blob: cafc208ba8d046e77b454b246fa74ab5f3955cb3 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000643an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000644an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000645
646LLVM function declarations consist of the "``declare``" keyword, an
647optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000648style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
649an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000650an optional ``unnamed_addr`` attribute, a return type, an optional
651:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000652name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000653:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
654and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000655
Bill Wendling6822ecb2013-10-27 05:09:12 +0000656A function definition contains a list of basic blocks, forming the CFG (Control
657Flow Graph) for the function. Each basic block may optionally start with a label
658(giving the basic block a symbol table entry), contains a list of instructions,
659and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
660function return). If an explicit label is not provided, a block is assigned an
661implicit numbered label, using the next value from the same counter as used for
662unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
663entry block does not have an explicit label, it will be assigned label "%0",
664then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666The first basic block in a function is special in two ways: it is
667immediately executed on entrance to the function, and it is not allowed
668to have predecessor basic blocks (i.e. there can not be any branches to
669the entry block of a function). Because the block can have no
670predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
671
672LLVM allows an explicit section to be specified for functions. If the
673target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000674Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000675
676An explicit alignment may be specified for a function. If not present,
677or if the alignment is set to zero, the alignment of the function is set
678by the target to whatever it feels convenient. If an explicit alignment
679is specified, the function is forced to have at least that much
680alignment. All alignments must be a power of 2.
681
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000682If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000683be significant and two identical functions can be merged.
684
685Syntax::
686
Nico Rieck7157bb72014-01-14 15:22:47 +0000687 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000688 [cconv] [ret attrs]
689 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000690 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000691 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000692 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000693
Sean Silva706fba52015-08-06 22:56:24 +0000694The argument list is a comma separated sequence of arguments where each
695argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000696
697Syntax::
698
699 <type> [parameter Attrs] [name]
700
701
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000702.. _langref_aliases:
703
Sean Silvab084af42012-12-07 10:36:55 +0000704Aliases
705-------
706
Rafael Espindola64c1e182014-06-03 02:41:57 +0000707Aliases, unlike function or variables, don't create any new data. They
708are just a new symbol and metadata for an existing position.
709
710Aliases have a name and an aliasee that is either a global value or a
711constant expression.
712
Nico Rieck7157bb72014-01-14 15:22:47 +0000713Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000714:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
715<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000716
717Syntax::
718
David Blaikie196582e2015-10-22 01:17:29 +0000719 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000720
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000721The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000722``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000724
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000725Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000726the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
727to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000728
Rafael Espindola64c1e182014-06-03 02:41:57 +0000729Since aliases are only a second name, some restrictions apply, of which
730some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000731
Rafael Espindola64c1e182014-06-03 02:41:57 +0000732* The expression defining the aliasee must be computable at assembly
733 time. Since it is just a name, no relocations can be used.
734
735* No alias in the expression can be weak as the possibility of the
736 intermediate alias being overridden cannot be represented in an
737 object file.
738
739* No global value in the expression can be a declaration, since that
740 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000741
David Majnemerdad0a642014-06-27 18:19:56 +0000742.. _langref_comdats:
743
744Comdats
745-------
746
747Comdat IR provides access to COFF and ELF object file COMDAT functionality.
748
Sean Silvaa1190322015-08-06 22:56:48 +0000749Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000750specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000751that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000752aliasee computes to, if any.
753
754Comdats have a selection kind to provide input on how the linker should
755choose between keys in two different object files.
756
757Syntax::
758
759 $<Name> = comdat SelectionKind
760
761The selection kind must be one of the following:
762
763``any``
764 The linker may choose any COMDAT key, the choice is arbitrary.
765``exactmatch``
766 The linker may choose any COMDAT key but the sections must contain the
767 same data.
768``largest``
769 The linker will choose the section containing the largest COMDAT key.
770``noduplicates``
771 The linker requires that only section with this COMDAT key exist.
772``samesize``
773 The linker may choose any COMDAT key but the sections must contain the
774 same amount of data.
775
776Note that the Mach-O platform doesn't support COMDATs and ELF only supports
777``any`` as a selection kind.
778
779Here is an example of a COMDAT group where a function will only be selected if
780the COMDAT key's section is the largest:
781
782.. code-block:: llvm
783
784 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000786
Rafael Espindola83a362c2015-01-06 22:55:16 +0000787 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000788 ret void
789 }
790
Rafael Espindola83a362c2015-01-06 22:55:16 +0000791As a syntactic sugar the ``$name`` can be omitted if the name is the same as
792the global name:
793
794.. code-block:: llvm
795
796 $foo = comdat any
797 @foo = global i32 2, comdat
798
799
David Majnemerdad0a642014-06-27 18:19:56 +0000800In a COFF object file, this will create a COMDAT section with selection kind
801``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
802and another COMDAT section with selection kind
803``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000804section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000805
806There are some restrictions on the properties of the global object.
807It, or an alias to it, must have the same name as the COMDAT group when
808targeting COFF.
809The contents and size of this object may be used during link-time to determine
810which COMDAT groups get selected depending on the selection kind.
811Because the name of the object must match the name of the COMDAT group, the
812linkage of the global object must not be local; local symbols can get renamed
813if a collision occurs in the symbol table.
814
815The combined use of COMDATS and section attributes may yield surprising results.
816For example:
817
818.. code-block:: llvm
819
820 $foo = comdat any
821 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000822 @g1 = global i32 42, section "sec", comdat($foo)
823 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000824
825From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000826with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000827COMDAT groups and COMDATs, at the object file level, are represented by
828sections.
829
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000830Note that certain IR constructs like global variables and functions may
831create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000832COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000833in individual sections (e.g. when `-data-sections` or `-function-sections`
834is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000835
Sean Silvab084af42012-12-07 10:36:55 +0000836.. _namedmetadatastructure:
837
838Named Metadata
839--------------
840
841Named metadata is a collection of metadata. :ref:`Metadata
842nodes <metadata>` (but not metadata strings) are the only valid
843operands for a named metadata.
844
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000845#. Named metadata are represented as a string of characters with the
846 metadata prefix. The rules for metadata names are the same as for
847 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
848 are still valid, which allows any character to be part of a name.
849
Sean Silvab084af42012-12-07 10:36:55 +0000850Syntax::
851
852 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000853 !0 = !{!"zero"}
854 !1 = !{!"one"}
855 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000856 ; A named metadata.
857 !name = !{!0, !1, !2}
858
859.. _paramattrs:
860
861Parameter Attributes
862--------------------
863
864The return type and each parameter of a function type may have a set of
865*parameter attributes* associated with them. Parameter attributes are
866used to communicate additional information about the result or
867parameters of a function. Parameter attributes are considered to be part
868of the function, not of the function type, so functions with different
869parameter attributes can have the same function type.
870
871Parameter attributes are simple keywords that follow the type specified.
872If multiple parameter attributes are needed, they are space separated.
873For example:
874
875.. code-block:: llvm
876
877 declare i32 @printf(i8* noalias nocapture, ...)
878 declare i32 @atoi(i8 zeroext)
879 declare signext i8 @returns_signed_char()
880
881Note that any attributes for the function result (``nounwind``,
882``readonly``) come immediately after the argument list.
883
884Currently, only the following parameter attributes are defined:
885
886``zeroext``
887 This indicates to the code generator that the parameter or return
888 value should be zero-extended to the extent required by the target's
889 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
890 the caller (for a parameter) or the callee (for a return value).
891``signext``
892 This indicates to the code generator that the parameter or return
893 value should be sign-extended to the extent required by the target's
894 ABI (which is usually 32-bits) by the caller (for a parameter) or
895 the callee (for a return value).
896``inreg``
897 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000898 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000899 a function call or return (usually, by putting it in a register as
900 opposed to memory, though some targets use it to distinguish between
901 two different kinds of registers). Use of this attribute is
902 target-specific.
903``byval``
904 This indicates that the pointer parameter should really be passed by
905 value to the function. The attribute implies that a hidden copy of
906 the pointee is made between the caller and the callee, so the callee
907 is unable to modify the value in the caller. This attribute is only
908 valid on LLVM pointer arguments. It is generally used to pass
909 structs and arrays by value, but is also valid on pointers to
910 scalars. The copy is considered to belong to the caller not the
911 callee (for example, ``readonly`` functions should not write to
912 ``byval`` parameters). This is not a valid attribute for return
913 values.
914
915 The byval attribute also supports specifying an alignment with the
916 align attribute. It indicates the alignment of the stack slot to
917 form and the known alignment of the pointer specified to the call
918 site. If the alignment is not specified, then the code generator
919 makes a target-specific assumption.
920
Reid Klecknera534a382013-12-19 02:14:12 +0000921.. _attr_inalloca:
922
923``inalloca``
924
Reid Kleckner60d3a832014-01-16 22:59:24 +0000925 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000926 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000927 be a pointer to stack memory produced by an ``alloca`` instruction.
928 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000929 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000930 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000931
Reid Kleckner436c42e2014-01-17 23:58:17 +0000932 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000933 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000934 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000935 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000936 ``inalloca`` attribute also disables LLVM's implicit lowering of
937 large aggregate return values, which means that frontend authors
938 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000939
Reid Kleckner60d3a832014-01-16 22:59:24 +0000940 When the call site is reached, the argument allocation must have
941 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000942 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000943 space after an argument allocation and before its call site, but it
944 must be cleared off with :ref:`llvm.stackrestore
945 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000946
947 See :doc:`InAlloca` for more information on how to use this
948 attribute.
949
Sean Silvab084af42012-12-07 10:36:55 +0000950``sret``
951 This indicates that the pointer parameter specifies the address of a
952 structure that is the return value of the function in the source
953 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000954 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000955 not to trap and to be properly aligned. This may only be applied to
956 the first parameter. This is not a valid attribute for return
957 values.
Sean Silva1703e702014-04-08 21:06:22 +0000958
Hal Finkelccc70902014-07-22 16:58:55 +0000959``align <n>``
960 This indicates that the pointer value may be assumed by the optimizer to
961 have the specified alignment.
962
963 Note that this attribute has additional semantics when combined with the
964 ``byval`` attribute.
965
Sean Silva1703e702014-04-08 21:06:22 +0000966.. _noalias:
967
Sean Silvab084af42012-12-07 10:36:55 +0000968``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000969 This indicates that objects accessed via pointer values
970 :ref:`based <pointeraliasing>` on the argument or return value are not also
971 accessed, during the execution of the function, via pointer values not
972 *based* on the argument or return value. The attribute on a return value
973 also has additional semantics described below. The caller shares the
974 responsibility with the callee for ensuring that these requirements are met.
975 For further details, please see the discussion of the NoAlias response in
976 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000977
978 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000979 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000980
981 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000982 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
983 attribute on return values are stronger than the semantics of the attribute
984 when used on function arguments. On function return values, the ``noalias``
985 attribute indicates that the function acts like a system memory allocation
986 function, returning a pointer to allocated storage disjoint from the
987 storage for any other object accessible to the caller.
988
Sean Silvab084af42012-12-07 10:36:55 +0000989``nocapture``
990 This indicates that the callee does not make any copies of the
991 pointer that outlive the callee itself. This is not a valid
992 attribute for return values.
993
994.. _nest:
995
996``nest``
997 This indicates that the pointer parameter can be excised using the
998 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000999 attribute for return values and can only be applied to one parameter.
1000
1001``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001002 This indicates that the function always returns the argument as its return
1003 value. This is an optimization hint to the code generator when generating
1004 the caller, allowing tail call optimization and omission of register saves
1005 and restores in some cases; it is not checked or enforced when generating
1006 the callee. The parameter and the function return type must be valid
1007 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1008 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001009
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001010``nonnull``
1011 This indicates that the parameter or return pointer is not null. This
1012 attribute may only be applied to pointer typed parameters. This is not
1013 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001014 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001015 is non-null.
1016
Hal Finkelb0407ba2014-07-18 15:51:28 +00001017``dereferenceable(<n>)``
1018 This indicates that the parameter or return pointer is dereferenceable. This
1019 attribute may only be applied to pointer typed parameters. A pointer that
1020 is dereferenceable can be loaded from speculatively without a risk of
1021 trapping. The number of bytes known to be dereferenceable must be provided
1022 in parentheses. It is legal for the number of bytes to be less than the
1023 size of the pointee type. The ``nonnull`` attribute does not imply
1024 dereferenceability (consider a pointer to one element past the end of an
1025 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1026 ``addrspace(0)`` (which is the default address space).
1027
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001028``dereferenceable_or_null(<n>)``
1029 This indicates that the parameter or return value isn't both
1030 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001031 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001032 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1033 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1034 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1035 and in other address spaces ``dereferenceable_or_null(<n>)``
1036 implies that a pointer is at least one of ``dereferenceable(<n>)``
1037 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001038 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001039 pointer typed parameters.
1040
Sean Silvab084af42012-12-07 10:36:55 +00001041.. _gc:
1042
Philip Reamesf80bbff2015-02-25 23:45:20 +00001043Garbage Collector Strategy Names
1044--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001045
Philip Reamesf80bbff2015-02-25 23:45:20 +00001046Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001047string:
1048
1049.. code-block:: llvm
1050
1051 define void @f() gc "name" { ... }
1052
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001053The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001054<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001055strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001056named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001057garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001058which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001059
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001060.. _prefixdata:
1061
1062Prefix Data
1063-----------
1064
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001065Prefix data is data associated with a function which the code
1066generator will emit immediately before the function's entrypoint.
1067The purpose of this feature is to allow frontends to associate
1068language-specific runtime metadata with specific functions and make it
1069available through the function pointer while still allowing the
1070function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001071
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001072To access the data for a given function, a program may bitcast the
1073function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001074index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001075the prefix data. For instance, take the example of a function annotated
1076with a single ``i32``,
1077
1078.. code-block:: llvm
1079
1080 define void @f() prefix i32 123 { ... }
1081
1082The prefix data can be referenced as,
1083
1084.. code-block:: llvm
1085
David Blaikie16a97eb2015-03-04 22:02:58 +00001086 %0 = bitcast void* () @f to i32*
1087 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001088 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001089
1090Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001091of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001092beginning of the prefix data is aligned. This means that if the size
1093of the prefix data is not a multiple of the alignment size, the
1094function's entrypoint will not be aligned. If alignment of the
1095function's entrypoint is desired, padding must be added to the prefix
1096data.
1097
Sean Silvaa1190322015-08-06 22:56:48 +00001098A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001099to the ``available_externally`` linkage in that the data may be used by the
1100optimizers but will not be emitted in the object file.
1101
1102.. _prologuedata:
1103
1104Prologue Data
1105-------------
1106
1107The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1108be inserted prior to the function body. This can be used for enabling
1109function hot-patching and instrumentation.
1110
1111To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001112have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001113bytes which decode to a sequence of machine instructions, valid for the
1114module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001115the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001116the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001117definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001118makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001119
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001120A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001121which encodes the ``nop`` instruction:
1122
1123.. code-block:: llvm
1124
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001125 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001126
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001127Generally prologue data can be formed by encoding a relative branch instruction
1128which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001129x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1130
1131.. code-block:: llvm
1132
1133 %0 = type <{ i8, i8, i8* }>
1134
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001135 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001136
Sean Silvaa1190322015-08-06 22:56:48 +00001137A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001138to the ``available_externally`` linkage in that the data may be used by the
1139optimizers but will not be emitted in the object file.
1140
David Majnemer7fddecc2015-06-17 20:52:32 +00001141.. _personalityfn:
1142
1143Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001144--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001145
1146The ``personality`` attribute permits functions to specify what function
1147to use for exception handling.
1148
Bill Wendling63b88192013-02-06 06:52:58 +00001149.. _attrgrp:
1150
1151Attribute Groups
1152----------------
1153
1154Attribute groups are groups of attributes that are referenced by objects within
1155the IR. They are important for keeping ``.ll`` files readable, because a lot of
1156functions will use the same set of attributes. In the degenerative case of a
1157``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1158group will capture the important command line flags used to build that file.
1159
1160An attribute group is a module-level object. To use an attribute group, an
1161object references the attribute group's ID (e.g. ``#37``). An object may refer
1162to more than one attribute group. In that situation, the attributes from the
1163different groups are merged.
1164
1165Here is an example of attribute groups for a function that should always be
1166inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1167
1168.. code-block:: llvm
1169
1170 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001171 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001172
1173 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001174 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001175
1176 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1177 define void @f() #0 #1 { ... }
1178
Sean Silvab084af42012-12-07 10:36:55 +00001179.. _fnattrs:
1180
1181Function Attributes
1182-------------------
1183
1184Function attributes are set to communicate additional information about
1185a function. Function attributes are considered to be part of the
1186function, not of the function type, so functions with different function
1187attributes can have the same function type.
1188
1189Function attributes are simple keywords that follow the type specified.
1190If multiple attributes are needed, they are space separated. For
1191example:
1192
1193.. code-block:: llvm
1194
1195 define void @f() noinline { ... }
1196 define void @f() alwaysinline { ... }
1197 define void @f() alwaysinline optsize { ... }
1198 define void @f() optsize { ... }
1199
Sean Silvab084af42012-12-07 10:36:55 +00001200``alignstack(<n>)``
1201 This attribute indicates that, when emitting the prologue and
1202 epilogue, the backend should forcibly align the stack pointer.
1203 Specify the desired alignment, which must be a power of two, in
1204 parentheses.
1205``alwaysinline``
1206 This attribute indicates that the inliner should attempt to inline
1207 this function into callers whenever possible, ignoring any active
1208 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001209``builtin``
1210 This indicates that the callee function at a call site should be
1211 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001212 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001213 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001214 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001215``cold``
1216 This attribute indicates that this function is rarely called. When
1217 computing edge weights, basic blocks post-dominated by a cold
1218 function call are also considered to be cold; and, thus, given low
1219 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001220``convergent``
1221 This attribute indicates that the callee is dependent on a convergent
1222 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001223 Transformations that are execution model agnostic may not make the execution
1224 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001225``inlinehint``
1226 This attribute indicates that the source code contained a hint that
1227 inlining this function is desirable (such as the "inline" keyword in
1228 C/C++). It is just a hint; it imposes no requirements on the
1229 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001230``jumptable``
1231 This attribute indicates that the function should be added to a
1232 jump-instruction table at code-generation time, and that all address-taken
1233 references to this function should be replaced with a reference to the
1234 appropriate jump-instruction-table function pointer. Note that this creates
1235 a new pointer for the original function, which means that code that depends
1236 on function-pointer identity can break. So, any function annotated with
1237 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001238``minsize``
1239 This attribute suggests that optimization passes and code generator
1240 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001241 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001242 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001243``naked``
1244 This attribute disables prologue / epilogue emission for the
1245 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001246``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001247 This indicates that the callee function at a call site is not recognized as
1248 a built-in function. LLVM will retain the original call and not replace it
1249 with equivalent code based on the semantics of the built-in function, unless
1250 the call site uses the ``builtin`` attribute. This is valid at call sites
1251 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001252``noduplicate``
1253 This attribute indicates that calls to the function cannot be
1254 duplicated. A call to a ``noduplicate`` function may be moved
1255 within its parent function, but may not be duplicated within
1256 its parent function.
1257
1258 A function containing a ``noduplicate`` call may still
1259 be an inlining candidate, provided that the call is not
1260 duplicated by inlining. That implies that the function has
1261 internal linkage and only has one call site, so the original
1262 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001263``noimplicitfloat``
1264 This attributes disables implicit floating point instructions.
1265``noinline``
1266 This attribute indicates that the inliner should never inline this
1267 function in any situation. This attribute may not be used together
1268 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001269``nonlazybind``
1270 This attribute suppresses lazy symbol binding for the function. This
1271 may make calls to the function faster, at the cost of extra program
1272 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001273``noredzone``
1274 This attribute indicates that the code generator should not use a
1275 red zone, even if the target-specific ABI normally permits it.
1276``noreturn``
1277 This function attribute indicates that the function never returns
1278 normally. This produces undefined behavior at runtime if the
1279 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001280``norecurse``
1281 This function attribute indicates that the function does not call itself
1282 either directly or indirectly down any possible call path. This produces
1283 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001284``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001285 This function attribute indicates that the function never raises an
1286 exception. If the function does raise an exception, its runtime
1287 behavior is undefined. However, functions marked nounwind may still
1288 trap or generate asynchronous exceptions. Exception handling schemes
1289 that are recognized by LLVM to handle asynchronous exceptions, such
1290 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291``optnone``
1292 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001293 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001294 exception of interprocedural optimization passes.
1295 This attribute cannot be used together with the ``alwaysinline``
1296 attribute; this attribute is also incompatible
1297 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001298
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 This attribute requires the ``noinline`` attribute to be specified on
1300 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001301 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001302 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001303``optsize``
1304 This attribute suggests that optimization passes and code generator
1305 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001306 and otherwise do optimizations specifically to reduce code size as
1307 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001308``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001309 On a function, this attribute indicates that the function computes its
1310 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001311 without dereferencing any pointer arguments or otherwise accessing
1312 any mutable state (e.g. memory, control registers, etc) visible to
1313 caller functions. It does not write through any pointer arguments
1314 (including ``byval`` arguments) and never changes any state visible
1315 to callers. This means that it cannot unwind exceptions by calling
1316 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001317
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001318 On an argument, this attribute indicates that the function does not
1319 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001320 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001321``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001322 On a function, this attribute indicates that the function does not write
1323 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001324 modify any state (e.g. memory, control registers, etc) visible to
1325 caller functions. It may dereference pointer arguments and read
1326 state that may be set in the caller. A readonly function always
1327 returns the same value (or unwinds an exception identically) when
1328 called with the same set of arguments and global state. It cannot
1329 unwind an exception by calling the ``C++`` exception throwing
1330 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001331
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001332 On an argument, this attribute indicates that the function does not write
1333 through this pointer argument, even though it may write to the memory that
1334 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001335``argmemonly``
1336 This attribute indicates that the only memory accesses inside function are
1337 loads and stores from objects pointed to by its pointer-typed arguments,
1338 with arbitrary offsets. Or in other words, all memory operations in the
1339 function can refer to memory only using pointers based on its function
1340 arguments.
1341 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1342 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001343``returns_twice``
1344 This attribute indicates that this function can return twice. The C
1345 ``setjmp`` is an example of such a function. The compiler disables
1346 some optimizations (like tail calls) in the caller of these
1347 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001348``safestack``
1349 This attribute indicates that
1350 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1351 protection is enabled for this function.
1352
1353 If a function that has a ``safestack`` attribute is inlined into a
1354 function that doesn't have a ``safestack`` attribute or which has an
1355 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1356 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001357``sanitize_address``
1358 This attribute indicates that AddressSanitizer checks
1359 (dynamic address safety analysis) are enabled for this function.
1360``sanitize_memory``
1361 This attribute indicates that MemorySanitizer checks (dynamic detection
1362 of accesses to uninitialized memory) are enabled for this function.
1363``sanitize_thread``
1364 This attribute indicates that ThreadSanitizer checks
1365 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001366``ssp``
1367 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001368 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001369 placed on the stack before the local variables that's checked upon
1370 return from the function to see if it has been overwritten. A
1371 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001372 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001373
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001374 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1375 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1376 - Calls to alloca() with variable sizes or constant sizes greater than
1377 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001378
Josh Magee24c7f062014-02-01 01:36:16 +00001379 Variables that are identified as requiring a protector will be arranged
1380 on the stack such that they are adjacent to the stack protector guard.
1381
Sean Silvab084af42012-12-07 10:36:55 +00001382 If a function that has an ``ssp`` attribute is inlined into a
1383 function that doesn't have an ``ssp`` attribute, then the resulting
1384 function will have an ``ssp`` attribute.
1385``sspreq``
1386 This attribute indicates that the function should *always* emit a
1387 stack smashing protector. This overrides the ``ssp`` function
1388 attribute.
1389
Josh Magee24c7f062014-02-01 01:36:16 +00001390 Variables that are identified as requiring a protector will be arranged
1391 on the stack such that they are adjacent to the stack protector guard.
1392 The specific layout rules are:
1393
1394 #. Large arrays and structures containing large arrays
1395 (``>= ssp-buffer-size``) are closest to the stack protector.
1396 #. Small arrays and structures containing small arrays
1397 (``< ssp-buffer-size``) are 2nd closest to the protector.
1398 #. Variables that have had their address taken are 3rd closest to the
1399 protector.
1400
Sean Silvab084af42012-12-07 10:36:55 +00001401 If a function that has an ``sspreq`` attribute is inlined into a
1402 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001403 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1404 an ``sspreq`` attribute.
1405``sspstrong``
1406 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001407 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001408 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001409 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001410
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001411 - Arrays of any size and type
1412 - Aggregates containing an array of any size and type.
1413 - Calls to alloca().
1414 - Local variables that have had their address taken.
1415
Josh Magee24c7f062014-02-01 01:36:16 +00001416 Variables that are identified as requiring a protector will be arranged
1417 on the stack such that they are adjacent to the stack protector guard.
1418 The specific layout rules are:
1419
1420 #. Large arrays and structures containing large arrays
1421 (``>= ssp-buffer-size``) are closest to the stack protector.
1422 #. Small arrays and structures containing small arrays
1423 (``< ssp-buffer-size``) are 2nd closest to the protector.
1424 #. Variables that have had their address taken are 3rd closest to the
1425 protector.
1426
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001427 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001428
1429 If a function that has an ``sspstrong`` attribute is inlined into a
1430 function that doesn't have an ``sspstrong`` attribute, then the
1431 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001432``"thunk"``
1433 This attribute indicates that the function will delegate to some other
1434 function with a tail call. The prototype of a thunk should not be used for
1435 optimization purposes. The caller is expected to cast the thunk prototype to
1436 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001437``uwtable``
1438 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001439 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001440 show that no exceptions passes by it. This is normally the case for
1441 the ELF x86-64 abi, but it can be disabled for some compilation
1442 units.
Sean Silvab084af42012-12-07 10:36:55 +00001443
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001444
1445.. _opbundles:
1446
1447Operand Bundles
1448---------------
1449
1450Note: operand bundles are a work in progress, and they should be
1451considered experimental at this time.
1452
1453Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001454with certain LLVM instructions (currently only ``call`` s and
1455``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001456incorrect and will change program semantics.
1457
1458Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001459
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001460 operand bundle set ::= '[' operand bundle ']'
1461 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1462 bundle operand ::= SSA value
1463 tag ::= string constant
1464
1465Operand bundles are **not** part of a function's signature, and a
1466given function may be called from multiple places with different kinds
1467of operand bundles. This reflects the fact that the operand bundles
1468are conceptually a part of the ``call`` (or ``invoke``), not the
1469callee being dispatched to.
1470
1471Operand bundles are a generic mechanism intended to support
1472runtime-introspection-like functionality for managed languages. While
1473the exact semantics of an operand bundle depend on the bundle tag,
1474there are certain limitations to how much the presence of an operand
1475bundle can influence the semantics of a program. These restrictions
1476are described as the semantics of an "unknown" operand bundle. As
1477long as the behavior of an operand bundle is describable within these
1478restrictions, LLVM does not need to have special knowledge of the
1479operand bundle to not miscompile programs containing it.
1480
David Majnemer34cacb42015-10-22 01:46:38 +00001481- The bundle operands for an unknown operand bundle escape in unknown
1482 ways before control is transferred to the callee or invokee.
1483- Calls and invokes with operand bundles have unknown read / write
1484 effect on the heap on entry and exit (even if the call target is
Sanjoy Das98a341b2015-10-22 03:12:22 +00001485 ``readnone`` or ``readonly``), unless they're overriden with
1486 callsite specific attributes.
1487- An operand bundle at a call site cannot change the implementation
1488 of the called function. Inter-procedural optimizations work as
1489 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001490
Sanjoy Dascdafd842015-11-11 21:38:02 +00001491More specific types of operand bundles are described below.
1492
1493Deoptimization Operand Bundles
1494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1495
1496Deoptimization operand bundles are characterized by the ``"deopt``
1497operand bundle tag. These operand bundles represent an alternate
1498"safe" continuation for the call site they're attached to, and can be
1499used by a suitable runtime to deoptimize the compiled frame at the
1500specified call site. Exact details of deoptimization is out of scope
1501for the language reference, but it usually involves rewriting a
1502compiled frame into a set of interpreted frames.
1503
1504From the compiler's perspective, deoptimization operand bundles make
1505the call sites they're attached to at least ``readonly``. They read
1506through all of their pointer typed operands (even if they're not
1507otherwise escaped) and the entire visible heap. Deoptimization
1508operand bundles do not capture their operands except during
1509deoptimization, in which case control will not be returned to the
1510compiled frame.
1511
Sanjoy Das2d161452015-11-18 06:23:38 +00001512The inliner knows how to inline through calls that have deoptimization
1513operand bundles. Just like inlining through a normal call site
1514involves composing the normal and exceptional continuations, inlining
1515through a call site with a deoptimization operand bundle needs to
1516appropriately compose the "safe" deoptimization continuation. The
1517inliner does this by prepending the parent's deoptimization
1518continuation to every deoptimization continuation in the inlined body.
1519E.g. inlining ``@f`` into ``@g`` in the following example
1520
1521.. code-block:: llvm
1522
1523 define void @f() {
1524 call void @x() ;; no deopt state
1525 call void @y() [ "deopt"(i32 10) ]
1526 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1527 ret void
1528 }
1529
1530 define void @g() {
1531 call void @f() [ "deopt"(i32 20) ]
1532 ret void
1533 }
1534
1535will result in
1536
1537.. code-block:: llvm
1538
1539 define void @g() {
1540 call void @x() ;; still no deopt state
1541 call void @y() [ "deopt"(i32 20, i32 10) ]
1542 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1543 ret void
1544 }
1545
1546It is the frontend's responsibility to structure or encode the
1547deoptimization state in a way that syntactically prepending the
1548caller's deoptimization state to the callee's deoptimization state is
1549semantically equivalent to composing the caller's deoptimization
1550continuation after the callee's deoptimization continuation.
1551
Sean Silvab084af42012-12-07 10:36:55 +00001552.. _moduleasm:
1553
1554Module-Level Inline Assembly
1555----------------------------
1556
1557Modules may contain "module-level inline asm" blocks, which corresponds
1558to the GCC "file scope inline asm" blocks. These blocks are internally
1559concatenated by LLVM and treated as a single unit, but may be separated
1560in the ``.ll`` file if desired. The syntax is very simple:
1561
1562.. code-block:: llvm
1563
1564 module asm "inline asm code goes here"
1565 module asm "more can go here"
1566
1567The strings can contain any character by escaping non-printable
1568characters. The escape sequence used is simply "\\xx" where "xx" is the
1569two digit hex code for the number.
1570
James Y Knightbc832ed2015-07-08 18:08:36 +00001571Note that the assembly string *must* be parseable by LLVM's integrated assembler
1572(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001573
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001574.. _langref_datalayout:
1575
Sean Silvab084af42012-12-07 10:36:55 +00001576Data Layout
1577-----------
1578
1579A module may specify a target specific data layout string that specifies
1580how data is to be laid out in memory. The syntax for the data layout is
1581simply:
1582
1583.. code-block:: llvm
1584
1585 target datalayout = "layout specification"
1586
1587The *layout specification* consists of a list of specifications
1588separated by the minus sign character ('-'). Each specification starts
1589with a letter and may include other information after the letter to
1590define some aspect of the data layout. The specifications accepted are
1591as follows:
1592
1593``E``
1594 Specifies that the target lays out data in big-endian form. That is,
1595 the bits with the most significance have the lowest address
1596 location.
1597``e``
1598 Specifies that the target lays out data in little-endian form. That
1599 is, the bits with the least significance have the lowest address
1600 location.
1601``S<size>``
1602 Specifies the natural alignment of the stack in bits. Alignment
1603 promotion of stack variables is limited to the natural stack
1604 alignment to avoid dynamic stack realignment. The stack alignment
1605 must be a multiple of 8-bits. If omitted, the natural stack
1606 alignment defaults to "unspecified", which does not prevent any
1607 alignment promotions.
1608``p[n]:<size>:<abi>:<pref>``
1609 This specifies the *size* of a pointer and its ``<abi>`` and
1610 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001611 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001612 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001613 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001614``i<size>:<abi>:<pref>``
1615 This specifies the alignment for an integer type of a given bit
1616 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1617``v<size>:<abi>:<pref>``
1618 This specifies the alignment for a vector type of a given bit
1619 ``<size>``.
1620``f<size>:<abi>:<pref>``
1621 This specifies the alignment for a floating point type of a given bit
1622 ``<size>``. Only values of ``<size>`` that are supported by the target
1623 will work. 32 (float) and 64 (double) are supported on all targets; 80
1624 or 128 (different flavors of long double) are also supported on some
1625 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001626``a:<abi>:<pref>``
1627 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001628``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001629 If present, specifies that llvm names are mangled in the output. The
1630 options are
1631
1632 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1633 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1634 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1635 symbols get a ``_`` prefix.
1636 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1637 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001638 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1639 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001640``n<size1>:<size2>:<size3>...``
1641 This specifies a set of native integer widths for the target CPU in
1642 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1643 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1644 this set are considered to support most general arithmetic operations
1645 efficiently.
1646
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001647On every specification that takes a ``<abi>:<pref>``, specifying the
1648``<pref>`` alignment is optional. If omitted, the preceding ``:``
1649should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1650
Sean Silvab084af42012-12-07 10:36:55 +00001651When constructing the data layout for a given target, LLVM starts with a
1652default set of specifications which are then (possibly) overridden by
1653the specifications in the ``datalayout`` keyword. The default
1654specifications are given in this list:
1655
1656- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001657- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1658- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1659 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001660- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001661- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1662- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1663- ``i16:16:16`` - i16 is 16-bit aligned
1664- ``i32:32:32`` - i32 is 32-bit aligned
1665- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1666 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001667- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001668- ``f32:32:32`` - float is 32-bit aligned
1669- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001670- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001671- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1672- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001673- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001674
1675When LLVM is determining the alignment for a given type, it uses the
1676following rules:
1677
1678#. If the type sought is an exact match for one of the specifications,
1679 that specification is used.
1680#. If no match is found, and the type sought is an integer type, then
1681 the smallest integer type that is larger than the bitwidth of the
1682 sought type is used. If none of the specifications are larger than
1683 the bitwidth then the largest integer type is used. For example,
1684 given the default specifications above, the i7 type will use the
1685 alignment of i8 (next largest) while both i65 and i256 will use the
1686 alignment of i64 (largest specified).
1687#. If no match is found, and the type sought is a vector type, then the
1688 largest vector type that is smaller than the sought vector type will
1689 be used as a fall back. This happens because <128 x double> can be
1690 implemented in terms of 64 <2 x double>, for example.
1691
1692The function of the data layout string may not be what you expect.
1693Notably, this is not a specification from the frontend of what alignment
1694the code generator should use.
1695
1696Instead, if specified, the target data layout is required to match what
1697the ultimate *code generator* expects. This string is used by the
1698mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001699what the ultimate code generator uses. There is no way to generate IR
1700that does not embed this target-specific detail into the IR. If you
1701don't specify the string, the default specifications will be used to
1702generate a Data Layout and the optimization phases will operate
1703accordingly and introduce target specificity into the IR with respect to
1704these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001705
Bill Wendling5cc90842013-10-18 23:41:25 +00001706.. _langref_triple:
1707
1708Target Triple
1709-------------
1710
1711A module may specify a target triple string that describes the target
1712host. The syntax for the target triple is simply:
1713
1714.. code-block:: llvm
1715
1716 target triple = "x86_64-apple-macosx10.7.0"
1717
1718The *target triple* string consists of a series of identifiers delimited
1719by the minus sign character ('-'). The canonical forms are:
1720
1721::
1722
1723 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1724 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1725
1726This information is passed along to the backend so that it generates
1727code for the proper architecture. It's possible to override this on the
1728command line with the ``-mtriple`` command line option.
1729
Sean Silvab084af42012-12-07 10:36:55 +00001730.. _pointeraliasing:
1731
1732Pointer Aliasing Rules
1733----------------------
1734
1735Any memory access must be done through a pointer value associated with
1736an address range of the memory access, otherwise the behavior is
1737undefined. Pointer values are associated with address ranges according
1738to the following rules:
1739
1740- A pointer value is associated with the addresses associated with any
1741 value it is *based* on.
1742- An address of a global variable is associated with the address range
1743 of the variable's storage.
1744- The result value of an allocation instruction is associated with the
1745 address range of the allocated storage.
1746- A null pointer in the default address-space is associated with no
1747 address.
1748- An integer constant other than zero or a pointer value returned from
1749 a function not defined within LLVM may be associated with address
1750 ranges allocated through mechanisms other than those provided by
1751 LLVM. Such ranges shall not overlap with any ranges of addresses
1752 allocated by mechanisms provided by LLVM.
1753
1754A pointer value is *based* on another pointer value according to the
1755following rules:
1756
1757- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001758 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001759- The result value of a ``bitcast`` is *based* on the operand of the
1760 ``bitcast``.
1761- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1762 values that contribute (directly or indirectly) to the computation of
1763 the pointer's value.
1764- The "*based* on" relationship is transitive.
1765
1766Note that this definition of *"based"* is intentionally similar to the
1767definition of *"based"* in C99, though it is slightly weaker.
1768
1769LLVM IR does not associate types with memory. The result type of a
1770``load`` merely indicates the size and alignment of the memory from
1771which to load, as well as the interpretation of the value. The first
1772operand type of a ``store`` similarly only indicates the size and
1773alignment of the store.
1774
1775Consequently, type-based alias analysis, aka TBAA, aka
1776``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1777:ref:`Metadata <metadata>` may be used to encode additional information
1778which specialized optimization passes may use to implement type-based
1779alias analysis.
1780
1781.. _volatile:
1782
1783Volatile Memory Accesses
1784------------------------
1785
1786Certain memory accesses, such as :ref:`load <i_load>`'s,
1787:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1788marked ``volatile``. The optimizers must not change the number of
1789volatile operations or change their order of execution relative to other
1790volatile operations. The optimizers *may* change the order of volatile
1791operations relative to non-volatile operations. This is not Java's
1792"volatile" and has no cross-thread synchronization behavior.
1793
Andrew Trick89fc5a62013-01-30 21:19:35 +00001794IR-level volatile loads and stores cannot safely be optimized into
1795llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1796flagged volatile. Likewise, the backend should never split or merge
1797target-legal volatile load/store instructions.
1798
Andrew Trick7e6f9282013-01-31 00:49:39 +00001799.. admonition:: Rationale
1800
1801 Platforms may rely on volatile loads and stores of natively supported
1802 data width to be executed as single instruction. For example, in C
1803 this holds for an l-value of volatile primitive type with native
1804 hardware support, but not necessarily for aggregate types. The
1805 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001806 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001807 do not violate the frontend's contract with the language.
1808
Sean Silvab084af42012-12-07 10:36:55 +00001809.. _memmodel:
1810
1811Memory Model for Concurrent Operations
1812--------------------------------------
1813
1814The LLVM IR does not define any way to start parallel threads of
1815execution or to register signal handlers. Nonetheless, there are
1816platform-specific ways to create them, and we define LLVM IR's behavior
1817in their presence. This model is inspired by the C++0x memory model.
1818
1819For a more informal introduction to this model, see the :doc:`Atomics`.
1820
1821We define a *happens-before* partial order as the least partial order
1822that
1823
1824- Is a superset of single-thread program order, and
1825- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1826 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1827 techniques, like pthread locks, thread creation, thread joining,
1828 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1829 Constraints <ordering>`).
1830
1831Note that program order does not introduce *happens-before* edges
1832between a thread and signals executing inside that thread.
1833
1834Every (defined) read operation (load instructions, memcpy, atomic
1835loads/read-modify-writes, etc.) R reads a series of bytes written by
1836(defined) write operations (store instructions, atomic
1837stores/read-modify-writes, memcpy, etc.). For the purposes of this
1838section, initialized globals are considered to have a write of the
1839initializer which is atomic and happens before any other read or write
1840of the memory in question. For each byte of a read R, R\ :sub:`byte`
1841may see any write to the same byte, except:
1842
1843- If write\ :sub:`1` happens before write\ :sub:`2`, and
1844 write\ :sub:`2` happens before R\ :sub:`byte`, then
1845 R\ :sub:`byte` does not see write\ :sub:`1`.
1846- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1847 R\ :sub:`byte` does not see write\ :sub:`3`.
1848
1849Given that definition, R\ :sub:`byte` is defined as follows:
1850
1851- If R is volatile, the result is target-dependent. (Volatile is
1852 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001853 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001854 like normal memory. It does not generally provide cross-thread
1855 synchronization.)
1856- Otherwise, if there is no write to the same byte that happens before
1857 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1858- Otherwise, if R\ :sub:`byte` may see exactly one write,
1859 R\ :sub:`byte` returns the value written by that write.
1860- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1861 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1862 Memory Ordering Constraints <ordering>` section for additional
1863 constraints on how the choice is made.
1864- Otherwise R\ :sub:`byte` returns ``undef``.
1865
1866R returns the value composed of the series of bytes it read. This
1867implies that some bytes within the value may be ``undef`` **without**
1868the entire value being ``undef``. Note that this only defines the
1869semantics of the operation; it doesn't mean that targets will emit more
1870than one instruction to read the series of bytes.
1871
1872Note that in cases where none of the atomic intrinsics are used, this
1873model places only one restriction on IR transformations on top of what
1874is required for single-threaded execution: introducing a store to a byte
1875which might not otherwise be stored is not allowed in general.
1876(Specifically, in the case where another thread might write to and read
1877from an address, introducing a store can change a load that may see
1878exactly one write into a load that may see multiple writes.)
1879
1880.. _ordering:
1881
1882Atomic Memory Ordering Constraints
1883----------------------------------
1884
1885Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1886:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1887:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001888ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001889the same address they *synchronize with*. These semantics are borrowed
1890from Java and C++0x, but are somewhat more colloquial. If these
1891descriptions aren't precise enough, check those specs (see spec
1892references in the :doc:`atomics guide <Atomics>`).
1893:ref:`fence <i_fence>` instructions treat these orderings somewhat
1894differently since they don't take an address. See that instruction's
1895documentation for details.
1896
1897For a simpler introduction to the ordering constraints, see the
1898:doc:`Atomics`.
1899
1900``unordered``
1901 The set of values that can be read is governed by the happens-before
1902 partial order. A value cannot be read unless some operation wrote
1903 it. This is intended to provide a guarantee strong enough to model
1904 Java's non-volatile shared variables. This ordering cannot be
1905 specified for read-modify-write operations; it is not strong enough
1906 to make them atomic in any interesting way.
1907``monotonic``
1908 In addition to the guarantees of ``unordered``, there is a single
1909 total order for modifications by ``monotonic`` operations on each
1910 address. All modification orders must be compatible with the
1911 happens-before order. There is no guarantee that the modification
1912 orders can be combined to a global total order for the whole program
1913 (and this often will not be possible). The read in an atomic
1914 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1915 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1916 order immediately before the value it writes. If one atomic read
1917 happens before another atomic read of the same address, the later
1918 read must see the same value or a later value in the address's
1919 modification order. This disallows reordering of ``monotonic`` (or
1920 stronger) operations on the same address. If an address is written
1921 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1922 read that address repeatedly, the other threads must eventually see
1923 the write. This corresponds to the C++0x/C1x
1924 ``memory_order_relaxed``.
1925``acquire``
1926 In addition to the guarantees of ``monotonic``, a
1927 *synchronizes-with* edge may be formed with a ``release`` operation.
1928 This is intended to model C++'s ``memory_order_acquire``.
1929``release``
1930 In addition to the guarantees of ``monotonic``, if this operation
1931 writes a value which is subsequently read by an ``acquire``
1932 operation, it *synchronizes-with* that operation. (This isn't a
1933 complete description; see the C++0x definition of a release
1934 sequence.) This corresponds to the C++0x/C1x
1935 ``memory_order_release``.
1936``acq_rel`` (acquire+release)
1937 Acts as both an ``acquire`` and ``release`` operation on its
1938 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1939``seq_cst`` (sequentially consistent)
1940 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001941 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001942 writes), there is a global total order on all
1943 sequentially-consistent operations on all addresses, which is
1944 consistent with the *happens-before* partial order and with the
1945 modification orders of all the affected addresses. Each
1946 sequentially-consistent read sees the last preceding write to the
1947 same address in this global order. This corresponds to the C++0x/C1x
1948 ``memory_order_seq_cst`` and Java volatile.
1949
1950.. _singlethread:
1951
1952If an atomic operation is marked ``singlethread``, it only *synchronizes
1953with* or participates in modification and seq\_cst total orderings with
1954other operations running in the same thread (for example, in signal
1955handlers).
1956
1957.. _fastmath:
1958
1959Fast-Math Flags
1960---------------
1961
1962LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1963:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001964:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1965be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001966
1967``nnan``
1968 No NaNs - Allow optimizations to assume the arguments and result are not
1969 NaN. Such optimizations are required to retain defined behavior over
1970 NaNs, but the value of the result is undefined.
1971
1972``ninf``
1973 No Infs - Allow optimizations to assume the arguments and result are not
1974 +/-Inf. Such optimizations are required to retain defined behavior over
1975 +/-Inf, but the value of the result is undefined.
1976
1977``nsz``
1978 No Signed Zeros - Allow optimizations to treat the sign of a zero
1979 argument or result as insignificant.
1980
1981``arcp``
1982 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1983 argument rather than perform division.
1984
1985``fast``
1986 Fast - Allow algebraically equivalent transformations that may
1987 dramatically change results in floating point (e.g. reassociate). This
1988 flag implies all the others.
1989
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001990.. _uselistorder:
1991
1992Use-list Order Directives
1993-------------------------
1994
1995Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001996order to be recreated. ``<order-indexes>`` is a comma-separated list of
1997indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001998value's use-list is immediately sorted by these indexes.
1999
Sean Silvaa1190322015-08-06 22:56:48 +00002000Use-list directives may appear at function scope or global scope. They are not
2001instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002002function scope, they must appear after the terminator of the final basic block.
2003
2004If basic blocks have their address taken via ``blockaddress()`` expressions,
2005``uselistorder_bb`` can be used to reorder their use-lists from outside their
2006function's scope.
2007
2008:Syntax:
2009
2010::
2011
2012 uselistorder <ty> <value>, { <order-indexes> }
2013 uselistorder_bb @function, %block { <order-indexes> }
2014
2015:Examples:
2016
2017::
2018
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002019 define void @foo(i32 %arg1, i32 %arg2) {
2020 entry:
2021 ; ... instructions ...
2022 bb:
2023 ; ... instructions ...
2024
2025 ; At function scope.
2026 uselistorder i32 %arg1, { 1, 0, 2 }
2027 uselistorder label %bb, { 1, 0 }
2028 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002029
2030 ; At global scope.
2031 uselistorder i32* @global, { 1, 2, 0 }
2032 uselistorder i32 7, { 1, 0 }
2033 uselistorder i32 (i32) @bar, { 1, 0 }
2034 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2035
Sean Silvab084af42012-12-07 10:36:55 +00002036.. _typesystem:
2037
2038Type System
2039===========
2040
2041The LLVM type system is one of the most important features of the
2042intermediate representation. Being typed enables a number of
2043optimizations to be performed on the intermediate representation
2044directly, without having to do extra analyses on the side before the
2045transformation. A strong type system makes it easier to read the
2046generated code and enables novel analyses and transformations that are
2047not feasible to perform on normal three address code representations.
2048
Rafael Espindola08013342013-12-07 19:34:20 +00002049.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002050
Rafael Espindola08013342013-12-07 19:34:20 +00002051Void Type
2052---------
Sean Silvab084af42012-12-07 10:36:55 +00002053
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002054:Overview:
2055
Rafael Espindola08013342013-12-07 19:34:20 +00002056
2057The void type does not represent any value and has no size.
2058
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002059:Syntax:
2060
Rafael Espindola08013342013-12-07 19:34:20 +00002061
2062::
2063
2064 void
Sean Silvab084af42012-12-07 10:36:55 +00002065
2066
Rafael Espindola08013342013-12-07 19:34:20 +00002067.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002068
Rafael Espindola08013342013-12-07 19:34:20 +00002069Function Type
2070-------------
Sean Silvab084af42012-12-07 10:36:55 +00002071
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002072:Overview:
2073
Sean Silvab084af42012-12-07 10:36:55 +00002074
Rafael Espindola08013342013-12-07 19:34:20 +00002075The function type can be thought of as a function signature. It consists of a
2076return type and a list of formal parameter types. The return type of a function
2077type is a void type or first class type --- except for :ref:`label <t_label>`
2078and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002081
Rafael Espindola08013342013-12-07 19:34:20 +00002082::
Sean Silvab084af42012-12-07 10:36:55 +00002083
Rafael Espindola08013342013-12-07 19:34:20 +00002084 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002085
Rafael Espindola08013342013-12-07 19:34:20 +00002086...where '``<parameter list>``' is a comma-separated list of type
2087specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002088indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002089argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002090handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002091except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002092
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002093:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002094
Rafael Espindola08013342013-12-07 19:34:20 +00002095+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2096| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2097+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2098| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2099+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2100| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2101+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2102| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2103+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2104
2105.. _t_firstclass:
2106
2107First Class Types
2108-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002109
2110The :ref:`first class <t_firstclass>` types are perhaps the most important.
2111Values of these types are the only ones which can be produced by
2112instructions.
2113
Rafael Espindola08013342013-12-07 19:34:20 +00002114.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002115
Rafael Espindola08013342013-12-07 19:34:20 +00002116Single Value Types
2117^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002118
Rafael Espindola08013342013-12-07 19:34:20 +00002119These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002120
2121.. _t_integer:
2122
2123Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002124""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002125
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002126:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002127
2128The integer type is a very simple type that simply specifies an
2129arbitrary bit width for the integer type desired. Any bit width from 1
2130bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2131
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002132:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002133
2134::
2135
2136 iN
2137
2138The number of bits the integer will occupy is specified by the ``N``
2139value.
2140
2141Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002142*********
Sean Silvab084af42012-12-07 10:36:55 +00002143
2144+----------------+------------------------------------------------+
2145| ``i1`` | a single-bit integer. |
2146+----------------+------------------------------------------------+
2147| ``i32`` | a 32-bit integer. |
2148+----------------+------------------------------------------------+
2149| ``i1942652`` | a really big integer of over 1 million bits. |
2150+----------------+------------------------------------------------+
2151
2152.. _t_floating:
2153
2154Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002155""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002156
2157.. list-table::
2158 :header-rows: 1
2159
2160 * - Type
2161 - Description
2162
2163 * - ``half``
2164 - 16-bit floating point value
2165
2166 * - ``float``
2167 - 32-bit floating point value
2168
2169 * - ``double``
2170 - 64-bit floating point value
2171
2172 * - ``fp128``
2173 - 128-bit floating point value (112-bit mantissa)
2174
2175 * - ``x86_fp80``
2176 - 80-bit floating point value (X87)
2177
2178 * - ``ppc_fp128``
2179 - 128-bit floating point value (two 64-bits)
2180
Reid Kleckner9a16d082014-03-05 02:41:37 +00002181X86_mmx Type
2182""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002183
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002184:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002185
Reid Kleckner9a16d082014-03-05 02:41:37 +00002186The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002187machine. The operations allowed on it are quite limited: parameters and
2188return values, load and store, and bitcast. User-specified MMX
2189instructions are represented as intrinsic or asm calls with arguments
2190and/or results of this type. There are no arrays, vectors or constants
2191of this type.
2192
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002193:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002194
2195::
2196
Reid Kleckner9a16d082014-03-05 02:41:37 +00002197 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002198
Sean Silvab084af42012-12-07 10:36:55 +00002199
Rafael Espindola08013342013-12-07 19:34:20 +00002200.. _t_pointer:
2201
2202Pointer Type
2203""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002204
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002205:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002206
Rafael Espindola08013342013-12-07 19:34:20 +00002207The pointer type is used to specify memory locations. Pointers are
2208commonly used to reference objects in memory.
2209
2210Pointer types may have an optional address space attribute defining the
2211numbered address space where the pointed-to object resides. The default
2212address space is number zero. The semantics of non-zero address spaces
2213are target-specific.
2214
2215Note that LLVM does not permit pointers to void (``void*``) nor does it
2216permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002217
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002218:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002219
2220::
2221
Rafael Espindola08013342013-12-07 19:34:20 +00002222 <type> *
2223
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002224:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002225
2226+-------------------------+--------------------------------------------------------------------------------------------------------------+
2227| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2228+-------------------------+--------------------------------------------------------------------------------------------------------------+
2229| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2230+-------------------------+--------------------------------------------------------------------------------------------------------------+
2231| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2232+-------------------------+--------------------------------------------------------------------------------------------------------------+
2233
2234.. _t_vector:
2235
2236Vector Type
2237"""""""""""
2238
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002239:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002240
2241A vector type is a simple derived type that represents a vector of
2242elements. Vector types are used when multiple primitive data are
2243operated in parallel using a single instruction (SIMD). A vector type
2244requires a size (number of elements) and an underlying primitive data
2245type. Vector types are considered :ref:`first class <t_firstclass>`.
2246
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002247:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002248
2249::
2250
2251 < <# elements> x <elementtype> >
2252
2253The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002254elementtype may be any integer, floating point or pointer type. Vectors
2255of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002256
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002257:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002258
2259+-------------------+--------------------------------------------------+
2260| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2261+-------------------+--------------------------------------------------+
2262| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2263+-------------------+--------------------------------------------------+
2264| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2265+-------------------+--------------------------------------------------+
2266| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2267+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002268
2269.. _t_label:
2270
2271Label Type
2272^^^^^^^^^^
2273
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002274:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002275
2276The label type represents code labels.
2277
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002278:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002279
2280::
2281
2282 label
2283
David Majnemerb611e3f2015-08-14 05:09:07 +00002284.. _t_token:
2285
2286Token Type
2287^^^^^^^^^^
2288
2289:Overview:
2290
2291The token type is used when a value is associated with an instruction
2292but all uses of the value must not attempt to introspect or obscure it.
2293As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2294:ref:`select <i_select>` of type token.
2295
2296:Syntax:
2297
2298::
2299
2300 token
2301
2302
2303
Sean Silvab084af42012-12-07 10:36:55 +00002304.. _t_metadata:
2305
2306Metadata Type
2307^^^^^^^^^^^^^
2308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311The metadata type represents embedded metadata. No derived types may be
2312created from metadata except for :ref:`function <t_function>` arguments.
2313
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002314:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002315
2316::
2317
2318 metadata
2319
Sean Silvab084af42012-12-07 10:36:55 +00002320.. _t_aggregate:
2321
2322Aggregate Types
2323^^^^^^^^^^^^^^^
2324
2325Aggregate Types are a subset of derived types that can contain multiple
2326member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2327aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2328aggregate types.
2329
2330.. _t_array:
2331
2332Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002333""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002334
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002335:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002336
2337The array type is a very simple derived type that arranges elements
2338sequentially in memory. The array type requires a size (number of
2339elements) and an underlying data type.
2340
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002341:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002342
2343::
2344
2345 [<# elements> x <elementtype>]
2346
2347The number of elements is a constant integer value; ``elementtype`` may
2348be any type with a size.
2349
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002350:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002351
2352+------------------+--------------------------------------+
2353| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2354+------------------+--------------------------------------+
2355| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2356+------------------+--------------------------------------+
2357| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2358+------------------+--------------------------------------+
2359
2360Here are some examples of multidimensional arrays:
2361
2362+-----------------------------+----------------------------------------------------------+
2363| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2364+-----------------------------+----------------------------------------------------------+
2365| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2366+-----------------------------+----------------------------------------------------------+
2367| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2368+-----------------------------+----------------------------------------------------------+
2369
2370There is no restriction on indexing beyond the end of the array implied
2371by a static type (though there are restrictions on indexing beyond the
2372bounds of an allocated object in some cases). This means that
2373single-dimension 'variable sized array' addressing can be implemented in
2374LLVM with a zero length array type. An implementation of 'pascal style
2375arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2376example.
2377
Sean Silvab084af42012-12-07 10:36:55 +00002378.. _t_struct:
2379
2380Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002381""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002382
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002383:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002384
2385The structure type is used to represent a collection of data members
2386together in memory. The elements of a structure may be any type that has
2387a size.
2388
2389Structures in memory are accessed using '``load``' and '``store``' by
2390getting a pointer to a field with the '``getelementptr``' instruction.
2391Structures in registers are accessed using the '``extractvalue``' and
2392'``insertvalue``' instructions.
2393
2394Structures may optionally be "packed" structures, which indicate that
2395the alignment of the struct is one byte, and that there is no padding
2396between the elements. In non-packed structs, padding between field types
2397is inserted as defined by the DataLayout string in the module, which is
2398required to match what the underlying code generator expects.
2399
2400Structures can either be "literal" or "identified". A literal structure
2401is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2402identified types are always defined at the top level with a name.
2403Literal types are uniqued by their contents and can never be recursive
2404or opaque since there is no way to write one. Identified types can be
2405recursive, can be opaqued, and are never uniqued.
2406
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002407:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002408
2409::
2410
2411 %T1 = type { <type list> } ; Identified normal struct type
2412 %T2 = type <{ <type list> }> ; Identified packed struct type
2413
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002414:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002415
2416+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2417| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2418+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002419| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002420+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2421| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2422+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2423
2424.. _t_opaque:
2425
2426Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002427""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002428
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002429:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002430
2431Opaque structure types are used to represent named structure types that
2432do not have a body specified. This corresponds (for example) to the C
2433notion of a forward declared structure.
2434
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002435:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002436
2437::
2438
2439 %X = type opaque
2440 %52 = type opaque
2441
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002442:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002443
2444+--------------+-------------------+
2445| ``opaque`` | An opaque type. |
2446+--------------+-------------------+
2447
Sean Silva1703e702014-04-08 21:06:22 +00002448.. _constants:
2449
Sean Silvab084af42012-12-07 10:36:55 +00002450Constants
2451=========
2452
2453LLVM has several different basic types of constants. This section
2454describes them all and their syntax.
2455
2456Simple Constants
2457----------------
2458
2459**Boolean constants**
2460 The two strings '``true``' and '``false``' are both valid constants
2461 of the ``i1`` type.
2462**Integer constants**
2463 Standard integers (such as '4') are constants of the
2464 :ref:`integer <t_integer>` type. Negative numbers may be used with
2465 integer types.
2466**Floating point constants**
2467 Floating point constants use standard decimal notation (e.g.
2468 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2469 hexadecimal notation (see below). The assembler requires the exact
2470 decimal value of a floating-point constant. For example, the
2471 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2472 decimal in binary. Floating point constants must have a :ref:`floating
2473 point <t_floating>` type.
2474**Null pointer constants**
2475 The identifier '``null``' is recognized as a null pointer constant
2476 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002477**Token constants**
2478 The identifier '``none``' is recognized as an empty token constant
2479 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002480
2481The one non-intuitive notation for constants is the hexadecimal form of
2482floating point constants. For example, the form
2483'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2484than) '``double 4.5e+15``'. The only time hexadecimal floating point
2485constants are required (and the only time that they are generated by the
2486disassembler) is when a floating point constant must be emitted but it
2487cannot be represented as a decimal floating point number in a reasonable
2488number of digits. For example, NaN's, infinities, and other special
2489values are represented in their IEEE hexadecimal format so that assembly
2490and disassembly do not cause any bits to change in the constants.
2491
2492When using the hexadecimal form, constants of types half, float, and
2493double are represented using the 16-digit form shown above (which
2494matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002495must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002496precision, respectively. Hexadecimal format is always used for long
2497double, and there are three forms of long double. The 80-bit format used
2498by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2499128-bit format used by PowerPC (two adjacent doubles) is represented by
2500``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002501represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2502will only work if they match the long double format on your target.
2503The IEEE 16-bit format (half precision) is represented by ``0xH``
2504followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2505(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002506
Reid Kleckner9a16d082014-03-05 02:41:37 +00002507There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002508
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002509.. _complexconstants:
2510
Sean Silvab084af42012-12-07 10:36:55 +00002511Complex Constants
2512-----------------
2513
2514Complex constants are a (potentially recursive) combination of simple
2515constants and smaller complex constants.
2516
2517**Structure constants**
2518 Structure constants are represented with notation similar to
2519 structure type definitions (a comma separated list of elements,
2520 surrounded by braces (``{}``)). For example:
2521 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2522 "``@G = external global i32``". Structure constants must have
2523 :ref:`structure type <t_struct>`, and the number and types of elements
2524 must match those specified by the type.
2525**Array constants**
2526 Array constants are represented with notation similar to array type
2527 definitions (a comma separated list of elements, surrounded by
2528 square brackets (``[]``)). For example:
2529 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2530 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002531 match those specified by the type. As a special case, character array
2532 constants may also be represented as a double-quoted string using the ``c``
2533 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002534**Vector constants**
2535 Vector constants are represented with notation similar to vector
2536 type definitions (a comma separated list of elements, surrounded by
2537 less-than/greater-than's (``<>``)). For example:
2538 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2539 must have :ref:`vector type <t_vector>`, and the number and types of
2540 elements must match those specified by the type.
2541**Zero initialization**
2542 The string '``zeroinitializer``' can be used to zero initialize a
2543 value to zero of *any* type, including scalar and
2544 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2545 having to print large zero initializers (e.g. for large arrays) and
2546 is always exactly equivalent to using explicit zero initializers.
2547**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002548 A metadata node is a constant tuple without types. For example:
2549 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002550 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2551 Unlike other typed constants that are meant to be interpreted as part of
2552 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002553 information such as debug info.
2554
2555Global Variable and Function Addresses
2556--------------------------------------
2557
2558The addresses of :ref:`global variables <globalvars>` and
2559:ref:`functions <functionstructure>` are always implicitly valid
2560(link-time) constants. These constants are explicitly referenced when
2561the :ref:`identifier for the global <identifiers>` is used and always have
2562:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2563file:
2564
2565.. code-block:: llvm
2566
2567 @X = global i32 17
2568 @Y = global i32 42
2569 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2570
2571.. _undefvalues:
2572
2573Undefined Values
2574----------------
2575
2576The string '``undef``' can be used anywhere a constant is expected, and
2577indicates that the user of the value may receive an unspecified
2578bit-pattern. Undefined values may be of any type (other than '``label``'
2579or '``void``') and be used anywhere a constant is permitted.
2580
2581Undefined values are useful because they indicate to the compiler that
2582the program is well defined no matter what value is used. This gives the
2583compiler more freedom to optimize. Here are some examples of
2584(potentially surprising) transformations that are valid (in pseudo IR):
2585
2586.. code-block:: llvm
2587
2588 %A = add %X, undef
2589 %B = sub %X, undef
2590 %C = xor %X, undef
2591 Safe:
2592 %A = undef
2593 %B = undef
2594 %C = undef
2595
2596This is safe because all of the output bits are affected by the undef
2597bits. Any output bit can have a zero or one depending on the input bits.
2598
2599.. code-block:: llvm
2600
2601 %A = or %X, undef
2602 %B = and %X, undef
2603 Safe:
2604 %A = -1
2605 %B = 0
2606 Unsafe:
2607 %A = undef
2608 %B = undef
2609
2610These logical operations have bits that are not always affected by the
2611input. For example, if ``%X`` has a zero bit, then the output of the
2612'``and``' operation will always be a zero for that bit, no matter what
2613the corresponding bit from the '``undef``' is. As such, it is unsafe to
2614optimize or assume that the result of the '``and``' is '``undef``'.
2615However, it is safe to assume that all bits of the '``undef``' could be
26160, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2617all the bits of the '``undef``' operand to the '``or``' could be set,
2618allowing the '``or``' to be folded to -1.
2619
2620.. code-block:: llvm
2621
2622 %A = select undef, %X, %Y
2623 %B = select undef, 42, %Y
2624 %C = select %X, %Y, undef
2625 Safe:
2626 %A = %X (or %Y)
2627 %B = 42 (or %Y)
2628 %C = %Y
2629 Unsafe:
2630 %A = undef
2631 %B = undef
2632 %C = undef
2633
2634This set of examples shows that undefined '``select``' (and conditional
2635branch) conditions can go *either way*, but they have to come from one
2636of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2637both known to have a clear low bit, then ``%A`` would have to have a
2638cleared low bit. However, in the ``%C`` example, the optimizer is
2639allowed to assume that the '``undef``' operand could be the same as
2640``%Y``, allowing the whole '``select``' to be eliminated.
2641
2642.. code-block:: llvm
2643
2644 %A = xor undef, undef
2645
2646 %B = undef
2647 %C = xor %B, %B
2648
2649 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002650 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002651 %F = icmp gte %D, 4
2652
2653 Safe:
2654 %A = undef
2655 %B = undef
2656 %C = undef
2657 %D = undef
2658 %E = undef
2659 %F = undef
2660
2661This example points out that two '``undef``' operands are not
2662necessarily the same. This can be surprising to people (and also matches
2663C semantics) where they assume that "``X^X``" is always zero, even if
2664``X`` is undefined. This isn't true for a number of reasons, but the
2665short answer is that an '``undef``' "variable" can arbitrarily change
2666its value over its "live range". This is true because the variable
2667doesn't actually *have a live range*. Instead, the value is logically
2668read from arbitrary registers that happen to be around when needed, so
2669the value is not necessarily consistent over time. In fact, ``%A`` and
2670``%C`` need to have the same semantics or the core LLVM "replace all
2671uses with" concept would not hold.
2672
2673.. code-block:: llvm
2674
2675 %A = fdiv undef, %X
2676 %B = fdiv %X, undef
2677 Safe:
2678 %A = undef
2679 b: unreachable
2680
2681These examples show the crucial difference between an *undefined value*
2682and *undefined behavior*. An undefined value (like '``undef``') is
2683allowed to have an arbitrary bit-pattern. This means that the ``%A``
2684operation can be constant folded to '``undef``', because the '``undef``'
2685could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2686However, in the second example, we can make a more aggressive
2687assumption: because the ``undef`` is allowed to be an arbitrary value,
2688we are allowed to assume that it could be zero. Since a divide by zero
2689has *undefined behavior*, we are allowed to assume that the operation
2690does not execute at all. This allows us to delete the divide and all
2691code after it. Because the undefined operation "can't happen", the
2692optimizer can assume that it occurs in dead code.
2693
2694.. code-block:: llvm
2695
2696 a: store undef -> %X
2697 b: store %X -> undef
2698 Safe:
2699 a: <deleted>
2700 b: unreachable
2701
2702These examples reiterate the ``fdiv`` example: a store *of* an undefined
2703value can be assumed to not have any effect; we can assume that the
2704value is overwritten with bits that happen to match what was already
2705there. However, a store *to* an undefined location could clobber
2706arbitrary memory, therefore, it has undefined behavior.
2707
2708.. _poisonvalues:
2709
2710Poison Values
2711-------------
2712
2713Poison values are similar to :ref:`undef values <undefvalues>`, however
2714they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002715that cannot evoke side effects has nevertheless detected a condition
2716that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002717
2718There is currently no way of representing a poison value in the IR; they
2719only exist when produced by operations such as :ref:`add <i_add>` with
2720the ``nsw`` flag.
2721
2722Poison value behavior is defined in terms of value *dependence*:
2723
2724- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2725- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2726 their dynamic predecessor basic block.
2727- Function arguments depend on the corresponding actual argument values
2728 in the dynamic callers of their functions.
2729- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2730 instructions that dynamically transfer control back to them.
2731- :ref:`Invoke <i_invoke>` instructions depend on the
2732 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2733 call instructions that dynamically transfer control back to them.
2734- Non-volatile loads and stores depend on the most recent stores to all
2735 of the referenced memory addresses, following the order in the IR
2736 (including loads and stores implied by intrinsics such as
2737 :ref:`@llvm.memcpy <int_memcpy>`.)
2738- An instruction with externally visible side effects depends on the
2739 most recent preceding instruction with externally visible side
2740 effects, following the order in the IR. (This includes :ref:`volatile
2741 operations <volatile>`.)
2742- An instruction *control-depends* on a :ref:`terminator
2743 instruction <terminators>` if the terminator instruction has
2744 multiple successors and the instruction is always executed when
2745 control transfers to one of the successors, and may not be executed
2746 when control is transferred to another.
2747- Additionally, an instruction also *control-depends* on a terminator
2748 instruction if the set of instructions it otherwise depends on would
2749 be different if the terminator had transferred control to a different
2750 successor.
2751- Dependence is transitive.
2752
Richard Smith32dbdf62014-07-31 04:25:36 +00002753Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2754with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002755on a poison value has undefined behavior.
2756
2757Here are some examples:
2758
2759.. code-block:: llvm
2760
2761 entry:
2762 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2763 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002764 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002765 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2766
2767 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002768 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002769
2770 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2771
2772 %narrowaddr = bitcast i32* @g to i16*
2773 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002774 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2775 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002776
2777 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2778 br i1 %cmp, label %true, label %end ; Branch to either destination.
2779
2780 true:
2781 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2782 ; it has undefined behavior.
2783 br label %end
2784
2785 end:
2786 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2787 ; Both edges into this PHI are
2788 ; control-dependent on %cmp, so this
2789 ; always results in a poison value.
2790
2791 store volatile i32 0, i32* @g ; This would depend on the store in %true
2792 ; if %cmp is true, or the store in %entry
2793 ; otherwise, so this is undefined behavior.
2794
2795 br i1 %cmp, label %second_true, label %second_end
2796 ; The same branch again, but this time the
2797 ; true block doesn't have side effects.
2798
2799 second_true:
2800 ; No side effects!
2801 ret void
2802
2803 second_end:
2804 store volatile i32 0, i32* @g ; This time, the instruction always depends
2805 ; on the store in %end. Also, it is
2806 ; control-equivalent to %end, so this is
2807 ; well-defined (ignoring earlier undefined
2808 ; behavior in this example).
2809
2810.. _blockaddress:
2811
2812Addresses of Basic Blocks
2813-------------------------
2814
2815``blockaddress(@function, %block)``
2816
2817The '``blockaddress``' constant computes the address of the specified
2818basic block in the specified function, and always has an ``i8*`` type.
2819Taking the address of the entry block is illegal.
2820
2821This value only has defined behavior when used as an operand to the
2822':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2823against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002824undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002825no label is equal to the null pointer. This may be passed around as an
2826opaque pointer sized value as long as the bits are not inspected. This
2827allows ``ptrtoint`` and arithmetic to be performed on these values so
2828long as the original value is reconstituted before the ``indirectbr``
2829instruction.
2830
2831Finally, some targets may provide defined semantics when using the value
2832as the operand to an inline assembly, but that is target specific.
2833
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002834.. _constantexprs:
2835
Sean Silvab084af42012-12-07 10:36:55 +00002836Constant Expressions
2837--------------------
2838
2839Constant expressions are used to allow expressions involving other
2840constants to be used as constants. Constant expressions may be of any
2841:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2842that does not have side effects (e.g. load and call are not supported).
2843The following is the syntax for constant expressions:
2844
2845``trunc (CST to TYPE)``
2846 Truncate a constant to another type. The bit size of CST must be
2847 larger than the bit size of TYPE. Both types must be integers.
2848``zext (CST to TYPE)``
2849 Zero extend a constant to another type. The bit size of CST must be
2850 smaller than the bit size of TYPE. Both types must be integers.
2851``sext (CST to TYPE)``
2852 Sign extend a constant to another type. The bit size of CST must be
2853 smaller than the bit size of TYPE. Both types must be integers.
2854``fptrunc (CST to TYPE)``
2855 Truncate a floating point constant to another floating point type.
2856 The size of CST must be larger than the size of TYPE. Both types
2857 must be floating point.
2858``fpext (CST to TYPE)``
2859 Floating point extend a constant to another type. The size of CST
2860 must be smaller or equal to the size of TYPE. Both types must be
2861 floating point.
2862``fptoui (CST to TYPE)``
2863 Convert a floating point constant to the corresponding unsigned
2864 integer constant. TYPE must be a scalar or vector integer type. CST
2865 must be of scalar or vector floating point type. Both CST and TYPE
2866 must be scalars, or vectors of the same number of elements. If the
2867 value won't fit in the integer type, the results are undefined.
2868``fptosi (CST to TYPE)``
2869 Convert a floating point constant to the corresponding signed
2870 integer constant. TYPE must be a scalar or vector integer type. CST
2871 must be of scalar or vector floating point type. Both CST and TYPE
2872 must be scalars, or vectors of the same number of elements. If the
2873 value won't fit in the integer type, the results are undefined.
2874``uitofp (CST to TYPE)``
2875 Convert an unsigned integer constant to the corresponding floating
2876 point constant. TYPE must be a scalar or vector floating point type.
2877 CST must be of scalar or vector integer type. Both CST and TYPE must
2878 be scalars, or vectors of the same number of elements. If the value
2879 won't fit in the floating point type, the results are undefined.
2880``sitofp (CST to TYPE)``
2881 Convert a signed integer constant to the corresponding floating
2882 point constant. TYPE must be a scalar or vector floating point type.
2883 CST must be of scalar or vector integer type. Both CST and TYPE must
2884 be scalars, or vectors of the same number of elements. If the value
2885 won't fit in the floating point type, the results are undefined.
2886``ptrtoint (CST to TYPE)``
2887 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002888 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002889 pointer type. The ``CST`` value is zero extended, truncated, or
2890 unchanged to make it fit in ``TYPE``.
2891``inttoptr (CST to TYPE)``
2892 Convert an integer constant to a pointer constant. TYPE must be a
2893 pointer type. CST must be of integer type. The CST value is zero
2894 extended, truncated, or unchanged to make it fit in a pointer size.
2895 This one is *really* dangerous!
2896``bitcast (CST to TYPE)``
2897 Convert a constant, CST, to another TYPE. The constraints of the
2898 operands are the same as those for the :ref:`bitcast
2899 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002900``addrspacecast (CST to TYPE)``
2901 Convert a constant pointer or constant vector of pointer, CST, to another
2902 TYPE in a different address space. The constraints of the operands are the
2903 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002904``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002905 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2906 constants. As with the :ref:`getelementptr <i_getelementptr>`
2907 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002908 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002909``select (COND, VAL1, VAL2)``
2910 Perform the :ref:`select operation <i_select>` on constants.
2911``icmp COND (VAL1, VAL2)``
2912 Performs the :ref:`icmp operation <i_icmp>` on constants.
2913``fcmp COND (VAL1, VAL2)``
2914 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2915``extractelement (VAL, IDX)``
2916 Perform the :ref:`extractelement operation <i_extractelement>` on
2917 constants.
2918``insertelement (VAL, ELT, IDX)``
2919 Perform the :ref:`insertelement operation <i_insertelement>` on
2920 constants.
2921``shufflevector (VEC1, VEC2, IDXMASK)``
2922 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2923 constants.
2924``extractvalue (VAL, IDX0, IDX1, ...)``
2925 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2926 constants. The index list is interpreted in a similar manner as
2927 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2928 least one index value must be specified.
2929``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2930 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2931 The index list is interpreted in a similar manner as indices in a
2932 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2933 value must be specified.
2934``OPCODE (LHS, RHS)``
2935 Perform the specified operation of the LHS and RHS constants. OPCODE
2936 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2937 binary <bitwiseops>` operations. The constraints on operands are
2938 the same as those for the corresponding instruction (e.g. no bitwise
2939 operations on floating point values are allowed).
2940
2941Other Values
2942============
2943
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002944.. _inlineasmexprs:
2945
Sean Silvab084af42012-12-07 10:36:55 +00002946Inline Assembler Expressions
2947----------------------------
2948
2949LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002950Inline Assembly <moduleasm>`) through the use of a special value. This value
2951represents the inline assembler as a template string (containing the
2952instructions to emit), a list of operand constraints (stored as a string), a
2953flag that indicates whether or not the inline asm expression has side effects,
2954and a flag indicating whether the function containing the asm needs to align its
2955stack conservatively.
2956
2957The template string supports argument substitution of the operands using "``$``"
2958followed by a number, to indicate substitution of the given register/memory
2959location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2960be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2961operand (See :ref:`inline-asm-modifiers`).
2962
2963A literal "``$``" may be included by using "``$$``" in the template. To include
2964other special characters into the output, the usual "``\XX``" escapes may be
2965used, just as in other strings. Note that after template substitution, the
2966resulting assembly string is parsed by LLVM's integrated assembler unless it is
2967disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2968syntax known to LLVM.
2969
2970LLVM's support for inline asm is modeled closely on the requirements of Clang's
2971GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2972modifier codes listed here are similar or identical to those in GCC's inline asm
2973support. However, to be clear, the syntax of the template and constraint strings
2974described here is *not* the same as the syntax accepted by GCC and Clang, and,
2975while most constraint letters are passed through as-is by Clang, some get
2976translated to other codes when converting from the C source to the LLVM
2977assembly.
2978
2979An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002980
2981.. code-block:: llvm
2982
2983 i32 (i32) asm "bswap $0", "=r,r"
2984
2985Inline assembler expressions may **only** be used as the callee operand
2986of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2987Thus, typically we have:
2988
2989.. code-block:: llvm
2990
2991 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2992
2993Inline asms with side effects not visible in the constraint list must be
2994marked as having side effects. This is done through the use of the
2995'``sideeffect``' keyword, like so:
2996
2997.. code-block:: llvm
2998
2999 call void asm sideeffect "eieio", ""()
3000
3001In some cases inline asms will contain code that will not work unless
3002the stack is aligned in some way, such as calls or SSE instructions on
3003x86, yet will not contain code that does that alignment within the asm.
3004The compiler should make conservative assumptions about what the asm
3005might contain and should generate its usual stack alignment code in the
3006prologue if the '``alignstack``' keyword is present:
3007
3008.. code-block:: llvm
3009
3010 call void asm alignstack "eieio", ""()
3011
3012Inline asms also support using non-standard assembly dialects. The
3013assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3014the inline asm is using the Intel dialect. Currently, ATT and Intel are
3015the only supported dialects. An example is:
3016
3017.. code-block:: llvm
3018
3019 call void asm inteldialect "eieio", ""()
3020
3021If multiple keywords appear the '``sideeffect``' keyword must come
3022first, the '``alignstack``' keyword second and the '``inteldialect``'
3023keyword last.
3024
James Y Knightbc832ed2015-07-08 18:08:36 +00003025Inline Asm Constraint String
3026^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3027
3028The constraint list is a comma-separated string, each element containing one or
3029more constraint codes.
3030
3031For each element in the constraint list an appropriate register or memory
3032operand will be chosen, and it will be made available to assembly template
3033string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3034second, etc.
3035
3036There are three different types of constraints, which are distinguished by a
3037prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3038constraints must always be given in that order: outputs first, then inputs, then
3039clobbers. They cannot be intermingled.
3040
3041There are also three different categories of constraint codes:
3042
3043- Register constraint. This is either a register class, or a fixed physical
3044 register. This kind of constraint will allocate a register, and if necessary,
3045 bitcast the argument or result to the appropriate type.
3046- Memory constraint. This kind of constraint is for use with an instruction
3047 taking a memory operand. Different constraints allow for different addressing
3048 modes used by the target.
3049- Immediate value constraint. This kind of constraint is for an integer or other
3050 immediate value which can be rendered directly into an instruction. The
3051 various target-specific constraints allow the selection of a value in the
3052 proper range for the instruction you wish to use it with.
3053
3054Output constraints
3055""""""""""""""""""
3056
3057Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3058indicates that the assembly will write to this operand, and the operand will
3059then be made available as a return value of the ``asm`` expression. Output
3060constraints do not consume an argument from the call instruction. (Except, see
3061below about indirect outputs).
3062
3063Normally, it is expected that no output locations are written to by the assembly
3064expression until *all* of the inputs have been read. As such, LLVM may assign
3065the same register to an output and an input. If this is not safe (e.g. if the
3066assembly contains two instructions, where the first writes to one output, and
3067the second reads an input and writes to a second output), then the "``&``"
3068modifier must be used (e.g. "``=&r``") to specify that the output is an
3069"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3070will not use the same register for any inputs (other than an input tied to this
3071output).
3072
3073Input constraints
3074"""""""""""""""""
3075
3076Input constraints do not have a prefix -- just the constraint codes. Each input
3077constraint will consume one argument from the call instruction. It is not
3078permitted for the asm to write to any input register or memory location (unless
3079that input is tied to an output). Note also that multiple inputs may all be
3080assigned to the same register, if LLVM can determine that they necessarily all
3081contain the same value.
3082
3083Instead of providing a Constraint Code, input constraints may also "tie"
3084themselves to an output constraint, by providing an integer as the constraint
3085string. Tied inputs still consume an argument from the call instruction, and
3086take up a position in the asm template numbering as is usual -- they will simply
3087be constrained to always use the same register as the output they've been tied
3088to. For example, a constraint string of "``=r,0``" says to assign a register for
3089output, and use that register as an input as well (it being the 0'th
3090constraint).
3091
3092It is permitted to tie an input to an "early-clobber" output. In that case, no
3093*other* input may share the same register as the input tied to the early-clobber
3094(even when the other input has the same value).
3095
3096You may only tie an input to an output which has a register constraint, not a
3097memory constraint. Only a single input may be tied to an output.
3098
3099There is also an "interesting" feature which deserves a bit of explanation: if a
3100register class constraint allocates a register which is too small for the value
3101type operand provided as input, the input value will be split into multiple
3102registers, and all of them passed to the inline asm.
3103
3104However, this feature is often not as useful as you might think.
3105
3106Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3107architectures that have instructions which operate on multiple consecutive
3108instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3109SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3110hardware then loads into both the named register, and the next register. This
3111feature of inline asm would not be useful to support that.)
3112
3113A few of the targets provide a template string modifier allowing explicit access
3114to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3115``D``). On such an architecture, you can actually access the second allocated
3116register (yet, still, not any subsequent ones). But, in that case, you're still
3117probably better off simply splitting the value into two separate operands, for
3118clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3119despite existing only for use with this feature, is not really a good idea to
3120use)
3121
3122Indirect inputs and outputs
3123"""""""""""""""""""""""""""
3124
3125Indirect output or input constraints can be specified by the "``*``" modifier
3126(which goes after the "``=``" in case of an output). This indicates that the asm
3127will write to or read from the contents of an *address* provided as an input
3128argument. (Note that in this way, indirect outputs act more like an *input* than
3129an output: just like an input, they consume an argument of the call expression,
3130rather than producing a return value. An indirect output constraint is an
3131"output" only in that the asm is expected to write to the contents of the input
3132memory location, instead of just read from it).
3133
3134This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3135address of a variable as a value.
3136
3137It is also possible to use an indirect *register* constraint, but only on output
3138(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3139value normally, and then, separately emit a store to the address provided as
3140input, after the provided inline asm. (It's not clear what value this
3141functionality provides, compared to writing the store explicitly after the asm
3142statement, and it can only produce worse code, since it bypasses many
3143optimization passes. I would recommend not using it.)
3144
3145
3146Clobber constraints
3147"""""""""""""""""""
3148
3149A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3150consume an input operand, nor generate an output. Clobbers cannot use any of the
3151general constraint code letters -- they may use only explicit register
3152constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3153"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3154memory locations -- not only the memory pointed to by a declared indirect
3155output.
3156
3157
3158Constraint Codes
3159""""""""""""""""
3160After a potential prefix comes constraint code, or codes.
3161
3162A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3163followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3164(e.g. "``{eax}``").
3165
3166The one and two letter constraint codes are typically chosen to be the same as
3167GCC's constraint codes.
3168
3169A single constraint may include one or more than constraint code in it, leaving
3170it up to LLVM to choose which one to use. This is included mainly for
3171compatibility with the translation of GCC inline asm coming from clang.
3172
3173There are two ways to specify alternatives, and either or both may be used in an
3174inline asm constraint list:
3175
31761) Append the codes to each other, making a constraint code set. E.g. "``im``"
3177 or "``{eax}m``". This means "choose any of the options in the set". The
3178 choice of constraint is made independently for each constraint in the
3179 constraint list.
3180
31812) Use "``|``" between constraint code sets, creating alternatives. Every
3182 constraint in the constraint list must have the same number of alternative
3183 sets. With this syntax, the same alternative in *all* of the items in the
3184 constraint list will be chosen together.
3185
3186Putting those together, you might have a two operand constraint string like
3187``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3188operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3189may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3190
3191However, the use of either of the alternatives features is *NOT* recommended, as
3192LLVM is not able to make an intelligent choice about which one to use. (At the
3193point it currently needs to choose, not enough information is available to do so
3194in a smart way.) Thus, it simply tries to make a choice that's most likely to
3195compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3196always choose to use memory, not registers). And, if given multiple registers,
3197or multiple register classes, it will simply choose the first one. (In fact, it
3198doesn't currently even ensure explicitly specified physical registers are
3199unique, so specifying multiple physical registers as alternatives, like
3200``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3201intended.)
3202
3203Supported Constraint Code List
3204""""""""""""""""""""""""""""""
3205
3206The constraint codes are, in general, expected to behave the same way they do in
3207GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3208inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3209and GCC likely indicates a bug in LLVM.
3210
3211Some constraint codes are typically supported by all targets:
3212
3213- ``r``: A register in the target's general purpose register class.
3214- ``m``: A memory address operand. It is target-specific what addressing modes
3215 are supported, typical examples are register, or register + register offset,
3216 or register + immediate offset (of some target-specific size).
3217- ``i``: An integer constant (of target-specific width). Allows either a simple
3218 immediate, or a relocatable value.
3219- ``n``: An integer constant -- *not* including relocatable values.
3220- ``s``: An integer constant, but allowing *only* relocatable values.
3221- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3222 useful to pass a label for an asm branch or call.
3223
3224 .. FIXME: but that surely isn't actually okay to jump out of an asm
3225 block without telling llvm about the control transfer???)
3226
3227- ``{register-name}``: Requires exactly the named physical register.
3228
3229Other constraints are target-specific:
3230
3231AArch64:
3232
3233- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3234- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3235 i.e. 0 to 4095 with optional shift by 12.
3236- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3237 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3238- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3239 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3240- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3241 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3242- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3243 32-bit register. This is a superset of ``K``: in addition to the bitmask
3244 immediate, also allows immediate integers which can be loaded with a single
3245 ``MOVZ`` or ``MOVL`` instruction.
3246- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3247 64-bit register. This is a superset of ``L``.
3248- ``Q``: Memory address operand must be in a single register (no
3249 offsets). (However, LLVM currently does this for the ``m`` constraint as
3250 well.)
3251- ``r``: A 32 or 64-bit integer register (W* or X*).
3252- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3253- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3254
3255AMDGPU:
3256
3257- ``r``: A 32 or 64-bit integer register.
3258- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3259- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3260
3261
3262All ARM modes:
3263
3264- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3265 operand. Treated the same as operand ``m``, at the moment.
3266
3267ARM and ARM's Thumb2 mode:
3268
3269- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3270- ``I``: An immediate integer valid for a data-processing instruction.
3271- ``J``: An immediate integer between -4095 and 4095.
3272- ``K``: An immediate integer whose bitwise inverse is valid for a
3273 data-processing instruction. (Can be used with template modifier "``B``" to
3274 print the inverted value).
3275- ``L``: An immediate integer whose negation is valid for a data-processing
3276 instruction. (Can be used with template modifier "``n``" to print the negated
3277 value).
3278- ``M``: A power of two or a integer between 0 and 32.
3279- ``N``: Invalid immediate constraint.
3280- ``O``: Invalid immediate constraint.
3281- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3282- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3283 as ``r``.
3284- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3285 invalid.
3286- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3287 ``d0-d31``, or ``q0-q15``.
3288- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3289 ``d0-d7``, or ``q0-q3``.
3290- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3291 ``s0-s31``.
3292
3293ARM's Thumb1 mode:
3294
3295- ``I``: An immediate integer between 0 and 255.
3296- ``J``: An immediate integer between -255 and -1.
3297- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3298 some amount.
3299- ``L``: An immediate integer between -7 and 7.
3300- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3301- ``N``: An immediate integer between 0 and 31.
3302- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3303- ``r``: A low 32-bit GPR register (``r0-r7``).
3304- ``l``: A low 32-bit GPR register (``r0-r7``).
3305- ``h``: A high GPR register (``r0-r7``).
3306- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3307 ``d0-d31``, or ``q0-q15``.
3308- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3309 ``d0-d7``, or ``q0-q3``.
3310- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3311 ``s0-s31``.
3312
3313
3314Hexagon:
3315
3316- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3317 at the moment.
3318- ``r``: A 32 or 64-bit register.
3319
3320MSP430:
3321
3322- ``r``: An 8 or 16-bit register.
3323
3324MIPS:
3325
3326- ``I``: An immediate signed 16-bit integer.
3327- ``J``: An immediate integer zero.
3328- ``K``: An immediate unsigned 16-bit integer.
3329- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3330- ``N``: An immediate integer between -65535 and -1.
3331- ``O``: An immediate signed 15-bit integer.
3332- ``P``: An immediate integer between 1 and 65535.
3333- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3334 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3335- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3336 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3337 ``m``.
3338- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3339 ``sc`` instruction on the given subtarget (details vary).
3340- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3341- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003342 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3343 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003344- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3345 ``25``).
3346- ``l``: The ``lo`` register, 32 or 64-bit.
3347- ``x``: Invalid.
3348
3349NVPTX:
3350
3351- ``b``: A 1-bit integer register.
3352- ``c`` or ``h``: A 16-bit integer register.
3353- ``r``: A 32-bit integer register.
3354- ``l`` or ``N``: A 64-bit integer register.
3355- ``f``: A 32-bit float register.
3356- ``d``: A 64-bit float register.
3357
3358
3359PowerPC:
3360
3361- ``I``: An immediate signed 16-bit integer.
3362- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3363- ``K``: An immediate unsigned 16-bit integer.
3364- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3365- ``M``: An immediate integer greater than 31.
3366- ``N``: An immediate integer that is an exact power of 2.
3367- ``O``: The immediate integer constant 0.
3368- ``P``: An immediate integer constant whose negation is a signed 16-bit
3369 constant.
3370- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3371 treated the same as ``m``.
3372- ``r``: A 32 or 64-bit integer register.
3373- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3374 ``R1-R31``).
3375- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3376 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3377- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3378 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3379 altivec vector register (``V0-V31``).
3380
3381 .. FIXME: is this a bug that v accepts QPX registers? I think this
3382 is supposed to only use the altivec vector registers?
3383
3384- ``y``: Condition register (``CR0-CR7``).
3385- ``wc``: An individual CR bit in a CR register.
3386- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3387 register set (overlapping both the floating-point and vector register files).
3388- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3389 set.
3390
3391Sparc:
3392
3393- ``I``: An immediate 13-bit signed integer.
3394- ``r``: A 32-bit integer register.
3395
3396SystemZ:
3397
3398- ``I``: An immediate unsigned 8-bit integer.
3399- ``J``: An immediate unsigned 12-bit integer.
3400- ``K``: An immediate signed 16-bit integer.
3401- ``L``: An immediate signed 20-bit integer.
3402- ``M``: An immediate integer 0x7fffffff.
3403- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3404 ``m``, at the moment.
3405- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3406- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3407 address context evaluates as zero).
3408- ``h``: A 32-bit value in the high part of a 64bit data register
3409 (LLVM-specific)
3410- ``f``: A 32, 64, or 128-bit floating point register.
3411
3412X86:
3413
3414- ``I``: An immediate integer between 0 and 31.
3415- ``J``: An immediate integer between 0 and 64.
3416- ``K``: An immediate signed 8-bit integer.
3417- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3418 0xffffffff.
3419- ``M``: An immediate integer between 0 and 3.
3420- ``N``: An immediate unsigned 8-bit integer.
3421- ``O``: An immediate integer between 0 and 127.
3422- ``e``: An immediate 32-bit signed integer.
3423- ``Z``: An immediate 32-bit unsigned integer.
3424- ``o``, ``v``: Treated the same as ``m``, at the moment.
3425- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3426 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3427 registers, and on X86-64, it is all of the integer registers.
3428- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3429 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3430- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3431- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3432 existed since i386, and can be accessed without the REX prefix.
3433- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3434- ``y``: A 64-bit MMX register, if MMX is enabled.
3435- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3436 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3437 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3438 512-bit vector operand in an AVX512 register, Otherwise, an error.
3439- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3440- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3441 32-bit mode, a 64-bit integer operand will get split into two registers). It
3442 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3443 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3444 you're better off splitting it yourself, before passing it to the asm
3445 statement.
3446
3447XCore:
3448
3449- ``r``: A 32-bit integer register.
3450
3451
3452.. _inline-asm-modifiers:
3453
3454Asm template argument modifiers
3455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3456
3457In the asm template string, modifiers can be used on the operand reference, like
3458"``${0:n}``".
3459
3460The modifiers are, in general, expected to behave the same way they do in
3461GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3462inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3463and GCC likely indicates a bug in LLVM.
3464
3465Target-independent:
3466
Sean Silvaa1190322015-08-06 22:56:48 +00003467- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003468 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3469- ``n``: Negate and print immediate integer constant unadorned, without the
3470 target-specific immediate punctuation (e.g. no ``$`` prefix).
3471- ``l``: Print as an unadorned label, without the target-specific label
3472 punctuation (e.g. no ``$`` prefix).
3473
3474AArch64:
3475
3476- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3477 instead of ``x30``, print ``w30``.
3478- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3479- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3480 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3481 ``v*``.
3482
3483AMDGPU:
3484
3485- ``r``: No effect.
3486
3487ARM:
3488
3489- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3490 register).
3491- ``P``: No effect.
3492- ``q``: No effect.
3493- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3494 as ``d4[1]`` instead of ``s9``)
3495- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3496 prefix.
3497- ``L``: Print the low 16-bits of an immediate integer constant.
3498- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3499 register operands subsequent to the specified one (!), so use carefully.
3500- ``Q``: Print the low-order register of a register-pair, or the low-order
3501 register of a two-register operand.
3502- ``R``: Print the high-order register of a register-pair, or the high-order
3503 register of a two-register operand.
3504- ``H``: Print the second register of a register-pair. (On a big-endian system,
3505 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3506 to ``R``.)
3507
3508 .. FIXME: H doesn't currently support printing the second register
3509 of a two-register operand.
3510
3511- ``e``: Print the low doubleword register of a NEON quad register.
3512- ``f``: Print the high doubleword register of a NEON quad register.
3513- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3514 adornment.
3515
3516Hexagon:
3517
3518- ``L``: Print the second register of a two-register operand. Requires that it
3519 has been allocated consecutively to the first.
3520
3521 .. FIXME: why is it restricted to consecutive ones? And there's
3522 nothing that ensures that happens, is there?
3523
3524- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3525 nothing. Used to print 'addi' vs 'add' instructions.
3526
3527MSP430:
3528
3529No additional modifiers.
3530
3531MIPS:
3532
3533- ``X``: Print an immediate integer as hexadecimal
3534- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3535- ``d``: Print an immediate integer as decimal.
3536- ``m``: Subtract one and print an immediate integer as decimal.
3537- ``z``: Print $0 if an immediate zero, otherwise print normally.
3538- ``L``: Print the low-order register of a two-register operand, or prints the
3539 address of the low-order word of a double-word memory operand.
3540
3541 .. FIXME: L seems to be missing memory operand support.
3542
3543- ``M``: Print the high-order register of a two-register operand, or prints the
3544 address of the high-order word of a double-word memory operand.
3545
3546 .. FIXME: M seems to be missing memory operand support.
3547
3548- ``D``: Print the second register of a two-register operand, or prints the
3549 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3550 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3551 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003552- ``w``: No effect. Provided for compatibility with GCC which requires this
3553 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3554 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003555
3556NVPTX:
3557
3558- ``r``: No effect.
3559
3560PowerPC:
3561
3562- ``L``: Print the second register of a two-register operand. Requires that it
3563 has been allocated consecutively to the first.
3564
3565 .. FIXME: why is it restricted to consecutive ones? And there's
3566 nothing that ensures that happens, is there?
3567
3568- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3569 nothing. Used to print 'addi' vs 'add' instructions.
3570- ``y``: For a memory operand, prints formatter for a two-register X-form
3571 instruction. (Currently always prints ``r0,OPERAND``).
3572- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3573 otherwise. (NOTE: LLVM does not support update form, so this will currently
3574 always print nothing)
3575- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3576 not support indexed form, so this will currently always print nothing)
3577
3578Sparc:
3579
3580- ``r``: No effect.
3581
3582SystemZ:
3583
3584SystemZ implements only ``n``, and does *not* support any of the other
3585target-independent modifiers.
3586
3587X86:
3588
3589- ``c``: Print an unadorned integer or symbol name. (The latter is
3590 target-specific behavior for this typically target-independent modifier).
3591- ``A``: Print a register name with a '``*``' before it.
3592- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3593 operand.
3594- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3595 memory operand.
3596- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3597 operand.
3598- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3599 operand.
3600- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3601 available, otherwise the 32-bit register name; do nothing on a memory operand.
3602- ``n``: Negate and print an unadorned integer, or, for operands other than an
3603 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3604 the operand. (The behavior for relocatable symbol expressions is a
3605 target-specific behavior for this typically target-independent modifier)
3606- ``H``: Print a memory reference with additional offset +8.
3607- ``P``: Print a memory reference or operand for use as the argument of a call
3608 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3609
3610XCore:
3611
3612No additional modifiers.
3613
3614
Sean Silvab084af42012-12-07 10:36:55 +00003615Inline Asm Metadata
3616^^^^^^^^^^^^^^^^^^^
3617
3618The call instructions that wrap inline asm nodes may have a
3619"``!srcloc``" MDNode attached to it that contains a list of constant
3620integers. If present, the code generator will use the integer as the
3621location cookie value when report errors through the ``LLVMContext``
3622error reporting mechanisms. This allows a front-end to correlate backend
3623errors that occur with inline asm back to the source code that produced
3624it. For example:
3625
3626.. code-block:: llvm
3627
3628 call void asm sideeffect "something bad", ""(), !srcloc !42
3629 ...
3630 !42 = !{ i32 1234567 }
3631
3632It is up to the front-end to make sense of the magic numbers it places
3633in the IR. If the MDNode contains multiple constants, the code generator
3634will use the one that corresponds to the line of the asm that the error
3635occurs on.
3636
3637.. _metadata:
3638
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003639Metadata
3640========
Sean Silvab084af42012-12-07 10:36:55 +00003641
3642LLVM IR allows metadata to be attached to instructions in the program
3643that can convey extra information about the code to the optimizers and
3644code generator. One example application of metadata is source-level
3645debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003646
Sean Silvaa1190322015-08-06 22:56:48 +00003647Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003648``call`` instruction, it uses the ``metadata`` type.
3649
3650All metadata are identified in syntax by a exclamation point ('``!``').
3651
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003652.. _metadata-string:
3653
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003654Metadata Nodes and Metadata Strings
3655-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003656
3657A metadata string is a string surrounded by double quotes. It can
3658contain any character by escaping non-printable characters with
3659"``\xx``" where "``xx``" is the two digit hex code. For example:
3660"``!"test\00"``".
3661
3662Metadata nodes are represented with notation similar to structure
3663constants (a comma separated list of elements, surrounded by braces and
3664preceded by an exclamation point). Metadata nodes can have any values as
3665their operand. For example:
3666
3667.. code-block:: llvm
3668
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003669 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003670
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003671Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3672
3673.. code-block:: llvm
3674
3675 !0 = distinct !{!"test\00", i32 10}
3676
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003677``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003678content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003679when metadata operands change.
3680
Sean Silvab084af42012-12-07 10:36:55 +00003681A :ref:`named metadata <namedmetadatastructure>` is a collection of
3682metadata nodes, which can be looked up in the module symbol table. For
3683example:
3684
3685.. code-block:: llvm
3686
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003687 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003688
3689Metadata can be used as function arguments. Here ``llvm.dbg.value``
3690function is using two metadata arguments:
3691
3692.. code-block:: llvm
3693
3694 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3695
Peter Collingbourne50108682015-11-06 02:41:02 +00003696Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3697to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003698
3699.. code-block:: llvm
3700
3701 %indvar.next = add i64 %indvar, 1, !dbg !21
3702
Peter Collingbourne50108682015-11-06 02:41:02 +00003703Metadata can also be attached to a function definition. Here metadata ``!22``
3704is attached to the ``foo`` function using the ``!dbg`` identifier:
3705
3706.. code-block:: llvm
3707
3708 define void @foo() !dbg !22 {
3709 ret void
3710 }
3711
Sean Silvab084af42012-12-07 10:36:55 +00003712More information about specific metadata nodes recognized by the
3713optimizers and code generator is found below.
3714
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003715.. _specialized-metadata:
3716
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003717Specialized Metadata Nodes
3718^^^^^^^^^^^^^^^^^^^^^^^^^^
3719
3720Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003721to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003722order.
3723
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003724These aren't inherently debug info centric, but currently all the specialized
3725metadata nodes are related to debug info.
3726
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003727.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003728
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003729DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003730"""""""""""""
3731
Sean Silvaa1190322015-08-06 22:56:48 +00003732``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003733``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3734tuples containing the debug info to be emitted along with the compile unit,
3735regardless of code optimizations (some nodes are only emitted if there are
3736references to them from instructions).
3737
3738.. code-block:: llvm
3739
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003740 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003741 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3742 splitDebugFilename: "abc.debug", emissionKind: 1,
3743 enums: !2, retainedTypes: !3, subprograms: !4,
3744 globals: !5, imports: !6)
3745
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003746Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003747specific compilation unit. File descriptors are defined using this scope.
3748These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003749keep track of subprograms, global variables, type information, and imported
3750entities (declarations and namespaces).
3751
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003752.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003753
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003754DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003755""""""
3756
Sean Silvaa1190322015-08-06 22:56:48 +00003757``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003758
3759.. code-block:: llvm
3760
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003761 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003762
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003763Files are sometimes used in ``scope:`` fields, and are the only valid target
3764for ``file:`` fields.
3765
Michael Kuperstein605308a2015-05-14 10:58:59 +00003766.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003767
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003768DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003769"""""""""""
3770
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003771``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003772``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003773
3774.. code-block:: llvm
3775
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003776 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003777 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003778 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003779
Sean Silvaa1190322015-08-06 22:56:48 +00003780The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003781following:
3782
3783.. code-block:: llvm
3784
3785 DW_ATE_address = 1
3786 DW_ATE_boolean = 2
3787 DW_ATE_float = 4
3788 DW_ATE_signed = 5
3789 DW_ATE_signed_char = 6
3790 DW_ATE_unsigned = 7
3791 DW_ATE_unsigned_char = 8
3792
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003793.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003796""""""""""""""""
3797
Sean Silvaa1190322015-08-06 22:56:48 +00003798``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003799refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003800types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003801represents a function with no return value (such as ``void foo() {}`` in C++).
3802
3803.. code-block:: llvm
3804
3805 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3806 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003807 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003808
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003809.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003810
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003811DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003812"""""""""""""
3813
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003814``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003815qualified types.
3816
3817.. code-block:: llvm
3818
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003819 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003820 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003821 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003822 align: 32)
3823
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003824The following ``tag:`` values are valid:
3825
3826.. code-block:: llvm
3827
3828 DW_TAG_formal_parameter = 5
3829 DW_TAG_member = 13
3830 DW_TAG_pointer_type = 15
3831 DW_TAG_reference_type = 16
3832 DW_TAG_typedef = 22
3833 DW_TAG_ptr_to_member_type = 31
3834 DW_TAG_const_type = 38
3835 DW_TAG_volatile_type = 53
3836 DW_TAG_restrict_type = 55
3837
3838``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003839<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3840is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003841``DW_TAG_formal_parameter`` is used to define a member which is a formal
3842argument of a subprogram.
3843
3844``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3845
3846``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3847``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3848``baseType:``.
3849
3850Note that the ``void *`` type is expressed as a type derived from NULL.
3851
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855"""""""""""""""
3856
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003857``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003858structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003859
3860If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003861identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003862can refer to composite types indirectly via a :ref:`metadata string
3863<metadata-string>` that matches their identifier.
3864
3865.. code-block:: llvm
3866
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003867 !0 = !DIEnumerator(name: "SixKind", value: 7)
3868 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3869 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3870 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003871 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3872 elements: !{!0, !1, !2})
3873
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003874The following ``tag:`` values are valid:
3875
3876.. code-block:: llvm
3877
3878 DW_TAG_array_type = 1
3879 DW_TAG_class_type = 2
3880 DW_TAG_enumeration_type = 4
3881 DW_TAG_structure_type = 19
3882 DW_TAG_union_type = 23
3883 DW_TAG_subroutine_type = 21
3884 DW_TAG_inheritance = 28
3885
3886
3887For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003888descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003889level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003890array type is a native packed vector.
3891
3892For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003893descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003894value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003895``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003896
3897For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3898``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003899<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003900
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003902
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904""""""""""
3905
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003906``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003907:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003908
3909.. code-block:: llvm
3910
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003911 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3912 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3913 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003914
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003915.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003916
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003918""""""""""""
3919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3921variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003922
3923.. code-block:: llvm
3924
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003925 !0 = !DIEnumerator(name: "SixKind", value: 7)
3926 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3927 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003928
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003929DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003930"""""""""""""""""""""""
3931
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003932``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003933language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003934:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
3936.. code-block:: llvm
3937
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003938 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003940DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941""""""""""""""""""""""""
3942
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003943``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003944language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003945but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003946``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003947:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003948
3949.. code-block:: llvm
3950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003952
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003954"""""""""""
3955
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003956``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957
3958.. code-block:: llvm
3959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003961
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003962DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003963""""""""""""""""
3964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966
3967.. code-block:: llvm
3968
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003969 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003970 file: !2, line: 7, type: !3, isLocal: true,
3971 isDefinition: false, variable: i32* @foo,
3972 declaration: !4)
3973
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003974All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003975:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003976
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003977.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003978
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003979DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003980""""""""""""
3981
Peter Collingbourne50108682015-11-06 02:41:02 +00003982``DISubprogram`` nodes represent functions from the source language. A
3983``DISubprogram`` may be attached to a function definition using ``!dbg``
3984metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
3985that must be retained, even if their IR counterparts are optimized out of
3986the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003987
3988.. code-block:: llvm
3989
Peter Collingbourne50108682015-11-06 02:41:02 +00003990 define void @_Z3foov() !dbg !0 {
3991 ...
3992 }
3993
3994 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
3995 file: !2, line: 7, type: !3, isLocal: true,
3996 isDefinition: false, scopeLine: 8,
3997 containingType: !4,
3998 virtuality: DW_VIRTUALITY_pure_virtual,
3999 virtualIndex: 10, flags: DIFlagPrototyped,
4000 isOptimized: true, templateParams: !5,
4001 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004002
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004003.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004004
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004005DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004006""""""""""""""
4007
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004009<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004010two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004011fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004012
4013.. code-block:: llvm
4014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004016
4017Usually lexical blocks are ``distinct`` to prevent node merging based on
4018operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004020.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004021
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004022DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023""""""""""""""""""
4024
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004025``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004026:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027indicate textual inclusion, or the ``discriminator:`` field can be used to
4028discriminate between control flow within a single block in the source language.
4029
4030.. code-block:: llvm
4031
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004032 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4033 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4034 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004035
Michael Kuperstein605308a2015-05-14 10:58:59 +00004036.. _DILocation:
4037
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004038DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004039""""""""""
4040
Sean Silvaa1190322015-08-06 22:56:48 +00004041``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004042mandatory, and points at an :ref:`DILexicalBlockFile`, an
4043:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004044
4045.. code-block:: llvm
4046
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052"""""""""""""""
4053
Sean Silvaa1190322015-08-06 22:56:48 +00004054``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004055the ``arg:`` field is set to non-zero, then this variable is a subprogram
4056parameter, and it will be included in the ``variables:`` field of its
4057:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004059.. code-block:: llvm
4060
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004061 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4062 type: !3, flags: DIFlagArtificial)
4063 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4064 type: !3)
4065 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004066
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004067DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004068""""""""""""
4069
Sean Silvaa1190322015-08-06 22:56:48 +00004070``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004071:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4072describe how the referenced LLVM variable relates to the source language
4073variable.
4074
4075The current supported vocabulary is limited:
4076
4077- ``DW_OP_deref`` dereferences the working expression.
4078- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4079- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4080 here, respectively) of the variable piece from the working expression.
4081
4082.. code-block:: llvm
4083
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004084 !0 = !DIExpression(DW_OP_deref)
4085 !1 = !DIExpression(DW_OP_plus, 3)
4086 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4087 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090""""""""""""""
4091
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004092``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004093
4094.. code-block:: llvm
4095
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004096 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097 getter: "getFoo", attributes: 7, type: !2)
4098
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004099DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004100""""""""""""""""
4101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103compile unit.
4104
4105.. code-block:: llvm
4106
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004108 entity: !1, line: 7)
4109
Sean Silvab084af42012-12-07 10:36:55 +00004110'``tbaa``' Metadata
4111^^^^^^^^^^^^^^^^^^^
4112
4113In LLVM IR, memory does not have types, so LLVM's own type system is not
4114suitable for doing TBAA. Instead, metadata is added to the IR to
4115describe a type system of a higher level language. This can be used to
4116implement typical C/C++ TBAA, but it can also be used to implement
4117custom alias analysis behavior for other languages.
4118
4119The current metadata format is very simple. TBAA metadata nodes have up
4120to three fields, e.g.:
4121
4122.. code-block:: llvm
4123
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004124 !0 = !{ !"an example type tree" }
4125 !1 = !{ !"int", !0 }
4126 !2 = !{ !"float", !0 }
4127 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004128
4129The first field is an identity field. It can be any value, usually a
4130metadata string, which uniquely identifies the type. The most important
4131name in the tree is the name of the root node. Two trees with different
4132root node names are entirely disjoint, even if they have leaves with
4133common names.
4134
4135The second field identifies the type's parent node in the tree, or is
4136null or omitted for a root node. A type is considered to alias all of
4137its descendants and all of its ancestors in the tree. Also, a type is
4138considered to alias all types in other trees, so that bitcode produced
4139from multiple front-ends is handled conservatively.
4140
4141If the third field is present, it's an integer which if equal to 1
4142indicates that the type is "constant" (meaning
4143``pointsToConstantMemory`` should return true; see `other useful
4144AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4145
4146'``tbaa.struct``' Metadata
4147^^^^^^^^^^^^^^^^^^^^^^^^^^
4148
4149The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4150aggregate assignment operations in C and similar languages, however it
4151is defined to copy a contiguous region of memory, which is more than
4152strictly necessary for aggregate types which contain holes due to
4153padding. Also, it doesn't contain any TBAA information about the fields
4154of the aggregate.
4155
4156``!tbaa.struct`` metadata can describe which memory subregions in a
4157memcpy are padding and what the TBAA tags of the struct are.
4158
4159The current metadata format is very simple. ``!tbaa.struct`` metadata
4160nodes are a list of operands which are in conceptual groups of three.
4161For each group of three, the first operand gives the byte offset of a
4162field in bytes, the second gives its size in bytes, and the third gives
4163its tbaa tag. e.g.:
4164
4165.. code-block:: llvm
4166
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004167 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004168
4169This describes a struct with two fields. The first is at offset 0 bytes
4170with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4171and has size 4 bytes and has tbaa tag !2.
4172
4173Note that the fields need not be contiguous. In this example, there is a
41744 byte gap between the two fields. This gap represents padding which
4175does not carry useful data and need not be preserved.
4176
Hal Finkel94146652014-07-24 14:25:39 +00004177'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004179
4180``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4181noalias memory-access sets. This means that some collection of memory access
4182instructions (loads, stores, memory-accessing calls, etc.) that carry
4183``noalias`` metadata can specifically be specified not to alias with some other
4184collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004185Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004186a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004187of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004188subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004189instruction's ``noalias`` list, then the two memory accesses are assumed not to
4190alias.
Hal Finkel94146652014-07-24 14:25:39 +00004191
Hal Finkel029cde62014-07-25 15:50:02 +00004192The metadata identifying each domain is itself a list containing one or two
4193entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004194string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004195self-reference can be used to create globally unique domain names. A
4196descriptive string may optionally be provided as a second list entry.
4197
4198The metadata identifying each scope is also itself a list containing two or
4199three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004200is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004201self-reference can be used to create globally unique scope names. A metadata
4202reference to the scope's domain is the second entry. A descriptive string may
4203optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004204
4205For example,
4206
4207.. code-block:: llvm
4208
Hal Finkel029cde62014-07-25 15:50:02 +00004209 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004210 !0 = !{!0}
4211 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004212
Hal Finkel029cde62014-07-25 15:50:02 +00004213 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004214 !2 = !{!2, !0}
4215 !3 = !{!3, !0}
4216 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004217
Hal Finkel029cde62014-07-25 15:50:02 +00004218 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004219 !5 = !{!4} ; A list containing only scope !4
4220 !6 = !{!4, !3, !2}
4221 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004222
4223 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004224 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004225 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004226
Hal Finkel029cde62014-07-25 15:50:02 +00004227 ; These two instructions also don't alias (for domain !1, the set of scopes
4228 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004229 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004230 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004231
Adam Nemet0a8416f2015-05-11 08:30:28 +00004232 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004233 ; the !noalias list is not a superset of, or equal to, the scopes in the
4234 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004235 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004236 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004237
Sean Silvab084af42012-12-07 10:36:55 +00004238'``fpmath``' Metadata
4239^^^^^^^^^^^^^^^^^^^^^
4240
4241``fpmath`` metadata may be attached to any instruction of floating point
4242type. It can be used to express the maximum acceptable error in the
4243result of that instruction, in ULPs, thus potentially allowing the
4244compiler to use a more efficient but less accurate method of computing
4245it. ULP is defined as follows:
4246
4247 If ``x`` is a real number that lies between two finite consecutive
4248 floating-point numbers ``a`` and ``b``, without being equal to one
4249 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4250 distance between the two non-equal finite floating-point numbers
4251 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4252
4253The metadata node shall consist of a single positive floating point
4254number representing the maximum relative error, for example:
4255
4256.. code-block:: llvm
4257
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004258 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004259
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004260.. _range-metadata:
4261
Sean Silvab084af42012-12-07 10:36:55 +00004262'``range``' Metadata
4263^^^^^^^^^^^^^^^^^^^^
4264
Jingyue Wu37fcb592014-06-19 16:50:16 +00004265``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4266integer types. It expresses the possible ranges the loaded value or the value
4267returned by the called function at this call site is in. The ranges are
4268represented with a flattened list of integers. The loaded value or the value
4269returned is known to be in the union of the ranges defined by each consecutive
4270pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004271
4272- The type must match the type loaded by the instruction.
4273- The pair ``a,b`` represents the range ``[a,b)``.
4274- Both ``a`` and ``b`` are constants.
4275- The range is allowed to wrap.
4276- The range should not represent the full or empty set. That is,
4277 ``a!=b``.
4278
4279In addition, the pairs must be in signed order of the lower bound and
4280they must be non-contiguous.
4281
4282Examples:
4283
4284.. code-block:: llvm
4285
David Blaikiec7aabbb2015-03-04 22:06:14 +00004286 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4287 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004288 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4289 %d = invoke i8 @bar() to label %cont
4290 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004291 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004292 !0 = !{ i8 0, i8 2 }
4293 !1 = !{ i8 255, i8 2 }
4294 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4295 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004296
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004297'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004298^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004299
4300``unpredictable`` metadata may be attached to any branch or switch
4301instruction. It can be used to express the unpredictability of control
4302flow. Similar to the llvm.expect intrinsic, it may be used to alter
4303optimizations related to compare and branch instructions. The metadata
4304is treated as a boolean value; if it exists, it signals that the branch
4305or switch that it is attached to is completely unpredictable.
4306
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004307'``llvm.loop``'
4308^^^^^^^^^^^^^^^
4309
4310It is sometimes useful to attach information to loop constructs. Currently,
4311loop metadata is implemented as metadata attached to the branch instruction
4312in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004313guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004314specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004315
4316The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004317itself to avoid merging it with any other identifier metadata, e.g.,
4318during module linkage or function inlining. That is, each loop should refer
4319to their own identification metadata even if they reside in separate functions.
4320The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004321constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004322
4323.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004324
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004325 !0 = !{!0}
4326 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004327
Mark Heffernan893752a2014-07-18 19:24:51 +00004328The loop identifier metadata can be used to specify additional
4329per-loop metadata. Any operands after the first operand can be treated
4330as user-defined metadata. For example the ``llvm.loop.unroll.count``
4331suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004332
Paul Redmond5fdf8362013-05-28 20:00:34 +00004333.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004334
Paul Redmond5fdf8362013-05-28 20:00:34 +00004335 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4336 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004337 !0 = !{!0, !1}
4338 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004339
Mark Heffernan9d20e422014-07-21 23:11:03 +00004340'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004342
Mark Heffernan9d20e422014-07-21 23:11:03 +00004343Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4344used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004345vectorization width and interleave count. These metadata should be used in
4346conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004347``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4348optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004349it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004350which contains information about loop-carried memory dependencies can be helpful
4351in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004352
Mark Heffernan9d20e422014-07-21 23:11:03 +00004353'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4355
Mark Heffernan9d20e422014-07-21 23:11:03 +00004356This metadata suggests an interleave count to the loop interleaver.
4357The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004358second operand is an integer specifying the interleave count. For
4359example:
4360
4361.. code-block:: llvm
4362
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004363 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004364
Mark Heffernan9d20e422014-07-21 23:11:03 +00004365Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004366multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004367then the interleave count will be determined automatically.
4368
4369'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004371
4372This metadata selectively enables or disables vectorization for the loop. The
4373first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004374is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000043750 disables vectorization:
4376
4377.. code-block:: llvm
4378
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004379 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4380 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004381
4382'``llvm.loop.vectorize.width``' Metadata
4383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4384
4385This metadata sets the target width of the vectorizer. The first
4386operand is the string ``llvm.loop.vectorize.width`` and the second
4387operand is an integer specifying the width. For example:
4388
4389.. code-block:: llvm
4390
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004391 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004392
4393Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004394vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000043950 or if the loop does not have this metadata the width will be
4396determined automatically.
4397
4398'``llvm.loop.unroll``'
4399^^^^^^^^^^^^^^^^^^^^^^
4400
4401Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4402optimization hints such as the unroll factor. ``llvm.loop.unroll``
4403metadata should be used in conjunction with ``llvm.loop`` loop
4404identification metadata. The ``llvm.loop.unroll`` metadata are only
4405optimization hints and the unrolling will only be performed if the
4406optimizer believes it is safe to do so.
4407
Mark Heffernan893752a2014-07-18 19:24:51 +00004408'``llvm.loop.unroll.count``' Metadata
4409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4410
4411This metadata suggests an unroll factor to the loop unroller. The
4412first operand is the string ``llvm.loop.unroll.count`` and the second
4413operand is a positive integer specifying the unroll factor. For
4414example:
4415
4416.. code-block:: llvm
4417
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004418 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004419
4420If the trip count of the loop is less than the unroll count the loop
4421will be partially unrolled.
4422
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004423'``llvm.loop.unroll.disable``' Metadata
4424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4425
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004426This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004427which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004428
4429.. code-block:: llvm
4430
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004431 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004432
Kevin Qin715b01e2015-03-09 06:14:18 +00004433'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004435
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004436This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004437operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004438
4439.. code-block:: llvm
4440
4441 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4442
Mark Heffernan89391542015-08-10 17:28:08 +00004443'``llvm.loop.unroll.enable``' Metadata
4444^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4445
4446This metadata suggests that the loop should be fully unrolled if the trip count
4447is known at compile time and partially unrolled if the trip count is not known
4448at compile time. The metadata has a single operand which is the string
4449``llvm.loop.unroll.enable``. For example:
4450
4451.. code-block:: llvm
4452
4453 !0 = !{!"llvm.loop.unroll.enable"}
4454
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004455'``llvm.loop.unroll.full``' Metadata
4456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4457
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004458This metadata suggests that the loop should be unrolled fully. The
4459metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004460For example:
4461
4462.. code-block:: llvm
4463
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004464 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004465
4466'``llvm.mem``'
4467^^^^^^^^^^^^^^^
4468
4469Metadata types used to annotate memory accesses with information helpful
4470for optimizations are prefixed with ``llvm.mem``.
4471
4472'``llvm.mem.parallel_loop_access``' Metadata
4473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4474
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004475The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4476or metadata containing a list of loop identifiers for nested loops.
4477The metadata is attached to memory accessing instructions and denotes that
4478no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004479with the same loop identifier.
4480
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004481Precisely, given two instructions ``m1`` and ``m2`` that both have the
4482``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4483set of loops associated with that metadata, respectively, then there is no loop
4484carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004485``L2``.
4486
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004487As a special case, if all memory accessing instructions in a loop have
4488``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4489loop has no loop carried memory dependences and is considered to be a parallel
4490loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004491
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004492Note that if not all memory access instructions have such metadata referring to
4493the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004494memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004495safe mechanism, this causes loops that were originally parallel to be considered
4496sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004497insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004498
4499Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004500both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004501metadata types that refer to the same loop identifier metadata.
4502
4503.. code-block:: llvm
4504
4505 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004506 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004507 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004508 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004509 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004510 ...
4511 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004512
4513 for.end:
4514 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004515 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004516
4517It is also possible to have nested parallel loops. In that case the
4518memory accesses refer to a list of loop identifier metadata nodes instead of
4519the loop identifier metadata node directly:
4520
4521.. code-block:: llvm
4522
4523 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004524 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004525 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004526 ...
4527 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004528
4529 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004530 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004531 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004532 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004533 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004534 ...
4535 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004536
4537 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004538 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004539 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004540 ...
4541 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004542
4543 outer.for.end: ; preds = %for.body
4544 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004545 !0 = !{!1, !2} ; a list of loop identifiers
4546 !1 = !{!1} ; an identifier for the inner loop
4547 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004548
Peter Collingbournee6909c82015-02-20 20:30:47 +00004549'``llvm.bitsets``'
4550^^^^^^^^^^^^^^^^^^
4551
4552The ``llvm.bitsets`` global metadata is used to implement
4553:doc:`bitsets <BitSets>`.
4554
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004555'``invariant.group``' Metadata
4556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4557
4558The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4559The existence of the ``invariant.group`` metadata on the instruction tells
4560the optimizer that every ``load`` and ``store`` to the same pointer operand
4561within the same invariant group can be assumed to load or store the same
4562value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4563when two pointers are considered the same).
4564
4565Examples:
4566
4567.. code-block:: llvm
4568
4569 @unknownPtr = external global i8
4570 ...
4571 %ptr = alloca i8
4572 store i8 42, i8* %ptr, !invariant.group !0
4573 call void @foo(i8* %ptr)
4574
4575 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4576 call void @foo(i8* %ptr)
4577 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4578
4579 %newPtr = call i8* @getPointer(i8* %ptr)
4580 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4581
4582 %unknownValue = load i8, i8* @unknownPtr
4583 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4584
4585 call void @foo(i8* %ptr)
4586 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4587 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4588
4589 ...
4590 declare void @foo(i8*)
4591 declare i8* @getPointer(i8*)
4592 declare i8* @llvm.invariant.group.barrier(i8*)
4593
4594 !0 = !{!"magic ptr"}
4595 !1 = !{!"other ptr"}
4596
4597
4598
Sean Silvab084af42012-12-07 10:36:55 +00004599Module Flags Metadata
4600=====================
4601
4602Information about the module as a whole is difficult to convey to LLVM's
4603subsystems. The LLVM IR isn't sufficient to transmit this information.
4604The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004605this. These flags are in the form of key / value pairs --- much like a
4606dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004607look it up.
4608
4609The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4610Each triplet has the following form:
4611
4612- The first element is a *behavior* flag, which specifies the behavior
4613 when two (or more) modules are merged together, and it encounters two
4614 (or more) metadata with the same ID. The supported behaviors are
4615 described below.
4616- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004617 metadata. Each module may only have one flag entry for each unique ID (not
4618 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004619- The third element is the value of the flag.
4620
4621When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004622``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4623each unique metadata ID string, there will be exactly one entry in the merged
4624modules ``llvm.module.flags`` metadata table, and the value for that entry will
4625be determined by the merge behavior flag, as described below. The only exception
4626is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004627
4628The following behaviors are supported:
4629
4630.. list-table::
4631 :header-rows: 1
4632 :widths: 10 90
4633
4634 * - Value
4635 - Behavior
4636
4637 * - 1
4638 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004639 Emits an error if two values disagree, otherwise the resulting value
4640 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004641
4642 * - 2
4643 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004644 Emits a warning if two values disagree. The result value will be the
4645 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004646
4647 * - 3
4648 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004649 Adds a requirement that another module flag be present and have a
4650 specified value after linking is performed. The value must be a
4651 metadata pair, where the first element of the pair is the ID of the
4652 module flag to be restricted, and the second element of the pair is
4653 the value the module flag should be restricted to. This behavior can
4654 be used to restrict the allowable results (via triggering of an
4655 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004656
4657 * - 4
4658 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004659 Uses the specified value, regardless of the behavior or value of the
4660 other module. If both modules specify **Override**, but the values
4661 differ, an error will be emitted.
4662
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004663 * - 5
4664 - **Append**
4665 Appends the two values, which are required to be metadata nodes.
4666
4667 * - 6
4668 - **AppendUnique**
4669 Appends the two values, which are required to be metadata
4670 nodes. However, duplicate entries in the second list are dropped
4671 during the append operation.
4672
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004673It is an error for a particular unique flag ID to have multiple behaviors,
4674except in the case of **Require** (which adds restrictions on another metadata
4675value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004676
4677An example of module flags:
4678
4679.. code-block:: llvm
4680
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004681 !0 = !{ i32 1, !"foo", i32 1 }
4682 !1 = !{ i32 4, !"bar", i32 37 }
4683 !2 = !{ i32 2, !"qux", i32 42 }
4684 !3 = !{ i32 3, !"qux",
4685 !{
4686 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004687 }
4688 }
4689 !llvm.module.flags = !{ !0, !1, !2, !3 }
4690
4691- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4692 if two or more ``!"foo"`` flags are seen is to emit an error if their
4693 values are not equal.
4694
4695- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4696 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004697 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004698
4699- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4700 behavior if two or more ``!"qux"`` flags are seen is to emit a
4701 warning if their values are not equal.
4702
4703- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4704
4705 ::
4706
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004707 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004708
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004709 The behavior is to emit an error if the ``llvm.module.flags`` does not
4710 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4711 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004712
4713Objective-C Garbage Collection Module Flags Metadata
4714----------------------------------------------------
4715
4716On the Mach-O platform, Objective-C stores metadata about garbage
4717collection in a special section called "image info". The metadata
4718consists of a version number and a bitmask specifying what types of
4719garbage collection are supported (if any) by the file. If two or more
4720modules are linked together their garbage collection metadata needs to
4721be merged rather than appended together.
4722
4723The Objective-C garbage collection module flags metadata consists of the
4724following key-value pairs:
4725
4726.. list-table::
4727 :header-rows: 1
4728 :widths: 30 70
4729
4730 * - Key
4731 - Value
4732
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004733 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004734 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004735
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004736 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004737 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004738 always 0.
4739
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004740 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004741 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004742 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4743 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4744 Objective-C ABI version 2.
4745
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004746 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004747 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004748 not. Valid values are 0, for no garbage collection, and 2, for garbage
4749 collection supported.
4750
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004751 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004752 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004753 If present, its value must be 6. This flag requires that the
4754 ``Objective-C Garbage Collection`` flag have the value 2.
4755
4756Some important flag interactions:
4757
4758- If a module with ``Objective-C Garbage Collection`` set to 0 is
4759 merged with a module with ``Objective-C Garbage Collection`` set to
4760 2, then the resulting module has the
4761 ``Objective-C Garbage Collection`` flag set to 0.
4762- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4763 merged with a module with ``Objective-C GC Only`` set to 6.
4764
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004765Automatic Linker Flags Module Flags Metadata
4766--------------------------------------------
4767
4768Some targets support embedding flags to the linker inside individual object
4769files. Typically this is used in conjunction with language extensions which
4770allow source files to explicitly declare the libraries they depend on, and have
4771these automatically be transmitted to the linker via object files.
4772
4773These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004774using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004775to be ``AppendUnique``, and the value for the key is expected to be a metadata
4776node which should be a list of other metadata nodes, each of which should be a
4777list of metadata strings defining linker options.
4778
4779For example, the following metadata section specifies two separate sets of
4780linker options, presumably to link against ``libz`` and the ``Cocoa``
4781framework::
4782
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004783 !0 = !{ i32 6, !"Linker Options",
4784 !{
4785 !{ !"-lz" },
4786 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004787 !llvm.module.flags = !{ !0 }
4788
4789The metadata encoding as lists of lists of options, as opposed to a collapsed
4790list of options, is chosen so that the IR encoding can use multiple option
4791strings to specify e.g., a single library, while still having that specifier be
4792preserved as an atomic element that can be recognized by a target specific
4793assembly writer or object file emitter.
4794
4795Each individual option is required to be either a valid option for the target's
4796linker, or an option that is reserved by the target specific assembly writer or
4797object file emitter. No other aspect of these options is defined by the IR.
4798
Oliver Stannard5dc29342014-06-20 10:08:11 +00004799C type width Module Flags Metadata
4800----------------------------------
4801
4802The ARM backend emits a section into each generated object file describing the
4803options that it was compiled with (in a compiler-independent way) to prevent
4804linking incompatible objects, and to allow automatic library selection. Some
4805of these options are not visible at the IR level, namely wchar_t width and enum
4806width.
4807
4808To pass this information to the backend, these options are encoded in module
4809flags metadata, using the following key-value pairs:
4810
4811.. list-table::
4812 :header-rows: 1
4813 :widths: 30 70
4814
4815 * - Key
4816 - Value
4817
4818 * - short_wchar
4819 - * 0 --- sizeof(wchar_t) == 4
4820 * 1 --- sizeof(wchar_t) == 2
4821
4822 * - short_enum
4823 - * 0 --- Enums are at least as large as an ``int``.
4824 * 1 --- Enums are stored in the smallest integer type which can
4825 represent all of its values.
4826
4827For example, the following metadata section specifies that the module was
4828compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4829enum is the smallest type which can represent all of its values::
4830
4831 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004832 !0 = !{i32 1, !"short_wchar", i32 1}
4833 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004834
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004835.. _intrinsicglobalvariables:
4836
Sean Silvab084af42012-12-07 10:36:55 +00004837Intrinsic Global Variables
4838==========================
4839
4840LLVM has a number of "magic" global variables that contain data that
4841affect code generation or other IR semantics. These are documented here.
4842All globals of this sort should have a section specified as
4843"``llvm.metadata``". This section and all globals that start with
4844"``llvm.``" are reserved for use by LLVM.
4845
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004846.. _gv_llvmused:
4847
Sean Silvab084af42012-12-07 10:36:55 +00004848The '``llvm.used``' Global Variable
4849-----------------------------------
4850
Rafael Espindola74f2e462013-04-22 14:58:02 +00004851The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004852:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004853pointers to named global variables, functions and aliases which may optionally
4854have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004855use of it is:
4856
4857.. code-block:: llvm
4858
4859 @X = global i8 4
4860 @Y = global i32 123
4861
4862 @llvm.used = appending global [2 x i8*] [
4863 i8* @X,
4864 i8* bitcast (i32* @Y to i8*)
4865 ], section "llvm.metadata"
4866
Rafael Espindola74f2e462013-04-22 14:58:02 +00004867If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4868and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004869symbol that it cannot see (which is why they have to be named). For example, if
4870a variable has internal linkage and no references other than that from the
4871``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4872references from inline asms and other things the compiler cannot "see", and
4873corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004874
4875On some targets, the code generator must emit a directive to the
4876assembler or object file to prevent the assembler and linker from
4877molesting the symbol.
4878
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004879.. _gv_llvmcompilerused:
4880
Sean Silvab084af42012-12-07 10:36:55 +00004881The '``llvm.compiler.used``' Global Variable
4882--------------------------------------------
4883
4884The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4885directive, except that it only prevents the compiler from touching the
4886symbol. On targets that support it, this allows an intelligent linker to
4887optimize references to the symbol without being impeded as it would be
4888by ``@llvm.used``.
4889
4890This is a rare construct that should only be used in rare circumstances,
4891and should not be exposed to source languages.
4892
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004893.. _gv_llvmglobalctors:
4894
Sean Silvab084af42012-12-07 10:36:55 +00004895The '``llvm.global_ctors``' Global Variable
4896-------------------------------------------
4897
4898.. code-block:: llvm
4899
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004900 %0 = type { i32, void ()*, i8* }
4901 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004902
4903The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004904functions, priorities, and an optional associated global or function.
4905The functions referenced by this array will be called in ascending order
4906of priority (i.e. lowest first) when the module is loaded. The order of
4907functions with the same priority is not defined.
4908
4909If the third field is present, non-null, and points to a global variable
4910or function, the initializer function will only run if the associated
4911data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004912
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004913.. _llvmglobaldtors:
4914
Sean Silvab084af42012-12-07 10:36:55 +00004915The '``llvm.global_dtors``' Global Variable
4916-------------------------------------------
4917
4918.. code-block:: llvm
4919
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004920 %0 = type { i32, void ()*, i8* }
4921 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004922
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004923The ``@llvm.global_dtors`` array contains a list of destructor
4924functions, priorities, and an optional associated global or function.
4925The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004926order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004927order of functions with the same priority is not defined.
4928
4929If the third field is present, non-null, and points to a global variable
4930or function, the destructor function will only run if the associated
4931data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004932
4933Instruction Reference
4934=====================
4935
4936The LLVM instruction set consists of several different classifications
4937of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4938instructions <binaryops>`, :ref:`bitwise binary
4939instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4940:ref:`other instructions <otherops>`.
4941
4942.. _terminators:
4943
4944Terminator Instructions
4945-----------------------
4946
4947As mentioned :ref:`previously <functionstructure>`, every basic block in a
4948program ends with a "Terminator" instruction, which indicates which
4949block should be executed after the current block is finished. These
4950terminator instructions typically yield a '``void``' value: they produce
4951control flow, not values (the one exception being the
4952':ref:`invoke <i_invoke>`' instruction).
4953
4954The terminator instructions are: ':ref:`ret <i_ret>`',
4955':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4956':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004957':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4958':ref:`catchendpad <i_catchendpad>`',
4959':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004960':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004961':ref:`cleanupret <i_cleanupret>`',
4962':ref:`terminatepad <i_terminatepad>`',
4963and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004964
4965.. _i_ret:
4966
4967'``ret``' Instruction
4968^^^^^^^^^^^^^^^^^^^^^
4969
4970Syntax:
4971"""""""
4972
4973::
4974
4975 ret <type> <value> ; Return a value from a non-void function
4976 ret void ; Return from void function
4977
4978Overview:
4979"""""""""
4980
4981The '``ret``' instruction is used to return control flow (and optionally
4982a value) from a function back to the caller.
4983
4984There are two forms of the '``ret``' instruction: one that returns a
4985value and then causes control flow, and one that just causes control
4986flow to occur.
4987
4988Arguments:
4989""""""""""
4990
4991The '``ret``' instruction optionally accepts a single argument, the
4992return value. The type of the return value must be a ':ref:`first
4993class <t_firstclass>`' type.
4994
4995A function is not :ref:`well formed <wellformed>` if it it has a non-void
4996return type and contains a '``ret``' instruction with no return value or
4997a return value with a type that does not match its type, or if it has a
4998void return type and contains a '``ret``' instruction with a return
4999value.
5000
5001Semantics:
5002""""""""""
5003
5004When the '``ret``' instruction is executed, control flow returns back to
5005the calling function's context. If the caller is a
5006":ref:`call <i_call>`" instruction, execution continues at the
5007instruction after the call. If the caller was an
5008":ref:`invoke <i_invoke>`" instruction, execution continues at the
5009beginning of the "normal" destination block. If the instruction returns
5010a value, that value shall set the call or invoke instruction's return
5011value.
5012
5013Example:
5014""""""""
5015
5016.. code-block:: llvm
5017
5018 ret i32 5 ; Return an integer value of 5
5019 ret void ; Return from a void function
5020 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5021
5022.. _i_br:
5023
5024'``br``' Instruction
5025^^^^^^^^^^^^^^^^^^^^
5026
5027Syntax:
5028"""""""
5029
5030::
5031
5032 br i1 <cond>, label <iftrue>, label <iffalse>
5033 br label <dest> ; Unconditional branch
5034
5035Overview:
5036"""""""""
5037
5038The '``br``' instruction is used to cause control flow to transfer to a
5039different basic block in the current function. There are two forms of
5040this instruction, corresponding to a conditional branch and an
5041unconditional branch.
5042
5043Arguments:
5044""""""""""
5045
5046The conditional branch form of the '``br``' instruction takes a single
5047'``i1``' value and two '``label``' values. The unconditional form of the
5048'``br``' instruction takes a single '``label``' value as a target.
5049
5050Semantics:
5051""""""""""
5052
5053Upon execution of a conditional '``br``' instruction, the '``i1``'
5054argument is evaluated. If the value is ``true``, control flows to the
5055'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5056to the '``iffalse``' ``label`` argument.
5057
5058Example:
5059""""""""
5060
5061.. code-block:: llvm
5062
5063 Test:
5064 %cond = icmp eq i32 %a, %b
5065 br i1 %cond, label %IfEqual, label %IfUnequal
5066 IfEqual:
5067 ret i32 1
5068 IfUnequal:
5069 ret i32 0
5070
5071.. _i_switch:
5072
5073'``switch``' Instruction
5074^^^^^^^^^^^^^^^^^^^^^^^^
5075
5076Syntax:
5077"""""""
5078
5079::
5080
5081 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5082
5083Overview:
5084"""""""""
5085
5086The '``switch``' instruction is used to transfer control flow to one of
5087several different places. It is a generalization of the '``br``'
5088instruction, allowing a branch to occur to one of many possible
5089destinations.
5090
5091Arguments:
5092""""""""""
5093
5094The '``switch``' instruction uses three parameters: an integer
5095comparison value '``value``', a default '``label``' destination, and an
5096array of pairs of comparison value constants and '``label``'s. The table
5097is not allowed to contain duplicate constant entries.
5098
5099Semantics:
5100""""""""""
5101
5102The ``switch`` instruction specifies a table of values and destinations.
5103When the '``switch``' instruction is executed, this table is searched
5104for the given value. If the value is found, control flow is transferred
5105to the corresponding destination; otherwise, control flow is transferred
5106to the default destination.
5107
5108Implementation:
5109"""""""""""""""
5110
5111Depending on properties of the target machine and the particular
5112``switch`` instruction, this instruction may be code generated in
5113different ways. For example, it could be generated as a series of
5114chained conditional branches or with a lookup table.
5115
5116Example:
5117""""""""
5118
5119.. code-block:: llvm
5120
5121 ; Emulate a conditional br instruction
5122 %Val = zext i1 %value to i32
5123 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5124
5125 ; Emulate an unconditional br instruction
5126 switch i32 0, label %dest [ ]
5127
5128 ; Implement a jump table:
5129 switch i32 %val, label %otherwise [ i32 0, label %onzero
5130 i32 1, label %onone
5131 i32 2, label %ontwo ]
5132
5133.. _i_indirectbr:
5134
5135'``indirectbr``' Instruction
5136^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5137
5138Syntax:
5139"""""""
5140
5141::
5142
5143 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5144
5145Overview:
5146"""""""""
5147
5148The '``indirectbr``' instruction implements an indirect branch to a
5149label within the current function, whose address is specified by
5150"``address``". Address must be derived from a
5151:ref:`blockaddress <blockaddress>` constant.
5152
5153Arguments:
5154""""""""""
5155
5156The '``address``' argument is the address of the label to jump to. The
5157rest of the arguments indicate the full set of possible destinations
5158that the address may point to. Blocks are allowed to occur multiple
5159times in the destination list, though this isn't particularly useful.
5160
5161This destination list is required so that dataflow analysis has an
5162accurate understanding of the CFG.
5163
5164Semantics:
5165""""""""""
5166
5167Control transfers to the block specified in the address argument. All
5168possible destination blocks must be listed in the label list, otherwise
5169this instruction has undefined behavior. This implies that jumps to
5170labels defined in other functions have undefined behavior as well.
5171
5172Implementation:
5173"""""""""""""""
5174
5175This is typically implemented with a jump through a register.
5176
5177Example:
5178""""""""
5179
5180.. code-block:: llvm
5181
5182 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5183
5184.. _i_invoke:
5185
5186'``invoke``' Instruction
5187^^^^^^^^^^^^^^^^^^^^^^^^
5188
5189Syntax:
5190"""""""
5191
5192::
5193
5194 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005195 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005196
5197Overview:
5198"""""""""
5199
5200The '``invoke``' instruction causes control to transfer to a specified
5201function, with the possibility of control flow transfer to either the
5202'``normal``' label or the '``exception``' label. If the callee function
5203returns with the "``ret``" instruction, control flow will return to the
5204"normal" label. If the callee (or any indirect callees) returns via the
5205":ref:`resume <i_resume>`" instruction or other exception handling
5206mechanism, control is interrupted and continued at the dynamically
5207nearest "exception" label.
5208
5209The '``exception``' label is a `landing
5210pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5211'``exception``' label is required to have the
5212":ref:`landingpad <i_landingpad>`" instruction, which contains the
5213information about the behavior of the program after unwinding happens,
5214as its first non-PHI instruction. The restrictions on the
5215"``landingpad``" instruction's tightly couples it to the "``invoke``"
5216instruction, so that the important information contained within the
5217"``landingpad``" instruction can't be lost through normal code motion.
5218
5219Arguments:
5220""""""""""
5221
5222This instruction requires several arguments:
5223
5224#. The optional "cconv" marker indicates which :ref:`calling
5225 convention <callingconv>` the call should use. If none is
5226 specified, the call defaults to using C calling conventions.
5227#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5228 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5229 are valid here.
5230#. '``ptr to function ty``': shall be the signature of the pointer to
5231 function value being invoked. In most cases, this is a direct
5232 function invocation, but indirect ``invoke``'s are just as possible,
5233 branching off an arbitrary pointer to function value.
5234#. '``function ptr val``': An LLVM value containing a pointer to a
5235 function to be invoked.
5236#. '``function args``': argument list whose types match the function
5237 signature argument types and parameter attributes. All arguments must
5238 be of :ref:`first class <t_firstclass>` type. If the function signature
5239 indicates the function accepts a variable number of arguments, the
5240 extra arguments can be specified.
5241#. '``normal label``': the label reached when the called function
5242 executes a '``ret``' instruction.
5243#. '``exception label``': the label reached when a callee returns via
5244 the :ref:`resume <i_resume>` instruction or other exception handling
5245 mechanism.
5246#. The optional :ref:`function attributes <fnattrs>` list. Only
5247 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5248 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005249#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005250
5251Semantics:
5252""""""""""
5253
5254This instruction is designed to operate as a standard '``call``'
5255instruction in most regards. The primary difference is that it
5256establishes an association with a label, which is used by the runtime
5257library to unwind the stack.
5258
5259This instruction is used in languages with destructors to ensure that
5260proper cleanup is performed in the case of either a ``longjmp`` or a
5261thrown exception. Additionally, this is important for implementation of
5262'``catch``' clauses in high-level languages that support them.
5263
5264For the purposes of the SSA form, the definition of the value returned
5265by the '``invoke``' instruction is deemed to occur on the edge from the
5266current block to the "normal" label. If the callee unwinds then no
5267return value is available.
5268
5269Example:
5270""""""""
5271
5272.. code-block:: llvm
5273
5274 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005275 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005276 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005277 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005278
5279.. _i_resume:
5280
5281'``resume``' Instruction
5282^^^^^^^^^^^^^^^^^^^^^^^^
5283
5284Syntax:
5285"""""""
5286
5287::
5288
5289 resume <type> <value>
5290
5291Overview:
5292"""""""""
5293
5294The '``resume``' instruction is a terminator instruction that has no
5295successors.
5296
5297Arguments:
5298""""""""""
5299
5300The '``resume``' instruction requires one argument, which must have the
5301same type as the result of any '``landingpad``' instruction in the same
5302function.
5303
5304Semantics:
5305""""""""""
5306
5307The '``resume``' instruction resumes propagation of an existing
5308(in-flight) exception whose unwinding was interrupted with a
5309:ref:`landingpad <i_landingpad>` instruction.
5310
5311Example:
5312""""""""
5313
5314.. code-block:: llvm
5315
5316 resume { i8*, i32 } %exn
5317
David Majnemer654e1302015-07-31 17:58:14 +00005318.. _i_catchpad:
5319
5320'``catchpad``' Instruction
5321^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5322
5323Syntax:
5324"""""""
5325
5326::
5327
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005328 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005329 to label <normal label> unwind label <exception label>
5330
5331Overview:
5332"""""""""
5333
5334The '``catchpad``' instruction is used by `LLVM's exception handling
5335system <ExceptionHandling.html#overview>`_ to specify that a basic block
5336is a catch block --- one where a personality routine attempts to transfer
5337control to catch an exception.
5338The ``args`` correspond to whatever information the personality
5339routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005340exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005341``catchpad`` is not an appropriate handler for the in-flight exception.
5342The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005343portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5344:ref:`token <t_token>` and is used to match the ``catchpad`` to
5345corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005346
5347Arguments:
5348""""""""""
5349
5350The instruction takes a list of arbitrary values which are interpreted
5351by the :ref:`personality function <personalityfn>`.
5352
5353The ``catchpad`` must be provided a ``normal`` label to transfer control
5354to if the ``catchpad`` matches the exception and an ``exception``
5355label to transfer control to if it doesn't.
5356
5357Semantics:
5358""""""""""
5359
David Majnemer654e1302015-07-31 17:58:14 +00005360When the call stack is being unwound due to an exception being thrown,
5361the exception is compared against the ``args``. If it doesn't match,
5362then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005363As with calling conventions, how the personality function results are
5364represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005365
5366The ``catchpad`` instruction has several restrictions:
5367
5368- A catch block is a basic block which is the unwind destination of
5369 an exceptional instruction.
5370- A catch block must have a '``catchpad``' instruction as its
5371 first non-PHI instruction.
5372- A catch block's ``exception`` edge must refer to a catch block or a
5373 catch-end block.
5374- There can be only one '``catchpad``' instruction within the
5375 catch block.
5376- A basic block that is not a catch block may not include a
5377 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005378- A catch block which has another catch block as a predecessor may not have
5379 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005380- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005381 ``ret`` without first executing a ``catchret`` that consumes the
5382 ``catchpad`` or unwinding through its ``catchendpad``.
5383- It is undefined behavior for control to transfer from a ``catchpad`` to
5384 itself without first executing a ``catchret`` that consumes the
5385 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005386
5387Example:
5388""""""""
5389
5390.. code-block:: llvm
5391
5392 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005393 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005394 to label %int.handler unwind label %terminate
5395
5396.. _i_catchendpad:
5397
5398'``catchendpad``' Instruction
5399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5400
5401Syntax:
5402"""""""
5403
5404::
5405
5406 catchendpad unwind label <nextaction>
5407 catchendpad unwind to caller
5408
5409Overview:
5410"""""""""
5411
5412The '``catchendpad``' instruction is used by `LLVM's exception handling
5413system <ExceptionHandling.html#overview>`_ to communicate to the
5414:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005415with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5416exception out of a catch handler is represented by unwinding through its
5417``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5418do not handle an exception is also represented by unwinding through their
5419``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005420
5421The ``nextaction`` label indicates where control should transfer to if
5422none of the ``catchpad`` instructions are suitable for catching the
5423in-flight exception.
5424
5425If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005426its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005427:ref:`personality function <personalityfn>` will continue processing
5428exception handling actions in the caller.
5429
5430Arguments:
5431""""""""""
5432
5433The instruction optionally takes a label, ``nextaction``, indicating
5434where control should transfer to if none of the preceding
5435``catchpad`` instructions are suitable for the in-flight exception.
5436
5437Semantics:
5438""""""""""
5439
5440When the call stack is being unwound due to an exception being thrown
5441and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005442control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005443present, control is transfered to the caller.
5444
5445The ``catchendpad`` instruction has several restrictions:
5446
5447- A catch-end block is a basic block which is the unwind destination of
5448 an exceptional instruction.
5449- A catch-end block must have a '``catchendpad``' instruction as its
5450 first non-PHI instruction.
5451- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005452 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005453- A basic block that is not a catch-end block may not include a
5454 '``catchendpad``' instruction.
5455- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005456- It is undefined behavior to execute a ``catchendpad`` if none of the
5457 '``catchpad``'s chained to it have been executed.
5458- It is undefined behavior to execute a ``catchendpad`` twice without an
5459 intervening execution of one or more of the '``catchpad``'s chained to it.
5460- It is undefined behavior to execute a ``catchendpad`` if, after the most
5461 recent execution of the normal successor edge of any ``catchpad`` chained
5462 to it, some ``catchret`` consuming that ``catchpad`` has already been
5463 executed.
5464- It is undefined behavior to execute a ``catchendpad`` if, after the most
5465 recent execution of the normal successor edge of any ``catchpad`` chained
5466 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5467 not had a corresponding
5468 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005469
5470Example:
5471""""""""
5472
5473.. code-block:: llvm
5474
5475 catchendpad unwind label %terminate
5476 catchendpad unwind to caller
5477
5478.. _i_catchret:
5479
5480'``catchret``' Instruction
5481^^^^^^^^^^^^^^^^^^^^^^^^^^
5482
5483Syntax:
5484"""""""
5485
5486::
5487
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005488 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005489
5490Overview:
5491"""""""""
5492
5493The '``catchret``' instruction is a terminator instruction that has a
5494single successor.
5495
5496
5497Arguments:
5498""""""""""
5499
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005500The first argument to a '``catchret``' indicates which ``catchpad`` it
5501exits. It must be a :ref:`catchpad <i_catchpad>`.
5502The second argument to a '``catchret``' specifies where control will
5503transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005504
5505Semantics:
5506""""""""""
5507
5508The '``catchret``' instruction ends the existing (in-flight) exception
5509whose unwinding was interrupted with a
5510:ref:`catchpad <i_catchpad>` instruction.
5511The :ref:`personality function <personalityfn>` gets a chance to execute
5512arbitrary code to, for example, run a C++ destructor.
5513Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005514It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005515
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005516It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5517not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005518
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005519It is undefined behavior to execute a ``catchret`` if, after the most recent
5520execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5521to the same ``catchpad`` has already been executed.
5522
5523It is undefined behavior to execute a ``catchret`` if, after the most recent
5524execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5525been executed but has not had a corresponding
5526``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005527
5528Example:
5529""""""""
5530
5531.. code-block:: llvm
5532
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005533 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005534
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005535.. _i_cleanupendpad:
5536
5537'``cleanupendpad``' Instruction
5538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5539
5540Syntax:
5541"""""""
5542
5543::
5544
5545 cleanupendpad <value> unwind label <nextaction>
5546 cleanupendpad <value> unwind to caller
5547
5548Overview:
5549"""""""""
5550
5551The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5552system <ExceptionHandling.html#overview>`_ to communicate to the
5553:ref:`personality function <personalityfn>` which invokes are associated
5554with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5555out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5556
5557The ``nextaction`` label indicates where control should unwind to next, in the
5558event that a cleanup is exited by means of an(other) exception being raised.
5559
5560If a ``nextaction`` label is not present, the instruction unwinds out of
5561its parent function. The
5562:ref:`personality function <personalityfn>` will continue processing
5563exception handling actions in the caller.
5564
5565Arguments:
5566""""""""""
5567
5568The '``cleanupendpad``' instruction requires one argument, which indicates
5569which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5570It also has an optional successor, ``nextaction``, indicating where control
5571should transfer to.
5572
5573Semantics:
5574""""""""""
5575
5576When and exception propagates to a ``cleanupendpad``, control is transfered to
5577``nextaction`` if it is present. If it is not present, control is transfered to
5578the caller.
5579
5580The ``cleanupendpad`` instruction has several restrictions:
5581
5582- A cleanup-end block is a basic block which is the unwind destination of
5583 an exceptional instruction.
5584- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5585 first non-PHI instruction.
5586- There can be only one '``cleanupendpad``' instruction within the
5587 cleanup-end block.
5588- A basic block that is not a cleanup-end block may not include a
5589 '``cleanupendpad``' instruction.
5590- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5591 has not been executed.
5592- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5593 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5594 consuming the same ``cleanuppad`` has already been executed.
5595- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5596 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5597 ``catchpad`` has been executed but has not had a corresponding
5598 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5599
5600Example:
5601""""""""
5602
5603.. code-block:: llvm
5604
5605 cleanupendpad %cleanup unwind label %terminate
5606 cleanupendpad %cleanup unwind to caller
5607
David Majnemer654e1302015-07-31 17:58:14 +00005608.. _i_cleanupret:
5609
5610'``cleanupret``' Instruction
5611^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5612
5613Syntax:
5614"""""""
5615
5616::
5617
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005618 cleanupret <value> unwind label <continue>
5619 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005620
5621Overview:
5622"""""""""
5623
5624The '``cleanupret``' instruction is a terminator instruction that has
5625an optional successor.
5626
5627
5628Arguments:
5629""""""""""
5630
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005631The '``cleanupret``' instruction requires one argument, which indicates
5632which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5633It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005634
5635Semantics:
5636""""""""""
5637
5638The '``cleanupret``' instruction indicates to the
5639:ref:`personality function <personalityfn>` that one
5640:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5641It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005642
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005643It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5644not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005645
5646It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5647execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5648consuming the same ``cleanuppad`` has already been executed.
5649
5650It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5651execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5652been executed but has not had a corresponding
5653``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005654
5655Example:
5656""""""""
5657
5658.. code-block:: llvm
5659
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005660 cleanupret %cleanup unwind to caller
5661 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005662
5663.. _i_terminatepad:
5664
5665'``terminatepad``' Instruction
5666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5667
5668Syntax:
5669"""""""
5670
5671::
5672
5673 terminatepad [<args>*] unwind label <exception label>
5674 terminatepad [<args>*] unwind to caller
5675
5676Overview:
5677"""""""""
5678
5679The '``terminatepad``' instruction is used by `LLVM's exception handling
5680system <ExceptionHandling.html#overview>`_ to specify that a basic block
5681is a terminate block --- one where a personality routine may decide to
5682terminate the program.
5683The ``args`` correspond to whatever information the personality
5684routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005685program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005686personality routine decides not to terminate the program for the
5687in-flight exception.
5688
5689Arguments:
5690""""""""""
5691
5692The instruction takes a list of arbitrary values which are interpreted
5693by the :ref:`personality function <personalityfn>`.
5694
5695The ``terminatepad`` may be given an ``exception`` label to
5696transfer control to if the in-flight exception matches the ``args``.
5697
5698Semantics:
5699""""""""""
5700
5701When the call stack is being unwound due to an exception being thrown,
5702the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005703then control is transfered to the ``exception`` basic block. Otherwise,
5704the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005705the first argument to ``terminatepad`` specifies what function the
5706personality should defer to in order to terminate the program.
5707
5708The ``terminatepad`` instruction has several restrictions:
5709
5710- A terminate block is a basic block which is the unwind destination of
5711 an exceptional instruction.
5712- A terminate block must have a '``terminatepad``' instruction as its
5713 first non-PHI instruction.
5714- There can be only one '``terminatepad``' instruction within the
5715 terminate block.
5716- A basic block that is not a terminate block may not include a
5717 '``terminatepad``' instruction.
5718
5719Example:
5720""""""""
5721
5722.. code-block:: llvm
5723
5724 ;; A terminate block which only permits integers.
5725 terminatepad [i8** @_ZTIi] unwind label %continue
5726
Sean Silvab084af42012-12-07 10:36:55 +00005727.. _i_unreachable:
5728
5729'``unreachable``' Instruction
5730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5731
5732Syntax:
5733"""""""
5734
5735::
5736
5737 unreachable
5738
5739Overview:
5740"""""""""
5741
5742The '``unreachable``' instruction has no defined semantics. This
5743instruction is used to inform the optimizer that a particular portion of
5744the code is not reachable. This can be used to indicate that the code
5745after a no-return function cannot be reached, and other facts.
5746
5747Semantics:
5748""""""""""
5749
5750The '``unreachable``' instruction has no defined semantics.
5751
5752.. _binaryops:
5753
5754Binary Operations
5755-----------------
5756
5757Binary operators are used to do most of the computation in a program.
5758They require two operands of the same type, execute an operation on
5759them, and produce a single value. The operands might represent multiple
5760data, as is the case with the :ref:`vector <t_vector>` data type. The
5761result value has the same type as its operands.
5762
5763There are several different binary operators:
5764
5765.. _i_add:
5766
5767'``add``' Instruction
5768^^^^^^^^^^^^^^^^^^^^^
5769
5770Syntax:
5771"""""""
5772
5773::
5774
Tim Northover675a0962014-06-13 14:24:23 +00005775 <result> = add <ty> <op1>, <op2> ; yields ty:result
5776 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5777 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5778 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005779
5780Overview:
5781"""""""""
5782
5783The '``add``' instruction returns the sum of its two operands.
5784
5785Arguments:
5786""""""""""
5787
5788The two arguments to the '``add``' instruction must be
5789:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5790arguments must have identical types.
5791
5792Semantics:
5793""""""""""
5794
5795The value produced is the integer sum of the two operands.
5796
5797If the sum has unsigned overflow, the result returned is the
5798mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5799the result.
5800
5801Because LLVM integers use a two's complement representation, this
5802instruction is appropriate for both signed and unsigned integers.
5803
5804``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5805respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5806result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5807unsigned and/or signed overflow, respectively, occurs.
5808
5809Example:
5810""""""""
5811
5812.. code-block:: llvm
5813
Tim Northover675a0962014-06-13 14:24:23 +00005814 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005815
5816.. _i_fadd:
5817
5818'``fadd``' Instruction
5819^^^^^^^^^^^^^^^^^^^^^^
5820
5821Syntax:
5822"""""""
5823
5824::
5825
Tim Northover675a0962014-06-13 14:24:23 +00005826 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005827
5828Overview:
5829"""""""""
5830
5831The '``fadd``' instruction returns the sum of its two operands.
5832
5833Arguments:
5834""""""""""
5835
5836The two arguments to the '``fadd``' instruction must be :ref:`floating
5837point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5838Both arguments must have identical types.
5839
5840Semantics:
5841""""""""""
5842
5843The value produced is the floating point sum of the two operands. This
5844instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5845which are optimization hints to enable otherwise unsafe floating point
5846optimizations:
5847
5848Example:
5849""""""""
5850
5851.. code-block:: llvm
5852
Tim Northover675a0962014-06-13 14:24:23 +00005853 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005854
5855'``sub``' Instruction
5856^^^^^^^^^^^^^^^^^^^^^
5857
5858Syntax:
5859"""""""
5860
5861::
5862
Tim Northover675a0962014-06-13 14:24:23 +00005863 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5864 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5865 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5866 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005867
5868Overview:
5869"""""""""
5870
5871The '``sub``' instruction returns the difference of its two operands.
5872
5873Note that the '``sub``' instruction is used to represent the '``neg``'
5874instruction present in most other intermediate representations.
5875
5876Arguments:
5877""""""""""
5878
5879The two arguments to the '``sub``' instruction must be
5880:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5881arguments must have identical types.
5882
5883Semantics:
5884""""""""""
5885
5886The value produced is the integer difference of the two operands.
5887
5888If the difference has unsigned overflow, the result returned is the
5889mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5890the result.
5891
5892Because LLVM integers use a two's complement representation, this
5893instruction is appropriate for both signed and unsigned integers.
5894
5895``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5896respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5897result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5898unsigned and/or signed overflow, respectively, occurs.
5899
5900Example:
5901""""""""
5902
5903.. code-block:: llvm
5904
Tim Northover675a0962014-06-13 14:24:23 +00005905 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5906 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005907
5908.. _i_fsub:
5909
5910'``fsub``' Instruction
5911^^^^^^^^^^^^^^^^^^^^^^
5912
5913Syntax:
5914"""""""
5915
5916::
5917
Tim Northover675a0962014-06-13 14:24:23 +00005918 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005919
5920Overview:
5921"""""""""
5922
5923The '``fsub``' instruction returns the difference of its two operands.
5924
5925Note that the '``fsub``' instruction is used to represent the '``fneg``'
5926instruction present in most other intermediate representations.
5927
5928Arguments:
5929""""""""""
5930
5931The two arguments to the '``fsub``' instruction must be :ref:`floating
5932point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5933Both arguments must have identical types.
5934
5935Semantics:
5936""""""""""
5937
5938The value produced is the floating point difference of the two operands.
5939This instruction can also take any number of :ref:`fast-math
5940flags <fastmath>`, which are optimization hints to enable otherwise
5941unsafe floating point optimizations:
5942
5943Example:
5944""""""""
5945
5946.. code-block:: llvm
5947
Tim Northover675a0962014-06-13 14:24:23 +00005948 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5949 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005950
5951'``mul``' Instruction
5952^^^^^^^^^^^^^^^^^^^^^
5953
5954Syntax:
5955"""""""
5956
5957::
5958
Tim Northover675a0962014-06-13 14:24:23 +00005959 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5960 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5961 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5962 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005963
5964Overview:
5965"""""""""
5966
5967The '``mul``' instruction returns the product of its two operands.
5968
5969Arguments:
5970""""""""""
5971
5972The two arguments to the '``mul``' instruction must be
5973:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5974arguments must have identical types.
5975
5976Semantics:
5977""""""""""
5978
5979The value produced is the integer product of the two operands.
5980
5981If the result of the multiplication has unsigned overflow, the result
5982returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5983bit width of the result.
5984
5985Because LLVM integers use a two's complement representation, and the
5986result is the same width as the operands, this instruction returns the
5987correct result for both signed and unsigned integers. If a full product
5988(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5989sign-extended or zero-extended as appropriate to the width of the full
5990product.
5991
5992``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5993respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5994result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5995unsigned and/or signed overflow, respectively, occurs.
5996
5997Example:
5998""""""""
5999
6000.. code-block:: llvm
6001
Tim Northover675a0962014-06-13 14:24:23 +00006002 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006003
6004.. _i_fmul:
6005
6006'``fmul``' Instruction
6007^^^^^^^^^^^^^^^^^^^^^^
6008
6009Syntax:
6010"""""""
6011
6012::
6013
Tim Northover675a0962014-06-13 14:24:23 +00006014 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006015
6016Overview:
6017"""""""""
6018
6019The '``fmul``' instruction returns the product of its two operands.
6020
6021Arguments:
6022""""""""""
6023
6024The two arguments to the '``fmul``' instruction must be :ref:`floating
6025point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6026Both arguments must have identical types.
6027
6028Semantics:
6029""""""""""
6030
6031The value produced is the floating point product of the two operands.
6032This instruction can also take any number of :ref:`fast-math
6033flags <fastmath>`, which are optimization hints to enable otherwise
6034unsafe floating point optimizations:
6035
6036Example:
6037""""""""
6038
6039.. code-block:: llvm
6040
Tim Northover675a0962014-06-13 14:24:23 +00006041 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006042
6043'``udiv``' Instruction
6044^^^^^^^^^^^^^^^^^^^^^^
6045
6046Syntax:
6047"""""""
6048
6049::
6050
Tim Northover675a0962014-06-13 14:24:23 +00006051 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6052 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006053
6054Overview:
6055"""""""""
6056
6057The '``udiv``' instruction returns the quotient of its two operands.
6058
6059Arguments:
6060""""""""""
6061
6062The two arguments to the '``udiv``' instruction must be
6063:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6064arguments must have identical types.
6065
6066Semantics:
6067""""""""""
6068
6069The value produced is the unsigned integer quotient of the two operands.
6070
6071Note that unsigned integer division and signed integer division are
6072distinct operations; for signed integer division, use '``sdiv``'.
6073
6074Division by zero leads to undefined behavior.
6075
6076If the ``exact`` keyword is present, the result value of the ``udiv`` is
6077a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6078such, "((a udiv exact b) mul b) == a").
6079
6080Example:
6081""""""""
6082
6083.. code-block:: llvm
6084
Tim Northover675a0962014-06-13 14:24:23 +00006085 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006086
6087'``sdiv``' Instruction
6088^^^^^^^^^^^^^^^^^^^^^^
6089
6090Syntax:
6091"""""""
6092
6093::
6094
Tim Northover675a0962014-06-13 14:24:23 +00006095 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6096 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006097
6098Overview:
6099"""""""""
6100
6101The '``sdiv``' instruction returns the quotient of its two operands.
6102
6103Arguments:
6104""""""""""
6105
6106The two arguments to the '``sdiv``' instruction must be
6107:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6108arguments must have identical types.
6109
6110Semantics:
6111""""""""""
6112
6113The value produced is the signed integer quotient of the two operands
6114rounded towards zero.
6115
6116Note that signed integer division and unsigned integer division are
6117distinct operations; for unsigned integer division, use '``udiv``'.
6118
6119Division by zero leads to undefined behavior. Overflow also leads to
6120undefined behavior; this is a rare case, but can occur, for example, by
6121doing a 32-bit division of -2147483648 by -1.
6122
6123If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6124a :ref:`poison value <poisonvalues>` if the result would be rounded.
6125
6126Example:
6127""""""""
6128
6129.. code-block:: llvm
6130
Tim Northover675a0962014-06-13 14:24:23 +00006131 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006132
6133.. _i_fdiv:
6134
6135'``fdiv``' Instruction
6136^^^^^^^^^^^^^^^^^^^^^^
6137
6138Syntax:
6139"""""""
6140
6141::
6142
Tim Northover675a0962014-06-13 14:24:23 +00006143 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006144
6145Overview:
6146"""""""""
6147
6148The '``fdiv``' instruction returns the quotient of its two operands.
6149
6150Arguments:
6151""""""""""
6152
6153The two arguments to the '``fdiv``' instruction must be :ref:`floating
6154point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6155Both arguments must have identical types.
6156
6157Semantics:
6158""""""""""
6159
6160The value produced is the floating point quotient of the two operands.
6161This instruction can also take any number of :ref:`fast-math
6162flags <fastmath>`, which are optimization hints to enable otherwise
6163unsafe floating point optimizations:
6164
6165Example:
6166""""""""
6167
6168.. code-block:: llvm
6169
Tim Northover675a0962014-06-13 14:24:23 +00006170 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006171
6172'``urem``' Instruction
6173^^^^^^^^^^^^^^^^^^^^^^
6174
6175Syntax:
6176"""""""
6177
6178::
6179
Tim Northover675a0962014-06-13 14:24:23 +00006180 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006181
6182Overview:
6183"""""""""
6184
6185The '``urem``' instruction returns the remainder from the unsigned
6186division of its two arguments.
6187
6188Arguments:
6189""""""""""
6190
6191The two arguments to the '``urem``' instruction must be
6192:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6193arguments must have identical types.
6194
6195Semantics:
6196""""""""""
6197
6198This instruction returns the unsigned integer *remainder* of a division.
6199This instruction always performs an unsigned division to get the
6200remainder.
6201
6202Note that unsigned integer remainder and signed integer remainder are
6203distinct operations; for signed integer remainder, use '``srem``'.
6204
6205Taking the remainder of a division by zero leads to undefined behavior.
6206
6207Example:
6208""""""""
6209
6210.. code-block:: llvm
6211
Tim Northover675a0962014-06-13 14:24:23 +00006212 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006213
6214'``srem``' Instruction
6215^^^^^^^^^^^^^^^^^^^^^^
6216
6217Syntax:
6218"""""""
6219
6220::
6221
Tim Northover675a0962014-06-13 14:24:23 +00006222 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006223
6224Overview:
6225"""""""""
6226
6227The '``srem``' instruction returns the remainder from the signed
6228division of its two operands. This instruction can also take
6229:ref:`vector <t_vector>` versions of the values in which case the elements
6230must be integers.
6231
6232Arguments:
6233""""""""""
6234
6235The two arguments to the '``srem``' instruction must be
6236:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6237arguments must have identical types.
6238
6239Semantics:
6240""""""""""
6241
6242This instruction returns the *remainder* of a division (where the result
6243is either zero or has the same sign as the dividend, ``op1``), not the
6244*modulo* operator (where the result is either zero or has the same sign
6245as the divisor, ``op2``) of a value. For more information about the
6246difference, see `The Math
6247Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6248table of how this is implemented in various languages, please see
6249`Wikipedia: modulo
6250operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6251
6252Note that signed integer remainder and unsigned integer remainder are
6253distinct operations; for unsigned integer remainder, use '``urem``'.
6254
6255Taking the remainder of a division by zero leads to undefined behavior.
6256Overflow also leads to undefined behavior; this is a rare case, but can
6257occur, for example, by taking the remainder of a 32-bit division of
6258-2147483648 by -1. (The remainder doesn't actually overflow, but this
6259rule lets srem be implemented using instructions that return both the
6260result of the division and the remainder.)
6261
6262Example:
6263""""""""
6264
6265.. code-block:: llvm
6266
Tim Northover675a0962014-06-13 14:24:23 +00006267 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006268
6269.. _i_frem:
6270
6271'``frem``' Instruction
6272^^^^^^^^^^^^^^^^^^^^^^
6273
6274Syntax:
6275"""""""
6276
6277::
6278
Tim Northover675a0962014-06-13 14:24:23 +00006279 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006280
6281Overview:
6282"""""""""
6283
6284The '``frem``' instruction returns the remainder from the division of
6285its two operands.
6286
6287Arguments:
6288""""""""""
6289
6290The two arguments to the '``frem``' instruction must be :ref:`floating
6291point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6292Both arguments must have identical types.
6293
6294Semantics:
6295""""""""""
6296
6297This instruction returns the *remainder* of a division. The remainder
6298has the same sign as the dividend. This instruction can also take any
6299number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6300to enable otherwise unsafe floating point optimizations:
6301
6302Example:
6303""""""""
6304
6305.. code-block:: llvm
6306
Tim Northover675a0962014-06-13 14:24:23 +00006307 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006308
6309.. _bitwiseops:
6310
6311Bitwise Binary Operations
6312-------------------------
6313
6314Bitwise binary operators are used to do various forms of bit-twiddling
6315in a program. They are generally very efficient instructions and can
6316commonly be strength reduced from other instructions. They require two
6317operands of the same type, execute an operation on them, and produce a
6318single value. The resulting value is the same type as its operands.
6319
6320'``shl``' Instruction
6321^^^^^^^^^^^^^^^^^^^^^
6322
6323Syntax:
6324"""""""
6325
6326::
6327
Tim Northover675a0962014-06-13 14:24:23 +00006328 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6329 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6330 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6331 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006332
6333Overview:
6334"""""""""
6335
6336The '``shl``' instruction returns the first operand shifted to the left
6337a specified number of bits.
6338
6339Arguments:
6340""""""""""
6341
6342Both arguments to the '``shl``' instruction must be the same
6343:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6344'``op2``' is treated as an unsigned value.
6345
6346Semantics:
6347""""""""""
6348
6349The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6350where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006351dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006352``op1``, the result is undefined. If the arguments are vectors, each
6353vector element of ``op1`` is shifted by the corresponding shift amount
6354in ``op2``.
6355
6356If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6357value <poisonvalues>` if it shifts out any non-zero bits. If the
6358``nsw`` keyword is present, then the shift produces a :ref:`poison
6359value <poisonvalues>` if it shifts out any bits that disagree with the
6360resultant sign bit. As such, NUW/NSW have the same semantics as they
6361would if the shift were expressed as a mul instruction with the same
6362nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6363
6364Example:
6365""""""""
6366
6367.. code-block:: llvm
6368
Tim Northover675a0962014-06-13 14:24:23 +00006369 <result> = shl i32 4, %var ; yields i32: 4 << %var
6370 <result> = shl i32 4, 2 ; yields i32: 16
6371 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006372 <result> = shl i32 1, 32 ; undefined
6373 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6374
6375'``lshr``' Instruction
6376^^^^^^^^^^^^^^^^^^^^^^
6377
6378Syntax:
6379"""""""
6380
6381::
6382
Tim Northover675a0962014-06-13 14:24:23 +00006383 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6384 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006385
6386Overview:
6387"""""""""
6388
6389The '``lshr``' instruction (logical shift right) returns the first
6390operand shifted to the right a specified number of bits with zero fill.
6391
6392Arguments:
6393""""""""""
6394
6395Both arguments to the '``lshr``' instruction must be the same
6396:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6397'``op2``' is treated as an unsigned value.
6398
6399Semantics:
6400""""""""""
6401
6402This instruction always performs a logical shift right operation. The
6403most significant bits of the result will be filled with zero bits after
6404the shift. If ``op2`` is (statically or dynamically) equal to or larger
6405than the number of bits in ``op1``, the result is undefined. If the
6406arguments are vectors, each vector element of ``op1`` is shifted by the
6407corresponding shift amount in ``op2``.
6408
6409If the ``exact`` keyword is present, the result value of the ``lshr`` is
6410a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6411non-zero.
6412
6413Example:
6414""""""""
6415
6416.. code-block:: llvm
6417
Tim Northover675a0962014-06-13 14:24:23 +00006418 <result> = lshr i32 4, 1 ; yields i32:result = 2
6419 <result> = lshr i32 4, 2 ; yields i32:result = 1
6420 <result> = lshr i8 4, 3 ; yields i8:result = 0
6421 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006422 <result> = lshr i32 1, 32 ; undefined
6423 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6424
6425'``ashr``' Instruction
6426^^^^^^^^^^^^^^^^^^^^^^
6427
6428Syntax:
6429"""""""
6430
6431::
6432
Tim Northover675a0962014-06-13 14:24:23 +00006433 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6434 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006435
6436Overview:
6437"""""""""
6438
6439The '``ashr``' instruction (arithmetic shift right) returns the first
6440operand shifted to the right a specified number of bits with sign
6441extension.
6442
6443Arguments:
6444""""""""""
6445
6446Both arguments to the '``ashr``' instruction must be the same
6447:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6448'``op2``' is treated as an unsigned value.
6449
6450Semantics:
6451""""""""""
6452
6453This instruction always performs an arithmetic shift right operation,
6454The most significant bits of the result will be filled with the sign bit
6455of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6456than the number of bits in ``op1``, the result is undefined. If the
6457arguments are vectors, each vector element of ``op1`` is shifted by the
6458corresponding shift amount in ``op2``.
6459
6460If the ``exact`` keyword is present, the result value of the ``ashr`` is
6461a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6462non-zero.
6463
6464Example:
6465""""""""
6466
6467.. code-block:: llvm
6468
Tim Northover675a0962014-06-13 14:24:23 +00006469 <result> = ashr i32 4, 1 ; yields i32:result = 2
6470 <result> = ashr i32 4, 2 ; yields i32:result = 1
6471 <result> = ashr i8 4, 3 ; yields i8:result = 0
6472 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006473 <result> = ashr i32 1, 32 ; undefined
6474 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6475
6476'``and``' Instruction
6477^^^^^^^^^^^^^^^^^^^^^
6478
6479Syntax:
6480"""""""
6481
6482::
6483
Tim Northover675a0962014-06-13 14:24:23 +00006484 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006485
6486Overview:
6487"""""""""
6488
6489The '``and``' instruction returns the bitwise logical and of its two
6490operands.
6491
6492Arguments:
6493""""""""""
6494
6495The two arguments to the '``and``' instruction must be
6496:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6497arguments must have identical types.
6498
6499Semantics:
6500""""""""""
6501
6502The truth table used for the '``and``' instruction is:
6503
6504+-----+-----+-----+
6505| In0 | In1 | Out |
6506+-----+-----+-----+
6507| 0 | 0 | 0 |
6508+-----+-----+-----+
6509| 0 | 1 | 0 |
6510+-----+-----+-----+
6511| 1 | 0 | 0 |
6512+-----+-----+-----+
6513| 1 | 1 | 1 |
6514+-----+-----+-----+
6515
6516Example:
6517""""""""
6518
6519.. code-block:: llvm
6520
Tim Northover675a0962014-06-13 14:24:23 +00006521 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6522 <result> = and i32 15, 40 ; yields i32:result = 8
6523 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006524
6525'``or``' Instruction
6526^^^^^^^^^^^^^^^^^^^^
6527
6528Syntax:
6529"""""""
6530
6531::
6532
Tim Northover675a0962014-06-13 14:24:23 +00006533 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006534
6535Overview:
6536"""""""""
6537
6538The '``or``' instruction returns the bitwise logical inclusive or of its
6539two operands.
6540
6541Arguments:
6542""""""""""
6543
6544The two arguments to the '``or``' instruction must be
6545:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6546arguments must have identical types.
6547
6548Semantics:
6549""""""""""
6550
6551The truth table used for the '``or``' instruction is:
6552
6553+-----+-----+-----+
6554| In0 | In1 | Out |
6555+-----+-----+-----+
6556| 0 | 0 | 0 |
6557+-----+-----+-----+
6558| 0 | 1 | 1 |
6559+-----+-----+-----+
6560| 1 | 0 | 1 |
6561+-----+-----+-----+
6562| 1 | 1 | 1 |
6563+-----+-----+-----+
6564
6565Example:
6566""""""""
6567
6568::
6569
Tim Northover675a0962014-06-13 14:24:23 +00006570 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6571 <result> = or i32 15, 40 ; yields i32:result = 47
6572 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006573
6574'``xor``' Instruction
6575^^^^^^^^^^^^^^^^^^^^^
6576
6577Syntax:
6578"""""""
6579
6580::
6581
Tim Northover675a0962014-06-13 14:24:23 +00006582 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006583
6584Overview:
6585"""""""""
6586
6587The '``xor``' instruction returns the bitwise logical exclusive or of
6588its two operands. The ``xor`` is used to implement the "one's
6589complement" operation, which is the "~" operator in C.
6590
6591Arguments:
6592""""""""""
6593
6594The two arguments to the '``xor``' instruction must be
6595:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6596arguments must have identical types.
6597
6598Semantics:
6599""""""""""
6600
6601The truth table used for the '``xor``' instruction is:
6602
6603+-----+-----+-----+
6604| In0 | In1 | Out |
6605+-----+-----+-----+
6606| 0 | 0 | 0 |
6607+-----+-----+-----+
6608| 0 | 1 | 1 |
6609+-----+-----+-----+
6610| 1 | 0 | 1 |
6611+-----+-----+-----+
6612| 1 | 1 | 0 |
6613+-----+-----+-----+
6614
6615Example:
6616""""""""
6617
6618.. code-block:: llvm
6619
Tim Northover675a0962014-06-13 14:24:23 +00006620 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6621 <result> = xor i32 15, 40 ; yields i32:result = 39
6622 <result> = xor i32 4, 8 ; yields i32:result = 12
6623 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006624
6625Vector Operations
6626-----------------
6627
6628LLVM supports several instructions to represent vector operations in a
6629target-independent manner. These instructions cover the element-access
6630and vector-specific operations needed to process vectors effectively.
6631While LLVM does directly support these vector operations, many
6632sophisticated algorithms will want to use target-specific intrinsics to
6633take full advantage of a specific target.
6634
6635.. _i_extractelement:
6636
6637'``extractelement``' Instruction
6638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6639
6640Syntax:
6641"""""""
6642
6643::
6644
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006645 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006646
6647Overview:
6648"""""""""
6649
6650The '``extractelement``' instruction extracts a single scalar element
6651from a vector at a specified index.
6652
6653Arguments:
6654""""""""""
6655
6656The first operand of an '``extractelement``' instruction is a value of
6657:ref:`vector <t_vector>` type. The second operand is an index indicating
6658the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006659variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006660
6661Semantics:
6662""""""""""
6663
6664The result is a scalar of the same type as the element type of ``val``.
6665Its value is the value at position ``idx`` of ``val``. If ``idx``
6666exceeds the length of ``val``, the results are undefined.
6667
6668Example:
6669""""""""
6670
6671.. code-block:: llvm
6672
6673 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6674
6675.. _i_insertelement:
6676
6677'``insertelement``' Instruction
6678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6679
6680Syntax:
6681"""""""
6682
6683::
6684
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006685 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006686
6687Overview:
6688"""""""""
6689
6690The '``insertelement``' instruction inserts a scalar element into a
6691vector at a specified index.
6692
6693Arguments:
6694""""""""""
6695
6696The first operand of an '``insertelement``' instruction is a value of
6697:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6698type must equal the element type of the first operand. The third operand
6699is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006700index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006701
6702Semantics:
6703""""""""""
6704
6705The result is a vector of the same type as ``val``. Its element values
6706are those of ``val`` except at position ``idx``, where it gets the value
6707``elt``. If ``idx`` exceeds the length of ``val``, the results are
6708undefined.
6709
6710Example:
6711""""""""
6712
6713.. code-block:: llvm
6714
6715 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6716
6717.. _i_shufflevector:
6718
6719'``shufflevector``' Instruction
6720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6721
6722Syntax:
6723"""""""
6724
6725::
6726
6727 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6728
6729Overview:
6730"""""""""
6731
6732The '``shufflevector``' instruction constructs a permutation of elements
6733from two input vectors, returning a vector with the same element type as
6734the input and length that is the same as the shuffle mask.
6735
6736Arguments:
6737""""""""""
6738
6739The first two operands of a '``shufflevector``' instruction are vectors
6740with the same type. The third argument is a shuffle mask whose element
6741type is always 'i32'. The result of the instruction is a vector whose
6742length is the same as the shuffle mask and whose element type is the
6743same as the element type of the first two operands.
6744
6745The shuffle mask operand is required to be a constant vector with either
6746constant integer or undef values.
6747
6748Semantics:
6749""""""""""
6750
6751The elements of the two input vectors are numbered from left to right
6752across both of the vectors. The shuffle mask operand specifies, for each
6753element of the result vector, which element of the two input vectors the
6754result element gets. The element selector may be undef (meaning "don't
6755care") and the second operand may be undef if performing a shuffle from
6756only one vector.
6757
6758Example:
6759""""""""
6760
6761.. code-block:: llvm
6762
6763 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6764 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6765 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6766 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6767 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6768 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6769 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6770 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6771
6772Aggregate Operations
6773--------------------
6774
6775LLVM supports several instructions for working with
6776:ref:`aggregate <t_aggregate>` values.
6777
6778.. _i_extractvalue:
6779
6780'``extractvalue``' Instruction
6781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6782
6783Syntax:
6784"""""""
6785
6786::
6787
6788 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6789
6790Overview:
6791"""""""""
6792
6793The '``extractvalue``' instruction extracts the value of a member field
6794from an :ref:`aggregate <t_aggregate>` value.
6795
6796Arguments:
6797""""""""""
6798
6799The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006800:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006801constant indices to specify which value to extract in a similar manner
6802as indices in a '``getelementptr``' instruction.
6803
6804The major differences to ``getelementptr`` indexing are:
6805
6806- Since the value being indexed is not a pointer, the first index is
6807 omitted and assumed to be zero.
6808- At least one index must be specified.
6809- Not only struct indices but also array indices must be in bounds.
6810
6811Semantics:
6812""""""""""
6813
6814The result is the value at the position in the aggregate specified by
6815the index operands.
6816
6817Example:
6818""""""""
6819
6820.. code-block:: llvm
6821
6822 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6823
6824.. _i_insertvalue:
6825
6826'``insertvalue``' Instruction
6827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6828
6829Syntax:
6830"""""""
6831
6832::
6833
6834 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6835
6836Overview:
6837"""""""""
6838
6839The '``insertvalue``' instruction inserts a value into a member field in
6840an :ref:`aggregate <t_aggregate>` value.
6841
6842Arguments:
6843""""""""""
6844
6845The first operand of an '``insertvalue``' instruction is a value of
6846:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6847a first-class value to insert. The following operands are constant
6848indices indicating the position at which to insert the value in a
6849similar manner as indices in a '``extractvalue``' instruction. The value
6850to insert must have the same type as the value identified by the
6851indices.
6852
6853Semantics:
6854""""""""""
6855
6856The result is an aggregate of the same type as ``val``. Its value is
6857that of ``val`` except that the value at the position specified by the
6858indices is that of ``elt``.
6859
6860Example:
6861""""""""
6862
6863.. code-block:: llvm
6864
6865 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6866 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006867 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006868
6869.. _memoryops:
6870
6871Memory Access and Addressing Operations
6872---------------------------------------
6873
6874A key design point of an SSA-based representation is how it represents
6875memory. In LLVM, no memory locations are in SSA form, which makes things
6876very simple. This section describes how to read, write, and allocate
6877memory in LLVM.
6878
6879.. _i_alloca:
6880
6881'``alloca``' Instruction
6882^^^^^^^^^^^^^^^^^^^^^^^^
6883
6884Syntax:
6885"""""""
6886
6887::
6888
Tim Northover675a0962014-06-13 14:24:23 +00006889 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006890
6891Overview:
6892"""""""""
6893
6894The '``alloca``' instruction allocates memory on the stack frame of the
6895currently executing function, to be automatically released when this
6896function returns to its caller. The object is always allocated in the
6897generic address space (address space zero).
6898
6899Arguments:
6900""""""""""
6901
6902The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6903bytes of memory on the runtime stack, returning a pointer of the
6904appropriate type to the program. If "NumElements" is specified, it is
6905the number of elements allocated, otherwise "NumElements" is defaulted
6906to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006907allocation is guaranteed to be aligned to at least that boundary. The
6908alignment may not be greater than ``1 << 29``. If not specified, or if
6909zero, the target can choose to align the allocation on any convenient
6910boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006911
6912'``type``' may be any sized type.
6913
6914Semantics:
6915""""""""""
6916
6917Memory is allocated; a pointer is returned. The operation is undefined
6918if there is insufficient stack space for the allocation. '``alloca``'d
6919memory is automatically released when the function returns. The
6920'``alloca``' instruction is commonly used to represent automatic
6921variables that must have an address available. When the function returns
6922(either with the ``ret`` or ``resume`` instructions), the memory is
6923reclaimed. Allocating zero bytes is legal, but the result is undefined.
6924The order in which memory is allocated (ie., which way the stack grows)
6925is not specified.
6926
6927Example:
6928""""""""
6929
6930.. code-block:: llvm
6931
Tim Northover675a0962014-06-13 14:24:23 +00006932 %ptr = alloca i32 ; yields i32*:ptr
6933 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6934 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6935 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006936
6937.. _i_load:
6938
6939'``load``' Instruction
6940^^^^^^^^^^^^^^^^^^^^^^
6941
6942Syntax:
6943"""""""
6944
6945::
6946
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006947 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006948 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006949 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006950 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006951 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006952
6953Overview:
6954"""""""""
6955
6956The '``load``' instruction is used to read from memory.
6957
6958Arguments:
6959""""""""""
6960
Eli Bendersky239a78b2013-04-17 20:17:08 +00006961The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006962from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006963class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6964then the optimizer is not allowed to modify the number or order of
6965execution of this ``load`` with other :ref:`volatile
6966operations <volatile>`.
6967
6968If the ``load`` is marked as ``atomic``, it takes an extra
6969:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6970``release`` and ``acq_rel`` orderings are not valid on ``load``
6971instructions. Atomic loads produce :ref:`defined <memmodel>` results
6972when they may see multiple atomic stores. The type of the pointee must
6973be an integer type whose bit width is a power of two greater than or
6974equal to eight and less than or equal to a target-specific size limit.
6975``align`` must be explicitly specified on atomic loads, and the load has
6976undefined behavior if the alignment is not set to a value which is at
6977least the size in bytes of the pointee. ``!nontemporal`` does not have
6978any defined semantics for atomic loads.
6979
6980The optional constant ``align`` argument specifies the alignment of the
6981operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006982or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006983alignment for the target. It is the responsibility of the code emitter
6984to ensure that the alignment information is correct. Overestimating the
6985alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006986may produce less efficient code. An alignment of 1 is always safe. The
6987maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006988
6989The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006990metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006991``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006992metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006993that this load is not expected to be reused in the cache. The code
6994generator may select special instructions to save cache bandwidth, such
6995as the ``MOVNT`` instruction on x86.
6996
6997The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006998metadata name ``<index>`` corresponding to a metadata node with no
6999entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00007000instruction tells the optimizer and code generator that the address
7001operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007002Being invariant does not imply that a location is dereferenceable,
7003but it does imply that once the location is known dereferenceable
7004its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00007005
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007006The optional ``!invariant.group`` metadata must reference a single metadata name
7007 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7008
Philip Reamescdb72f32014-10-20 22:40:55 +00007009The optional ``!nonnull`` metadata must reference a single
7010metadata name ``<index>`` corresponding to a metadata node with no
7011entries. The existence of the ``!nonnull`` metadata on the
7012instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007013never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007014on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007015to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007016
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007017The optional ``!dereferenceable`` metadata must reference a single metadata
7018name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007019entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007020tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007021The number of bytes known to be dereferenceable is specified by the integer
7022value in the metadata node. This is analogous to the ''dereferenceable''
7023attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007024to loads of a pointer type.
7025
7026The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007027metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7028``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007029instruction tells the optimizer that the value loaded is known to be either
7030dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007031The number of bytes known to be dereferenceable is specified by the integer
7032value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7033attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007034to loads of a pointer type.
7035
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007036The optional ``!align`` metadata must reference a single metadata name
7037``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7038The existence of the ``!align`` metadata on the instruction tells the
7039optimizer that the value loaded is known to be aligned to a boundary specified
7040by the integer value in the metadata node. The alignment must be a power of 2.
7041This is analogous to the ''align'' attribute on parameters and return values.
7042This metadata can only be applied to loads of a pointer type.
7043
Sean Silvab084af42012-12-07 10:36:55 +00007044Semantics:
7045""""""""""
7046
7047The location of memory pointed to is loaded. If the value being loaded
7048is of scalar type then the number of bytes read does not exceed the
7049minimum number of bytes needed to hold all bits of the type. For
7050example, loading an ``i24`` reads at most three bytes. When loading a
7051value of a type like ``i20`` with a size that is not an integral number
7052of bytes, the result is undefined if the value was not originally
7053written using a store of the same type.
7054
7055Examples:
7056"""""""""
7057
7058.. code-block:: llvm
7059
Tim Northover675a0962014-06-13 14:24:23 +00007060 %ptr = alloca i32 ; yields i32*:ptr
7061 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007062 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007063
7064.. _i_store:
7065
7066'``store``' Instruction
7067^^^^^^^^^^^^^^^^^^^^^^^
7068
7069Syntax:
7070"""""""
7071
7072::
7073
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007074 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7075 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007076
7077Overview:
7078"""""""""
7079
7080The '``store``' instruction is used to write to memory.
7081
7082Arguments:
7083""""""""""
7084
Eli Benderskyca380842013-04-17 17:17:20 +00007085There are two arguments to the ``store`` instruction: a value to store
7086and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007087operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007088the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007089then the optimizer is not allowed to modify the number or order of
7090execution of this ``store`` with other :ref:`volatile
7091operations <volatile>`.
7092
7093If the ``store`` is marked as ``atomic``, it takes an extra
7094:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7095``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
7096instructions. Atomic loads produce :ref:`defined <memmodel>` results
7097when they may see multiple atomic stores. The type of the pointee must
7098be an integer type whose bit width is a power of two greater than or
7099equal to eight and less than or equal to a target-specific size limit.
7100``align`` must be explicitly specified on atomic stores, and the store
7101has undefined behavior if the alignment is not set to a value which is
7102at least the size in bytes of the pointee. ``!nontemporal`` does not
7103have any defined semantics for atomic stores.
7104
Eli Benderskyca380842013-04-17 17:17:20 +00007105The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007106operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007107or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007108alignment for the target. It is the responsibility of the code emitter
7109to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007110alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007111alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007112safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007113
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007114The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007115name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007116value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007117tells the optimizer and code generator that this load is not expected to
7118be reused in the cache. The code generator may select special
7119instructions to save cache bandwidth, such as the MOVNT instruction on
7120x86.
7121
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007122The optional ``!invariant.group`` metadata must reference a
7123single metadata name ``<index>``. See ``invariant.group`` metadata.
7124
Sean Silvab084af42012-12-07 10:36:55 +00007125Semantics:
7126""""""""""
7127
Eli Benderskyca380842013-04-17 17:17:20 +00007128The contents of memory are updated to contain ``<value>`` at the
7129location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007130of scalar type then the number of bytes written does not exceed the
7131minimum number of bytes needed to hold all bits of the type. For
7132example, storing an ``i24`` writes at most three bytes. When writing a
7133value of a type like ``i20`` with a size that is not an integral number
7134of bytes, it is unspecified what happens to the extra bits that do not
7135belong to the type, but they will typically be overwritten.
7136
7137Example:
7138""""""""
7139
7140.. code-block:: llvm
7141
Tim Northover675a0962014-06-13 14:24:23 +00007142 %ptr = alloca i32 ; yields i32*:ptr
7143 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007144 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007145
7146.. _i_fence:
7147
7148'``fence``' Instruction
7149^^^^^^^^^^^^^^^^^^^^^^^
7150
7151Syntax:
7152"""""""
7153
7154::
7155
Tim Northover675a0962014-06-13 14:24:23 +00007156 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007157
7158Overview:
7159"""""""""
7160
7161The '``fence``' instruction is used to introduce happens-before edges
7162between operations.
7163
7164Arguments:
7165""""""""""
7166
7167'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7168defines what *synchronizes-with* edges they add. They can only be given
7169``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7170
7171Semantics:
7172""""""""""
7173
7174A fence A which has (at least) ``release`` ordering semantics
7175*synchronizes with* a fence B with (at least) ``acquire`` ordering
7176semantics if and only if there exist atomic operations X and Y, both
7177operating on some atomic object M, such that A is sequenced before X, X
7178modifies M (either directly or through some side effect of a sequence
7179headed by X), Y is sequenced before B, and Y observes M. This provides a
7180*happens-before* dependency between A and B. Rather than an explicit
7181``fence``, one (but not both) of the atomic operations X or Y might
7182provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7183still *synchronize-with* the explicit ``fence`` and establish the
7184*happens-before* edge.
7185
7186A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7187``acquire`` and ``release`` semantics specified above, participates in
7188the global program order of other ``seq_cst`` operations and/or fences.
7189
7190The optional ":ref:`singlethread <singlethread>`" argument specifies
7191that the fence only synchronizes with other fences in the same thread.
7192(This is useful for interacting with signal handlers.)
7193
7194Example:
7195""""""""
7196
7197.. code-block:: llvm
7198
Tim Northover675a0962014-06-13 14:24:23 +00007199 fence acquire ; yields void
7200 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007201
7202.. _i_cmpxchg:
7203
7204'``cmpxchg``' Instruction
7205^^^^^^^^^^^^^^^^^^^^^^^^^
7206
7207Syntax:
7208"""""""
7209
7210::
7211
Tim Northover675a0962014-06-13 14:24:23 +00007212 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007213
7214Overview:
7215"""""""""
7216
7217The '``cmpxchg``' instruction is used to atomically modify memory. It
7218loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007219equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007220
7221Arguments:
7222""""""""""
7223
7224There are three arguments to the '``cmpxchg``' instruction: an address
7225to operate on, a value to compare to the value currently be at that
7226address, and a new value to place at that address if the compared values
7227are equal. The type of '<cmp>' must be an integer type whose bit width
7228is a power of two greater than or equal to eight and less than or equal
7229to a target-specific size limit. '<cmp>' and '<new>' must have the same
7230type, and the type of '<pointer>' must be a pointer to that type. If the
7231``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7232to modify the number or order of execution of this ``cmpxchg`` with
7233other :ref:`volatile operations <volatile>`.
7234
Tim Northovere94a5182014-03-11 10:48:52 +00007235The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007236``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7237must be at least ``monotonic``, the ordering constraint on failure must be no
7238stronger than that on success, and the failure ordering cannot be either
7239``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007240
7241The optional "``singlethread``" argument declares that the ``cmpxchg``
7242is only atomic with respect to code (usually signal handlers) running in
7243the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7244respect to all other code in the system.
7245
7246The pointer passed into cmpxchg must have alignment greater than or
7247equal to the size in memory of the operand.
7248
7249Semantics:
7250""""""""""
7251
Tim Northover420a2162014-06-13 14:24:07 +00007252The contents of memory at the location specified by the '``<pointer>``' operand
7253is read and compared to '``<cmp>``'; if the read value is the equal, the
7254'``<new>``' is written. The original value at the location is returned, together
7255with a flag indicating success (true) or failure (false).
7256
7257If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7258permitted: the operation may not write ``<new>`` even if the comparison
7259matched.
7260
7261If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7262if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007263
Tim Northovere94a5182014-03-11 10:48:52 +00007264A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7265identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7266load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007267
7268Example:
7269""""""""
7270
7271.. code-block:: llvm
7272
7273 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007274 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007275 br label %loop
7276
7277 loop:
7278 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7279 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007280 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007281 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7282 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007283 br i1 %success, label %done, label %loop
7284
7285 done:
7286 ...
7287
7288.. _i_atomicrmw:
7289
7290'``atomicrmw``' Instruction
7291^^^^^^^^^^^^^^^^^^^^^^^^^^^
7292
7293Syntax:
7294"""""""
7295
7296::
7297
Tim Northover675a0962014-06-13 14:24:23 +00007298 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007299
7300Overview:
7301"""""""""
7302
7303The '``atomicrmw``' instruction is used to atomically modify memory.
7304
7305Arguments:
7306""""""""""
7307
7308There are three arguments to the '``atomicrmw``' instruction: an
7309operation to apply, an address whose value to modify, an argument to the
7310operation. The operation must be one of the following keywords:
7311
7312- xchg
7313- add
7314- sub
7315- and
7316- nand
7317- or
7318- xor
7319- max
7320- min
7321- umax
7322- umin
7323
7324The type of '<value>' must be an integer type whose bit width is a power
7325of two greater than or equal to eight and less than or equal to a
7326target-specific size limit. The type of the '``<pointer>``' operand must
7327be a pointer to that type. If the ``atomicrmw`` is marked as
7328``volatile``, then the optimizer is not allowed to modify the number or
7329order of execution of this ``atomicrmw`` with other :ref:`volatile
7330operations <volatile>`.
7331
7332Semantics:
7333""""""""""
7334
7335The contents of memory at the location specified by the '``<pointer>``'
7336operand are atomically read, modified, and written back. The original
7337value at the location is returned. The modification is specified by the
7338operation argument:
7339
7340- xchg: ``*ptr = val``
7341- add: ``*ptr = *ptr + val``
7342- sub: ``*ptr = *ptr - val``
7343- and: ``*ptr = *ptr & val``
7344- nand: ``*ptr = ~(*ptr & val)``
7345- or: ``*ptr = *ptr | val``
7346- xor: ``*ptr = *ptr ^ val``
7347- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7348- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7349- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7350 comparison)
7351- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7352 comparison)
7353
7354Example:
7355""""""""
7356
7357.. code-block:: llvm
7358
Tim Northover675a0962014-06-13 14:24:23 +00007359 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007360
7361.. _i_getelementptr:
7362
7363'``getelementptr``' Instruction
7364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7365
7366Syntax:
7367"""""""
7368
7369::
7370
David Blaikie16a97eb2015-03-04 22:02:58 +00007371 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7372 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7373 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007374
7375Overview:
7376"""""""""
7377
7378The '``getelementptr``' instruction is used to get the address of a
7379subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007380address calculation only and does not access memory. The instruction can also
7381be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007382
7383Arguments:
7384""""""""""
7385
David Blaikie16a97eb2015-03-04 22:02:58 +00007386The first argument is always a type used as the basis for the calculations.
7387The second argument is always a pointer or a vector of pointers, and is the
7388base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007389that indicate which of the elements of the aggregate object are indexed.
7390The interpretation of each index is dependent on the type being indexed
7391into. The first index always indexes the pointer value given as the
7392first argument, the second index indexes a value of the type pointed to
7393(not necessarily the value directly pointed to, since the first index
7394can be non-zero), etc. The first type indexed into must be a pointer
7395value, subsequent types can be arrays, vectors, and structs. Note that
7396subsequent types being indexed into can never be pointers, since that
7397would require loading the pointer before continuing calculation.
7398
7399The type of each index argument depends on the type it is indexing into.
7400When indexing into a (optionally packed) structure, only ``i32`` integer
7401**constants** are allowed (when using a vector of indices they must all
7402be the **same** ``i32`` integer constant). When indexing into an array,
7403pointer or vector, integers of any width are allowed, and they are not
7404required to be constant. These integers are treated as signed values
7405where relevant.
7406
7407For example, let's consider a C code fragment and how it gets compiled
7408to LLVM:
7409
7410.. code-block:: c
7411
7412 struct RT {
7413 char A;
7414 int B[10][20];
7415 char C;
7416 };
7417 struct ST {
7418 int X;
7419 double Y;
7420 struct RT Z;
7421 };
7422
7423 int *foo(struct ST *s) {
7424 return &s[1].Z.B[5][13];
7425 }
7426
7427The LLVM code generated by Clang is:
7428
7429.. code-block:: llvm
7430
7431 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7432 %struct.ST = type { i32, double, %struct.RT }
7433
7434 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7435 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007436 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007437 ret i32* %arrayidx
7438 }
7439
7440Semantics:
7441""""""""""
7442
7443In the example above, the first index is indexing into the
7444'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7445= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7446indexes into the third element of the structure, yielding a
7447'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7448structure. The third index indexes into the second element of the
7449structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7450dimensions of the array are subscripted into, yielding an '``i32``'
7451type. The '``getelementptr``' instruction returns a pointer to this
7452element, thus computing a value of '``i32*``' type.
7453
7454Note that it is perfectly legal to index partially through a structure,
7455returning a pointer to an inner element. Because of this, the LLVM code
7456for the given testcase is equivalent to:
7457
7458.. code-block:: llvm
7459
7460 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007461 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7462 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7463 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7464 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7465 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007466 ret i32* %t5
7467 }
7468
7469If the ``inbounds`` keyword is present, the result value of the
7470``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7471pointer is not an *in bounds* address of an allocated object, or if any
7472of the addresses that would be formed by successive addition of the
7473offsets implied by the indices to the base address with infinitely
7474precise signed arithmetic are not an *in bounds* address of that
7475allocated object. The *in bounds* addresses for an allocated object are
7476all the addresses that point into the object, plus the address one byte
7477past the end. In cases where the base is a vector of pointers the
7478``inbounds`` keyword applies to each of the computations element-wise.
7479
7480If the ``inbounds`` keyword is not present, the offsets are added to the
7481base address with silently-wrapping two's complement arithmetic. If the
7482offsets have a different width from the pointer, they are sign-extended
7483or truncated to the width of the pointer. The result value of the
7484``getelementptr`` may be outside the object pointed to by the base
7485pointer. The result value may not necessarily be used to access memory
7486though, even if it happens to point into allocated storage. See the
7487:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7488information.
7489
7490The getelementptr instruction is often confusing. For some more insight
7491into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7492
7493Example:
7494""""""""
7495
7496.. code-block:: llvm
7497
7498 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007499 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007500 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007501 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007502 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007503 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007504 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007505 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007506
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007507Vector of pointers:
7508"""""""""""""""""""
7509
7510The ``getelementptr`` returns a vector of pointers, instead of a single address,
7511when one or more of its arguments is a vector. In such cases, all vector
7512arguments should have the same number of elements, and every scalar argument
7513will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007514
7515.. code-block:: llvm
7516
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007517 ; All arguments are vectors:
7518 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7519 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007520
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007521 ; Add the same scalar offset to each pointer of a vector:
7522 ; A[i] = ptrs[i] + offset*sizeof(i8)
7523 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007524
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007525 ; Add distinct offsets to the same pointer:
7526 ; A[i] = ptr + offsets[i]*sizeof(i8)
7527 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007528
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007529 ; In all cases described above the type of the result is <4 x i8*>
7530
7531The two following instructions are equivalent:
7532
7533.. code-block:: llvm
7534
7535 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7536 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7537 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7538 <4 x i32> %ind4,
7539 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007540
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007541 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7542 i32 2, i32 1, <4 x i32> %ind4, i64 13
7543
7544Let's look at the C code, where the vector version of ``getelementptr``
7545makes sense:
7546
7547.. code-block:: c
7548
7549 // Let's assume that we vectorize the following loop:
7550 double *A, B; int *C;
7551 for (int i = 0; i < size; ++i) {
7552 A[i] = B[C[i]];
7553 }
7554
7555.. code-block:: llvm
7556
7557 ; get pointers for 8 elements from array B
7558 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7559 ; load 8 elements from array B into A
7560 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7561 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007562
7563Conversion Operations
7564---------------------
7565
7566The instructions in this category are the conversion instructions
7567(casting) which all take a single operand and a type. They perform
7568various bit conversions on the operand.
7569
7570'``trunc .. to``' Instruction
7571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7572
7573Syntax:
7574"""""""
7575
7576::
7577
7578 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7579
7580Overview:
7581"""""""""
7582
7583The '``trunc``' instruction truncates its operand to the type ``ty2``.
7584
7585Arguments:
7586""""""""""
7587
7588The '``trunc``' instruction takes a value to trunc, and a type to trunc
7589it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7590of the same number of integers. The bit size of the ``value`` must be
7591larger than the bit size of the destination type, ``ty2``. Equal sized
7592types are not allowed.
7593
7594Semantics:
7595""""""""""
7596
7597The '``trunc``' instruction truncates the high order bits in ``value``
7598and converts the remaining bits to ``ty2``. Since the source size must
7599be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7600It will always truncate bits.
7601
7602Example:
7603""""""""
7604
7605.. code-block:: llvm
7606
7607 %X = trunc i32 257 to i8 ; yields i8:1
7608 %Y = trunc i32 123 to i1 ; yields i1:true
7609 %Z = trunc i32 122 to i1 ; yields i1:false
7610 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7611
7612'``zext .. to``' Instruction
7613^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7614
7615Syntax:
7616"""""""
7617
7618::
7619
7620 <result> = zext <ty> <value> to <ty2> ; yields ty2
7621
7622Overview:
7623"""""""""
7624
7625The '``zext``' instruction zero extends its operand to type ``ty2``.
7626
7627Arguments:
7628""""""""""
7629
7630The '``zext``' instruction takes a value to cast, and a type to cast it
7631to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7632the same number of integers. The bit size of the ``value`` must be
7633smaller than the bit size of the destination type, ``ty2``.
7634
7635Semantics:
7636""""""""""
7637
7638The ``zext`` fills the high order bits of the ``value`` with zero bits
7639until it reaches the size of the destination type, ``ty2``.
7640
7641When zero extending from i1, the result will always be either 0 or 1.
7642
7643Example:
7644""""""""
7645
7646.. code-block:: llvm
7647
7648 %X = zext i32 257 to i64 ; yields i64:257
7649 %Y = zext i1 true to i32 ; yields i32:1
7650 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7651
7652'``sext .. to``' Instruction
7653^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7654
7655Syntax:
7656"""""""
7657
7658::
7659
7660 <result> = sext <ty> <value> to <ty2> ; yields ty2
7661
7662Overview:
7663"""""""""
7664
7665The '``sext``' sign extends ``value`` to the type ``ty2``.
7666
7667Arguments:
7668""""""""""
7669
7670The '``sext``' instruction takes a value to cast, and a type to cast it
7671to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7672the same number of integers. The bit size of the ``value`` must be
7673smaller than the bit size of the destination type, ``ty2``.
7674
7675Semantics:
7676""""""""""
7677
7678The '``sext``' instruction performs a sign extension by copying the sign
7679bit (highest order bit) of the ``value`` until it reaches the bit size
7680of the type ``ty2``.
7681
7682When sign extending from i1, the extension always results in -1 or 0.
7683
7684Example:
7685""""""""
7686
7687.. code-block:: llvm
7688
7689 %X = sext i8 -1 to i16 ; yields i16 :65535
7690 %Y = sext i1 true to i32 ; yields i32:-1
7691 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7692
7693'``fptrunc .. to``' Instruction
7694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7695
7696Syntax:
7697"""""""
7698
7699::
7700
7701 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7702
7703Overview:
7704"""""""""
7705
7706The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7707
7708Arguments:
7709""""""""""
7710
7711The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7712value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7713The size of ``value`` must be larger than the size of ``ty2``. This
7714implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7715
7716Semantics:
7717""""""""""
7718
Dan Liew50456fb2015-09-03 18:43:56 +00007719The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007720:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007721point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7722destination type, ``ty2``, then the results are undefined. If the cast produces
7723an inexact result, how rounding is performed (e.g. truncation, also known as
7724round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007725
7726Example:
7727""""""""
7728
7729.. code-block:: llvm
7730
7731 %X = fptrunc double 123.0 to float ; yields float:123.0
7732 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7733
7734'``fpext .. to``' Instruction
7735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7736
7737Syntax:
7738"""""""
7739
7740::
7741
7742 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7743
7744Overview:
7745"""""""""
7746
7747The '``fpext``' extends a floating point ``value`` to a larger floating
7748point value.
7749
7750Arguments:
7751""""""""""
7752
7753The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7754``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7755to. The source type must be smaller than the destination type.
7756
7757Semantics:
7758""""""""""
7759
7760The '``fpext``' instruction extends the ``value`` from a smaller
7761:ref:`floating point <t_floating>` type to a larger :ref:`floating
7762point <t_floating>` type. The ``fpext`` cannot be used to make a
7763*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7764*no-op cast* for a floating point cast.
7765
7766Example:
7767""""""""
7768
7769.. code-block:: llvm
7770
7771 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7772 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7773
7774'``fptoui .. to``' Instruction
7775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7776
7777Syntax:
7778"""""""
7779
7780::
7781
7782 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7783
7784Overview:
7785"""""""""
7786
7787The '``fptoui``' converts a floating point ``value`` to its unsigned
7788integer equivalent of type ``ty2``.
7789
7790Arguments:
7791""""""""""
7792
7793The '``fptoui``' instruction takes a value to cast, which must be a
7794scalar or vector :ref:`floating point <t_floating>` value, and a type to
7795cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7796``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7797type with the same number of elements as ``ty``
7798
7799Semantics:
7800""""""""""
7801
7802The '``fptoui``' instruction converts its :ref:`floating
7803point <t_floating>` operand into the nearest (rounding towards zero)
7804unsigned integer value. If the value cannot fit in ``ty2``, the results
7805are undefined.
7806
7807Example:
7808""""""""
7809
7810.. code-block:: llvm
7811
7812 %X = fptoui double 123.0 to i32 ; yields i32:123
7813 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7814 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7815
7816'``fptosi .. to``' Instruction
7817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7818
7819Syntax:
7820"""""""
7821
7822::
7823
7824 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7825
7826Overview:
7827"""""""""
7828
7829The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7830``value`` to type ``ty2``.
7831
7832Arguments:
7833""""""""""
7834
7835The '``fptosi``' instruction takes a value to cast, which must be a
7836scalar or vector :ref:`floating point <t_floating>` value, and a type to
7837cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7838``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7839type with the same number of elements as ``ty``
7840
7841Semantics:
7842""""""""""
7843
7844The '``fptosi``' instruction converts its :ref:`floating
7845point <t_floating>` operand into the nearest (rounding towards zero)
7846signed integer value. If the value cannot fit in ``ty2``, the results
7847are undefined.
7848
7849Example:
7850""""""""
7851
7852.. code-block:: llvm
7853
7854 %X = fptosi double -123.0 to i32 ; yields i32:-123
7855 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7856 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7857
7858'``uitofp .. to``' Instruction
7859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7860
7861Syntax:
7862"""""""
7863
7864::
7865
7866 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7867
7868Overview:
7869"""""""""
7870
7871The '``uitofp``' instruction regards ``value`` as an unsigned integer
7872and converts that value to the ``ty2`` type.
7873
7874Arguments:
7875""""""""""
7876
7877The '``uitofp``' instruction takes a value to cast, which must be a
7878scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7879``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7880``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7881type with the same number of elements as ``ty``
7882
7883Semantics:
7884""""""""""
7885
7886The '``uitofp``' instruction interprets its operand as an unsigned
7887integer quantity and converts it to the corresponding floating point
7888value. If the value cannot fit in the floating point value, the results
7889are undefined.
7890
7891Example:
7892""""""""
7893
7894.. code-block:: llvm
7895
7896 %X = uitofp i32 257 to float ; yields float:257.0
7897 %Y = uitofp i8 -1 to double ; yields double:255.0
7898
7899'``sitofp .. to``' Instruction
7900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7901
7902Syntax:
7903"""""""
7904
7905::
7906
7907 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7908
7909Overview:
7910"""""""""
7911
7912The '``sitofp``' instruction regards ``value`` as a signed integer and
7913converts that value to the ``ty2`` type.
7914
7915Arguments:
7916""""""""""
7917
7918The '``sitofp``' instruction takes a value to cast, which must be a
7919scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7920``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7921``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7922type with the same number of elements as ``ty``
7923
7924Semantics:
7925""""""""""
7926
7927The '``sitofp``' instruction interprets its operand as a signed integer
7928quantity and converts it to the corresponding floating point value. If
7929the value cannot fit in the floating point value, the results are
7930undefined.
7931
7932Example:
7933""""""""
7934
7935.. code-block:: llvm
7936
7937 %X = sitofp i32 257 to float ; yields float:257.0
7938 %Y = sitofp i8 -1 to double ; yields double:-1.0
7939
7940.. _i_ptrtoint:
7941
7942'``ptrtoint .. to``' Instruction
7943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7944
7945Syntax:
7946"""""""
7947
7948::
7949
7950 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7951
7952Overview:
7953"""""""""
7954
7955The '``ptrtoint``' instruction converts the pointer or a vector of
7956pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7957
7958Arguments:
7959""""""""""
7960
7961The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007962a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007963type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7964a vector of integers type.
7965
7966Semantics:
7967""""""""""
7968
7969The '``ptrtoint``' instruction converts ``value`` to integer type
7970``ty2`` by interpreting the pointer value as an integer and either
7971truncating or zero extending that value to the size of the integer type.
7972If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7973``value`` is larger than ``ty2`` then a truncation is done. If they are
7974the same size, then nothing is done (*no-op cast*) other than a type
7975change.
7976
7977Example:
7978""""""""
7979
7980.. code-block:: llvm
7981
7982 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7983 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7984 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7985
7986.. _i_inttoptr:
7987
7988'``inttoptr .. to``' Instruction
7989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7990
7991Syntax:
7992"""""""
7993
7994::
7995
7996 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7997
7998Overview:
7999"""""""""
8000
8001The '``inttoptr``' instruction converts an integer ``value`` to a
8002pointer type, ``ty2``.
8003
8004Arguments:
8005""""""""""
8006
8007The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8008cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8009type.
8010
8011Semantics:
8012""""""""""
8013
8014The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8015applying either a zero extension or a truncation depending on the size
8016of the integer ``value``. If ``value`` is larger than the size of a
8017pointer then a truncation is done. If ``value`` is smaller than the size
8018of a pointer then a zero extension is done. If they are the same size,
8019nothing is done (*no-op cast*).
8020
8021Example:
8022""""""""
8023
8024.. code-block:: llvm
8025
8026 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8027 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8028 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8029 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8030
8031.. _i_bitcast:
8032
8033'``bitcast .. to``' Instruction
8034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8035
8036Syntax:
8037"""""""
8038
8039::
8040
8041 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8042
8043Overview:
8044"""""""""
8045
8046The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8047changing any bits.
8048
8049Arguments:
8050""""""""""
8051
8052The '``bitcast``' instruction takes a value to cast, which must be a
8053non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008054also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8055bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008056identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008057also be a pointer of the same size. This instruction supports bitwise
8058conversion of vectors to integers and to vectors of other types (as
8059long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008060
8061Semantics:
8062""""""""""
8063
Matt Arsenault24b49c42013-07-31 17:49:08 +00008064The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8065is always a *no-op cast* because no bits change with this
8066conversion. The conversion is done as if the ``value`` had been stored
8067to memory and read back as type ``ty2``. Pointer (or vector of
8068pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008069pointers) types with the same address space through this instruction.
8070To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8071or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008072
8073Example:
8074""""""""
8075
8076.. code-block:: llvm
8077
8078 %X = bitcast i8 255 to i8 ; yields i8 :-1
8079 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8080 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8081 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8082
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008083.. _i_addrspacecast:
8084
8085'``addrspacecast .. to``' Instruction
8086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8087
8088Syntax:
8089"""""""
8090
8091::
8092
8093 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8094
8095Overview:
8096"""""""""
8097
8098The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8099address space ``n`` to type ``pty2`` in address space ``m``.
8100
8101Arguments:
8102""""""""""
8103
8104The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8105to cast and a pointer type to cast it to, which must have a different
8106address space.
8107
8108Semantics:
8109""""""""""
8110
8111The '``addrspacecast``' instruction converts the pointer value
8112``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008113value modification, depending on the target and the address space
8114pair. Pointer conversions within the same address space must be
8115performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008116conversion is legal then both result and operand refer to the same memory
8117location.
8118
8119Example:
8120""""""""
8121
8122.. code-block:: llvm
8123
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008124 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8125 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8126 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008127
Sean Silvab084af42012-12-07 10:36:55 +00008128.. _otherops:
8129
8130Other Operations
8131----------------
8132
8133The instructions in this category are the "miscellaneous" instructions,
8134which defy better classification.
8135
8136.. _i_icmp:
8137
8138'``icmp``' Instruction
8139^^^^^^^^^^^^^^^^^^^^^^
8140
8141Syntax:
8142"""""""
8143
8144::
8145
Tim Northover675a0962014-06-13 14:24:23 +00008146 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008147
8148Overview:
8149"""""""""
8150
8151The '``icmp``' instruction returns a boolean value or a vector of
8152boolean values based on comparison of its two integer, integer vector,
8153pointer, or pointer vector operands.
8154
8155Arguments:
8156""""""""""
8157
8158The '``icmp``' instruction takes three operands. The first operand is
8159the condition code indicating the kind of comparison to perform. It is
8160not a value, just a keyword. The possible condition code are:
8161
8162#. ``eq``: equal
8163#. ``ne``: not equal
8164#. ``ugt``: unsigned greater than
8165#. ``uge``: unsigned greater or equal
8166#. ``ult``: unsigned less than
8167#. ``ule``: unsigned less or equal
8168#. ``sgt``: signed greater than
8169#. ``sge``: signed greater or equal
8170#. ``slt``: signed less than
8171#. ``sle``: signed less or equal
8172
8173The remaining two arguments must be :ref:`integer <t_integer>` or
8174:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8175must also be identical types.
8176
8177Semantics:
8178""""""""""
8179
8180The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8181code given as ``cond``. The comparison performed always yields either an
8182:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8183
8184#. ``eq``: yields ``true`` if the operands are equal, ``false``
8185 otherwise. No sign interpretation is necessary or performed.
8186#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8187 otherwise. No sign interpretation is necessary or performed.
8188#. ``ugt``: interprets the operands as unsigned values and yields
8189 ``true`` if ``op1`` is greater than ``op2``.
8190#. ``uge``: interprets the operands as unsigned values and yields
8191 ``true`` if ``op1`` is greater than or equal to ``op2``.
8192#. ``ult``: interprets the operands as unsigned values and yields
8193 ``true`` if ``op1`` is less than ``op2``.
8194#. ``ule``: interprets the operands as unsigned values and yields
8195 ``true`` if ``op1`` is less than or equal to ``op2``.
8196#. ``sgt``: interprets the operands as signed values and yields ``true``
8197 if ``op1`` is greater than ``op2``.
8198#. ``sge``: interprets the operands as signed values and yields ``true``
8199 if ``op1`` is greater than or equal to ``op2``.
8200#. ``slt``: interprets the operands as signed values and yields ``true``
8201 if ``op1`` is less than ``op2``.
8202#. ``sle``: interprets the operands as signed values and yields ``true``
8203 if ``op1`` is less than or equal to ``op2``.
8204
8205If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8206are compared as if they were integers.
8207
8208If the operands are integer vectors, then they are compared element by
8209element. The result is an ``i1`` vector with the same number of elements
8210as the values being compared. Otherwise, the result is an ``i1``.
8211
8212Example:
8213""""""""
8214
8215.. code-block:: llvm
8216
8217 <result> = icmp eq i32 4, 5 ; yields: result=false
8218 <result> = icmp ne float* %X, %X ; yields: result=false
8219 <result> = icmp ult i16 4, 5 ; yields: result=true
8220 <result> = icmp sgt i16 4, 5 ; yields: result=false
8221 <result> = icmp ule i16 -4, 5 ; yields: result=false
8222 <result> = icmp sge i16 4, 5 ; yields: result=false
8223
8224Note that the code generator does not yet support vector types with the
8225``icmp`` instruction.
8226
8227.. _i_fcmp:
8228
8229'``fcmp``' Instruction
8230^^^^^^^^^^^^^^^^^^^^^^
8231
8232Syntax:
8233"""""""
8234
8235::
8236
James Molloy88eb5352015-07-10 12:52:00 +00008237 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008238
8239Overview:
8240"""""""""
8241
8242The '``fcmp``' instruction returns a boolean value or vector of boolean
8243values based on comparison of its operands.
8244
8245If the operands are floating point scalars, then the result type is a
8246boolean (:ref:`i1 <t_integer>`).
8247
8248If the operands are floating point vectors, then the result type is a
8249vector of boolean with the same number of elements as the operands being
8250compared.
8251
8252Arguments:
8253""""""""""
8254
8255The '``fcmp``' instruction takes three operands. The first operand is
8256the condition code indicating the kind of comparison to perform. It is
8257not a value, just a keyword. The possible condition code are:
8258
8259#. ``false``: no comparison, always returns false
8260#. ``oeq``: ordered and equal
8261#. ``ogt``: ordered and greater than
8262#. ``oge``: ordered and greater than or equal
8263#. ``olt``: ordered and less than
8264#. ``ole``: ordered and less than or equal
8265#. ``one``: ordered and not equal
8266#. ``ord``: ordered (no nans)
8267#. ``ueq``: unordered or equal
8268#. ``ugt``: unordered or greater than
8269#. ``uge``: unordered or greater than or equal
8270#. ``ult``: unordered or less than
8271#. ``ule``: unordered or less than or equal
8272#. ``une``: unordered or not equal
8273#. ``uno``: unordered (either nans)
8274#. ``true``: no comparison, always returns true
8275
8276*Ordered* means that neither operand is a QNAN while *unordered* means
8277that either operand may be a QNAN.
8278
8279Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8280point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8281type. They must have identical types.
8282
8283Semantics:
8284""""""""""
8285
8286The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8287condition code given as ``cond``. If the operands are vectors, then the
8288vectors are compared element by element. Each comparison performed
8289always yields an :ref:`i1 <t_integer>` result, as follows:
8290
8291#. ``false``: always yields ``false``, regardless of operands.
8292#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8293 is equal to ``op2``.
8294#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8295 is greater than ``op2``.
8296#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8297 is greater than or equal to ``op2``.
8298#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8299 is less than ``op2``.
8300#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8301 is less than or equal to ``op2``.
8302#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8303 is not equal to ``op2``.
8304#. ``ord``: yields ``true`` if both operands are not a QNAN.
8305#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8306 equal to ``op2``.
8307#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8308 greater than ``op2``.
8309#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8310 greater than or equal to ``op2``.
8311#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8312 less than ``op2``.
8313#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8314 less than or equal to ``op2``.
8315#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8316 not equal to ``op2``.
8317#. ``uno``: yields ``true`` if either operand is a QNAN.
8318#. ``true``: always yields ``true``, regardless of operands.
8319
James Molloy88eb5352015-07-10 12:52:00 +00008320The ``fcmp`` instruction can also optionally take any number of
8321:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8322otherwise unsafe floating point optimizations.
8323
8324Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8325only flags that have any effect on its semantics are those that allow
8326assumptions to be made about the values of input arguments; namely
8327``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8328
Sean Silvab084af42012-12-07 10:36:55 +00008329Example:
8330""""""""
8331
8332.. code-block:: llvm
8333
8334 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8335 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8336 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8337 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8338
8339Note that the code generator does not yet support vector types with the
8340``fcmp`` instruction.
8341
8342.. _i_phi:
8343
8344'``phi``' Instruction
8345^^^^^^^^^^^^^^^^^^^^^
8346
8347Syntax:
8348"""""""
8349
8350::
8351
8352 <result> = phi <ty> [ <val0>, <label0>], ...
8353
8354Overview:
8355"""""""""
8356
8357The '``phi``' instruction is used to implement the φ node in the SSA
8358graph representing the function.
8359
8360Arguments:
8361""""""""""
8362
8363The type of the incoming values is specified with the first type field.
8364After this, the '``phi``' instruction takes a list of pairs as
8365arguments, with one pair for each predecessor basic block of the current
8366block. Only values of :ref:`first class <t_firstclass>` type may be used as
8367the value arguments to the PHI node. Only labels may be used as the
8368label arguments.
8369
8370There must be no non-phi instructions between the start of a basic block
8371and the PHI instructions: i.e. PHI instructions must be first in a basic
8372block.
8373
8374For the purposes of the SSA form, the use of each incoming value is
8375deemed to occur on the edge from the corresponding predecessor block to
8376the current block (but after any definition of an '``invoke``'
8377instruction's return value on the same edge).
8378
8379Semantics:
8380""""""""""
8381
8382At runtime, the '``phi``' instruction logically takes on the value
8383specified by the pair corresponding to the predecessor basic block that
8384executed just prior to the current block.
8385
8386Example:
8387""""""""
8388
8389.. code-block:: llvm
8390
8391 Loop: ; Infinite loop that counts from 0 on up...
8392 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8393 %nextindvar = add i32 %indvar, 1
8394 br label %Loop
8395
8396.. _i_select:
8397
8398'``select``' Instruction
8399^^^^^^^^^^^^^^^^^^^^^^^^
8400
8401Syntax:
8402"""""""
8403
8404::
8405
8406 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8407
8408 selty is either i1 or {<N x i1>}
8409
8410Overview:
8411"""""""""
8412
8413The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008414condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008415
8416Arguments:
8417""""""""""
8418
8419The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8420values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008421class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008422
8423Semantics:
8424""""""""""
8425
8426If the condition is an i1 and it evaluates to 1, the instruction returns
8427the first value argument; otherwise, it returns the second value
8428argument.
8429
8430If the condition is a vector of i1, then the value arguments must be
8431vectors of the same size, and the selection is done element by element.
8432
David Majnemer40a0b592015-03-03 22:45:47 +00008433If the condition is an i1 and the value arguments are vectors of the
8434same size, then an entire vector is selected.
8435
Sean Silvab084af42012-12-07 10:36:55 +00008436Example:
8437""""""""
8438
8439.. code-block:: llvm
8440
8441 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8442
8443.. _i_call:
8444
8445'``call``' Instruction
8446^^^^^^^^^^^^^^^^^^^^^^
8447
8448Syntax:
8449"""""""
8450
8451::
8452
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008453 <result> = [tail | musttail | notail ] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008454 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008455
8456Overview:
8457"""""""""
8458
8459The '``call``' instruction represents a simple function call.
8460
8461Arguments:
8462""""""""""
8463
8464This instruction requires several arguments:
8465
Reid Kleckner5772b772014-04-24 20:14:34 +00008466#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008467 should perform tail call optimization. The ``tail`` marker is a hint that
8468 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008469 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008470 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008471
8472 #. The call will not cause unbounded stack growth if it is part of a
8473 recursive cycle in the call graph.
8474 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8475 forwarded in place.
8476
8477 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008478 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008479 rules:
8480
8481 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8482 or a pointer bitcast followed by a ret instruction.
8483 - The ret instruction must return the (possibly bitcasted) value
8484 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008485 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008486 parameters or return types may differ in pointee type, but not
8487 in address space.
8488 - The calling conventions of the caller and callee must match.
8489 - All ABI-impacting function attributes, such as sret, byval, inreg,
8490 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008491 - The callee must be varargs iff the caller is varargs. Bitcasting a
8492 non-varargs function to the appropriate varargs type is legal so
8493 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008494
8495 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8496 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008497
8498 - Caller and callee both have the calling convention ``fastcc``.
8499 - The call is in tail position (ret immediately follows call and ret
8500 uses value of call or is void).
8501 - Option ``-tailcallopt`` is enabled, or
8502 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008503 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008504 met. <CodeGenerator.html#tailcallopt>`_
8505
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008506#. The optional ``notail`` marker indicates that the optimizers should not add
8507 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8508 call optimization from being performed on the call.
8509
Sean Silvab084af42012-12-07 10:36:55 +00008510#. The optional "cconv" marker indicates which :ref:`calling
8511 convention <callingconv>` the call should use. If none is
8512 specified, the call defaults to using C calling conventions. The
8513 calling convention of the call must match the calling convention of
8514 the target function, or else the behavior is undefined.
8515#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8516 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8517 are valid here.
8518#. '``ty``': the type of the call instruction itself which is also the
8519 type of the return value. Functions that return no value are marked
8520 ``void``.
8521#. '``fnty``': shall be the signature of the pointer to function value
8522 being invoked. The argument types must match the types implied by
8523 this signature. This type can be omitted if the function is not
8524 varargs and if the function type does not return a pointer to a
8525 function.
8526#. '``fnptrval``': An LLVM value containing a pointer to a function to
8527 be invoked. In most cases, this is a direct function invocation, but
8528 indirect ``call``'s are just as possible, calling an arbitrary pointer
8529 to function value.
8530#. '``function args``': argument list whose types match the function
8531 signature argument types and parameter attributes. All arguments must
8532 be of :ref:`first class <t_firstclass>` type. If the function signature
8533 indicates the function accepts a variable number of arguments, the
8534 extra arguments can be specified.
8535#. The optional :ref:`function attributes <fnattrs>` list. Only
8536 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8537 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008538#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008539
8540Semantics:
8541""""""""""
8542
8543The '``call``' instruction is used to cause control flow to transfer to
8544a specified function, with its incoming arguments bound to the specified
8545values. Upon a '``ret``' instruction in the called function, control
8546flow continues with the instruction after the function call, and the
8547return value of the function is bound to the result argument.
8548
8549Example:
8550""""""""
8551
8552.. code-block:: llvm
8553
8554 %retval = call i32 @test(i32 %argc)
8555 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8556 %X = tail call i32 @foo() ; yields i32
8557 %Y = tail call fastcc i32 @foo() ; yields i32
8558 call void %foo(i8 97 signext)
8559
8560 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008561 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008562 %gr = extractvalue %struct.A %r, 0 ; yields i32
8563 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8564 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8565 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8566
8567llvm treats calls to some functions with names and arguments that match
8568the standard C99 library as being the C99 library functions, and may
8569perform optimizations or generate code for them under that assumption.
8570This is something we'd like to change in the future to provide better
8571support for freestanding environments and non-C-based languages.
8572
8573.. _i_va_arg:
8574
8575'``va_arg``' Instruction
8576^^^^^^^^^^^^^^^^^^^^^^^^
8577
8578Syntax:
8579"""""""
8580
8581::
8582
8583 <resultval> = va_arg <va_list*> <arglist>, <argty>
8584
8585Overview:
8586"""""""""
8587
8588The '``va_arg``' instruction is used to access arguments passed through
8589the "variable argument" area of a function call. It is used to implement
8590the ``va_arg`` macro in C.
8591
8592Arguments:
8593""""""""""
8594
8595This instruction takes a ``va_list*`` value and the type of the
8596argument. It returns a value of the specified argument type and
8597increments the ``va_list`` to point to the next argument. The actual
8598type of ``va_list`` is target specific.
8599
8600Semantics:
8601""""""""""
8602
8603The '``va_arg``' instruction loads an argument of the specified type
8604from the specified ``va_list`` and causes the ``va_list`` to point to
8605the next argument. For more information, see the variable argument
8606handling :ref:`Intrinsic Functions <int_varargs>`.
8607
8608It is legal for this instruction to be called in a function which does
8609not take a variable number of arguments, for example, the ``vfprintf``
8610function.
8611
8612``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8613function <intrinsics>` because it takes a type as an argument.
8614
8615Example:
8616""""""""
8617
8618See the :ref:`variable argument processing <int_varargs>` section.
8619
8620Note that the code generator does not yet fully support va\_arg on many
8621targets. Also, it does not currently support va\_arg with aggregate
8622types on any target.
8623
8624.. _i_landingpad:
8625
8626'``landingpad``' Instruction
8627^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8628
8629Syntax:
8630"""""""
8631
8632::
8633
David Majnemer7fddecc2015-06-17 20:52:32 +00008634 <resultval> = landingpad <resultty> <clause>+
8635 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008636
8637 <clause> := catch <type> <value>
8638 <clause> := filter <array constant type> <array constant>
8639
8640Overview:
8641"""""""""
8642
8643The '``landingpad``' instruction is used by `LLVM's exception handling
8644system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008645is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008646code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008647defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008648re-entry to the function. The ``resultval`` has the type ``resultty``.
8649
8650Arguments:
8651""""""""""
8652
David Majnemer7fddecc2015-06-17 20:52:32 +00008653The optional
Sean Silvab084af42012-12-07 10:36:55 +00008654``cleanup`` flag indicates that the landing pad block is a cleanup.
8655
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008656A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008657contains the global variable representing the "type" that may be caught
8658or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8659clause takes an array constant as its argument. Use
8660"``[0 x i8**] undef``" for a filter which cannot throw. The
8661'``landingpad``' instruction must contain *at least* one ``clause`` or
8662the ``cleanup`` flag.
8663
8664Semantics:
8665""""""""""
8666
8667The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008668:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008669therefore the "result type" of the ``landingpad`` instruction. As with
8670calling conventions, how the personality function results are
8671represented in LLVM IR is target specific.
8672
8673The clauses are applied in order from top to bottom. If two
8674``landingpad`` instructions are merged together through inlining, the
8675clauses from the calling function are appended to the list of clauses.
8676When the call stack is being unwound due to an exception being thrown,
8677the exception is compared against each ``clause`` in turn. If it doesn't
8678match any of the clauses, and the ``cleanup`` flag is not set, then
8679unwinding continues further up the call stack.
8680
8681The ``landingpad`` instruction has several restrictions:
8682
8683- A landing pad block is a basic block which is the unwind destination
8684 of an '``invoke``' instruction.
8685- A landing pad block must have a '``landingpad``' instruction as its
8686 first non-PHI instruction.
8687- There can be only one '``landingpad``' instruction within the landing
8688 pad block.
8689- A basic block that is not a landing pad block may not include a
8690 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008691
8692Example:
8693""""""""
8694
8695.. code-block:: llvm
8696
8697 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008698 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008699 catch i8** @_ZTIi
8700 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008701 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008702 cleanup
8703 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008704 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008705 catch i8** @_ZTIi
8706 filter [1 x i8**] [@_ZTId]
8707
David Majnemer654e1302015-07-31 17:58:14 +00008708.. _i_cleanuppad:
8709
8710'``cleanuppad``' Instruction
8711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8712
8713Syntax:
8714"""""""
8715
8716::
8717
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008718 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008719
8720Overview:
8721"""""""""
8722
8723The '``cleanuppad``' instruction is used by `LLVM's exception handling
8724system <ExceptionHandling.html#overview>`_ to specify that a basic block
8725is a cleanup block --- one where a personality routine attempts to
8726transfer control to run cleanup actions.
8727The ``args`` correspond to whatever additional
8728information the :ref:`personality function <personalityfn>` requires to
8729execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008730The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008731match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8732and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008733
8734Arguments:
8735""""""""""
8736
8737The instruction takes a list of arbitrary values which are interpreted
8738by the :ref:`personality function <personalityfn>`.
8739
8740Semantics:
8741""""""""""
8742
David Majnemer654e1302015-07-31 17:58:14 +00008743When the call stack is being unwound due to an exception being thrown,
8744the :ref:`personality function <personalityfn>` transfers control to the
8745``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008746As with calling conventions, how the personality function results are
8747represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008748
8749The ``cleanuppad`` instruction has several restrictions:
8750
8751- A cleanup block is a basic block which is the unwind destination of
8752 an exceptional instruction.
8753- A cleanup block must have a '``cleanuppad``' instruction as its
8754 first non-PHI instruction.
8755- There can be only one '``cleanuppad``' instruction within the
8756 cleanup block.
8757- A basic block that is not a cleanup block may not include a
8758 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008759- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8760 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008761- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008762 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8763 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008764- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008765 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8766 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008767
8768Example:
8769""""""""
8770
8771.. code-block:: llvm
8772
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008773 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008774
Sean Silvab084af42012-12-07 10:36:55 +00008775.. _intrinsics:
8776
8777Intrinsic Functions
8778===================
8779
8780LLVM supports the notion of an "intrinsic function". These functions
8781have well known names and semantics and are required to follow certain
8782restrictions. Overall, these intrinsics represent an extension mechanism
8783for the LLVM language that does not require changing all of the
8784transformations in LLVM when adding to the language (or the bitcode
8785reader/writer, the parser, etc...).
8786
8787Intrinsic function names must all start with an "``llvm.``" prefix. This
8788prefix is reserved in LLVM for intrinsic names; thus, function names may
8789not begin with this prefix. Intrinsic functions must always be external
8790functions: you cannot define the body of intrinsic functions. Intrinsic
8791functions may only be used in call or invoke instructions: it is illegal
8792to take the address of an intrinsic function. Additionally, because
8793intrinsic functions are part of the LLVM language, it is required if any
8794are added that they be documented here.
8795
8796Some intrinsic functions can be overloaded, i.e., the intrinsic
8797represents a family of functions that perform the same operation but on
8798different data types. Because LLVM can represent over 8 million
8799different integer types, overloading is used commonly to allow an
8800intrinsic function to operate on any integer type. One or more of the
8801argument types or the result type can be overloaded to accept any
8802integer type. Argument types may also be defined as exactly matching a
8803previous argument's type or the result type. This allows an intrinsic
8804function which accepts multiple arguments, but needs all of them to be
8805of the same type, to only be overloaded with respect to a single
8806argument or the result.
8807
8808Overloaded intrinsics will have the names of its overloaded argument
8809types encoded into its function name, each preceded by a period. Only
8810those types which are overloaded result in a name suffix. Arguments
8811whose type is matched against another type do not. For example, the
8812``llvm.ctpop`` function can take an integer of any width and returns an
8813integer of exactly the same integer width. This leads to a family of
8814functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8815``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8816overloaded, and only one type suffix is required. Because the argument's
8817type is matched against the return type, it does not require its own
8818name suffix.
8819
8820To learn how to add an intrinsic function, please see the `Extending
8821LLVM Guide <ExtendingLLVM.html>`_.
8822
8823.. _int_varargs:
8824
8825Variable Argument Handling Intrinsics
8826-------------------------------------
8827
8828Variable argument support is defined in LLVM with the
8829:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8830functions. These functions are related to the similarly named macros
8831defined in the ``<stdarg.h>`` header file.
8832
8833All of these functions operate on arguments that use a target-specific
8834value type "``va_list``". The LLVM assembly language reference manual
8835does not define what this type is, so all transformations should be
8836prepared to handle these functions regardless of the type used.
8837
8838This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8839variable argument handling intrinsic functions are used.
8840
8841.. code-block:: llvm
8842
Tim Northoverab60bb92014-11-02 01:21:51 +00008843 ; This struct is different for every platform. For most platforms,
8844 ; it is merely an i8*.
8845 %struct.va_list = type { i8* }
8846
8847 ; For Unix x86_64 platforms, va_list is the following struct:
8848 ; %struct.va_list = type { i32, i32, i8*, i8* }
8849
Sean Silvab084af42012-12-07 10:36:55 +00008850 define i32 @test(i32 %X, ...) {
8851 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008852 %ap = alloca %struct.va_list
8853 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008854 call void @llvm.va_start(i8* %ap2)
8855
8856 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008857 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008858
8859 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8860 %aq = alloca i8*
8861 %aq2 = bitcast i8** %aq to i8*
8862 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8863 call void @llvm.va_end(i8* %aq2)
8864
8865 ; Stop processing of arguments.
8866 call void @llvm.va_end(i8* %ap2)
8867 ret i32 %tmp
8868 }
8869
8870 declare void @llvm.va_start(i8*)
8871 declare void @llvm.va_copy(i8*, i8*)
8872 declare void @llvm.va_end(i8*)
8873
8874.. _int_va_start:
8875
8876'``llvm.va_start``' Intrinsic
8877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8878
8879Syntax:
8880"""""""
8881
8882::
8883
Nick Lewycky04f6de02013-09-11 22:04:52 +00008884 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008885
8886Overview:
8887"""""""""
8888
8889The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8890subsequent use by ``va_arg``.
8891
8892Arguments:
8893""""""""""
8894
8895The argument is a pointer to a ``va_list`` element to initialize.
8896
8897Semantics:
8898""""""""""
8899
8900The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8901available in C. In a target-dependent way, it initializes the
8902``va_list`` element to which the argument points, so that the next call
8903to ``va_arg`` will produce the first variable argument passed to the
8904function. Unlike the C ``va_start`` macro, this intrinsic does not need
8905to know the last argument of the function as the compiler can figure
8906that out.
8907
8908'``llvm.va_end``' Intrinsic
8909^^^^^^^^^^^^^^^^^^^^^^^^^^^
8910
8911Syntax:
8912"""""""
8913
8914::
8915
8916 declare void @llvm.va_end(i8* <arglist>)
8917
8918Overview:
8919"""""""""
8920
8921The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8922initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8923
8924Arguments:
8925""""""""""
8926
8927The argument is a pointer to a ``va_list`` to destroy.
8928
8929Semantics:
8930""""""""""
8931
8932The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8933available in C. In a target-dependent way, it destroys the ``va_list``
8934element to which the argument points. Calls to
8935:ref:`llvm.va_start <int_va_start>` and
8936:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8937``llvm.va_end``.
8938
8939.. _int_va_copy:
8940
8941'``llvm.va_copy``' Intrinsic
8942^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8943
8944Syntax:
8945"""""""
8946
8947::
8948
8949 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8950
8951Overview:
8952"""""""""
8953
8954The '``llvm.va_copy``' intrinsic copies the current argument position
8955from the source argument list to the destination argument list.
8956
8957Arguments:
8958""""""""""
8959
8960The first argument is a pointer to a ``va_list`` element to initialize.
8961The second argument is a pointer to a ``va_list`` element to copy from.
8962
8963Semantics:
8964""""""""""
8965
8966The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8967available in C. In a target-dependent way, it copies the source
8968``va_list`` element into the destination ``va_list`` element. This
8969intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8970arbitrarily complex and require, for example, memory allocation.
8971
8972Accurate Garbage Collection Intrinsics
8973--------------------------------------
8974
Philip Reamesc5b0f562015-02-25 23:52:06 +00008975LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008976(GC) requires the frontend to generate code containing appropriate intrinsic
8977calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008978intrinsics in a manner which is appropriate for the target collector.
8979
Sean Silvab084af42012-12-07 10:36:55 +00008980These intrinsics allow identification of :ref:`GC roots on the
8981stack <int_gcroot>`, as well as garbage collector implementations that
8982require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008983Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008984these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008985details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008986
Philip Reamesf80bbff2015-02-25 23:45:20 +00008987Experimental Statepoint Intrinsics
8988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8989
8990LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008991collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008992to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008993:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008994differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008995<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008996described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008997
8998.. _int_gcroot:
8999
9000'``llvm.gcroot``' Intrinsic
9001^^^^^^^^^^^^^^^^^^^^^^^^^^^
9002
9003Syntax:
9004"""""""
9005
9006::
9007
9008 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9009
9010Overview:
9011"""""""""
9012
9013The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9014the code generator, and allows some metadata to be associated with it.
9015
9016Arguments:
9017""""""""""
9018
9019The first argument specifies the address of a stack object that contains
9020the root pointer. The second pointer (which must be either a constant or
9021a global value address) contains the meta-data to be associated with the
9022root.
9023
9024Semantics:
9025""""""""""
9026
9027At runtime, a call to this intrinsic stores a null pointer into the
9028"ptrloc" location. At compile-time, the code generator generates
9029information to allow the runtime to find the pointer at GC safe points.
9030The '``llvm.gcroot``' intrinsic may only be used in a function which
9031:ref:`specifies a GC algorithm <gc>`.
9032
9033.. _int_gcread:
9034
9035'``llvm.gcread``' Intrinsic
9036^^^^^^^^^^^^^^^^^^^^^^^^^^^
9037
9038Syntax:
9039"""""""
9040
9041::
9042
9043 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9044
9045Overview:
9046"""""""""
9047
9048The '``llvm.gcread``' intrinsic identifies reads of references from heap
9049locations, allowing garbage collector implementations that require read
9050barriers.
9051
9052Arguments:
9053""""""""""
9054
9055The second argument is the address to read from, which should be an
9056address allocated from the garbage collector. The first object is a
9057pointer to the start of the referenced object, if needed by the language
9058runtime (otherwise null).
9059
9060Semantics:
9061""""""""""
9062
9063The '``llvm.gcread``' intrinsic has the same semantics as a load
9064instruction, but may be replaced with substantially more complex code by
9065the garbage collector runtime, as needed. The '``llvm.gcread``'
9066intrinsic may only be used in a function which :ref:`specifies a GC
9067algorithm <gc>`.
9068
9069.. _int_gcwrite:
9070
9071'``llvm.gcwrite``' Intrinsic
9072^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9073
9074Syntax:
9075"""""""
9076
9077::
9078
9079 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9080
9081Overview:
9082"""""""""
9083
9084The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9085locations, allowing garbage collector implementations that require write
9086barriers (such as generational or reference counting collectors).
9087
9088Arguments:
9089""""""""""
9090
9091The first argument is the reference to store, the second is the start of
9092the object to store it to, and the third is the address of the field of
9093Obj to store to. If the runtime does not require a pointer to the
9094object, Obj may be null.
9095
9096Semantics:
9097""""""""""
9098
9099The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9100instruction, but may be replaced with substantially more complex code by
9101the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9102intrinsic may only be used in a function which :ref:`specifies a GC
9103algorithm <gc>`.
9104
9105Code Generator Intrinsics
9106-------------------------
9107
9108These intrinsics are provided by LLVM to expose special features that
9109may only be implemented with code generator support.
9110
9111'``llvm.returnaddress``' Intrinsic
9112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9113
9114Syntax:
9115"""""""
9116
9117::
9118
9119 declare i8 *@llvm.returnaddress(i32 <level>)
9120
9121Overview:
9122"""""""""
9123
9124The '``llvm.returnaddress``' intrinsic attempts to compute a
9125target-specific value indicating the return address of the current
9126function or one of its callers.
9127
9128Arguments:
9129""""""""""
9130
9131The argument to this intrinsic indicates which function to return the
9132address for. Zero indicates the calling function, one indicates its
9133caller, etc. The argument is **required** to be a constant integer
9134value.
9135
9136Semantics:
9137""""""""""
9138
9139The '``llvm.returnaddress``' intrinsic either returns a pointer
9140indicating the return address of the specified call frame, or zero if it
9141cannot be identified. The value returned by this intrinsic is likely to
9142be incorrect or 0 for arguments other than zero, so it should only be
9143used for debugging purposes.
9144
9145Note that calling this intrinsic does not prevent function inlining or
9146other aggressive transformations, so the value returned may not be that
9147of the obvious source-language caller.
9148
9149'``llvm.frameaddress``' Intrinsic
9150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9151
9152Syntax:
9153"""""""
9154
9155::
9156
9157 declare i8* @llvm.frameaddress(i32 <level>)
9158
9159Overview:
9160"""""""""
9161
9162The '``llvm.frameaddress``' intrinsic attempts to return the
9163target-specific frame pointer value for the specified stack frame.
9164
9165Arguments:
9166""""""""""
9167
9168The argument to this intrinsic indicates which function to return the
9169frame pointer for. Zero indicates the calling function, one indicates
9170its caller, etc. The argument is **required** to be a constant integer
9171value.
9172
9173Semantics:
9174""""""""""
9175
9176The '``llvm.frameaddress``' intrinsic either returns a pointer
9177indicating the frame address of the specified call frame, or zero if it
9178cannot be identified. The value returned by this intrinsic is likely to
9179be incorrect or 0 for arguments other than zero, so it should only be
9180used for debugging purposes.
9181
9182Note that calling this intrinsic does not prevent function inlining or
9183other aggressive transformations, so the value returned may not be that
9184of the obvious source-language caller.
9185
Reid Kleckner60381792015-07-07 22:25:32 +00009186'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9188
9189Syntax:
9190"""""""
9191
9192::
9193
Reid Kleckner60381792015-07-07 22:25:32 +00009194 declare void @llvm.localescape(...)
9195 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009196
9197Overview:
9198"""""""""
9199
Reid Kleckner60381792015-07-07 22:25:32 +00009200The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9201allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009202live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009203computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009204
9205Arguments:
9206""""""""""
9207
Reid Kleckner60381792015-07-07 22:25:32 +00009208All arguments to '``llvm.localescape``' must be pointers to static allocas or
9209casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009210once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009211
Reid Kleckner60381792015-07-07 22:25:32 +00009212The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009213bitcasted pointer to a function defined in the current module. The code
9214generator cannot determine the frame allocation offset of functions defined in
9215other modules.
9216
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009217The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9218call frame that is currently live. The return value of '``llvm.localaddress``'
9219is one way to produce such a value, but various runtimes also expose a suitable
9220pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009221
Reid Kleckner60381792015-07-07 22:25:32 +00009222The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9223'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009224
Reid Klecknere9b89312015-01-13 00:48:10 +00009225Semantics:
9226""""""""""
9227
Reid Kleckner60381792015-07-07 22:25:32 +00009228These intrinsics allow a group of functions to share access to a set of local
9229stack allocations of a one parent function. The parent function may call the
9230'``llvm.localescape``' intrinsic once from the function entry block, and the
9231child functions can use '``llvm.localrecover``' to access the escaped allocas.
9232The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9233the escaped allocas are allocated, which would break attempts to use
9234'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009235
Renato Golinc7aea402014-05-06 16:51:25 +00009236.. _int_read_register:
9237.. _int_write_register:
9238
9239'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9240^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9241
9242Syntax:
9243"""""""
9244
9245::
9246
9247 declare i32 @llvm.read_register.i32(metadata)
9248 declare i64 @llvm.read_register.i64(metadata)
9249 declare void @llvm.write_register.i32(metadata, i32 @value)
9250 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009251 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009252
9253Overview:
9254"""""""""
9255
9256The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9257provides access to the named register. The register must be valid on
9258the architecture being compiled to. The type needs to be compatible
9259with the register being read.
9260
9261Semantics:
9262""""""""""
9263
9264The '``llvm.read_register``' intrinsic returns the current value of the
9265register, where possible. The '``llvm.write_register``' intrinsic sets
9266the current value of the register, where possible.
9267
9268This is useful to implement named register global variables that need
9269to always be mapped to a specific register, as is common practice on
9270bare-metal programs including OS kernels.
9271
9272The compiler doesn't check for register availability or use of the used
9273register in surrounding code, including inline assembly. Because of that,
9274allocatable registers are not supported.
9275
9276Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009277architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009278work is needed to support other registers and even more so, allocatable
9279registers.
9280
Sean Silvab084af42012-12-07 10:36:55 +00009281.. _int_stacksave:
9282
9283'``llvm.stacksave``' Intrinsic
9284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9285
9286Syntax:
9287"""""""
9288
9289::
9290
9291 declare i8* @llvm.stacksave()
9292
9293Overview:
9294"""""""""
9295
9296The '``llvm.stacksave``' intrinsic is used to remember the current state
9297of the function stack, for use with
9298:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9299implementing language features like scoped automatic variable sized
9300arrays in C99.
9301
9302Semantics:
9303""""""""""
9304
9305This intrinsic returns a opaque pointer value that can be passed to
9306:ref:`llvm.stackrestore <int_stackrestore>`. When an
9307``llvm.stackrestore`` intrinsic is executed with a value saved from
9308``llvm.stacksave``, it effectively restores the state of the stack to
9309the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9310practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9311were allocated after the ``llvm.stacksave`` was executed.
9312
9313.. _int_stackrestore:
9314
9315'``llvm.stackrestore``' Intrinsic
9316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9317
9318Syntax:
9319"""""""
9320
9321::
9322
9323 declare void @llvm.stackrestore(i8* %ptr)
9324
9325Overview:
9326"""""""""
9327
9328The '``llvm.stackrestore``' intrinsic is used to restore the state of
9329the function stack to the state it was in when the corresponding
9330:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9331useful for implementing language features like scoped automatic variable
9332sized arrays in C99.
9333
9334Semantics:
9335""""""""""
9336
9337See the description for :ref:`llvm.stacksave <int_stacksave>`.
9338
9339'``llvm.prefetch``' Intrinsic
9340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9341
9342Syntax:
9343"""""""
9344
9345::
9346
9347 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9348
9349Overview:
9350"""""""""
9351
9352The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9353insert a prefetch instruction if supported; otherwise, it is a noop.
9354Prefetches have no effect on the behavior of the program but can change
9355its performance characteristics.
9356
9357Arguments:
9358""""""""""
9359
9360``address`` is the address to be prefetched, ``rw`` is the specifier
9361determining if the fetch should be for a read (0) or write (1), and
9362``locality`` is a temporal locality specifier ranging from (0) - no
9363locality, to (3) - extremely local keep in cache. The ``cache type``
9364specifies whether the prefetch is performed on the data (1) or
9365instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9366arguments must be constant integers.
9367
9368Semantics:
9369""""""""""
9370
9371This intrinsic does not modify the behavior of the program. In
9372particular, prefetches cannot trap and do not produce a value. On
9373targets that support this intrinsic, the prefetch can provide hints to
9374the processor cache for better performance.
9375
9376'``llvm.pcmarker``' Intrinsic
9377^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9378
9379Syntax:
9380"""""""
9381
9382::
9383
9384 declare void @llvm.pcmarker(i32 <id>)
9385
9386Overview:
9387"""""""""
9388
9389The '``llvm.pcmarker``' intrinsic is a method to export a Program
9390Counter (PC) in a region of code to simulators and other tools. The
9391method is target specific, but it is expected that the marker will use
9392exported symbols to transmit the PC of the marker. The marker makes no
9393guarantees that it will remain with any specific instruction after
9394optimizations. It is possible that the presence of a marker will inhibit
9395optimizations. The intended use is to be inserted after optimizations to
9396allow correlations of simulation runs.
9397
9398Arguments:
9399""""""""""
9400
9401``id`` is a numerical id identifying the marker.
9402
9403Semantics:
9404""""""""""
9405
9406This intrinsic does not modify the behavior of the program. Backends
9407that do not support this intrinsic may ignore it.
9408
9409'``llvm.readcyclecounter``' Intrinsic
9410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9411
9412Syntax:
9413"""""""
9414
9415::
9416
9417 declare i64 @llvm.readcyclecounter()
9418
9419Overview:
9420"""""""""
9421
9422The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9423counter register (or similar low latency, high accuracy clocks) on those
9424targets that support it. On X86, it should map to RDTSC. On Alpha, it
9425should map to RPCC. As the backing counters overflow quickly (on the
9426order of 9 seconds on alpha), this should only be used for small
9427timings.
9428
9429Semantics:
9430""""""""""
9431
9432When directly supported, reading the cycle counter should not modify any
9433memory. Implementations are allowed to either return a application
9434specific value or a system wide value. On backends without support, this
9435is lowered to a constant 0.
9436
Tim Northoverbc933082013-05-23 19:11:20 +00009437Note that runtime support may be conditional on the privilege-level code is
9438running at and the host platform.
9439
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009440'``llvm.clear_cache``' Intrinsic
9441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9442
9443Syntax:
9444"""""""
9445
9446::
9447
9448 declare void @llvm.clear_cache(i8*, i8*)
9449
9450Overview:
9451"""""""""
9452
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009453The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9454in the specified range to the execution unit of the processor. On
9455targets with non-unified instruction and data cache, the implementation
9456flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009457
9458Semantics:
9459""""""""""
9460
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009461On platforms with coherent instruction and data caches (e.g. x86), this
9462intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009463cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009464instructions or a system call, if cache flushing requires special
9465privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009466
Sean Silvad02bf3e2014-04-07 22:29:53 +00009467The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009468time library.
Renato Golin93010e62014-03-26 14:01:32 +00009469
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009470This instrinsic does *not* empty the instruction pipeline. Modifications
9471of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009472
Justin Bogner61ba2e32014-12-08 18:02:35 +00009473'``llvm.instrprof_increment``' Intrinsic
9474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9475
9476Syntax:
9477"""""""
9478
9479::
9480
9481 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9482 i32 <num-counters>, i32 <index>)
9483
9484Overview:
9485"""""""""
9486
9487The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9488frontend for use with instrumentation based profiling. These will be
9489lowered by the ``-instrprof`` pass to generate execution counts of a
9490program at runtime.
9491
9492Arguments:
9493""""""""""
9494
9495The first argument is a pointer to a global variable containing the
9496name of the entity being instrumented. This should generally be the
9497(mangled) function name for a set of counters.
9498
9499The second argument is a hash value that can be used by the consumer
9500of the profile data to detect changes to the instrumented source, and
9501the third is the number of counters associated with ``name``. It is an
9502error if ``hash`` or ``num-counters`` differ between two instances of
9503``instrprof_increment`` that refer to the same name.
9504
9505The last argument refers to which of the counters for ``name`` should
9506be incremented. It should be a value between 0 and ``num-counters``.
9507
9508Semantics:
9509""""""""""
9510
9511This intrinsic represents an increment of a profiling counter. It will
9512cause the ``-instrprof`` pass to generate the appropriate data
9513structures and the code to increment the appropriate value, in a
9514format that can be written out by a compiler runtime and consumed via
9515the ``llvm-profdata`` tool.
9516
Sean Silvab084af42012-12-07 10:36:55 +00009517Standard C Library Intrinsics
9518-----------------------------
9519
9520LLVM provides intrinsics for a few important standard C library
9521functions. These intrinsics allow source-language front-ends to pass
9522information about the alignment of the pointer arguments to the code
9523generator, providing opportunity for more efficient code generation.
9524
9525.. _int_memcpy:
9526
9527'``llvm.memcpy``' Intrinsic
9528^^^^^^^^^^^^^^^^^^^^^^^^^^^
9529
9530Syntax:
9531"""""""
9532
9533This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9534integer bit width and for different address spaces. Not all targets
9535support all bit widths however.
9536
9537::
9538
9539 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9540 i32 <len>, i32 <align>, i1 <isvolatile>)
9541 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9542 i64 <len>, i32 <align>, i1 <isvolatile>)
9543
9544Overview:
9545"""""""""
9546
9547The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9548source location to the destination location.
9549
9550Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9551intrinsics do not return a value, takes extra alignment/isvolatile
9552arguments and the pointers can be in specified address spaces.
9553
9554Arguments:
9555""""""""""
9556
9557The first argument is a pointer to the destination, the second is a
9558pointer to the source. The third argument is an integer argument
9559specifying the number of bytes to copy, the fourth argument is the
9560alignment of the source and destination locations, and the fifth is a
9561boolean indicating a volatile access.
9562
9563If the call to this intrinsic has an alignment value that is not 0 or 1,
9564then the caller guarantees that both the source and destination pointers
9565are aligned to that boundary.
9566
9567If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9568a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9569very cleanly specified and it is unwise to depend on it.
9570
9571Semantics:
9572""""""""""
9573
9574The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9575source location to the destination location, which are not allowed to
9576overlap. It copies "len" bytes of memory over. If the argument is known
9577to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009578argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009579
9580'``llvm.memmove``' Intrinsic
9581^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9582
9583Syntax:
9584"""""""
9585
9586This is an overloaded intrinsic. You can use llvm.memmove on any integer
9587bit width and for different address space. Not all targets support all
9588bit widths however.
9589
9590::
9591
9592 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9593 i32 <len>, i32 <align>, i1 <isvolatile>)
9594 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9595 i64 <len>, i32 <align>, i1 <isvolatile>)
9596
9597Overview:
9598"""""""""
9599
9600The '``llvm.memmove.*``' intrinsics move a block of memory from the
9601source location to the destination location. It is similar to the
9602'``llvm.memcpy``' intrinsic but allows the two memory locations to
9603overlap.
9604
9605Note that, unlike the standard libc function, the ``llvm.memmove.*``
9606intrinsics do not return a value, takes extra alignment/isvolatile
9607arguments and the pointers can be in specified address spaces.
9608
9609Arguments:
9610""""""""""
9611
9612The first argument is a pointer to the destination, the second is a
9613pointer to the source. The third argument is an integer argument
9614specifying the number of bytes to copy, the fourth argument is the
9615alignment of the source and destination locations, and the fifth is a
9616boolean indicating a volatile access.
9617
9618If the call to this intrinsic has an alignment value that is not 0 or 1,
9619then the caller guarantees that the source and destination pointers are
9620aligned to that boundary.
9621
9622If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9623is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9624not very cleanly specified and it is unwise to depend on it.
9625
9626Semantics:
9627""""""""""
9628
9629The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9630source location to the destination location, which may overlap. It
9631copies "len" bytes of memory over. If the argument is known to be
9632aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009633otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009634
9635'``llvm.memset.*``' Intrinsics
9636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9637
9638Syntax:
9639"""""""
9640
9641This is an overloaded intrinsic. You can use llvm.memset on any integer
9642bit width and for different address spaces. However, not all targets
9643support all bit widths.
9644
9645::
9646
9647 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9648 i32 <len>, i32 <align>, i1 <isvolatile>)
9649 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9650 i64 <len>, i32 <align>, i1 <isvolatile>)
9651
9652Overview:
9653"""""""""
9654
9655The '``llvm.memset.*``' intrinsics fill a block of memory with a
9656particular byte value.
9657
9658Note that, unlike the standard libc function, the ``llvm.memset``
9659intrinsic does not return a value and takes extra alignment/volatile
9660arguments. Also, the destination can be in an arbitrary address space.
9661
9662Arguments:
9663""""""""""
9664
9665The first argument is a pointer to the destination to fill, the second
9666is the byte value with which to fill it, the third argument is an
9667integer argument specifying the number of bytes to fill, and the fourth
9668argument is the known alignment of the destination location.
9669
9670If the call to this intrinsic has an alignment value that is not 0 or 1,
9671then the caller guarantees that the destination pointer is aligned to
9672that boundary.
9673
9674If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9675a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9676very cleanly specified and it is unwise to depend on it.
9677
9678Semantics:
9679""""""""""
9680
9681The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9682at the destination location. If the argument is known to be aligned to
9683some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009684it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009685
9686'``llvm.sqrt.*``' Intrinsic
9687^^^^^^^^^^^^^^^^^^^^^^^^^^^
9688
9689Syntax:
9690"""""""
9691
9692This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9693floating point or vector of floating point type. Not all targets support
9694all types however.
9695
9696::
9697
9698 declare float @llvm.sqrt.f32(float %Val)
9699 declare double @llvm.sqrt.f64(double %Val)
9700 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9701 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9702 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9703
9704Overview:
9705"""""""""
9706
9707The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9708returning the same value as the libm '``sqrt``' functions would. Unlike
9709``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9710negative numbers other than -0.0 (which allows for better optimization,
9711because there is no need to worry about errno being set).
9712``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9713
9714Arguments:
9715""""""""""
9716
9717The argument and return value are floating point numbers of the same
9718type.
9719
9720Semantics:
9721""""""""""
9722
9723This function returns the sqrt of the specified operand if it is a
9724nonnegative floating point number.
9725
9726'``llvm.powi.*``' Intrinsic
9727^^^^^^^^^^^^^^^^^^^^^^^^^^^
9728
9729Syntax:
9730"""""""
9731
9732This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9733floating point or vector of floating point type. Not all targets support
9734all types however.
9735
9736::
9737
9738 declare float @llvm.powi.f32(float %Val, i32 %power)
9739 declare double @llvm.powi.f64(double %Val, i32 %power)
9740 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9741 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9742 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9743
9744Overview:
9745"""""""""
9746
9747The '``llvm.powi.*``' intrinsics return the first operand raised to the
9748specified (positive or negative) power. The order of evaluation of
9749multiplications is not defined. When a vector of floating point type is
9750used, the second argument remains a scalar integer value.
9751
9752Arguments:
9753""""""""""
9754
9755The second argument is an integer power, and the first is a value to
9756raise to that power.
9757
9758Semantics:
9759""""""""""
9760
9761This function returns the first value raised to the second power with an
9762unspecified sequence of rounding operations.
9763
9764'``llvm.sin.*``' Intrinsic
9765^^^^^^^^^^^^^^^^^^^^^^^^^^
9766
9767Syntax:
9768"""""""
9769
9770This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9771floating point or vector of floating point type. Not all targets support
9772all types however.
9773
9774::
9775
9776 declare float @llvm.sin.f32(float %Val)
9777 declare double @llvm.sin.f64(double %Val)
9778 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9779 declare fp128 @llvm.sin.f128(fp128 %Val)
9780 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9781
9782Overview:
9783"""""""""
9784
9785The '``llvm.sin.*``' intrinsics return the sine of the operand.
9786
9787Arguments:
9788""""""""""
9789
9790The argument and return value are floating point numbers of the same
9791type.
9792
9793Semantics:
9794""""""""""
9795
9796This function returns the sine of the specified operand, returning the
9797same values as the libm ``sin`` functions would, and handles error
9798conditions in the same way.
9799
9800'``llvm.cos.*``' Intrinsic
9801^^^^^^^^^^^^^^^^^^^^^^^^^^
9802
9803Syntax:
9804"""""""
9805
9806This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9807floating point or vector of floating point type. Not all targets support
9808all types however.
9809
9810::
9811
9812 declare float @llvm.cos.f32(float %Val)
9813 declare double @llvm.cos.f64(double %Val)
9814 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9815 declare fp128 @llvm.cos.f128(fp128 %Val)
9816 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9817
9818Overview:
9819"""""""""
9820
9821The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9822
9823Arguments:
9824""""""""""
9825
9826The argument and return value are floating point numbers of the same
9827type.
9828
9829Semantics:
9830""""""""""
9831
9832This function returns the cosine of the specified operand, returning the
9833same values as the libm ``cos`` functions would, and handles error
9834conditions in the same way.
9835
9836'``llvm.pow.*``' Intrinsic
9837^^^^^^^^^^^^^^^^^^^^^^^^^^
9838
9839Syntax:
9840"""""""
9841
9842This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9843floating point or vector of floating point type. Not all targets support
9844all types however.
9845
9846::
9847
9848 declare float @llvm.pow.f32(float %Val, float %Power)
9849 declare double @llvm.pow.f64(double %Val, double %Power)
9850 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9851 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9852 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9853
9854Overview:
9855"""""""""
9856
9857The '``llvm.pow.*``' intrinsics return the first operand raised to the
9858specified (positive or negative) power.
9859
9860Arguments:
9861""""""""""
9862
9863The second argument is a floating point power, and the first is a value
9864to raise to that power.
9865
9866Semantics:
9867""""""""""
9868
9869This function returns the first value raised to the second power,
9870returning the same values as the libm ``pow`` functions would, and
9871handles error conditions in the same way.
9872
9873'``llvm.exp.*``' Intrinsic
9874^^^^^^^^^^^^^^^^^^^^^^^^^^
9875
9876Syntax:
9877"""""""
9878
9879This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9880floating point or vector of floating point type. Not all targets support
9881all types however.
9882
9883::
9884
9885 declare float @llvm.exp.f32(float %Val)
9886 declare double @llvm.exp.f64(double %Val)
9887 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9888 declare fp128 @llvm.exp.f128(fp128 %Val)
9889 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9890
9891Overview:
9892"""""""""
9893
9894The '``llvm.exp.*``' intrinsics perform the exp function.
9895
9896Arguments:
9897""""""""""
9898
9899The argument and return value are floating point numbers of the same
9900type.
9901
9902Semantics:
9903""""""""""
9904
9905This function returns the same values as the libm ``exp`` functions
9906would, and handles error conditions in the same way.
9907
9908'``llvm.exp2.*``' Intrinsic
9909^^^^^^^^^^^^^^^^^^^^^^^^^^^
9910
9911Syntax:
9912"""""""
9913
9914This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9915floating point or vector of floating point type. Not all targets support
9916all types however.
9917
9918::
9919
9920 declare float @llvm.exp2.f32(float %Val)
9921 declare double @llvm.exp2.f64(double %Val)
9922 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9923 declare fp128 @llvm.exp2.f128(fp128 %Val)
9924 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9925
9926Overview:
9927"""""""""
9928
9929The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9930
9931Arguments:
9932""""""""""
9933
9934The argument and return value are floating point numbers of the same
9935type.
9936
9937Semantics:
9938""""""""""
9939
9940This function returns the same values as the libm ``exp2`` functions
9941would, and handles error conditions in the same way.
9942
9943'``llvm.log.*``' Intrinsic
9944^^^^^^^^^^^^^^^^^^^^^^^^^^
9945
9946Syntax:
9947"""""""
9948
9949This is an overloaded intrinsic. You can use ``llvm.log`` on any
9950floating point or vector of floating point type. Not all targets support
9951all types however.
9952
9953::
9954
9955 declare float @llvm.log.f32(float %Val)
9956 declare double @llvm.log.f64(double %Val)
9957 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9958 declare fp128 @llvm.log.f128(fp128 %Val)
9959 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9960
9961Overview:
9962"""""""""
9963
9964The '``llvm.log.*``' intrinsics perform the log function.
9965
9966Arguments:
9967""""""""""
9968
9969The argument and return value are floating point numbers of the same
9970type.
9971
9972Semantics:
9973""""""""""
9974
9975This function returns the same values as the libm ``log`` functions
9976would, and handles error conditions in the same way.
9977
9978'``llvm.log10.*``' Intrinsic
9979^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9980
9981Syntax:
9982"""""""
9983
9984This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9985floating point or vector of floating point type. Not all targets support
9986all types however.
9987
9988::
9989
9990 declare float @llvm.log10.f32(float %Val)
9991 declare double @llvm.log10.f64(double %Val)
9992 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9993 declare fp128 @llvm.log10.f128(fp128 %Val)
9994 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9995
9996Overview:
9997"""""""""
9998
9999The '``llvm.log10.*``' intrinsics perform the log10 function.
10000
10001Arguments:
10002""""""""""
10003
10004The argument and return value are floating point numbers of the same
10005type.
10006
10007Semantics:
10008""""""""""
10009
10010This function returns the same values as the libm ``log10`` functions
10011would, and handles error conditions in the same way.
10012
10013'``llvm.log2.*``' Intrinsic
10014^^^^^^^^^^^^^^^^^^^^^^^^^^^
10015
10016Syntax:
10017"""""""
10018
10019This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10020floating point or vector of floating point type. Not all targets support
10021all types however.
10022
10023::
10024
10025 declare float @llvm.log2.f32(float %Val)
10026 declare double @llvm.log2.f64(double %Val)
10027 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10028 declare fp128 @llvm.log2.f128(fp128 %Val)
10029 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10030
10031Overview:
10032"""""""""
10033
10034The '``llvm.log2.*``' intrinsics perform the log2 function.
10035
10036Arguments:
10037""""""""""
10038
10039The argument and return value are floating point numbers of the same
10040type.
10041
10042Semantics:
10043""""""""""
10044
10045This function returns the same values as the libm ``log2`` functions
10046would, and handles error conditions in the same way.
10047
10048'``llvm.fma.*``' Intrinsic
10049^^^^^^^^^^^^^^^^^^^^^^^^^^
10050
10051Syntax:
10052"""""""
10053
10054This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10055floating point or vector of floating point type. Not all targets support
10056all types however.
10057
10058::
10059
10060 declare float @llvm.fma.f32(float %a, float %b, float %c)
10061 declare double @llvm.fma.f64(double %a, double %b, double %c)
10062 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10063 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10064 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10065
10066Overview:
10067"""""""""
10068
10069The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10070operation.
10071
10072Arguments:
10073""""""""""
10074
10075The argument and return value are floating point numbers of the same
10076type.
10077
10078Semantics:
10079""""""""""
10080
10081This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010082would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010083
10084'``llvm.fabs.*``' Intrinsic
10085^^^^^^^^^^^^^^^^^^^^^^^^^^^
10086
10087Syntax:
10088"""""""
10089
10090This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10091floating point or vector of floating point type. Not all targets support
10092all types however.
10093
10094::
10095
10096 declare float @llvm.fabs.f32(float %Val)
10097 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010098 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010099 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010100 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010101
10102Overview:
10103"""""""""
10104
10105The '``llvm.fabs.*``' intrinsics return the absolute value of the
10106operand.
10107
10108Arguments:
10109""""""""""
10110
10111The argument and return value are floating point numbers of the same
10112type.
10113
10114Semantics:
10115""""""""""
10116
10117This function returns the same values as the libm ``fabs`` functions
10118would, and handles error conditions in the same way.
10119
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010120'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010122
10123Syntax:
10124"""""""
10125
10126This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10127floating point or vector of floating point type. Not all targets support
10128all types however.
10129
10130::
10131
Matt Arsenault64313c92014-10-22 18:25:02 +000010132 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10133 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10134 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10135 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10136 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010137
10138Overview:
10139"""""""""
10140
10141The '``llvm.minnum.*``' intrinsics return the minimum of the two
10142arguments.
10143
10144
10145Arguments:
10146""""""""""
10147
10148The arguments and return value are floating point numbers of the same
10149type.
10150
10151Semantics:
10152""""""""""
10153
10154Follows the IEEE-754 semantics for minNum, which also match for libm's
10155fmin.
10156
10157If either operand is a NaN, returns the other non-NaN operand. Returns
10158NaN only if both operands are NaN. If the operands compare equal,
10159returns a value that compares equal to both operands. This means that
10160fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10161
10162'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010164
10165Syntax:
10166"""""""
10167
10168This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10169floating point or vector of floating point type. Not all targets support
10170all types however.
10171
10172::
10173
Matt Arsenault64313c92014-10-22 18:25:02 +000010174 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10175 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10176 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10177 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10178 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010179
10180Overview:
10181"""""""""
10182
10183The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10184arguments.
10185
10186
10187Arguments:
10188""""""""""
10189
10190The arguments and return value are floating point numbers of the same
10191type.
10192
10193Semantics:
10194""""""""""
10195Follows the IEEE-754 semantics for maxNum, which also match for libm's
10196fmax.
10197
10198If either operand is a NaN, returns the other non-NaN operand. Returns
10199NaN only if both operands are NaN. If the operands compare equal,
10200returns a value that compares equal to both operands. This means that
10201fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10202
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010203'``llvm.copysign.*``' Intrinsic
10204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10205
10206Syntax:
10207"""""""
10208
10209This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10210floating point or vector of floating point type. Not all targets support
10211all types however.
10212
10213::
10214
10215 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10216 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10217 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10218 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10219 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10220
10221Overview:
10222"""""""""
10223
10224The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10225first operand and the sign of the second operand.
10226
10227Arguments:
10228""""""""""
10229
10230The arguments and return value are floating point numbers of the same
10231type.
10232
10233Semantics:
10234""""""""""
10235
10236This function returns the same values as the libm ``copysign``
10237functions would, and handles error conditions in the same way.
10238
Sean Silvab084af42012-12-07 10:36:55 +000010239'``llvm.floor.*``' Intrinsic
10240^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10241
10242Syntax:
10243"""""""
10244
10245This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10246floating point or vector of floating point type. Not all targets support
10247all types however.
10248
10249::
10250
10251 declare float @llvm.floor.f32(float %Val)
10252 declare double @llvm.floor.f64(double %Val)
10253 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10254 declare fp128 @llvm.floor.f128(fp128 %Val)
10255 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10256
10257Overview:
10258"""""""""
10259
10260The '``llvm.floor.*``' intrinsics return the floor of the operand.
10261
10262Arguments:
10263""""""""""
10264
10265The argument and return value are floating point numbers of the same
10266type.
10267
10268Semantics:
10269""""""""""
10270
10271This function returns the same values as the libm ``floor`` functions
10272would, and handles error conditions in the same way.
10273
10274'``llvm.ceil.*``' Intrinsic
10275^^^^^^^^^^^^^^^^^^^^^^^^^^^
10276
10277Syntax:
10278"""""""
10279
10280This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10281floating point or vector of floating point type. Not all targets support
10282all types however.
10283
10284::
10285
10286 declare float @llvm.ceil.f32(float %Val)
10287 declare double @llvm.ceil.f64(double %Val)
10288 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10289 declare fp128 @llvm.ceil.f128(fp128 %Val)
10290 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10291
10292Overview:
10293"""""""""
10294
10295The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10296
10297Arguments:
10298""""""""""
10299
10300The argument and return value are floating point numbers of the same
10301type.
10302
10303Semantics:
10304""""""""""
10305
10306This function returns the same values as the libm ``ceil`` functions
10307would, and handles error conditions in the same way.
10308
10309'``llvm.trunc.*``' Intrinsic
10310^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10311
10312Syntax:
10313"""""""
10314
10315This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10316floating point or vector of floating point type. Not all targets support
10317all types however.
10318
10319::
10320
10321 declare float @llvm.trunc.f32(float %Val)
10322 declare double @llvm.trunc.f64(double %Val)
10323 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10324 declare fp128 @llvm.trunc.f128(fp128 %Val)
10325 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10326
10327Overview:
10328"""""""""
10329
10330The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10331nearest integer not larger in magnitude than the operand.
10332
10333Arguments:
10334""""""""""
10335
10336The argument and return value are floating point numbers of the same
10337type.
10338
10339Semantics:
10340""""""""""
10341
10342This function returns the same values as the libm ``trunc`` functions
10343would, and handles error conditions in the same way.
10344
10345'``llvm.rint.*``' Intrinsic
10346^^^^^^^^^^^^^^^^^^^^^^^^^^^
10347
10348Syntax:
10349"""""""
10350
10351This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10352floating point or vector of floating point type. Not all targets support
10353all types however.
10354
10355::
10356
10357 declare float @llvm.rint.f32(float %Val)
10358 declare double @llvm.rint.f64(double %Val)
10359 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10360 declare fp128 @llvm.rint.f128(fp128 %Val)
10361 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10362
10363Overview:
10364"""""""""
10365
10366The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10367nearest integer. It may raise an inexact floating-point exception if the
10368operand isn't an integer.
10369
10370Arguments:
10371""""""""""
10372
10373The argument and return value are floating point numbers of the same
10374type.
10375
10376Semantics:
10377""""""""""
10378
10379This function returns the same values as the libm ``rint`` functions
10380would, and handles error conditions in the same way.
10381
10382'``llvm.nearbyint.*``' Intrinsic
10383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10384
10385Syntax:
10386"""""""
10387
10388This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10389floating point or vector of floating point type. Not all targets support
10390all types however.
10391
10392::
10393
10394 declare float @llvm.nearbyint.f32(float %Val)
10395 declare double @llvm.nearbyint.f64(double %Val)
10396 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10397 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10398 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10399
10400Overview:
10401"""""""""
10402
10403The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10404nearest integer.
10405
10406Arguments:
10407""""""""""
10408
10409The argument and return value are floating point numbers of the same
10410type.
10411
10412Semantics:
10413""""""""""
10414
10415This function returns the same values as the libm ``nearbyint``
10416functions would, and handles error conditions in the same way.
10417
Hal Finkel171817e2013-08-07 22:49:12 +000010418'``llvm.round.*``' Intrinsic
10419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10420
10421Syntax:
10422"""""""
10423
10424This is an overloaded intrinsic. You can use ``llvm.round`` on any
10425floating point or vector of floating point type. Not all targets support
10426all types however.
10427
10428::
10429
10430 declare float @llvm.round.f32(float %Val)
10431 declare double @llvm.round.f64(double %Val)
10432 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10433 declare fp128 @llvm.round.f128(fp128 %Val)
10434 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10435
10436Overview:
10437"""""""""
10438
10439The '``llvm.round.*``' intrinsics returns the operand rounded to the
10440nearest integer.
10441
10442Arguments:
10443""""""""""
10444
10445The argument and return value are floating point numbers of the same
10446type.
10447
10448Semantics:
10449""""""""""
10450
10451This function returns the same values as the libm ``round``
10452functions would, and handles error conditions in the same way.
10453
Sean Silvab084af42012-12-07 10:36:55 +000010454Bit Manipulation Intrinsics
10455---------------------------
10456
10457LLVM provides intrinsics for a few important bit manipulation
10458operations. These allow efficient code generation for some algorithms.
10459
James Molloy90111f72015-11-12 12:29:09 +000010460'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010462
10463Syntax:
10464"""""""
10465
10466This is an overloaded intrinsic function. You can use bitreverse on any
10467integer type.
10468
10469::
10470
10471 declare i16 @llvm.bitreverse.i16(i16 <id>)
10472 declare i32 @llvm.bitreverse.i32(i32 <id>)
10473 declare i64 @llvm.bitreverse.i64(i64 <id>)
10474
10475Overview:
10476"""""""""
10477
10478The '``llvm.bitreverse``' family of intrinsics is used to reverse the
10479bitpattern of an integer value; for example ``0b1234567`` becomes
10480``0b7654321``.
10481
10482Semantics:
10483""""""""""
10484
10485The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10486``M`` in the input moved to bit ``N-M`` in the output.
10487
Sean Silvab084af42012-12-07 10:36:55 +000010488'``llvm.bswap.*``' Intrinsics
10489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10490
10491Syntax:
10492"""""""
10493
10494This is an overloaded intrinsic function. You can use bswap on any
10495integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10496
10497::
10498
10499 declare i16 @llvm.bswap.i16(i16 <id>)
10500 declare i32 @llvm.bswap.i32(i32 <id>)
10501 declare i64 @llvm.bswap.i64(i64 <id>)
10502
10503Overview:
10504"""""""""
10505
10506The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10507values with an even number of bytes (positive multiple of 16 bits).
10508These are useful for performing operations on data that is not in the
10509target's native byte order.
10510
10511Semantics:
10512""""""""""
10513
10514The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10515and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10516intrinsic returns an i32 value that has the four bytes of the input i32
10517swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10518returned i32 will have its bytes in 3, 2, 1, 0 order. The
10519``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10520concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10521respectively).
10522
10523'``llvm.ctpop.*``' Intrinsic
10524^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10525
10526Syntax:
10527"""""""
10528
10529This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10530bit width, or on any vector with integer elements. Not all targets
10531support all bit widths or vector types, however.
10532
10533::
10534
10535 declare i8 @llvm.ctpop.i8(i8 <src>)
10536 declare i16 @llvm.ctpop.i16(i16 <src>)
10537 declare i32 @llvm.ctpop.i32(i32 <src>)
10538 declare i64 @llvm.ctpop.i64(i64 <src>)
10539 declare i256 @llvm.ctpop.i256(i256 <src>)
10540 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10541
10542Overview:
10543"""""""""
10544
10545The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10546in a value.
10547
10548Arguments:
10549""""""""""
10550
10551The only argument is the value to be counted. The argument may be of any
10552integer type, or a vector with integer elements. The return type must
10553match the argument type.
10554
10555Semantics:
10556""""""""""
10557
10558The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10559each element of a vector.
10560
10561'``llvm.ctlz.*``' Intrinsic
10562^^^^^^^^^^^^^^^^^^^^^^^^^^^
10563
10564Syntax:
10565"""""""
10566
10567This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10568integer bit width, or any vector whose elements are integers. Not all
10569targets support all bit widths or vector types, however.
10570
10571::
10572
10573 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10574 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10575 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10576 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10577 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10578 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10579
10580Overview:
10581"""""""""
10582
10583The '``llvm.ctlz``' family of intrinsic functions counts the number of
10584leading zeros in a variable.
10585
10586Arguments:
10587""""""""""
10588
10589The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010590any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010591type must match the first argument type.
10592
10593The second argument must be a constant and is a flag to indicate whether
10594the intrinsic should ensure that a zero as the first argument produces a
10595defined result. Historically some architectures did not provide a
10596defined result for zero values as efficiently, and many algorithms are
10597now predicated on avoiding zero-value inputs.
10598
10599Semantics:
10600""""""""""
10601
10602The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10603zeros in a variable, or within each element of the vector. If
10604``src == 0`` then the result is the size in bits of the type of ``src``
10605if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10606``llvm.ctlz(i32 2) = 30``.
10607
10608'``llvm.cttz.*``' Intrinsic
10609^^^^^^^^^^^^^^^^^^^^^^^^^^^
10610
10611Syntax:
10612"""""""
10613
10614This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10615integer bit width, or any vector of integer elements. Not all targets
10616support all bit widths or vector types, however.
10617
10618::
10619
10620 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10621 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10622 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10623 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10624 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10625 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10626
10627Overview:
10628"""""""""
10629
10630The '``llvm.cttz``' family of intrinsic functions counts the number of
10631trailing zeros.
10632
10633Arguments:
10634""""""""""
10635
10636The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010637any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010638type must match the first argument type.
10639
10640The second argument must be a constant and is a flag to indicate whether
10641the intrinsic should ensure that a zero as the first argument produces a
10642defined result. Historically some architectures did not provide a
10643defined result for zero values as efficiently, and many algorithms are
10644now predicated on avoiding zero-value inputs.
10645
10646Semantics:
10647""""""""""
10648
10649The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10650zeros in a variable, or within each element of a vector. If ``src == 0``
10651then the result is the size in bits of the type of ``src`` if
10652``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10653``llvm.cttz(2) = 1``.
10654
Philip Reames34843ae2015-03-05 05:55:55 +000010655.. _int_overflow:
10656
Sean Silvab084af42012-12-07 10:36:55 +000010657Arithmetic with Overflow Intrinsics
10658-----------------------------------
10659
10660LLVM provides intrinsics for some arithmetic with overflow operations.
10661
10662'``llvm.sadd.with.overflow.*``' Intrinsics
10663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10664
10665Syntax:
10666"""""""
10667
10668This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10669on any integer bit width.
10670
10671::
10672
10673 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10674 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10675 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10676
10677Overview:
10678"""""""""
10679
10680The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10681a signed addition of the two arguments, and indicate whether an overflow
10682occurred during the signed summation.
10683
10684Arguments:
10685""""""""""
10686
10687The arguments (%a and %b) and the first element of the result structure
10688may be of integer types of any bit width, but they must have the same
10689bit width. The second element of the result structure must be of type
10690``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10691addition.
10692
10693Semantics:
10694""""""""""
10695
10696The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010697a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010698first element of which is the signed summation, and the second element
10699of which is a bit specifying if the signed summation resulted in an
10700overflow.
10701
10702Examples:
10703"""""""""
10704
10705.. code-block:: llvm
10706
10707 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10708 %sum = extractvalue {i32, i1} %res, 0
10709 %obit = extractvalue {i32, i1} %res, 1
10710 br i1 %obit, label %overflow, label %normal
10711
10712'``llvm.uadd.with.overflow.*``' Intrinsics
10713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10714
10715Syntax:
10716"""""""
10717
10718This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10719on any integer bit width.
10720
10721::
10722
10723 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10724 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10725 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10726
10727Overview:
10728"""""""""
10729
10730The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10731an unsigned addition of the two arguments, and indicate whether a carry
10732occurred during the unsigned summation.
10733
10734Arguments:
10735""""""""""
10736
10737The arguments (%a and %b) and the first element of the result structure
10738may be of integer types of any bit width, but they must have the same
10739bit width. The second element of the result structure must be of type
10740``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10741addition.
10742
10743Semantics:
10744""""""""""
10745
10746The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010747an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010748first element of which is the sum, and the second element of which is a
10749bit specifying if the unsigned summation resulted in a carry.
10750
10751Examples:
10752"""""""""
10753
10754.. code-block:: llvm
10755
10756 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10757 %sum = extractvalue {i32, i1} %res, 0
10758 %obit = extractvalue {i32, i1} %res, 1
10759 br i1 %obit, label %carry, label %normal
10760
10761'``llvm.ssub.with.overflow.*``' Intrinsics
10762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10763
10764Syntax:
10765"""""""
10766
10767This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10768on any integer bit width.
10769
10770::
10771
10772 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10773 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10774 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10775
10776Overview:
10777"""""""""
10778
10779The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10780a signed subtraction of the two arguments, and indicate whether an
10781overflow occurred during the signed subtraction.
10782
10783Arguments:
10784""""""""""
10785
10786The arguments (%a and %b) and the first element of the result structure
10787may be of integer types of any bit width, but they must have the same
10788bit width. The second element of the result structure must be of type
10789``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10790subtraction.
10791
10792Semantics:
10793""""""""""
10794
10795The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010796a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010797first element of which is the subtraction, and the second element of
10798which is a bit specifying if the signed subtraction resulted in an
10799overflow.
10800
10801Examples:
10802"""""""""
10803
10804.. code-block:: llvm
10805
10806 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10807 %sum = extractvalue {i32, i1} %res, 0
10808 %obit = extractvalue {i32, i1} %res, 1
10809 br i1 %obit, label %overflow, label %normal
10810
10811'``llvm.usub.with.overflow.*``' Intrinsics
10812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10813
10814Syntax:
10815"""""""
10816
10817This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10818on any integer bit width.
10819
10820::
10821
10822 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10823 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10824 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10825
10826Overview:
10827"""""""""
10828
10829The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10830an unsigned subtraction of the two arguments, and indicate whether an
10831overflow occurred during the unsigned subtraction.
10832
10833Arguments:
10834""""""""""
10835
10836The arguments (%a and %b) and the first element of the result structure
10837may be of integer types of any bit width, but they must have the same
10838bit width. The second element of the result structure must be of type
10839``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10840subtraction.
10841
10842Semantics:
10843""""""""""
10844
10845The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010846an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010847the first element of which is the subtraction, and the second element of
10848which is a bit specifying if the unsigned subtraction resulted in an
10849overflow.
10850
10851Examples:
10852"""""""""
10853
10854.. code-block:: llvm
10855
10856 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10857 %sum = extractvalue {i32, i1} %res, 0
10858 %obit = extractvalue {i32, i1} %res, 1
10859 br i1 %obit, label %overflow, label %normal
10860
10861'``llvm.smul.with.overflow.*``' Intrinsics
10862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10863
10864Syntax:
10865"""""""
10866
10867This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10868on any integer bit width.
10869
10870::
10871
10872 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10873 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10874 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10875
10876Overview:
10877"""""""""
10878
10879The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10880a signed multiplication of the two arguments, and indicate whether an
10881overflow occurred during the signed multiplication.
10882
10883Arguments:
10884""""""""""
10885
10886The arguments (%a and %b) and the first element of the result structure
10887may be of integer types of any bit width, but they must have the same
10888bit width. The second element of the result structure must be of type
10889``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10890multiplication.
10891
10892Semantics:
10893""""""""""
10894
10895The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010896a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010897the first element of which is the multiplication, and the second element
10898of which is a bit specifying if the signed multiplication resulted in an
10899overflow.
10900
10901Examples:
10902"""""""""
10903
10904.. code-block:: llvm
10905
10906 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10907 %sum = extractvalue {i32, i1} %res, 0
10908 %obit = extractvalue {i32, i1} %res, 1
10909 br i1 %obit, label %overflow, label %normal
10910
10911'``llvm.umul.with.overflow.*``' Intrinsics
10912^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10913
10914Syntax:
10915"""""""
10916
10917This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10918on any integer bit width.
10919
10920::
10921
10922 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10923 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10924 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10925
10926Overview:
10927"""""""""
10928
10929The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10930a unsigned multiplication of the two arguments, and indicate whether an
10931overflow occurred during the unsigned multiplication.
10932
10933Arguments:
10934""""""""""
10935
10936The arguments (%a and %b) and the first element of the result structure
10937may be of integer types of any bit width, but they must have the same
10938bit width. The second element of the result structure must be of type
10939``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10940multiplication.
10941
10942Semantics:
10943""""""""""
10944
10945The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010946an unsigned multiplication of the two arguments. They return a structure ---
10947the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010948element of which is a bit specifying if the unsigned multiplication
10949resulted in an overflow.
10950
10951Examples:
10952"""""""""
10953
10954.. code-block:: llvm
10955
10956 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10957 %sum = extractvalue {i32, i1} %res, 0
10958 %obit = extractvalue {i32, i1} %res, 1
10959 br i1 %obit, label %overflow, label %normal
10960
10961Specialised Arithmetic Intrinsics
10962---------------------------------
10963
Owen Anderson1056a922015-07-11 07:01:27 +000010964'``llvm.canonicalize.*``' Intrinsic
10965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10966
10967Syntax:
10968"""""""
10969
10970::
10971
10972 declare float @llvm.canonicalize.f32(float %a)
10973 declare double @llvm.canonicalize.f64(double %b)
10974
10975Overview:
10976"""""""""
10977
10978The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010979encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010980implementing certain numeric primitives such as frexp. The canonical encoding is
10981defined by IEEE-754-2008 to be:
10982
10983::
10984
10985 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010986 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010987 numbers, infinities, and NaNs, especially in decimal formats.
10988
10989This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010990conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010991according to section 6.2.
10992
10993Examples of non-canonical encodings:
10994
Sean Silvaa1190322015-08-06 22:56:48 +000010995- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010996 converted to a canonical representation per hardware-specific protocol.
10997- Many normal decimal floating point numbers have non-canonical alternative
10998 encodings.
10999- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
11000 These are treated as non-canonical encodings of zero and with be flushed to
11001 a zero of the same sign by this operation.
11002
11003Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11004default exception handling must signal an invalid exception, and produce a
11005quiet NaN result.
11006
11007This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011008that the compiler does not constant fold the operation. Likewise, division by
110091.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011010-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11011
Sean Silvaa1190322015-08-06 22:56:48 +000011012``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011013
11014- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11015- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11016 to ``(x == y)``
11017
11018Additionally, the sign of zero must be conserved:
11019``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11020
11021The payload bits of a NaN must be conserved, with two exceptions.
11022First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011023must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011024usual methods.
11025
11026The canonicalization operation may be optimized away if:
11027
Sean Silvaa1190322015-08-06 22:56:48 +000011028- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011029 floating-point operation that is required by the standard to be canonical.
11030- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011031 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011032
Sean Silvab084af42012-12-07 10:36:55 +000011033'``llvm.fmuladd.*``' Intrinsic
11034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11035
11036Syntax:
11037"""""""
11038
11039::
11040
11041 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11042 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11043
11044Overview:
11045"""""""""
11046
11047The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011048expressions that can be fused if the code generator determines that (a) the
11049target instruction set has support for a fused operation, and (b) that the
11050fused operation is more efficient than the equivalent, separate pair of mul
11051and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011052
11053Arguments:
11054""""""""""
11055
11056The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11057multiplicands, a and b, and an addend c.
11058
11059Semantics:
11060""""""""""
11061
11062The expression:
11063
11064::
11065
11066 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11067
11068is equivalent to the expression a \* b + c, except that rounding will
11069not be performed between the multiplication and addition steps if the
11070code generator fuses the operations. Fusion is not guaranteed, even if
11071the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011072corresponding llvm.fma.\* intrinsic function should be used
11073instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011074
11075Examples:
11076"""""""""
11077
11078.. code-block:: llvm
11079
Tim Northover675a0962014-06-13 14:24:23 +000011080 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011081
James Molloy7395a812015-07-16 15:22:46 +000011082
11083'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
11084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11085
11086Syntax:
11087"""""""
11088This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
11089
11090.. code-block:: llvm
11091
11092 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
11093
11094
11095Overview:
11096"""""""""
11097
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011098The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
11099of the two operands, treating them both as unsigned integers. The intermediate
11100calculations are computed using infinitely precise unsigned arithmetic. The final
11101result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000011102
Mohammad Shahid18715532015-08-21 05:31:07 +000011103The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011104the two operands, treating them both as signed integers. If the result overflows, the
11105behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000011106
11107.. note::
11108
11109 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011110 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000011111 recommended for users to create them manually.
11112
11113Arguments:
11114""""""""""
11115
11116Both intrinsics take two integer of the same bitwidth.
11117
11118Semantics:
11119""""""""""
11120
11121The expression::
11122
11123 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11124
11125is equivalent to::
11126
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011127 %1 = zext <4 x i32> %a to <4 x i64>
11128 %2 = zext <4 x i32> %b to <4 x i64>
11129 %sub = sub <4 x i64> %1, %2
11130 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000011131
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011132and the expression::
James Molloy7395a812015-07-16 15:22:46 +000011133
11134 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11135
11136is equivalent to::
11137
11138 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011139 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000011140 %neg = sub nsw <4 x i32> zeroinitializer, %sub
11141 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
11142
11143
Sean Silvab084af42012-12-07 10:36:55 +000011144Half Precision Floating Point Intrinsics
11145----------------------------------------
11146
11147For most target platforms, half precision floating point is a
11148storage-only format. This means that it is a dense encoding (in memory)
11149but does not support computation in the format.
11150
11151This means that code must first load the half-precision floating point
11152value as an i16, then convert it to float with
11153:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11154then be performed on the float value (including extending to double
11155etc). To store the value back to memory, it is first converted to float
11156if needed, then converted to i16 with
11157:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11158i16 value.
11159
11160.. _int_convert_to_fp16:
11161
11162'``llvm.convert.to.fp16``' Intrinsic
11163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11164
11165Syntax:
11166"""""""
11167
11168::
11169
Tim Northoverfd7e4242014-07-17 10:51:23 +000011170 declare i16 @llvm.convert.to.fp16.f32(float %a)
11171 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011172
11173Overview:
11174"""""""""
11175
Tim Northoverfd7e4242014-07-17 10:51:23 +000011176The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11177conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011178
11179Arguments:
11180""""""""""
11181
11182The intrinsic function contains single argument - the value to be
11183converted.
11184
11185Semantics:
11186""""""""""
11187
Tim Northoverfd7e4242014-07-17 10:51:23 +000011188The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11189conventional floating point format to half precision floating point format. The
11190return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011191
11192Examples:
11193"""""""""
11194
11195.. code-block:: llvm
11196
Tim Northoverfd7e4242014-07-17 10:51:23 +000011197 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011198 store i16 %res, i16* @x, align 2
11199
11200.. _int_convert_from_fp16:
11201
11202'``llvm.convert.from.fp16``' Intrinsic
11203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11204
11205Syntax:
11206"""""""
11207
11208::
11209
Tim Northoverfd7e4242014-07-17 10:51:23 +000011210 declare float @llvm.convert.from.fp16.f32(i16 %a)
11211 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011212
11213Overview:
11214"""""""""
11215
11216The '``llvm.convert.from.fp16``' intrinsic function performs a
11217conversion from half precision floating point format to single precision
11218floating point format.
11219
11220Arguments:
11221""""""""""
11222
11223The intrinsic function contains single argument - the value to be
11224converted.
11225
11226Semantics:
11227""""""""""
11228
11229The '``llvm.convert.from.fp16``' intrinsic function performs a
11230conversion from half single precision floating point format to single
11231precision floating point format. The input half-float value is
11232represented by an ``i16`` value.
11233
11234Examples:
11235"""""""""
11236
11237.. code-block:: llvm
11238
David Blaikiec7aabbb2015-03-04 22:06:14 +000011239 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011240 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011241
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011242.. _dbg_intrinsics:
11243
Sean Silvab084af42012-12-07 10:36:55 +000011244Debugger Intrinsics
11245-------------------
11246
11247The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11248prefix), are described in the `LLVM Source Level
11249Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11250document.
11251
11252Exception Handling Intrinsics
11253-----------------------------
11254
11255The LLVM exception handling intrinsics (which all start with
11256``llvm.eh.`` prefix), are described in the `LLVM Exception
11257Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11258
11259.. _int_trampoline:
11260
11261Trampoline Intrinsics
11262---------------------
11263
11264These intrinsics make it possible to excise one parameter, marked with
11265the :ref:`nest <nest>` attribute, from a function. The result is a
11266callable function pointer lacking the nest parameter - the caller does
11267not need to provide a value for it. Instead, the value to use is stored
11268in advance in a "trampoline", a block of memory usually allocated on the
11269stack, which also contains code to splice the nest value into the
11270argument list. This is used to implement the GCC nested function address
11271extension.
11272
11273For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11274then the resulting function pointer has signature ``i32 (i32, i32)*``.
11275It can be created as follows:
11276
11277.. code-block:: llvm
11278
11279 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011280 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011281 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11282 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11283 %fp = bitcast i8* %p to i32 (i32, i32)*
11284
11285The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11286``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11287
11288.. _int_it:
11289
11290'``llvm.init.trampoline``' Intrinsic
11291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11292
11293Syntax:
11294"""""""
11295
11296::
11297
11298 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11299
11300Overview:
11301"""""""""
11302
11303This fills the memory pointed to by ``tramp`` with executable code,
11304turning it into a trampoline.
11305
11306Arguments:
11307""""""""""
11308
11309The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11310pointers. The ``tramp`` argument must point to a sufficiently large and
11311sufficiently aligned block of memory; this memory is written to by the
11312intrinsic. Note that the size and the alignment are target-specific -
11313LLVM currently provides no portable way of determining them, so a
11314front-end that generates this intrinsic needs to have some
11315target-specific knowledge. The ``func`` argument must hold a function
11316bitcast to an ``i8*``.
11317
11318Semantics:
11319""""""""""
11320
11321The block of memory pointed to by ``tramp`` is filled with target
11322dependent code, turning it into a function. Then ``tramp`` needs to be
11323passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11324be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11325function's signature is the same as that of ``func`` with any arguments
11326marked with the ``nest`` attribute removed. At most one such ``nest``
11327argument is allowed, and it must be of pointer type. Calling the new
11328function is equivalent to calling ``func`` with the same argument list,
11329but with ``nval`` used for the missing ``nest`` argument. If, after
11330calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11331modified, then the effect of any later call to the returned function
11332pointer is undefined.
11333
11334.. _int_at:
11335
11336'``llvm.adjust.trampoline``' Intrinsic
11337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11338
11339Syntax:
11340"""""""
11341
11342::
11343
11344 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11345
11346Overview:
11347"""""""""
11348
11349This performs any required machine-specific adjustment to the address of
11350a trampoline (passed as ``tramp``).
11351
11352Arguments:
11353""""""""""
11354
11355``tramp`` must point to a block of memory which already has trampoline
11356code filled in by a previous call to
11357:ref:`llvm.init.trampoline <int_it>`.
11358
11359Semantics:
11360""""""""""
11361
11362On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011363different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011364intrinsic returns the executable address corresponding to ``tramp``
11365after performing the required machine specific adjustments. The pointer
11366returned can then be :ref:`bitcast and executed <int_trampoline>`.
11367
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011368.. _int_mload_mstore:
11369
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011370Masked Vector Load and Store Intrinsics
11371---------------------------------------
11372
11373LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11374
11375.. _int_mload:
11376
11377'``llvm.masked.load.*``' Intrinsics
11378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11379
11380Syntax:
11381"""""""
11382This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11383
11384::
11385
11386 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11387 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11388
11389Overview:
11390"""""""""
11391
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011392Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011393
11394
11395Arguments:
11396""""""""""
11397
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011398The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011399
11400
11401Semantics:
11402""""""""""
11403
11404The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11405The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11406
11407
11408::
11409
11410 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011411
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011412 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011413 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011414 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011415
11416.. _int_mstore:
11417
11418'``llvm.masked.store.*``' Intrinsics
11419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11420
11421Syntax:
11422"""""""
11423This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11424
11425::
11426
11427 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11428 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11429
11430Overview:
11431"""""""""
11432
11433Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11434
11435Arguments:
11436""""""""""
11437
11438The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11439
11440
11441Semantics:
11442""""""""""
11443
11444The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11445The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11446
11447::
11448
11449 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011450
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011451 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011452 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011453 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11454 store <16 x float> %res, <16 x float>* %ptr, align 4
11455
11456
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011457Masked Vector Gather and Scatter Intrinsics
11458-------------------------------------------
11459
11460LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11461
11462.. _int_mgather:
11463
11464'``llvm.masked.gather.*``' Intrinsics
11465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11466
11467Syntax:
11468"""""""
11469This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11470
11471::
11472
11473 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11474 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11475
11476Overview:
11477"""""""""
11478
11479Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11480
11481
11482Arguments:
11483""""""""""
11484
11485The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11486
11487
11488Semantics:
11489""""""""""
11490
11491The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11492The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11493
11494
11495::
11496
11497 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11498
11499 ;; The gather with all-true mask is equivalent to the following instruction sequence
11500 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11501 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11502 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11503 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11504
11505 %val0 = load double, double* %ptr0, align 8
11506 %val1 = load double, double* %ptr1, align 8
11507 %val2 = load double, double* %ptr2, align 8
11508 %val3 = load double, double* %ptr3, align 8
11509
11510 %vec0 = insertelement <4 x double>undef, %val0, 0
11511 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11512 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11513 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11514
11515.. _int_mscatter:
11516
11517'``llvm.masked.scatter.*``' Intrinsics
11518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11519
11520Syntax:
11521"""""""
11522This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11523
11524::
11525
11526 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11527 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11528
11529Overview:
11530"""""""""
11531
11532Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11533
11534Arguments:
11535""""""""""
11536
11537The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11538
11539
11540Semantics:
11541""""""""""
11542
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011543The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011544
11545::
11546
11547 ;; This instruction unconditionaly stores data vector in multiple addresses
11548 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11549
11550 ;; It is equivalent to a list of scalar stores
11551 %val0 = extractelement <8 x i32> %value, i32 0
11552 %val1 = extractelement <8 x i32> %value, i32 1
11553 ..
11554 %val7 = extractelement <8 x i32> %value, i32 7
11555 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11556 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11557 ..
11558 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11559 ;; Note: the order of the following stores is important when they overlap:
11560 store i32 %val0, i32* %ptr0, align 4
11561 store i32 %val1, i32* %ptr1, align 4
11562 ..
11563 store i32 %val7, i32* %ptr7, align 4
11564
11565
Sean Silvab084af42012-12-07 10:36:55 +000011566Memory Use Markers
11567------------------
11568
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011569This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011570memory objects and ranges where variables are immutable.
11571
Reid Klecknera534a382013-12-19 02:14:12 +000011572.. _int_lifestart:
11573
Sean Silvab084af42012-12-07 10:36:55 +000011574'``llvm.lifetime.start``' Intrinsic
11575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11576
11577Syntax:
11578"""""""
11579
11580::
11581
11582 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11583
11584Overview:
11585"""""""""
11586
11587The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11588object's lifetime.
11589
11590Arguments:
11591""""""""""
11592
11593The first argument is a constant integer representing the size of the
11594object, or -1 if it is variable sized. The second argument is a pointer
11595to the object.
11596
11597Semantics:
11598""""""""""
11599
11600This intrinsic indicates that before this point in the code, the value
11601of the memory pointed to by ``ptr`` is dead. This means that it is known
11602to never be used and has an undefined value. A load from the pointer
11603that precedes this intrinsic can be replaced with ``'undef'``.
11604
Reid Klecknera534a382013-12-19 02:14:12 +000011605.. _int_lifeend:
11606
Sean Silvab084af42012-12-07 10:36:55 +000011607'``llvm.lifetime.end``' Intrinsic
11608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11609
11610Syntax:
11611"""""""
11612
11613::
11614
11615 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11616
11617Overview:
11618"""""""""
11619
11620The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11621object's lifetime.
11622
11623Arguments:
11624""""""""""
11625
11626The first argument is a constant integer representing the size of the
11627object, or -1 if it is variable sized. The second argument is a pointer
11628to the object.
11629
11630Semantics:
11631""""""""""
11632
11633This intrinsic indicates that after this point in the code, the value of
11634the memory pointed to by ``ptr`` is dead. This means that it is known to
11635never be used and has an undefined value. Any stores into the memory
11636object following this intrinsic may be removed as dead.
11637
11638'``llvm.invariant.start``' Intrinsic
11639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11640
11641Syntax:
11642"""""""
11643
11644::
11645
11646 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11647
11648Overview:
11649"""""""""
11650
11651The '``llvm.invariant.start``' intrinsic specifies that the contents of
11652a memory object will not change.
11653
11654Arguments:
11655""""""""""
11656
11657The first argument is a constant integer representing the size of the
11658object, or -1 if it is variable sized. The second argument is a pointer
11659to the object.
11660
11661Semantics:
11662""""""""""
11663
11664This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11665the return value, the referenced memory location is constant and
11666unchanging.
11667
11668'``llvm.invariant.end``' Intrinsic
11669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11670
11671Syntax:
11672"""""""
11673
11674::
11675
11676 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11677
11678Overview:
11679"""""""""
11680
11681The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11682memory object are mutable.
11683
11684Arguments:
11685""""""""""
11686
11687The first argument is the matching ``llvm.invariant.start`` intrinsic.
11688The second argument is a constant integer representing the size of the
11689object, or -1 if it is variable sized and the third argument is a
11690pointer to the object.
11691
11692Semantics:
11693""""""""""
11694
11695This intrinsic indicates that the memory is mutable again.
11696
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011697'``llvm.invariant.group.barrier``' Intrinsic
11698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11699
11700Syntax:
11701"""""""
11702
11703::
11704
11705 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11706
11707Overview:
11708"""""""""
11709
11710The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11711established by invariant.group metadata no longer holds, to obtain a new pointer
11712value that does not carry the invariant information.
11713
11714
11715Arguments:
11716""""""""""
11717
11718The ``llvm.invariant.group.barrier`` takes only one argument, which is
11719the pointer to the memory for which the ``invariant.group`` no longer holds.
11720
11721Semantics:
11722""""""""""
11723
11724Returns another pointer that aliases its argument but which is considered different
11725for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11726
Sean Silvab084af42012-12-07 10:36:55 +000011727General Intrinsics
11728------------------
11729
11730This class of intrinsics is designed to be generic and has no specific
11731purpose.
11732
11733'``llvm.var.annotation``' Intrinsic
11734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11735
11736Syntax:
11737"""""""
11738
11739::
11740
11741 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11742
11743Overview:
11744"""""""""
11745
11746The '``llvm.var.annotation``' intrinsic.
11747
11748Arguments:
11749""""""""""
11750
11751The first argument is a pointer to a value, the second is a pointer to a
11752global string, the third is a pointer to a global string which is the
11753source file name, and the last argument is the line number.
11754
11755Semantics:
11756""""""""""
11757
11758This intrinsic allows annotation of local variables with arbitrary
11759strings. This can be useful for special purpose optimizations that want
11760to look for these annotations. These have no other defined use; they are
11761ignored by code generation and optimization.
11762
Michael Gottesman88d18832013-03-26 00:34:27 +000011763'``llvm.ptr.annotation.*``' Intrinsic
11764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11765
11766Syntax:
11767"""""""
11768
11769This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11770pointer to an integer of any width. *NOTE* you must specify an address space for
11771the pointer. The identifier for the default address space is the integer
11772'``0``'.
11773
11774::
11775
11776 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11777 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11778 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11779 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11780 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11781
11782Overview:
11783"""""""""
11784
11785The '``llvm.ptr.annotation``' intrinsic.
11786
11787Arguments:
11788""""""""""
11789
11790The first argument is a pointer to an integer value of arbitrary bitwidth
11791(result of some expression), the second is a pointer to a global string, the
11792third is a pointer to a global string which is the source file name, and the
11793last argument is the line number. It returns the value of the first argument.
11794
11795Semantics:
11796""""""""""
11797
11798This intrinsic allows annotation of a pointer to an integer with arbitrary
11799strings. This can be useful for special purpose optimizations that want to look
11800for these annotations. These have no other defined use; they are ignored by code
11801generation and optimization.
11802
Sean Silvab084af42012-12-07 10:36:55 +000011803'``llvm.annotation.*``' Intrinsic
11804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11805
11806Syntax:
11807"""""""
11808
11809This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11810any integer bit width.
11811
11812::
11813
11814 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11815 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11816 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11817 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11818 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11819
11820Overview:
11821"""""""""
11822
11823The '``llvm.annotation``' intrinsic.
11824
11825Arguments:
11826""""""""""
11827
11828The first argument is an integer value (result of some expression), the
11829second is a pointer to a global string, the third is a pointer to a
11830global string which is the source file name, and the last argument is
11831the line number. It returns the value of the first argument.
11832
11833Semantics:
11834""""""""""
11835
11836This intrinsic allows annotations to be put on arbitrary expressions
11837with arbitrary strings. This can be useful for special purpose
11838optimizations that want to look for these annotations. These have no
11839other defined use; they are ignored by code generation and optimization.
11840
11841'``llvm.trap``' Intrinsic
11842^^^^^^^^^^^^^^^^^^^^^^^^^
11843
11844Syntax:
11845"""""""
11846
11847::
11848
11849 declare void @llvm.trap() noreturn nounwind
11850
11851Overview:
11852"""""""""
11853
11854The '``llvm.trap``' intrinsic.
11855
11856Arguments:
11857""""""""""
11858
11859None.
11860
11861Semantics:
11862""""""""""
11863
11864This intrinsic is lowered to the target dependent trap instruction. If
11865the target does not have a trap instruction, this intrinsic will be
11866lowered to a call of the ``abort()`` function.
11867
11868'``llvm.debugtrap``' Intrinsic
11869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11870
11871Syntax:
11872"""""""
11873
11874::
11875
11876 declare void @llvm.debugtrap() nounwind
11877
11878Overview:
11879"""""""""
11880
11881The '``llvm.debugtrap``' intrinsic.
11882
11883Arguments:
11884""""""""""
11885
11886None.
11887
11888Semantics:
11889""""""""""
11890
11891This intrinsic is lowered to code which is intended to cause an
11892execution trap with the intention of requesting the attention of a
11893debugger.
11894
11895'``llvm.stackprotector``' Intrinsic
11896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11897
11898Syntax:
11899"""""""
11900
11901::
11902
11903 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11904
11905Overview:
11906"""""""""
11907
11908The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11909onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11910is placed on the stack before local variables.
11911
11912Arguments:
11913""""""""""
11914
11915The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11916The first argument is the value loaded from the stack guard
11917``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11918enough space to hold the value of the guard.
11919
11920Semantics:
11921""""""""""
11922
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011923This intrinsic causes the prologue/epilogue inserter to force the position of
11924the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11925to ensure that if a local variable on the stack is overwritten, it will destroy
11926the value of the guard. When the function exits, the guard on the stack is
11927checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11928different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11929calling the ``__stack_chk_fail()`` function.
11930
11931'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011933
11934Syntax:
11935"""""""
11936
11937::
11938
11939 declare void @llvm.stackprotectorcheck(i8** <guard>)
11940
11941Overview:
11942"""""""""
11943
11944The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011945created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011946``__stack_chk_fail()`` function.
11947
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011948Arguments:
11949""""""""""
11950
11951The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11952the variable ``@__stack_chk_guard``.
11953
11954Semantics:
11955""""""""""
11956
11957This intrinsic is provided to perform the stack protector check by comparing
11958``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11959values do not match call the ``__stack_chk_fail()`` function.
11960
11961The reason to provide this as an IR level intrinsic instead of implementing it
11962via other IR operations is that in order to perform this operation at the IR
11963level without an intrinsic, one would need to create additional basic blocks to
11964handle the success/failure cases. This makes it difficult to stop the stack
11965protector check from disrupting sibling tail calls in Codegen. With this
11966intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011967codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011968
Sean Silvab084af42012-12-07 10:36:55 +000011969'``llvm.objectsize``' Intrinsic
11970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11971
11972Syntax:
11973"""""""
11974
11975::
11976
11977 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11978 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11979
11980Overview:
11981"""""""""
11982
11983The ``llvm.objectsize`` intrinsic is designed to provide information to
11984the optimizers to determine at compile time whether a) an operation
11985(like memcpy) will overflow a buffer that corresponds to an object, or
11986b) that a runtime check for overflow isn't necessary. An object in this
11987context means an allocation of a specific class, structure, array, or
11988other object.
11989
11990Arguments:
11991""""""""""
11992
11993The ``llvm.objectsize`` intrinsic takes two arguments. The first
11994argument is a pointer to or into the ``object``. The second argument is
11995a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11996or -1 (if false) when the object size is unknown. The second argument
11997only accepts constants.
11998
11999Semantics:
12000""""""""""
12001
12002The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12003the size of the object concerned. If the size cannot be determined at
12004compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12005on the ``min`` argument).
12006
12007'``llvm.expect``' Intrinsic
12008^^^^^^^^^^^^^^^^^^^^^^^^^^^
12009
12010Syntax:
12011"""""""
12012
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012013This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12014integer bit width.
12015
Sean Silvab084af42012-12-07 10:36:55 +000012016::
12017
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012018 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012019 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12020 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12021
12022Overview:
12023"""""""""
12024
12025The ``llvm.expect`` intrinsic provides information about expected (the
12026most probable) value of ``val``, which can be used by optimizers.
12027
12028Arguments:
12029""""""""""
12030
12031The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12032a value. The second argument is an expected value, this needs to be a
12033constant value, variables are not allowed.
12034
12035Semantics:
12036""""""""""
12037
12038This intrinsic is lowered to the ``val``.
12039
Philip Reamese0e90832015-04-26 22:23:12 +000012040.. _int_assume:
12041
Hal Finkel93046912014-07-25 21:13:35 +000012042'``llvm.assume``' Intrinsic
12043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12044
12045Syntax:
12046"""""""
12047
12048::
12049
12050 declare void @llvm.assume(i1 %cond)
12051
12052Overview:
12053"""""""""
12054
12055The ``llvm.assume`` allows the optimizer to assume that the provided
12056condition is true. This information can then be used in simplifying other parts
12057of the code.
12058
12059Arguments:
12060""""""""""
12061
12062The condition which the optimizer may assume is always true.
12063
12064Semantics:
12065""""""""""
12066
12067The intrinsic allows the optimizer to assume that the provided condition is
12068always true whenever the control flow reaches the intrinsic call. No code is
12069generated for this intrinsic, and instructions that contribute only to the
12070provided condition are not used for code generation. If the condition is
12071violated during execution, the behavior is undefined.
12072
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012073Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012074used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12075only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012076if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012077sufficient overall improvement in code quality. For this reason,
12078``llvm.assume`` should not be used to document basic mathematical invariants
12079that the optimizer can otherwise deduce or facts that are of little use to the
12080optimizer.
12081
Peter Collingbournee6909c82015-02-20 20:30:47 +000012082.. _bitset.test:
12083
12084'``llvm.bitset.test``' Intrinsic
12085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12086
12087Syntax:
12088"""""""
12089
12090::
12091
12092 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12093
12094
12095Arguments:
12096""""""""""
12097
12098The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012099metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012100
12101Overview:
12102"""""""""
12103
12104The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12105member of the given bitset.
12106
Sean Silvab084af42012-12-07 10:36:55 +000012107'``llvm.donothing``' Intrinsic
12108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12109
12110Syntax:
12111"""""""
12112
12113::
12114
12115 declare void @llvm.donothing() nounwind readnone
12116
12117Overview:
12118"""""""""
12119
Juergen Ributzkac9161192014-10-23 22:36:13 +000012120The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12121two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12122with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012123
12124Arguments:
12125""""""""""
12126
12127None.
12128
12129Semantics:
12130""""""""""
12131
12132This intrinsic does nothing, and it's removed by optimizers and ignored
12133by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012134
12135Stack Map Intrinsics
12136--------------------
12137
12138LLVM provides experimental intrinsics to support runtime patching
12139mechanisms commonly desired in dynamic language JITs. These intrinsics
12140are described in :doc:`StackMaps`.