""""""""""
9323
9324This intrinsic does not modify the behavior of the program. Backends
9325that do not support this intrinsic may ignore it.
9326
9327'``llvm.readcyclecounter``' Intrinsic
9328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9329
9330Syntax:
9331"""""""
9332
9333::
9334
9335 declare i64 @llvm.readcyclecounter()
9336
9337Overview:
9338"""""""""
9339
9340The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9341counter register (or similar low latency, high accuracy clocks) on those
9342targets that support it. On X86, it should map to RDTSC. On Alpha, it
9343should map to RPCC. As the backing counters overflow quickly (on the
9344order of 9 seconds on alpha), this should only be used for small
9345timings.
9346
9347Semantics:
9348""""""""""
9349
9350When directly supported, reading the cycle counter should not modify any
9351memory. Implementations are allowed to either return a application
9352specific value or a system wide value. On backends without support, this
9353is lowered to a constant 0.
9354
Tim Northoverbc933082013-05-23 19:11:20 +00009355Note that runtime support may be conditional on the privilege-level code is
9356running at and the host platform.
9357
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009358'``llvm.clear_cache``' Intrinsic
9359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9360
9361Syntax:
9362"""""""
9363
9364::
9365
9366 declare void @llvm.clear_cache(i8*, i8*)
9367
9368Overview:
9369"""""""""
9370
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009371The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9372in the specified range to the execution unit of the processor. On
9373targets with non-unified instruction and data cache, the implementation
9374flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009375
9376Semantics:
9377""""""""""
9378
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009379On platforms with coherent instruction and data caches (e.g. x86), this
9380intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009381cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009382instructions or a system call, if cache flushing requires special
9383privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009384
Sean Silvad02bf3e2014-04-07 22:29:53 +00009385The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009386time library.
Renato Golin93010e62014-03-26 14:01:32 +00009387
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009388This instrinsic does *not* empty the instruction pipeline. Modifications
9389of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009390
Justin Bogner61ba2e32014-12-08 18:02:35 +00009391'``llvm.instrprof_increment``' Intrinsic
9392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9393
9394Syntax:
9395"""""""
9396
9397::
9398
9399 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9400 i32 <num-counters>, i32 <index>)
9401
9402Overview:
9403"""""""""
9404
9405The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9406frontend for use with instrumentation based profiling. These will be
9407lowered by the ``-instrprof`` pass to generate execution counts of a
9408program at runtime.
9409
9410Arguments:
9411""""""""""
9412
9413The first argument is a pointer to a global variable containing the
9414name of the entity being instrumented. This should generally be the
9415(mangled) function name for a set of counters.
9416
9417The second argument is a hash value that can be used by the consumer
9418of the profile data to detect changes to the instrumented source, and
9419the third is the number of counters associated with ``name``. It is an
9420error if ``hash`` or ``num-counters`` differ between two instances of
9421``instrprof_increment`` that refer to the same name.
9422
9423The last argument refers to which of the counters for ``name`` should
9424be incremented. It should be a value between 0 and ``num-counters``.
9425
9426Semantics:
9427""""""""""
9428
9429This intrinsic represents an increment of a profiling counter. It will
9430cause the ``-instrprof`` pass to generate the appropriate data
9431structures and the code to increment the appropriate value, in a
9432format that can be written out by a compiler runtime and consumed via
9433the ``llvm-profdata`` tool.
9434
Sean Silvab084af42012-12-07 10:36:55 +00009435Standard C Library Intrinsics
9436-----------------------------
9437
9438LLVM provides intrinsics for a few important standard C library
9439functions. These intrinsics allow source-language front-ends to pass
9440information about the alignment of the pointer arguments to the code
9441generator, providing opportunity for more efficient code generation.
9442
9443.. _int_memcpy:
9444
9445'``llvm.memcpy``' Intrinsic
9446^^^^^^^^^^^^^^^^^^^^^^^^^^^
9447
9448Syntax:
9449"""""""
9450
9451This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9452integer bit width and for different address spaces. Not all targets
9453support all bit widths however.
9454
9455::
9456
9457 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9458 i32 <len>, i32 <align>, i1 <isvolatile>)
9459 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9460 i64 <len>, i32 <align>, i1 <isvolatile>)
9461
9462Overview:
9463"""""""""
9464
9465The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9466source location to the destination location.
9467
9468Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9469intrinsics do not return a value, takes extra alignment/isvolatile
9470arguments and the pointers can be in specified address spaces.
9471
9472Arguments:
9473""""""""""
9474
9475The first argument is a pointer to the destination, the second is a
9476pointer to the source. The third argument is an integer argument
9477specifying the number of bytes to copy, the fourth argument is the
9478alignment of the source and destination locations, and the fifth is a
9479boolean indicating a volatile access.
9480
9481If the call to this intrinsic has an alignment value that is not 0 or 1,
9482then the caller guarantees that both the source and destination pointers
9483are aligned to that boundary.
9484
9485If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9486a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9487very cleanly specified and it is unwise to depend on it.
9488
9489Semantics:
9490""""""""""
9491
9492The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9493source location to the destination location, which are not allowed to
9494overlap. It copies "len" bytes of memory over. If the argument is known
9495to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009496argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009497
9498'``llvm.memmove``' Intrinsic
9499^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9500
9501Syntax:
9502"""""""
9503
9504This is an overloaded intrinsic. You can use llvm.memmove on any integer
9505bit width and for different address space. Not all targets support all
9506bit widths however.
9507
9508::
9509
9510 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9511 i32 <len>, i32 <align>, i1 <isvolatile>)
9512 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9513 i64 <len>, i32 <align>, i1 <isvolatile>)
9514
9515Overview:
9516"""""""""
9517
9518The '``llvm.memmove.*``' intrinsics move a block of memory from the
9519source location to the destination location. It is similar to the
9520'``llvm.memcpy``' intrinsic but allows the two memory locations to
9521overlap.
9522
9523Note that, unlike the standard libc function, the ``llvm.memmove.*``
9524intrinsics do not return a value, takes extra alignment/isvolatile
9525arguments and the pointers can be in specified address spaces.
9526
9527Arguments:
9528""""""""""
9529
9530The first argument is a pointer to the destination, the second is a
9531pointer to the source. The third argument is an integer argument
9532specifying the number of bytes to copy, the fourth argument is the
9533alignment of the source and destination locations, and the fifth is a
9534boolean indicating a volatile access.
9535
9536If the call to this intrinsic has an alignment value that is not 0 or 1,
9537then the caller guarantees that the source and destination pointers are
9538aligned to that boundary.
9539
9540If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9541is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9542not very cleanly specified and it is unwise to depend on it.
9543
9544Semantics:
9545""""""""""
9546
9547The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9548source location to the destination location, which may overlap. It
9549copies "len" bytes of memory over. If the argument is known to be
9550aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009551otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009552
9553'``llvm.memset.*``' Intrinsics
9554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9555
9556Syntax:
9557"""""""
9558
9559This is an overloaded intrinsic. You can use llvm.memset on any integer
9560bit width and for different address spaces. However, not all targets
9561support all bit widths.
9562
9563::
9564
9565 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9566 i32 <len>, i32 <align>, i1 <isvolatile>)
9567 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9568 i64 <len>, i32 <align>, i1 <isvolatile>)
9569
9570Overview:
9571"""""""""
9572
9573The '``llvm.memset.*``' intrinsics fill a block of memory with a
9574particular byte value.
9575
9576Note that, unlike the standard libc function, the ``llvm.memset``
9577intrinsic does not return a value and takes extra alignment/volatile
9578arguments. Also, the destination can be in an arbitrary address space.
9579
9580Arguments:
9581""""""""""
9582
9583The first argument is a pointer to the destination to fill, the second
9584is the byte value with which to fill it, the third argument is an
9585integer argument specifying the number of bytes to fill, and the fourth
9586argument is the known alignment of the destination location.
9587
9588If the call to this intrinsic has an alignment value that is not 0 or 1,
9589then the caller guarantees that the destination pointer is aligned to
9590that boundary.
9591
9592If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9593a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9594very cleanly specified and it is unwise to depend on it.
9595
9596Semantics:
9597""""""""""
9598
9599The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9600at the destination location. If the argument is known to be aligned to
9601some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009602it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009603
9604'``llvm.sqrt.*``' Intrinsic
9605^^^^^^^^^^^^^^^^^^^^^^^^^^^
9606
9607Syntax:
9608"""""""
9609
9610This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9611floating point or vector of floating point type. Not all targets support
9612all types however.
9613
9614::
9615
9616 declare float @llvm.sqrt.f32(float %Val)
9617 declare double @llvm.sqrt.f64(double %Val)
9618 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9619 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9620 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9621
9622Overview:
9623"""""""""
9624
9625The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9626returning the same value as the libm '``sqrt``' functions would. Unlike
9627``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9628negative numbers other than -0.0 (which allows for better optimization,
9629because there is no need to worry about errno being set).
9630``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9631
9632Arguments:
9633""""""""""
9634
9635The argument and return value are floating point numbers of the same
9636type.
9637
9638Semantics:
9639""""""""""
9640
9641This function returns the sqrt of the specified operand if it is a
9642nonnegative floating point number.
9643
9644'``llvm.powi.*``' Intrinsic
9645^^^^^^^^^^^^^^^^^^^^^^^^^^^
9646
9647Syntax:
9648"""""""
9649
9650This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9651floating point or vector of floating point type. Not all targets support
9652all types however.
9653
9654::
9655
9656 declare float @llvm.powi.f32(float %Val, i32 %power)
9657 declare double @llvm.powi.f64(double %Val, i32 %power)
9658 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9659 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9660 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9661
9662Overview:
9663"""""""""
9664
9665The '``llvm.powi.*``' intrinsics return the first operand raised to the
9666specified (positive or negative) power. The order of evaluation of
9667multiplications is not defined. When a vector of floating point type is
9668used, the second argument remains a scalar integer value.
9669
9670Arguments:
9671""""""""""
9672
9673The second argument is an integer power, and the first is a value to
9674raise to that power.
9675
9676Semantics:
9677""""""""""
9678
9679This function returns the first value raised to the second power with an
9680unspecified sequence of rounding operations.
9681
9682'``llvm.sin.*``' Intrinsic
9683^^^^^^^^^^^^^^^^^^^^^^^^^^
9684
9685Syntax:
9686"""""""
9687
9688This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9689floating point or vector of floating point type. Not all targets support
9690all types however.
9691
9692::
9693
9694 declare float @llvm.sin.f32(float %Val)
9695 declare double @llvm.sin.f64(double %Val)
9696 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9697 declare fp128 @llvm.sin.f128(fp128 %Val)
9698 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9699
9700Overview:
9701"""""""""
9702
9703The '``llvm.sin.*``' intrinsics return the sine of the operand.
9704
9705Arguments:
9706""""""""""
9707
9708The argument and return value are floating point numbers of the same
9709type.
9710
9711Semantics:
9712""""""""""
9713
9714This function returns the sine of the specified operand, returning the
9715same values as the libm ``sin`` functions would, and handles error
9716conditions in the same way.
9717
9718'``llvm.cos.*``' Intrinsic
9719^^^^^^^^^^^^^^^^^^^^^^^^^^
9720
9721Syntax:
9722"""""""
9723
9724This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9725floating point or vector of floating point type. Not all targets support
9726all types however.
9727
9728::
9729
9730 declare float @llvm.cos.f32(float %Val)
9731 declare double @llvm.cos.f64(double %Val)
9732 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9733 declare fp128 @llvm.cos.f128(fp128 %Val)
9734 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9735
9736Overview:
9737"""""""""
9738
9739The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9740
9741Arguments:
9742""""""""""
9743
9744The argument and return value are floating point numbers of the same
9745type.
9746
9747Semantics:
9748""""""""""
9749
9750This function returns the cosine of the specified operand, returning the
9751same values as the libm ``cos`` functions would, and handles error
9752conditions in the same way.
9753
9754'``llvm.pow.*``' Intrinsic
9755^^^^^^^^^^^^^^^^^^^^^^^^^^
9756
9757Syntax:
9758"""""""
9759
9760This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9761floating point or vector of floating point type. Not all targets support
9762all types however.
9763
9764::
9765
9766 declare float @llvm.pow.f32(float %Val, float %Power)
9767 declare double @llvm.pow.f64(double %Val, double %Power)
9768 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9769 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9770 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9771
9772Overview:
9773"""""""""
9774
9775The '``llvm.pow.*``' intrinsics return the first operand raised to the
9776specified (positive or negative) power.
9777
9778Arguments:
9779""""""""""
9780
9781The second argument is a floating point power, and the first is a value
9782to raise to that power.
9783
9784Semantics:
9785""""""""""
9786
9787This function returns the first value raised to the second power,
9788returning the same values as the libm ``pow`` functions would, and
9789handles error conditions in the same way.
9790
9791'``llvm.exp.*``' Intrinsic
9792^^^^^^^^^^^^^^^^^^^^^^^^^^
9793
9794Syntax:
9795"""""""
9796
9797This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9798floating point or vector of floating point type. Not all targets support
9799all types however.
9800
9801::
9802
9803 declare float @llvm.exp.f32(float %Val)
9804 declare double @llvm.exp.f64(double %Val)
9805 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9806 declare fp128 @llvm.exp.f128(fp128 %Val)
9807 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9808
9809Overview:
9810"""""""""
9811
9812The '``llvm.exp.*``' intrinsics perform the exp function.
9813
9814Arguments:
9815""""""""""
9816
9817The argument and return value are floating point numbers of the same
9818type.
9819
9820Semantics:
9821""""""""""
9822
9823This function returns the same values as the libm ``exp`` functions
9824would, and handles error conditions in the same way.
9825
9826'``llvm.exp2.*``' Intrinsic
9827^^^^^^^^^^^^^^^^^^^^^^^^^^^
9828
9829Syntax:
9830"""""""
9831
9832This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9833floating point or vector of floating point type. Not all targets support
9834all types however.
9835
9836::
9837
9838 declare float @llvm.exp2.f32(float %Val)
9839 declare double @llvm.exp2.f64(double %Val)
9840 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9841 declare fp128 @llvm.exp2.f128(fp128 %Val)
9842 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9843
9844Overview:
9845"""""""""
9846
9847The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9848
9849Arguments:
9850""""""""""
9851
9852The argument and return value are floating point numbers of the same
9853type.
9854
9855Semantics:
9856""""""""""
9857
9858This function returns the same values as the libm ``exp2`` functions
9859would, and handles error conditions in the same way.
9860
9861'``llvm.log.*``' Intrinsic
9862^^^^^^^^^^^^^^^^^^^^^^^^^^
9863
9864Syntax:
9865"""""""
9866
9867This is an overloaded intrinsic. You can use ``llvm.log`` on any
9868floating point or vector of floating point type. Not all targets support
9869all types however.
9870
9871::
9872
9873 declare float @llvm.log.f32(float %Val)
9874 declare double @llvm.log.f64(double %Val)
9875 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9876 declare fp128 @llvm.log.f128(fp128 %Val)
9877 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9878
9879Overview:
9880"""""""""
9881
9882The '``llvm.log.*``' intrinsics perform the log function.
9883
9884Arguments:
9885""""""""""
9886
9887The argument and return value are floating point numbers of the same
9888type.
9889
9890Semantics:
9891""""""""""
9892
9893This function returns the same values as the libm ``log`` functions
9894would, and handles error conditions in the same way.
9895
9896'``llvm.log10.*``' Intrinsic
9897^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9898
9899Syntax:
9900"""""""
9901
9902This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9903floating point or vector of floating point type. Not all targets support
9904all types however.
9905
9906::
9907
9908 declare float @llvm.log10.f32(float %Val)
9909 declare double @llvm.log10.f64(double %Val)
9910 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9911 declare fp128 @llvm.log10.f128(fp128 %Val)
9912 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9913
9914Overview:
9915"""""""""
9916
9917The '``llvm.log10.*``' intrinsics perform the log10 function.
9918
9919Arguments:
9920""""""""""
9921
9922The argument and return value are floating point numbers of the same
9923type.
9924
9925Semantics:
9926""""""""""
9927
9928This function returns the same values as the libm ``log10`` functions
9929would, and handles error conditions in the same way.
9930
9931'``llvm.log2.*``' Intrinsic
9932^^^^^^^^^^^^^^^^^^^^^^^^^^^
9933
9934Syntax:
9935"""""""
9936
9937This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9938floating point or vector of floating point type. Not all targets support
9939all types however.
9940
9941::
9942
9943 declare float @llvm.log2.f32(float %Val)
9944 declare double @llvm.log2.f64(double %Val)
9945 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9946 declare fp128 @llvm.log2.f128(fp128 %Val)
9947 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9948
9949Overview:
9950"""""""""
9951
9952The '``llvm.log2.*``' intrinsics perform the log2 function.
9953
9954Arguments:
9955""""""""""
9956
9957The argument and return value are floating point numbers of the same
9958type.
9959
9960Semantics:
9961""""""""""
9962
9963This function returns the same values as the libm ``log2`` functions
9964would, and handles error conditions in the same way.
9965
9966'``llvm.fma.*``' Intrinsic
9967^^^^^^^^^^^^^^^^^^^^^^^^^^
9968
9969Syntax:
9970"""""""
9971
9972This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9973floating point or vector of floating point type. Not all targets support
9974all types however.
9975
9976::
9977
9978 declare float @llvm.fma.f32(float %a, float %b, float %c)
9979 declare double @llvm.fma.f64(double %a, double %b, double %c)
9980 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9981 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9982 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9983
9984Overview:
9985"""""""""
9986
9987The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9988operation.
9989
9990Arguments:
9991""""""""""
9992
9993The argument and return value are floating point numbers of the same
9994type.
9995
9996Semantics:
9997""""""""""
9998
9999This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010000would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010001
10002'``llvm.fabs.*``' Intrinsic
10003^^^^^^^^^^^^^^^^^^^^^^^^^^^
10004
10005Syntax:
10006"""""""
10007
10008This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10009floating point or vector of floating point type. Not all targets support
10010all types however.
10011
10012::
10013
10014 declare float @llvm.fabs.f32(float %Val)
10015 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010016 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010017 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010018 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010019
10020Overview:
10021"""""""""
10022
10023The '``llvm.fabs.*``' intrinsics return the absolute value of the
10024operand.
10025
10026Arguments:
10027""""""""""
10028
10029The argument and return value are floating point numbers of the same
10030type.
10031
10032Semantics:
10033""""""""""
10034
10035This function returns the same values as the libm ``fabs`` functions
10036would, and handles error conditions in the same way.
10037
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010038'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010040
10041Syntax:
10042"""""""
10043
10044This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10045floating point or vector of floating point type. Not all targets support
10046all types however.
10047
10048::
10049
Matt Arsenault64313c92014-10-22 18:25:02 +000010050 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10051 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10052 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10053 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10054 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010055
10056Overview:
10057"""""""""
10058
10059The '``llvm.minnum.*``' intrinsics return the minimum of the two
10060arguments.
10061
10062
10063Arguments:
10064""""""""""
10065
10066The arguments and return value are floating point numbers of the same
10067type.
10068
10069Semantics:
10070""""""""""
10071
10072Follows the IEEE-754 semantics for minNum, which also match for libm's
10073fmin.
10074
10075If either operand is a NaN, returns the other non-NaN operand. Returns
10076NaN only if both operands are NaN. If the operands compare equal,
10077returns a value that compares equal to both operands. This means that
10078fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10079
10080'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010082
10083Syntax:
10084"""""""
10085
10086This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10087floating point or vector of floating point type. Not all targets support
10088all types however.
10089
10090::
10091
Matt Arsenault64313c92014-10-22 18:25:02 +000010092 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10093 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10094 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10095 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10096 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010097
10098Overview:
10099"""""""""
10100
10101The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10102arguments.
10103
10104
10105Arguments:
10106""""""""""
10107
10108The arguments and return value are floating point numbers of the same
10109type.
10110
10111Semantics:
10112""""""""""
10113Follows the IEEE-754 semantics for maxNum, which also match for libm's
10114fmax.
10115
10116If either operand is a NaN, returns the other non-NaN operand. Returns
10117NaN only if both operands are NaN. If the operands compare equal,
10118returns a value that compares equal to both operands. This means that
10119fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10120
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010121'``llvm.copysign.*``' Intrinsic
10122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10123
10124Syntax:
10125"""""""
10126
10127This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10128floating point or vector of floating point type. Not all targets support
10129all types however.
10130
10131::
10132
10133 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10134 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10135 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10136 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10137 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10138
10139Overview:
10140"""""""""
10141
10142The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10143first operand and the sign of the second operand.
10144
10145Arguments:
10146""""""""""
10147
10148The arguments and return value are floating point numbers of the same
10149type.
10150
10151Semantics:
10152""""""""""
10153
10154This function returns the same values as the libm ``copysign``
10155functions would, and handles error conditions in the same way.
10156
Sean Silvab084af42012-12-07 10:36:55 +000010157'``llvm.floor.*``' Intrinsic
10158^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10159
10160Syntax:
10161"""""""
10162
10163This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10164floating point or vector of floating point type. Not all targets support
10165all types however.
10166
10167::
10168
10169 declare float @llvm.floor.f32(float %Val)
10170 declare double @llvm.floor.f64(double %Val)
10171 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10172 declare fp128 @llvm.floor.f128(fp128 %Val)
10173 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10174
10175Overview:
10176"""""""""
10177
10178The '``llvm.floor.*``' intrinsics return the floor of the operand.
10179
10180Arguments:
10181""""""""""
10182
10183The argument and return value are floating point numbers of the same
10184type.
10185
10186Semantics:
10187""""""""""
10188
10189This function returns the same values as the libm ``floor`` functions
10190would, and handles error conditions in the same way.
10191
10192'``llvm.ceil.*``' Intrinsic
10193^^^^^^^^^^^^^^^^^^^^^^^^^^^
10194
10195Syntax:
10196"""""""
10197
10198This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10199floating point or vector of floating point type. Not all targets support
10200all types however.
10201
10202::
10203
10204 declare float @llvm.ceil.f32(float %Val)
10205 declare double @llvm.ceil.f64(double %Val)
10206 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10207 declare fp128 @llvm.ceil.f128(fp128 %Val)
10208 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10209
10210Overview:
10211"""""""""
10212
10213The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10214
10215Arguments:
10216""""""""""
10217
10218The argument and return value are floating point numbers of the same
10219type.
10220
10221Semantics:
10222""""""""""
10223
10224This function returns the same values as the libm ``ceil`` functions
10225would, and handles error conditions in the same way.
10226
10227'``llvm.trunc.*``' Intrinsic
10228^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10229
10230Syntax:
10231"""""""
10232
10233This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10234floating point or vector of floating point type. Not all targets support
10235all types however.
10236
10237::
10238
10239 declare float @llvm.trunc.f32(float %Val)
10240 declare double @llvm.trunc.f64(double %Val)
10241 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10242 declare fp128 @llvm.trunc.f128(fp128 %Val)
10243 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10244
10245Overview:
10246"""""""""
10247
10248The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10249nearest integer not larger in magnitude than the operand.
10250
10251Arguments:
10252""""""""""
10253
10254The argument and return value are floating point numbers of the same
10255type.
10256
10257Semantics:
10258""""""""""
10259
10260This function returns the same values as the libm ``trunc`` functions
10261would, and handles error conditions in the same way.
10262
10263'``llvm.rint.*``' Intrinsic
10264^^^^^^^^^^^^^^^^^^^^^^^^^^^
10265
10266Syntax:
10267"""""""
10268
10269This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10270floating point or vector of floating point type. Not all targets support
10271all types however.
10272
10273::
10274
10275 declare float @llvm.rint.f32(float %Val)
10276 declare double @llvm.rint.f64(double %Val)
10277 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10278 declare fp128 @llvm.rint.f128(fp128 %Val)
10279 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10280
10281Overview:
10282"""""""""
10283
10284The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10285nearest integer. It may raise an inexact floating-point exception if the
10286operand isn't an integer.
10287
10288Arguments:
10289""""""""""
10290
10291The argument and return value are floating point numbers of the same
10292type.
10293
10294Semantics:
10295""""""""""
10296
10297This function returns the same values as the libm ``rint`` functions
10298would, and handles error conditions in the same way.
10299
10300'``llvm.nearbyint.*``' Intrinsic
10301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10302
10303Syntax:
10304"""""""
10305
10306This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10307floating point or vector of floating point type. Not all targets support
10308all types however.
10309
10310::
10311
10312 declare float @llvm.nearbyint.f32(float %Val)
10313 declare double @llvm.nearbyint.f64(double %Val)
10314 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10315 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10316 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10317
10318Overview:
10319"""""""""
10320
10321The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10322nearest integer.
10323
10324Arguments:
10325""""""""""
10326
10327The argument and return value are floating point numbers of the same
10328type.
10329
10330Semantics:
10331""""""""""
10332
10333This function returns the same values as the libm ``nearbyint``
10334functions would, and handles error conditions in the same way.
10335
Hal Finkel171817e2013-08-07 22:49:12 +000010336'``llvm.round.*``' Intrinsic
10337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10338
10339Syntax:
10340"""""""
10341
10342This is an overloaded intrinsic. You can use ``llvm.round`` on any
10343floating point or vector of floating point type. Not all targets support
10344all types however.
10345
10346::
10347
10348 declare float @llvm.round.f32(float %Val)
10349 declare double @llvm.round.f64(double %Val)
10350 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10351 declare fp128 @llvm.round.f128(fp128 %Val)
10352 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10353
10354Overview:
10355"""""""""
10356
10357The '``llvm.round.*``' intrinsics returns the operand rounded to the
10358nearest integer.
10359
10360Arguments:
10361""""""""""
10362
10363The argument and return value are floating point numbers of the same
10364type.
10365
10366Semantics:
10367""""""""""
10368
10369This function returns the same values as the libm ``round``
10370functions would, and handles error conditions in the same way.
10371
Sean Silvab084af42012-12-07 10:36:55 +000010372Bit Manipulation Intrinsics
10373---------------------------
10374
10375LLVM provides intrinsics for a few important bit manipulation
10376operations. These allow efficient code generation for some algorithms.
10377
10378'``llvm.bswap.*``' Intrinsics
10379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10380
10381Syntax:
10382"""""""
10383
10384This is an overloaded intrinsic function. You can use bswap on any
10385integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10386
10387::
10388
10389 declare i16 @llvm.bswap.i16(i16 <id>)
10390 declare i32 @llvm.bswap.i32(i32 <id>)
10391 declare i64 @llvm.bswap.i64(i64 <id>)
10392
10393Overview:
10394"""""""""
10395
10396The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10397values with an even number of bytes (positive multiple of 16 bits).
10398These are useful for performing operations on data that is not in the
10399target's native byte order.
10400
10401Semantics:
10402""""""""""
10403
10404The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10405and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10406intrinsic returns an i32 value that has the four bytes of the input i32
10407swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10408returned i32 will have its bytes in 3, 2, 1, 0 order. The
10409``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10410concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10411respectively).
10412
10413'``llvm.ctpop.*``' Intrinsic
10414^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10415
10416Syntax:
10417"""""""
10418
10419This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10420bit width, or on any vector with integer elements. Not all targets
10421support all bit widths or vector types, however.
10422
10423::
10424
10425 declare i8 @llvm.ctpop.i8(i8 <src>)
10426 declare i16 @llvm.ctpop.i16(i16 <src>)
10427 declare i32 @llvm.ctpop.i32(i32 <src>)
10428 declare i64 @llvm.ctpop.i64(i64 <src>)
10429 declare i256 @llvm.ctpop.i256(i256 <src>)
10430 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10431
10432Overview:
10433"""""""""
10434
10435The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10436in a value.
10437
10438Arguments:
10439""""""""""
10440
10441The only argument is the value to be counted. The argument may be of any
10442integer type, or a vector with integer elements. The return type must
10443match the argument type.
10444
10445Semantics:
10446""""""""""
10447
10448The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10449each element of a vector.
10450
10451'``llvm.ctlz.*``' Intrinsic
10452^^^^^^^^^^^^^^^^^^^^^^^^^^^
10453
10454Syntax:
10455"""""""
10456
10457This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10458integer bit width, or any vector whose elements are integers. Not all
10459targets support all bit widths or vector types, however.
10460
10461::
10462
10463 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10464 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10465 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10466 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10467 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10468 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10469
10470Overview:
10471"""""""""
10472
10473The '``llvm.ctlz``' family of intrinsic functions counts the number of
10474leading zeros in a variable.
10475
10476Arguments:
10477""""""""""
10478
10479The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010480any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010481type must match the first argument type.
10482
10483The second argument must be a constant and is a flag to indicate whether
10484the intrinsic should ensure that a zero as the first argument produces a
10485defined result. Historically some architectures did not provide a
10486defined result for zero values as efficiently, and many algorithms are
10487now predicated on avoiding zero-value inputs.
10488
10489Semantics:
10490""""""""""
10491
10492The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10493zeros in a variable, or within each element of the vector. If
10494``src == 0`` then the result is the size in bits of the type of ``src``
10495if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10496``llvm.ctlz(i32 2) = 30``.
10497
10498'``llvm.cttz.*``' Intrinsic
10499^^^^^^^^^^^^^^^^^^^^^^^^^^^
10500
10501Syntax:
10502"""""""
10503
10504This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10505integer bit width, or any vector of integer elements. Not all targets
10506support all bit widths or vector types, however.
10507
10508::
10509
10510 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10511 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10512 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10513 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10514 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10515 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10516
10517Overview:
10518"""""""""
10519
10520The '``llvm.cttz``' family of intrinsic functions counts the number of
10521trailing zeros.
10522
10523Arguments:
10524""""""""""
10525
10526The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010527any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010528type must match the first argument type.
10529
10530The second argument must be a constant and is a flag to indicate whether
10531the intrinsic should ensure that a zero as the first argument produces a
10532defined result. Historically some architectures did not provide a
10533defined result for zero values as efficiently, and many algorithms are
10534now predicated on avoiding zero-value inputs.
10535
10536Semantics:
10537""""""""""
10538
10539The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10540zeros in a variable, or within each element of a vector. If ``src == 0``
10541then the result is the size in bits of the type of ``src`` if
10542``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10543``llvm.cttz(2) = 1``.
10544
Philip Reames34843ae2015-03-05 05:55:55 +000010545.. _int_overflow:
10546
Sean Silvab084af42012-12-07 10:36:55 +000010547Arithmetic with Overflow Intrinsics
10548-----------------------------------
10549
10550LLVM provides intrinsics for some arithmetic with overflow operations.
10551
10552'``llvm.sadd.with.overflow.*``' Intrinsics
10553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10554
10555Syntax:
10556"""""""
10557
10558This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10559on any integer bit width.
10560
10561::
10562
10563 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10564 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10565 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10566
10567Overview:
10568"""""""""
10569
10570The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10571a signed addition of the two arguments, and indicate whether an overflow
10572occurred during the signed summation.
10573
10574Arguments:
10575""""""""""
10576
10577The arguments (%a and %b) and the first element of the result structure
10578may be of integer types of any bit width, but they must have the same
10579bit width. The second element of the result structure must be of type
10580``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10581addition.
10582
10583Semantics:
10584""""""""""
10585
10586The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010587a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010588first element of which is the signed summation, and the second element
10589of which is a bit specifying if the signed summation resulted in an
10590overflow.
10591
10592Examples:
10593"""""""""
10594
10595.. code-block:: llvm
10596
10597 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10598 %sum = extractvalue {i32, i1} %res, 0
10599 %obit = extractvalue {i32, i1} %res, 1
10600 br i1 %obit, label %overflow, label %normal
10601
10602'``llvm.uadd.with.overflow.*``' Intrinsics
10603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10604
10605Syntax:
10606"""""""
10607
10608This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10609on any integer bit width.
10610
10611::
10612
10613 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10614 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10615 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10616
10617Overview:
10618"""""""""
10619
10620The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10621an unsigned addition of the two arguments, and indicate whether a carry
10622occurred during the unsigned summation.
10623
10624Arguments:
10625""""""""""
10626
10627The arguments (%a and %b) and the first element of the result structure
10628may be of integer types of any bit width, but they must have the same
10629bit width. The second element of the result structure must be of type
10630``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10631addition.
10632
10633Semantics:
10634""""""""""
10635
10636The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010637an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010638first element of which is the sum, and the second element of which is a
10639bit specifying if the unsigned summation resulted in a carry.
10640
10641Examples:
10642"""""""""
10643
10644.. code-block:: llvm
10645
10646 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10647 %sum = extractvalue {i32, i1} %res, 0
10648 %obit = extractvalue {i32, i1} %res, 1
10649 br i1 %obit, label %carry, label %normal
10650
10651'``llvm.ssub.with.overflow.*``' Intrinsics
10652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10653
10654Syntax:
10655"""""""
10656
10657This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10658on any integer bit width.
10659
10660::
10661
10662 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10663 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10664 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10665
10666Overview:
10667"""""""""
10668
10669The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10670a signed subtraction of the two arguments, and indicate whether an
10671overflow occurred during the signed subtraction.
10672
10673Arguments:
10674""""""""""
10675
10676The arguments (%a and %b) and the first element of the result structure
10677may be of integer types of any bit width, but they must have the same
10678bit width. The second element of the result structure must be of type
10679``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10680subtraction.
10681
10682Semantics:
10683""""""""""
10684
10685The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010686a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010687first element of which is the subtraction, and the second element of
10688which is a bit specifying if the signed subtraction resulted in an
10689overflow.
10690
10691Examples:
10692"""""""""
10693
10694.. code-block:: llvm
10695
10696 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10697 %sum = extractvalue {i32, i1} %res, 0
10698 %obit = extractvalue {i32, i1} %res, 1
10699 br i1 %obit, label %overflow, label %normal
10700
10701'``llvm.usub.with.overflow.*``' Intrinsics
10702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10703
10704Syntax:
10705"""""""
10706
10707This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10708on any integer bit width.
10709
10710::
10711
10712 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10713 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10714 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10715
10716Overview:
10717"""""""""
10718
10719The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10720an unsigned subtraction of the two arguments, and indicate whether an
10721overflow occurred during the unsigned subtraction.
10722
10723Arguments:
10724""""""""""
10725
10726The arguments (%a and %b) and the first element of the result structure
10727may be of integer types of any bit width, but they must have the same
10728bit width. The second element of the result structure must be of type
10729``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10730subtraction.
10731
10732Semantics:
10733""""""""""
10734
10735The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010736an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010737the first element of which is the subtraction, and the second element of
10738which is a bit specifying if the unsigned subtraction resulted in an
10739overflow.
10740
10741Examples:
10742"""""""""
10743
10744.. code-block:: llvm
10745
10746 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10747 %sum = extractvalue {i32, i1} %res, 0
10748 %obit = extractvalue {i32, i1} %res, 1
10749 br i1 %obit, label %overflow, label %normal
10750
10751'``llvm.smul.with.overflow.*``' Intrinsics
10752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10753
10754Syntax:
10755"""""""
10756
10757This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10758on any integer bit width.
10759
10760::
10761
10762 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10763 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10764 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10765
10766Overview:
10767"""""""""
10768
10769The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10770a signed multiplication of the two arguments, and indicate whether an
10771overflow occurred during the signed multiplication.
10772
10773Arguments:
10774""""""""""
10775
10776The arguments (%a and %b) and the first element of the result structure
10777may be of integer types of any bit width, but they must have the same
10778bit width. The second element of the result structure must be of type
10779``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10780multiplication.
10781
10782Semantics:
10783""""""""""
10784
10785The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010786a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010787the first element of which is the multiplication, and the second element
10788of which is a bit specifying if the signed multiplication resulted in an
10789overflow.
10790
10791Examples:
10792"""""""""
10793
10794.. code-block:: llvm
10795
10796 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10797 %sum = extractvalue {i32, i1} %res, 0
10798 %obit = extractvalue {i32, i1} %res, 1
10799 br i1 %obit, label %overflow, label %normal
10800
10801'``llvm.umul.with.overflow.*``' Intrinsics
10802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10803
10804Syntax:
10805"""""""
10806
10807This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10808on any integer bit width.
10809
10810::
10811
10812 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10813 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10814 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10815
10816Overview:
10817"""""""""
10818
10819The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10820a unsigned multiplication of the two arguments, and indicate whether an
10821overflow occurred during the unsigned multiplication.
10822
10823Arguments:
10824""""""""""
10825
10826The arguments (%a and %b) and the first element of the result structure
10827may be of integer types of any bit width, but they must have the same
10828bit width. The second element of the result structure must be of type
10829``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10830multiplication.
10831
10832Semantics:
10833""""""""""
10834
10835The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010836an unsigned multiplication of the two arguments. They return a structure ---
10837the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010838element of which is a bit specifying if the unsigned multiplication
10839resulted in an overflow.
10840
10841Examples:
10842"""""""""
10843
10844.. code-block:: llvm
10845
10846 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10847 %sum = extractvalue {i32, i1} %res, 0
10848 %obit = extractvalue {i32, i1} %res, 1
10849 br i1 %obit, label %overflow, label %normal
10850
10851Specialised Arithmetic Intrinsics
10852---------------------------------
10853
Owen Anderson1056a922015-07-11 07:01:27 +000010854'``llvm.canonicalize.*``' Intrinsic
10855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10856
10857Syntax:
10858"""""""
10859
10860::
10861
10862 declare float @llvm.canonicalize.f32(float %a)
10863 declare double @llvm.canonicalize.f64(double %b)
10864
10865Overview:
10866"""""""""
10867
10868The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010869encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010870implementing certain numeric primitives such as frexp. The canonical encoding is
10871defined by IEEE-754-2008 to be:
10872
10873::
10874
10875 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010876 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010877 numbers, infinities, and NaNs, especially in decimal formats.
10878
10879This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010880conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010881according to section 6.2.
10882
10883Examples of non-canonical encodings:
10884
Sean Silvaa1190322015-08-06 22:56:48 +000010885- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010886 converted to a canonical representation per hardware-specific protocol.
10887- Many normal decimal floating point numbers have non-canonical alternative
10888 encodings.
10889- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10890 These are treated as non-canonical encodings of zero and with be flushed to
10891 a zero of the same sign by this operation.
10892
10893Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10894default exception handling must signal an invalid exception, and produce a
10895quiet NaN result.
10896
10897This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010898that the compiler does not constant fold the operation. Likewise, division by
108991.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010900-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10901
Sean Silvaa1190322015-08-06 22:56:48 +000010902``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010903
10904- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10905- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10906 to ``(x == y)``
10907
10908Additionally, the sign of zero must be conserved:
10909``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10910
10911The payload bits of a NaN must be conserved, with two exceptions.
10912First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010913must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010914usual methods.
10915
10916The canonicalization operation may be optimized away if:
10917
Sean Silvaa1190322015-08-06 22:56:48 +000010918- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010919 floating-point operation that is required by the standard to be canonical.
10920- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010921 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010922
Sean Silvab084af42012-12-07 10:36:55 +000010923'``llvm.fmuladd.*``' Intrinsic
10924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10925
10926Syntax:
10927"""""""
10928
10929::
10930
10931 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10932 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10933
10934Overview:
10935"""""""""
10936
10937The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010938expressions that can be fused if the code generator determines that (a) the
10939target instruction set has support for a fused operation, and (b) that the
10940fused operation is more efficient than the equivalent, separate pair of mul
10941and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010942
10943Arguments:
10944""""""""""
10945
10946The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10947multiplicands, a and b, and an addend c.
10948
10949Semantics:
10950""""""""""
10951
10952The expression:
10953
10954::
10955
10956 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10957
10958is equivalent to the expression a \* b + c, except that rounding will
10959not be performed between the multiplication and addition steps if the
10960code generator fuses the operations. Fusion is not guaranteed, even if
10961the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010962corresponding llvm.fma.\* intrinsic function should be used
10963instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010964
10965Examples:
10966"""""""""
10967
10968.. code-block:: llvm
10969
Tim Northover675a0962014-06-13 14:24:23 +000010970 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010971
James Molloy7395a812015-07-16 15:22:46 +000010972
10973'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10975
10976Syntax:
10977"""""""
10978This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10979
10980.. code-block:: llvm
10981
10982 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10983
10984
10985Overview:
10986"""""""""
10987
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010988The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
10989of the two operands, treating them both as unsigned integers. The intermediate
10990calculations are computed using infinitely precise unsigned arithmetic. The final
10991result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000010992
Mohammad Shahid18715532015-08-21 05:31:07 +000010993The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000010994the two operands, treating them both as signed integers. If the result overflows, the
10995behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000010996
10997.. note::
10998
10999 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011000 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000011001 recommended for users to create them manually.
11002
11003Arguments:
11004""""""""""
11005
11006Both intrinsics take two integer of the same bitwidth.
11007
11008Semantics:
11009""""""""""
11010
11011The expression::
11012
11013 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11014
11015is equivalent to::
11016
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011017 %1 = zext <4 x i32> %a to <4 x i64>
11018 %2 = zext <4 x i32> %b to <4 x i64>
11019 %sub = sub <4 x i64> %1, %2
11020 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000011021
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011022and the expression::
James Molloy7395a812015-07-16 15:22:46 +000011023
11024 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11025
11026is equivalent to::
11027
11028 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011029 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000011030 %neg = sub nsw <4 x i32> zeroinitializer, %sub
11031 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
11032
11033
Sean Silvab084af42012-12-07 10:36:55 +000011034Half Precision Floating Point Intrinsics
11035----------------------------------------
11036
11037For most target platforms, half precision floating point is a
11038storage-only format. This means that it is a dense encoding (in memory)
11039but does not support computation in the format.
11040
11041This means that code must first load the half-precision floating point
11042value as an i16, then convert it to float with
11043:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11044then be performed on the float value (including extending to double
11045etc). To store the value back to memory, it is first converted to float
11046if needed, then converted to i16 with
11047:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11048i16 value.
11049
11050.. _int_convert_to_fp16:
11051
11052'``llvm.convert.to.fp16``' Intrinsic
11053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11054
11055Syntax:
11056"""""""
11057
11058::
11059
Tim Northoverfd7e4242014-07-17 10:51:23 +000011060 declare i16 @llvm.convert.to.fp16.f32(float %a)
11061 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011062
11063Overview:
11064"""""""""
11065
Tim Northoverfd7e4242014-07-17 10:51:23 +000011066The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11067conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011068
11069Arguments:
11070""""""""""
11071
11072The intrinsic function contains single argument - the value to be
11073converted.
11074
11075Semantics:
11076""""""""""
11077
Tim Northoverfd7e4242014-07-17 10:51:23 +000011078The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11079conventional floating point format to half precision floating point format. The
11080return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011081
11082Examples:
11083"""""""""
11084
11085.. code-block:: llvm
11086
Tim Northoverfd7e4242014-07-17 10:51:23 +000011087 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011088 store i16 %res, i16* @x, align 2
11089
11090.. _int_convert_from_fp16:
11091
11092'``llvm.convert.from.fp16``' Intrinsic
11093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11094
11095Syntax:
11096"""""""
11097
11098::
11099
Tim Northoverfd7e4242014-07-17 10:51:23 +000011100 declare float @llvm.convert.from.fp16.f32(i16 %a)
11101 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011102
11103Overview:
11104"""""""""
11105
11106The '``llvm.convert.from.fp16``' intrinsic function performs a
11107conversion from half precision floating point format to single precision
11108floating point format.
11109
11110Arguments:
11111""""""""""
11112
11113The intrinsic function contains single argument - the value to be
11114converted.
11115
11116Semantics:
11117""""""""""
11118
11119The '``llvm.convert.from.fp16``' intrinsic function performs a
11120conversion from half single precision floating point format to single
11121precision floating point format. The input half-float value is
11122represented by an ``i16`` value.
11123
11124Examples:
11125"""""""""
11126
11127.. code-block:: llvm
11128
David Blaikiec7aabbb2015-03-04 22:06:14 +000011129 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011130 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011131
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011132.. _dbg_intrinsics:
11133
Sean Silvab084af42012-12-07 10:36:55 +000011134Debugger Intrinsics
11135-------------------
11136
11137The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11138prefix), are described in the `LLVM Source Level
11139Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11140document.
11141
11142Exception Handling Intrinsics
11143-----------------------------
11144
11145The LLVM exception handling intrinsics (which all start with
11146``llvm.eh.`` prefix), are described in the `LLVM Exception
11147Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11148
11149.. _int_trampoline:
11150
11151Trampoline Intrinsics
11152---------------------
11153
11154These intrinsics make it possible to excise one parameter, marked with
11155the :ref:`nest <nest>` attribute, from a function. The result is a
11156callable function pointer lacking the nest parameter - the caller does
11157not need to provide a value for it. Instead, the value to use is stored
11158in advance in a "trampoline", a block of memory usually allocated on the
11159stack, which also contains code to splice the nest value into the
11160argument list. This is used to implement the GCC nested function address
11161extension.
11162
11163For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11164then the resulting function pointer has signature ``i32 (i32, i32)*``.
11165It can be created as follows:
11166
11167.. code-block:: llvm
11168
11169 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011170 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011171 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11172 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11173 %fp = bitcast i8* %p to i32 (i32, i32)*
11174
11175The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11176``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11177
11178.. _int_it:
11179
11180'``llvm.init.trampoline``' Intrinsic
11181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11182
11183Syntax:
11184"""""""
11185
11186::
11187
11188 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11189
11190Overview:
11191"""""""""
11192
11193This fills the memory pointed to by ``tramp`` with executable code,
11194turning it into a trampoline.
11195
11196Arguments:
11197""""""""""
11198
11199The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11200pointers. The ``tramp`` argument must point to a sufficiently large and
11201sufficiently aligned block of memory; this memory is written to by the
11202intrinsic. Note that the size and the alignment are target-specific -
11203LLVM currently provides no portable way of determining them, so a
11204front-end that generates this intrinsic needs to have some
11205target-specific knowledge. The ``func`` argument must hold a function
11206bitcast to an ``i8*``.
11207
11208Semantics:
11209""""""""""
11210
11211The block of memory pointed to by ``tramp`` is filled with target
11212dependent code, turning it into a function. Then ``tramp`` needs to be
11213passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11214be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11215function's signature is the same as that of ``func`` with any arguments
11216marked with the ``nest`` attribute removed. At most one such ``nest``
11217argument is allowed, and it must be of pointer type. Calling the new
11218function is equivalent to calling ``func`` with the same argument list,
11219but with ``nval`` used for the missing ``nest`` argument. If, after
11220calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11221modified, then the effect of any later call to the returned function
11222pointer is undefined.
11223
11224.. _int_at:
11225
11226'``llvm.adjust.trampoline``' Intrinsic
11227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11228
11229Syntax:
11230"""""""
11231
11232::
11233
11234 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11235
11236Overview:
11237"""""""""
11238
11239This performs any required machine-specific adjustment to the address of
11240a trampoline (passed as ``tramp``).
11241
11242Arguments:
11243""""""""""
11244
11245``tramp`` must point to a block of memory which already has trampoline
11246code filled in by a previous call to
11247:ref:`llvm.init.trampoline <int_it>`.
11248
11249Semantics:
11250""""""""""
11251
11252On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011253different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011254intrinsic returns the executable address corresponding to ``tramp``
11255after performing the required machine specific adjustments. The pointer
11256returned can then be :ref:`bitcast and executed <int_trampoline>`.
11257
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011258.. _int_mload_mstore:
11259
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011260Masked Vector Load and Store Intrinsics
11261---------------------------------------
11262
11263LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11264
11265.. _int_mload:
11266
11267'``llvm.masked.load.*``' Intrinsics
11268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11269
11270Syntax:
11271"""""""
11272This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11273
11274::
11275
11276 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11277 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11278
11279Overview:
11280"""""""""
11281
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011282Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011283
11284
11285Arguments:
11286""""""""""
11287
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011288The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011289
11290
11291Semantics:
11292""""""""""
11293
11294The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11295The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11296
11297
11298::
11299
11300 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011301
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011302 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011303 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011304 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011305
11306.. _int_mstore:
11307
11308'``llvm.masked.store.*``' Intrinsics
11309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11310
11311Syntax:
11312"""""""
11313This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11314
11315::
11316
11317 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11318 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11319
11320Overview:
11321"""""""""
11322
11323Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11324
11325Arguments:
11326""""""""""
11327
11328The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11329
11330
11331Semantics:
11332""""""""""
11333
11334The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11335The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11336
11337::
11338
11339 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011340
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011341 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011342 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011343 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11344 store <16 x float> %res, <16 x float>* %ptr, align 4
11345
11346
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011347Masked Vector Gather and Scatter Intrinsics
11348-------------------------------------------
11349
11350LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11351
11352.. _int_mgather:
11353
11354'``llvm.masked.gather.*``' Intrinsics
11355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11356
11357Syntax:
11358"""""""
11359This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11360
11361::
11362
11363 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11364 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11365
11366Overview:
11367"""""""""
11368
11369Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11370
11371
11372Arguments:
11373""""""""""
11374
11375The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11376
11377
11378Semantics:
11379""""""""""
11380
11381The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11382The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11383
11384
11385::
11386
11387 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11388
11389 ;; The gather with all-true mask is equivalent to the following instruction sequence
11390 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11391 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11392 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11393 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11394
11395 %val0 = load double, double* %ptr0, align 8
11396 %val1 = load double, double* %ptr1, align 8
11397 %val2 = load double, double* %ptr2, align 8
11398 %val3 = load double, double* %ptr3, align 8
11399
11400 %vec0 = insertelement <4 x double>undef, %val0, 0
11401 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11402 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11403 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11404
11405.. _int_mscatter:
11406
11407'``llvm.masked.scatter.*``' Intrinsics
11408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11409
11410Syntax:
11411"""""""
11412This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11413
11414::
11415
11416 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11417 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11418
11419Overview:
11420"""""""""
11421
11422Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11423
11424Arguments:
11425""""""""""
11426
11427The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11428
11429
11430Semantics:
11431""""""""""
11432
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011433The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011434
11435::
11436
11437 ;; This instruction unconditionaly stores data vector in multiple addresses
11438 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11439
11440 ;; It is equivalent to a list of scalar stores
11441 %val0 = extractelement <8 x i32> %value, i32 0
11442 %val1 = extractelement <8 x i32> %value, i32 1
11443 ..
11444 %val7 = extractelement <8 x i32> %value, i32 7
11445 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11446 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11447 ..
11448 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11449 ;; Note: the order of the following stores is important when they overlap:
11450 store i32 %val0, i32* %ptr0, align 4
11451 store i32 %val1, i32* %ptr1, align 4
11452 ..
11453 store i32 %val7, i32* %ptr7, align 4
11454
11455
Sean Silvab084af42012-12-07 10:36:55 +000011456Memory Use Markers
11457------------------
11458
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011459This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011460memory objects and ranges where variables are immutable.
11461
Reid Klecknera534a382013-12-19 02:14:12 +000011462.. _int_lifestart:
11463
Sean Silvab084af42012-12-07 10:36:55 +000011464'``llvm.lifetime.start``' Intrinsic
11465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11466
11467Syntax:
11468"""""""
11469
11470::
11471
11472 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11473
11474Overview:
11475"""""""""
11476
11477The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11478object's lifetime.
11479
11480Arguments:
11481""""""""""
11482
11483The first argument is a constant integer representing the size of the
11484object, or -1 if it is variable sized. The second argument is a pointer
11485to the object.
11486
11487Semantics:
11488""""""""""
11489
11490This intrinsic indicates that before this point in the code, the value
11491of the memory pointed to by ``ptr`` is dead. This means that it is known
11492to never be used and has an undefined value. A load from the pointer
11493that precedes this intrinsic can be replaced with ``'undef'``.
11494
Reid Klecknera534a382013-12-19 02:14:12 +000011495.. _int_lifeend:
11496
Sean Silvab084af42012-12-07 10:36:55 +000011497'``llvm.lifetime.end``' Intrinsic
11498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11499
11500Syntax:
11501"""""""
11502
11503::
11504
11505 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11506
11507Overview:
11508"""""""""
11509
11510The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11511object's lifetime.
11512
11513Arguments:
11514""""""""""
11515
11516The first argument is a constant integer representing the size of the
11517object, or -1 if it is variable sized. The second argument is a pointer
11518to the object.
11519
11520Semantics:
11521""""""""""
11522
11523This intrinsic indicates that after this point in the code, the value of
11524the memory pointed to by ``ptr`` is dead. This means that it is known to
11525never be used and has an undefined value. Any stores into the memory
11526object following this intrinsic may be removed as dead.
11527
11528'``llvm.invariant.start``' Intrinsic
11529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11530
11531Syntax:
11532"""""""
11533
11534::
11535
11536 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11537
11538Overview:
11539"""""""""
11540
11541The '``llvm.invariant.start``' intrinsic specifies that the contents of
11542a memory object will not change.
11543
11544Arguments:
11545""""""""""
11546
11547The first argument is a constant integer representing the size of the
11548object, or -1 if it is variable sized. The second argument is a pointer
11549to the object.
11550
11551Semantics:
11552""""""""""
11553
11554This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11555the return value, the referenced memory location is constant and
11556unchanging.
11557
11558'``llvm.invariant.end``' Intrinsic
11559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11560
11561Syntax:
11562"""""""
11563
11564::
11565
11566 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11567
11568Overview:
11569"""""""""
11570
11571The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11572memory object are mutable.
11573
11574Arguments:
11575""""""""""
11576
11577The first argument is the matching ``llvm.invariant.start`` intrinsic.
11578The second argument is a constant integer representing the size of the
11579object, or -1 if it is variable sized and the third argument is a
11580pointer to the object.
11581
11582Semantics:
11583""""""""""
11584
11585This intrinsic indicates that the memory is mutable again.
11586
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011587'``llvm.invariant.group.barrier``' Intrinsic
11588^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11589
11590Syntax:
11591"""""""
11592
11593::
11594
11595 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11596
11597Overview:
11598"""""""""
11599
11600The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11601established by invariant.group metadata no longer holds, to obtain a new pointer
11602value that does not carry the invariant information.
11603
11604
11605Arguments:
11606""""""""""
11607
11608The ``llvm.invariant.group.barrier`` takes only one argument, which is
11609the pointer to the memory for which the ``invariant.group`` no longer holds.
11610
11611Semantics:
11612""""""""""
11613
11614Returns another pointer that aliases its argument but which is considered different
11615for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11616
Sean Silvab084af42012-12-07 10:36:55 +000011617General Intrinsics
11618------------------
11619
11620This class of intrinsics is designed to be generic and has no specific
11621purpose.
11622
11623'``llvm.var.annotation``' Intrinsic
11624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11625
11626Syntax:
11627"""""""
11628
11629::
11630
11631 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11632
11633Overview:
11634"""""""""
11635
11636The '``llvm.var.annotation``' intrinsic.
11637
11638Arguments:
11639""""""""""
11640
11641The first argument is a pointer to a value, the second is a pointer to a
11642global string, the third is a pointer to a global string which is the
11643source file name, and the last argument is the line number.
11644
11645Semantics:
11646""""""""""
11647
11648This intrinsic allows annotation of local variables with arbitrary
11649strings. This can be useful for special purpose optimizations that want
11650to look for these annotations. These have no other defined use; they are
11651ignored by code generation and optimization.
11652
Michael Gottesman88d18832013-03-26 00:34:27 +000011653'``llvm.ptr.annotation.*``' Intrinsic
11654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11655
11656Syntax:
11657"""""""
11658
11659This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11660pointer to an integer of any width. *NOTE* you must specify an address space for
11661the pointer. The identifier for the default address space is the integer
11662'``0``'.
11663
11664::
11665
11666 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11667 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11668 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11669 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11670 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11671
11672Overview:
11673"""""""""
11674
11675The '``llvm.ptr.annotation``' intrinsic.
11676
11677Arguments:
11678""""""""""
11679
11680The first argument is a pointer to an integer value of arbitrary bitwidth
11681(result of some expression), the second is a pointer to a global string, the
11682third is a pointer to a global string which is the source file name, and the
11683last argument is the line number. It returns the value of the first argument.
11684
11685Semantics:
11686""""""""""
11687
11688This intrinsic allows annotation of a pointer to an integer with arbitrary
11689strings. This can be useful for special purpose optimizations that want to look
11690for these annotations. These have no other defined use; they are ignored by code
11691generation and optimization.
11692
Sean Silvab084af42012-12-07 10:36:55 +000011693'``llvm.annotation.*``' Intrinsic
11694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11695
11696Syntax:
11697"""""""
11698
11699This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11700any integer bit width.
11701
11702::
11703
11704 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11705 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11706 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11707 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11708 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11709
11710Overview:
11711"""""""""
11712
11713The '``llvm.annotation``' intrinsic.
11714
11715Arguments:
11716""""""""""
11717
11718The first argument is an integer value (result of some expression), the
11719second is a pointer to a global string, the third is a pointer to a
11720global string which is the source file name, and the last argument is
11721the line number. It returns the value of the first argument.
11722
11723Semantics:
11724""""""""""
11725
11726This intrinsic allows annotations to be put on arbitrary expressions
11727with arbitrary strings. This can be useful for special purpose
11728optimizations that want to look for these annotations. These have no
11729other defined use; they are ignored by code generation and optimization.
11730
11731'``llvm.trap``' Intrinsic
11732^^^^^^^^^^^^^^^^^^^^^^^^^
11733
11734Syntax:
11735"""""""
11736
11737::
11738
11739 declare void @llvm.trap() noreturn nounwind
11740
11741Overview:
11742"""""""""
11743
11744The '``llvm.trap``' intrinsic.
11745
11746Arguments:
11747""""""""""
11748
11749None.
11750
11751Semantics:
11752""""""""""
11753
11754This intrinsic is lowered to the target dependent trap instruction. If
11755the target does not have a trap instruction, this intrinsic will be
11756lowered to a call of the ``abort()`` function.
11757
11758'``llvm.debugtrap``' Intrinsic
11759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11760
11761Syntax:
11762"""""""
11763
11764::
11765
11766 declare void @llvm.debugtrap() nounwind
11767
11768Overview:
11769"""""""""
11770
11771The '``llvm.debugtrap``' intrinsic.
11772
11773Arguments:
11774""""""""""
11775
11776None.
11777
11778Semantics:
11779""""""""""
11780
11781This intrinsic is lowered to code which is intended to cause an
11782execution trap with the intention of requesting the attention of a
11783debugger.
11784
11785'``llvm.stackprotector``' Intrinsic
11786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11787
11788Syntax:
11789"""""""
11790
11791::
11792
11793 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11794
11795Overview:
11796"""""""""
11797
11798The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11799onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11800is placed on the stack before local variables.
11801
11802Arguments:
11803""""""""""
11804
11805The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11806The first argument is the value loaded from the stack guard
11807``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11808enough space to hold the value of the guard.
11809
11810Semantics:
11811""""""""""
11812
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011813This intrinsic causes the prologue/epilogue inserter to force the position of
11814the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11815to ensure that if a local variable on the stack is overwritten, it will destroy
11816the value of the guard. When the function exits, the guard on the stack is
11817checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11818different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11819calling the ``__stack_chk_fail()`` function.
11820
11821'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011823
11824Syntax:
11825"""""""
11826
11827::
11828
11829 declare void @llvm.stackprotectorcheck(i8** <guard>)
11830
11831Overview:
11832"""""""""
11833
11834The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011835created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011836``__stack_chk_fail()`` function.
11837
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011838Arguments:
11839""""""""""
11840
11841The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11842the variable ``@__stack_chk_guard``.
11843
11844Semantics:
11845""""""""""
11846
11847This intrinsic is provided to perform the stack protector check by comparing
11848``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11849values do not match call the ``__stack_chk_fail()`` function.
11850
11851The reason to provide this as an IR level intrinsic instead of implementing it
11852via other IR operations is that in order to perform this operation at the IR
11853level without an intrinsic, one would need to create additional basic blocks to
11854handle the success/failure cases. This makes it difficult to stop the stack
11855protector check from disrupting sibling tail calls in Codegen. With this
11856intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011857codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011858
Sean Silvab084af42012-12-07 10:36:55 +000011859'``llvm.objectsize``' Intrinsic
11860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11861
11862Syntax:
11863"""""""
11864
11865::
11866
11867 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11868 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11869
11870Overview:
11871"""""""""
11872
11873The ``llvm.objectsize`` intrinsic is designed to provide information to
11874the optimizers to determine at compile time whether a) an operation
11875(like memcpy) will overflow a buffer that corresponds to an object, or
11876b) that a runtime check for overflow isn't necessary. An object in this
11877context means an allocation of a specific class, structure, array, or
11878other object.
11879
11880Arguments:
11881""""""""""
11882
11883The ``llvm.objectsize`` intrinsic takes two arguments. The first
11884argument is a pointer to or into the ``object``. The second argument is
11885a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11886or -1 (if false) when the object size is unknown. The second argument
11887only accepts constants.
11888
11889Semantics:
11890""""""""""
11891
11892The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11893the size of the object concerned. If the size cannot be determined at
11894compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11895on the ``min`` argument).
11896
11897'``llvm.expect``' Intrinsic
11898^^^^^^^^^^^^^^^^^^^^^^^^^^^
11899
11900Syntax:
11901"""""""
11902
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011903This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11904integer bit width.
11905
Sean Silvab084af42012-12-07 10:36:55 +000011906::
11907
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011908 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011909 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11910 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11911
11912Overview:
11913"""""""""
11914
11915The ``llvm.expect`` intrinsic provides information about expected (the
11916most probable) value of ``val``, which can be used by optimizers.
11917
11918Arguments:
11919""""""""""
11920
11921The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11922a value. The second argument is an expected value, this needs to be a
11923constant value, variables are not allowed.
11924
11925Semantics:
11926""""""""""
11927
11928This intrinsic is lowered to the ``val``.
11929
Philip Reamese0e90832015-04-26 22:23:12 +000011930.. _int_assume:
11931
Hal Finkel93046912014-07-25 21:13:35 +000011932'``llvm.assume``' Intrinsic
11933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11934
11935Syntax:
11936"""""""
11937
11938::
11939
11940 declare void @llvm.assume(i1 %cond)
11941
11942Overview:
11943"""""""""
11944
11945The ``llvm.assume`` allows the optimizer to assume that the provided
11946condition is true. This information can then be used in simplifying other parts
11947of the code.
11948
11949Arguments:
11950""""""""""
11951
11952The condition which the optimizer may assume is always true.
11953
11954Semantics:
11955""""""""""
11956
11957The intrinsic allows the optimizer to assume that the provided condition is
11958always true whenever the control flow reaches the intrinsic call. No code is
11959generated for this intrinsic, and instructions that contribute only to the
11960provided condition are not used for code generation. If the condition is
11961violated during execution, the behavior is undefined.
11962
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011963Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011964used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11965only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011966if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011967sufficient overall improvement in code quality. For this reason,
11968``llvm.assume`` should not be used to document basic mathematical invariants
11969that the optimizer can otherwise deduce or facts that are of little use to the
11970optimizer.
11971
Peter Collingbournee6909c82015-02-20 20:30:47 +000011972.. _bitset.test:
11973
11974'``llvm.bitset.test``' Intrinsic
11975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11976
11977Syntax:
11978"""""""
11979
11980::
11981
11982 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11983
11984
11985Arguments:
11986""""""""""
11987
11988The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000011989metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000011990
11991Overview:
11992"""""""""
11993
11994The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11995member of the given bitset.
11996
Sean Silvab084af42012-12-07 10:36:55 +000011997'``llvm.donothing``' Intrinsic
11998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11999
12000Syntax:
12001"""""""
12002
12003::
12004
12005 declare void @llvm.donothing() nounwind readnone
12006
12007Overview:
12008"""""""""
12009
Juergen Ributzkac9161192014-10-23 22:36:13 +000012010The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12011two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12012with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012013
12014Arguments:
12015""""""""""
12016
12017None.
12018
12019Semantics:
12020""""""""""
12021
12022This intrinsic does nothing, and it's removed by optimizers and ignored
12023by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012024
12025Stack Map Intrinsics
12026--------------------
12027
12028LLVM provides experimental intrinsics to support runtime patching
12029mechanisms commonly desired in dynamic language JITs. These intrinsics
12030are described in :doc:`StackMaps`.