blob: 82b33557c128627ea5e640938ae389d30c413b46 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000409"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
410 This calling convention aims to minimize overhead in the caller by
411 preserving as many registers as possible. This calling convention behaves
412 identical to the `C` calling convention on how arguments and return values
413 are passed, but it uses a different set of caller/callee-saved registers.
414 Given that C-style TLS on Darwin has its own special CSRs, we can't use the
415 existing `PreserveMost`.
416
417 - On X86-64 the callee preserves all general purpose registers, except for
418 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000419"``cc <n>``" - Numbered convention
420 Any calling convention may be specified by number, allowing
421 target-specific calling conventions to be used. Target specific
422 calling conventions start at 64.
423
424More calling conventions can be added/defined on an as-needed basis, to
425support Pascal conventions or any other well-known target-independent
426convention.
427
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000428.. _visibilitystyles:
429
Sean Silvab084af42012-12-07 10:36:55 +0000430Visibility Styles
431-----------------
432
433All Global Variables and Functions have one of the following visibility
434styles:
435
436"``default``" - Default style
437 On targets that use the ELF object file format, default visibility
438 means that the declaration is visible to other modules and, in
439 shared libraries, means that the declared entity may be overridden.
440 On Darwin, default visibility means that the declaration is visible
441 to other modules. Default visibility corresponds to "external
442 linkage" in the language.
443"``hidden``" - Hidden style
444 Two declarations of an object with hidden visibility refer to the
445 same object if they are in the same shared object. Usually, hidden
446 visibility indicates that the symbol will not be placed into the
447 dynamic symbol table, so no other module (executable or shared
448 library) can reference it directly.
449"``protected``" - Protected style
450 On ELF, protected visibility indicates that the symbol will be
451 placed in the dynamic symbol table, but that references within the
452 defining module will bind to the local symbol. That is, the symbol
453 cannot be overridden by another module.
454
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000455A symbol with ``internal`` or ``private`` linkage must have ``default``
456visibility.
457
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000458.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000459
Nico Rieck7157bb72014-01-14 15:22:47 +0000460DLL Storage Classes
461-------------------
462
463All Global Variables, Functions and Aliases can have one of the following
464DLL storage class:
465
466``dllimport``
467 "``dllimport``" causes the compiler to reference a function or variable via
468 a global pointer to a pointer that is set up by the DLL exporting the
469 symbol. On Microsoft Windows targets, the pointer name is formed by
470 combining ``__imp_`` and the function or variable name.
471``dllexport``
472 "``dllexport``" causes the compiler to provide a global pointer to a pointer
473 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
474 Microsoft Windows targets, the pointer name is formed by combining
475 ``__imp_`` and the function or variable name. Since this storage class
476 exists for defining a dll interface, the compiler, assembler and linker know
477 it is externally referenced and must refrain from deleting the symbol.
478
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000479.. _tls_model:
480
481Thread Local Storage Models
482---------------------------
483
484A variable may be defined as ``thread_local``, which means that it will
485not be shared by threads (each thread will have a separated copy of the
486variable). Not all targets support thread-local variables. Optionally, a
487TLS model may be specified:
488
489``localdynamic``
490 For variables that are only used within the current shared library.
491``initialexec``
492 For variables in modules that will not be loaded dynamically.
493``localexec``
494 For variables defined in the executable and only used within it.
495
496If no explicit model is given, the "general dynamic" model is used.
497
498The models correspond to the ELF TLS models; see `ELF Handling For
499Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
500more information on under which circumstances the different models may
501be used. The target may choose a different TLS model if the specified
502model is not supported, or if a better choice of model can be made.
503
Sean Silva706fba52015-08-06 22:56:24 +0000504A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000505the alias is accessed. It will not have any effect in the aliasee.
506
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000507For platforms without linker support of ELF TLS model, the -femulated-tls
508flag can be used to generate GCC compatible emulated TLS code.
509
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000510.. _namedtypes:
511
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000512Structure Types
513---------------
Sean Silvab084af42012-12-07 10:36:55 +0000514
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000515LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000516types <t_struct>`. Literal types are uniqued structurally, but identified types
517are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000518to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000519
Sean Silva706fba52015-08-06 22:56:24 +0000520An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000521
522.. code-block:: llvm
523
524 %mytype = type { %mytype*, i32 }
525
Sean Silvaa1190322015-08-06 22:56:48 +0000526Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000527literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000528
529.. _globalvars:
530
531Global Variables
532----------------
533
534Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000535instead of run-time.
536
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000537Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000538
539Global variables in other translation units can also be declared, in which
540case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000541
Bob Wilson85b24f22014-06-12 20:40:33 +0000542Either global variable definitions or declarations may have an explicit section
543to be placed in and may have an optional explicit alignment specified.
544
Michael Gottesman006039c2013-01-31 05:48:48 +0000545A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000546the contents of the variable will **never** be modified (enabling better
547optimization, allowing the global data to be placed in the read-only
548section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000549initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000550variable.
551
552LLVM explicitly allows *declarations* of global variables to be marked
553constant, even if the final definition of the global is not. This
554capability can be used to enable slightly better optimization of the
555program, but requires the language definition to guarantee that
556optimizations based on the 'constantness' are valid for the translation
557units that do not include the definition.
558
559As SSA values, global variables define pointer values that are in scope
560(i.e. they dominate) all basic blocks in the program. Global variables
561always define a pointer to their "content" type because they describe a
562region of memory, and all memory objects in LLVM are accessed through
563pointers.
564
565Global variables can be marked with ``unnamed_addr`` which indicates
566that the address is not significant, only the content. Constants marked
567like this can be merged with other constants if they have the same
568initializer. Note that a constant with significant address *can* be
569merged with a ``unnamed_addr`` constant, the result being a constant
570whose address is significant.
571
572A global variable may be declared to reside in a target-specific
573numbered address space. For targets that support them, address spaces
574may affect how optimizations are performed and/or what target
575instructions are used to access the variable. The default address space
576is zero. The address space qualifier must precede any other attributes.
577
578LLVM allows an explicit section to be specified for globals. If the
579target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000580Additionally, the global can placed in a comdat if the target has the necessary
581support.
Sean Silvab084af42012-12-07 10:36:55 +0000582
Michael Gottesmane743a302013-02-04 03:22:00 +0000583By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000584variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000585initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000586true even for variables potentially accessible from outside the
587module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000588``@llvm.used`` or dllexported variables. This assumption may be suppressed
589by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000590
Sean Silvab084af42012-12-07 10:36:55 +0000591An explicit alignment may be specified for a global, which must be a
592power of 2. If not present, or if the alignment is set to zero, the
593alignment of the global is set by the target to whatever it feels
594convenient. If an explicit alignment is specified, the global is forced
595to have exactly that alignment. Targets and optimizers are not allowed
596to over-align the global if the global has an assigned section. In this
597case, the extra alignment could be observable: for example, code could
598assume that the globals are densely packed in their section and try to
599iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000600iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000601
Nico Rieck7157bb72014-01-14 15:22:47 +0000602Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
603
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000604Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000605:ref:`Thread Local Storage Model <tls_model>`.
606
Nico Rieck7157bb72014-01-14 15:22:47 +0000607Syntax::
608
609 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000610 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000611 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000612 [, section "name"] [, comdat [($name)]]
613 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000614
Sean Silvab084af42012-12-07 10:36:55 +0000615For example, the following defines a global in a numbered address space
616with an initializer, section, and alignment:
617
618.. code-block:: llvm
619
620 @G = addrspace(5) constant float 1.0, section "foo", align 4
621
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000622The following example just declares a global variable
623
624.. code-block:: llvm
625
626 @G = external global i32
627
Sean Silvab084af42012-12-07 10:36:55 +0000628The following example defines a thread-local global with the
629``initialexec`` TLS model:
630
631.. code-block:: llvm
632
633 @G = thread_local(initialexec) global i32 0, align 4
634
635.. _functionstructure:
636
637Functions
638---------
639
640LLVM function definitions consist of the "``define``" keyword, an
641optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000642style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
643an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000644an optional ``unnamed_addr`` attribute, a return type, an optional
645:ref:`parameter attribute <paramattrs>` for the return type, a function
646name, a (possibly empty) argument list (each with optional :ref:`parameter
647attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000648an optional section, an optional alignment,
649an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000650an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000651an optional :ref:`prologue <prologuedata>`,
652an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000653an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000654an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000655
656LLVM function declarations consist of the "``declare``" keyword, an
657optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000658style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
659an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000660an optional ``unnamed_addr`` attribute, a return type, an optional
661:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000662name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000663:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
664and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000665
Bill Wendling6822ecb2013-10-27 05:09:12 +0000666A function definition contains a list of basic blocks, forming the CFG (Control
667Flow Graph) for the function. Each basic block may optionally start with a label
668(giving the basic block a symbol table entry), contains a list of instructions,
669and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
670function return). If an explicit label is not provided, a block is assigned an
671implicit numbered label, using the next value from the same counter as used for
672unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
673entry block does not have an explicit label, it will be assigned label "%0",
674then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000675
676The first basic block in a function is special in two ways: it is
677immediately executed on entrance to the function, and it is not allowed
678to have predecessor basic blocks (i.e. there can not be any branches to
679the entry block of a function). Because the block can have no
680predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
681
682LLVM allows an explicit section to be specified for functions. If the
683target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000684Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000685
686An explicit alignment may be specified for a function. If not present,
687or if the alignment is set to zero, the alignment of the function is set
688by the target to whatever it feels convenient. If an explicit alignment
689is specified, the function is forced to have at least that much
690alignment. All alignments must be a power of 2.
691
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000692If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000693be significant and two identical functions can be merged.
694
695Syntax::
696
Nico Rieck7157bb72014-01-14 15:22:47 +0000697 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000698 [cconv] [ret attrs]
699 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000700 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000701 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000702 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000703
Sean Silva706fba52015-08-06 22:56:24 +0000704The argument list is a comma separated sequence of arguments where each
705argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000706
707Syntax::
708
709 <type> [parameter Attrs] [name]
710
711
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000712.. _langref_aliases:
713
Sean Silvab084af42012-12-07 10:36:55 +0000714Aliases
715-------
716
Rafael Espindola64c1e182014-06-03 02:41:57 +0000717Aliases, unlike function or variables, don't create any new data. They
718are just a new symbol and metadata for an existing position.
719
720Aliases have a name and an aliasee that is either a global value or a
721constant expression.
722
Nico Rieck7157bb72014-01-14 15:22:47 +0000723Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000724:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
725<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000726
727Syntax::
728
David Blaikie196582e2015-10-22 01:17:29 +0000729 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000730
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000731The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000732``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000733might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000734
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000735Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000736the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
737to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000738
Rafael Espindola64c1e182014-06-03 02:41:57 +0000739Since aliases are only a second name, some restrictions apply, of which
740some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000741
Rafael Espindola64c1e182014-06-03 02:41:57 +0000742* The expression defining the aliasee must be computable at assembly
743 time. Since it is just a name, no relocations can be used.
744
745* No alias in the expression can be weak as the possibility of the
746 intermediate alias being overridden cannot be represented in an
747 object file.
748
749* No global value in the expression can be a declaration, since that
750 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000751
David Majnemerdad0a642014-06-27 18:19:56 +0000752.. _langref_comdats:
753
754Comdats
755-------
756
757Comdat IR provides access to COFF and ELF object file COMDAT functionality.
758
Sean Silvaa1190322015-08-06 22:56:48 +0000759Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000760specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000761that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000762aliasee computes to, if any.
763
764Comdats have a selection kind to provide input on how the linker should
765choose between keys in two different object files.
766
767Syntax::
768
769 $<Name> = comdat SelectionKind
770
771The selection kind must be one of the following:
772
773``any``
774 The linker may choose any COMDAT key, the choice is arbitrary.
775``exactmatch``
776 The linker may choose any COMDAT key but the sections must contain the
777 same data.
778``largest``
779 The linker will choose the section containing the largest COMDAT key.
780``noduplicates``
781 The linker requires that only section with this COMDAT key exist.
782``samesize``
783 The linker may choose any COMDAT key but the sections must contain the
784 same amount of data.
785
786Note that the Mach-O platform doesn't support COMDATs and ELF only supports
787``any`` as a selection kind.
788
789Here is an example of a COMDAT group where a function will only be selected if
790the COMDAT key's section is the largest:
791
792.. code-block:: llvm
793
794 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000795 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000796
Rafael Espindola83a362c2015-01-06 22:55:16 +0000797 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000798 ret void
799 }
800
Rafael Espindola83a362c2015-01-06 22:55:16 +0000801As a syntactic sugar the ``$name`` can be omitted if the name is the same as
802the global name:
803
804.. code-block:: llvm
805
806 $foo = comdat any
807 @foo = global i32 2, comdat
808
809
David Majnemerdad0a642014-06-27 18:19:56 +0000810In a COFF object file, this will create a COMDAT section with selection kind
811``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
812and another COMDAT section with selection kind
813``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000814section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000815
816There are some restrictions on the properties of the global object.
817It, or an alias to it, must have the same name as the COMDAT group when
818targeting COFF.
819The contents and size of this object may be used during link-time to determine
820which COMDAT groups get selected depending on the selection kind.
821Because the name of the object must match the name of the COMDAT group, the
822linkage of the global object must not be local; local symbols can get renamed
823if a collision occurs in the symbol table.
824
825The combined use of COMDATS and section attributes may yield surprising results.
826For example:
827
828.. code-block:: llvm
829
830 $foo = comdat any
831 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000832 @g1 = global i32 42, section "sec", comdat($foo)
833 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000834
835From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000836with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000837COMDAT groups and COMDATs, at the object file level, are represented by
838sections.
839
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000840Note that certain IR constructs like global variables and functions may
841create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000842COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000843in individual sections (e.g. when `-data-sections` or `-function-sections`
844is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000845
Sean Silvab084af42012-12-07 10:36:55 +0000846.. _namedmetadatastructure:
847
848Named Metadata
849--------------
850
851Named metadata is a collection of metadata. :ref:`Metadata
852nodes <metadata>` (but not metadata strings) are the only valid
853operands for a named metadata.
854
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000855#. Named metadata are represented as a string of characters with the
856 metadata prefix. The rules for metadata names are the same as for
857 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
858 are still valid, which allows any character to be part of a name.
859
Sean Silvab084af42012-12-07 10:36:55 +0000860Syntax::
861
862 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000863 !0 = !{!"zero"}
864 !1 = !{!"one"}
865 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000866 ; A named metadata.
867 !name = !{!0, !1, !2}
868
869.. _paramattrs:
870
871Parameter Attributes
872--------------------
873
874The return type and each parameter of a function type may have a set of
875*parameter attributes* associated with them. Parameter attributes are
876used to communicate additional information about the result or
877parameters of a function. Parameter attributes are considered to be part
878of the function, not of the function type, so functions with different
879parameter attributes can have the same function type.
880
881Parameter attributes are simple keywords that follow the type specified.
882If multiple parameter attributes are needed, they are space separated.
883For example:
884
885.. code-block:: llvm
886
887 declare i32 @printf(i8* noalias nocapture, ...)
888 declare i32 @atoi(i8 zeroext)
889 declare signext i8 @returns_signed_char()
890
891Note that any attributes for the function result (``nounwind``,
892``readonly``) come immediately after the argument list.
893
894Currently, only the following parameter attributes are defined:
895
896``zeroext``
897 This indicates to the code generator that the parameter or return
898 value should be zero-extended to the extent required by the target's
899 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
900 the caller (for a parameter) or the callee (for a return value).
901``signext``
902 This indicates to the code generator that the parameter or return
903 value should be sign-extended to the extent required by the target's
904 ABI (which is usually 32-bits) by the caller (for a parameter) or
905 the callee (for a return value).
906``inreg``
907 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000908 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000909 a function call or return (usually, by putting it in a register as
910 opposed to memory, though some targets use it to distinguish between
911 two different kinds of registers). Use of this attribute is
912 target-specific.
913``byval``
914 This indicates that the pointer parameter should really be passed by
915 value to the function. The attribute implies that a hidden copy of
916 the pointee is made between the caller and the callee, so the callee
917 is unable to modify the value in the caller. This attribute is only
918 valid on LLVM pointer arguments. It is generally used to pass
919 structs and arrays by value, but is also valid on pointers to
920 scalars. The copy is considered to belong to the caller not the
921 callee (for example, ``readonly`` functions should not write to
922 ``byval`` parameters). This is not a valid attribute for return
923 values.
924
925 The byval attribute also supports specifying an alignment with the
926 align attribute. It indicates the alignment of the stack slot to
927 form and the known alignment of the pointer specified to the call
928 site. If the alignment is not specified, then the code generator
929 makes a target-specific assumption.
930
Reid Klecknera534a382013-12-19 02:14:12 +0000931.. _attr_inalloca:
932
933``inalloca``
934
Reid Kleckner60d3a832014-01-16 22:59:24 +0000935 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000936 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000937 be a pointer to stack memory produced by an ``alloca`` instruction.
938 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000939 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000940 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000941
Reid Kleckner436c42e2014-01-17 23:58:17 +0000942 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000943 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000944 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000945 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000946 ``inalloca`` attribute also disables LLVM's implicit lowering of
947 large aggregate return values, which means that frontend authors
948 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000949
Reid Kleckner60d3a832014-01-16 22:59:24 +0000950 When the call site is reached, the argument allocation must have
951 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000952 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000953 space after an argument allocation and before its call site, but it
954 must be cleared off with :ref:`llvm.stackrestore
955 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000956
957 See :doc:`InAlloca` for more information on how to use this
958 attribute.
959
Sean Silvab084af42012-12-07 10:36:55 +0000960``sret``
961 This indicates that the pointer parameter specifies the address of a
962 structure that is the return value of the function in the source
963 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000964 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000965 not to trap and to be properly aligned. This may only be applied to
966 the first parameter. This is not a valid attribute for return
967 values.
Sean Silva1703e702014-04-08 21:06:22 +0000968
Hal Finkelccc70902014-07-22 16:58:55 +0000969``align <n>``
970 This indicates that the pointer value may be assumed by the optimizer to
971 have the specified alignment.
972
973 Note that this attribute has additional semantics when combined with the
974 ``byval`` attribute.
975
Sean Silva1703e702014-04-08 21:06:22 +0000976.. _noalias:
977
Sean Silvab084af42012-12-07 10:36:55 +0000978``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000979 This indicates that objects accessed via pointer values
980 :ref:`based <pointeraliasing>` on the argument or return value are not also
981 accessed, during the execution of the function, via pointer values not
982 *based* on the argument or return value. The attribute on a return value
983 also has additional semantics described below. The caller shares the
984 responsibility with the callee for ensuring that these requirements are met.
985 For further details, please see the discussion of the NoAlias response in
986 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000987
988 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000989 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000990
991 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000992 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
993 attribute on return values are stronger than the semantics of the attribute
994 when used on function arguments. On function return values, the ``noalias``
995 attribute indicates that the function acts like a system memory allocation
996 function, returning a pointer to allocated storage disjoint from the
997 storage for any other object accessible to the caller.
998
Sean Silvab084af42012-12-07 10:36:55 +0000999``nocapture``
1000 This indicates that the callee does not make any copies of the
1001 pointer that outlive the callee itself. This is not a valid
1002 attribute for return values.
1003
1004.. _nest:
1005
1006``nest``
1007 This indicates that the pointer parameter can be excised using the
1008 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001009 attribute for return values and can only be applied to one parameter.
1010
1011``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001012 This indicates that the function always returns the argument as its return
1013 value. This is an optimization hint to the code generator when generating
1014 the caller, allowing tail call optimization and omission of register saves
1015 and restores in some cases; it is not checked or enforced when generating
1016 the callee. The parameter and the function return type must be valid
1017 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1018 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001019
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001020``nonnull``
1021 This indicates that the parameter or return pointer is not null. This
1022 attribute may only be applied to pointer typed parameters. This is not
1023 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001024 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001025 is non-null.
1026
Hal Finkelb0407ba2014-07-18 15:51:28 +00001027``dereferenceable(<n>)``
1028 This indicates that the parameter or return pointer is dereferenceable. This
1029 attribute may only be applied to pointer typed parameters. A pointer that
1030 is dereferenceable can be loaded from speculatively without a risk of
1031 trapping. The number of bytes known to be dereferenceable must be provided
1032 in parentheses. It is legal for the number of bytes to be less than the
1033 size of the pointee type. The ``nonnull`` attribute does not imply
1034 dereferenceability (consider a pointer to one element past the end of an
1035 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1036 ``addrspace(0)`` (which is the default address space).
1037
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038``dereferenceable_or_null(<n>)``
1039 This indicates that the parameter or return value isn't both
1040 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001041 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001042 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1043 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1044 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1045 and in other address spaces ``dereferenceable_or_null(<n>)``
1046 implies that a pointer is at least one of ``dereferenceable(<n>)``
1047 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001048 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001049 pointer typed parameters.
1050
Sean Silvab084af42012-12-07 10:36:55 +00001051.. _gc:
1052
Philip Reamesf80bbff2015-02-25 23:45:20 +00001053Garbage Collector Strategy Names
1054--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001055
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001057string:
1058
1059.. code-block:: llvm
1060
1061 define void @f() gc "name" { ... }
1062
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001063The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001064<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001065strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001066named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001067garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001068which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001069
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070.. _prefixdata:
1071
1072Prefix Data
1073-----------
1074
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001075Prefix data is data associated with a function which the code
1076generator will emit immediately before the function's entrypoint.
1077The purpose of this feature is to allow frontends to associate
1078language-specific runtime metadata with specific functions and make it
1079available through the function pointer while still allowing the
1080function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001081
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001082To access the data for a given function, a program may bitcast the
1083function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001084index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001085the prefix data. For instance, take the example of a function annotated
1086with a single ``i32``,
1087
1088.. code-block:: llvm
1089
1090 define void @f() prefix i32 123 { ... }
1091
1092The prefix data can be referenced as,
1093
1094.. code-block:: llvm
1095
David Blaikie16a97eb2015-03-04 22:02:58 +00001096 %0 = bitcast void* () @f to i32*
1097 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001098 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001099
1100Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001101of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001102beginning of the prefix data is aligned. This means that if the size
1103of the prefix data is not a multiple of the alignment size, the
1104function's entrypoint will not be aligned. If alignment of the
1105function's entrypoint is desired, padding must be added to the prefix
1106data.
1107
Sean Silvaa1190322015-08-06 22:56:48 +00001108A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001109to the ``available_externally`` linkage in that the data may be used by the
1110optimizers but will not be emitted in the object file.
1111
1112.. _prologuedata:
1113
1114Prologue Data
1115-------------
1116
1117The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1118be inserted prior to the function body. This can be used for enabling
1119function hot-patching and instrumentation.
1120
1121To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001122have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001123bytes which decode to a sequence of machine instructions, valid for the
1124module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001125the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001126the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001127definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001128makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001129
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001130A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001131which encodes the ``nop`` instruction:
1132
1133.. code-block:: llvm
1134
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001135 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001136
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001137Generally prologue data can be formed by encoding a relative branch instruction
1138which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001139x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1140
1141.. code-block:: llvm
1142
1143 %0 = type <{ i8, i8, i8* }>
1144
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001145 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001146
Sean Silvaa1190322015-08-06 22:56:48 +00001147A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001148to the ``available_externally`` linkage in that the data may be used by the
1149optimizers but will not be emitted in the object file.
1150
David Majnemer7fddecc2015-06-17 20:52:32 +00001151.. _personalityfn:
1152
1153Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001154--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001155
1156The ``personality`` attribute permits functions to specify what function
1157to use for exception handling.
1158
Bill Wendling63b88192013-02-06 06:52:58 +00001159.. _attrgrp:
1160
1161Attribute Groups
1162----------------
1163
1164Attribute groups are groups of attributes that are referenced by objects within
1165the IR. They are important for keeping ``.ll`` files readable, because a lot of
1166functions will use the same set of attributes. In the degenerative case of a
1167``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1168group will capture the important command line flags used to build that file.
1169
1170An attribute group is a module-level object. To use an attribute group, an
1171object references the attribute group's ID (e.g. ``#37``). An object may refer
1172to more than one attribute group. In that situation, the attributes from the
1173different groups are merged.
1174
1175Here is an example of attribute groups for a function that should always be
1176inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1177
1178.. code-block:: llvm
1179
1180 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001181 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001182
1183 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001184 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001185
1186 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1187 define void @f() #0 #1 { ... }
1188
Sean Silvab084af42012-12-07 10:36:55 +00001189.. _fnattrs:
1190
1191Function Attributes
1192-------------------
1193
1194Function attributes are set to communicate additional information about
1195a function. Function attributes are considered to be part of the
1196function, not of the function type, so functions with different function
1197attributes can have the same function type.
1198
1199Function attributes are simple keywords that follow the type specified.
1200If multiple attributes are needed, they are space separated. For
1201example:
1202
1203.. code-block:: llvm
1204
1205 define void @f() noinline { ... }
1206 define void @f() alwaysinline { ... }
1207 define void @f() alwaysinline optsize { ... }
1208 define void @f() optsize { ... }
1209
Sean Silvab084af42012-12-07 10:36:55 +00001210``alignstack(<n>)``
1211 This attribute indicates that, when emitting the prologue and
1212 epilogue, the backend should forcibly align the stack pointer.
1213 Specify the desired alignment, which must be a power of two, in
1214 parentheses.
1215``alwaysinline``
1216 This attribute indicates that the inliner should attempt to inline
1217 this function into callers whenever possible, ignoring any active
1218 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001219``builtin``
1220 This indicates that the callee function at a call site should be
1221 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001222 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001223 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001224 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001225``cold``
1226 This attribute indicates that this function is rarely called. When
1227 computing edge weights, basic blocks post-dominated by a cold
1228 function call are also considered to be cold; and, thus, given low
1229 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001230``convergent``
1231 This attribute indicates that the callee is dependent on a convergent
1232 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001233 Transformations that are execution model agnostic may not make the execution
1234 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001235``inlinehint``
1236 This attribute indicates that the source code contained a hint that
1237 inlining this function is desirable (such as the "inline" keyword in
1238 C/C++). It is just a hint; it imposes no requirements on the
1239 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001240``jumptable``
1241 This attribute indicates that the function should be added to a
1242 jump-instruction table at code-generation time, and that all address-taken
1243 references to this function should be replaced with a reference to the
1244 appropriate jump-instruction-table function pointer. Note that this creates
1245 a new pointer for the original function, which means that code that depends
1246 on function-pointer identity can break. So, any function annotated with
1247 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001248``minsize``
1249 This attribute suggests that optimization passes and code generator
1250 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001251 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001252 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001253``naked``
1254 This attribute disables prologue / epilogue emission for the
1255 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001256``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001257 This indicates that the callee function at a call site is not recognized as
1258 a built-in function. LLVM will retain the original call and not replace it
1259 with equivalent code based on the semantics of the built-in function, unless
1260 the call site uses the ``builtin`` attribute. This is valid at call sites
1261 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001262``noduplicate``
1263 This attribute indicates that calls to the function cannot be
1264 duplicated. A call to a ``noduplicate`` function may be moved
1265 within its parent function, but may not be duplicated within
1266 its parent function.
1267
1268 A function containing a ``noduplicate`` call may still
1269 be an inlining candidate, provided that the call is not
1270 duplicated by inlining. That implies that the function has
1271 internal linkage and only has one call site, so the original
1272 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001273``noimplicitfloat``
1274 This attributes disables implicit floating point instructions.
1275``noinline``
1276 This attribute indicates that the inliner should never inline this
1277 function in any situation. This attribute may not be used together
1278 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001279``nonlazybind``
1280 This attribute suppresses lazy symbol binding for the function. This
1281 may make calls to the function faster, at the cost of extra program
1282 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001283``noredzone``
1284 This attribute indicates that the code generator should not use a
1285 red zone, even if the target-specific ABI normally permits it.
1286``noreturn``
1287 This function attribute indicates that the function never returns
1288 normally. This produces undefined behavior at runtime if the
1289 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001290``norecurse``
1291 This function attribute indicates that the function does not call itself
1292 either directly or indirectly down any possible call path. This produces
1293 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001294``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001295 This function attribute indicates that the function never raises an
1296 exception. If the function does raise an exception, its runtime
1297 behavior is undefined. However, functions marked nounwind may still
1298 trap or generate asynchronous exceptions. Exception handling schemes
1299 that are recognized by LLVM to handle asynchronous exceptions, such
1300 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001301``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001302 This function attribute indicates that most optimization passes will skip
1303 this function, with the exception of interprocedural optimization passes.
1304 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001305 This attribute cannot be used together with the ``alwaysinline``
1306 attribute; this attribute is also incompatible
1307 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001308
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001309 This attribute requires the ``noinline`` attribute to be specified on
1310 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001311 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001312 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001313``optsize``
1314 This attribute suggests that optimization passes and code generator
1315 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001316 and otherwise do optimizations specifically to reduce code size as
1317 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001318``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001319 On a function, this attribute indicates that the function computes its
1320 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001321 without dereferencing any pointer arguments or otherwise accessing
1322 any mutable state (e.g. memory, control registers, etc) visible to
1323 caller functions. It does not write through any pointer arguments
1324 (including ``byval`` arguments) and never changes any state visible
1325 to callers. This means that it cannot unwind exceptions by calling
1326 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001327
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001328 On an argument, this attribute indicates that the function does not
1329 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001330 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001331``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001332 On a function, this attribute indicates that the function does not write
1333 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001334 modify any state (e.g. memory, control registers, etc) visible to
1335 caller functions. It may dereference pointer arguments and read
1336 state that may be set in the caller. A readonly function always
1337 returns the same value (or unwinds an exception identically) when
1338 called with the same set of arguments and global state. It cannot
1339 unwind an exception by calling the ``C++`` exception throwing
1340 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001341
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001342 On an argument, this attribute indicates that the function does not write
1343 through this pointer argument, even though it may write to the memory that
1344 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001345``argmemonly``
1346 This attribute indicates that the only memory accesses inside function are
1347 loads and stores from objects pointed to by its pointer-typed arguments,
1348 with arbitrary offsets. Or in other words, all memory operations in the
1349 function can refer to memory only using pointers based on its function
1350 arguments.
1351 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1352 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001353``returns_twice``
1354 This attribute indicates that this function can return twice. The C
1355 ``setjmp`` is an example of such a function. The compiler disables
1356 some optimizations (like tail calls) in the caller of these
1357 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001358``safestack``
1359 This attribute indicates that
1360 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1361 protection is enabled for this function.
1362
1363 If a function that has a ``safestack`` attribute is inlined into a
1364 function that doesn't have a ``safestack`` attribute or which has an
1365 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1366 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001367``sanitize_address``
1368 This attribute indicates that AddressSanitizer checks
1369 (dynamic address safety analysis) are enabled for this function.
1370``sanitize_memory``
1371 This attribute indicates that MemorySanitizer checks (dynamic detection
1372 of accesses to uninitialized memory) are enabled for this function.
1373``sanitize_thread``
1374 This attribute indicates that ThreadSanitizer checks
1375 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001376``ssp``
1377 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001378 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001379 placed on the stack before the local variables that's checked upon
1380 return from the function to see if it has been overwritten. A
1381 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001382 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001383
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001384 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1385 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1386 - Calls to alloca() with variable sizes or constant sizes greater than
1387 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001388
Josh Magee24c7f062014-02-01 01:36:16 +00001389 Variables that are identified as requiring a protector will be arranged
1390 on the stack such that they are adjacent to the stack protector guard.
1391
Sean Silvab084af42012-12-07 10:36:55 +00001392 If a function that has an ``ssp`` attribute is inlined into a
1393 function that doesn't have an ``ssp`` attribute, then the resulting
1394 function will have an ``ssp`` attribute.
1395``sspreq``
1396 This attribute indicates that the function should *always* emit a
1397 stack smashing protector. This overrides the ``ssp`` function
1398 attribute.
1399
Josh Magee24c7f062014-02-01 01:36:16 +00001400 Variables that are identified as requiring a protector will be arranged
1401 on the stack such that they are adjacent to the stack protector guard.
1402 The specific layout rules are:
1403
1404 #. Large arrays and structures containing large arrays
1405 (``>= ssp-buffer-size``) are closest to the stack protector.
1406 #. Small arrays and structures containing small arrays
1407 (``< ssp-buffer-size``) are 2nd closest to the protector.
1408 #. Variables that have had their address taken are 3rd closest to the
1409 protector.
1410
Sean Silvab084af42012-12-07 10:36:55 +00001411 If a function that has an ``sspreq`` attribute is inlined into a
1412 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001413 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1414 an ``sspreq`` attribute.
1415``sspstrong``
1416 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001417 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001418 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001419 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001420
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001421 - Arrays of any size and type
1422 - Aggregates containing an array of any size and type.
1423 - Calls to alloca().
1424 - Local variables that have had their address taken.
1425
Josh Magee24c7f062014-02-01 01:36:16 +00001426 Variables that are identified as requiring a protector will be arranged
1427 on the stack such that they are adjacent to the stack protector guard.
1428 The specific layout rules are:
1429
1430 #. Large arrays and structures containing large arrays
1431 (``>= ssp-buffer-size``) are closest to the stack protector.
1432 #. Small arrays and structures containing small arrays
1433 (``< ssp-buffer-size``) are 2nd closest to the protector.
1434 #. Variables that have had their address taken are 3rd closest to the
1435 protector.
1436
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001437 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001438
1439 If a function that has an ``sspstrong`` attribute is inlined into a
1440 function that doesn't have an ``sspstrong`` attribute, then the
1441 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001442``"thunk"``
1443 This attribute indicates that the function will delegate to some other
1444 function with a tail call. The prototype of a thunk should not be used for
1445 optimization purposes. The caller is expected to cast the thunk prototype to
1446 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001447``uwtable``
1448 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001449 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001450 show that no exceptions passes by it. This is normally the case for
1451 the ELF x86-64 abi, but it can be disabled for some compilation
1452 units.
Sean Silvab084af42012-12-07 10:36:55 +00001453
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001454
1455.. _opbundles:
1456
1457Operand Bundles
1458---------------
1459
1460Note: operand bundles are a work in progress, and they should be
1461considered experimental at this time.
1462
1463Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001464with certain LLVM instructions (currently only ``call`` s and
1465``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001466incorrect and will change program semantics.
1467
1468Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001469
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001470 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001471 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1472 bundle operand ::= SSA value
1473 tag ::= string constant
1474
1475Operand bundles are **not** part of a function's signature, and a
1476given function may be called from multiple places with different kinds
1477of operand bundles. This reflects the fact that the operand bundles
1478are conceptually a part of the ``call`` (or ``invoke``), not the
1479callee being dispatched to.
1480
1481Operand bundles are a generic mechanism intended to support
1482runtime-introspection-like functionality for managed languages. While
1483the exact semantics of an operand bundle depend on the bundle tag,
1484there are certain limitations to how much the presence of an operand
1485bundle can influence the semantics of a program. These restrictions
1486are described as the semantics of an "unknown" operand bundle. As
1487long as the behavior of an operand bundle is describable within these
1488restrictions, LLVM does not need to have special knowledge of the
1489operand bundle to not miscompile programs containing it.
1490
David Majnemer34cacb42015-10-22 01:46:38 +00001491- The bundle operands for an unknown operand bundle escape in unknown
1492 ways before control is transferred to the callee or invokee.
1493- Calls and invokes with operand bundles have unknown read / write
1494 effect on the heap on entry and exit (even if the call target is
Sanjoy Das98a341b2015-10-22 03:12:22 +00001495 ``readnone`` or ``readonly``), unless they're overriden with
1496 callsite specific attributes.
1497- An operand bundle at a call site cannot change the implementation
1498 of the called function. Inter-procedural optimizations work as
1499 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001500
Sanjoy Dascdafd842015-11-11 21:38:02 +00001501More specific types of operand bundles are described below.
1502
1503Deoptimization Operand Bundles
1504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1505
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001506Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001507operand bundle tag. These operand bundles represent an alternate
1508"safe" continuation for the call site they're attached to, and can be
1509used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001510specified call site. There can be at most one ``"deopt"`` operand
1511bundle attached to a call site. Exact details of deoptimization is
1512out of scope for the language reference, but it usually involves
1513rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001514
1515From the compiler's perspective, deoptimization operand bundles make
1516the call sites they're attached to at least ``readonly``. They read
1517through all of their pointer typed operands (even if they're not
1518otherwise escaped) and the entire visible heap. Deoptimization
1519operand bundles do not capture their operands except during
1520deoptimization, in which case control will not be returned to the
1521compiled frame.
1522
Sanjoy Das2d161452015-11-18 06:23:38 +00001523The inliner knows how to inline through calls that have deoptimization
1524operand bundles. Just like inlining through a normal call site
1525involves composing the normal and exceptional continuations, inlining
1526through a call site with a deoptimization operand bundle needs to
1527appropriately compose the "safe" deoptimization continuation. The
1528inliner does this by prepending the parent's deoptimization
1529continuation to every deoptimization continuation in the inlined body.
1530E.g. inlining ``@f`` into ``@g`` in the following example
1531
1532.. code-block:: llvm
1533
1534 define void @f() {
1535 call void @x() ;; no deopt state
1536 call void @y() [ "deopt"(i32 10) ]
1537 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1538 ret void
1539 }
1540
1541 define void @g() {
1542 call void @f() [ "deopt"(i32 20) ]
1543 ret void
1544 }
1545
1546will result in
1547
1548.. code-block:: llvm
1549
1550 define void @g() {
1551 call void @x() ;; still no deopt state
1552 call void @y() [ "deopt"(i32 20, i32 10) ]
1553 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1554 ret void
1555 }
1556
1557It is the frontend's responsibility to structure or encode the
1558deoptimization state in a way that syntactically prepending the
1559caller's deoptimization state to the callee's deoptimization state is
1560semantically equivalent to composing the caller's deoptimization
1561continuation after the callee's deoptimization continuation.
1562
Sean Silvab084af42012-12-07 10:36:55 +00001563.. _moduleasm:
1564
1565Module-Level Inline Assembly
1566----------------------------
1567
1568Modules may contain "module-level inline asm" blocks, which corresponds
1569to the GCC "file scope inline asm" blocks. These blocks are internally
1570concatenated by LLVM and treated as a single unit, but may be separated
1571in the ``.ll`` file if desired. The syntax is very simple:
1572
1573.. code-block:: llvm
1574
1575 module asm "inline asm code goes here"
1576 module asm "more can go here"
1577
1578The strings can contain any character by escaping non-printable
1579characters. The escape sequence used is simply "\\xx" where "xx" is the
1580two digit hex code for the number.
1581
James Y Knightbc832ed2015-07-08 18:08:36 +00001582Note that the assembly string *must* be parseable by LLVM's integrated assembler
1583(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001584
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001585.. _langref_datalayout:
1586
Sean Silvab084af42012-12-07 10:36:55 +00001587Data Layout
1588-----------
1589
1590A module may specify a target specific data layout string that specifies
1591how data is to be laid out in memory. The syntax for the data layout is
1592simply:
1593
1594.. code-block:: llvm
1595
1596 target datalayout = "layout specification"
1597
1598The *layout specification* consists of a list of specifications
1599separated by the minus sign character ('-'). Each specification starts
1600with a letter and may include other information after the letter to
1601define some aspect of the data layout. The specifications accepted are
1602as follows:
1603
1604``E``
1605 Specifies that the target lays out data in big-endian form. That is,
1606 the bits with the most significance have the lowest address
1607 location.
1608``e``
1609 Specifies that the target lays out data in little-endian form. That
1610 is, the bits with the least significance have the lowest address
1611 location.
1612``S<size>``
1613 Specifies the natural alignment of the stack in bits. Alignment
1614 promotion of stack variables is limited to the natural stack
1615 alignment to avoid dynamic stack realignment. The stack alignment
1616 must be a multiple of 8-bits. If omitted, the natural stack
1617 alignment defaults to "unspecified", which does not prevent any
1618 alignment promotions.
1619``p[n]:<size>:<abi>:<pref>``
1620 This specifies the *size* of a pointer and its ``<abi>`` and
1621 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001622 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001623 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001624 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001625``i<size>:<abi>:<pref>``
1626 This specifies the alignment for an integer type of a given bit
1627 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1628``v<size>:<abi>:<pref>``
1629 This specifies the alignment for a vector type of a given bit
1630 ``<size>``.
1631``f<size>:<abi>:<pref>``
1632 This specifies the alignment for a floating point type of a given bit
1633 ``<size>``. Only values of ``<size>`` that are supported by the target
1634 will work. 32 (float) and 64 (double) are supported on all targets; 80
1635 or 128 (different flavors of long double) are also supported on some
1636 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001637``a:<abi>:<pref>``
1638 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001639``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001640 If present, specifies that llvm names are mangled in the output. The
1641 options are
1642
1643 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1644 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1645 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1646 symbols get a ``_`` prefix.
1647 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1648 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001649 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1650 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001651``n<size1>:<size2>:<size3>...``
1652 This specifies a set of native integer widths for the target CPU in
1653 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1654 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1655 this set are considered to support most general arithmetic operations
1656 efficiently.
1657
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001658On every specification that takes a ``<abi>:<pref>``, specifying the
1659``<pref>`` alignment is optional. If omitted, the preceding ``:``
1660should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1661
Sean Silvab084af42012-12-07 10:36:55 +00001662When constructing the data layout for a given target, LLVM starts with a
1663default set of specifications which are then (possibly) overridden by
1664the specifications in the ``datalayout`` keyword. The default
1665specifications are given in this list:
1666
1667- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001668- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1669- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1670 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001671- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001672- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1673- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1674- ``i16:16:16`` - i16 is 16-bit aligned
1675- ``i32:32:32`` - i32 is 32-bit aligned
1676- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1677 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001678- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001679- ``f32:32:32`` - float is 32-bit aligned
1680- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001681- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001682- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1683- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001684- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001685
1686When LLVM is determining the alignment for a given type, it uses the
1687following rules:
1688
1689#. If the type sought is an exact match for one of the specifications,
1690 that specification is used.
1691#. If no match is found, and the type sought is an integer type, then
1692 the smallest integer type that is larger than the bitwidth of the
1693 sought type is used. If none of the specifications are larger than
1694 the bitwidth then the largest integer type is used. For example,
1695 given the default specifications above, the i7 type will use the
1696 alignment of i8 (next largest) while both i65 and i256 will use the
1697 alignment of i64 (largest specified).
1698#. If no match is found, and the type sought is a vector type, then the
1699 largest vector type that is smaller than the sought vector type will
1700 be used as a fall back. This happens because <128 x double> can be
1701 implemented in terms of 64 <2 x double>, for example.
1702
1703The function of the data layout string may not be what you expect.
1704Notably, this is not a specification from the frontend of what alignment
1705the code generator should use.
1706
1707Instead, if specified, the target data layout is required to match what
1708the ultimate *code generator* expects. This string is used by the
1709mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001710what the ultimate code generator uses. There is no way to generate IR
1711that does not embed this target-specific detail into the IR. If you
1712don't specify the string, the default specifications will be used to
1713generate a Data Layout and the optimization phases will operate
1714accordingly and introduce target specificity into the IR with respect to
1715these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001716
Bill Wendling5cc90842013-10-18 23:41:25 +00001717.. _langref_triple:
1718
1719Target Triple
1720-------------
1721
1722A module may specify a target triple string that describes the target
1723host. The syntax for the target triple is simply:
1724
1725.. code-block:: llvm
1726
1727 target triple = "x86_64-apple-macosx10.7.0"
1728
1729The *target triple* string consists of a series of identifiers delimited
1730by the minus sign character ('-'). The canonical forms are:
1731
1732::
1733
1734 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1735 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1736
1737This information is passed along to the backend so that it generates
1738code for the proper architecture. It's possible to override this on the
1739command line with the ``-mtriple`` command line option.
1740
Sean Silvab084af42012-12-07 10:36:55 +00001741.. _pointeraliasing:
1742
1743Pointer Aliasing Rules
1744----------------------
1745
1746Any memory access must be done through a pointer value associated with
1747an address range of the memory access, otherwise the behavior is
1748undefined. Pointer values are associated with address ranges according
1749to the following rules:
1750
1751- A pointer value is associated with the addresses associated with any
1752 value it is *based* on.
1753- An address of a global variable is associated with the address range
1754 of the variable's storage.
1755- The result value of an allocation instruction is associated with the
1756 address range of the allocated storage.
1757- A null pointer in the default address-space is associated with no
1758 address.
1759- An integer constant other than zero or a pointer value returned from
1760 a function not defined within LLVM may be associated with address
1761 ranges allocated through mechanisms other than those provided by
1762 LLVM. Such ranges shall not overlap with any ranges of addresses
1763 allocated by mechanisms provided by LLVM.
1764
1765A pointer value is *based* on another pointer value according to the
1766following rules:
1767
1768- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001769 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001770- The result value of a ``bitcast`` is *based* on the operand of the
1771 ``bitcast``.
1772- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1773 values that contribute (directly or indirectly) to the computation of
1774 the pointer's value.
1775- The "*based* on" relationship is transitive.
1776
1777Note that this definition of *"based"* is intentionally similar to the
1778definition of *"based"* in C99, though it is slightly weaker.
1779
1780LLVM IR does not associate types with memory. The result type of a
1781``load`` merely indicates the size and alignment of the memory from
1782which to load, as well as the interpretation of the value. The first
1783operand type of a ``store`` similarly only indicates the size and
1784alignment of the store.
1785
1786Consequently, type-based alias analysis, aka TBAA, aka
1787``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1788:ref:`Metadata <metadata>` may be used to encode additional information
1789which specialized optimization passes may use to implement type-based
1790alias analysis.
1791
1792.. _volatile:
1793
1794Volatile Memory Accesses
1795------------------------
1796
1797Certain memory accesses, such as :ref:`load <i_load>`'s,
1798:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1799marked ``volatile``. The optimizers must not change the number of
1800volatile operations or change their order of execution relative to other
1801volatile operations. The optimizers *may* change the order of volatile
1802operations relative to non-volatile operations. This is not Java's
1803"volatile" and has no cross-thread synchronization behavior.
1804
Andrew Trick89fc5a62013-01-30 21:19:35 +00001805IR-level volatile loads and stores cannot safely be optimized into
1806llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1807flagged volatile. Likewise, the backend should never split or merge
1808target-legal volatile load/store instructions.
1809
Andrew Trick7e6f9282013-01-31 00:49:39 +00001810.. admonition:: Rationale
1811
1812 Platforms may rely on volatile loads and stores of natively supported
1813 data width to be executed as single instruction. For example, in C
1814 this holds for an l-value of volatile primitive type with native
1815 hardware support, but not necessarily for aggregate types. The
1816 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001817 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001818 do not violate the frontend's contract with the language.
1819
Sean Silvab084af42012-12-07 10:36:55 +00001820.. _memmodel:
1821
1822Memory Model for Concurrent Operations
1823--------------------------------------
1824
1825The LLVM IR does not define any way to start parallel threads of
1826execution or to register signal handlers. Nonetheless, there are
1827platform-specific ways to create them, and we define LLVM IR's behavior
1828in their presence. This model is inspired by the C++0x memory model.
1829
1830For a more informal introduction to this model, see the :doc:`Atomics`.
1831
1832We define a *happens-before* partial order as the least partial order
1833that
1834
1835- Is a superset of single-thread program order, and
1836- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1837 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1838 techniques, like pthread locks, thread creation, thread joining,
1839 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1840 Constraints <ordering>`).
1841
1842Note that program order does not introduce *happens-before* edges
1843between a thread and signals executing inside that thread.
1844
1845Every (defined) read operation (load instructions, memcpy, atomic
1846loads/read-modify-writes, etc.) R reads a series of bytes written by
1847(defined) write operations (store instructions, atomic
1848stores/read-modify-writes, memcpy, etc.). For the purposes of this
1849section, initialized globals are considered to have a write of the
1850initializer which is atomic and happens before any other read or write
1851of the memory in question. For each byte of a read R, R\ :sub:`byte`
1852may see any write to the same byte, except:
1853
1854- If write\ :sub:`1` happens before write\ :sub:`2`, and
1855 write\ :sub:`2` happens before R\ :sub:`byte`, then
1856 R\ :sub:`byte` does not see write\ :sub:`1`.
1857- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1858 R\ :sub:`byte` does not see write\ :sub:`3`.
1859
1860Given that definition, R\ :sub:`byte` is defined as follows:
1861
1862- If R is volatile, the result is target-dependent. (Volatile is
1863 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001864 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001865 like normal memory. It does not generally provide cross-thread
1866 synchronization.)
1867- Otherwise, if there is no write to the same byte that happens before
1868 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1869- Otherwise, if R\ :sub:`byte` may see exactly one write,
1870 R\ :sub:`byte` returns the value written by that write.
1871- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1872 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1873 Memory Ordering Constraints <ordering>` section for additional
1874 constraints on how the choice is made.
1875- Otherwise R\ :sub:`byte` returns ``undef``.
1876
1877R returns the value composed of the series of bytes it read. This
1878implies that some bytes within the value may be ``undef`` **without**
1879the entire value being ``undef``. Note that this only defines the
1880semantics of the operation; it doesn't mean that targets will emit more
1881than one instruction to read the series of bytes.
1882
1883Note that in cases where none of the atomic intrinsics are used, this
1884model places only one restriction on IR transformations on top of what
1885is required for single-threaded execution: introducing a store to a byte
1886which might not otherwise be stored is not allowed in general.
1887(Specifically, in the case where another thread might write to and read
1888from an address, introducing a store can change a load that may see
1889exactly one write into a load that may see multiple writes.)
1890
1891.. _ordering:
1892
1893Atomic Memory Ordering Constraints
1894----------------------------------
1895
1896Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1897:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1898:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001899ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001900the same address they *synchronize with*. These semantics are borrowed
1901from Java and C++0x, but are somewhat more colloquial. If these
1902descriptions aren't precise enough, check those specs (see spec
1903references in the :doc:`atomics guide <Atomics>`).
1904:ref:`fence <i_fence>` instructions treat these orderings somewhat
1905differently since they don't take an address. See that instruction's
1906documentation for details.
1907
1908For a simpler introduction to the ordering constraints, see the
1909:doc:`Atomics`.
1910
1911``unordered``
1912 The set of values that can be read is governed by the happens-before
1913 partial order. A value cannot be read unless some operation wrote
1914 it. This is intended to provide a guarantee strong enough to model
1915 Java's non-volatile shared variables. This ordering cannot be
1916 specified for read-modify-write operations; it is not strong enough
1917 to make them atomic in any interesting way.
1918``monotonic``
1919 In addition to the guarantees of ``unordered``, there is a single
1920 total order for modifications by ``monotonic`` operations on each
1921 address. All modification orders must be compatible with the
1922 happens-before order. There is no guarantee that the modification
1923 orders can be combined to a global total order for the whole program
1924 (and this often will not be possible). The read in an atomic
1925 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1926 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1927 order immediately before the value it writes. If one atomic read
1928 happens before another atomic read of the same address, the later
1929 read must see the same value or a later value in the address's
1930 modification order. This disallows reordering of ``monotonic`` (or
1931 stronger) operations on the same address. If an address is written
1932 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1933 read that address repeatedly, the other threads must eventually see
1934 the write. This corresponds to the C++0x/C1x
1935 ``memory_order_relaxed``.
1936``acquire``
1937 In addition to the guarantees of ``monotonic``, a
1938 *synchronizes-with* edge may be formed with a ``release`` operation.
1939 This is intended to model C++'s ``memory_order_acquire``.
1940``release``
1941 In addition to the guarantees of ``monotonic``, if this operation
1942 writes a value which is subsequently read by an ``acquire``
1943 operation, it *synchronizes-with* that operation. (This isn't a
1944 complete description; see the C++0x definition of a release
1945 sequence.) This corresponds to the C++0x/C1x
1946 ``memory_order_release``.
1947``acq_rel`` (acquire+release)
1948 Acts as both an ``acquire`` and ``release`` operation on its
1949 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1950``seq_cst`` (sequentially consistent)
1951 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001952 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001953 writes), there is a global total order on all
1954 sequentially-consistent operations on all addresses, which is
1955 consistent with the *happens-before* partial order and with the
1956 modification orders of all the affected addresses. Each
1957 sequentially-consistent read sees the last preceding write to the
1958 same address in this global order. This corresponds to the C++0x/C1x
1959 ``memory_order_seq_cst`` and Java volatile.
1960
1961.. _singlethread:
1962
1963If an atomic operation is marked ``singlethread``, it only *synchronizes
1964with* or participates in modification and seq\_cst total orderings with
1965other operations running in the same thread (for example, in signal
1966handlers).
1967
1968.. _fastmath:
1969
1970Fast-Math Flags
1971---------------
1972
1973LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1974:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001975:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1976be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001977
1978``nnan``
1979 No NaNs - Allow optimizations to assume the arguments and result are not
1980 NaN. Such optimizations are required to retain defined behavior over
1981 NaNs, but the value of the result is undefined.
1982
1983``ninf``
1984 No Infs - Allow optimizations to assume the arguments and result are not
1985 +/-Inf. Such optimizations are required to retain defined behavior over
1986 +/-Inf, but the value of the result is undefined.
1987
1988``nsz``
1989 No Signed Zeros - Allow optimizations to treat the sign of a zero
1990 argument or result as insignificant.
1991
1992``arcp``
1993 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1994 argument rather than perform division.
1995
1996``fast``
1997 Fast - Allow algebraically equivalent transformations that may
1998 dramatically change results in floating point (e.g. reassociate). This
1999 flag implies all the others.
2000
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002001.. _uselistorder:
2002
2003Use-list Order Directives
2004-------------------------
2005
2006Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002007order to be recreated. ``<order-indexes>`` is a comma-separated list of
2008indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002009value's use-list is immediately sorted by these indexes.
2010
Sean Silvaa1190322015-08-06 22:56:48 +00002011Use-list directives may appear at function scope or global scope. They are not
2012instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002013function scope, they must appear after the terminator of the final basic block.
2014
2015If basic blocks have their address taken via ``blockaddress()`` expressions,
2016``uselistorder_bb`` can be used to reorder their use-lists from outside their
2017function's scope.
2018
2019:Syntax:
2020
2021::
2022
2023 uselistorder <ty> <value>, { <order-indexes> }
2024 uselistorder_bb @function, %block { <order-indexes> }
2025
2026:Examples:
2027
2028::
2029
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002030 define void @foo(i32 %arg1, i32 %arg2) {
2031 entry:
2032 ; ... instructions ...
2033 bb:
2034 ; ... instructions ...
2035
2036 ; At function scope.
2037 uselistorder i32 %arg1, { 1, 0, 2 }
2038 uselistorder label %bb, { 1, 0 }
2039 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002040
2041 ; At global scope.
2042 uselistorder i32* @global, { 1, 2, 0 }
2043 uselistorder i32 7, { 1, 0 }
2044 uselistorder i32 (i32) @bar, { 1, 0 }
2045 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2046
Sean Silvab084af42012-12-07 10:36:55 +00002047.. _typesystem:
2048
2049Type System
2050===========
2051
2052The LLVM type system is one of the most important features of the
2053intermediate representation. Being typed enables a number of
2054optimizations to be performed on the intermediate representation
2055directly, without having to do extra analyses on the side before the
2056transformation. A strong type system makes it easier to read the
2057generated code and enables novel analyses and transformations that are
2058not feasible to perform on normal three address code representations.
2059
Rafael Espindola08013342013-12-07 19:34:20 +00002060.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002061
Rafael Espindola08013342013-12-07 19:34:20 +00002062Void Type
2063---------
Sean Silvab084af42012-12-07 10:36:55 +00002064
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002065:Overview:
2066
Rafael Espindola08013342013-12-07 19:34:20 +00002067
2068The void type does not represent any value and has no size.
2069
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002070:Syntax:
2071
Rafael Espindola08013342013-12-07 19:34:20 +00002072
2073::
2074
2075 void
Sean Silvab084af42012-12-07 10:36:55 +00002076
2077
Rafael Espindola08013342013-12-07 19:34:20 +00002078.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002079
Rafael Espindola08013342013-12-07 19:34:20 +00002080Function Type
2081-------------
Sean Silvab084af42012-12-07 10:36:55 +00002082
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002083:Overview:
2084
Sean Silvab084af42012-12-07 10:36:55 +00002085
Rafael Espindola08013342013-12-07 19:34:20 +00002086The function type can be thought of as a function signature. It consists of a
2087return type and a list of formal parameter types. The return type of a function
2088type is a void type or first class type --- except for :ref:`label <t_label>`
2089and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002090
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002091:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002092
Rafael Espindola08013342013-12-07 19:34:20 +00002093::
Sean Silvab084af42012-12-07 10:36:55 +00002094
Rafael Espindola08013342013-12-07 19:34:20 +00002095 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002096
Rafael Espindola08013342013-12-07 19:34:20 +00002097...where '``<parameter list>``' is a comma-separated list of type
2098specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002099indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002100argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002101handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002102except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002103
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002104:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002105
Rafael Espindola08013342013-12-07 19:34:20 +00002106+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2107| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2108+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2109| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2110+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2111| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2112+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2113| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2114+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2115
2116.. _t_firstclass:
2117
2118First Class Types
2119-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002120
2121The :ref:`first class <t_firstclass>` types are perhaps the most important.
2122Values of these types are the only ones which can be produced by
2123instructions.
2124
Rafael Espindola08013342013-12-07 19:34:20 +00002125.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002126
Rafael Espindola08013342013-12-07 19:34:20 +00002127Single Value Types
2128^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002129
Rafael Espindola08013342013-12-07 19:34:20 +00002130These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002131
2132.. _t_integer:
2133
2134Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002135""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002136
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002137:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002138
2139The integer type is a very simple type that simply specifies an
2140arbitrary bit width for the integer type desired. Any bit width from 1
2141bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2142
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002143:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002144
2145::
2146
2147 iN
2148
2149The number of bits the integer will occupy is specified by the ``N``
2150value.
2151
2152Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002153*********
Sean Silvab084af42012-12-07 10:36:55 +00002154
2155+----------------+------------------------------------------------+
2156| ``i1`` | a single-bit integer. |
2157+----------------+------------------------------------------------+
2158| ``i32`` | a 32-bit integer. |
2159+----------------+------------------------------------------------+
2160| ``i1942652`` | a really big integer of over 1 million bits. |
2161+----------------+------------------------------------------------+
2162
2163.. _t_floating:
2164
2165Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002166""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002167
2168.. list-table::
2169 :header-rows: 1
2170
2171 * - Type
2172 - Description
2173
2174 * - ``half``
2175 - 16-bit floating point value
2176
2177 * - ``float``
2178 - 32-bit floating point value
2179
2180 * - ``double``
2181 - 64-bit floating point value
2182
2183 * - ``fp128``
2184 - 128-bit floating point value (112-bit mantissa)
2185
2186 * - ``x86_fp80``
2187 - 80-bit floating point value (X87)
2188
2189 * - ``ppc_fp128``
2190 - 128-bit floating point value (two 64-bits)
2191
Reid Kleckner9a16d082014-03-05 02:41:37 +00002192X86_mmx Type
2193""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002194
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002195:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002196
Reid Kleckner9a16d082014-03-05 02:41:37 +00002197The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002198machine. The operations allowed on it are quite limited: parameters and
2199return values, load and store, and bitcast. User-specified MMX
2200instructions are represented as intrinsic or asm calls with arguments
2201and/or results of this type. There are no arrays, vectors or constants
2202of this type.
2203
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002204:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002205
2206::
2207
Reid Kleckner9a16d082014-03-05 02:41:37 +00002208 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002209
Sean Silvab084af42012-12-07 10:36:55 +00002210
Rafael Espindola08013342013-12-07 19:34:20 +00002211.. _t_pointer:
2212
2213Pointer Type
2214""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002215
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002216:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002217
Rafael Espindola08013342013-12-07 19:34:20 +00002218The pointer type is used to specify memory locations. Pointers are
2219commonly used to reference objects in memory.
2220
2221Pointer types may have an optional address space attribute defining the
2222numbered address space where the pointed-to object resides. The default
2223address space is number zero. The semantics of non-zero address spaces
2224are target-specific.
2225
2226Note that LLVM does not permit pointers to void (``void*``) nor does it
2227permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002228
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002229:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002230
2231::
2232
Rafael Espindola08013342013-12-07 19:34:20 +00002233 <type> *
2234
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002235:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002236
2237+-------------------------+--------------------------------------------------------------------------------------------------------------+
2238| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2239+-------------------------+--------------------------------------------------------------------------------------------------------------+
2240| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2241+-------------------------+--------------------------------------------------------------------------------------------------------------+
2242| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2243+-------------------------+--------------------------------------------------------------------------------------------------------------+
2244
2245.. _t_vector:
2246
2247Vector Type
2248"""""""""""
2249
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002250:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002251
2252A vector type is a simple derived type that represents a vector of
2253elements. Vector types are used when multiple primitive data are
2254operated in parallel using a single instruction (SIMD). A vector type
2255requires a size (number of elements) and an underlying primitive data
2256type. Vector types are considered :ref:`first class <t_firstclass>`.
2257
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002258:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002259
2260::
2261
2262 < <# elements> x <elementtype> >
2263
2264The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002265elementtype may be any integer, floating point or pointer type. Vectors
2266of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002267
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002268:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002269
2270+-------------------+--------------------------------------------------+
2271| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2272+-------------------+--------------------------------------------------+
2273| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2274+-------------------+--------------------------------------------------+
2275| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2276+-------------------+--------------------------------------------------+
2277| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2278+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002279
2280.. _t_label:
2281
2282Label Type
2283^^^^^^^^^^
2284
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002285:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002286
2287The label type represents code labels.
2288
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002289:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002290
2291::
2292
2293 label
2294
David Majnemerb611e3f2015-08-14 05:09:07 +00002295.. _t_token:
2296
2297Token Type
2298^^^^^^^^^^
2299
2300:Overview:
2301
2302The token type is used when a value is associated with an instruction
2303but all uses of the value must not attempt to introspect or obscure it.
2304As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2305:ref:`select <i_select>` of type token.
2306
2307:Syntax:
2308
2309::
2310
2311 token
2312
2313
2314
Sean Silvab084af42012-12-07 10:36:55 +00002315.. _t_metadata:
2316
2317Metadata Type
2318^^^^^^^^^^^^^
2319
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002320:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002321
2322The metadata type represents embedded metadata. No derived types may be
2323created from metadata except for :ref:`function <t_function>` arguments.
2324
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002325:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002326
2327::
2328
2329 metadata
2330
Sean Silvab084af42012-12-07 10:36:55 +00002331.. _t_aggregate:
2332
2333Aggregate Types
2334^^^^^^^^^^^^^^^
2335
2336Aggregate Types are a subset of derived types that can contain multiple
2337member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2338aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2339aggregate types.
2340
2341.. _t_array:
2342
2343Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002344""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002345
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002346:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002347
2348The array type is a very simple derived type that arranges elements
2349sequentially in memory. The array type requires a size (number of
2350elements) and an underlying data type.
2351
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002352:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002353
2354::
2355
2356 [<# elements> x <elementtype>]
2357
2358The number of elements is a constant integer value; ``elementtype`` may
2359be any type with a size.
2360
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002361:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002362
2363+------------------+--------------------------------------+
2364| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2365+------------------+--------------------------------------+
2366| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2367+------------------+--------------------------------------+
2368| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2369+------------------+--------------------------------------+
2370
2371Here are some examples of multidimensional arrays:
2372
2373+-----------------------------+----------------------------------------------------------+
2374| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2375+-----------------------------+----------------------------------------------------------+
2376| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2377+-----------------------------+----------------------------------------------------------+
2378| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2379+-----------------------------+----------------------------------------------------------+
2380
2381There is no restriction on indexing beyond the end of the array implied
2382by a static type (though there are restrictions on indexing beyond the
2383bounds of an allocated object in some cases). This means that
2384single-dimension 'variable sized array' addressing can be implemented in
2385LLVM with a zero length array type. An implementation of 'pascal style
2386arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2387example.
2388
Sean Silvab084af42012-12-07 10:36:55 +00002389.. _t_struct:
2390
2391Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002392""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002393
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002394:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002395
2396The structure type is used to represent a collection of data members
2397together in memory. The elements of a structure may be any type that has
2398a size.
2399
2400Structures in memory are accessed using '``load``' and '``store``' by
2401getting a pointer to a field with the '``getelementptr``' instruction.
2402Structures in registers are accessed using the '``extractvalue``' and
2403'``insertvalue``' instructions.
2404
2405Structures may optionally be "packed" structures, which indicate that
2406the alignment of the struct is one byte, and that there is no padding
2407between the elements. In non-packed structs, padding between field types
2408is inserted as defined by the DataLayout string in the module, which is
2409required to match what the underlying code generator expects.
2410
2411Structures can either be "literal" or "identified". A literal structure
2412is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2413identified types are always defined at the top level with a name.
2414Literal types are uniqued by their contents and can never be recursive
2415or opaque since there is no way to write one. Identified types can be
2416recursive, can be opaqued, and are never uniqued.
2417
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002418:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002419
2420::
2421
2422 %T1 = type { <type list> } ; Identified normal struct type
2423 %T2 = type <{ <type list> }> ; Identified packed struct type
2424
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002425:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002426
2427+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2428| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2429+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002430| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002431+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2432| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2433+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2434
2435.. _t_opaque:
2436
2437Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002438""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002439
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002440:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002441
2442Opaque structure types are used to represent named structure types that
2443do not have a body specified. This corresponds (for example) to the C
2444notion of a forward declared structure.
2445
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002446:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002447
2448::
2449
2450 %X = type opaque
2451 %52 = type opaque
2452
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002453:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002454
2455+--------------+-------------------+
2456| ``opaque`` | An opaque type. |
2457+--------------+-------------------+
2458
Sean Silva1703e702014-04-08 21:06:22 +00002459.. _constants:
2460
Sean Silvab084af42012-12-07 10:36:55 +00002461Constants
2462=========
2463
2464LLVM has several different basic types of constants. This section
2465describes them all and their syntax.
2466
2467Simple Constants
2468----------------
2469
2470**Boolean constants**
2471 The two strings '``true``' and '``false``' are both valid constants
2472 of the ``i1`` type.
2473**Integer constants**
2474 Standard integers (such as '4') are constants of the
2475 :ref:`integer <t_integer>` type. Negative numbers may be used with
2476 integer types.
2477**Floating point constants**
2478 Floating point constants use standard decimal notation (e.g.
2479 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2480 hexadecimal notation (see below). The assembler requires the exact
2481 decimal value of a floating-point constant. For example, the
2482 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2483 decimal in binary. Floating point constants must have a :ref:`floating
2484 point <t_floating>` type.
2485**Null pointer constants**
2486 The identifier '``null``' is recognized as a null pointer constant
2487 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002488**Token constants**
2489 The identifier '``none``' is recognized as an empty token constant
2490 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002491
2492The one non-intuitive notation for constants is the hexadecimal form of
2493floating point constants. For example, the form
2494'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2495than) '``double 4.5e+15``'. The only time hexadecimal floating point
2496constants are required (and the only time that they are generated by the
2497disassembler) is when a floating point constant must be emitted but it
2498cannot be represented as a decimal floating point number in a reasonable
2499number of digits. For example, NaN's, infinities, and other special
2500values are represented in their IEEE hexadecimal format so that assembly
2501and disassembly do not cause any bits to change in the constants.
2502
2503When using the hexadecimal form, constants of types half, float, and
2504double are represented using the 16-digit form shown above (which
2505matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002506must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002507precision, respectively. Hexadecimal format is always used for long
2508double, and there are three forms of long double. The 80-bit format used
2509by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2510128-bit format used by PowerPC (two adjacent doubles) is represented by
2511``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002512represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2513will only work if they match the long double format on your target.
2514The IEEE 16-bit format (half precision) is represented by ``0xH``
2515followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2516(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002517
Reid Kleckner9a16d082014-03-05 02:41:37 +00002518There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002519
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002520.. _complexconstants:
2521
Sean Silvab084af42012-12-07 10:36:55 +00002522Complex Constants
2523-----------------
2524
2525Complex constants are a (potentially recursive) combination of simple
2526constants and smaller complex constants.
2527
2528**Structure constants**
2529 Structure constants are represented with notation similar to
2530 structure type definitions (a comma separated list of elements,
2531 surrounded by braces (``{}``)). For example:
2532 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2533 "``@G = external global i32``". Structure constants must have
2534 :ref:`structure type <t_struct>`, and the number and types of elements
2535 must match those specified by the type.
2536**Array constants**
2537 Array constants are represented with notation similar to array type
2538 definitions (a comma separated list of elements, surrounded by
2539 square brackets (``[]``)). For example:
2540 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2541 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002542 match those specified by the type. As a special case, character array
2543 constants may also be represented as a double-quoted string using the ``c``
2544 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002545**Vector constants**
2546 Vector constants are represented with notation similar to vector
2547 type definitions (a comma separated list of elements, surrounded by
2548 less-than/greater-than's (``<>``)). For example:
2549 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2550 must have :ref:`vector type <t_vector>`, and the number and types of
2551 elements must match those specified by the type.
2552**Zero initialization**
2553 The string '``zeroinitializer``' can be used to zero initialize a
2554 value to zero of *any* type, including scalar and
2555 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2556 having to print large zero initializers (e.g. for large arrays) and
2557 is always exactly equivalent to using explicit zero initializers.
2558**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002559 A metadata node is a constant tuple without types. For example:
2560 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002561 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2562 Unlike other typed constants that are meant to be interpreted as part of
2563 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002564 information such as debug info.
2565
2566Global Variable and Function Addresses
2567--------------------------------------
2568
2569The addresses of :ref:`global variables <globalvars>` and
2570:ref:`functions <functionstructure>` are always implicitly valid
2571(link-time) constants. These constants are explicitly referenced when
2572the :ref:`identifier for the global <identifiers>` is used and always have
2573:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2574file:
2575
2576.. code-block:: llvm
2577
2578 @X = global i32 17
2579 @Y = global i32 42
2580 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2581
2582.. _undefvalues:
2583
2584Undefined Values
2585----------------
2586
2587The string '``undef``' can be used anywhere a constant is expected, and
2588indicates that the user of the value may receive an unspecified
2589bit-pattern. Undefined values may be of any type (other than '``label``'
2590or '``void``') and be used anywhere a constant is permitted.
2591
2592Undefined values are useful because they indicate to the compiler that
2593the program is well defined no matter what value is used. This gives the
2594compiler more freedom to optimize. Here are some examples of
2595(potentially surprising) transformations that are valid (in pseudo IR):
2596
2597.. code-block:: llvm
2598
2599 %A = add %X, undef
2600 %B = sub %X, undef
2601 %C = xor %X, undef
2602 Safe:
2603 %A = undef
2604 %B = undef
2605 %C = undef
2606
2607This is safe because all of the output bits are affected by the undef
2608bits. Any output bit can have a zero or one depending on the input bits.
2609
2610.. code-block:: llvm
2611
2612 %A = or %X, undef
2613 %B = and %X, undef
2614 Safe:
2615 %A = -1
2616 %B = 0
2617 Unsafe:
2618 %A = undef
2619 %B = undef
2620
2621These logical operations have bits that are not always affected by the
2622input. For example, if ``%X`` has a zero bit, then the output of the
2623'``and``' operation will always be a zero for that bit, no matter what
2624the corresponding bit from the '``undef``' is. As such, it is unsafe to
2625optimize or assume that the result of the '``and``' is '``undef``'.
2626However, it is safe to assume that all bits of the '``undef``' could be
26270, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2628all the bits of the '``undef``' operand to the '``or``' could be set,
2629allowing the '``or``' to be folded to -1.
2630
2631.. code-block:: llvm
2632
2633 %A = select undef, %X, %Y
2634 %B = select undef, 42, %Y
2635 %C = select %X, %Y, undef
2636 Safe:
2637 %A = %X (or %Y)
2638 %B = 42 (or %Y)
2639 %C = %Y
2640 Unsafe:
2641 %A = undef
2642 %B = undef
2643 %C = undef
2644
2645This set of examples shows that undefined '``select``' (and conditional
2646branch) conditions can go *either way*, but they have to come from one
2647of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2648both known to have a clear low bit, then ``%A`` would have to have a
2649cleared low bit. However, in the ``%C`` example, the optimizer is
2650allowed to assume that the '``undef``' operand could be the same as
2651``%Y``, allowing the whole '``select``' to be eliminated.
2652
2653.. code-block:: llvm
2654
2655 %A = xor undef, undef
2656
2657 %B = undef
2658 %C = xor %B, %B
2659
2660 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002661 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002662 %F = icmp gte %D, 4
2663
2664 Safe:
2665 %A = undef
2666 %B = undef
2667 %C = undef
2668 %D = undef
2669 %E = undef
2670 %F = undef
2671
2672This example points out that two '``undef``' operands are not
2673necessarily the same. This can be surprising to people (and also matches
2674C semantics) where they assume that "``X^X``" is always zero, even if
2675``X`` is undefined. This isn't true for a number of reasons, but the
2676short answer is that an '``undef``' "variable" can arbitrarily change
2677its value over its "live range". This is true because the variable
2678doesn't actually *have a live range*. Instead, the value is logically
2679read from arbitrary registers that happen to be around when needed, so
2680the value is not necessarily consistent over time. In fact, ``%A`` and
2681``%C`` need to have the same semantics or the core LLVM "replace all
2682uses with" concept would not hold.
2683
2684.. code-block:: llvm
2685
2686 %A = fdiv undef, %X
2687 %B = fdiv %X, undef
2688 Safe:
2689 %A = undef
2690 b: unreachable
2691
2692These examples show the crucial difference between an *undefined value*
2693and *undefined behavior*. An undefined value (like '``undef``') is
2694allowed to have an arbitrary bit-pattern. This means that the ``%A``
2695operation can be constant folded to '``undef``', because the '``undef``'
2696could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2697However, in the second example, we can make a more aggressive
2698assumption: because the ``undef`` is allowed to be an arbitrary value,
2699we are allowed to assume that it could be zero. Since a divide by zero
2700has *undefined behavior*, we are allowed to assume that the operation
2701does not execute at all. This allows us to delete the divide and all
2702code after it. Because the undefined operation "can't happen", the
2703optimizer can assume that it occurs in dead code.
2704
2705.. code-block:: llvm
2706
2707 a: store undef -> %X
2708 b: store %X -> undef
2709 Safe:
2710 a: <deleted>
2711 b: unreachable
2712
2713These examples reiterate the ``fdiv`` example: a store *of* an undefined
2714value can be assumed to not have any effect; we can assume that the
2715value is overwritten with bits that happen to match what was already
2716there. However, a store *to* an undefined location could clobber
2717arbitrary memory, therefore, it has undefined behavior.
2718
2719.. _poisonvalues:
2720
2721Poison Values
2722-------------
2723
2724Poison values are similar to :ref:`undef values <undefvalues>`, however
2725they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002726that cannot evoke side effects has nevertheless detected a condition
2727that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002728
2729There is currently no way of representing a poison value in the IR; they
2730only exist when produced by operations such as :ref:`add <i_add>` with
2731the ``nsw`` flag.
2732
2733Poison value behavior is defined in terms of value *dependence*:
2734
2735- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2736- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2737 their dynamic predecessor basic block.
2738- Function arguments depend on the corresponding actual argument values
2739 in the dynamic callers of their functions.
2740- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2741 instructions that dynamically transfer control back to them.
2742- :ref:`Invoke <i_invoke>` instructions depend on the
2743 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2744 call instructions that dynamically transfer control back to them.
2745- Non-volatile loads and stores depend on the most recent stores to all
2746 of the referenced memory addresses, following the order in the IR
2747 (including loads and stores implied by intrinsics such as
2748 :ref:`@llvm.memcpy <int_memcpy>`.)
2749- An instruction with externally visible side effects depends on the
2750 most recent preceding instruction with externally visible side
2751 effects, following the order in the IR. (This includes :ref:`volatile
2752 operations <volatile>`.)
2753- An instruction *control-depends* on a :ref:`terminator
2754 instruction <terminators>` if the terminator instruction has
2755 multiple successors and the instruction is always executed when
2756 control transfers to one of the successors, and may not be executed
2757 when control is transferred to another.
2758- Additionally, an instruction also *control-depends* on a terminator
2759 instruction if the set of instructions it otherwise depends on would
2760 be different if the terminator had transferred control to a different
2761 successor.
2762- Dependence is transitive.
2763
Richard Smith32dbdf62014-07-31 04:25:36 +00002764Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2765with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002766on a poison value has undefined behavior.
2767
2768Here are some examples:
2769
2770.. code-block:: llvm
2771
2772 entry:
2773 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2774 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002775 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002776 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2777
2778 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002779 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002780
2781 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2782
2783 %narrowaddr = bitcast i32* @g to i16*
2784 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002785 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2786 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002787
2788 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2789 br i1 %cmp, label %true, label %end ; Branch to either destination.
2790
2791 true:
2792 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2793 ; it has undefined behavior.
2794 br label %end
2795
2796 end:
2797 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2798 ; Both edges into this PHI are
2799 ; control-dependent on %cmp, so this
2800 ; always results in a poison value.
2801
2802 store volatile i32 0, i32* @g ; This would depend on the store in %true
2803 ; if %cmp is true, or the store in %entry
2804 ; otherwise, so this is undefined behavior.
2805
2806 br i1 %cmp, label %second_true, label %second_end
2807 ; The same branch again, but this time the
2808 ; true block doesn't have side effects.
2809
2810 second_true:
2811 ; No side effects!
2812 ret void
2813
2814 second_end:
2815 store volatile i32 0, i32* @g ; This time, the instruction always depends
2816 ; on the store in %end. Also, it is
2817 ; control-equivalent to %end, so this is
2818 ; well-defined (ignoring earlier undefined
2819 ; behavior in this example).
2820
2821.. _blockaddress:
2822
2823Addresses of Basic Blocks
2824-------------------------
2825
2826``blockaddress(@function, %block)``
2827
2828The '``blockaddress``' constant computes the address of the specified
2829basic block in the specified function, and always has an ``i8*`` type.
2830Taking the address of the entry block is illegal.
2831
2832This value only has defined behavior when used as an operand to the
2833':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2834against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002835undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002836no label is equal to the null pointer. This may be passed around as an
2837opaque pointer sized value as long as the bits are not inspected. This
2838allows ``ptrtoint`` and arithmetic to be performed on these values so
2839long as the original value is reconstituted before the ``indirectbr``
2840instruction.
2841
2842Finally, some targets may provide defined semantics when using the value
2843as the operand to an inline assembly, but that is target specific.
2844
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002845.. _constantexprs:
2846
Sean Silvab084af42012-12-07 10:36:55 +00002847Constant Expressions
2848--------------------
2849
2850Constant expressions are used to allow expressions involving other
2851constants to be used as constants. Constant expressions may be of any
2852:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2853that does not have side effects (e.g. load and call are not supported).
2854The following is the syntax for constant expressions:
2855
2856``trunc (CST to TYPE)``
2857 Truncate a constant to another type. The bit size of CST must be
2858 larger than the bit size of TYPE. Both types must be integers.
2859``zext (CST to TYPE)``
2860 Zero extend a constant to another type. The bit size of CST must be
2861 smaller than the bit size of TYPE. Both types must be integers.
2862``sext (CST to TYPE)``
2863 Sign extend a constant to another type. The bit size of CST must be
2864 smaller than the bit size of TYPE. Both types must be integers.
2865``fptrunc (CST to TYPE)``
2866 Truncate a floating point constant to another floating point type.
2867 The size of CST must be larger than the size of TYPE. Both types
2868 must be floating point.
2869``fpext (CST to TYPE)``
2870 Floating point extend a constant to another type. The size of CST
2871 must be smaller or equal to the size of TYPE. Both types must be
2872 floating point.
2873``fptoui (CST to TYPE)``
2874 Convert a floating point constant to the corresponding unsigned
2875 integer constant. TYPE must be a scalar or vector integer type. CST
2876 must be of scalar or vector floating point type. Both CST and TYPE
2877 must be scalars, or vectors of the same number of elements. If the
2878 value won't fit in the integer type, the results are undefined.
2879``fptosi (CST to TYPE)``
2880 Convert a floating point constant to the corresponding signed
2881 integer constant. TYPE must be a scalar or vector integer type. CST
2882 must be of scalar or vector floating point type. Both CST and TYPE
2883 must be scalars, or vectors of the same number of elements. If the
2884 value won't fit in the integer type, the results are undefined.
2885``uitofp (CST to TYPE)``
2886 Convert an unsigned integer constant to the corresponding floating
2887 point constant. TYPE must be a scalar or vector floating point type.
2888 CST must be of scalar or vector integer type. Both CST and TYPE must
2889 be scalars, or vectors of the same number of elements. If the value
2890 won't fit in the floating point type, the results are undefined.
2891``sitofp (CST to TYPE)``
2892 Convert a signed integer constant to the corresponding floating
2893 point constant. TYPE must be a scalar or vector floating point type.
2894 CST must be of scalar or vector integer type. Both CST and TYPE must
2895 be scalars, or vectors of the same number of elements. If the value
2896 won't fit in the floating point type, the results are undefined.
2897``ptrtoint (CST to TYPE)``
2898 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002899 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002900 pointer type. The ``CST`` value is zero extended, truncated, or
2901 unchanged to make it fit in ``TYPE``.
2902``inttoptr (CST to TYPE)``
2903 Convert an integer constant to a pointer constant. TYPE must be a
2904 pointer type. CST must be of integer type. The CST value is zero
2905 extended, truncated, or unchanged to make it fit in a pointer size.
2906 This one is *really* dangerous!
2907``bitcast (CST to TYPE)``
2908 Convert a constant, CST, to another TYPE. The constraints of the
2909 operands are the same as those for the :ref:`bitcast
2910 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002911``addrspacecast (CST to TYPE)``
2912 Convert a constant pointer or constant vector of pointer, CST, to another
2913 TYPE in a different address space. The constraints of the operands are the
2914 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002915``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002916 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2917 constants. As with the :ref:`getelementptr <i_getelementptr>`
2918 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002919 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002920``select (COND, VAL1, VAL2)``
2921 Perform the :ref:`select operation <i_select>` on constants.
2922``icmp COND (VAL1, VAL2)``
2923 Performs the :ref:`icmp operation <i_icmp>` on constants.
2924``fcmp COND (VAL1, VAL2)``
2925 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2926``extractelement (VAL, IDX)``
2927 Perform the :ref:`extractelement operation <i_extractelement>` on
2928 constants.
2929``insertelement (VAL, ELT, IDX)``
2930 Perform the :ref:`insertelement operation <i_insertelement>` on
2931 constants.
2932``shufflevector (VEC1, VEC2, IDXMASK)``
2933 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2934 constants.
2935``extractvalue (VAL, IDX0, IDX1, ...)``
2936 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2937 constants. The index list is interpreted in a similar manner as
2938 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2939 least one index value must be specified.
2940``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2941 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2942 The index list is interpreted in a similar manner as indices in a
2943 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2944 value must be specified.
2945``OPCODE (LHS, RHS)``
2946 Perform the specified operation of the LHS and RHS constants. OPCODE
2947 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2948 binary <bitwiseops>` operations. The constraints on operands are
2949 the same as those for the corresponding instruction (e.g. no bitwise
2950 operations on floating point values are allowed).
2951
2952Other Values
2953============
2954
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002955.. _inlineasmexprs:
2956
Sean Silvab084af42012-12-07 10:36:55 +00002957Inline Assembler Expressions
2958----------------------------
2959
2960LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002961Inline Assembly <moduleasm>`) through the use of a special value. This value
2962represents the inline assembler as a template string (containing the
2963instructions to emit), a list of operand constraints (stored as a string), a
2964flag that indicates whether or not the inline asm expression has side effects,
2965and a flag indicating whether the function containing the asm needs to align its
2966stack conservatively.
2967
2968The template string supports argument substitution of the operands using "``$``"
2969followed by a number, to indicate substitution of the given register/memory
2970location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2971be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2972operand (See :ref:`inline-asm-modifiers`).
2973
2974A literal "``$``" may be included by using "``$$``" in the template. To include
2975other special characters into the output, the usual "``\XX``" escapes may be
2976used, just as in other strings. Note that after template substitution, the
2977resulting assembly string is parsed by LLVM's integrated assembler unless it is
2978disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2979syntax known to LLVM.
2980
2981LLVM's support for inline asm is modeled closely on the requirements of Clang's
2982GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2983modifier codes listed here are similar or identical to those in GCC's inline asm
2984support. However, to be clear, the syntax of the template and constraint strings
2985described here is *not* the same as the syntax accepted by GCC and Clang, and,
2986while most constraint letters are passed through as-is by Clang, some get
2987translated to other codes when converting from the C source to the LLVM
2988assembly.
2989
2990An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002991
2992.. code-block:: llvm
2993
2994 i32 (i32) asm "bswap $0", "=r,r"
2995
2996Inline assembler expressions may **only** be used as the callee operand
2997of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2998Thus, typically we have:
2999
3000.. code-block:: llvm
3001
3002 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3003
3004Inline asms with side effects not visible in the constraint list must be
3005marked as having side effects. This is done through the use of the
3006'``sideeffect``' keyword, like so:
3007
3008.. code-block:: llvm
3009
3010 call void asm sideeffect "eieio", ""()
3011
3012In some cases inline asms will contain code that will not work unless
3013the stack is aligned in some way, such as calls or SSE instructions on
3014x86, yet will not contain code that does that alignment within the asm.
3015The compiler should make conservative assumptions about what the asm
3016might contain and should generate its usual stack alignment code in the
3017prologue if the '``alignstack``' keyword is present:
3018
3019.. code-block:: llvm
3020
3021 call void asm alignstack "eieio", ""()
3022
3023Inline asms also support using non-standard assembly dialects. The
3024assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3025the inline asm is using the Intel dialect. Currently, ATT and Intel are
3026the only supported dialects. An example is:
3027
3028.. code-block:: llvm
3029
3030 call void asm inteldialect "eieio", ""()
3031
3032If multiple keywords appear the '``sideeffect``' keyword must come
3033first, the '``alignstack``' keyword second and the '``inteldialect``'
3034keyword last.
3035
James Y Knightbc832ed2015-07-08 18:08:36 +00003036Inline Asm Constraint String
3037^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3038
3039The constraint list is a comma-separated string, each element containing one or
3040more constraint codes.
3041
3042For each element in the constraint list an appropriate register or memory
3043operand will be chosen, and it will be made available to assembly template
3044string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3045second, etc.
3046
3047There are three different types of constraints, which are distinguished by a
3048prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3049constraints must always be given in that order: outputs first, then inputs, then
3050clobbers. They cannot be intermingled.
3051
3052There are also three different categories of constraint codes:
3053
3054- Register constraint. This is either a register class, or a fixed physical
3055 register. This kind of constraint will allocate a register, and if necessary,
3056 bitcast the argument or result to the appropriate type.
3057- Memory constraint. This kind of constraint is for use with an instruction
3058 taking a memory operand. Different constraints allow for different addressing
3059 modes used by the target.
3060- Immediate value constraint. This kind of constraint is for an integer or other
3061 immediate value which can be rendered directly into an instruction. The
3062 various target-specific constraints allow the selection of a value in the
3063 proper range for the instruction you wish to use it with.
3064
3065Output constraints
3066""""""""""""""""""
3067
3068Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3069indicates that the assembly will write to this operand, and the operand will
3070then be made available as a return value of the ``asm`` expression. Output
3071constraints do not consume an argument from the call instruction. (Except, see
3072below about indirect outputs).
3073
3074Normally, it is expected that no output locations are written to by the assembly
3075expression until *all* of the inputs have been read. As such, LLVM may assign
3076the same register to an output and an input. If this is not safe (e.g. if the
3077assembly contains two instructions, where the first writes to one output, and
3078the second reads an input and writes to a second output), then the "``&``"
3079modifier must be used (e.g. "``=&r``") to specify that the output is an
3080"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3081will not use the same register for any inputs (other than an input tied to this
3082output).
3083
3084Input constraints
3085"""""""""""""""""
3086
3087Input constraints do not have a prefix -- just the constraint codes. Each input
3088constraint will consume one argument from the call instruction. It is not
3089permitted for the asm to write to any input register or memory location (unless
3090that input is tied to an output). Note also that multiple inputs may all be
3091assigned to the same register, if LLVM can determine that they necessarily all
3092contain the same value.
3093
3094Instead of providing a Constraint Code, input constraints may also "tie"
3095themselves to an output constraint, by providing an integer as the constraint
3096string. Tied inputs still consume an argument from the call instruction, and
3097take up a position in the asm template numbering as is usual -- they will simply
3098be constrained to always use the same register as the output they've been tied
3099to. For example, a constraint string of "``=r,0``" says to assign a register for
3100output, and use that register as an input as well (it being the 0'th
3101constraint).
3102
3103It is permitted to tie an input to an "early-clobber" output. In that case, no
3104*other* input may share the same register as the input tied to the early-clobber
3105(even when the other input has the same value).
3106
3107You may only tie an input to an output which has a register constraint, not a
3108memory constraint. Only a single input may be tied to an output.
3109
3110There is also an "interesting" feature which deserves a bit of explanation: if a
3111register class constraint allocates a register which is too small for the value
3112type operand provided as input, the input value will be split into multiple
3113registers, and all of them passed to the inline asm.
3114
3115However, this feature is often not as useful as you might think.
3116
3117Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3118architectures that have instructions which operate on multiple consecutive
3119instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3120SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3121hardware then loads into both the named register, and the next register. This
3122feature of inline asm would not be useful to support that.)
3123
3124A few of the targets provide a template string modifier allowing explicit access
3125to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3126``D``). On such an architecture, you can actually access the second allocated
3127register (yet, still, not any subsequent ones). But, in that case, you're still
3128probably better off simply splitting the value into two separate operands, for
3129clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3130despite existing only for use with this feature, is not really a good idea to
3131use)
3132
3133Indirect inputs and outputs
3134"""""""""""""""""""""""""""
3135
3136Indirect output or input constraints can be specified by the "``*``" modifier
3137(which goes after the "``=``" in case of an output). This indicates that the asm
3138will write to or read from the contents of an *address* provided as an input
3139argument. (Note that in this way, indirect outputs act more like an *input* than
3140an output: just like an input, they consume an argument of the call expression,
3141rather than producing a return value. An indirect output constraint is an
3142"output" only in that the asm is expected to write to the contents of the input
3143memory location, instead of just read from it).
3144
3145This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3146address of a variable as a value.
3147
3148It is also possible to use an indirect *register* constraint, but only on output
3149(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3150value normally, and then, separately emit a store to the address provided as
3151input, after the provided inline asm. (It's not clear what value this
3152functionality provides, compared to writing the store explicitly after the asm
3153statement, and it can only produce worse code, since it bypasses many
3154optimization passes. I would recommend not using it.)
3155
3156
3157Clobber constraints
3158"""""""""""""""""""
3159
3160A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3161consume an input operand, nor generate an output. Clobbers cannot use any of the
3162general constraint code letters -- they may use only explicit register
3163constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3164"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3165memory locations -- not only the memory pointed to by a declared indirect
3166output.
3167
3168
3169Constraint Codes
3170""""""""""""""""
3171After a potential prefix comes constraint code, or codes.
3172
3173A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3174followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3175(e.g. "``{eax}``").
3176
3177The one and two letter constraint codes are typically chosen to be the same as
3178GCC's constraint codes.
3179
3180A single constraint may include one or more than constraint code in it, leaving
3181it up to LLVM to choose which one to use. This is included mainly for
3182compatibility with the translation of GCC inline asm coming from clang.
3183
3184There are two ways to specify alternatives, and either or both may be used in an
3185inline asm constraint list:
3186
31871) Append the codes to each other, making a constraint code set. E.g. "``im``"
3188 or "``{eax}m``". This means "choose any of the options in the set". The
3189 choice of constraint is made independently for each constraint in the
3190 constraint list.
3191
31922) Use "``|``" between constraint code sets, creating alternatives. Every
3193 constraint in the constraint list must have the same number of alternative
3194 sets. With this syntax, the same alternative in *all* of the items in the
3195 constraint list will be chosen together.
3196
3197Putting those together, you might have a two operand constraint string like
3198``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3199operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3200may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3201
3202However, the use of either of the alternatives features is *NOT* recommended, as
3203LLVM is not able to make an intelligent choice about which one to use. (At the
3204point it currently needs to choose, not enough information is available to do so
3205in a smart way.) Thus, it simply tries to make a choice that's most likely to
3206compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3207always choose to use memory, not registers). And, if given multiple registers,
3208or multiple register classes, it will simply choose the first one. (In fact, it
3209doesn't currently even ensure explicitly specified physical registers are
3210unique, so specifying multiple physical registers as alternatives, like
3211``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3212intended.)
3213
3214Supported Constraint Code List
3215""""""""""""""""""""""""""""""
3216
3217The constraint codes are, in general, expected to behave the same way they do in
3218GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3219inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3220and GCC likely indicates a bug in LLVM.
3221
3222Some constraint codes are typically supported by all targets:
3223
3224- ``r``: A register in the target's general purpose register class.
3225- ``m``: A memory address operand. It is target-specific what addressing modes
3226 are supported, typical examples are register, or register + register offset,
3227 or register + immediate offset (of some target-specific size).
3228- ``i``: An integer constant (of target-specific width). Allows either a simple
3229 immediate, or a relocatable value.
3230- ``n``: An integer constant -- *not* including relocatable values.
3231- ``s``: An integer constant, but allowing *only* relocatable values.
3232- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3233 useful to pass a label for an asm branch or call.
3234
3235 .. FIXME: but that surely isn't actually okay to jump out of an asm
3236 block without telling llvm about the control transfer???)
3237
3238- ``{register-name}``: Requires exactly the named physical register.
3239
3240Other constraints are target-specific:
3241
3242AArch64:
3243
3244- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3245- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3246 i.e. 0 to 4095 with optional shift by 12.
3247- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3248 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3249- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3250 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3251- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3252 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3253- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3254 32-bit register. This is a superset of ``K``: in addition to the bitmask
3255 immediate, also allows immediate integers which can be loaded with a single
3256 ``MOVZ`` or ``MOVL`` instruction.
3257- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3258 64-bit register. This is a superset of ``L``.
3259- ``Q``: Memory address operand must be in a single register (no
3260 offsets). (However, LLVM currently does this for the ``m`` constraint as
3261 well.)
3262- ``r``: A 32 or 64-bit integer register (W* or X*).
3263- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3264- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3265
3266AMDGPU:
3267
3268- ``r``: A 32 or 64-bit integer register.
3269- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3270- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3271
3272
3273All ARM modes:
3274
3275- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3276 operand. Treated the same as operand ``m``, at the moment.
3277
3278ARM and ARM's Thumb2 mode:
3279
3280- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3281- ``I``: An immediate integer valid for a data-processing instruction.
3282- ``J``: An immediate integer between -4095 and 4095.
3283- ``K``: An immediate integer whose bitwise inverse is valid for a
3284 data-processing instruction. (Can be used with template modifier "``B``" to
3285 print the inverted value).
3286- ``L``: An immediate integer whose negation is valid for a data-processing
3287 instruction. (Can be used with template modifier "``n``" to print the negated
3288 value).
3289- ``M``: A power of two or a integer between 0 and 32.
3290- ``N``: Invalid immediate constraint.
3291- ``O``: Invalid immediate constraint.
3292- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3293- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3294 as ``r``.
3295- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3296 invalid.
3297- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3298 ``d0-d31``, or ``q0-q15``.
3299- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3300 ``d0-d7``, or ``q0-q3``.
3301- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3302 ``s0-s31``.
3303
3304ARM's Thumb1 mode:
3305
3306- ``I``: An immediate integer between 0 and 255.
3307- ``J``: An immediate integer between -255 and -1.
3308- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3309 some amount.
3310- ``L``: An immediate integer between -7 and 7.
3311- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3312- ``N``: An immediate integer between 0 and 31.
3313- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3314- ``r``: A low 32-bit GPR register (``r0-r7``).
3315- ``l``: A low 32-bit GPR register (``r0-r7``).
3316- ``h``: A high GPR register (``r0-r7``).
3317- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3318 ``d0-d31``, or ``q0-q15``.
3319- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3320 ``d0-d7``, or ``q0-q3``.
3321- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3322 ``s0-s31``.
3323
3324
3325Hexagon:
3326
3327- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3328 at the moment.
3329- ``r``: A 32 or 64-bit register.
3330
3331MSP430:
3332
3333- ``r``: An 8 or 16-bit register.
3334
3335MIPS:
3336
3337- ``I``: An immediate signed 16-bit integer.
3338- ``J``: An immediate integer zero.
3339- ``K``: An immediate unsigned 16-bit integer.
3340- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3341- ``N``: An immediate integer between -65535 and -1.
3342- ``O``: An immediate signed 15-bit integer.
3343- ``P``: An immediate integer between 1 and 65535.
3344- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3345 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3346- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3347 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3348 ``m``.
3349- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3350 ``sc`` instruction on the given subtarget (details vary).
3351- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3352- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003353 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3354 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003355- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3356 ``25``).
3357- ``l``: The ``lo`` register, 32 or 64-bit.
3358- ``x``: Invalid.
3359
3360NVPTX:
3361
3362- ``b``: A 1-bit integer register.
3363- ``c`` or ``h``: A 16-bit integer register.
3364- ``r``: A 32-bit integer register.
3365- ``l`` or ``N``: A 64-bit integer register.
3366- ``f``: A 32-bit float register.
3367- ``d``: A 64-bit float register.
3368
3369
3370PowerPC:
3371
3372- ``I``: An immediate signed 16-bit integer.
3373- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3374- ``K``: An immediate unsigned 16-bit integer.
3375- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3376- ``M``: An immediate integer greater than 31.
3377- ``N``: An immediate integer that is an exact power of 2.
3378- ``O``: The immediate integer constant 0.
3379- ``P``: An immediate integer constant whose negation is a signed 16-bit
3380 constant.
3381- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3382 treated the same as ``m``.
3383- ``r``: A 32 or 64-bit integer register.
3384- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3385 ``R1-R31``).
3386- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3387 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3388- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3389 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3390 altivec vector register (``V0-V31``).
3391
3392 .. FIXME: is this a bug that v accepts QPX registers? I think this
3393 is supposed to only use the altivec vector registers?
3394
3395- ``y``: Condition register (``CR0-CR7``).
3396- ``wc``: An individual CR bit in a CR register.
3397- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3398 register set (overlapping both the floating-point and vector register files).
3399- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3400 set.
3401
3402Sparc:
3403
3404- ``I``: An immediate 13-bit signed integer.
3405- ``r``: A 32-bit integer register.
3406
3407SystemZ:
3408
3409- ``I``: An immediate unsigned 8-bit integer.
3410- ``J``: An immediate unsigned 12-bit integer.
3411- ``K``: An immediate signed 16-bit integer.
3412- ``L``: An immediate signed 20-bit integer.
3413- ``M``: An immediate integer 0x7fffffff.
3414- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3415 ``m``, at the moment.
3416- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3417- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3418 address context evaluates as zero).
3419- ``h``: A 32-bit value in the high part of a 64bit data register
3420 (LLVM-specific)
3421- ``f``: A 32, 64, or 128-bit floating point register.
3422
3423X86:
3424
3425- ``I``: An immediate integer between 0 and 31.
3426- ``J``: An immediate integer between 0 and 64.
3427- ``K``: An immediate signed 8-bit integer.
3428- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3429 0xffffffff.
3430- ``M``: An immediate integer between 0 and 3.
3431- ``N``: An immediate unsigned 8-bit integer.
3432- ``O``: An immediate integer between 0 and 127.
3433- ``e``: An immediate 32-bit signed integer.
3434- ``Z``: An immediate 32-bit unsigned integer.
3435- ``o``, ``v``: Treated the same as ``m``, at the moment.
3436- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3437 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3438 registers, and on X86-64, it is all of the integer registers.
3439- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3440 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3441- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3442- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3443 existed since i386, and can be accessed without the REX prefix.
3444- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3445- ``y``: A 64-bit MMX register, if MMX is enabled.
3446- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3447 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3448 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3449 512-bit vector operand in an AVX512 register, Otherwise, an error.
3450- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3451- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3452 32-bit mode, a 64-bit integer operand will get split into two registers). It
3453 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3454 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3455 you're better off splitting it yourself, before passing it to the asm
3456 statement.
3457
3458XCore:
3459
3460- ``r``: A 32-bit integer register.
3461
3462
3463.. _inline-asm-modifiers:
3464
3465Asm template argument modifiers
3466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3467
3468In the asm template string, modifiers can be used on the operand reference, like
3469"``${0:n}``".
3470
3471The modifiers are, in general, expected to behave the same way they do in
3472GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3473inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3474and GCC likely indicates a bug in LLVM.
3475
3476Target-independent:
3477
Sean Silvaa1190322015-08-06 22:56:48 +00003478- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003479 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3480- ``n``: Negate and print immediate integer constant unadorned, without the
3481 target-specific immediate punctuation (e.g. no ``$`` prefix).
3482- ``l``: Print as an unadorned label, without the target-specific label
3483 punctuation (e.g. no ``$`` prefix).
3484
3485AArch64:
3486
3487- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3488 instead of ``x30``, print ``w30``.
3489- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3490- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3491 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3492 ``v*``.
3493
3494AMDGPU:
3495
3496- ``r``: No effect.
3497
3498ARM:
3499
3500- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3501 register).
3502- ``P``: No effect.
3503- ``q``: No effect.
3504- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3505 as ``d4[1]`` instead of ``s9``)
3506- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3507 prefix.
3508- ``L``: Print the low 16-bits of an immediate integer constant.
3509- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3510 register operands subsequent to the specified one (!), so use carefully.
3511- ``Q``: Print the low-order register of a register-pair, or the low-order
3512 register of a two-register operand.
3513- ``R``: Print the high-order register of a register-pair, or the high-order
3514 register of a two-register operand.
3515- ``H``: Print the second register of a register-pair. (On a big-endian system,
3516 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3517 to ``R``.)
3518
3519 .. FIXME: H doesn't currently support printing the second register
3520 of a two-register operand.
3521
3522- ``e``: Print the low doubleword register of a NEON quad register.
3523- ``f``: Print the high doubleword register of a NEON quad register.
3524- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3525 adornment.
3526
3527Hexagon:
3528
3529- ``L``: Print the second register of a two-register operand. Requires that it
3530 has been allocated consecutively to the first.
3531
3532 .. FIXME: why is it restricted to consecutive ones? And there's
3533 nothing that ensures that happens, is there?
3534
3535- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3536 nothing. Used to print 'addi' vs 'add' instructions.
3537
3538MSP430:
3539
3540No additional modifiers.
3541
3542MIPS:
3543
3544- ``X``: Print an immediate integer as hexadecimal
3545- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3546- ``d``: Print an immediate integer as decimal.
3547- ``m``: Subtract one and print an immediate integer as decimal.
3548- ``z``: Print $0 if an immediate zero, otherwise print normally.
3549- ``L``: Print the low-order register of a two-register operand, or prints the
3550 address of the low-order word of a double-word memory operand.
3551
3552 .. FIXME: L seems to be missing memory operand support.
3553
3554- ``M``: Print the high-order register of a two-register operand, or prints the
3555 address of the high-order word of a double-word memory operand.
3556
3557 .. FIXME: M seems to be missing memory operand support.
3558
3559- ``D``: Print the second register of a two-register operand, or prints the
3560 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3561 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3562 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003563- ``w``: No effect. Provided for compatibility with GCC which requires this
3564 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3565 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003566
3567NVPTX:
3568
3569- ``r``: No effect.
3570
3571PowerPC:
3572
3573- ``L``: Print the second register of a two-register operand. Requires that it
3574 has been allocated consecutively to the first.
3575
3576 .. FIXME: why is it restricted to consecutive ones? And there's
3577 nothing that ensures that happens, is there?
3578
3579- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3580 nothing. Used to print 'addi' vs 'add' instructions.
3581- ``y``: For a memory operand, prints formatter for a two-register X-form
3582 instruction. (Currently always prints ``r0,OPERAND``).
3583- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3584 otherwise. (NOTE: LLVM does not support update form, so this will currently
3585 always print nothing)
3586- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3587 not support indexed form, so this will currently always print nothing)
3588
3589Sparc:
3590
3591- ``r``: No effect.
3592
3593SystemZ:
3594
3595SystemZ implements only ``n``, and does *not* support any of the other
3596target-independent modifiers.
3597
3598X86:
3599
3600- ``c``: Print an unadorned integer or symbol name. (The latter is
3601 target-specific behavior for this typically target-independent modifier).
3602- ``A``: Print a register name with a '``*``' before it.
3603- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3604 operand.
3605- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3606 memory operand.
3607- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3608 operand.
3609- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3610 operand.
3611- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3612 available, otherwise the 32-bit register name; do nothing on a memory operand.
3613- ``n``: Negate and print an unadorned integer, or, for operands other than an
3614 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3615 the operand. (The behavior for relocatable symbol expressions is a
3616 target-specific behavior for this typically target-independent modifier)
3617- ``H``: Print a memory reference with additional offset +8.
3618- ``P``: Print a memory reference or operand for use as the argument of a call
3619 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3620
3621XCore:
3622
3623No additional modifiers.
3624
3625
Sean Silvab084af42012-12-07 10:36:55 +00003626Inline Asm Metadata
3627^^^^^^^^^^^^^^^^^^^
3628
3629The call instructions that wrap inline asm nodes may have a
3630"``!srcloc``" MDNode attached to it that contains a list of constant
3631integers. If present, the code generator will use the integer as the
3632location cookie value when report errors through the ``LLVMContext``
3633error reporting mechanisms. This allows a front-end to correlate backend
3634errors that occur with inline asm back to the source code that produced
3635it. For example:
3636
3637.. code-block:: llvm
3638
3639 call void asm sideeffect "something bad", ""(), !srcloc !42
3640 ...
3641 !42 = !{ i32 1234567 }
3642
3643It is up to the front-end to make sense of the magic numbers it places
3644in the IR. If the MDNode contains multiple constants, the code generator
3645will use the one that corresponds to the line of the asm that the error
3646occurs on.
3647
3648.. _metadata:
3649
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003650Metadata
3651========
Sean Silvab084af42012-12-07 10:36:55 +00003652
3653LLVM IR allows metadata to be attached to instructions in the program
3654that can convey extra information about the code to the optimizers and
3655code generator. One example application of metadata is source-level
3656debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003657
Sean Silvaa1190322015-08-06 22:56:48 +00003658Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003659``call`` instruction, it uses the ``metadata`` type.
3660
3661All metadata are identified in syntax by a exclamation point ('``!``').
3662
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003663.. _metadata-string:
3664
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003665Metadata Nodes and Metadata Strings
3666-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003667
3668A metadata string is a string surrounded by double quotes. It can
3669contain any character by escaping non-printable characters with
3670"``\xx``" where "``xx``" is the two digit hex code. For example:
3671"``!"test\00"``".
3672
3673Metadata nodes are represented with notation similar to structure
3674constants (a comma separated list of elements, surrounded by braces and
3675preceded by an exclamation point). Metadata nodes can have any values as
3676their operand. For example:
3677
3678.. code-block:: llvm
3679
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003680 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003681
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003682Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3683
3684.. code-block:: llvm
3685
3686 !0 = distinct !{!"test\00", i32 10}
3687
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003688``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003689content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003690when metadata operands change.
3691
Sean Silvab084af42012-12-07 10:36:55 +00003692A :ref:`named metadata <namedmetadatastructure>` is a collection of
3693metadata nodes, which can be looked up in the module symbol table. For
3694example:
3695
3696.. code-block:: llvm
3697
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003698 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003699
3700Metadata can be used as function arguments. Here ``llvm.dbg.value``
3701function is using two metadata arguments:
3702
3703.. code-block:: llvm
3704
3705 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3706
Peter Collingbourne50108682015-11-06 02:41:02 +00003707Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3708to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003709
3710.. code-block:: llvm
3711
3712 %indvar.next = add i64 %indvar, 1, !dbg !21
3713
Peter Collingbourne50108682015-11-06 02:41:02 +00003714Metadata can also be attached to a function definition. Here metadata ``!22``
3715is attached to the ``foo`` function using the ``!dbg`` identifier:
3716
3717.. code-block:: llvm
3718
3719 define void @foo() !dbg !22 {
3720 ret void
3721 }
3722
Sean Silvab084af42012-12-07 10:36:55 +00003723More information about specific metadata nodes recognized by the
3724optimizers and code generator is found below.
3725
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003726.. _specialized-metadata:
3727
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003728Specialized Metadata Nodes
3729^^^^^^^^^^^^^^^^^^^^^^^^^^
3730
3731Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003732to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003733order.
3734
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003735These aren't inherently debug info centric, but currently all the specialized
3736metadata nodes are related to debug info.
3737
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003738.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003739
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003740DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003741"""""""""""""
3742
Sean Silvaa1190322015-08-06 22:56:48 +00003743``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003744``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3745tuples containing the debug info to be emitted along with the compile unit,
3746regardless of code optimizations (some nodes are only emitted if there are
3747references to them from instructions).
3748
3749.. code-block:: llvm
3750
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003751 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003752 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3753 splitDebugFilename: "abc.debug", emissionKind: 1,
3754 enums: !2, retainedTypes: !3, subprograms: !4,
3755 globals: !5, imports: !6)
3756
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003757Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003758specific compilation unit. File descriptors are defined using this scope.
3759These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003760keep track of subprograms, global variables, type information, and imported
3761entities (declarations and namespaces).
3762
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003763.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003764
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003765DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003766""""""
3767
Sean Silvaa1190322015-08-06 22:56:48 +00003768``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003769
3770.. code-block:: llvm
3771
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003772 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003773
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003774Files are sometimes used in ``scope:`` fields, and are the only valid target
3775for ``file:`` fields.
3776
Michael Kuperstein605308a2015-05-14 10:58:59 +00003777.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003778
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003779DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003780"""""""""""
3781
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003782``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003783``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003784
3785.. code-block:: llvm
3786
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003787 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003788 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003789 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790
Sean Silvaa1190322015-08-06 22:56:48 +00003791The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003792following:
3793
3794.. code-block:: llvm
3795
3796 DW_ATE_address = 1
3797 DW_ATE_boolean = 2
3798 DW_ATE_float = 4
3799 DW_ATE_signed = 5
3800 DW_ATE_signed_char = 6
3801 DW_ATE_unsigned = 7
3802 DW_ATE_unsigned_char = 8
3803
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003804.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003805
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003806DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003807""""""""""""""""
3808
Sean Silvaa1190322015-08-06 22:56:48 +00003809``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003810refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003811types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003812represents a function with no return value (such as ``void foo() {}`` in C++).
3813
3814.. code-block:: llvm
3815
3816 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3817 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003818 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003819
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003820.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003821
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003822DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823"""""""""""""
3824
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003825``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003826qualified types.
3827
3828.. code-block:: llvm
3829
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003830 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003831 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003832 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003833 align: 32)
3834
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003835The following ``tag:`` values are valid:
3836
3837.. code-block:: llvm
3838
3839 DW_TAG_formal_parameter = 5
3840 DW_TAG_member = 13
3841 DW_TAG_pointer_type = 15
3842 DW_TAG_reference_type = 16
3843 DW_TAG_typedef = 22
3844 DW_TAG_ptr_to_member_type = 31
3845 DW_TAG_const_type = 38
3846 DW_TAG_volatile_type = 53
3847 DW_TAG_restrict_type = 55
3848
3849``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003850<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3851is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003852``DW_TAG_formal_parameter`` is used to define a member which is a formal
3853argument of a subprogram.
3854
3855``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3856
3857``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3858``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3859``baseType:``.
3860
3861Note that the ``void *`` type is expressed as a type derived from NULL.
3862
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003863.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003864
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003865DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003866"""""""""""""""
3867
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003868``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003869structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003870
3871If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003872identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873can refer to composite types indirectly via a :ref:`metadata string
3874<metadata-string>` that matches their identifier.
3875
3876.. code-block:: llvm
3877
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003878 !0 = !DIEnumerator(name: "SixKind", value: 7)
3879 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3880 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3881 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003882 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3883 elements: !{!0, !1, !2})
3884
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003885The following ``tag:`` values are valid:
3886
3887.. code-block:: llvm
3888
3889 DW_TAG_array_type = 1
3890 DW_TAG_class_type = 2
3891 DW_TAG_enumeration_type = 4
3892 DW_TAG_structure_type = 19
3893 DW_TAG_union_type = 23
3894 DW_TAG_subroutine_type = 21
3895 DW_TAG_inheritance = 28
3896
3897
3898For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003899descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003900level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003901array type is a native packed vector.
3902
3903For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003904descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003905value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003906``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003907
3908For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3909``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003910<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003911
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003912.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003913
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003914DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003915""""""""""
3916
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003918:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919
3920.. code-block:: llvm
3921
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003922 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3923 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3924 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003925
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003926.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003927
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003928DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003929""""""""""""
3930
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003931``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3932variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003933
3934.. code-block:: llvm
3935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936 !0 = !DIEnumerator(name: "SixKind", value: 7)
3937 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3938 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003940DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941"""""""""""""""""""""""
3942
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003943``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003944language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003945:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003946
3947.. code-block:: llvm
3948
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003949 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003952""""""""""""""""""""""""
3953
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003954``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003955language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003956but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003957``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003959
3960.. code-block:: llvm
3961
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003962 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003963
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003964DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003965"""""""""""
3966
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003967``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003968
3969.. code-block:: llvm
3970
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003971 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003973DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003974""""""""""""""""
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003977
3978.. code-block:: llvm
3979
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003980 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981 file: !2, line: 7, type: !3, isLocal: true,
3982 isDefinition: false, variable: i32* @foo,
3983 declaration: !4)
3984
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003985All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003986:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003987
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003988.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003989
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003990DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991""""""""""""
3992
Peter Collingbourne50108682015-11-06 02:41:02 +00003993``DISubprogram`` nodes represent functions from the source language. A
3994``DISubprogram`` may be attached to a function definition using ``!dbg``
3995metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
3996that must be retained, even if their IR counterparts are optimized out of
3997the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998
3999.. code-block:: llvm
4000
Peter Collingbourne50108682015-11-06 02:41:02 +00004001 define void @_Z3foov() !dbg !0 {
4002 ...
4003 }
4004
4005 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4006 file: !2, line: 7, type: !3, isLocal: true,
4007 isDefinition: false, scopeLine: 8,
4008 containingType: !4,
4009 virtuality: DW_VIRTUALITY_pure_virtual,
4010 virtualIndex: 10, flags: DIFlagPrototyped,
4011 isOptimized: true, templateParams: !5,
4012 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004014.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004015
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004016DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017""""""""""""""
4018
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004019``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004020<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004021two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004022fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023
4024.. code-block:: llvm
4025
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004026 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004027
4028Usually lexical blocks are ``distinct`` to prevent node merging based on
4029operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004030
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004031.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004032
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004033DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034""""""""""""""""""
4035
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004037:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004038indicate textual inclusion, or the ``discriminator:`` field can be used to
4039discriminate between control flow within a single block in the source language.
4040
4041.. code-block:: llvm
4042
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004043 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4044 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4045 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004046
Michael Kuperstein605308a2015-05-14 10:58:59 +00004047.. _DILocation:
4048
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004049DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004050""""""""""
4051
Sean Silvaa1190322015-08-06 22:56:48 +00004052``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053mandatory, and points at an :ref:`DILexicalBlockFile`, an
4054:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004055
4056.. code-block:: llvm
4057
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004058 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004059
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004060.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004061
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004062DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004063"""""""""""""""
4064
Sean Silvaa1190322015-08-06 22:56:48 +00004065``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004066the ``arg:`` field is set to non-zero, then this variable is a subprogram
4067parameter, and it will be included in the ``variables:`` field of its
4068:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004070.. code-block:: llvm
4071
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004072 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4073 type: !3, flags: DIFlagArtificial)
4074 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4075 type: !3)
4076 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004078DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079""""""""""""
4080
Sean Silvaa1190322015-08-06 22:56:48 +00004081``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004082:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4083describe how the referenced LLVM variable relates to the source language
4084variable.
4085
4086The current supported vocabulary is limited:
4087
4088- ``DW_OP_deref`` dereferences the working expression.
4089- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4090- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4091 here, respectively) of the variable piece from the working expression.
4092
4093.. code-block:: llvm
4094
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004095 !0 = !DIExpression(DW_OP_deref)
4096 !1 = !DIExpression(DW_OP_plus, 3)
4097 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4098 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004100DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004101""""""""""""""
4102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004104
4105.. code-block:: llvm
4106
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004108 getter: "getFoo", attributes: 7, type: !2)
4109
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004110DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111""""""""""""""""
4112
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004113``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004114compile unit.
4115
4116.. code-block:: llvm
4117
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004118 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004119 entity: !1, line: 7)
4120
Sean Silvab084af42012-12-07 10:36:55 +00004121'``tbaa``' Metadata
4122^^^^^^^^^^^^^^^^^^^
4123
4124In LLVM IR, memory does not have types, so LLVM's own type system is not
4125suitable for doing TBAA. Instead, metadata is added to the IR to
4126describe a type system of a higher level language. This can be used to
4127implement typical C/C++ TBAA, but it can also be used to implement
4128custom alias analysis behavior for other languages.
4129
4130The current metadata format is very simple. TBAA metadata nodes have up
4131to three fields, e.g.:
4132
4133.. code-block:: llvm
4134
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004135 !0 = !{ !"an example type tree" }
4136 !1 = !{ !"int", !0 }
4137 !2 = !{ !"float", !0 }
4138 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004139
4140The first field is an identity field. It can be any value, usually a
4141metadata string, which uniquely identifies the type. The most important
4142name in the tree is the name of the root node. Two trees with different
4143root node names are entirely disjoint, even if they have leaves with
4144common names.
4145
4146The second field identifies the type's parent node in the tree, or is
4147null or omitted for a root node. A type is considered to alias all of
4148its descendants and all of its ancestors in the tree. Also, a type is
4149considered to alias all types in other trees, so that bitcode produced
4150from multiple front-ends is handled conservatively.
4151
4152If the third field is present, it's an integer which if equal to 1
4153indicates that the type is "constant" (meaning
4154``pointsToConstantMemory`` should return true; see `other useful
4155AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4156
4157'``tbaa.struct``' Metadata
4158^^^^^^^^^^^^^^^^^^^^^^^^^^
4159
4160The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4161aggregate assignment operations in C and similar languages, however it
4162is defined to copy a contiguous region of memory, which is more than
4163strictly necessary for aggregate types which contain holes due to
4164padding. Also, it doesn't contain any TBAA information about the fields
4165of the aggregate.
4166
4167``!tbaa.struct`` metadata can describe which memory subregions in a
4168memcpy are padding and what the TBAA tags of the struct are.
4169
4170The current metadata format is very simple. ``!tbaa.struct`` metadata
4171nodes are a list of operands which are in conceptual groups of three.
4172For each group of three, the first operand gives the byte offset of a
4173field in bytes, the second gives its size in bytes, and the third gives
4174its tbaa tag. e.g.:
4175
4176.. code-block:: llvm
4177
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004178 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004179
4180This describes a struct with two fields. The first is at offset 0 bytes
4181with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4182and has size 4 bytes and has tbaa tag !2.
4183
4184Note that the fields need not be contiguous. In this example, there is a
41854 byte gap between the two fields. This gap represents padding which
4186does not carry useful data and need not be preserved.
4187
Hal Finkel94146652014-07-24 14:25:39 +00004188'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004190
4191``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4192noalias memory-access sets. This means that some collection of memory access
4193instructions (loads, stores, memory-accessing calls, etc.) that carry
4194``noalias`` metadata can specifically be specified not to alias with some other
4195collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004196Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004197a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004198of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004199subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004200instruction's ``noalias`` list, then the two memory accesses are assumed not to
4201alias.
Hal Finkel94146652014-07-24 14:25:39 +00004202
Hal Finkel029cde62014-07-25 15:50:02 +00004203The metadata identifying each domain is itself a list containing one or two
4204entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004205string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004206self-reference can be used to create globally unique domain names. A
4207descriptive string may optionally be provided as a second list entry.
4208
4209The metadata identifying each scope is also itself a list containing two or
4210three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004211is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004212self-reference can be used to create globally unique scope names. A metadata
4213reference to the scope's domain is the second entry. A descriptive string may
4214optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004215
4216For example,
4217
4218.. code-block:: llvm
4219
Hal Finkel029cde62014-07-25 15:50:02 +00004220 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004221 !0 = !{!0}
4222 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004223
Hal Finkel029cde62014-07-25 15:50:02 +00004224 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004225 !2 = !{!2, !0}
4226 !3 = !{!3, !0}
4227 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004228
Hal Finkel029cde62014-07-25 15:50:02 +00004229 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004230 !5 = !{!4} ; A list containing only scope !4
4231 !6 = !{!4, !3, !2}
4232 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004233
4234 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004235 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004236 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004237
Hal Finkel029cde62014-07-25 15:50:02 +00004238 ; These two instructions also don't alias (for domain !1, the set of scopes
4239 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004240 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004241 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004242
Adam Nemet0a8416f2015-05-11 08:30:28 +00004243 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004244 ; the !noalias list is not a superset of, or equal to, the scopes in the
4245 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004246 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004247 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004248
Sean Silvab084af42012-12-07 10:36:55 +00004249'``fpmath``' Metadata
4250^^^^^^^^^^^^^^^^^^^^^
4251
4252``fpmath`` metadata may be attached to any instruction of floating point
4253type. It can be used to express the maximum acceptable error in the
4254result of that instruction, in ULPs, thus potentially allowing the
4255compiler to use a more efficient but less accurate method of computing
4256it. ULP is defined as follows:
4257
4258 If ``x`` is a real number that lies between two finite consecutive
4259 floating-point numbers ``a`` and ``b``, without being equal to one
4260 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4261 distance between the two non-equal finite floating-point numbers
4262 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4263
4264The metadata node shall consist of a single positive floating point
4265number representing the maximum relative error, for example:
4266
4267.. code-block:: llvm
4268
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004269 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004270
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004271.. _range-metadata:
4272
Sean Silvab084af42012-12-07 10:36:55 +00004273'``range``' Metadata
4274^^^^^^^^^^^^^^^^^^^^
4275
Jingyue Wu37fcb592014-06-19 16:50:16 +00004276``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4277integer types. It expresses the possible ranges the loaded value or the value
4278returned by the called function at this call site is in. The ranges are
4279represented with a flattened list of integers. The loaded value or the value
4280returned is known to be in the union of the ranges defined by each consecutive
4281pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004282
4283- The type must match the type loaded by the instruction.
4284- The pair ``a,b`` represents the range ``[a,b)``.
4285- Both ``a`` and ``b`` are constants.
4286- The range is allowed to wrap.
4287- The range should not represent the full or empty set. That is,
4288 ``a!=b``.
4289
4290In addition, the pairs must be in signed order of the lower bound and
4291they must be non-contiguous.
4292
4293Examples:
4294
4295.. code-block:: llvm
4296
David Blaikiec7aabbb2015-03-04 22:06:14 +00004297 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4298 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004299 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4300 %d = invoke i8 @bar() to label %cont
4301 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004302 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004303 !0 = !{ i8 0, i8 2 }
4304 !1 = !{ i8 255, i8 2 }
4305 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4306 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004307
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004308'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004309^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004310
4311``unpredictable`` metadata may be attached to any branch or switch
4312instruction. It can be used to express the unpredictability of control
4313flow. Similar to the llvm.expect intrinsic, it may be used to alter
4314optimizations related to compare and branch instructions. The metadata
4315is treated as a boolean value; if it exists, it signals that the branch
4316or switch that it is attached to is completely unpredictable.
4317
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004318'``llvm.loop``'
4319^^^^^^^^^^^^^^^
4320
4321It is sometimes useful to attach information to loop constructs. Currently,
4322loop metadata is implemented as metadata attached to the branch instruction
4323in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004324guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004325specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004326
4327The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004328itself to avoid merging it with any other identifier metadata, e.g.,
4329during module linkage or function inlining. That is, each loop should refer
4330to their own identification metadata even if they reside in separate functions.
4331The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004332constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004333
4334.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004335
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004336 !0 = !{!0}
4337 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004338
Mark Heffernan893752a2014-07-18 19:24:51 +00004339The loop identifier metadata can be used to specify additional
4340per-loop metadata. Any operands after the first operand can be treated
4341as user-defined metadata. For example the ``llvm.loop.unroll.count``
4342suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004343
Paul Redmond5fdf8362013-05-28 20:00:34 +00004344.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004345
Paul Redmond5fdf8362013-05-28 20:00:34 +00004346 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4347 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004348 !0 = !{!0, !1}
4349 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004350
Mark Heffernan9d20e422014-07-21 23:11:03 +00004351'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004353
Mark Heffernan9d20e422014-07-21 23:11:03 +00004354Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4355used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004356vectorization width and interleave count. These metadata should be used in
4357conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004358``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4359optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004360it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004361which contains information about loop-carried memory dependencies can be helpful
4362in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004363
Mark Heffernan9d20e422014-07-21 23:11:03 +00004364'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4366
Mark Heffernan9d20e422014-07-21 23:11:03 +00004367This metadata suggests an interleave count to the loop interleaver.
4368The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004369second operand is an integer specifying the interleave count. For
4370example:
4371
4372.. code-block:: llvm
4373
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004374 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004375
Mark Heffernan9d20e422014-07-21 23:11:03 +00004376Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004377multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004378then the interleave count will be determined automatically.
4379
4380'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004382
4383This metadata selectively enables or disables vectorization for the loop. The
4384first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004385is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000043860 disables vectorization:
4387
4388.. code-block:: llvm
4389
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004390 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4391 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004392
4393'``llvm.loop.vectorize.width``' Metadata
4394^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4395
4396This metadata sets the target width of the vectorizer. The first
4397operand is the string ``llvm.loop.vectorize.width`` and the second
4398operand is an integer specifying the width. For example:
4399
4400.. code-block:: llvm
4401
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004402 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004403
4404Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004405vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000044060 or if the loop does not have this metadata the width will be
4407determined automatically.
4408
4409'``llvm.loop.unroll``'
4410^^^^^^^^^^^^^^^^^^^^^^
4411
4412Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4413optimization hints such as the unroll factor. ``llvm.loop.unroll``
4414metadata should be used in conjunction with ``llvm.loop`` loop
4415identification metadata. The ``llvm.loop.unroll`` metadata are only
4416optimization hints and the unrolling will only be performed if the
4417optimizer believes it is safe to do so.
4418
Mark Heffernan893752a2014-07-18 19:24:51 +00004419'``llvm.loop.unroll.count``' Metadata
4420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4421
4422This metadata suggests an unroll factor to the loop unroller. The
4423first operand is the string ``llvm.loop.unroll.count`` and the second
4424operand is a positive integer specifying the unroll factor. For
4425example:
4426
4427.. code-block:: llvm
4428
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004429 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004430
4431If the trip count of the loop is less than the unroll count the loop
4432will be partially unrolled.
4433
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004434'``llvm.loop.unroll.disable``' Metadata
4435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4436
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004437This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004438which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004439
4440.. code-block:: llvm
4441
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004442 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004443
Kevin Qin715b01e2015-03-09 06:14:18 +00004444'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004446
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004447This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004448operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004449
4450.. code-block:: llvm
4451
4452 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4453
Mark Heffernan89391542015-08-10 17:28:08 +00004454'``llvm.loop.unroll.enable``' Metadata
4455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4456
4457This metadata suggests that the loop should be fully unrolled if the trip count
4458is known at compile time and partially unrolled if the trip count is not known
4459at compile time. The metadata has a single operand which is the string
4460``llvm.loop.unroll.enable``. For example:
4461
4462.. code-block:: llvm
4463
4464 !0 = !{!"llvm.loop.unroll.enable"}
4465
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004466'``llvm.loop.unroll.full``' Metadata
4467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4468
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004469This metadata suggests that the loop should be unrolled fully. The
4470metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004471For example:
4472
4473.. code-block:: llvm
4474
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004475 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004476
4477'``llvm.mem``'
4478^^^^^^^^^^^^^^^
4479
4480Metadata types used to annotate memory accesses with information helpful
4481for optimizations are prefixed with ``llvm.mem``.
4482
4483'``llvm.mem.parallel_loop_access``' Metadata
4484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4485
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004486The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4487or metadata containing a list of loop identifiers for nested loops.
4488The metadata is attached to memory accessing instructions and denotes that
4489no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004490with the same loop identifier.
4491
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004492Precisely, given two instructions ``m1`` and ``m2`` that both have the
4493``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4494set of loops associated with that metadata, respectively, then there is no loop
4495carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004496``L2``.
4497
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004498As a special case, if all memory accessing instructions in a loop have
4499``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4500loop has no loop carried memory dependences and is considered to be a parallel
4501loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004502
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004503Note that if not all memory access instructions have such metadata referring to
4504the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004505memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004506safe mechanism, this causes loops that were originally parallel to be considered
4507sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004508insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004509
4510Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004511both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004512metadata types that refer to the same loop identifier metadata.
4513
4514.. code-block:: llvm
4515
4516 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004517 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004518 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004519 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004520 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004521 ...
4522 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004523
4524 for.end:
4525 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004526 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004527
4528It is also possible to have nested parallel loops. In that case the
4529memory accesses refer to a list of loop identifier metadata nodes instead of
4530the loop identifier metadata node directly:
4531
4532.. code-block:: llvm
4533
4534 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004535 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004536 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004537 ...
4538 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004539
4540 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004541 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004542 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004543 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004544 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004545 ...
4546 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004547
4548 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004549 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004550 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004551 ...
4552 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004553
4554 outer.for.end: ; preds = %for.body
4555 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004556 !0 = !{!1, !2} ; a list of loop identifiers
4557 !1 = !{!1} ; an identifier for the inner loop
4558 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004559
Peter Collingbournee6909c82015-02-20 20:30:47 +00004560'``llvm.bitsets``'
4561^^^^^^^^^^^^^^^^^^
4562
4563The ``llvm.bitsets`` global metadata is used to implement
4564:doc:`bitsets <BitSets>`.
4565
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004566'``invariant.group``' Metadata
4567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4568
4569The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4570The existence of the ``invariant.group`` metadata on the instruction tells
4571the optimizer that every ``load`` and ``store`` to the same pointer operand
4572within the same invariant group can be assumed to load or store the same
4573value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4574when two pointers are considered the same).
4575
4576Examples:
4577
4578.. code-block:: llvm
4579
4580 @unknownPtr = external global i8
4581 ...
4582 %ptr = alloca i8
4583 store i8 42, i8* %ptr, !invariant.group !0
4584 call void @foo(i8* %ptr)
4585
4586 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4587 call void @foo(i8* %ptr)
4588 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4589
4590 %newPtr = call i8* @getPointer(i8* %ptr)
4591 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4592
4593 %unknownValue = load i8, i8* @unknownPtr
4594 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4595
4596 call void @foo(i8* %ptr)
4597 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4598 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4599
4600 ...
4601 declare void @foo(i8*)
4602 declare i8* @getPointer(i8*)
4603 declare i8* @llvm.invariant.group.barrier(i8*)
4604
4605 !0 = !{!"magic ptr"}
4606 !1 = !{!"other ptr"}
4607
4608
4609
Sean Silvab084af42012-12-07 10:36:55 +00004610Module Flags Metadata
4611=====================
4612
4613Information about the module as a whole is difficult to convey to LLVM's
4614subsystems. The LLVM IR isn't sufficient to transmit this information.
4615The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004616this. These flags are in the form of key / value pairs --- much like a
4617dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004618look it up.
4619
4620The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4621Each triplet has the following form:
4622
4623- The first element is a *behavior* flag, which specifies the behavior
4624 when two (or more) modules are merged together, and it encounters two
4625 (or more) metadata with the same ID. The supported behaviors are
4626 described below.
4627- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004628 metadata. Each module may only have one flag entry for each unique ID (not
4629 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004630- The third element is the value of the flag.
4631
4632When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004633``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4634each unique metadata ID string, there will be exactly one entry in the merged
4635modules ``llvm.module.flags`` metadata table, and the value for that entry will
4636be determined by the merge behavior flag, as described below. The only exception
4637is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004638
4639The following behaviors are supported:
4640
4641.. list-table::
4642 :header-rows: 1
4643 :widths: 10 90
4644
4645 * - Value
4646 - Behavior
4647
4648 * - 1
4649 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004650 Emits an error if two values disagree, otherwise the resulting value
4651 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004652
4653 * - 2
4654 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004655 Emits a warning if two values disagree. The result value will be the
4656 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004657
4658 * - 3
4659 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004660 Adds a requirement that another module flag be present and have a
4661 specified value after linking is performed. The value must be a
4662 metadata pair, where the first element of the pair is the ID of the
4663 module flag to be restricted, and the second element of the pair is
4664 the value the module flag should be restricted to. This behavior can
4665 be used to restrict the allowable results (via triggering of an
4666 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004667
4668 * - 4
4669 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004670 Uses the specified value, regardless of the behavior or value of the
4671 other module. If both modules specify **Override**, but the values
4672 differ, an error will be emitted.
4673
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004674 * - 5
4675 - **Append**
4676 Appends the two values, which are required to be metadata nodes.
4677
4678 * - 6
4679 - **AppendUnique**
4680 Appends the two values, which are required to be metadata
4681 nodes. However, duplicate entries in the second list are dropped
4682 during the append operation.
4683
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004684It is an error for a particular unique flag ID to have multiple behaviors,
4685except in the case of **Require** (which adds restrictions on another metadata
4686value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004687
4688An example of module flags:
4689
4690.. code-block:: llvm
4691
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004692 !0 = !{ i32 1, !"foo", i32 1 }
4693 !1 = !{ i32 4, !"bar", i32 37 }
4694 !2 = !{ i32 2, !"qux", i32 42 }
4695 !3 = !{ i32 3, !"qux",
4696 !{
4697 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004698 }
4699 }
4700 !llvm.module.flags = !{ !0, !1, !2, !3 }
4701
4702- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4703 if two or more ``!"foo"`` flags are seen is to emit an error if their
4704 values are not equal.
4705
4706- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4707 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004708 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004709
4710- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4711 behavior if two or more ``!"qux"`` flags are seen is to emit a
4712 warning if their values are not equal.
4713
4714- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4715
4716 ::
4717
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004718 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004719
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004720 The behavior is to emit an error if the ``llvm.module.flags`` does not
4721 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4722 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004723
4724Objective-C Garbage Collection Module Flags Metadata
4725----------------------------------------------------
4726
4727On the Mach-O platform, Objective-C stores metadata about garbage
4728collection in a special section called "image info". The metadata
4729consists of a version number and a bitmask specifying what types of
4730garbage collection are supported (if any) by the file. If two or more
4731modules are linked together their garbage collection metadata needs to
4732be merged rather than appended together.
4733
4734The Objective-C garbage collection module flags metadata consists of the
4735following key-value pairs:
4736
4737.. list-table::
4738 :header-rows: 1
4739 :widths: 30 70
4740
4741 * - Key
4742 - Value
4743
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004744 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004745 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004746
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004747 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004748 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004749 always 0.
4750
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004751 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004752 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004753 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4754 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4755 Objective-C ABI version 2.
4756
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004757 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004758 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004759 not. Valid values are 0, for no garbage collection, and 2, for garbage
4760 collection supported.
4761
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004762 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004763 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004764 If present, its value must be 6. This flag requires that the
4765 ``Objective-C Garbage Collection`` flag have the value 2.
4766
4767Some important flag interactions:
4768
4769- If a module with ``Objective-C Garbage Collection`` set to 0 is
4770 merged with a module with ``Objective-C Garbage Collection`` set to
4771 2, then the resulting module has the
4772 ``Objective-C Garbage Collection`` flag set to 0.
4773- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4774 merged with a module with ``Objective-C GC Only`` set to 6.
4775
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004776Automatic Linker Flags Module Flags Metadata
4777--------------------------------------------
4778
4779Some targets support embedding flags to the linker inside individual object
4780files. Typically this is used in conjunction with language extensions which
4781allow source files to explicitly declare the libraries they depend on, and have
4782these automatically be transmitted to the linker via object files.
4783
4784These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004785using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004786to be ``AppendUnique``, and the value for the key is expected to be a metadata
4787node which should be a list of other metadata nodes, each of which should be a
4788list of metadata strings defining linker options.
4789
4790For example, the following metadata section specifies two separate sets of
4791linker options, presumably to link against ``libz`` and the ``Cocoa``
4792framework::
4793
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004794 !0 = !{ i32 6, !"Linker Options",
4795 !{
4796 !{ !"-lz" },
4797 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004798 !llvm.module.flags = !{ !0 }
4799
4800The metadata encoding as lists of lists of options, as opposed to a collapsed
4801list of options, is chosen so that the IR encoding can use multiple option
4802strings to specify e.g., a single library, while still having that specifier be
4803preserved as an atomic element that can be recognized by a target specific
4804assembly writer or object file emitter.
4805
4806Each individual option is required to be either a valid option for the target's
4807linker, or an option that is reserved by the target specific assembly writer or
4808object file emitter. No other aspect of these options is defined by the IR.
4809
Oliver Stannard5dc29342014-06-20 10:08:11 +00004810C type width Module Flags Metadata
4811----------------------------------
4812
4813The ARM backend emits a section into each generated object file describing the
4814options that it was compiled with (in a compiler-independent way) to prevent
4815linking incompatible objects, and to allow automatic library selection. Some
4816of these options are not visible at the IR level, namely wchar_t width and enum
4817width.
4818
4819To pass this information to the backend, these options are encoded in module
4820flags metadata, using the following key-value pairs:
4821
4822.. list-table::
4823 :header-rows: 1
4824 :widths: 30 70
4825
4826 * - Key
4827 - Value
4828
4829 * - short_wchar
4830 - * 0 --- sizeof(wchar_t) == 4
4831 * 1 --- sizeof(wchar_t) == 2
4832
4833 * - short_enum
4834 - * 0 --- Enums are at least as large as an ``int``.
4835 * 1 --- Enums are stored in the smallest integer type which can
4836 represent all of its values.
4837
4838For example, the following metadata section specifies that the module was
4839compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4840enum is the smallest type which can represent all of its values::
4841
4842 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004843 !0 = !{i32 1, !"short_wchar", i32 1}
4844 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004845
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004846.. _intrinsicglobalvariables:
4847
Sean Silvab084af42012-12-07 10:36:55 +00004848Intrinsic Global Variables
4849==========================
4850
4851LLVM has a number of "magic" global variables that contain data that
4852affect code generation or other IR semantics. These are documented here.
4853All globals of this sort should have a section specified as
4854"``llvm.metadata``". This section and all globals that start with
4855"``llvm.``" are reserved for use by LLVM.
4856
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004857.. _gv_llvmused:
4858
Sean Silvab084af42012-12-07 10:36:55 +00004859The '``llvm.used``' Global Variable
4860-----------------------------------
4861
Rafael Espindola74f2e462013-04-22 14:58:02 +00004862The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004863:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004864pointers to named global variables, functions and aliases which may optionally
4865have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004866use of it is:
4867
4868.. code-block:: llvm
4869
4870 @X = global i8 4
4871 @Y = global i32 123
4872
4873 @llvm.used = appending global [2 x i8*] [
4874 i8* @X,
4875 i8* bitcast (i32* @Y to i8*)
4876 ], section "llvm.metadata"
4877
Rafael Espindola74f2e462013-04-22 14:58:02 +00004878If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4879and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004880symbol that it cannot see (which is why they have to be named). For example, if
4881a variable has internal linkage and no references other than that from the
4882``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4883references from inline asms and other things the compiler cannot "see", and
4884corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004885
4886On some targets, the code generator must emit a directive to the
4887assembler or object file to prevent the assembler and linker from
4888molesting the symbol.
4889
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004890.. _gv_llvmcompilerused:
4891
Sean Silvab084af42012-12-07 10:36:55 +00004892The '``llvm.compiler.used``' Global Variable
4893--------------------------------------------
4894
4895The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4896directive, except that it only prevents the compiler from touching the
4897symbol. On targets that support it, this allows an intelligent linker to
4898optimize references to the symbol without being impeded as it would be
4899by ``@llvm.used``.
4900
4901This is a rare construct that should only be used in rare circumstances,
4902and should not be exposed to source languages.
4903
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004904.. _gv_llvmglobalctors:
4905
Sean Silvab084af42012-12-07 10:36:55 +00004906The '``llvm.global_ctors``' Global Variable
4907-------------------------------------------
4908
4909.. code-block:: llvm
4910
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004911 %0 = type { i32, void ()*, i8* }
4912 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004913
4914The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004915functions, priorities, and an optional associated global or function.
4916The functions referenced by this array will be called in ascending order
4917of priority (i.e. lowest first) when the module is loaded. The order of
4918functions with the same priority is not defined.
4919
4920If the third field is present, non-null, and points to a global variable
4921or function, the initializer function will only run if the associated
4922data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004923
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004924.. _llvmglobaldtors:
4925
Sean Silvab084af42012-12-07 10:36:55 +00004926The '``llvm.global_dtors``' Global Variable
4927-------------------------------------------
4928
4929.. code-block:: llvm
4930
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004931 %0 = type { i32, void ()*, i8* }
4932 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004933
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004934The ``@llvm.global_dtors`` array contains a list of destructor
4935functions, priorities, and an optional associated global or function.
4936The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004937order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004938order of functions with the same priority is not defined.
4939
4940If the third field is present, non-null, and points to a global variable
4941or function, the destructor function will only run if the associated
4942data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004943
4944Instruction Reference
4945=====================
4946
4947The LLVM instruction set consists of several different classifications
4948of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4949instructions <binaryops>`, :ref:`bitwise binary
4950instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4951:ref:`other instructions <otherops>`.
4952
4953.. _terminators:
4954
4955Terminator Instructions
4956-----------------------
4957
4958As mentioned :ref:`previously <functionstructure>`, every basic block in a
4959program ends with a "Terminator" instruction, which indicates which
4960block should be executed after the current block is finished. These
4961terminator instructions typically yield a '``void``' value: they produce
4962control flow, not values (the one exception being the
4963':ref:`invoke <i_invoke>`' instruction).
4964
4965The terminator instructions are: ':ref:`ret <i_ret>`',
4966':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4967':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004968':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4969':ref:`catchendpad <i_catchendpad>`',
4970':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004971':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004972':ref:`cleanupret <i_cleanupret>`',
4973':ref:`terminatepad <i_terminatepad>`',
4974and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004975
4976.. _i_ret:
4977
4978'``ret``' Instruction
4979^^^^^^^^^^^^^^^^^^^^^
4980
4981Syntax:
4982"""""""
4983
4984::
4985
4986 ret <type> <value> ; Return a value from a non-void function
4987 ret void ; Return from void function
4988
4989Overview:
4990"""""""""
4991
4992The '``ret``' instruction is used to return control flow (and optionally
4993a value) from a function back to the caller.
4994
4995There are two forms of the '``ret``' instruction: one that returns a
4996value and then causes control flow, and one that just causes control
4997flow to occur.
4998
4999Arguments:
5000""""""""""
5001
5002The '``ret``' instruction optionally accepts a single argument, the
5003return value. The type of the return value must be a ':ref:`first
5004class <t_firstclass>`' type.
5005
5006A function is not :ref:`well formed <wellformed>` if it it has a non-void
5007return type and contains a '``ret``' instruction with no return value or
5008a return value with a type that does not match its type, or if it has a
5009void return type and contains a '``ret``' instruction with a return
5010value.
5011
5012Semantics:
5013""""""""""
5014
5015When the '``ret``' instruction is executed, control flow returns back to
5016the calling function's context. If the caller is a
5017":ref:`call <i_call>`" instruction, execution continues at the
5018instruction after the call. If the caller was an
5019":ref:`invoke <i_invoke>`" instruction, execution continues at the
5020beginning of the "normal" destination block. If the instruction returns
5021a value, that value shall set the call or invoke instruction's return
5022value.
5023
5024Example:
5025""""""""
5026
5027.. code-block:: llvm
5028
5029 ret i32 5 ; Return an integer value of 5
5030 ret void ; Return from a void function
5031 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5032
5033.. _i_br:
5034
5035'``br``' Instruction
5036^^^^^^^^^^^^^^^^^^^^
5037
5038Syntax:
5039"""""""
5040
5041::
5042
5043 br i1 <cond>, label <iftrue>, label <iffalse>
5044 br label <dest> ; Unconditional branch
5045
5046Overview:
5047"""""""""
5048
5049The '``br``' instruction is used to cause control flow to transfer to a
5050different basic block in the current function. There are two forms of
5051this instruction, corresponding to a conditional branch and an
5052unconditional branch.
5053
5054Arguments:
5055""""""""""
5056
5057The conditional branch form of the '``br``' instruction takes a single
5058'``i1``' value and two '``label``' values. The unconditional form of the
5059'``br``' instruction takes a single '``label``' value as a target.
5060
5061Semantics:
5062""""""""""
5063
5064Upon execution of a conditional '``br``' instruction, the '``i1``'
5065argument is evaluated. If the value is ``true``, control flows to the
5066'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5067to the '``iffalse``' ``label`` argument.
5068
5069Example:
5070""""""""
5071
5072.. code-block:: llvm
5073
5074 Test:
5075 %cond = icmp eq i32 %a, %b
5076 br i1 %cond, label %IfEqual, label %IfUnequal
5077 IfEqual:
5078 ret i32 1
5079 IfUnequal:
5080 ret i32 0
5081
5082.. _i_switch:
5083
5084'``switch``' Instruction
5085^^^^^^^^^^^^^^^^^^^^^^^^
5086
5087Syntax:
5088"""""""
5089
5090::
5091
5092 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5093
5094Overview:
5095"""""""""
5096
5097The '``switch``' instruction is used to transfer control flow to one of
5098several different places. It is a generalization of the '``br``'
5099instruction, allowing a branch to occur to one of many possible
5100destinations.
5101
5102Arguments:
5103""""""""""
5104
5105The '``switch``' instruction uses three parameters: an integer
5106comparison value '``value``', a default '``label``' destination, and an
5107array of pairs of comparison value constants and '``label``'s. The table
5108is not allowed to contain duplicate constant entries.
5109
5110Semantics:
5111""""""""""
5112
5113The ``switch`` instruction specifies a table of values and destinations.
5114When the '``switch``' instruction is executed, this table is searched
5115for the given value. If the value is found, control flow is transferred
5116to the corresponding destination; otherwise, control flow is transferred
5117to the default destination.
5118
5119Implementation:
5120"""""""""""""""
5121
5122Depending on properties of the target machine and the particular
5123``switch`` instruction, this instruction may be code generated in
5124different ways. For example, it could be generated as a series of
5125chained conditional branches or with a lookup table.
5126
5127Example:
5128""""""""
5129
5130.. code-block:: llvm
5131
5132 ; Emulate a conditional br instruction
5133 %Val = zext i1 %value to i32
5134 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5135
5136 ; Emulate an unconditional br instruction
5137 switch i32 0, label %dest [ ]
5138
5139 ; Implement a jump table:
5140 switch i32 %val, label %otherwise [ i32 0, label %onzero
5141 i32 1, label %onone
5142 i32 2, label %ontwo ]
5143
5144.. _i_indirectbr:
5145
5146'``indirectbr``' Instruction
5147^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5148
5149Syntax:
5150"""""""
5151
5152::
5153
5154 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5155
5156Overview:
5157"""""""""
5158
5159The '``indirectbr``' instruction implements an indirect branch to a
5160label within the current function, whose address is specified by
5161"``address``". Address must be derived from a
5162:ref:`blockaddress <blockaddress>` constant.
5163
5164Arguments:
5165""""""""""
5166
5167The '``address``' argument is the address of the label to jump to. The
5168rest of the arguments indicate the full set of possible destinations
5169that the address may point to. Blocks are allowed to occur multiple
5170times in the destination list, though this isn't particularly useful.
5171
5172This destination list is required so that dataflow analysis has an
5173accurate understanding of the CFG.
5174
5175Semantics:
5176""""""""""
5177
5178Control transfers to the block specified in the address argument. All
5179possible destination blocks must be listed in the label list, otherwise
5180this instruction has undefined behavior. This implies that jumps to
5181labels defined in other functions have undefined behavior as well.
5182
5183Implementation:
5184"""""""""""""""
5185
5186This is typically implemented with a jump through a register.
5187
5188Example:
5189""""""""
5190
5191.. code-block:: llvm
5192
5193 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5194
5195.. _i_invoke:
5196
5197'``invoke``' Instruction
5198^^^^^^^^^^^^^^^^^^^^^^^^
5199
5200Syntax:
5201"""""""
5202
5203::
5204
5205 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005206 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005207
5208Overview:
5209"""""""""
5210
5211The '``invoke``' instruction causes control to transfer to a specified
5212function, with the possibility of control flow transfer to either the
5213'``normal``' label or the '``exception``' label. If the callee function
5214returns with the "``ret``" instruction, control flow will return to the
5215"normal" label. If the callee (or any indirect callees) returns via the
5216":ref:`resume <i_resume>`" instruction or other exception handling
5217mechanism, control is interrupted and continued at the dynamically
5218nearest "exception" label.
5219
5220The '``exception``' label is a `landing
5221pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5222'``exception``' label is required to have the
5223":ref:`landingpad <i_landingpad>`" instruction, which contains the
5224information about the behavior of the program after unwinding happens,
5225as its first non-PHI instruction. The restrictions on the
5226"``landingpad``" instruction's tightly couples it to the "``invoke``"
5227instruction, so that the important information contained within the
5228"``landingpad``" instruction can't be lost through normal code motion.
5229
5230Arguments:
5231""""""""""
5232
5233This instruction requires several arguments:
5234
5235#. The optional "cconv" marker indicates which :ref:`calling
5236 convention <callingconv>` the call should use. If none is
5237 specified, the call defaults to using C calling conventions.
5238#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5239 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5240 are valid here.
5241#. '``ptr to function ty``': shall be the signature of the pointer to
5242 function value being invoked. In most cases, this is a direct
5243 function invocation, but indirect ``invoke``'s are just as possible,
5244 branching off an arbitrary pointer to function value.
5245#. '``function ptr val``': An LLVM value containing a pointer to a
5246 function to be invoked.
5247#. '``function args``': argument list whose types match the function
5248 signature argument types and parameter attributes. All arguments must
5249 be of :ref:`first class <t_firstclass>` type. If the function signature
5250 indicates the function accepts a variable number of arguments, the
5251 extra arguments can be specified.
5252#. '``normal label``': the label reached when the called function
5253 executes a '``ret``' instruction.
5254#. '``exception label``': the label reached when a callee returns via
5255 the :ref:`resume <i_resume>` instruction or other exception handling
5256 mechanism.
5257#. The optional :ref:`function attributes <fnattrs>` list. Only
5258 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5259 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005260#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005261
5262Semantics:
5263""""""""""
5264
5265This instruction is designed to operate as a standard '``call``'
5266instruction in most regards. The primary difference is that it
5267establishes an association with a label, which is used by the runtime
5268library to unwind the stack.
5269
5270This instruction is used in languages with destructors to ensure that
5271proper cleanup is performed in the case of either a ``longjmp`` or a
5272thrown exception. Additionally, this is important for implementation of
5273'``catch``' clauses in high-level languages that support them.
5274
5275For the purposes of the SSA form, the definition of the value returned
5276by the '``invoke``' instruction is deemed to occur on the edge from the
5277current block to the "normal" label. If the callee unwinds then no
5278return value is available.
5279
5280Example:
5281""""""""
5282
5283.. code-block:: llvm
5284
5285 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005286 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005287 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005288 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005289
5290.. _i_resume:
5291
5292'``resume``' Instruction
5293^^^^^^^^^^^^^^^^^^^^^^^^
5294
5295Syntax:
5296"""""""
5297
5298::
5299
5300 resume <type> <value>
5301
5302Overview:
5303"""""""""
5304
5305The '``resume``' instruction is a terminator instruction that has no
5306successors.
5307
5308Arguments:
5309""""""""""
5310
5311The '``resume``' instruction requires one argument, which must have the
5312same type as the result of any '``landingpad``' instruction in the same
5313function.
5314
5315Semantics:
5316""""""""""
5317
5318The '``resume``' instruction resumes propagation of an existing
5319(in-flight) exception whose unwinding was interrupted with a
5320:ref:`landingpad <i_landingpad>` instruction.
5321
5322Example:
5323""""""""
5324
5325.. code-block:: llvm
5326
5327 resume { i8*, i32 } %exn
5328
David Majnemer654e1302015-07-31 17:58:14 +00005329.. _i_catchpad:
5330
5331'``catchpad``' Instruction
5332^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5333
5334Syntax:
5335"""""""
5336
5337::
5338
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005339 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005340 to label <normal label> unwind label <exception label>
5341
5342Overview:
5343"""""""""
5344
5345The '``catchpad``' instruction is used by `LLVM's exception handling
5346system <ExceptionHandling.html#overview>`_ to specify that a basic block
5347is a catch block --- one where a personality routine attempts to transfer
5348control to catch an exception.
5349The ``args`` correspond to whatever information the personality
5350routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005351exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005352``catchpad`` is not an appropriate handler for the in-flight exception.
5353The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005354portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5355:ref:`token <t_token>` and is used to match the ``catchpad`` to
5356corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005357
5358Arguments:
5359""""""""""
5360
5361The instruction takes a list of arbitrary values which are interpreted
5362by the :ref:`personality function <personalityfn>`.
5363
5364The ``catchpad`` must be provided a ``normal`` label to transfer control
5365to if the ``catchpad`` matches the exception and an ``exception``
5366label to transfer control to if it doesn't.
5367
5368Semantics:
5369""""""""""
5370
David Majnemer654e1302015-07-31 17:58:14 +00005371When the call stack is being unwound due to an exception being thrown,
5372the exception is compared against the ``args``. If it doesn't match,
5373then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005374As with calling conventions, how the personality function results are
5375represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005376
5377The ``catchpad`` instruction has several restrictions:
5378
5379- A catch block is a basic block which is the unwind destination of
5380 an exceptional instruction.
5381- A catch block must have a '``catchpad``' instruction as its
5382 first non-PHI instruction.
5383- A catch block's ``exception`` edge must refer to a catch block or a
5384 catch-end block.
5385- There can be only one '``catchpad``' instruction within the
5386 catch block.
5387- A basic block that is not a catch block may not include a
5388 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005389- A catch block which has another catch block as a predecessor may not have
5390 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005391- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005392 ``ret`` without first executing a ``catchret`` that consumes the
5393 ``catchpad`` or unwinding through its ``catchendpad``.
5394- It is undefined behavior for control to transfer from a ``catchpad`` to
5395 itself without first executing a ``catchret`` that consumes the
5396 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005397
5398Example:
5399""""""""
5400
5401.. code-block:: llvm
5402
5403 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005404 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005405 to label %int.handler unwind label %terminate
5406
5407.. _i_catchendpad:
5408
5409'``catchendpad``' Instruction
5410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5411
5412Syntax:
5413"""""""
5414
5415::
5416
5417 catchendpad unwind label <nextaction>
5418 catchendpad unwind to caller
5419
5420Overview:
5421"""""""""
5422
5423The '``catchendpad``' instruction is used by `LLVM's exception handling
5424system <ExceptionHandling.html#overview>`_ to communicate to the
5425:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005426with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5427exception out of a catch handler is represented by unwinding through its
5428``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5429do not handle an exception is also represented by unwinding through their
5430``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005431
5432The ``nextaction`` label indicates where control should transfer to if
5433none of the ``catchpad`` instructions are suitable for catching the
5434in-flight exception.
5435
5436If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005437its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005438:ref:`personality function <personalityfn>` will continue processing
5439exception handling actions in the caller.
5440
5441Arguments:
5442""""""""""
5443
5444The instruction optionally takes a label, ``nextaction``, indicating
5445where control should transfer to if none of the preceding
5446``catchpad`` instructions are suitable for the in-flight exception.
5447
5448Semantics:
5449""""""""""
5450
5451When the call stack is being unwound due to an exception being thrown
5452and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005453control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005454present, control is transfered to the caller.
5455
5456The ``catchendpad`` instruction has several restrictions:
5457
5458- A catch-end block is a basic block which is the unwind destination of
5459 an exceptional instruction.
5460- A catch-end block must have a '``catchendpad``' instruction as its
5461 first non-PHI instruction.
5462- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005463 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005464- A basic block that is not a catch-end block may not include a
5465 '``catchendpad``' instruction.
5466- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005467- It is undefined behavior to execute a ``catchendpad`` if none of the
5468 '``catchpad``'s chained to it have been executed.
5469- It is undefined behavior to execute a ``catchendpad`` twice without an
5470 intervening execution of one or more of the '``catchpad``'s chained to it.
5471- It is undefined behavior to execute a ``catchendpad`` if, after the most
5472 recent execution of the normal successor edge of any ``catchpad`` chained
5473 to it, some ``catchret`` consuming that ``catchpad`` has already been
5474 executed.
5475- It is undefined behavior to execute a ``catchendpad`` if, after the most
5476 recent execution of the normal successor edge of any ``catchpad`` chained
5477 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5478 not had a corresponding
5479 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005480
5481Example:
5482""""""""
5483
5484.. code-block:: llvm
5485
5486 catchendpad unwind label %terminate
5487 catchendpad unwind to caller
5488
5489.. _i_catchret:
5490
5491'``catchret``' Instruction
5492^^^^^^^^^^^^^^^^^^^^^^^^^^
5493
5494Syntax:
5495"""""""
5496
5497::
5498
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005499 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005500
5501Overview:
5502"""""""""
5503
5504The '``catchret``' instruction is a terminator instruction that has a
5505single successor.
5506
5507
5508Arguments:
5509""""""""""
5510
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005511The first argument to a '``catchret``' indicates which ``catchpad`` it
5512exits. It must be a :ref:`catchpad <i_catchpad>`.
5513The second argument to a '``catchret``' specifies where control will
5514transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005515
5516Semantics:
5517""""""""""
5518
5519The '``catchret``' instruction ends the existing (in-flight) exception
5520whose unwinding was interrupted with a
5521:ref:`catchpad <i_catchpad>` instruction.
5522The :ref:`personality function <personalityfn>` gets a chance to execute
5523arbitrary code to, for example, run a C++ destructor.
5524Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005525It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005526
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005527It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5528not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005529
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005530It is undefined behavior to execute a ``catchret`` if, after the most recent
5531execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5532to the same ``catchpad`` has already been executed.
5533
5534It is undefined behavior to execute a ``catchret`` if, after the most recent
5535execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5536been executed but has not had a corresponding
5537``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005538
5539Example:
5540""""""""
5541
5542.. code-block:: llvm
5543
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005544 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005545
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005546.. _i_cleanupendpad:
5547
5548'``cleanupendpad``' Instruction
5549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5550
5551Syntax:
5552"""""""
5553
5554::
5555
5556 cleanupendpad <value> unwind label <nextaction>
5557 cleanupendpad <value> unwind to caller
5558
5559Overview:
5560"""""""""
5561
5562The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5563system <ExceptionHandling.html#overview>`_ to communicate to the
5564:ref:`personality function <personalityfn>` which invokes are associated
5565with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5566out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5567
5568The ``nextaction`` label indicates where control should unwind to next, in the
5569event that a cleanup is exited by means of an(other) exception being raised.
5570
5571If a ``nextaction`` label is not present, the instruction unwinds out of
5572its parent function. The
5573:ref:`personality function <personalityfn>` will continue processing
5574exception handling actions in the caller.
5575
5576Arguments:
5577""""""""""
5578
5579The '``cleanupendpad``' instruction requires one argument, which indicates
5580which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5581It also has an optional successor, ``nextaction``, indicating where control
5582should transfer to.
5583
5584Semantics:
5585""""""""""
5586
5587When and exception propagates to a ``cleanupendpad``, control is transfered to
5588``nextaction`` if it is present. If it is not present, control is transfered to
5589the caller.
5590
5591The ``cleanupendpad`` instruction has several restrictions:
5592
5593- A cleanup-end block is a basic block which is the unwind destination of
5594 an exceptional instruction.
5595- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5596 first non-PHI instruction.
5597- There can be only one '``cleanupendpad``' instruction within the
5598 cleanup-end block.
5599- A basic block that is not a cleanup-end block may not include a
5600 '``cleanupendpad``' instruction.
5601- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5602 has not been executed.
5603- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5604 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5605 consuming the same ``cleanuppad`` has already been executed.
5606- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5607 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5608 ``catchpad`` has been executed but has not had a corresponding
5609 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5610
5611Example:
5612""""""""
5613
5614.. code-block:: llvm
5615
5616 cleanupendpad %cleanup unwind label %terminate
5617 cleanupendpad %cleanup unwind to caller
5618
David Majnemer654e1302015-07-31 17:58:14 +00005619.. _i_cleanupret:
5620
5621'``cleanupret``' Instruction
5622^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5623
5624Syntax:
5625"""""""
5626
5627::
5628
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005629 cleanupret <value> unwind label <continue>
5630 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005631
5632Overview:
5633"""""""""
5634
5635The '``cleanupret``' instruction is a terminator instruction that has
5636an optional successor.
5637
5638
5639Arguments:
5640""""""""""
5641
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005642The '``cleanupret``' instruction requires one argument, which indicates
5643which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5644It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005645
5646Semantics:
5647""""""""""
5648
5649The '``cleanupret``' instruction indicates to the
5650:ref:`personality function <personalityfn>` that one
5651:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5652It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005653
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005654It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5655not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005656
5657It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5658execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5659consuming the same ``cleanuppad`` has already been executed.
5660
5661It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5662execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5663been executed but has not had a corresponding
5664``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005665
5666Example:
5667""""""""
5668
5669.. code-block:: llvm
5670
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005671 cleanupret %cleanup unwind to caller
5672 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005673
5674.. _i_terminatepad:
5675
5676'``terminatepad``' Instruction
5677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5678
5679Syntax:
5680"""""""
5681
5682::
5683
5684 terminatepad [<args>*] unwind label <exception label>
5685 terminatepad [<args>*] unwind to caller
5686
5687Overview:
5688"""""""""
5689
5690The '``terminatepad``' instruction is used by `LLVM's exception handling
5691system <ExceptionHandling.html#overview>`_ to specify that a basic block
5692is a terminate block --- one where a personality routine may decide to
5693terminate the program.
5694The ``args`` correspond to whatever information the personality
5695routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005696program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005697personality routine decides not to terminate the program for the
5698in-flight exception.
5699
5700Arguments:
5701""""""""""
5702
5703The instruction takes a list of arbitrary values which are interpreted
5704by the :ref:`personality function <personalityfn>`.
5705
5706The ``terminatepad`` may be given an ``exception`` label to
5707transfer control to if the in-flight exception matches the ``args``.
5708
5709Semantics:
5710""""""""""
5711
5712When the call stack is being unwound due to an exception being thrown,
5713the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005714then control is transfered to the ``exception`` basic block. Otherwise,
5715the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005716the first argument to ``terminatepad`` specifies what function the
5717personality should defer to in order to terminate the program.
5718
5719The ``terminatepad`` instruction has several restrictions:
5720
5721- A terminate block is a basic block which is the unwind destination of
5722 an exceptional instruction.
5723- A terminate block must have a '``terminatepad``' instruction as its
5724 first non-PHI instruction.
5725- There can be only one '``terminatepad``' instruction within the
5726 terminate block.
5727- A basic block that is not a terminate block may not include a
5728 '``terminatepad``' instruction.
5729
5730Example:
5731""""""""
5732
5733.. code-block:: llvm
5734
5735 ;; A terminate block which only permits integers.
5736 terminatepad [i8** @_ZTIi] unwind label %continue
5737
Sean Silvab084af42012-12-07 10:36:55 +00005738.. _i_unreachable:
5739
5740'``unreachable``' Instruction
5741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5742
5743Syntax:
5744"""""""
5745
5746::
5747
5748 unreachable
5749
5750Overview:
5751"""""""""
5752
5753The '``unreachable``' instruction has no defined semantics. This
5754instruction is used to inform the optimizer that a particular portion of
5755the code is not reachable. This can be used to indicate that the code
5756after a no-return function cannot be reached, and other facts.
5757
5758Semantics:
5759""""""""""
5760
5761The '``unreachable``' instruction has no defined semantics.
5762
5763.. _binaryops:
5764
5765Binary Operations
5766-----------------
5767
5768Binary operators are used to do most of the computation in a program.
5769They require two operands of the same type, execute an operation on
5770them, and produce a single value. The operands might represent multiple
5771data, as is the case with the :ref:`vector <t_vector>` data type. The
5772result value has the same type as its operands.
5773
5774There are several different binary operators:
5775
5776.. _i_add:
5777
5778'``add``' Instruction
5779^^^^^^^^^^^^^^^^^^^^^
5780
5781Syntax:
5782"""""""
5783
5784::
5785
Tim Northover675a0962014-06-13 14:24:23 +00005786 <result> = add <ty> <op1>, <op2> ; yields ty:result
5787 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5788 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5789 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005790
5791Overview:
5792"""""""""
5793
5794The '``add``' instruction returns the sum of its two operands.
5795
5796Arguments:
5797""""""""""
5798
5799The two arguments to the '``add``' instruction must be
5800:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5801arguments must have identical types.
5802
5803Semantics:
5804""""""""""
5805
5806The value produced is the integer sum of the two operands.
5807
5808If the sum has unsigned overflow, the result returned is the
5809mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5810the result.
5811
5812Because LLVM integers use a two's complement representation, this
5813instruction is appropriate for both signed and unsigned integers.
5814
5815``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5816respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5817result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5818unsigned and/or signed overflow, respectively, occurs.
5819
5820Example:
5821""""""""
5822
5823.. code-block:: llvm
5824
Tim Northover675a0962014-06-13 14:24:23 +00005825 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005826
5827.. _i_fadd:
5828
5829'``fadd``' Instruction
5830^^^^^^^^^^^^^^^^^^^^^^
5831
5832Syntax:
5833"""""""
5834
5835::
5836
Tim Northover675a0962014-06-13 14:24:23 +00005837 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005838
5839Overview:
5840"""""""""
5841
5842The '``fadd``' instruction returns the sum of its two operands.
5843
5844Arguments:
5845""""""""""
5846
5847The two arguments to the '``fadd``' instruction must be :ref:`floating
5848point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5849Both arguments must have identical types.
5850
5851Semantics:
5852""""""""""
5853
5854The value produced is the floating point sum of the two operands. This
5855instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5856which are optimization hints to enable otherwise unsafe floating point
5857optimizations:
5858
5859Example:
5860""""""""
5861
5862.. code-block:: llvm
5863
Tim Northover675a0962014-06-13 14:24:23 +00005864 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005865
5866'``sub``' Instruction
5867^^^^^^^^^^^^^^^^^^^^^
5868
5869Syntax:
5870"""""""
5871
5872::
5873
Tim Northover675a0962014-06-13 14:24:23 +00005874 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5875 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5876 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5877 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005878
5879Overview:
5880"""""""""
5881
5882The '``sub``' instruction returns the difference of its two operands.
5883
5884Note that the '``sub``' instruction is used to represent the '``neg``'
5885instruction present in most other intermediate representations.
5886
5887Arguments:
5888""""""""""
5889
5890The two arguments to the '``sub``' instruction must be
5891:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5892arguments must have identical types.
5893
5894Semantics:
5895""""""""""
5896
5897The value produced is the integer difference of the two operands.
5898
5899If the difference has unsigned overflow, the result returned is the
5900mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5901the result.
5902
5903Because LLVM integers use a two's complement representation, this
5904instruction is appropriate for both signed and unsigned integers.
5905
5906``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5907respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5908result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5909unsigned and/or signed overflow, respectively, occurs.
5910
5911Example:
5912""""""""
5913
5914.. code-block:: llvm
5915
Tim Northover675a0962014-06-13 14:24:23 +00005916 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5917 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005918
5919.. _i_fsub:
5920
5921'``fsub``' Instruction
5922^^^^^^^^^^^^^^^^^^^^^^
5923
5924Syntax:
5925"""""""
5926
5927::
5928
Tim Northover675a0962014-06-13 14:24:23 +00005929 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005930
5931Overview:
5932"""""""""
5933
5934The '``fsub``' instruction returns the difference of its two operands.
5935
5936Note that the '``fsub``' instruction is used to represent the '``fneg``'
5937instruction present in most other intermediate representations.
5938
5939Arguments:
5940""""""""""
5941
5942The two arguments to the '``fsub``' instruction must be :ref:`floating
5943point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5944Both arguments must have identical types.
5945
5946Semantics:
5947""""""""""
5948
5949The value produced is the floating point difference of the two operands.
5950This instruction can also take any number of :ref:`fast-math
5951flags <fastmath>`, which are optimization hints to enable otherwise
5952unsafe floating point optimizations:
5953
5954Example:
5955""""""""
5956
5957.. code-block:: llvm
5958
Tim Northover675a0962014-06-13 14:24:23 +00005959 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5960 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005961
5962'``mul``' Instruction
5963^^^^^^^^^^^^^^^^^^^^^
5964
5965Syntax:
5966"""""""
5967
5968::
5969
Tim Northover675a0962014-06-13 14:24:23 +00005970 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5971 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5972 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5973 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005974
5975Overview:
5976"""""""""
5977
5978The '``mul``' instruction returns the product of its two operands.
5979
5980Arguments:
5981""""""""""
5982
5983The two arguments to the '``mul``' instruction must be
5984:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5985arguments must have identical types.
5986
5987Semantics:
5988""""""""""
5989
5990The value produced is the integer product of the two operands.
5991
5992If the result of the multiplication has unsigned overflow, the result
5993returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5994bit width of the result.
5995
5996Because LLVM integers use a two's complement representation, and the
5997result is the same width as the operands, this instruction returns the
5998correct result for both signed and unsigned integers. If a full product
5999(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6000sign-extended or zero-extended as appropriate to the width of the full
6001product.
6002
6003``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6004respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6005result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6006unsigned and/or signed overflow, respectively, occurs.
6007
6008Example:
6009""""""""
6010
6011.. code-block:: llvm
6012
Tim Northover675a0962014-06-13 14:24:23 +00006013 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006014
6015.. _i_fmul:
6016
6017'``fmul``' Instruction
6018^^^^^^^^^^^^^^^^^^^^^^
6019
6020Syntax:
6021"""""""
6022
6023::
6024
Tim Northover675a0962014-06-13 14:24:23 +00006025 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006026
6027Overview:
6028"""""""""
6029
6030The '``fmul``' instruction returns the product of its two operands.
6031
6032Arguments:
6033""""""""""
6034
6035The two arguments to the '``fmul``' instruction must be :ref:`floating
6036point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6037Both arguments must have identical types.
6038
6039Semantics:
6040""""""""""
6041
6042The value produced is the floating point product of the two operands.
6043This instruction can also take any number of :ref:`fast-math
6044flags <fastmath>`, which are optimization hints to enable otherwise
6045unsafe floating point optimizations:
6046
6047Example:
6048""""""""
6049
6050.. code-block:: llvm
6051
Tim Northover675a0962014-06-13 14:24:23 +00006052 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006053
6054'``udiv``' Instruction
6055^^^^^^^^^^^^^^^^^^^^^^
6056
6057Syntax:
6058"""""""
6059
6060::
6061
Tim Northover675a0962014-06-13 14:24:23 +00006062 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6063 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006064
6065Overview:
6066"""""""""
6067
6068The '``udiv``' instruction returns the quotient of its two operands.
6069
6070Arguments:
6071""""""""""
6072
6073The two arguments to the '``udiv``' instruction must be
6074:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6075arguments must have identical types.
6076
6077Semantics:
6078""""""""""
6079
6080The value produced is the unsigned integer quotient of the two operands.
6081
6082Note that unsigned integer division and signed integer division are
6083distinct operations; for signed integer division, use '``sdiv``'.
6084
6085Division by zero leads to undefined behavior.
6086
6087If the ``exact`` keyword is present, the result value of the ``udiv`` is
6088a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6089such, "((a udiv exact b) mul b) == a").
6090
6091Example:
6092""""""""
6093
6094.. code-block:: llvm
6095
Tim Northover675a0962014-06-13 14:24:23 +00006096 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006097
6098'``sdiv``' Instruction
6099^^^^^^^^^^^^^^^^^^^^^^
6100
6101Syntax:
6102"""""""
6103
6104::
6105
Tim Northover675a0962014-06-13 14:24:23 +00006106 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6107 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006108
6109Overview:
6110"""""""""
6111
6112The '``sdiv``' instruction returns the quotient of its two operands.
6113
6114Arguments:
6115""""""""""
6116
6117The two arguments to the '``sdiv``' instruction must be
6118:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6119arguments must have identical types.
6120
6121Semantics:
6122""""""""""
6123
6124The value produced is the signed integer quotient of the two operands
6125rounded towards zero.
6126
6127Note that signed integer division and unsigned integer division are
6128distinct operations; for unsigned integer division, use '``udiv``'.
6129
6130Division by zero leads to undefined behavior. Overflow also leads to
6131undefined behavior; this is a rare case, but can occur, for example, by
6132doing a 32-bit division of -2147483648 by -1.
6133
6134If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6135a :ref:`poison value <poisonvalues>` if the result would be rounded.
6136
6137Example:
6138""""""""
6139
6140.. code-block:: llvm
6141
Tim Northover675a0962014-06-13 14:24:23 +00006142 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006143
6144.. _i_fdiv:
6145
6146'``fdiv``' Instruction
6147^^^^^^^^^^^^^^^^^^^^^^
6148
6149Syntax:
6150"""""""
6151
6152::
6153
Tim Northover675a0962014-06-13 14:24:23 +00006154 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006155
6156Overview:
6157"""""""""
6158
6159The '``fdiv``' instruction returns the quotient of its two operands.
6160
6161Arguments:
6162""""""""""
6163
6164The two arguments to the '``fdiv``' instruction must be :ref:`floating
6165point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6166Both arguments must have identical types.
6167
6168Semantics:
6169""""""""""
6170
6171The value produced is the floating point quotient of the two operands.
6172This instruction can also take any number of :ref:`fast-math
6173flags <fastmath>`, which are optimization hints to enable otherwise
6174unsafe floating point optimizations:
6175
6176Example:
6177""""""""
6178
6179.. code-block:: llvm
6180
Tim Northover675a0962014-06-13 14:24:23 +00006181 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006182
6183'``urem``' Instruction
6184^^^^^^^^^^^^^^^^^^^^^^
6185
6186Syntax:
6187"""""""
6188
6189::
6190
Tim Northover675a0962014-06-13 14:24:23 +00006191 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006192
6193Overview:
6194"""""""""
6195
6196The '``urem``' instruction returns the remainder from the unsigned
6197division of its two arguments.
6198
6199Arguments:
6200""""""""""
6201
6202The two arguments to the '``urem``' instruction must be
6203:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6204arguments must have identical types.
6205
6206Semantics:
6207""""""""""
6208
6209This instruction returns the unsigned integer *remainder* of a division.
6210This instruction always performs an unsigned division to get the
6211remainder.
6212
6213Note that unsigned integer remainder and signed integer remainder are
6214distinct operations; for signed integer remainder, use '``srem``'.
6215
6216Taking the remainder of a division by zero leads to undefined behavior.
6217
6218Example:
6219""""""""
6220
6221.. code-block:: llvm
6222
Tim Northover675a0962014-06-13 14:24:23 +00006223 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006224
6225'``srem``' Instruction
6226^^^^^^^^^^^^^^^^^^^^^^
6227
6228Syntax:
6229"""""""
6230
6231::
6232
Tim Northover675a0962014-06-13 14:24:23 +00006233 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006234
6235Overview:
6236"""""""""
6237
6238The '``srem``' instruction returns the remainder from the signed
6239division of its two operands. This instruction can also take
6240:ref:`vector <t_vector>` versions of the values in which case the elements
6241must be integers.
6242
6243Arguments:
6244""""""""""
6245
6246The two arguments to the '``srem``' instruction must be
6247:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6248arguments must have identical types.
6249
6250Semantics:
6251""""""""""
6252
6253This instruction returns the *remainder* of a division (where the result
6254is either zero or has the same sign as the dividend, ``op1``), not the
6255*modulo* operator (where the result is either zero or has the same sign
6256as the divisor, ``op2``) of a value. For more information about the
6257difference, see `The Math
6258Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6259table of how this is implemented in various languages, please see
6260`Wikipedia: modulo
6261operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6262
6263Note that signed integer remainder and unsigned integer remainder are
6264distinct operations; for unsigned integer remainder, use '``urem``'.
6265
6266Taking the remainder of a division by zero leads to undefined behavior.
6267Overflow also leads to undefined behavior; this is a rare case, but can
6268occur, for example, by taking the remainder of a 32-bit division of
6269-2147483648 by -1. (The remainder doesn't actually overflow, but this
6270rule lets srem be implemented using instructions that return both the
6271result of the division and the remainder.)
6272
6273Example:
6274""""""""
6275
6276.. code-block:: llvm
6277
Tim Northover675a0962014-06-13 14:24:23 +00006278 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006279
6280.. _i_frem:
6281
6282'``frem``' Instruction
6283^^^^^^^^^^^^^^^^^^^^^^
6284
6285Syntax:
6286"""""""
6287
6288::
6289
Tim Northover675a0962014-06-13 14:24:23 +00006290 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006291
6292Overview:
6293"""""""""
6294
6295The '``frem``' instruction returns the remainder from the division of
6296its two operands.
6297
6298Arguments:
6299""""""""""
6300
6301The two arguments to the '``frem``' instruction must be :ref:`floating
6302point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6303Both arguments must have identical types.
6304
6305Semantics:
6306""""""""""
6307
6308This instruction returns the *remainder* of a division. The remainder
6309has the same sign as the dividend. This instruction can also take any
6310number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6311to enable otherwise unsafe floating point optimizations:
6312
6313Example:
6314""""""""
6315
6316.. code-block:: llvm
6317
Tim Northover675a0962014-06-13 14:24:23 +00006318 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006319
6320.. _bitwiseops:
6321
6322Bitwise Binary Operations
6323-------------------------
6324
6325Bitwise binary operators are used to do various forms of bit-twiddling
6326in a program. They are generally very efficient instructions and can
6327commonly be strength reduced from other instructions. They require two
6328operands of the same type, execute an operation on them, and produce a
6329single value. The resulting value is the same type as its operands.
6330
6331'``shl``' Instruction
6332^^^^^^^^^^^^^^^^^^^^^
6333
6334Syntax:
6335"""""""
6336
6337::
6338
Tim Northover675a0962014-06-13 14:24:23 +00006339 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6340 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6341 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6342 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006343
6344Overview:
6345"""""""""
6346
6347The '``shl``' instruction returns the first operand shifted to the left
6348a specified number of bits.
6349
6350Arguments:
6351""""""""""
6352
6353Both arguments to the '``shl``' instruction must be the same
6354:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6355'``op2``' is treated as an unsigned value.
6356
6357Semantics:
6358""""""""""
6359
6360The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6361where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006362dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006363``op1``, the result is undefined. If the arguments are vectors, each
6364vector element of ``op1`` is shifted by the corresponding shift amount
6365in ``op2``.
6366
6367If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6368value <poisonvalues>` if it shifts out any non-zero bits. If the
6369``nsw`` keyword is present, then the shift produces a :ref:`poison
6370value <poisonvalues>` if it shifts out any bits that disagree with the
6371resultant sign bit. As such, NUW/NSW have the same semantics as they
6372would if the shift were expressed as a mul instruction with the same
6373nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6374
6375Example:
6376""""""""
6377
6378.. code-block:: llvm
6379
Tim Northover675a0962014-06-13 14:24:23 +00006380 <result> = shl i32 4, %var ; yields i32: 4 << %var
6381 <result> = shl i32 4, 2 ; yields i32: 16
6382 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006383 <result> = shl i32 1, 32 ; undefined
6384 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6385
6386'``lshr``' Instruction
6387^^^^^^^^^^^^^^^^^^^^^^
6388
6389Syntax:
6390"""""""
6391
6392::
6393
Tim Northover675a0962014-06-13 14:24:23 +00006394 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6395 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006396
6397Overview:
6398"""""""""
6399
6400The '``lshr``' instruction (logical shift right) returns the first
6401operand shifted to the right a specified number of bits with zero fill.
6402
6403Arguments:
6404""""""""""
6405
6406Both arguments to the '``lshr``' instruction must be the same
6407:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6408'``op2``' is treated as an unsigned value.
6409
6410Semantics:
6411""""""""""
6412
6413This instruction always performs a logical shift right operation. The
6414most significant bits of the result will be filled with zero bits after
6415the shift. If ``op2`` is (statically or dynamically) equal to or larger
6416than the number of bits in ``op1``, the result is undefined. If the
6417arguments are vectors, each vector element of ``op1`` is shifted by the
6418corresponding shift amount in ``op2``.
6419
6420If the ``exact`` keyword is present, the result value of the ``lshr`` is
6421a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6422non-zero.
6423
6424Example:
6425""""""""
6426
6427.. code-block:: llvm
6428
Tim Northover675a0962014-06-13 14:24:23 +00006429 <result> = lshr i32 4, 1 ; yields i32:result = 2
6430 <result> = lshr i32 4, 2 ; yields i32:result = 1
6431 <result> = lshr i8 4, 3 ; yields i8:result = 0
6432 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006433 <result> = lshr i32 1, 32 ; undefined
6434 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6435
6436'``ashr``' Instruction
6437^^^^^^^^^^^^^^^^^^^^^^
6438
6439Syntax:
6440"""""""
6441
6442::
6443
Tim Northover675a0962014-06-13 14:24:23 +00006444 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6445 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006446
6447Overview:
6448"""""""""
6449
6450The '``ashr``' instruction (arithmetic shift right) returns the first
6451operand shifted to the right a specified number of bits with sign
6452extension.
6453
6454Arguments:
6455""""""""""
6456
6457Both arguments to the '``ashr``' instruction must be the same
6458:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6459'``op2``' is treated as an unsigned value.
6460
6461Semantics:
6462""""""""""
6463
6464This instruction always performs an arithmetic shift right operation,
6465The most significant bits of the result will be filled with the sign bit
6466of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6467than the number of bits in ``op1``, the result is undefined. If the
6468arguments are vectors, each vector element of ``op1`` is shifted by the
6469corresponding shift amount in ``op2``.
6470
6471If the ``exact`` keyword is present, the result value of the ``ashr`` is
6472a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6473non-zero.
6474
6475Example:
6476""""""""
6477
6478.. code-block:: llvm
6479
Tim Northover675a0962014-06-13 14:24:23 +00006480 <result> = ashr i32 4, 1 ; yields i32:result = 2
6481 <result> = ashr i32 4, 2 ; yields i32:result = 1
6482 <result> = ashr i8 4, 3 ; yields i8:result = 0
6483 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006484 <result> = ashr i32 1, 32 ; undefined
6485 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6486
6487'``and``' Instruction
6488^^^^^^^^^^^^^^^^^^^^^
6489
6490Syntax:
6491"""""""
6492
6493::
6494
Tim Northover675a0962014-06-13 14:24:23 +00006495 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006496
6497Overview:
6498"""""""""
6499
6500The '``and``' instruction returns the bitwise logical and of its two
6501operands.
6502
6503Arguments:
6504""""""""""
6505
6506The two arguments to the '``and``' instruction must be
6507:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6508arguments must have identical types.
6509
6510Semantics:
6511""""""""""
6512
6513The truth table used for the '``and``' instruction is:
6514
6515+-----+-----+-----+
6516| In0 | In1 | Out |
6517+-----+-----+-----+
6518| 0 | 0 | 0 |
6519+-----+-----+-----+
6520| 0 | 1 | 0 |
6521+-----+-----+-----+
6522| 1 | 0 | 0 |
6523+-----+-----+-----+
6524| 1 | 1 | 1 |
6525+-----+-----+-----+
6526
6527Example:
6528""""""""
6529
6530.. code-block:: llvm
6531
Tim Northover675a0962014-06-13 14:24:23 +00006532 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6533 <result> = and i32 15, 40 ; yields i32:result = 8
6534 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006535
6536'``or``' Instruction
6537^^^^^^^^^^^^^^^^^^^^
6538
6539Syntax:
6540"""""""
6541
6542::
6543
Tim Northover675a0962014-06-13 14:24:23 +00006544 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006545
6546Overview:
6547"""""""""
6548
6549The '``or``' instruction returns the bitwise logical inclusive or of its
6550two operands.
6551
6552Arguments:
6553""""""""""
6554
6555The two arguments to the '``or``' instruction must be
6556:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6557arguments must have identical types.
6558
6559Semantics:
6560""""""""""
6561
6562The truth table used for the '``or``' instruction is:
6563
6564+-----+-----+-----+
6565| In0 | In1 | Out |
6566+-----+-----+-----+
6567| 0 | 0 | 0 |
6568+-----+-----+-----+
6569| 0 | 1 | 1 |
6570+-----+-----+-----+
6571| 1 | 0 | 1 |
6572+-----+-----+-----+
6573| 1 | 1 | 1 |
6574+-----+-----+-----+
6575
6576Example:
6577""""""""
6578
6579::
6580
Tim Northover675a0962014-06-13 14:24:23 +00006581 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6582 <result> = or i32 15, 40 ; yields i32:result = 47
6583 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006584
6585'``xor``' Instruction
6586^^^^^^^^^^^^^^^^^^^^^
6587
6588Syntax:
6589"""""""
6590
6591::
6592
Tim Northover675a0962014-06-13 14:24:23 +00006593 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006594
6595Overview:
6596"""""""""
6597
6598The '``xor``' instruction returns the bitwise logical exclusive or of
6599its two operands. The ``xor`` is used to implement the "one's
6600complement" operation, which is the "~" operator in C.
6601
6602Arguments:
6603""""""""""
6604
6605The two arguments to the '``xor``' instruction must be
6606:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6607arguments must have identical types.
6608
6609Semantics:
6610""""""""""
6611
6612The truth table used for the '``xor``' instruction is:
6613
6614+-----+-----+-----+
6615| In0 | In1 | Out |
6616+-----+-----+-----+
6617| 0 | 0 | 0 |
6618+-----+-----+-----+
6619| 0 | 1 | 1 |
6620+-----+-----+-----+
6621| 1 | 0 | 1 |
6622+-----+-----+-----+
6623| 1 | 1 | 0 |
6624+-----+-----+-----+
6625
6626Example:
6627""""""""
6628
6629.. code-block:: llvm
6630
Tim Northover675a0962014-06-13 14:24:23 +00006631 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6632 <result> = xor i32 15, 40 ; yields i32:result = 39
6633 <result> = xor i32 4, 8 ; yields i32:result = 12
6634 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006635
6636Vector Operations
6637-----------------
6638
6639LLVM supports several instructions to represent vector operations in a
6640target-independent manner. These instructions cover the element-access
6641and vector-specific operations needed to process vectors effectively.
6642While LLVM does directly support these vector operations, many
6643sophisticated algorithms will want to use target-specific intrinsics to
6644take full advantage of a specific target.
6645
6646.. _i_extractelement:
6647
6648'``extractelement``' Instruction
6649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6650
6651Syntax:
6652"""""""
6653
6654::
6655
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006656 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006657
6658Overview:
6659"""""""""
6660
6661The '``extractelement``' instruction extracts a single scalar element
6662from a vector at a specified index.
6663
6664Arguments:
6665""""""""""
6666
6667The first operand of an '``extractelement``' instruction is a value of
6668:ref:`vector <t_vector>` type. The second operand is an index indicating
6669the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006670variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006671
6672Semantics:
6673""""""""""
6674
6675The result is a scalar of the same type as the element type of ``val``.
6676Its value is the value at position ``idx`` of ``val``. If ``idx``
6677exceeds the length of ``val``, the results are undefined.
6678
6679Example:
6680""""""""
6681
6682.. code-block:: llvm
6683
6684 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6685
6686.. _i_insertelement:
6687
6688'``insertelement``' Instruction
6689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6690
6691Syntax:
6692"""""""
6693
6694::
6695
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006696 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006697
6698Overview:
6699"""""""""
6700
6701The '``insertelement``' instruction inserts a scalar element into a
6702vector at a specified index.
6703
6704Arguments:
6705""""""""""
6706
6707The first operand of an '``insertelement``' instruction is a value of
6708:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6709type must equal the element type of the first operand. The third operand
6710is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006711index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006712
6713Semantics:
6714""""""""""
6715
6716The result is a vector of the same type as ``val``. Its element values
6717are those of ``val`` except at position ``idx``, where it gets the value
6718``elt``. If ``idx`` exceeds the length of ``val``, the results are
6719undefined.
6720
6721Example:
6722""""""""
6723
6724.. code-block:: llvm
6725
6726 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6727
6728.. _i_shufflevector:
6729
6730'``shufflevector``' Instruction
6731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6732
6733Syntax:
6734"""""""
6735
6736::
6737
6738 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6739
6740Overview:
6741"""""""""
6742
6743The '``shufflevector``' instruction constructs a permutation of elements
6744from two input vectors, returning a vector with the same element type as
6745the input and length that is the same as the shuffle mask.
6746
6747Arguments:
6748""""""""""
6749
6750The first two operands of a '``shufflevector``' instruction are vectors
6751with the same type. The third argument is a shuffle mask whose element
6752type is always 'i32'. The result of the instruction is a vector whose
6753length is the same as the shuffle mask and whose element type is the
6754same as the element type of the first two operands.
6755
6756The shuffle mask operand is required to be a constant vector with either
6757constant integer or undef values.
6758
6759Semantics:
6760""""""""""
6761
6762The elements of the two input vectors are numbered from left to right
6763across both of the vectors. The shuffle mask operand specifies, for each
6764element of the result vector, which element of the two input vectors the
6765result element gets. The element selector may be undef (meaning "don't
6766care") and the second operand may be undef if performing a shuffle from
6767only one vector.
6768
6769Example:
6770""""""""
6771
6772.. code-block:: llvm
6773
6774 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6775 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6776 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6777 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6778 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6779 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6780 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6781 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6782
6783Aggregate Operations
6784--------------------
6785
6786LLVM supports several instructions for working with
6787:ref:`aggregate <t_aggregate>` values.
6788
6789.. _i_extractvalue:
6790
6791'``extractvalue``' Instruction
6792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6793
6794Syntax:
6795"""""""
6796
6797::
6798
6799 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6800
6801Overview:
6802"""""""""
6803
6804The '``extractvalue``' instruction extracts the value of a member field
6805from an :ref:`aggregate <t_aggregate>` value.
6806
6807Arguments:
6808""""""""""
6809
6810The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006811:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006812constant indices to specify which value to extract in a similar manner
6813as indices in a '``getelementptr``' instruction.
6814
6815The major differences to ``getelementptr`` indexing are:
6816
6817- Since the value being indexed is not a pointer, the first index is
6818 omitted and assumed to be zero.
6819- At least one index must be specified.
6820- Not only struct indices but also array indices must be in bounds.
6821
6822Semantics:
6823""""""""""
6824
6825The result is the value at the position in the aggregate specified by
6826the index operands.
6827
6828Example:
6829""""""""
6830
6831.. code-block:: llvm
6832
6833 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6834
6835.. _i_insertvalue:
6836
6837'``insertvalue``' Instruction
6838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6839
6840Syntax:
6841"""""""
6842
6843::
6844
6845 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6846
6847Overview:
6848"""""""""
6849
6850The '``insertvalue``' instruction inserts a value into a member field in
6851an :ref:`aggregate <t_aggregate>` value.
6852
6853Arguments:
6854""""""""""
6855
6856The first operand of an '``insertvalue``' instruction is a value of
6857:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6858a first-class value to insert. The following operands are constant
6859indices indicating the position at which to insert the value in a
6860similar manner as indices in a '``extractvalue``' instruction. The value
6861to insert must have the same type as the value identified by the
6862indices.
6863
6864Semantics:
6865""""""""""
6866
6867The result is an aggregate of the same type as ``val``. Its value is
6868that of ``val`` except that the value at the position specified by the
6869indices is that of ``elt``.
6870
6871Example:
6872""""""""
6873
6874.. code-block:: llvm
6875
6876 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6877 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006878 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006879
6880.. _memoryops:
6881
6882Memory Access and Addressing Operations
6883---------------------------------------
6884
6885A key design point of an SSA-based representation is how it represents
6886memory. In LLVM, no memory locations are in SSA form, which makes things
6887very simple. This section describes how to read, write, and allocate
6888memory in LLVM.
6889
6890.. _i_alloca:
6891
6892'``alloca``' Instruction
6893^^^^^^^^^^^^^^^^^^^^^^^^
6894
6895Syntax:
6896"""""""
6897
6898::
6899
Tim Northover675a0962014-06-13 14:24:23 +00006900 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006901
6902Overview:
6903"""""""""
6904
6905The '``alloca``' instruction allocates memory on the stack frame of the
6906currently executing function, to be automatically released when this
6907function returns to its caller. The object is always allocated in the
6908generic address space (address space zero).
6909
6910Arguments:
6911""""""""""
6912
6913The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6914bytes of memory on the runtime stack, returning a pointer of the
6915appropriate type to the program. If "NumElements" is specified, it is
6916the number of elements allocated, otherwise "NumElements" is defaulted
6917to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006918allocation is guaranteed to be aligned to at least that boundary. The
6919alignment may not be greater than ``1 << 29``. If not specified, or if
6920zero, the target can choose to align the allocation on any convenient
6921boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006922
6923'``type``' may be any sized type.
6924
6925Semantics:
6926""""""""""
6927
6928Memory is allocated; a pointer is returned. The operation is undefined
6929if there is insufficient stack space for the allocation. '``alloca``'d
6930memory is automatically released when the function returns. The
6931'``alloca``' instruction is commonly used to represent automatic
6932variables that must have an address available. When the function returns
6933(either with the ``ret`` or ``resume`` instructions), the memory is
6934reclaimed. Allocating zero bytes is legal, but the result is undefined.
6935The order in which memory is allocated (ie., which way the stack grows)
6936is not specified.
6937
6938Example:
6939""""""""
6940
6941.. code-block:: llvm
6942
Tim Northover675a0962014-06-13 14:24:23 +00006943 %ptr = alloca i32 ; yields i32*:ptr
6944 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6945 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6946 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006947
6948.. _i_load:
6949
6950'``load``' Instruction
6951^^^^^^^^^^^^^^^^^^^^^^
6952
6953Syntax:
6954"""""""
6955
6956::
6957
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006958 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006959 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006960 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006961 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006962 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006963
6964Overview:
6965"""""""""
6966
6967The '``load``' instruction is used to read from memory.
6968
6969Arguments:
6970""""""""""
6971
Eli Bendersky239a78b2013-04-17 20:17:08 +00006972The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006973from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006974class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6975then the optimizer is not allowed to modify the number or order of
6976execution of this ``load`` with other :ref:`volatile
6977operations <volatile>`.
6978
6979If the ``load`` is marked as ``atomic``, it takes an extra
6980:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6981``release`` and ``acq_rel`` orderings are not valid on ``load``
6982instructions. Atomic loads produce :ref:`defined <memmodel>` results
6983when they may see multiple atomic stores. The type of the pointee must
6984be an integer type whose bit width is a power of two greater than or
6985equal to eight and less than or equal to a target-specific size limit.
6986``align`` must be explicitly specified on atomic loads, and the load has
6987undefined behavior if the alignment is not set to a value which is at
6988least the size in bytes of the pointee. ``!nontemporal`` does not have
6989any defined semantics for atomic loads.
6990
6991The optional constant ``align`` argument specifies the alignment of the
6992operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006993or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006994alignment for the target. It is the responsibility of the code emitter
6995to ensure that the alignment information is correct. Overestimating the
6996alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006997may produce less efficient code. An alignment of 1 is always safe. The
6998maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006999
7000The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007001metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007002``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007003metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007004that this load is not expected to be reused in the cache. The code
7005generator may select special instructions to save cache bandwidth, such
7006as the ``MOVNT`` instruction on x86.
7007
7008The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007009metadata name ``<index>`` corresponding to a metadata node with no
7010entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00007011instruction tells the optimizer and code generator that the address
7012operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007013Being invariant does not imply that a location is dereferenceable,
7014but it does imply that once the location is known dereferenceable
7015its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00007016
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007017The optional ``!invariant.group`` metadata must reference a single metadata name
7018 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7019
Philip Reamescdb72f32014-10-20 22:40:55 +00007020The optional ``!nonnull`` metadata must reference a single
7021metadata name ``<index>`` corresponding to a metadata node with no
7022entries. The existence of the ``!nonnull`` metadata on the
7023instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007024never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007025on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007026to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007027
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007028The optional ``!dereferenceable`` metadata must reference a single metadata
7029name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007030entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007031tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007032The number of bytes known to be dereferenceable is specified by the integer
7033value in the metadata node. This is analogous to the ''dereferenceable''
7034attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007035to loads of a pointer type.
7036
7037The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007038metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7039``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007040instruction tells the optimizer that the value loaded is known to be either
7041dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007042The number of bytes known to be dereferenceable is specified by the integer
7043value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7044attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007045to loads of a pointer type.
7046
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007047The optional ``!align`` metadata must reference a single metadata name
7048``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7049The existence of the ``!align`` metadata on the instruction tells the
7050optimizer that the value loaded is known to be aligned to a boundary specified
7051by the integer value in the metadata node. The alignment must be a power of 2.
7052This is analogous to the ''align'' attribute on parameters and return values.
7053This metadata can only be applied to loads of a pointer type.
7054
Sean Silvab084af42012-12-07 10:36:55 +00007055Semantics:
7056""""""""""
7057
7058The location of memory pointed to is loaded. If the value being loaded
7059is of scalar type then the number of bytes read does not exceed the
7060minimum number of bytes needed to hold all bits of the type. For
7061example, loading an ``i24`` reads at most three bytes. When loading a
7062value of a type like ``i20`` with a size that is not an integral number
7063of bytes, the result is undefined if the value was not originally
7064written using a store of the same type.
7065
7066Examples:
7067"""""""""
7068
7069.. code-block:: llvm
7070
Tim Northover675a0962014-06-13 14:24:23 +00007071 %ptr = alloca i32 ; yields i32*:ptr
7072 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007073 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007074
7075.. _i_store:
7076
7077'``store``' Instruction
7078^^^^^^^^^^^^^^^^^^^^^^^
7079
7080Syntax:
7081"""""""
7082
7083::
7084
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007085 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7086 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007087
7088Overview:
7089"""""""""
7090
7091The '``store``' instruction is used to write to memory.
7092
7093Arguments:
7094""""""""""
7095
Eli Benderskyca380842013-04-17 17:17:20 +00007096There are two arguments to the ``store`` instruction: a value to store
7097and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007098operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007099the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007100then the optimizer is not allowed to modify the number or order of
7101execution of this ``store`` with other :ref:`volatile
7102operations <volatile>`.
7103
7104If the ``store`` is marked as ``atomic``, it takes an extra
7105:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7106``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
7107instructions. Atomic loads produce :ref:`defined <memmodel>` results
7108when they may see multiple atomic stores. The type of the pointee must
7109be an integer type whose bit width is a power of two greater than or
7110equal to eight and less than or equal to a target-specific size limit.
7111``align`` must be explicitly specified on atomic stores, and the store
7112has undefined behavior if the alignment is not set to a value which is
7113at least the size in bytes of the pointee. ``!nontemporal`` does not
7114have any defined semantics for atomic stores.
7115
Eli Benderskyca380842013-04-17 17:17:20 +00007116The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007117operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007118or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007119alignment for the target. It is the responsibility of the code emitter
7120to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007121alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007122alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007123safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007124
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007125The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007126name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007127value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007128tells the optimizer and code generator that this load is not expected to
7129be reused in the cache. The code generator may select special
7130instructions to save cache bandwidth, such as the MOVNT instruction on
7131x86.
7132
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007133The optional ``!invariant.group`` metadata must reference a
7134single metadata name ``<index>``. See ``invariant.group`` metadata.
7135
Sean Silvab084af42012-12-07 10:36:55 +00007136Semantics:
7137""""""""""
7138
Eli Benderskyca380842013-04-17 17:17:20 +00007139The contents of memory are updated to contain ``<value>`` at the
7140location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007141of scalar type then the number of bytes written does not exceed the
7142minimum number of bytes needed to hold all bits of the type. For
7143example, storing an ``i24`` writes at most three bytes. When writing a
7144value of a type like ``i20`` with a size that is not an integral number
7145of bytes, it is unspecified what happens to the extra bits that do not
7146belong to the type, but they will typically be overwritten.
7147
7148Example:
7149""""""""
7150
7151.. code-block:: llvm
7152
Tim Northover675a0962014-06-13 14:24:23 +00007153 %ptr = alloca i32 ; yields i32*:ptr
7154 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007155 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007156
7157.. _i_fence:
7158
7159'``fence``' Instruction
7160^^^^^^^^^^^^^^^^^^^^^^^
7161
7162Syntax:
7163"""""""
7164
7165::
7166
Tim Northover675a0962014-06-13 14:24:23 +00007167 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007168
7169Overview:
7170"""""""""
7171
7172The '``fence``' instruction is used to introduce happens-before edges
7173between operations.
7174
7175Arguments:
7176""""""""""
7177
7178'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7179defines what *synchronizes-with* edges they add. They can only be given
7180``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7181
7182Semantics:
7183""""""""""
7184
7185A fence A which has (at least) ``release`` ordering semantics
7186*synchronizes with* a fence B with (at least) ``acquire`` ordering
7187semantics if and only if there exist atomic operations X and Y, both
7188operating on some atomic object M, such that A is sequenced before X, X
7189modifies M (either directly or through some side effect of a sequence
7190headed by X), Y is sequenced before B, and Y observes M. This provides a
7191*happens-before* dependency between A and B. Rather than an explicit
7192``fence``, one (but not both) of the atomic operations X or Y might
7193provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7194still *synchronize-with* the explicit ``fence`` and establish the
7195*happens-before* edge.
7196
7197A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7198``acquire`` and ``release`` semantics specified above, participates in
7199the global program order of other ``seq_cst`` operations and/or fences.
7200
7201The optional ":ref:`singlethread <singlethread>`" argument specifies
7202that the fence only synchronizes with other fences in the same thread.
7203(This is useful for interacting with signal handlers.)
7204
7205Example:
7206""""""""
7207
7208.. code-block:: llvm
7209
Tim Northover675a0962014-06-13 14:24:23 +00007210 fence acquire ; yields void
7211 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007212
7213.. _i_cmpxchg:
7214
7215'``cmpxchg``' Instruction
7216^^^^^^^^^^^^^^^^^^^^^^^^^
7217
7218Syntax:
7219"""""""
7220
7221::
7222
Tim Northover675a0962014-06-13 14:24:23 +00007223 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007224
7225Overview:
7226"""""""""
7227
7228The '``cmpxchg``' instruction is used to atomically modify memory. It
7229loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007230equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007231
7232Arguments:
7233""""""""""
7234
7235There are three arguments to the '``cmpxchg``' instruction: an address
7236to operate on, a value to compare to the value currently be at that
7237address, and a new value to place at that address if the compared values
7238are equal. The type of '<cmp>' must be an integer type whose bit width
7239is a power of two greater than or equal to eight and less than or equal
7240to a target-specific size limit. '<cmp>' and '<new>' must have the same
7241type, and the type of '<pointer>' must be a pointer to that type. If the
7242``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7243to modify the number or order of execution of this ``cmpxchg`` with
7244other :ref:`volatile operations <volatile>`.
7245
Tim Northovere94a5182014-03-11 10:48:52 +00007246The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007247``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7248must be at least ``monotonic``, the ordering constraint on failure must be no
7249stronger than that on success, and the failure ordering cannot be either
7250``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007251
7252The optional "``singlethread``" argument declares that the ``cmpxchg``
7253is only atomic with respect to code (usually signal handlers) running in
7254the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7255respect to all other code in the system.
7256
7257The pointer passed into cmpxchg must have alignment greater than or
7258equal to the size in memory of the operand.
7259
7260Semantics:
7261""""""""""
7262
Tim Northover420a2162014-06-13 14:24:07 +00007263The contents of memory at the location specified by the '``<pointer>``' operand
7264is read and compared to '``<cmp>``'; if the read value is the equal, the
7265'``<new>``' is written. The original value at the location is returned, together
7266with a flag indicating success (true) or failure (false).
7267
7268If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7269permitted: the operation may not write ``<new>`` even if the comparison
7270matched.
7271
7272If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7273if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007274
Tim Northovere94a5182014-03-11 10:48:52 +00007275A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7276identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7277load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007278
7279Example:
7280""""""""
7281
7282.. code-block:: llvm
7283
7284 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007285 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007286 br label %loop
7287
7288 loop:
7289 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7290 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007291 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007292 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7293 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007294 br i1 %success, label %done, label %loop
7295
7296 done:
7297 ...
7298
7299.. _i_atomicrmw:
7300
7301'``atomicrmw``' Instruction
7302^^^^^^^^^^^^^^^^^^^^^^^^^^^
7303
7304Syntax:
7305"""""""
7306
7307::
7308
Tim Northover675a0962014-06-13 14:24:23 +00007309 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007310
7311Overview:
7312"""""""""
7313
7314The '``atomicrmw``' instruction is used to atomically modify memory.
7315
7316Arguments:
7317""""""""""
7318
7319There are three arguments to the '``atomicrmw``' instruction: an
7320operation to apply, an address whose value to modify, an argument to the
7321operation. The operation must be one of the following keywords:
7322
7323- xchg
7324- add
7325- sub
7326- and
7327- nand
7328- or
7329- xor
7330- max
7331- min
7332- umax
7333- umin
7334
7335The type of '<value>' must be an integer type whose bit width is a power
7336of two greater than or equal to eight and less than or equal to a
7337target-specific size limit. The type of the '``<pointer>``' operand must
7338be a pointer to that type. If the ``atomicrmw`` is marked as
7339``volatile``, then the optimizer is not allowed to modify the number or
7340order of execution of this ``atomicrmw`` with other :ref:`volatile
7341operations <volatile>`.
7342
7343Semantics:
7344""""""""""
7345
7346The contents of memory at the location specified by the '``<pointer>``'
7347operand are atomically read, modified, and written back. The original
7348value at the location is returned. The modification is specified by the
7349operation argument:
7350
7351- xchg: ``*ptr = val``
7352- add: ``*ptr = *ptr + val``
7353- sub: ``*ptr = *ptr - val``
7354- and: ``*ptr = *ptr & val``
7355- nand: ``*ptr = ~(*ptr & val)``
7356- or: ``*ptr = *ptr | val``
7357- xor: ``*ptr = *ptr ^ val``
7358- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7359- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7360- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7361 comparison)
7362- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7363 comparison)
7364
7365Example:
7366""""""""
7367
7368.. code-block:: llvm
7369
Tim Northover675a0962014-06-13 14:24:23 +00007370 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007371
7372.. _i_getelementptr:
7373
7374'``getelementptr``' Instruction
7375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7376
7377Syntax:
7378"""""""
7379
7380::
7381
David Blaikie16a97eb2015-03-04 22:02:58 +00007382 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7383 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7384 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007385
7386Overview:
7387"""""""""
7388
7389The '``getelementptr``' instruction is used to get the address of a
7390subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007391address calculation only and does not access memory. The instruction can also
7392be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007393
7394Arguments:
7395""""""""""
7396
David Blaikie16a97eb2015-03-04 22:02:58 +00007397The first argument is always a type used as the basis for the calculations.
7398The second argument is always a pointer or a vector of pointers, and is the
7399base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007400that indicate which of the elements of the aggregate object are indexed.
7401The interpretation of each index is dependent on the type being indexed
7402into. The first index always indexes the pointer value given as the
7403first argument, the second index indexes a value of the type pointed to
7404(not necessarily the value directly pointed to, since the first index
7405can be non-zero), etc. The first type indexed into must be a pointer
7406value, subsequent types can be arrays, vectors, and structs. Note that
7407subsequent types being indexed into can never be pointers, since that
7408would require loading the pointer before continuing calculation.
7409
7410The type of each index argument depends on the type it is indexing into.
7411When indexing into a (optionally packed) structure, only ``i32`` integer
7412**constants** are allowed (when using a vector of indices they must all
7413be the **same** ``i32`` integer constant). When indexing into an array,
7414pointer or vector, integers of any width are allowed, and they are not
7415required to be constant. These integers are treated as signed values
7416where relevant.
7417
7418For example, let's consider a C code fragment and how it gets compiled
7419to LLVM:
7420
7421.. code-block:: c
7422
7423 struct RT {
7424 char A;
7425 int B[10][20];
7426 char C;
7427 };
7428 struct ST {
7429 int X;
7430 double Y;
7431 struct RT Z;
7432 };
7433
7434 int *foo(struct ST *s) {
7435 return &s[1].Z.B[5][13];
7436 }
7437
7438The LLVM code generated by Clang is:
7439
7440.. code-block:: llvm
7441
7442 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7443 %struct.ST = type { i32, double, %struct.RT }
7444
7445 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7446 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007447 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007448 ret i32* %arrayidx
7449 }
7450
7451Semantics:
7452""""""""""
7453
7454In the example above, the first index is indexing into the
7455'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7456= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7457indexes into the third element of the structure, yielding a
7458'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7459structure. The third index indexes into the second element of the
7460structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7461dimensions of the array are subscripted into, yielding an '``i32``'
7462type. The '``getelementptr``' instruction returns a pointer to this
7463element, thus computing a value of '``i32*``' type.
7464
7465Note that it is perfectly legal to index partially through a structure,
7466returning a pointer to an inner element. Because of this, the LLVM code
7467for the given testcase is equivalent to:
7468
7469.. code-block:: llvm
7470
7471 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007472 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7473 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7474 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7475 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7476 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007477 ret i32* %t5
7478 }
7479
7480If the ``inbounds`` keyword is present, the result value of the
7481``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7482pointer is not an *in bounds* address of an allocated object, or if any
7483of the addresses that would be formed by successive addition of the
7484offsets implied by the indices to the base address with infinitely
7485precise signed arithmetic are not an *in bounds* address of that
7486allocated object. The *in bounds* addresses for an allocated object are
7487all the addresses that point into the object, plus the address one byte
7488past the end. In cases where the base is a vector of pointers the
7489``inbounds`` keyword applies to each of the computations element-wise.
7490
7491If the ``inbounds`` keyword is not present, the offsets are added to the
7492base address with silently-wrapping two's complement arithmetic. If the
7493offsets have a different width from the pointer, they are sign-extended
7494or truncated to the width of the pointer. The result value of the
7495``getelementptr`` may be outside the object pointed to by the base
7496pointer. The result value may not necessarily be used to access memory
7497though, even if it happens to point into allocated storage. See the
7498:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7499information.
7500
7501The getelementptr instruction is often confusing. For some more insight
7502into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7503
7504Example:
7505""""""""
7506
7507.. code-block:: llvm
7508
7509 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007510 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007511 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007512 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007513 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007514 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007515 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007516 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007517
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007518Vector of pointers:
7519"""""""""""""""""""
7520
7521The ``getelementptr`` returns a vector of pointers, instead of a single address,
7522when one or more of its arguments is a vector. In such cases, all vector
7523arguments should have the same number of elements, and every scalar argument
7524will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007525
7526.. code-block:: llvm
7527
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007528 ; All arguments are vectors:
7529 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7530 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007531
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007532 ; Add the same scalar offset to each pointer of a vector:
7533 ; A[i] = ptrs[i] + offset*sizeof(i8)
7534 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007535
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007536 ; Add distinct offsets to the same pointer:
7537 ; A[i] = ptr + offsets[i]*sizeof(i8)
7538 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007539
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007540 ; In all cases described above the type of the result is <4 x i8*>
7541
7542The two following instructions are equivalent:
7543
7544.. code-block:: llvm
7545
7546 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7547 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7548 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7549 <4 x i32> %ind4,
7550 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007551
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007552 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7553 i32 2, i32 1, <4 x i32> %ind4, i64 13
7554
7555Let's look at the C code, where the vector version of ``getelementptr``
7556makes sense:
7557
7558.. code-block:: c
7559
7560 // Let's assume that we vectorize the following loop:
7561 double *A, B; int *C;
7562 for (int i = 0; i < size; ++i) {
7563 A[i] = B[C[i]];
7564 }
7565
7566.. code-block:: llvm
7567
7568 ; get pointers for 8 elements from array B
7569 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7570 ; load 8 elements from array B into A
7571 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7572 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007573
7574Conversion Operations
7575---------------------
7576
7577The instructions in this category are the conversion instructions
7578(casting) which all take a single operand and a type. They perform
7579various bit conversions on the operand.
7580
7581'``trunc .. to``' Instruction
7582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7583
7584Syntax:
7585"""""""
7586
7587::
7588
7589 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7590
7591Overview:
7592"""""""""
7593
7594The '``trunc``' instruction truncates its operand to the type ``ty2``.
7595
7596Arguments:
7597""""""""""
7598
7599The '``trunc``' instruction takes a value to trunc, and a type to trunc
7600it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7601of the same number of integers. The bit size of the ``value`` must be
7602larger than the bit size of the destination type, ``ty2``. Equal sized
7603types are not allowed.
7604
7605Semantics:
7606""""""""""
7607
7608The '``trunc``' instruction truncates the high order bits in ``value``
7609and converts the remaining bits to ``ty2``. Since the source size must
7610be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7611It will always truncate bits.
7612
7613Example:
7614""""""""
7615
7616.. code-block:: llvm
7617
7618 %X = trunc i32 257 to i8 ; yields i8:1
7619 %Y = trunc i32 123 to i1 ; yields i1:true
7620 %Z = trunc i32 122 to i1 ; yields i1:false
7621 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7622
7623'``zext .. to``' Instruction
7624^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7625
7626Syntax:
7627"""""""
7628
7629::
7630
7631 <result> = zext <ty> <value> to <ty2> ; yields ty2
7632
7633Overview:
7634"""""""""
7635
7636The '``zext``' instruction zero extends its operand to type ``ty2``.
7637
7638Arguments:
7639""""""""""
7640
7641The '``zext``' instruction takes a value to cast, and a type to cast it
7642to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7643the same number of integers. The bit size of the ``value`` must be
7644smaller than the bit size of the destination type, ``ty2``.
7645
7646Semantics:
7647""""""""""
7648
7649The ``zext`` fills the high order bits of the ``value`` with zero bits
7650until it reaches the size of the destination type, ``ty2``.
7651
7652When zero extending from i1, the result will always be either 0 or 1.
7653
7654Example:
7655""""""""
7656
7657.. code-block:: llvm
7658
7659 %X = zext i32 257 to i64 ; yields i64:257
7660 %Y = zext i1 true to i32 ; yields i32:1
7661 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7662
7663'``sext .. to``' Instruction
7664^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7665
7666Syntax:
7667"""""""
7668
7669::
7670
7671 <result> = sext <ty> <value> to <ty2> ; yields ty2
7672
7673Overview:
7674"""""""""
7675
7676The '``sext``' sign extends ``value`` to the type ``ty2``.
7677
7678Arguments:
7679""""""""""
7680
7681The '``sext``' instruction takes a value to cast, and a type to cast it
7682to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7683the same number of integers. The bit size of the ``value`` must be
7684smaller than the bit size of the destination type, ``ty2``.
7685
7686Semantics:
7687""""""""""
7688
7689The '``sext``' instruction performs a sign extension by copying the sign
7690bit (highest order bit) of the ``value`` until it reaches the bit size
7691of the type ``ty2``.
7692
7693When sign extending from i1, the extension always results in -1 or 0.
7694
7695Example:
7696""""""""
7697
7698.. code-block:: llvm
7699
7700 %X = sext i8 -1 to i16 ; yields i16 :65535
7701 %Y = sext i1 true to i32 ; yields i32:-1
7702 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7703
7704'``fptrunc .. to``' Instruction
7705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7706
7707Syntax:
7708"""""""
7709
7710::
7711
7712 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7713
7714Overview:
7715"""""""""
7716
7717The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7718
7719Arguments:
7720""""""""""
7721
7722The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7723value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7724The size of ``value`` must be larger than the size of ``ty2``. This
7725implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7726
7727Semantics:
7728""""""""""
7729
Dan Liew50456fb2015-09-03 18:43:56 +00007730The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007731:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007732point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7733destination type, ``ty2``, then the results are undefined. If the cast produces
7734an inexact result, how rounding is performed (e.g. truncation, also known as
7735round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007736
7737Example:
7738""""""""
7739
7740.. code-block:: llvm
7741
7742 %X = fptrunc double 123.0 to float ; yields float:123.0
7743 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7744
7745'``fpext .. to``' Instruction
7746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7747
7748Syntax:
7749"""""""
7750
7751::
7752
7753 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7754
7755Overview:
7756"""""""""
7757
7758The '``fpext``' extends a floating point ``value`` to a larger floating
7759point value.
7760
7761Arguments:
7762""""""""""
7763
7764The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7765``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7766to. The source type must be smaller than the destination type.
7767
7768Semantics:
7769""""""""""
7770
7771The '``fpext``' instruction extends the ``value`` from a smaller
7772:ref:`floating point <t_floating>` type to a larger :ref:`floating
7773point <t_floating>` type. The ``fpext`` cannot be used to make a
7774*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7775*no-op cast* for a floating point cast.
7776
7777Example:
7778""""""""
7779
7780.. code-block:: llvm
7781
7782 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7783 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7784
7785'``fptoui .. to``' Instruction
7786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7787
7788Syntax:
7789"""""""
7790
7791::
7792
7793 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7794
7795Overview:
7796"""""""""
7797
7798The '``fptoui``' converts a floating point ``value`` to its unsigned
7799integer equivalent of type ``ty2``.
7800
7801Arguments:
7802""""""""""
7803
7804The '``fptoui``' instruction takes a value to cast, which must be a
7805scalar or vector :ref:`floating point <t_floating>` value, and a type to
7806cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7807``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7808type with the same number of elements as ``ty``
7809
7810Semantics:
7811""""""""""
7812
7813The '``fptoui``' instruction converts its :ref:`floating
7814point <t_floating>` operand into the nearest (rounding towards zero)
7815unsigned integer value. If the value cannot fit in ``ty2``, the results
7816are undefined.
7817
7818Example:
7819""""""""
7820
7821.. code-block:: llvm
7822
7823 %X = fptoui double 123.0 to i32 ; yields i32:123
7824 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7825 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7826
7827'``fptosi .. to``' Instruction
7828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7829
7830Syntax:
7831"""""""
7832
7833::
7834
7835 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7836
7837Overview:
7838"""""""""
7839
7840The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7841``value`` to type ``ty2``.
7842
7843Arguments:
7844""""""""""
7845
7846The '``fptosi``' instruction takes a value to cast, which must be a
7847scalar or vector :ref:`floating point <t_floating>` value, and a type to
7848cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7849``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7850type with the same number of elements as ``ty``
7851
7852Semantics:
7853""""""""""
7854
7855The '``fptosi``' instruction converts its :ref:`floating
7856point <t_floating>` operand into the nearest (rounding towards zero)
7857signed integer value. If the value cannot fit in ``ty2``, the results
7858are undefined.
7859
7860Example:
7861""""""""
7862
7863.. code-block:: llvm
7864
7865 %X = fptosi double -123.0 to i32 ; yields i32:-123
7866 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7867 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7868
7869'``uitofp .. to``' Instruction
7870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7871
7872Syntax:
7873"""""""
7874
7875::
7876
7877 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7878
7879Overview:
7880"""""""""
7881
7882The '``uitofp``' instruction regards ``value`` as an unsigned integer
7883and converts that value to the ``ty2`` type.
7884
7885Arguments:
7886""""""""""
7887
7888The '``uitofp``' instruction takes a value to cast, which must be a
7889scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7890``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7891``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7892type with the same number of elements as ``ty``
7893
7894Semantics:
7895""""""""""
7896
7897The '``uitofp``' instruction interprets its operand as an unsigned
7898integer quantity and converts it to the corresponding floating point
7899value. If the value cannot fit in the floating point value, the results
7900are undefined.
7901
7902Example:
7903""""""""
7904
7905.. code-block:: llvm
7906
7907 %X = uitofp i32 257 to float ; yields float:257.0
7908 %Y = uitofp i8 -1 to double ; yields double:255.0
7909
7910'``sitofp .. to``' Instruction
7911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7912
7913Syntax:
7914"""""""
7915
7916::
7917
7918 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7919
7920Overview:
7921"""""""""
7922
7923The '``sitofp``' instruction regards ``value`` as a signed integer and
7924converts that value to the ``ty2`` type.
7925
7926Arguments:
7927""""""""""
7928
7929The '``sitofp``' instruction takes a value to cast, which must be a
7930scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7931``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7932``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7933type with the same number of elements as ``ty``
7934
7935Semantics:
7936""""""""""
7937
7938The '``sitofp``' instruction interprets its operand as a signed integer
7939quantity and converts it to the corresponding floating point value. If
7940the value cannot fit in the floating point value, the results are
7941undefined.
7942
7943Example:
7944""""""""
7945
7946.. code-block:: llvm
7947
7948 %X = sitofp i32 257 to float ; yields float:257.0
7949 %Y = sitofp i8 -1 to double ; yields double:-1.0
7950
7951.. _i_ptrtoint:
7952
7953'``ptrtoint .. to``' Instruction
7954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7955
7956Syntax:
7957"""""""
7958
7959::
7960
7961 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7962
7963Overview:
7964"""""""""
7965
7966The '``ptrtoint``' instruction converts the pointer or a vector of
7967pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7968
7969Arguments:
7970""""""""""
7971
7972The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007973a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007974type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7975a vector of integers type.
7976
7977Semantics:
7978""""""""""
7979
7980The '``ptrtoint``' instruction converts ``value`` to integer type
7981``ty2`` by interpreting the pointer value as an integer and either
7982truncating or zero extending that value to the size of the integer type.
7983If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7984``value`` is larger than ``ty2`` then a truncation is done. If they are
7985the same size, then nothing is done (*no-op cast*) other than a type
7986change.
7987
7988Example:
7989""""""""
7990
7991.. code-block:: llvm
7992
7993 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7994 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7995 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7996
7997.. _i_inttoptr:
7998
7999'``inttoptr .. to``' Instruction
8000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8001
8002Syntax:
8003"""""""
8004
8005::
8006
8007 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8008
8009Overview:
8010"""""""""
8011
8012The '``inttoptr``' instruction converts an integer ``value`` to a
8013pointer type, ``ty2``.
8014
8015Arguments:
8016""""""""""
8017
8018The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8019cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8020type.
8021
8022Semantics:
8023""""""""""
8024
8025The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8026applying either a zero extension or a truncation depending on the size
8027of the integer ``value``. If ``value`` is larger than the size of a
8028pointer then a truncation is done. If ``value`` is smaller than the size
8029of a pointer then a zero extension is done. If they are the same size,
8030nothing is done (*no-op cast*).
8031
8032Example:
8033""""""""
8034
8035.. code-block:: llvm
8036
8037 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8038 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8039 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8040 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8041
8042.. _i_bitcast:
8043
8044'``bitcast .. to``' Instruction
8045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8046
8047Syntax:
8048"""""""
8049
8050::
8051
8052 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8053
8054Overview:
8055"""""""""
8056
8057The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8058changing any bits.
8059
8060Arguments:
8061""""""""""
8062
8063The '``bitcast``' instruction takes a value to cast, which must be a
8064non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008065also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8066bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008067identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008068also be a pointer of the same size. This instruction supports bitwise
8069conversion of vectors to integers and to vectors of other types (as
8070long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008071
8072Semantics:
8073""""""""""
8074
Matt Arsenault24b49c42013-07-31 17:49:08 +00008075The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8076is always a *no-op cast* because no bits change with this
8077conversion. The conversion is done as if the ``value`` had been stored
8078to memory and read back as type ``ty2``. Pointer (or vector of
8079pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008080pointers) types with the same address space through this instruction.
8081To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8082or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008083
8084Example:
8085""""""""
8086
8087.. code-block:: llvm
8088
8089 %X = bitcast i8 255 to i8 ; yields i8 :-1
8090 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8091 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8092 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8093
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008094.. _i_addrspacecast:
8095
8096'``addrspacecast .. to``' Instruction
8097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8098
8099Syntax:
8100"""""""
8101
8102::
8103
8104 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8105
8106Overview:
8107"""""""""
8108
8109The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8110address space ``n`` to type ``pty2`` in address space ``m``.
8111
8112Arguments:
8113""""""""""
8114
8115The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8116to cast and a pointer type to cast it to, which must have a different
8117address space.
8118
8119Semantics:
8120""""""""""
8121
8122The '``addrspacecast``' instruction converts the pointer value
8123``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008124value modification, depending on the target and the address space
8125pair. Pointer conversions within the same address space must be
8126performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008127conversion is legal then both result and operand refer to the same memory
8128location.
8129
8130Example:
8131""""""""
8132
8133.. code-block:: llvm
8134
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008135 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8136 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8137 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008138
Sean Silvab084af42012-12-07 10:36:55 +00008139.. _otherops:
8140
8141Other Operations
8142----------------
8143
8144The instructions in this category are the "miscellaneous" instructions,
8145which defy better classification.
8146
8147.. _i_icmp:
8148
8149'``icmp``' Instruction
8150^^^^^^^^^^^^^^^^^^^^^^
8151
8152Syntax:
8153"""""""
8154
8155::
8156
Tim Northover675a0962014-06-13 14:24:23 +00008157 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008158
8159Overview:
8160"""""""""
8161
8162The '``icmp``' instruction returns a boolean value or a vector of
8163boolean values based on comparison of its two integer, integer vector,
8164pointer, or pointer vector operands.
8165
8166Arguments:
8167""""""""""
8168
8169The '``icmp``' instruction takes three operands. The first operand is
8170the condition code indicating the kind of comparison to perform. It is
8171not a value, just a keyword. The possible condition code are:
8172
8173#. ``eq``: equal
8174#. ``ne``: not equal
8175#. ``ugt``: unsigned greater than
8176#. ``uge``: unsigned greater or equal
8177#. ``ult``: unsigned less than
8178#. ``ule``: unsigned less or equal
8179#. ``sgt``: signed greater than
8180#. ``sge``: signed greater or equal
8181#. ``slt``: signed less than
8182#. ``sle``: signed less or equal
8183
8184The remaining two arguments must be :ref:`integer <t_integer>` or
8185:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8186must also be identical types.
8187
8188Semantics:
8189""""""""""
8190
8191The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8192code given as ``cond``. The comparison performed always yields either an
8193:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8194
8195#. ``eq``: yields ``true`` if the operands are equal, ``false``
8196 otherwise. No sign interpretation is necessary or performed.
8197#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8198 otherwise. No sign interpretation is necessary or performed.
8199#. ``ugt``: interprets the operands as unsigned values and yields
8200 ``true`` if ``op1`` is greater than ``op2``.
8201#. ``uge``: interprets the operands as unsigned values and yields
8202 ``true`` if ``op1`` is greater than or equal to ``op2``.
8203#. ``ult``: interprets the operands as unsigned values and yields
8204 ``true`` if ``op1`` is less than ``op2``.
8205#. ``ule``: interprets the operands as unsigned values and yields
8206 ``true`` if ``op1`` is less than or equal to ``op2``.
8207#. ``sgt``: interprets the operands as signed values and yields ``true``
8208 if ``op1`` is greater than ``op2``.
8209#. ``sge``: interprets the operands as signed values and yields ``true``
8210 if ``op1`` is greater than or equal to ``op2``.
8211#. ``slt``: interprets the operands as signed values and yields ``true``
8212 if ``op1`` is less than ``op2``.
8213#. ``sle``: interprets the operands as signed values and yields ``true``
8214 if ``op1`` is less than or equal to ``op2``.
8215
8216If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8217are compared as if they were integers.
8218
8219If the operands are integer vectors, then they are compared element by
8220element. The result is an ``i1`` vector with the same number of elements
8221as the values being compared. Otherwise, the result is an ``i1``.
8222
8223Example:
8224""""""""
8225
8226.. code-block:: llvm
8227
8228 <result> = icmp eq i32 4, 5 ; yields: result=false
8229 <result> = icmp ne float* %X, %X ; yields: result=false
8230 <result> = icmp ult i16 4, 5 ; yields: result=true
8231 <result> = icmp sgt i16 4, 5 ; yields: result=false
8232 <result> = icmp ule i16 -4, 5 ; yields: result=false
8233 <result> = icmp sge i16 4, 5 ; yields: result=false
8234
8235Note that the code generator does not yet support vector types with the
8236``icmp`` instruction.
8237
8238.. _i_fcmp:
8239
8240'``fcmp``' Instruction
8241^^^^^^^^^^^^^^^^^^^^^^
8242
8243Syntax:
8244"""""""
8245
8246::
8247
James Molloy88eb5352015-07-10 12:52:00 +00008248 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008249
8250Overview:
8251"""""""""
8252
8253The '``fcmp``' instruction returns a boolean value or vector of boolean
8254values based on comparison of its operands.
8255
8256If the operands are floating point scalars, then the result type is a
8257boolean (:ref:`i1 <t_integer>`).
8258
8259If the operands are floating point vectors, then the result type is a
8260vector of boolean with the same number of elements as the operands being
8261compared.
8262
8263Arguments:
8264""""""""""
8265
8266The '``fcmp``' instruction takes three operands. The first operand is
8267the condition code indicating the kind of comparison to perform. It is
8268not a value, just a keyword. The possible condition code are:
8269
8270#. ``false``: no comparison, always returns false
8271#. ``oeq``: ordered and equal
8272#. ``ogt``: ordered and greater than
8273#. ``oge``: ordered and greater than or equal
8274#. ``olt``: ordered and less than
8275#. ``ole``: ordered and less than or equal
8276#. ``one``: ordered and not equal
8277#. ``ord``: ordered (no nans)
8278#. ``ueq``: unordered or equal
8279#. ``ugt``: unordered or greater than
8280#. ``uge``: unordered or greater than or equal
8281#. ``ult``: unordered or less than
8282#. ``ule``: unordered or less than or equal
8283#. ``une``: unordered or not equal
8284#. ``uno``: unordered (either nans)
8285#. ``true``: no comparison, always returns true
8286
8287*Ordered* means that neither operand is a QNAN while *unordered* means
8288that either operand may be a QNAN.
8289
8290Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8291point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8292type. They must have identical types.
8293
8294Semantics:
8295""""""""""
8296
8297The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8298condition code given as ``cond``. If the operands are vectors, then the
8299vectors are compared element by element. Each comparison performed
8300always yields an :ref:`i1 <t_integer>` result, as follows:
8301
8302#. ``false``: always yields ``false``, regardless of operands.
8303#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8304 is equal to ``op2``.
8305#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8306 is greater than ``op2``.
8307#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8308 is greater than or equal to ``op2``.
8309#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8310 is less than ``op2``.
8311#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8312 is less than or equal to ``op2``.
8313#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8314 is not equal to ``op2``.
8315#. ``ord``: yields ``true`` if both operands are not a QNAN.
8316#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8317 equal to ``op2``.
8318#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8319 greater than ``op2``.
8320#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8321 greater than or equal to ``op2``.
8322#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8323 less than ``op2``.
8324#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8325 less than or equal to ``op2``.
8326#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8327 not equal to ``op2``.
8328#. ``uno``: yields ``true`` if either operand is a QNAN.
8329#. ``true``: always yields ``true``, regardless of operands.
8330
James Molloy88eb5352015-07-10 12:52:00 +00008331The ``fcmp`` instruction can also optionally take any number of
8332:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8333otherwise unsafe floating point optimizations.
8334
8335Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8336only flags that have any effect on its semantics are those that allow
8337assumptions to be made about the values of input arguments; namely
8338``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8339
Sean Silvab084af42012-12-07 10:36:55 +00008340Example:
8341""""""""
8342
8343.. code-block:: llvm
8344
8345 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8346 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8347 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8348 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8349
8350Note that the code generator does not yet support vector types with the
8351``fcmp`` instruction.
8352
8353.. _i_phi:
8354
8355'``phi``' Instruction
8356^^^^^^^^^^^^^^^^^^^^^
8357
8358Syntax:
8359"""""""
8360
8361::
8362
8363 <result> = phi <ty> [ <val0>, <label0>], ...
8364
8365Overview:
8366"""""""""
8367
8368The '``phi``' instruction is used to implement the φ node in the SSA
8369graph representing the function.
8370
8371Arguments:
8372""""""""""
8373
8374The type of the incoming values is specified with the first type field.
8375After this, the '``phi``' instruction takes a list of pairs as
8376arguments, with one pair for each predecessor basic block of the current
8377block. Only values of :ref:`first class <t_firstclass>` type may be used as
8378the value arguments to the PHI node. Only labels may be used as the
8379label arguments.
8380
8381There must be no non-phi instructions between the start of a basic block
8382and the PHI instructions: i.e. PHI instructions must be first in a basic
8383block.
8384
8385For the purposes of the SSA form, the use of each incoming value is
8386deemed to occur on the edge from the corresponding predecessor block to
8387the current block (but after any definition of an '``invoke``'
8388instruction's return value on the same edge).
8389
8390Semantics:
8391""""""""""
8392
8393At runtime, the '``phi``' instruction logically takes on the value
8394specified by the pair corresponding to the predecessor basic block that
8395executed just prior to the current block.
8396
8397Example:
8398""""""""
8399
8400.. code-block:: llvm
8401
8402 Loop: ; Infinite loop that counts from 0 on up...
8403 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8404 %nextindvar = add i32 %indvar, 1
8405 br label %Loop
8406
8407.. _i_select:
8408
8409'``select``' Instruction
8410^^^^^^^^^^^^^^^^^^^^^^^^
8411
8412Syntax:
8413"""""""
8414
8415::
8416
8417 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8418
8419 selty is either i1 or {<N x i1>}
8420
8421Overview:
8422"""""""""
8423
8424The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008425condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008426
8427Arguments:
8428""""""""""
8429
8430The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8431values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008432class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008433
8434Semantics:
8435""""""""""
8436
8437If the condition is an i1 and it evaluates to 1, the instruction returns
8438the first value argument; otherwise, it returns the second value
8439argument.
8440
8441If the condition is a vector of i1, then the value arguments must be
8442vectors of the same size, and the selection is done element by element.
8443
David Majnemer40a0b592015-03-03 22:45:47 +00008444If the condition is an i1 and the value arguments are vectors of the
8445same size, then an entire vector is selected.
8446
Sean Silvab084af42012-12-07 10:36:55 +00008447Example:
8448""""""""
8449
8450.. code-block:: llvm
8451
8452 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8453
8454.. _i_call:
8455
8456'``call``' Instruction
8457^^^^^^^^^^^^^^^^^^^^^^
8458
8459Syntax:
8460"""""""
8461
8462::
8463
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008464 <result> = [tail | musttail | notail ] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008465 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008466
8467Overview:
8468"""""""""
8469
8470The '``call``' instruction represents a simple function call.
8471
8472Arguments:
8473""""""""""
8474
8475This instruction requires several arguments:
8476
Reid Kleckner5772b772014-04-24 20:14:34 +00008477#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008478 should perform tail call optimization. The ``tail`` marker is a hint that
8479 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008480 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008481 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008482
8483 #. The call will not cause unbounded stack growth if it is part of a
8484 recursive cycle in the call graph.
8485 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8486 forwarded in place.
8487
8488 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008489 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008490 rules:
8491
8492 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8493 or a pointer bitcast followed by a ret instruction.
8494 - The ret instruction must return the (possibly bitcasted) value
8495 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008496 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008497 parameters or return types may differ in pointee type, but not
8498 in address space.
8499 - The calling conventions of the caller and callee must match.
8500 - All ABI-impacting function attributes, such as sret, byval, inreg,
8501 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008502 - The callee must be varargs iff the caller is varargs. Bitcasting a
8503 non-varargs function to the appropriate varargs type is legal so
8504 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008505
8506 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8507 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008508
8509 - Caller and callee both have the calling convention ``fastcc``.
8510 - The call is in tail position (ret immediately follows call and ret
8511 uses value of call or is void).
8512 - Option ``-tailcallopt`` is enabled, or
8513 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008514 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008515 met. <CodeGenerator.html#tailcallopt>`_
8516
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008517#. The optional ``notail`` marker indicates that the optimizers should not add
8518 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8519 call optimization from being performed on the call.
8520
Sean Silvab084af42012-12-07 10:36:55 +00008521#. The optional "cconv" marker indicates which :ref:`calling
8522 convention <callingconv>` the call should use. If none is
8523 specified, the call defaults to using C calling conventions. The
8524 calling convention of the call must match the calling convention of
8525 the target function, or else the behavior is undefined.
8526#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8527 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8528 are valid here.
8529#. '``ty``': the type of the call instruction itself which is also the
8530 type of the return value. Functions that return no value are marked
8531 ``void``.
8532#. '``fnty``': shall be the signature of the pointer to function value
8533 being invoked. The argument types must match the types implied by
8534 this signature. This type can be omitted if the function is not
8535 varargs and if the function type does not return a pointer to a
8536 function.
8537#. '``fnptrval``': An LLVM value containing a pointer to a function to
8538 be invoked. In most cases, this is a direct function invocation, but
8539 indirect ``call``'s are just as possible, calling an arbitrary pointer
8540 to function value.
8541#. '``function args``': argument list whose types match the function
8542 signature argument types and parameter attributes. All arguments must
8543 be of :ref:`first class <t_firstclass>` type. If the function signature
8544 indicates the function accepts a variable number of arguments, the
8545 extra arguments can be specified.
8546#. The optional :ref:`function attributes <fnattrs>` list. Only
8547 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8548 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008549#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008550
8551Semantics:
8552""""""""""
8553
8554The '``call``' instruction is used to cause control flow to transfer to
8555a specified function, with its incoming arguments bound to the specified
8556values. Upon a '``ret``' instruction in the called function, control
8557flow continues with the instruction after the function call, and the
8558return value of the function is bound to the result argument.
8559
8560Example:
8561""""""""
8562
8563.. code-block:: llvm
8564
8565 %retval = call i32 @test(i32 %argc)
8566 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8567 %X = tail call i32 @foo() ; yields i32
8568 %Y = tail call fastcc i32 @foo() ; yields i32
8569 call void %foo(i8 97 signext)
8570
8571 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008572 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008573 %gr = extractvalue %struct.A %r, 0 ; yields i32
8574 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8575 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8576 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8577
8578llvm treats calls to some functions with names and arguments that match
8579the standard C99 library as being the C99 library functions, and may
8580perform optimizations or generate code for them under that assumption.
8581This is something we'd like to change in the future to provide better
8582support for freestanding environments and non-C-based languages.
8583
8584.. _i_va_arg:
8585
8586'``va_arg``' Instruction
8587^^^^^^^^^^^^^^^^^^^^^^^^
8588
8589Syntax:
8590"""""""
8591
8592::
8593
8594 <resultval> = va_arg <va_list*> <arglist>, <argty>
8595
8596Overview:
8597"""""""""
8598
8599The '``va_arg``' instruction is used to access arguments passed through
8600the "variable argument" area of a function call. It is used to implement
8601the ``va_arg`` macro in C.
8602
8603Arguments:
8604""""""""""
8605
8606This instruction takes a ``va_list*`` value and the type of the
8607argument. It returns a value of the specified argument type and
8608increments the ``va_list`` to point to the next argument. The actual
8609type of ``va_list`` is target specific.
8610
8611Semantics:
8612""""""""""
8613
8614The '``va_arg``' instruction loads an argument of the specified type
8615from the specified ``va_list`` and causes the ``va_list`` to point to
8616the next argument. For more information, see the variable argument
8617handling :ref:`Intrinsic Functions <int_varargs>`.
8618
8619It is legal for this instruction to be called in a function which does
8620not take a variable number of arguments, for example, the ``vfprintf``
8621function.
8622
8623``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8624function <intrinsics>` because it takes a type as an argument.
8625
8626Example:
8627""""""""
8628
8629See the :ref:`variable argument processing <int_varargs>` section.
8630
8631Note that the code generator does not yet fully support va\_arg on many
8632targets. Also, it does not currently support va\_arg with aggregate
8633types on any target.
8634
8635.. _i_landingpad:
8636
8637'``landingpad``' Instruction
8638^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8639
8640Syntax:
8641"""""""
8642
8643::
8644
David Majnemer7fddecc2015-06-17 20:52:32 +00008645 <resultval> = landingpad <resultty> <clause>+
8646 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008647
8648 <clause> := catch <type> <value>
8649 <clause> := filter <array constant type> <array constant>
8650
8651Overview:
8652"""""""""
8653
8654The '``landingpad``' instruction is used by `LLVM's exception handling
8655system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008656is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008657code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008658defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008659re-entry to the function. The ``resultval`` has the type ``resultty``.
8660
8661Arguments:
8662""""""""""
8663
David Majnemer7fddecc2015-06-17 20:52:32 +00008664The optional
Sean Silvab084af42012-12-07 10:36:55 +00008665``cleanup`` flag indicates that the landing pad block is a cleanup.
8666
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008667A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008668contains the global variable representing the "type" that may be caught
8669or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8670clause takes an array constant as its argument. Use
8671"``[0 x i8**] undef``" for a filter which cannot throw. The
8672'``landingpad``' instruction must contain *at least* one ``clause`` or
8673the ``cleanup`` flag.
8674
8675Semantics:
8676""""""""""
8677
8678The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008679:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008680therefore the "result type" of the ``landingpad`` instruction. As with
8681calling conventions, how the personality function results are
8682represented in LLVM IR is target specific.
8683
8684The clauses are applied in order from top to bottom. If two
8685``landingpad`` instructions are merged together through inlining, the
8686clauses from the calling function are appended to the list of clauses.
8687When the call stack is being unwound due to an exception being thrown,
8688the exception is compared against each ``clause`` in turn. If it doesn't
8689match any of the clauses, and the ``cleanup`` flag is not set, then
8690unwinding continues further up the call stack.
8691
8692The ``landingpad`` instruction has several restrictions:
8693
8694- A landing pad block is a basic block which is the unwind destination
8695 of an '``invoke``' instruction.
8696- A landing pad block must have a '``landingpad``' instruction as its
8697 first non-PHI instruction.
8698- There can be only one '``landingpad``' instruction within the landing
8699 pad block.
8700- A basic block that is not a landing pad block may not include a
8701 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008702
8703Example:
8704""""""""
8705
8706.. code-block:: llvm
8707
8708 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008709 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008710 catch i8** @_ZTIi
8711 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008712 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008713 cleanup
8714 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008715 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008716 catch i8** @_ZTIi
8717 filter [1 x i8**] [@_ZTId]
8718
David Majnemer654e1302015-07-31 17:58:14 +00008719.. _i_cleanuppad:
8720
8721'``cleanuppad``' Instruction
8722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8723
8724Syntax:
8725"""""""
8726
8727::
8728
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008729 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008730
8731Overview:
8732"""""""""
8733
8734The '``cleanuppad``' instruction is used by `LLVM's exception handling
8735system <ExceptionHandling.html#overview>`_ to specify that a basic block
8736is a cleanup block --- one where a personality routine attempts to
8737transfer control to run cleanup actions.
8738The ``args`` correspond to whatever additional
8739information the :ref:`personality function <personalityfn>` requires to
8740execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008741The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008742match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8743and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008744
8745Arguments:
8746""""""""""
8747
8748The instruction takes a list of arbitrary values which are interpreted
8749by the :ref:`personality function <personalityfn>`.
8750
8751Semantics:
8752""""""""""
8753
David Majnemer654e1302015-07-31 17:58:14 +00008754When the call stack is being unwound due to an exception being thrown,
8755the :ref:`personality function <personalityfn>` transfers control to the
8756``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008757As with calling conventions, how the personality function results are
8758represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008759
8760The ``cleanuppad`` instruction has several restrictions:
8761
8762- A cleanup block is a basic block which is the unwind destination of
8763 an exceptional instruction.
8764- A cleanup block must have a '``cleanuppad``' instruction as its
8765 first non-PHI instruction.
8766- There can be only one '``cleanuppad``' instruction within the
8767 cleanup block.
8768- A basic block that is not a cleanup block may not include a
8769 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008770- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8771 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008772- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008773 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8774 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008775- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008776 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8777 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008778
8779Example:
8780""""""""
8781
8782.. code-block:: llvm
8783
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008784 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008785
Sean Silvab084af42012-12-07 10:36:55 +00008786.. _intrinsics:
8787
8788Intrinsic Functions
8789===================
8790
8791LLVM supports the notion of an "intrinsic function". These functions
8792have well known names and semantics and are required to follow certain
8793restrictions. Overall, these intrinsics represent an extension mechanism
8794for the LLVM language that does not require changing all of the
8795transformations in LLVM when adding to the language (or the bitcode
8796reader/writer, the parser, etc...).
8797
8798Intrinsic function names must all start with an "``llvm.``" prefix. This
8799prefix is reserved in LLVM for intrinsic names; thus, function names may
8800not begin with this prefix. Intrinsic functions must always be external
8801functions: you cannot define the body of intrinsic functions. Intrinsic
8802functions may only be used in call or invoke instructions: it is illegal
8803to take the address of an intrinsic function. Additionally, because
8804intrinsic functions are part of the LLVM language, it is required if any
8805are added that they be documented here.
8806
8807Some intrinsic functions can be overloaded, i.e., the intrinsic
8808represents a family of functions that perform the same operation but on
8809different data types. Because LLVM can represent over 8 million
8810different integer types, overloading is used commonly to allow an
8811intrinsic function to operate on any integer type. One or more of the
8812argument types or the result type can be overloaded to accept any
8813integer type. Argument types may also be defined as exactly matching a
8814previous argument's type or the result type. This allows an intrinsic
8815function which accepts multiple arguments, but needs all of them to be
8816of the same type, to only be overloaded with respect to a single
8817argument or the result.
8818
8819Overloaded intrinsics will have the names of its overloaded argument
8820types encoded into its function name, each preceded by a period. Only
8821those types which are overloaded result in a name suffix. Arguments
8822whose type is matched against another type do not. For example, the
8823``llvm.ctpop`` function can take an integer of any width and returns an
8824integer of exactly the same integer width. This leads to a family of
8825functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8826``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8827overloaded, and only one type suffix is required. Because the argument's
8828type is matched against the return type, it does not require its own
8829name suffix.
8830
8831To learn how to add an intrinsic function, please see the `Extending
8832LLVM Guide <ExtendingLLVM.html>`_.
8833
8834.. _int_varargs:
8835
8836Variable Argument Handling Intrinsics
8837-------------------------------------
8838
8839Variable argument support is defined in LLVM with the
8840:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8841functions. These functions are related to the similarly named macros
8842defined in the ``<stdarg.h>`` header file.
8843
8844All of these functions operate on arguments that use a target-specific
8845value type "``va_list``". The LLVM assembly language reference manual
8846does not define what this type is, so all transformations should be
8847prepared to handle these functions regardless of the type used.
8848
8849This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8850variable argument handling intrinsic functions are used.
8851
8852.. code-block:: llvm
8853
Tim Northoverab60bb92014-11-02 01:21:51 +00008854 ; This struct is different for every platform. For most platforms,
8855 ; it is merely an i8*.
8856 %struct.va_list = type { i8* }
8857
8858 ; For Unix x86_64 platforms, va_list is the following struct:
8859 ; %struct.va_list = type { i32, i32, i8*, i8* }
8860
Sean Silvab084af42012-12-07 10:36:55 +00008861 define i32 @test(i32 %X, ...) {
8862 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008863 %ap = alloca %struct.va_list
8864 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008865 call void @llvm.va_start(i8* %ap2)
8866
8867 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008868 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008869
8870 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8871 %aq = alloca i8*
8872 %aq2 = bitcast i8** %aq to i8*
8873 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8874 call void @llvm.va_end(i8* %aq2)
8875
8876 ; Stop processing of arguments.
8877 call void @llvm.va_end(i8* %ap2)
8878 ret i32 %tmp
8879 }
8880
8881 declare void @llvm.va_start(i8*)
8882 declare void @llvm.va_copy(i8*, i8*)
8883 declare void @llvm.va_end(i8*)
8884
8885.. _int_va_start:
8886
8887'``llvm.va_start``' Intrinsic
8888^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8889
8890Syntax:
8891"""""""
8892
8893::
8894
Nick Lewycky04f6de02013-09-11 22:04:52 +00008895 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008896
8897Overview:
8898"""""""""
8899
8900The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8901subsequent use by ``va_arg``.
8902
8903Arguments:
8904""""""""""
8905
8906The argument is a pointer to a ``va_list`` element to initialize.
8907
8908Semantics:
8909""""""""""
8910
8911The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8912available in C. In a target-dependent way, it initializes the
8913``va_list`` element to which the argument points, so that the next call
8914to ``va_arg`` will produce the first variable argument passed to the
8915function. Unlike the C ``va_start`` macro, this intrinsic does not need
8916to know the last argument of the function as the compiler can figure
8917that out.
8918
8919'``llvm.va_end``' Intrinsic
8920^^^^^^^^^^^^^^^^^^^^^^^^^^^
8921
8922Syntax:
8923"""""""
8924
8925::
8926
8927 declare void @llvm.va_end(i8* <arglist>)
8928
8929Overview:
8930"""""""""
8931
8932The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8933initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8934
8935Arguments:
8936""""""""""
8937
8938The argument is a pointer to a ``va_list`` to destroy.
8939
8940Semantics:
8941""""""""""
8942
8943The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8944available in C. In a target-dependent way, it destroys the ``va_list``
8945element to which the argument points. Calls to
8946:ref:`llvm.va_start <int_va_start>` and
8947:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8948``llvm.va_end``.
8949
8950.. _int_va_copy:
8951
8952'``llvm.va_copy``' Intrinsic
8953^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8954
8955Syntax:
8956"""""""
8957
8958::
8959
8960 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8961
8962Overview:
8963"""""""""
8964
8965The '``llvm.va_copy``' intrinsic copies the current argument position
8966from the source argument list to the destination argument list.
8967
8968Arguments:
8969""""""""""
8970
8971The first argument is a pointer to a ``va_list`` element to initialize.
8972The second argument is a pointer to a ``va_list`` element to copy from.
8973
8974Semantics:
8975""""""""""
8976
8977The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8978available in C. In a target-dependent way, it copies the source
8979``va_list`` element into the destination ``va_list`` element. This
8980intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8981arbitrarily complex and require, for example, memory allocation.
8982
8983Accurate Garbage Collection Intrinsics
8984--------------------------------------
8985
Philip Reamesc5b0f562015-02-25 23:52:06 +00008986LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008987(GC) requires the frontend to generate code containing appropriate intrinsic
8988calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008989intrinsics in a manner which is appropriate for the target collector.
8990
Sean Silvab084af42012-12-07 10:36:55 +00008991These intrinsics allow identification of :ref:`GC roots on the
8992stack <int_gcroot>`, as well as garbage collector implementations that
8993require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008994Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008995these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008996details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008997
Philip Reamesf80bbff2015-02-25 23:45:20 +00008998Experimental Statepoint Intrinsics
8999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9000
9001LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009002collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009003to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009004:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009005differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009006<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009007described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009008
9009.. _int_gcroot:
9010
9011'``llvm.gcroot``' Intrinsic
9012^^^^^^^^^^^^^^^^^^^^^^^^^^^
9013
9014Syntax:
9015"""""""
9016
9017::
9018
9019 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9020
9021Overview:
9022"""""""""
9023
9024The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9025the code generator, and allows some metadata to be associated with it.
9026
9027Arguments:
9028""""""""""
9029
9030The first argument specifies the address of a stack object that contains
9031the root pointer. The second pointer (which must be either a constant or
9032a global value address) contains the meta-data to be associated with the
9033root.
9034
9035Semantics:
9036""""""""""
9037
9038At runtime, a call to this intrinsic stores a null pointer into the
9039"ptrloc" location. At compile-time, the code generator generates
9040information to allow the runtime to find the pointer at GC safe points.
9041The '``llvm.gcroot``' intrinsic may only be used in a function which
9042:ref:`specifies a GC algorithm <gc>`.
9043
9044.. _int_gcread:
9045
9046'``llvm.gcread``' Intrinsic
9047^^^^^^^^^^^^^^^^^^^^^^^^^^^
9048
9049Syntax:
9050"""""""
9051
9052::
9053
9054 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9055
9056Overview:
9057"""""""""
9058
9059The '``llvm.gcread``' intrinsic identifies reads of references from heap
9060locations, allowing garbage collector implementations that require read
9061barriers.
9062
9063Arguments:
9064""""""""""
9065
9066The second argument is the address to read from, which should be an
9067address allocated from the garbage collector. The first object is a
9068pointer to the start of the referenced object, if needed by the language
9069runtime (otherwise null).
9070
9071Semantics:
9072""""""""""
9073
9074The '``llvm.gcread``' intrinsic has the same semantics as a load
9075instruction, but may be replaced with substantially more complex code by
9076the garbage collector runtime, as needed. The '``llvm.gcread``'
9077intrinsic may only be used in a function which :ref:`specifies a GC
9078algorithm <gc>`.
9079
9080.. _int_gcwrite:
9081
9082'``llvm.gcwrite``' Intrinsic
9083^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9084
9085Syntax:
9086"""""""
9087
9088::
9089
9090 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9091
9092Overview:
9093"""""""""
9094
9095The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9096locations, allowing garbage collector implementations that require write
9097barriers (such as generational or reference counting collectors).
9098
9099Arguments:
9100""""""""""
9101
9102The first argument is the reference to store, the second is the start of
9103the object to store it to, and the third is the address of the field of
9104Obj to store to. If the runtime does not require a pointer to the
9105object, Obj may be null.
9106
9107Semantics:
9108""""""""""
9109
9110The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9111instruction, but may be replaced with substantially more complex code by
9112the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9113intrinsic may only be used in a function which :ref:`specifies a GC
9114algorithm <gc>`.
9115
9116Code Generator Intrinsics
9117-------------------------
9118
9119These intrinsics are provided by LLVM to expose special features that
9120may only be implemented with code generator support.
9121
9122'``llvm.returnaddress``' Intrinsic
9123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9124
9125Syntax:
9126"""""""
9127
9128::
9129
9130 declare i8 *@llvm.returnaddress(i32 <level>)
9131
9132Overview:
9133"""""""""
9134
9135The '``llvm.returnaddress``' intrinsic attempts to compute a
9136target-specific value indicating the return address of the current
9137function or one of its callers.
9138
9139Arguments:
9140""""""""""
9141
9142The argument to this intrinsic indicates which function to return the
9143address for. Zero indicates the calling function, one indicates its
9144caller, etc. The argument is **required** to be a constant integer
9145value.
9146
9147Semantics:
9148""""""""""
9149
9150The '``llvm.returnaddress``' intrinsic either returns a pointer
9151indicating the return address of the specified call frame, or zero if it
9152cannot be identified. The value returned by this intrinsic is likely to
9153be incorrect or 0 for arguments other than zero, so it should only be
9154used for debugging purposes.
9155
9156Note that calling this intrinsic does not prevent function inlining or
9157other aggressive transformations, so the value returned may not be that
9158of the obvious source-language caller.
9159
9160'``llvm.frameaddress``' Intrinsic
9161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9162
9163Syntax:
9164"""""""
9165
9166::
9167
9168 declare i8* @llvm.frameaddress(i32 <level>)
9169
9170Overview:
9171"""""""""
9172
9173The '``llvm.frameaddress``' intrinsic attempts to return the
9174target-specific frame pointer value for the specified stack frame.
9175
9176Arguments:
9177""""""""""
9178
9179The argument to this intrinsic indicates which function to return the
9180frame pointer for. Zero indicates the calling function, one indicates
9181its caller, etc. The argument is **required** to be a constant integer
9182value.
9183
9184Semantics:
9185""""""""""
9186
9187The '``llvm.frameaddress``' intrinsic either returns a pointer
9188indicating the frame address of the specified call frame, or zero if it
9189cannot be identified. The value returned by this intrinsic is likely to
9190be incorrect or 0 for arguments other than zero, so it should only be
9191used for debugging purposes.
9192
9193Note that calling this intrinsic does not prevent function inlining or
9194other aggressive transformations, so the value returned may not be that
9195of the obvious source-language caller.
9196
Reid Kleckner60381792015-07-07 22:25:32 +00009197'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9199
9200Syntax:
9201"""""""
9202
9203::
9204
Reid Kleckner60381792015-07-07 22:25:32 +00009205 declare void @llvm.localescape(...)
9206 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009207
9208Overview:
9209"""""""""
9210
Reid Kleckner60381792015-07-07 22:25:32 +00009211The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9212allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009213live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009214computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009215
9216Arguments:
9217""""""""""
9218
Reid Kleckner60381792015-07-07 22:25:32 +00009219All arguments to '``llvm.localescape``' must be pointers to static allocas or
9220casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009221once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009222
Reid Kleckner60381792015-07-07 22:25:32 +00009223The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009224bitcasted pointer to a function defined in the current module. The code
9225generator cannot determine the frame allocation offset of functions defined in
9226other modules.
9227
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009228The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9229call frame that is currently live. The return value of '``llvm.localaddress``'
9230is one way to produce such a value, but various runtimes also expose a suitable
9231pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009232
Reid Kleckner60381792015-07-07 22:25:32 +00009233The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9234'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009235
Reid Klecknere9b89312015-01-13 00:48:10 +00009236Semantics:
9237""""""""""
9238
Reid Kleckner60381792015-07-07 22:25:32 +00009239These intrinsics allow a group of functions to share access to a set of local
9240stack allocations of a one parent function. The parent function may call the
9241'``llvm.localescape``' intrinsic once from the function entry block, and the
9242child functions can use '``llvm.localrecover``' to access the escaped allocas.
9243The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9244the escaped allocas are allocated, which would break attempts to use
9245'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009246
Renato Golinc7aea402014-05-06 16:51:25 +00009247.. _int_read_register:
9248.. _int_write_register:
9249
9250'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9252
9253Syntax:
9254"""""""
9255
9256::
9257
9258 declare i32 @llvm.read_register.i32(metadata)
9259 declare i64 @llvm.read_register.i64(metadata)
9260 declare void @llvm.write_register.i32(metadata, i32 @value)
9261 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009262 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009263
9264Overview:
9265"""""""""
9266
9267The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9268provides access to the named register. The register must be valid on
9269the architecture being compiled to. The type needs to be compatible
9270with the register being read.
9271
9272Semantics:
9273""""""""""
9274
9275The '``llvm.read_register``' intrinsic returns the current value of the
9276register, where possible. The '``llvm.write_register``' intrinsic sets
9277the current value of the register, where possible.
9278
9279This is useful to implement named register global variables that need
9280to always be mapped to a specific register, as is common practice on
9281bare-metal programs including OS kernels.
9282
9283The compiler doesn't check for register availability or use of the used
9284register in surrounding code, including inline assembly. Because of that,
9285allocatable registers are not supported.
9286
9287Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009288architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009289work is needed to support other registers and even more so, allocatable
9290registers.
9291
Sean Silvab084af42012-12-07 10:36:55 +00009292.. _int_stacksave:
9293
9294'``llvm.stacksave``' Intrinsic
9295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9296
9297Syntax:
9298"""""""
9299
9300::
9301
9302 declare i8* @llvm.stacksave()
9303
9304Overview:
9305"""""""""
9306
9307The '``llvm.stacksave``' intrinsic is used to remember the current state
9308of the function stack, for use with
9309:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9310implementing language features like scoped automatic variable sized
9311arrays in C99.
9312
9313Semantics:
9314""""""""""
9315
9316This intrinsic returns a opaque pointer value that can be passed to
9317:ref:`llvm.stackrestore <int_stackrestore>`. When an
9318``llvm.stackrestore`` intrinsic is executed with a value saved from
9319``llvm.stacksave``, it effectively restores the state of the stack to
9320the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9321practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9322were allocated after the ``llvm.stacksave`` was executed.
9323
9324.. _int_stackrestore:
9325
9326'``llvm.stackrestore``' Intrinsic
9327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9328
9329Syntax:
9330"""""""
9331
9332::
9333
9334 declare void @llvm.stackrestore(i8* %ptr)
9335
9336Overview:
9337"""""""""
9338
9339The '``llvm.stackrestore``' intrinsic is used to restore the state of
9340the function stack to the state it was in when the corresponding
9341:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9342useful for implementing language features like scoped automatic variable
9343sized arrays in C99.
9344
9345Semantics:
9346""""""""""
9347
9348See the description for :ref:`llvm.stacksave <int_stacksave>`.
9349
Yury Gribovd7dbb662015-12-01 11:40:55 +00009350.. _int_get_dynamic_area_offset:
9351
9352'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009353^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009354
9355Syntax:
9356"""""""
9357
9358::
9359
9360 declare i32 @llvm.get.dynamic.area.offset.i32()
9361 declare i64 @llvm.get.dynamic.area.offset.i64()
9362
9363 Overview:
9364 """""""""
9365
9366 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9367 get the offset from native stack pointer to the address of the most
9368 recent dynamic alloca on the caller's stack. These intrinsics are
9369 intendend for use in combination with
9370 :ref:`llvm.stacksave <int_stacksave>` to get a
9371 pointer to the most recent dynamic alloca. This is useful, for example,
9372 for AddressSanitizer's stack unpoisoning routines.
9373
9374Semantics:
9375""""""""""
9376
9377 These intrinsics return a non-negative integer value that can be used to
9378 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9379 on the caller's stack. In particular, for targets where stack grows downwards,
9380 adding this offset to the native stack pointer would get the address of the most
9381 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9382 complicated, because substracting this value from stack pointer would get the address
9383 one past the end of the most recent dynamic alloca.
9384
9385 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9386 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9387 compile-time-known constant value.
9388
9389 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9390 must match the target's generic address space's (address space 0) pointer type.
9391
Sean Silvab084af42012-12-07 10:36:55 +00009392'``llvm.prefetch``' Intrinsic
9393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9394
9395Syntax:
9396"""""""
9397
9398::
9399
9400 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9401
9402Overview:
9403"""""""""
9404
9405The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9406insert a prefetch instruction if supported; otherwise, it is a noop.
9407Prefetches have no effect on the behavior of the program but can change
9408its performance characteristics.
9409
9410Arguments:
9411""""""""""
9412
9413``address`` is the address to be prefetched, ``rw`` is the specifier
9414determining if the fetch should be for a read (0) or write (1), and
9415``locality`` is a temporal locality specifier ranging from (0) - no
9416locality, to (3) - extremely local keep in cache. The ``cache type``
9417specifies whether the prefetch is performed on the data (1) or
9418instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9419arguments must be constant integers.
9420
9421Semantics:
9422""""""""""
9423
9424This intrinsic does not modify the behavior of the program. In
9425particular, prefetches cannot trap and do not produce a value. On
9426targets that support this intrinsic, the prefetch can provide hints to
9427the processor cache for better performance.
9428
9429'``llvm.pcmarker``' Intrinsic
9430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9431
9432Syntax:
9433"""""""
9434
9435::
9436
9437 declare void @llvm.pcmarker(i32 <id>)
9438
9439Overview:
9440"""""""""
9441
9442The '``llvm.pcmarker``' intrinsic is a method to export a Program
9443Counter (PC) in a region of code to simulators and other tools. The
9444method is target specific, but it is expected that the marker will use
9445exported symbols to transmit the PC of the marker. The marker makes no
9446guarantees that it will remain with any specific instruction after
9447optimizations. It is possible that the presence of a marker will inhibit
9448optimizations. The intended use is to be inserted after optimizations to
9449allow correlations of simulation runs.
9450
9451Arguments:
9452""""""""""
9453
9454``id`` is a numerical id identifying the marker.
9455
9456Semantics:
9457""""""""""
9458
9459This intrinsic does not modify the behavior of the program. Backends
9460that do not support this intrinsic may ignore it.
9461
9462'``llvm.readcyclecounter``' Intrinsic
9463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9464
9465Syntax:
9466"""""""
9467
9468::
9469
9470 declare i64 @llvm.readcyclecounter()
9471
9472Overview:
9473"""""""""
9474
9475The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9476counter register (or similar low latency, high accuracy clocks) on those
9477targets that support it. On X86, it should map to RDTSC. On Alpha, it
9478should map to RPCC. As the backing counters overflow quickly (on the
9479order of 9 seconds on alpha), this should only be used for small
9480timings.
9481
9482Semantics:
9483""""""""""
9484
9485When directly supported, reading the cycle counter should not modify any
9486memory. Implementations are allowed to either return a application
9487specific value or a system wide value. On backends without support, this
9488is lowered to a constant 0.
9489
Tim Northoverbc933082013-05-23 19:11:20 +00009490Note that runtime support may be conditional on the privilege-level code is
9491running at and the host platform.
9492
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009493'``llvm.clear_cache``' Intrinsic
9494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9495
9496Syntax:
9497"""""""
9498
9499::
9500
9501 declare void @llvm.clear_cache(i8*, i8*)
9502
9503Overview:
9504"""""""""
9505
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009506The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9507in the specified range to the execution unit of the processor. On
9508targets with non-unified instruction and data cache, the implementation
9509flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009510
9511Semantics:
9512""""""""""
9513
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009514On platforms with coherent instruction and data caches (e.g. x86), this
9515intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009516cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009517instructions or a system call, if cache flushing requires special
9518privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009519
Sean Silvad02bf3e2014-04-07 22:29:53 +00009520The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009521time library.
Renato Golin93010e62014-03-26 14:01:32 +00009522
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009523This instrinsic does *not* empty the instruction pipeline. Modifications
9524of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009525
Justin Bogner61ba2e32014-12-08 18:02:35 +00009526'``llvm.instrprof_increment``' Intrinsic
9527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9528
9529Syntax:
9530"""""""
9531
9532::
9533
9534 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9535 i32 <num-counters>, i32 <index>)
9536
9537Overview:
9538"""""""""
9539
9540The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9541frontend for use with instrumentation based profiling. These will be
9542lowered by the ``-instrprof`` pass to generate execution counts of a
9543program at runtime.
9544
9545Arguments:
9546""""""""""
9547
9548The first argument is a pointer to a global variable containing the
9549name of the entity being instrumented. This should generally be the
9550(mangled) function name for a set of counters.
9551
9552The second argument is a hash value that can be used by the consumer
9553of the profile data to detect changes to the instrumented source, and
9554the third is the number of counters associated with ``name``. It is an
9555error if ``hash`` or ``num-counters`` differ between two instances of
9556``instrprof_increment`` that refer to the same name.
9557
9558The last argument refers to which of the counters for ``name`` should
9559be incremented. It should be a value between 0 and ``num-counters``.
9560
9561Semantics:
9562""""""""""
9563
9564This intrinsic represents an increment of a profiling counter. It will
9565cause the ``-instrprof`` pass to generate the appropriate data
9566structures and the code to increment the appropriate value, in a
9567format that can be written out by a compiler runtime and consumed via
9568the ``llvm-profdata`` tool.
9569
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009570'``llvm.instrprof_value_profile``' Intrinsic
9571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9572
9573Syntax:
9574"""""""
9575
9576::
9577
9578 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9579 i64 <value>, i32 <value_kind>,
9580 i32 <index>)
9581
9582Overview:
9583"""""""""
9584
9585The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9586frontend for use with instrumentation based profiling. This will be
9587lowered by the ``-instrprof`` pass to find out the target values,
9588instrumented expressions take in a program at runtime.
9589
9590Arguments:
9591""""""""""
9592
9593The first argument is a pointer to a global variable containing the
9594name of the entity being instrumented. ``name`` should generally be the
9595(mangled) function name for a set of counters.
9596
9597The second argument is a hash value that can be used by the consumer
9598of the profile data to detect changes to the instrumented source. It
9599is an error if ``hash`` differs between two instances of
9600``llvm.instrprof_*`` that refer to the same name.
9601
9602The third argument is the value of the expression being profiled. The profiled
9603expression's value should be representable as an unsigned 64-bit value. The
9604fourth argument represents the kind of value profiling that is being done. The
9605supported value profiling kinds are enumerated through the
9606``InstrProfValueKind`` type declared in the
9607``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9608index of the instrumented expression within ``name``. It should be >= 0.
9609
9610Semantics:
9611""""""""""
9612
9613This intrinsic represents the point where a call to a runtime routine
9614should be inserted for value profiling of target expressions. ``-instrprof``
9615pass will generate the appropriate data structures and replace the
9616``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9617runtime library with proper arguments.
9618
Sean Silvab084af42012-12-07 10:36:55 +00009619Standard C Library Intrinsics
9620-----------------------------
9621
9622LLVM provides intrinsics for a few important standard C library
9623functions. These intrinsics allow source-language front-ends to pass
9624information about the alignment of the pointer arguments to the code
9625generator, providing opportunity for more efficient code generation.
9626
9627.. _int_memcpy:
9628
9629'``llvm.memcpy``' Intrinsic
9630^^^^^^^^^^^^^^^^^^^^^^^^^^^
9631
9632Syntax:
9633"""""""
9634
9635This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9636integer bit width and for different address spaces. Not all targets
9637support all bit widths however.
9638
9639::
9640
9641 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9642 i32 <len>, i32 <align>, i1 <isvolatile>)
9643 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9644 i64 <len>, i32 <align>, i1 <isvolatile>)
9645
9646Overview:
9647"""""""""
9648
9649The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9650source location to the destination location.
9651
9652Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9653intrinsics do not return a value, takes extra alignment/isvolatile
9654arguments and the pointers can be in specified address spaces.
9655
9656Arguments:
9657""""""""""
9658
9659The first argument is a pointer to the destination, the second is a
9660pointer to the source. The third argument is an integer argument
9661specifying the number of bytes to copy, the fourth argument is the
9662alignment of the source and destination locations, and the fifth is a
9663boolean indicating a volatile access.
9664
9665If the call to this intrinsic has an alignment value that is not 0 or 1,
9666then the caller guarantees that both the source and destination pointers
9667are aligned to that boundary.
9668
9669If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9670a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9671very cleanly specified and it is unwise to depend on it.
9672
9673Semantics:
9674""""""""""
9675
9676The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9677source location to the destination location, which are not allowed to
9678overlap. It copies "len" bytes of memory over. If the argument is known
9679to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009680argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009681
9682'``llvm.memmove``' Intrinsic
9683^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9684
9685Syntax:
9686"""""""
9687
9688This is an overloaded intrinsic. You can use llvm.memmove on any integer
9689bit width and for different address space. Not all targets support all
9690bit widths however.
9691
9692::
9693
9694 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9695 i32 <len>, i32 <align>, i1 <isvolatile>)
9696 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9697 i64 <len>, i32 <align>, i1 <isvolatile>)
9698
9699Overview:
9700"""""""""
9701
9702The '``llvm.memmove.*``' intrinsics move a block of memory from the
9703source location to the destination location. It is similar to the
9704'``llvm.memcpy``' intrinsic but allows the two memory locations to
9705overlap.
9706
9707Note that, unlike the standard libc function, the ``llvm.memmove.*``
9708intrinsics do not return a value, takes extra alignment/isvolatile
9709arguments and the pointers can be in specified address spaces.
9710
9711Arguments:
9712""""""""""
9713
9714The first argument is a pointer to the destination, the second is a
9715pointer to the source. The third argument is an integer argument
9716specifying the number of bytes to copy, the fourth argument is the
9717alignment of the source and destination locations, and the fifth is a
9718boolean indicating a volatile access.
9719
9720If the call to this intrinsic has an alignment value that is not 0 or 1,
9721then the caller guarantees that the source and destination pointers are
9722aligned to that boundary.
9723
9724If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9725is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9726not very cleanly specified and it is unwise to depend on it.
9727
9728Semantics:
9729""""""""""
9730
9731The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9732source location to the destination location, which may overlap. It
9733copies "len" bytes of memory over. If the argument is known to be
9734aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009735otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009736
9737'``llvm.memset.*``' Intrinsics
9738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9739
9740Syntax:
9741"""""""
9742
9743This is an overloaded intrinsic. You can use llvm.memset on any integer
9744bit width and for different address spaces. However, not all targets
9745support all bit widths.
9746
9747::
9748
9749 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9750 i32 <len>, i32 <align>, i1 <isvolatile>)
9751 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9752 i64 <len>, i32 <align>, i1 <isvolatile>)
9753
9754Overview:
9755"""""""""
9756
9757The '``llvm.memset.*``' intrinsics fill a block of memory with a
9758particular byte value.
9759
9760Note that, unlike the standard libc function, the ``llvm.memset``
9761intrinsic does not return a value and takes extra alignment/volatile
9762arguments. Also, the destination can be in an arbitrary address space.
9763
9764Arguments:
9765""""""""""
9766
9767The first argument is a pointer to the destination to fill, the second
9768is the byte value with which to fill it, the third argument is an
9769integer argument specifying the number of bytes to fill, and the fourth
9770argument is the known alignment of the destination location.
9771
9772If the call to this intrinsic has an alignment value that is not 0 or 1,
9773then the caller guarantees that the destination pointer is aligned to
9774that boundary.
9775
9776If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9777a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9778very cleanly specified and it is unwise to depend on it.
9779
9780Semantics:
9781""""""""""
9782
9783The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9784at the destination location. If the argument is known to be aligned to
9785some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009786it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009787
9788'``llvm.sqrt.*``' Intrinsic
9789^^^^^^^^^^^^^^^^^^^^^^^^^^^
9790
9791Syntax:
9792"""""""
9793
9794This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9795floating point or vector of floating point type. Not all targets support
9796all types however.
9797
9798::
9799
9800 declare float @llvm.sqrt.f32(float %Val)
9801 declare double @llvm.sqrt.f64(double %Val)
9802 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9803 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9804 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9805
9806Overview:
9807"""""""""
9808
9809The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9810returning the same value as the libm '``sqrt``' functions would. Unlike
9811``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9812negative numbers other than -0.0 (which allows for better optimization,
9813because there is no need to worry about errno being set).
9814``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9815
9816Arguments:
9817""""""""""
9818
9819The argument and return value are floating point numbers of the same
9820type.
9821
9822Semantics:
9823""""""""""
9824
9825This function returns the sqrt of the specified operand if it is a
9826nonnegative floating point number.
9827
9828'``llvm.powi.*``' Intrinsic
9829^^^^^^^^^^^^^^^^^^^^^^^^^^^
9830
9831Syntax:
9832"""""""
9833
9834This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9835floating point or vector of floating point type. Not all targets support
9836all types however.
9837
9838::
9839
9840 declare float @llvm.powi.f32(float %Val, i32 %power)
9841 declare double @llvm.powi.f64(double %Val, i32 %power)
9842 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9843 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9844 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9845
9846Overview:
9847"""""""""
9848
9849The '``llvm.powi.*``' intrinsics return the first operand raised to the
9850specified (positive or negative) power. The order of evaluation of
9851multiplications is not defined. When a vector of floating point type is
9852used, the second argument remains a scalar integer value.
9853
9854Arguments:
9855""""""""""
9856
9857The second argument is an integer power, and the first is a value to
9858raise to that power.
9859
9860Semantics:
9861""""""""""
9862
9863This function returns the first value raised to the second power with an
9864unspecified sequence of rounding operations.
9865
9866'``llvm.sin.*``' Intrinsic
9867^^^^^^^^^^^^^^^^^^^^^^^^^^
9868
9869Syntax:
9870"""""""
9871
9872This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9873floating point or vector of floating point type. Not all targets support
9874all types however.
9875
9876::
9877
9878 declare float @llvm.sin.f32(float %Val)
9879 declare double @llvm.sin.f64(double %Val)
9880 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9881 declare fp128 @llvm.sin.f128(fp128 %Val)
9882 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9883
9884Overview:
9885"""""""""
9886
9887The '``llvm.sin.*``' intrinsics return the sine of the operand.
9888
9889Arguments:
9890""""""""""
9891
9892The argument and return value are floating point numbers of the same
9893type.
9894
9895Semantics:
9896""""""""""
9897
9898This function returns the sine of the specified operand, returning the
9899same values as the libm ``sin`` functions would, and handles error
9900conditions in the same way.
9901
9902'``llvm.cos.*``' Intrinsic
9903^^^^^^^^^^^^^^^^^^^^^^^^^^
9904
9905Syntax:
9906"""""""
9907
9908This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9909floating point or vector of floating point type. Not all targets support
9910all types however.
9911
9912::
9913
9914 declare float @llvm.cos.f32(float %Val)
9915 declare double @llvm.cos.f64(double %Val)
9916 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9917 declare fp128 @llvm.cos.f128(fp128 %Val)
9918 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9919
9920Overview:
9921"""""""""
9922
9923The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9924
9925Arguments:
9926""""""""""
9927
9928The argument and return value are floating point numbers of the same
9929type.
9930
9931Semantics:
9932""""""""""
9933
9934This function returns the cosine of the specified operand, returning the
9935same values as the libm ``cos`` functions would, and handles error
9936conditions in the same way.
9937
9938'``llvm.pow.*``' Intrinsic
9939^^^^^^^^^^^^^^^^^^^^^^^^^^
9940
9941Syntax:
9942"""""""
9943
9944This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9945floating point or vector of floating point type. Not all targets support
9946all types however.
9947
9948::
9949
9950 declare float @llvm.pow.f32(float %Val, float %Power)
9951 declare double @llvm.pow.f64(double %Val, double %Power)
9952 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9953 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9954 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9955
9956Overview:
9957"""""""""
9958
9959The '``llvm.pow.*``' intrinsics return the first operand raised to the
9960specified (positive or negative) power.
9961
9962Arguments:
9963""""""""""
9964
9965The second argument is a floating point power, and the first is a value
9966to raise to that power.
9967
9968Semantics:
9969""""""""""
9970
9971This function returns the first value raised to the second power,
9972returning the same values as the libm ``pow`` functions would, and
9973handles error conditions in the same way.
9974
9975'``llvm.exp.*``' Intrinsic
9976^^^^^^^^^^^^^^^^^^^^^^^^^^
9977
9978Syntax:
9979"""""""
9980
9981This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9982floating point or vector of floating point type. Not all targets support
9983all types however.
9984
9985::
9986
9987 declare float @llvm.exp.f32(float %Val)
9988 declare double @llvm.exp.f64(double %Val)
9989 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9990 declare fp128 @llvm.exp.f128(fp128 %Val)
9991 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9992
9993Overview:
9994"""""""""
9995
9996The '``llvm.exp.*``' intrinsics perform the exp function.
9997
9998Arguments:
9999""""""""""
10000
10001The argument and return value are floating point numbers of the same
10002type.
10003
10004Semantics:
10005""""""""""
10006
10007This function returns the same values as the libm ``exp`` functions
10008would, and handles error conditions in the same way.
10009
10010'``llvm.exp2.*``' Intrinsic
10011^^^^^^^^^^^^^^^^^^^^^^^^^^^
10012
10013Syntax:
10014"""""""
10015
10016This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10017floating point or vector of floating point type. Not all targets support
10018all types however.
10019
10020::
10021
10022 declare float @llvm.exp2.f32(float %Val)
10023 declare double @llvm.exp2.f64(double %Val)
10024 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10025 declare fp128 @llvm.exp2.f128(fp128 %Val)
10026 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10027
10028Overview:
10029"""""""""
10030
10031The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10032
10033Arguments:
10034""""""""""
10035
10036The argument and return value are floating point numbers of the same
10037type.
10038
10039Semantics:
10040""""""""""
10041
10042This function returns the same values as the libm ``exp2`` functions
10043would, and handles error conditions in the same way.
10044
10045'``llvm.log.*``' Intrinsic
10046^^^^^^^^^^^^^^^^^^^^^^^^^^
10047
10048Syntax:
10049"""""""
10050
10051This is an overloaded intrinsic. You can use ``llvm.log`` on any
10052floating point or vector of floating point type. Not all targets support
10053all types however.
10054
10055::
10056
10057 declare float @llvm.log.f32(float %Val)
10058 declare double @llvm.log.f64(double %Val)
10059 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10060 declare fp128 @llvm.log.f128(fp128 %Val)
10061 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10062
10063Overview:
10064"""""""""
10065
10066The '``llvm.log.*``' intrinsics perform the log function.
10067
10068Arguments:
10069""""""""""
10070
10071The argument and return value are floating point numbers of the same
10072type.
10073
10074Semantics:
10075""""""""""
10076
10077This function returns the same values as the libm ``log`` functions
10078would, and handles error conditions in the same way.
10079
10080'``llvm.log10.*``' Intrinsic
10081^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10082
10083Syntax:
10084"""""""
10085
10086This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10087floating point or vector of floating point type. Not all targets support
10088all types however.
10089
10090::
10091
10092 declare float @llvm.log10.f32(float %Val)
10093 declare double @llvm.log10.f64(double %Val)
10094 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10095 declare fp128 @llvm.log10.f128(fp128 %Val)
10096 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10097
10098Overview:
10099"""""""""
10100
10101The '``llvm.log10.*``' intrinsics perform the log10 function.
10102
10103Arguments:
10104""""""""""
10105
10106The argument and return value are floating point numbers of the same
10107type.
10108
10109Semantics:
10110""""""""""
10111
10112This function returns the same values as the libm ``log10`` functions
10113would, and handles error conditions in the same way.
10114
10115'``llvm.log2.*``' Intrinsic
10116^^^^^^^^^^^^^^^^^^^^^^^^^^^
10117
10118Syntax:
10119"""""""
10120
10121This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10122floating point or vector of floating point type. Not all targets support
10123all types however.
10124
10125::
10126
10127 declare float @llvm.log2.f32(float %Val)
10128 declare double @llvm.log2.f64(double %Val)
10129 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10130 declare fp128 @llvm.log2.f128(fp128 %Val)
10131 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10132
10133Overview:
10134"""""""""
10135
10136The '``llvm.log2.*``' intrinsics perform the log2 function.
10137
10138Arguments:
10139""""""""""
10140
10141The argument and return value are floating point numbers of the same
10142type.
10143
10144Semantics:
10145""""""""""
10146
10147This function returns the same values as the libm ``log2`` functions
10148would, and handles error conditions in the same way.
10149
10150'``llvm.fma.*``' Intrinsic
10151^^^^^^^^^^^^^^^^^^^^^^^^^^
10152
10153Syntax:
10154"""""""
10155
10156This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10157floating point or vector of floating point type. Not all targets support
10158all types however.
10159
10160::
10161
10162 declare float @llvm.fma.f32(float %a, float %b, float %c)
10163 declare double @llvm.fma.f64(double %a, double %b, double %c)
10164 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10165 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10166 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10167
10168Overview:
10169"""""""""
10170
10171The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10172operation.
10173
10174Arguments:
10175""""""""""
10176
10177The argument and return value are floating point numbers of the same
10178type.
10179
10180Semantics:
10181""""""""""
10182
10183This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010184would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010185
10186'``llvm.fabs.*``' Intrinsic
10187^^^^^^^^^^^^^^^^^^^^^^^^^^^
10188
10189Syntax:
10190"""""""
10191
10192This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10193floating point or vector of floating point type. Not all targets support
10194all types however.
10195
10196::
10197
10198 declare float @llvm.fabs.f32(float %Val)
10199 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010200 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010201 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010202 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010203
10204Overview:
10205"""""""""
10206
10207The '``llvm.fabs.*``' intrinsics return the absolute value of the
10208operand.
10209
10210Arguments:
10211""""""""""
10212
10213The argument and return value are floating point numbers of the same
10214type.
10215
10216Semantics:
10217""""""""""
10218
10219This function returns the same values as the libm ``fabs`` functions
10220would, and handles error conditions in the same way.
10221
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010222'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010224
10225Syntax:
10226"""""""
10227
10228This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10229floating point or vector of floating point type. Not all targets support
10230all types however.
10231
10232::
10233
Matt Arsenault64313c92014-10-22 18:25:02 +000010234 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10235 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10236 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10237 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10238 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010239
10240Overview:
10241"""""""""
10242
10243The '``llvm.minnum.*``' intrinsics return the minimum of the two
10244arguments.
10245
10246
10247Arguments:
10248""""""""""
10249
10250The arguments and return value are floating point numbers of the same
10251type.
10252
10253Semantics:
10254""""""""""
10255
10256Follows the IEEE-754 semantics for minNum, which also match for libm's
10257fmin.
10258
10259If either operand is a NaN, returns the other non-NaN operand. Returns
10260NaN only if both operands are NaN. If the operands compare equal,
10261returns a value that compares equal to both operands. This means that
10262fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10263
10264'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010265^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010266
10267Syntax:
10268"""""""
10269
10270This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10271floating point or vector of floating point type. Not all targets support
10272all types however.
10273
10274::
10275
Matt Arsenault64313c92014-10-22 18:25:02 +000010276 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10277 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10278 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10279 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10280 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010281
10282Overview:
10283"""""""""
10284
10285The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10286arguments.
10287
10288
10289Arguments:
10290""""""""""
10291
10292The arguments and return value are floating point numbers of the same
10293type.
10294
10295Semantics:
10296""""""""""
10297Follows the IEEE-754 semantics for maxNum, which also match for libm's
10298fmax.
10299
10300If either operand is a NaN, returns the other non-NaN operand. Returns
10301NaN only if both operands are NaN. If the operands compare equal,
10302returns a value that compares equal to both operands. This means that
10303fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10304
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010305'``llvm.copysign.*``' Intrinsic
10306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10307
10308Syntax:
10309"""""""
10310
10311This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10312floating point or vector of floating point type. Not all targets support
10313all types however.
10314
10315::
10316
10317 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10318 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10319 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10320 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10321 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10322
10323Overview:
10324"""""""""
10325
10326The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10327first operand and the sign of the second operand.
10328
10329Arguments:
10330""""""""""
10331
10332The arguments and return value are floating point numbers of the same
10333type.
10334
10335Semantics:
10336""""""""""
10337
10338This function returns the same values as the libm ``copysign``
10339functions would, and handles error conditions in the same way.
10340
Sean Silvab084af42012-12-07 10:36:55 +000010341'``llvm.floor.*``' Intrinsic
10342^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10343
10344Syntax:
10345"""""""
10346
10347This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10348floating point or vector of floating point type. Not all targets support
10349all types however.
10350
10351::
10352
10353 declare float @llvm.floor.f32(float %Val)
10354 declare double @llvm.floor.f64(double %Val)
10355 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10356 declare fp128 @llvm.floor.f128(fp128 %Val)
10357 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10358
10359Overview:
10360"""""""""
10361
10362The '``llvm.floor.*``' intrinsics return the floor of the operand.
10363
10364Arguments:
10365""""""""""
10366
10367The argument and return value are floating point numbers of the same
10368type.
10369
10370Semantics:
10371""""""""""
10372
10373This function returns the same values as the libm ``floor`` functions
10374would, and handles error conditions in the same way.
10375
10376'``llvm.ceil.*``' Intrinsic
10377^^^^^^^^^^^^^^^^^^^^^^^^^^^
10378
10379Syntax:
10380"""""""
10381
10382This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10383floating point or vector of floating point type. Not all targets support
10384all types however.
10385
10386::
10387
10388 declare float @llvm.ceil.f32(float %Val)
10389 declare double @llvm.ceil.f64(double %Val)
10390 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10391 declare fp128 @llvm.ceil.f128(fp128 %Val)
10392 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10393
10394Overview:
10395"""""""""
10396
10397The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10398
10399Arguments:
10400""""""""""
10401
10402The argument and return value are floating point numbers of the same
10403type.
10404
10405Semantics:
10406""""""""""
10407
10408This function returns the same values as the libm ``ceil`` functions
10409would, and handles error conditions in the same way.
10410
10411'``llvm.trunc.*``' Intrinsic
10412^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10413
10414Syntax:
10415"""""""
10416
10417This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10418floating point or vector of floating point type. Not all targets support
10419all types however.
10420
10421::
10422
10423 declare float @llvm.trunc.f32(float %Val)
10424 declare double @llvm.trunc.f64(double %Val)
10425 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10426 declare fp128 @llvm.trunc.f128(fp128 %Val)
10427 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10428
10429Overview:
10430"""""""""
10431
10432The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10433nearest integer not larger in magnitude than the operand.
10434
10435Arguments:
10436""""""""""
10437
10438The argument and return value are floating point numbers of the same
10439type.
10440
10441Semantics:
10442""""""""""
10443
10444This function returns the same values as the libm ``trunc`` functions
10445would, and handles error conditions in the same way.
10446
10447'``llvm.rint.*``' Intrinsic
10448^^^^^^^^^^^^^^^^^^^^^^^^^^^
10449
10450Syntax:
10451"""""""
10452
10453This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10454floating point or vector of floating point type. Not all targets support
10455all types however.
10456
10457::
10458
10459 declare float @llvm.rint.f32(float %Val)
10460 declare double @llvm.rint.f64(double %Val)
10461 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10462 declare fp128 @llvm.rint.f128(fp128 %Val)
10463 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10464
10465Overview:
10466"""""""""
10467
10468The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10469nearest integer. It may raise an inexact floating-point exception if the
10470operand isn't an integer.
10471
10472Arguments:
10473""""""""""
10474
10475The argument and return value are floating point numbers of the same
10476type.
10477
10478Semantics:
10479""""""""""
10480
10481This function returns the same values as the libm ``rint`` functions
10482would, and handles error conditions in the same way.
10483
10484'``llvm.nearbyint.*``' Intrinsic
10485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10486
10487Syntax:
10488"""""""
10489
10490This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10491floating point or vector of floating point type. Not all targets support
10492all types however.
10493
10494::
10495
10496 declare float @llvm.nearbyint.f32(float %Val)
10497 declare double @llvm.nearbyint.f64(double %Val)
10498 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10499 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10500 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10501
10502Overview:
10503"""""""""
10504
10505The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10506nearest integer.
10507
10508Arguments:
10509""""""""""
10510
10511The argument and return value are floating point numbers of the same
10512type.
10513
10514Semantics:
10515""""""""""
10516
10517This function returns the same values as the libm ``nearbyint``
10518functions would, and handles error conditions in the same way.
10519
Hal Finkel171817e2013-08-07 22:49:12 +000010520'``llvm.round.*``' Intrinsic
10521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10522
10523Syntax:
10524"""""""
10525
10526This is an overloaded intrinsic. You can use ``llvm.round`` on any
10527floating point or vector of floating point type. Not all targets support
10528all types however.
10529
10530::
10531
10532 declare float @llvm.round.f32(float %Val)
10533 declare double @llvm.round.f64(double %Val)
10534 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10535 declare fp128 @llvm.round.f128(fp128 %Val)
10536 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10537
10538Overview:
10539"""""""""
10540
10541The '``llvm.round.*``' intrinsics returns the operand rounded to the
10542nearest integer.
10543
10544Arguments:
10545""""""""""
10546
10547The argument and return value are floating point numbers of the same
10548type.
10549
10550Semantics:
10551""""""""""
10552
10553This function returns the same values as the libm ``round``
10554functions would, and handles error conditions in the same way.
10555
Sean Silvab084af42012-12-07 10:36:55 +000010556Bit Manipulation Intrinsics
10557---------------------------
10558
10559LLVM provides intrinsics for a few important bit manipulation
10560operations. These allow efficient code generation for some algorithms.
10561
James Molloy90111f72015-11-12 12:29:09 +000010562'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010563^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010564
10565Syntax:
10566"""""""
10567
10568This is an overloaded intrinsic function. You can use bitreverse on any
10569integer type.
10570
10571::
10572
10573 declare i16 @llvm.bitreverse.i16(i16 <id>)
10574 declare i32 @llvm.bitreverse.i32(i32 <id>)
10575 declare i64 @llvm.bitreverse.i64(i64 <id>)
10576
10577Overview:
10578"""""""""
10579
10580The '``llvm.bitreverse``' family of intrinsics is used to reverse the
10581bitpattern of an integer value; for example ``0b1234567`` becomes
10582``0b7654321``.
10583
10584Semantics:
10585""""""""""
10586
10587The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10588``M`` in the input moved to bit ``N-M`` in the output.
10589
Sean Silvab084af42012-12-07 10:36:55 +000010590'``llvm.bswap.*``' Intrinsics
10591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10592
10593Syntax:
10594"""""""
10595
10596This is an overloaded intrinsic function. You can use bswap on any
10597integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10598
10599::
10600
10601 declare i16 @llvm.bswap.i16(i16 <id>)
10602 declare i32 @llvm.bswap.i32(i32 <id>)
10603 declare i64 @llvm.bswap.i64(i64 <id>)
10604
10605Overview:
10606"""""""""
10607
10608The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10609values with an even number of bytes (positive multiple of 16 bits).
10610These are useful for performing operations on data that is not in the
10611target's native byte order.
10612
10613Semantics:
10614""""""""""
10615
10616The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10617and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10618intrinsic returns an i32 value that has the four bytes of the input i32
10619swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10620returned i32 will have its bytes in 3, 2, 1, 0 order. The
10621``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10622concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10623respectively).
10624
10625'``llvm.ctpop.*``' Intrinsic
10626^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10627
10628Syntax:
10629"""""""
10630
10631This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10632bit width, or on any vector with integer elements. Not all targets
10633support all bit widths or vector types, however.
10634
10635::
10636
10637 declare i8 @llvm.ctpop.i8(i8 <src>)
10638 declare i16 @llvm.ctpop.i16(i16 <src>)
10639 declare i32 @llvm.ctpop.i32(i32 <src>)
10640 declare i64 @llvm.ctpop.i64(i64 <src>)
10641 declare i256 @llvm.ctpop.i256(i256 <src>)
10642 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10643
10644Overview:
10645"""""""""
10646
10647The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10648in a value.
10649
10650Arguments:
10651""""""""""
10652
10653The only argument is the value to be counted. The argument may be of any
10654integer type, or a vector with integer elements. The return type must
10655match the argument type.
10656
10657Semantics:
10658""""""""""
10659
10660The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10661each element of a vector.
10662
10663'``llvm.ctlz.*``' Intrinsic
10664^^^^^^^^^^^^^^^^^^^^^^^^^^^
10665
10666Syntax:
10667"""""""
10668
10669This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10670integer bit width, or any vector whose elements are integers. Not all
10671targets support all bit widths or vector types, however.
10672
10673::
10674
10675 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10676 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10677 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10678 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10679 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10680 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10681
10682Overview:
10683"""""""""
10684
10685The '``llvm.ctlz``' family of intrinsic functions counts the number of
10686leading zeros in a variable.
10687
10688Arguments:
10689""""""""""
10690
10691The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010692any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010693type must match the first argument type.
10694
10695The second argument must be a constant and is a flag to indicate whether
10696the intrinsic should ensure that a zero as the first argument produces a
10697defined result. Historically some architectures did not provide a
10698defined result for zero values as efficiently, and many algorithms are
10699now predicated on avoiding zero-value inputs.
10700
10701Semantics:
10702""""""""""
10703
10704The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10705zeros in a variable, or within each element of the vector. If
10706``src == 0`` then the result is the size in bits of the type of ``src``
10707if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10708``llvm.ctlz(i32 2) = 30``.
10709
10710'``llvm.cttz.*``' Intrinsic
10711^^^^^^^^^^^^^^^^^^^^^^^^^^^
10712
10713Syntax:
10714"""""""
10715
10716This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10717integer bit width, or any vector of integer elements. Not all targets
10718support all bit widths or vector types, however.
10719
10720::
10721
10722 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10723 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10724 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10725 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10726 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10727 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10728
10729Overview:
10730"""""""""
10731
10732The '``llvm.cttz``' family of intrinsic functions counts the number of
10733trailing zeros.
10734
10735Arguments:
10736""""""""""
10737
10738The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010739any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010740type must match the first argument type.
10741
10742The second argument must be a constant and is a flag to indicate whether
10743the intrinsic should ensure that a zero as the first argument produces a
10744defined result. Historically some architectures did not provide a
10745defined result for zero values as efficiently, and many algorithms are
10746now predicated on avoiding zero-value inputs.
10747
10748Semantics:
10749""""""""""
10750
10751The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10752zeros in a variable, or within each element of a vector. If ``src == 0``
10753then the result is the size in bits of the type of ``src`` if
10754``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10755``llvm.cttz(2) = 1``.
10756
Philip Reames34843ae2015-03-05 05:55:55 +000010757.. _int_overflow:
10758
Sean Silvab084af42012-12-07 10:36:55 +000010759Arithmetic with Overflow Intrinsics
10760-----------------------------------
10761
10762LLVM provides intrinsics for some arithmetic with overflow operations.
10763
10764'``llvm.sadd.with.overflow.*``' Intrinsics
10765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10766
10767Syntax:
10768"""""""
10769
10770This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10771on any integer bit width.
10772
10773::
10774
10775 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10776 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10777 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10778
10779Overview:
10780"""""""""
10781
10782The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10783a signed addition of the two arguments, and indicate whether an overflow
10784occurred during the signed summation.
10785
10786Arguments:
10787""""""""""
10788
10789The arguments (%a and %b) and the first element of the result structure
10790may be of integer types of any bit width, but they must have the same
10791bit width. The second element of the result structure must be of type
10792``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10793addition.
10794
10795Semantics:
10796""""""""""
10797
10798The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010799a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010800first element of which is the signed summation, and the second element
10801of which is a bit specifying if the signed summation resulted in an
10802overflow.
10803
10804Examples:
10805"""""""""
10806
10807.. code-block:: llvm
10808
10809 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10810 %sum = extractvalue {i32, i1} %res, 0
10811 %obit = extractvalue {i32, i1} %res, 1
10812 br i1 %obit, label %overflow, label %normal
10813
10814'``llvm.uadd.with.overflow.*``' Intrinsics
10815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10816
10817Syntax:
10818"""""""
10819
10820This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10821on any integer bit width.
10822
10823::
10824
10825 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10826 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10827 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10828
10829Overview:
10830"""""""""
10831
10832The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10833an unsigned addition of the two arguments, and indicate whether a carry
10834occurred during the unsigned summation.
10835
10836Arguments:
10837""""""""""
10838
10839The arguments (%a and %b) and the first element of the result structure
10840may be of integer types of any bit width, but they must have the same
10841bit width. The second element of the result structure must be of type
10842``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10843addition.
10844
10845Semantics:
10846""""""""""
10847
10848The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010849an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010850first element of which is the sum, and the second element of which is a
10851bit specifying if the unsigned summation resulted in a carry.
10852
10853Examples:
10854"""""""""
10855
10856.. code-block:: llvm
10857
10858 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10859 %sum = extractvalue {i32, i1} %res, 0
10860 %obit = extractvalue {i32, i1} %res, 1
10861 br i1 %obit, label %carry, label %normal
10862
10863'``llvm.ssub.with.overflow.*``' Intrinsics
10864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10865
10866Syntax:
10867"""""""
10868
10869This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10870on any integer bit width.
10871
10872::
10873
10874 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10875 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10876 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10877
10878Overview:
10879"""""""""
10880
10881The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10882a signed subtraction of the two arguments, and indicate whether an
10883overflow occurred during the signed subtraction.
10884
10885Arguments:
10886""""""""""
10887
10888The arguments (%a and %b) and the first element of the result structure
10889may be of integer types of any bit width, but they must have the same
10890bit width. The second element of the result structure must be of type
10891``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10892subtraction.
10893
10894Semantics:
10895""""""""""
10896
10897The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010898a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010899first element of which is the subtraction, and the second element of
10900which is a bit specifying if the signed subtraction resulted in an
10901overflow.
10902
10903Examples:
10904"""""""""
10905
10906.. code-block:: llvm
10907
10908 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10909 %sum = extractvalue {i32, i1} %res, 0
10910 %obit = extractvalue {i32, i1} %res, 1
10911 br i1 %obit, label %overflow, label %normal
10912
10913'``llvm.usub.with.overflow.*``' Intrinsics
10914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10915
10916Syntax:
10917"""""""
10918
10919This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10920on any integer bit width.
10921
10922::
10923
10924 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10925 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10926 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10927
10928Overview:
10929"""""""""
10930
10931The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10932an unsigned subtraction of the two arguments, and indicate whether an
10933overflow occurred during the unsigned subtraction.
10934
10935Arguments:
10936""""""""""
10937
10938The arguments (%a and %b) and the first element of the result structure
10939may be of integer types of any bit width, but they must have the same
10940bit width. The second element of the result structure must be of type
10941``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10942subtraction.
10943
10944Semantics:
10945""""""""""
10946
10947The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010948an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010949the first element of which is the subtraction, and the second element of
10950which is a bit specifying if the unsigned subtraction resulted in an
10951overflow.
10952
10953Examples:
10954"""""""""
10955
10956.. code-block:: llvm
10957
10958 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10959 %sum = extractvalue {i32, i1} %res, 0
10960 %obit = extractvalue {i32, i1} %res, 1
10961 br i1 %obit, label %overflow, label %normal
10962
10963'``llvm.smul.with.overflow.*``' Intrinsics
10964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10965
10966Syntax:
10967"""""""
10968
10969This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10970on any integer bit width.
10971
10972::
10973
10974 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10975 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10976 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10977
10978Overview:
10979"""""""""
10980
10981The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10982a signed multiplication of the two arguments, and indicate whether an
10983overflow occurred during the signed multiplication.
10984
10985Arguments:
10986""""""""""
10987
10988The arguments (%a and %b) and the first element of the result structure
10989may be of integer types of any bit width, but they must have the same
10990bit width. The second element of the result structure must be of type
10991``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10992multiplication.
10993
10994Semantics:
10995""""""""""
10996
10997The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010998a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010999the first element of which is the multiplication, and the second element
11000of which is a bit specifying if the signed multiplication resulted in an
11001overflow.
11002
11003Examples:
11004"""""""""
11005
11006.. code-block:: llvm
11007
11008 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11009 %sum = extractvalue {i32, i1} %res, 0
11010 %obit = extractvalue {i32, i1} %res, 1
11011 br i1 %obit, label %overflow, label %normal
11012
11013'``llvm.umul.with.overflow.*``' Intrinsics
11014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11015
11016Syntax:
11017"""""""
11018
11019This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11020on any integer bit width.
11021
11022::
11023
11024 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11025 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11026 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11027
11028Overview:
11029"""""""""
11030
11031The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11032a unsigned multiplication of the two arguments, and indicate whether an
11033overflow occurred during the unsigned multiplication.
11034
11035Arguments:
11036""""""""""
11037
11038The arguments (%a and %b) and the first element of the result structure
11039may be of integer types of any bit width, but they must have the same
11040bit width. The second element of the result structure must be of type
11041``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11042multiplication.
11043
11044Semantics:
11045""""""""""
11046
11047The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011048an unsigned multiplication of the two arguments. They return a structure ---
11049the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011050element of which is a bit specifying if the unsigned multiplication
11051resulted in an overflow.
11052
11053Examples:
11054"""""""""
11055
11056.. code-block:: llvm
11057
11058 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11059 %sum = extractvalue {i32, i1} %res, 0
11060 %obit = extractvalue {i32, i1} %res, 1
11061 br i1 %obit, label %overflow, label %normal
11062
11063Specialised Arithmetic Intrinsics
11064---------------------------------
11065
Owen Anderson1056a922015-07-11 07:01:27 +000011066'``llvm.canonicalize.*``' Intrinsic
11067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11068
11069Syntax:
11070"""""""
11071
11072::
11073
11074 declare float @llvm.canonicalize.f32(float %a)
11075 declare double @llvm.canonicalize.f64(double %b)
11076
11077Overview:
11078"""""""""
11079
11080The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011081encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011082implementing certain numeric primitives such as frexp. The canonical encoding is
11083defined by IEEE-754-2008 to be:
11084
11085::
11086
11087 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011088 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011089 numbers, infinities, and NaNs, especially in decimal formats.
11090
11091This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011092conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011093according to section 6.2.
11094
11095Examples of non-canonical encodings:
11096
Sean Silvaa1190322015-08-06 22:56:48 +000011097- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011098 converted to a canonical representation per hardware-specific protocol.
11099- Many normal decimal floating point numbers have non-canonical alternative
11100 encodings.
11101- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
11102 These are treated as non-canonical encodings of zero and with be flushed to
11103 a zero of the same sign by this operation.
11104
11105Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11106default exception handling must signal an invalid exception, and produce a
11107quiet NaN result.
11108
11109This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011110that the compiler does not constant fold the operation. Likewise, division by
111111.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011112-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11113
Sean Silvaa1190322015-08-06 22:56:48 +000011114``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011115
11116- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11117- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11118 to ``(x == y)``
11119
11120Additionally, the sign of zero must be conserved:
11121``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11122
11123The payload bits of a NaN must be conserved, with two exceptions.
11124First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011125must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011126usual methods.
11127
11128The canonicalization operation may be optimized away if:
11129
Sean Silvaa1190322015-08-06 22:56:48 +000011130- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011131 floating-point operation that is required by the standard to be canonical.
11132- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011133 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011134
Sean Silvab084af42012-12-07 10:36:55 +000011135'``llvm.fmuladd.*``' Intrinsic
11136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11137
11138Syntax:
11139"""""""
11140
11141::
11142
11143 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11144 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11145
11146Overview:
11147"""""""""
11148
11149The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011150expressions that can be fused if the code generator determines that (a) the
11151target instruction set has support for a fused operation, and (b) that the
11152fused operation is more efficient than the equivalent, separate pair of mul
11153and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011154
11155Arguments:
11156""""""""""
11157
11158The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11159multiplicands, a and b, and an addend c.
11160
11161Semantics:
11162""""""""""
11163
11164The expression:
11165
11166::
11167
11168 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11169
11170is equivalent to the expression a \* b + c, except that rounding will
11171not be performed between the multiplication and addition steps if the
11172code generator fuses the operations. Fusion is not guaranteed, even if
11173the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011174corresponding llvm.fma.\* intrinsic function should be used
11175instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011176
11177Examples:
11178"""""""""
11179
11180.. code-block:: llvm
11181
Tim Northover675a0962014-06-13 14:24:23 +000011182 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011183
James Molloy7395a812015-07-16 15:22:46 +000011184
11185'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
11186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11187
11188Syntax:
11189"""""""
11190This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
11191
11192.. code-block:: llvm
11193
11194 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
11195
11196
11197Overview:
11198"""""""""
11199
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011200The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
11201of the two operands, treating them both as unsigned integers. The intermediate
11202calculations are computed using infinitely precise unsigned arithmetic. The final
11203result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000011204
Mohammad Shahid18715532015-08-21 05:31:07 +000011205The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011206the two operands, treating them both as signed integers. If the result overflows, the
11207behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000011208
11209.. note::
11210
11211 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011212 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000011213 recommended for users to create them manually.
11214
11215Arguments:
11216""""""""""
11217
11218Both intrinsics take two integer of the same bitwidth.
11219
11220Semantics:
11221""""""""""
11222
11223The expression::
11224
11225 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11226
11227is equivalent to::
11228
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011229 %1 = zext <4 x i32> %a to <4 x i64>
11230 %2 = zext <4 x i32> %b to <4 x i64>
11231 %sub = sub <4 x i64> %1, %2
11232 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000011233
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011234and the expression::
James Molloy7395a812015-07-16 15:22:46 +000011235
11236 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11237
11238is equivalent to::
11239
11240 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011241 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000011242 %neg = sub nsw <4 x i32> zeroinitializer, %sub
11243 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
11244
11245
Sean Silvab084af42012-12-07 10:36:55 +000011246Half Precision Floating Point Intrinsics
11247----------------------------------------
11248
11249For most target platforms, half precision floating point is a
11250storage-only format. This means that it is a dense encoding (in memory)
11251but does not support computation in the format.
11252
11253This means that code must first load the half-precision floating point
11254value as an i16, then convert it to float with
11255:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11256then be performed on the float value (including extending to double
11257etc). To store the value back to memory, it is first converted to float
11258if needed, then converted to i16 with
11259:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11260i16 value.
11261
11262.. _int_convert_to_fp16:
11263
11264'``llvm.convert.to.fp16``' Intrinsic
11265^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11266
11267Syntax:
11268"""""""
11269
11270::
11271
Tim Northoverfd7e4242014-07-17 10:51:23 +000011272 declare i16 @llvm.convert.to.fp16.f32(float %a)
11273 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011274
11275Overview:
11276"""""""""
11277
Tim Northoverfd7e4242014-07-17 10:51:23 +000011278The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11279conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011280
11281Arguments:
11282""""""""""
11283
11284The intrinsic function contains single argument - the value to be
11285converted.
11286
11287Semantics:
11288""""""""""
11289
Tim Northoverfd7e4242014-07-17 10:51:23 +000011290The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11291conventional floating point format to half precision floating point format. The
11292return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011293
11294Examples:
11295"""""""""
11296
11297.. code-block:: llvm
11298
Tim Northoverfd7e4242014-07-17 10:51:23 +000011299 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011300 store i16 %res, i16* @x, align 2
11301
11302.. _int_convert_from_fp16:
11303
11304'``llvm.convert.from.fp16``' Intrinsic
11305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11306
11307Syntax:
11308"""""""
11309
11310::
11311
Tim Northoverfd7e4242014-07-17 10:51:23 +000011312 declare float @llvm.convert.from.fp16.f32(i16 %a)
11313 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011314
11315Overview:
11316"""""""""
11317
11318The '``llvm.convert.from.fp16``' intrinsic function performs a
11319conversion from half precision floating point format to single precision
11320floating point format.
11321
11322Arguments:
11323""""""""""
11324
11325The intrinsic function contains single argument - the value to be
11326converted.
11327
11328Semantics:
11329""""""""""
11330
11331The '``llvm.convert.from.fp16``' intrinsic function performs a
11332conversion from half single precision floating point format to single
11333precision floating point format. The input half-float value is
11334represented by an ``i16`` value.
11335
11336Examples:
11337"""""""""
11338
11339.. code-block:: llvm
11340
David Blaikiec7aabbb2015-03-04 22:06:14 +000011341 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011342 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011343
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011344.. _dbg_intrinsics:
11345
Sean Silvab084af42012-12-07 10:36:55 +000011346Debugger Intrinsics
11347-------------------
11348
11349The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11350prefix), are described in the `LLVM Source Level
11351Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11352document.
11353
11354Exception Handling Intrinsics
11355-----------------------------
11356
11357The LLVM exception handling intrinsics (which all start with
11358``llvm.eh.`` prefix), are described in the `LLVM Exception
11359Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11360
11361.. _int_trampoline:
11362
11363Trampoline Intrinsics
11364---------------------
11365
11366These intrinsics make it possible to excise one parameter, marked with
11367the :ref:`nest <nest>` attribute, from a function. The result is a
11368callable function pointer lacking the nest parameter - the caller does
11369not need to provide a value for it. Instead, the value to use is stored
11370in advance in a "trampoline", a block of memory usually allocated on the
11371stack, which also contains code to splice the nest value into the
11372argument list. This is used to implement the GCC nested function address
11373extension.
11374
11375For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11376then the resulting function pointer has signature ``i32 (i32, i32)*``.
11377It can be created as follows:
11378
11379.. code-block:: llvm
11380
11381 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011382 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011383 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11384 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11385 %fp = bitcast i8* %p to i32 (i32, i32)*
11386
11387The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11388``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11389
11390.. _int_it:
11391
11392'``llvm.init.trampoline``' Intrinsic
11393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11394
11395Syntax:
11396"""""""
11397
11398::
11399
11400 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11401
11402Overview:
11403"""""""""
11404
11405This fills the memory pointed to by ``tramp`` with executable code,
11406turning it into a trampoline.
11407
11408Arguments:
11409""""""""""
11410
11411The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11412pointers. The ``tramp`` argument must point to a sufficiently large and
11413sufficiently aligned block of memory; this memory is written to by the
11414intrinsic. Note that the size and the alignment are target-specific -
11415LLVM currently provides no portable way of determining them, so a
11416front-end that generates this intrinsic needs to have some
11417target-specific knowledge. The ``func`` argument must hold a function
11418bitcast to an ``i8*``.
11419
11420Semantics:
11421""""""""""
11422
11423The block of memory pointed to by ``tramp`` is filled with target
11424dependent code, turning it into a function. Then ``tramp`` needs to be
11425passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11426be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11427function's signature is the same as that of ``func`` with any arguments
11428marked with the ``nest`` attribute removed. At most one such ``nest``
11429argument is allowed, and it must be of pointer type. Calling the new
11430function is equivalent to calling ``func`` with the same argument list,
11431but with ``nval`` used for the missing ``nest`` argument. If, after
11432calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11433modified, then the effect of any later call to the returned function
11434pointer is undefined.
11435
11436.. _int_at:
11437
11438'``llvm.adjust.trampoline``' Intrinsic
11439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11440
11441Syntax:
11442"""""""
11443
11444::
11445
11446 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11447
11448Overview:
11449"""""""""
11450
11451This performs any required machine-specific adjustment to the address of
11452a trampoline (passed as ``tramp``).
11453
11454Arguments:
11455""""""""""
11456
11457``tramp`` must point to a block of memory which already has trampoline
11458code filled in by a previous call to
11459:ref:`llvm.init.trampoline <int_it>`.
11460
11461Semantics:
11462""""""""""
11463
11464On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011465different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011466intrinsic returns the executable address corresponding to ``tramp``
11467after performing the required machine specific adjustments. The pointer
11468returned can then be :ref:`bitcast and executed <int_trampoline>`.
11469
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011470.. _int_mload_mstore:
11471
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011472Masked Vector Load and Store Intrinsics
11473---------------------------------------
11474
11475LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11476
11477.. _int_mload:
11478
11479'``llvm.masked.load.*``' Intrinsics
11480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11481
11482Syntax:
11483"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011484This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011485
11486::
11487
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011488 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11489 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11490 ;; The data is a vector of pointers to double
11491 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
11492 ;; The data is a vector of function pointers
11493 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011494
11495Overview:
11496"""""""""
11497
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011498Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011499
11500
11501Arguments:
11502""""""""""
11503
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011504The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011505
11506
11507Semantics:
11508""""""""""
11509
11510The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11511The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11512
11513
11514::
11515
11516 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011517
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011518 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011519 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011520 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011521
11522.. _int_mstore:
11523
11524'``llvm.masked.store.*``' Intrinsics
11525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11526
11527Syntax:
11528"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011529This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011530
11531::
11532
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011533 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11534 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11535 ;; The data is a vector of pointers to double
11536 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11537 ;; The data is a vector of function pointers
11538 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011539
11540Overview:
11541"""""""""
11542
11543Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11544
11545Arguments:
11546""""""""""
11547
11548The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11549
11550
11551Semantics:
11552""""""""""
11553
11554The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11555The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11556
11557::
11558
11559 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011560
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011561 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011562 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011563 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11564 store <16 x float> %res, <16 x float>* %ptr, align 4
11565
11566
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011567Masked Vector Gather and Scatter Intrinsics
11568-------------------------------------------
11569
11570LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11571
11572.. _int_mgather:
11573
11574'``llvm.masked.gather.*``' Intrinsics
11575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11576
11577Syntax:
11578"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011579This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011580
11581::
11582
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011583 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11584 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11585 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011586
11587Overview:
11588"""""""""
11589
11590Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11591
11592
11593Arguments:
11594""""""""""
11595
11596The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11597
11598
11599Semantics:
11600""""""""""
11601
11602The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11603The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11604
11605
11606::
11607
11608 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11609
11610 ;; The gather with all-true mask is equivalent to the following instruction sequence
11611 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11612 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11613 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11614 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11615
11616 %val0 = load double, double* %ptr0, align 8
11617 %val1 = load double, double* %ptr1, align 8
11618 %val2 = load double, double* %ptr2, align 8
11619 %val3 = load double, double* %ptr3, align 8
11620
11621 %vec0 = insertelement <4 x double>undef, %val0, 0
11622 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11623 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11624 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11625
11626.. _int_mscatter:
11627
11628'``llvm.masked.scatter.*``' Intrinsics
11629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11630
11631Syntax:
11632"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011633This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011634
11635::
11636
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011637 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11638 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11639 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011640
11641Overview:
11642"""""""""
11643
11644Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11645
11646Arguments:
11647""""""""""
11648
11649The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11650
11651
11652Semantics:
11653""""""""""
11654
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011655The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011656
11657::
11658
11659 ;; This instruction unconditionaly stores data vector in multiple addresses
11660 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11661
11662 ;; It is equivalent to a list of scalar stores
11663 %val0 = extractelement <8 x i32> %value, i32 0
11664 %val1 = extractelement <8 x i32> %value, i32 1
11665 ..
11666 %val7 = extractelement <8 x i32> %value, i32 7
11667 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11668 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11669 ..
11670 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11671 ;; Note: the order of the following stores is important when they overlap:
11672 store i32 %val0, i32* %ptr0, align 4
11673 store i32 %val1, i32* %ptr1, align 4
11674 ..
11675 store i32 %val7, i32* %ptr7, align 4
11676
11677
Sean Silvab084af42012-12-07 10:36:55 +000011678Memory Use Markers
11679------------------
11680
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011681This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011682memory objects and ranges where variables are immutable.
11683
Reid Klecknera534a382013-12-19 02:14:12 +000011684.. _int_lifestart:
11685
Sean Silvab084af42012-12-07 10:36:55 +000011686'``llvm.lifetime.start``' Intrinsic
11687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11688
11689Syntax:
11690"""""""
11691
11692::
11693
11694 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11695
11696Overview:
11697"""""""""
11698
11699The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11700object's lifetime.
11701
11702Arguments:
11703""""""""""
11704
11705The first argument is a constant integer representing the size of the
11706object, or -1 if it is variable sized. The second argument is a pointer
11707to the object.
11708
11709Semantics:
11710""""""""""
11711
11712This intrinsic indicates that before this point in the code, the value
11713of the memory pointed to by ``ptr`` is dead. This means that it is known
11714to never be used and has an undefined value. A load from the pointer
11715that precedes this intrinsic can be replaced with ``'undef'``.
11716
Reid Klecknera534a382013-12-19 02:14:12 +000011717.. _int_lifeend:
11718
Sean Silvab084af42012-12-07 10:36:55 +000011719'``llvm.lifetime.end``' Intrinsic
11720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11721
11722Syntax:
11723"""""""
11724
11725::
11726
11727 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11728
11729Overview:
11730"""""""""
11731
11732The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11733object's lifetime.
11734
11735Arguments:
11736""""""""""
11737
11738The first argument is a constant integer representing the size of the
11739object, or -1 if it is variable sized. The second argument is a pointer
11740to the object.
11741
11742Semantics:
11743""""""""""
11744
11745This intrinsic indicates that after this point in the code, the value of
11746the memory pointed to by ``ptr`` is dead. This means that it is known to
11747never be used and has an undefined value. Any stores into the memory
11748object following this intrinsic may be removed as dead.
11749
11750'``llvm.invariant.start``' Intrinsic
11751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11752
11753Syntax:
11754"""""""
11755
11756::
11757
11758 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11759
11760Overview:
11761"""""""""
11762
11763The '``llvm.invariant.start``' intrinsic specifies that the contents of
11764a memory object will not change.
11765
11766Arguments:
11767""""""""""
11768
11769The first argument is a constant integer representing the size of the
11770object, or -1 if it is variable sized. The second argument is a pointer
11771to the object.
11772
11773Semantics:
11774""""""""""
11775
11776This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11777the return value, the referenced memory location is constant and
11778unchanging.
11779
11780'``llvm.invariant.end``' Intrinsic
11781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11782
11783Syntax:
11784"""""""
11785
11786::
11787
11788 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11789
11790Overview:
11791"""""""""
11792
11793The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11794memory object are mutable.
11795
11796Arguments:
11797""""""""""
11798
11799The first argument is the matching ``llvm.invariant.start`` intrinsic.
11800The second argument is a constant integer representing the size of the
11801object, or -1 if it is variable sized and the third argument is a
11802pointer to the object.
11803
11804Semantics:
11805""""""""""
11806
11807This intrinsic indicates that the memory is mutable again.
11808
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011809'``llvm.invariant.group.barrier``' Intrinsic
11810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11811
11812Syntax:
11813"""""""
11814
11815::
11816
11817 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11818
11819Overview:
11820"""""""""
11821
11822The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11823established by invariant.group metadata no longer holds, to obtain a new pointer
11824value that does not carry the invariant information.
11825
11826
11827Arguments:
11828""""""""""
11829
11830The ``llvm.invariant.group.barrier`` takes only one argument, which is
11831the pointer to the memory for which the ``invariant.group`` no longer holds.
11832
11833Semantics:
11834""""""""""
11835
11836Returns another pointer that aliases its argument but which is considered different
11837for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11838
Sean Silvab084af42012-12-07 10:36:55 +000011839General Intrinsics
11840------------------
11841
11842This class of intrinsics is designed to be generic and has no specific
11843purpose.
11844
11845'``llvm.var.annotation``' Intrinsic
11846^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11847
11848Syntax:
11849"""""""
11850
11851::
11852
11853 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11854
11855Overview:
11856"""""""""
11857
11858The '``llvm.var.annotation``' intrinsic.
11859
11860Arguments:
11861""""""""""
11862
11863The first argument is a pointer to a value, the second is a pointer to a
11864global string, the third is a pointer to a global string which is the
11865source file name, and the last argument is the line number.
11866
11867Semantics:
11868""""""""""
11869
11870This intrinsic allows annotation of local variables with arbitrary
11871strings. This can be useful for special purpose optimizations that want
11872to look for these annotations. These have no other defined use; they are
11873ignored by code generation and optimization.
11874
Michael Gottesman88d18832013-03-26 00:34:27 +000011875'``llvm.ptr.annotation.*``' Intrinsic
11876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11877
11878Syntax:
11879"""""""
11880
11881This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11882pointer to an integer of any width. *NOTE* you must specify an address space for
11883the pointer. The identifier for the default address space is the integer
11884'``0``'.
11885
11886::
11887
11888 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11889 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11890 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11891 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11892 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11893
11894Overview:
11895"""""""""
11896
11897The '``llvm.ptr.annotation``' intrinsic.
11898
11899Arguments:
11900""""""""""
11901
11902The first argument is a pointer to an integer value of arbitrary bitwidth
11903(result of some expression), the second is a pointer to a global string, the
11904third is a pointer to a global string which is the source file name, and the
11905last argument is the line number. It returns the value of the first argument.
11906
11907Semantics:
11908""""""""""
11909
11910This intrinsic allows annotation of a pointer to an integer with arbitrary
11911strings. This can be useful for special purpose optimizations that want to look
11912for these annotations. These have no other defined use; they are ignored by code
11913generation and optimization.
11914
Sean Silvab084af42012-12-07 10:36:55 +000011915'``llvm.annotation.*``' Intrinsic
11916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11917
11918Syntax:
11919"""""""
11920
11921This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11922any integer bit width.
11923
11924::
11925
11926 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11927 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11928 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11929 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11930 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11931
11932Overview:
11933"""""""""
11934
11935The '``llvm.annotation``' intrinsic.
11936
11937Arguments:
11938""""""""""
11939
11940The first argument is an integer value (result of some expression), the
11941second is a pointer to a global string, the third is a pointer to a
11942global string which is the source file name, and the last argument is
11943the line number. It returns the value of the first argument.
11944
11945Semantics:
11946""""""""""
11947
11948This intrinsic allows annotations to be put on arbitrary expressions
11949with arbitrary strings. This can be useful for special purpose
11950optimizations that want to look for these annotations. These have no
11951other defined use; they are ignored by code generation and optimization.
11952
11953'``llvm.trap``' Intrinsic
11954^^^^^^^^^^^^^^^^^^^^^^^^^
11955
11956Syntax:
11957"""""""
11958
11959::
11960
11961 declare void @llvm.trap() noreturn nounwind
11962
11963Overview:
11964"""""""""
11965
11966The '``llvm.trap``' intrinsic.
11967
11968Arguments:
11969""""""""""
11970
11971None.
11972
11973Semantics:
11974""""""""""
11975
11976This intrinsic is lowered to the target dependent trap instruction. If
11977the target does not have a trap instruction, this intrinsic will be
11978lowered to a call of the ``abort()`` function.
11979
11980'``llvm.debugtrap``' Intrinsic
11981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11982
11983Syntax:
11984"""""""
11985
11986::
11987
11988 declare void @llvm.debugtrap() nounwind
11989
11990Overview:
11991"""""""""
11992
11993The '``llvm.debugtrap``' intrinsic.
11994
11995Arguments:
11996""""""""""
11997
11998None.
11999
12000Semantics:
12001""""""""""
12002
12003This intrinsic is lowered to code which is intended to cause an
12004execution trap with the intention of requesting the attention of a
12005debugger.
12006
12007'``llvm.stackprotector``' Intrinsic
12008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12009
12010Syntax:
12011"""""""
12012
12013::
12014
12015 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12016
12017Overview:
12018"""""""""
12019
12020The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12021onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12022is placed on the stack before local variables.
12023
12024Arguments:
12025""""""""""
12026
12027The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12028The first argument is the value loaded from the stack guard
12029``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12030enough space to hold the value of the guard.
12031
12032Semantics:
12033""""""""""
12034
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012035This intrinsic causes the prologue/epilogue inserter to force the position of
12036the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12037to ensure that if a local variable on the stack is overwritten, it will destroy
12038the value of the guard. When the function exits, the guard on the stack is
12039checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12040different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12041calling the ``__stack_chk_fail()`` function.
12042
12043'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000012044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012045
12046Syntax:
12047"""""""
12048
12049::
12050
12051 declare void @llvm.stackprotectorcheck(i8** <guard>)
12052
12053Overview:
12054"""""""""
12055
12056The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000012057created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000012058``__stack_chk_fail()`` function.
12059
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012060Arguments:
12061""""""""""
12062
12063The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
12064the variable ``@__stack_chk_guard``.
12065
12066Semantics:
12067""""""""""
12068
12069This intrinsic is provided to perform the stack protector check by comparing
12070``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
12071values do not match call the ``__stack_chk_fail()`` function.
12072
12073The reason to provide this as an IR level intrinsic instead of implementing it
12074via other IR operations is that in order to perform this operation at the IR
12075level without an intrinsic, one would need to create additional basic blocks to
12076handle the success/failure cases. This makes it difficult to stop the stack
12077protector check from disrupting sibling tail calls in Codegen. With this
12078intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000012079codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012080
Sean Silvab084af42012-12-07 10:36:55 +000012081'``llvm.objectsize``' Intrinsic
12082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12083
12084Syntax:
12085"""""""
12086
12087::
12088
12089 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12090 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12091
12092Overview:
12093"""""""""
12094
12095The ``llvm.objectsize`` intrinsic is designed to provide information to
12096the optimizers to determine at compile time whether a) an operation
12097(like memcpy) will overflow a buffer that corresponds to an object, or
12098b) that a runtime check for overflow isn't necessary. An object in this
12099context means an allocation of a specific class, structure, array, or
12100other object.
12101
12102Arguments:
12103""""""""""
12104
12105The ``llvm.objectsize`` intrinsic takes two arguments. The first
12106argument is a pointer to or into the ``object``. The second argument is
12107a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12108or -1 (if false) when the object size is unknown. The second argument
12109only accepts constants.
12110
12111Semantics:
12112""""""""""
12113
12114The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12115the size of the object concerned. If the size cannot be determined at
12116compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12117on the ``min`` argument).
12118
12119'``llvm.expect``' Intrinsic
12120^^^^^^^^^^^^^^^^^^^^^^^^^^^
12121
12122Syntax:
12123"""""""
12124
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012125This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12126integer bit width.
12127
Sean Silvab084af42012-12-07 10:36:55 +000012128::
12129
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012130 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012131 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12132 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12133
12134Overview:
12135"""""""""
12136
12137The ``llvm.expect`` intrinsic provides information about expected (the
12138most probable) value of ``val``, which can be used by optimizers.
12139
12140Arguments:
12141""""""""""
12142
12143The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12144a value. The second argument is an expected value, this needs to be a
12145constant value, variables are not allowed.
12146
12147Semantics:
12148""""""""""
12149
12150This intrinsic is lowered to the ``val``.
12151
Philip Reamese0e90832015-04-26 22:23:12 +000012152.. _int_assume:
12153
Hal Finkel93046912014-07-25 21:13:35 +000012154'``llvm.assume``' Intrinsic
12155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12156
12157Syntax:
12158"""""""
12159
12160::
12161
12162 declare void @llvm.assume(i1 %cond)
12163
12164Overview:
12165"""""""""
12166
12167The ``llvm.assume`` allows the optimizer to assume that the provided
12168condition is true. This information can then be used in simplifying other parts
12169of the code.
12170
12171Arguments:
12172""""""""""
12173
12174The condition which the optimizer may assume is always true.
12175
12176Semantics:
12177""""""""""
12178
12179The intrinsic allows the optimizer to assume that the provided condition is
12180always true whenever the control flow reaches the intrinsic call. No code is
12181generated for this intrinsic, and instructions that contribute only to the
12182provided condition are not used for code generation. If the condition is
12183violated during execution, the behavior is undefined.
12184
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012185Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012186used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12187only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012188if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012189sufficient overall improvement in code quality. For this reason,
12190``llvm.assume`` should not be used to document basic mathematical invariants
12191that the optimizer can otherwise deduce or facts that are of little use to the
12192optimizer.
12193
Peter Collingbournee6909c82015-02-20 20:30:47 +000012194.. _bitset.test:
12195
12196'``llvm.bitset.test``' Intrinsic
12197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12198
12199Syntax:
12200"""""""
12201
12202::
12203
12204 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12205
12206
12207Arguments:
12208""""""""""
12209
12210The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012211metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012212
12213Overview:
12214"""""""""
12215
12216The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12217member of the given bitset.
12218
Sean Silvab084af42012-12-07 10:36:55 +000012219'``llvm.donothing``' Intrinsic
12220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12221
12222Syntax:
12223"""""""
12224
12225::
12226
12227 declare void @llvm.donothing() nounwind readnone
12228
12229Overview:
12230"""""""""
12231
Juergen Ributzkac9161192014-10-23 22:36:13 +000012232The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12233two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12234with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012235
12236Arguments:
12237""""""""""
12238
12239None.
12240
12241Semantics:
12242""""""""""
12243
12244This intrinsic does nothing, and it's removed by optimizers and ignored
12245by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012246
12247Stack Map Intrinsics
12248--------------------
12249
12250LLVM provides experimental intrinsics to support runtime patching
12251mechanisms commonly desired in dynamic language JITs. These intrinsics
12252are described in :doc:`StackMaps`.