blob: ca0939e535752280e742c75779f0571a347724f4 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000409"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000410 Clang generates an access function to access C++-style TLS. The access
411 function generally has an entry block, an exit block and an initialization
412 block that is run at the first time. The entry and exit blocks can access
413 a few TLS IR variables, each access will be lowered to a platform-specific
414 sequence.
415
Manman Ren19c7bbe2015-12-04 17:40:13 +0000416 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000417 preserving as many registers as possible (all the registers that are
418 perserved on the fast path, composed of the entry and exit blocks).
419
420 This calling convention behaves identical to the `C` calling convention on
421 how arguments and return values are passed, but it uses a different set of
422 caller/callee-saved registers.
423
424 Given that each platform has its own lowering sequence, hence its own set
425 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000426
427 - On X86-64 the callee preserves all general purpose registers, except for
428 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000429"``cc <n>``" - Numbered convention
430 Any calling convention may be specified by number, allowing
431 target-specific calling conventions to be used. Target specific
432 calling conventions start at 64.
433
434More calling conventions can be added/defined on an as-needed basis, to
435support Pascal conventions or any other well-known target-independent
436convention.
437
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000438.. _visibilitystyles:
439
Sean Silvab084af42012-12-07 10:36:55 +0000440Visibility Styles
441-----------------
442
443All Global Variables and Functions have one of the following visibility
444styles:
445
446"``default``" - Default style
447 On targets that use the ELF object file format, default visibility
448 means that the declaration is visible to other modules and, in
449 shared libraries, means that the declared entity may be overridden.
450 On Darwin, default visibility means that the declaration is visible
451 to other modules. Default visibility corresponds to "external
452 linkage" in the language.
453"``hidden``" - Hidden style
454 Two declarations of an object with hidden visibility refer to the
455 same object if they are in the same shared object. Usually, hidden
456 visibility indicates that the symbol will not be placed into the
457 dynamic symbol table, so no other module (executable or shared
458 library) can reference it directly.
459"``protected``" - Protected style
460 On ELF, protected visibility indicates that the symbol will be
461 placed in the dynamic symbol table, but that references within the
462 defining module will bind to the local symbol. That is, the symbol
463 cannot be overridden by another module.
464
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000465A symbol with ``internal`` or ``private`` linkage must have ``default``
466visibility.
467
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000468.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000469
Nico Rieck7157bb72014-01-14 15:22:47 +0000470DLL Storage Classes
471-------------------
472
473All Global Variables, Functions and Aliases can have one of the following
474DLL storage class:
475
476``dllimport``
477 "``dllimport``" causes the compiler to reference a function or variable via
478 a global pointer to a pointer that is set up by the DLL exporting the
479 symbol. On Microsoft Windows targets, the pointer name is formed by
480 combining ``__imp_`` and the function or variable name.
481``dllexport``
482 "``dllexport``" causes the compiler to provide a global pointer to a pointer
483 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
484 Microsoft Windows targets, the pointer name is formed by combining
485 ``__imp_`` and the function or variable name. Since this storage class
486 exists for defining a dll interface, the compiler, assembler and linker know
487 it is externally referenced and must refrain from deleting the symbol.
488
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000489.. _tls_model:
490
491Thread Local Storage Models
492---------------------------
493
494A variable may be defined as ``thread_local``, which means that it will
495not be shared by threads (each thread will have a separated copy of the
496variable). Not all targets support thread-local variables. Optionally, a
497TLS model may be specified:
498
499``localdynamic``
500 For variables that are only used within the current shared library.
501``initialexec``
502 For variables in modules that will not be loaded dynamically.
503``localexec``
504 For variables defined in the executable and only used within it.
505
506If no explicit model is given, the "general dynamic" model is used.
507
508The models correspond to the ELF TLS models; see `ELF Handling For
509Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
510more information on under which circumstances the different models may
511be used. The target may choose a different TLS model if the specified
512model is not supported, or if a better choice of model can be made.
513
Sean Silva706fba52015-08-06 22:56:24 +0000514A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000515the alias is accessed. It will not have any effect in the aliasee.
516
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000517For platforms without linker support of ELF TLS model, the -femulated-tls
518flag can be used to generate GCC compatible emulated TLS code.
519
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000520.. _namedtypes:
521
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000522Structure Types
523---------------
Sean Silvab084af42012-12-07 10:36:55 +0000524
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000525LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000526types <t_struct>`. Literal types are uniqued structurally, but identified types
527are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000528to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000529
Sean Silva706fba52015-08-06 22:56:24 +0000530An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000531
532.. code-block:: llvm
533
534 %mytype = type { %mytype*, i32 }
535
Sean Silvaa1190322015-08-06 22:56:48 +0000536Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000537literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000538
539.. _globalvars:
540
541Global Variables
542----------------
543
544Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000545instead of run-time.
546
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000547Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000548
549Global variables in other translation units can also be declared, in which
550case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000551
Bob Wilson85b24f22014-06-12 20:40:33 +0000552Either global variable definitions or declarations may have an explicit section
553to be placed in and may have an optional explicit alignment specified.
554
Michael Gottesman006039c2013-01-31 05:48:48 +0000555A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000556the contents of the variable will **never** be modified (enabling better
557optimization, allowing the global data to be placed in the read-only
558section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000559initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000560variable.
561
562LLVM explicitly allows *declarations* of global variables to be marked
563constant, even if the final definition of the global is not. This
564capability can be used to enable slightly better optimization of the
565program, but requires the language definition to guarantee that
566optimizations based on the 'constantness' are valid for the translation
567units that do not include the definition.
568
569As SSA values, global variables define pointer values that are in scope
570(i.e. they dominate) all basic blocks in the program. Global variables
571always define a pointer to their "content" type because they describe a
572region of memory, and all memory objects in LLVM are accessed through
573pointers.
574
575Global variables can be marked with ``unnamed_addr`` which indicates
576that the address is not significant, only the content. Constants marked
577like this can be merged with other constants if they have the same
578initializer. Note that a constant with significant address *can* be
579merged with a ``unnamed_addr`` constant, the result being a constant
580whose address is significant.
581
582A global variable may be declared to reside in a target-specific
583numbered address space. For targets that support them, address spaces
584may affect how optimizations are performed and/or what target
585instructions are used to access the variable. The default address space
586is zero. The address space qualifier must precede any other attributes.
587
588LLVM allows an explicit section to be specified for globals. If the
589target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000590Additionally, the global can placed in a comdat if the target has the necessary
591support.
Sean Silvab084af42012-12-07 10:36:55 +0000592
Michael Gottesmane743a302013-02-04 03:22:00 +0000593By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000594variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000595initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000596true even for variables potentially accessible from outside the
597module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000598``@llvm.used`` or dllexported variables. This assumption may be suppressed
599by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000600
Sean Silvab084af42012-12-07 10:36:55 +0000601An explicit alignment may be specified for a global, which must be a
602power of 2. If not present, or if the alignment is set to zero, the
603alignment of the global is set by the target to whatever it feels
604convenient. If an explicit alignment is specified, the global is forced
605to have exactly that alignment. Targets and optimizers are not allowed
606to over-align the global if the global has an assigned section. In this
607case, the extra alignment could be observable: for example, code could
608assume that the globals are densely packed in their section and try to
609iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000610iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000611
Nico Rieck7157bb72014-01-14 15:22:47 +0000612Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
613
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000614Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000615:ref:`Thread Local Storage Model <tls_model>`.
616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Syntax::
618
619 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000620 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000621 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000622 [, section "name"] [, comdat [($name)]]
623 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000624
Sean Silvab084af42012-12-07 10:36:55 +0000625For example, the following defines a global in a numbered address space
626with an initializer, section, and alignment:
627
628.. code-block:: llvm
629
630 @G = addrspace(5) constant float 1.0, section "foo", align 4
631
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000632The following example just declares a global variable
633
634.. code-block:: llvm
635
636 @G = external global i32
637
Sean Silvab084af42012-12-07 10:36:55 +0000638The following example defines a thread-local global with the
639``initialexec`` TLS model:
640
641.. code-block:: llvm
642
643 @G = thread_local(initialexec) global i32 0, align 4
644
645.. _functionstructure:
646
647Functions
648---------
649
650LLVM function definitions consist of the "``define``" keyword, an
651optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000652style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
653an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000654an optional ``unnamed_addr`` attribute, a return type, an optional
655:ref:`parameter attribute <paramattrs>` for the return type, a function
656name, a (possibly empty) argument list (each with optional :ref:`parameter
657attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000658an optional section, an optional alignment,
659an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000660an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000661an optional :ref:`prologue <prologuedata>`,
662an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000663an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000664an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666LLVM function declarations consist of the "``declare``" keyword, an
667optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000668style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
669an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000670an optional ``unnamed_addr`` attribute, a return type, an optional
671:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000672name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000673:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
674and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000675
Bill Wendling6822ecb2013-10-27 05:09:12 +0000676A function definition contains a list of basic blocks, forming the CFG (Control
677Flow Graph) for the function. Each basic block may optionally start with a label
678(giving the basic block a symbol table entry), contains a list of instructions,
679and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
680function return). If an explicit label is not provided, a block is assigned an
681implicit numbered label, using the next value from the same counter as used for
682unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
683entry block does not have an explicit label, it will be assigned label "%0",
684then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000685
686The first basic block in a function is special in two ways: it is
687immediately executed on entrance to the function, and it is not allowed
688to have predecessor basic blocks (i.e. there can not be any branches to
689the entry block of a function). Because the block can have no
690predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
691
692LLVM allows an explicit section to be specified for functions. If the
693target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000694Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000695
696An explicit alignment may be specified for a function. If not present,
697or if the alignment is set to zero, the alignment of the function is set
698by the target to whatever it feels convenient. If an explicit alignment
699is specified, the function is forced to have at least that much
700alignment. All alignments must be a power of 2.
701
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000702If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000703be significant and two identical functions can be merged.
704
705Syntax::
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000708 [cconv] [ret attrs]
709 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000710 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000711 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000712 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000713
Sean Silva706fba52015-08-06 22:56:24 +0000714The argument list is a comma separated sequence of arguments where each
715argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000716
717Syntax::
718
719 <type> [parameter Attrs] [name]
720
721
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000722.. _langref_aliases:
723
Sean Silvab084af42012-12-07 10:36:55 +0000724Aliases
725-------
726
Rafael Espindola64c1e182014-06-03 02:41:57 +0000727Aliases, unlike function or variables, don't create any new data. They
728are just a new symbol and metadata for an existing position.
729
730Aliases have a name and an aliasee that is either a global value or a
731constant expression.
732
Nico Rieck7157bb72014-01-14 15:22:47 +0000733Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000734:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
735<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000736
737Syntax::
738
David Blaikie196582e2015-10-22 01:17:29 +0000739 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000740
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000741The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000742``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000743might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000744
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000745Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000746the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
747to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000748
Rafael Espindola64c1e182014-06-03 02:41:57 +0000749Since aliases are only a second name, some restrictions apply, of which
750some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000751
Rafael Espindola64c1e182014-06-03 02:41:57 +0000752* The expression defining the aliasee must be computable at assembly
753 time. Since it is just a name, no relocations can be used.
754
755* No alias in the expression can be weak as the possibility of the
756 intermediate alias being overridden cannot be represented in an
757 object file.
758
759* No global value in the expression can be a declaration, since that
760 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000761
David Majnemerdad0a642014-06-27 18:19:56 +0000762.. _langref_comdats:
763
764Comdats
765-------
766
767Comdat IR provides access to COFF and ELF object file COMDAT functionality.
768
Sean Silvaa1190322015-08-06 22:56:48 +0000769Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000770specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000771that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000772aliasee computes to, if any.
773
774Comdats have a selection kind to provide input on how the linker should
775choose between keys in two different object files.
776
777Syntax::
778
779 $<Name> = comdat SelectionKind
780
781The selection kind must be one of the following:
782
783``any``
784 The linker may choose any COMDAT key, the choice is arbitrary.
785``exactmatch``
786 The linker may choose any COMDAT key but the sections must contain the
787 same data.
788``largest``
789 The linker will choose the section containing the largest COMDAT key.
790``noduplicates``
791 The linker requires that only section with this COMDAT key exist.
792``samesize``
793 The linker may choose any COMDAT key but the sections must contain the
794 same amount of data.
795
796Note that the Mach-O platform doesn't support COMDATs and ELF only supports
797``any`` as a selection kind.
798
799Here is an example of a COMDAT group where a function will only be selected if
800the COMDAT key's section is the largest:
801
802.. code-block:: llvm
803
804 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000805 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000806
Rafael Espindola83a362c2015-01-06 22:55:16 +0000807 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000808 ret void
809 }
810
Rafael Espindola83a362c2015-01-06 22:55:16 +0000811As a syntactic sugar the ``$name`` can be omitted if the name is the same as
812the global name:
813
814.. code-block:: llvm
815
816 $foo = comdat any
817 @foo = global i32 2, comdat
818
819
David Majnemerdad0a642014-06-27 18:19:56 +0000820In a COFF object file, this will create a COMDAT section with selection kind
821``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
822and another COMDAT section with selection kind
823``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000824section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000825
826There are some restrictions on the properties of the global object.
827It, or an alias to it, must have the same name as the COMDAT group when
828targeting COFF.
829The contents and size of this object may be used during link-time to determine
830which COMDAT groups get selected depending on the selection kind.
831Because the name of the object must match the name of the COMDAT group, the
832linkage of the global object must not be local; local symbols can get renamed
833if a collision occurs in the symbol table.
834
835The combined use of COMDATS and section attributes may yield surprising results.
836For example:
837
838.. code-block:: llvm
839
840 $foo = comdat any
841 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000842 @g1 = global i32 42, section "sec", comdat($foo)
843 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000844
845From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000846with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000847COMDAT groups and COMDATs, at the object file level, are represented by
848sections.
849
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000850Note that certain IR constructs like global variables and functions may
851create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000852COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000853in individual sections (e.g. when `-data-sections` or `-function-sections`
854is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000855
Sean Silvab084af42012-12-07 10:36:55 +0000856.. _namedmetadatastructure:
857
858Named Metadata
859--------------
860
861Named metadata is a collection of metadata. :ref:`Metadata
862nodes <metadata>` (but not metadata strings) are the only valid
863operands for a named metadata.
864
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000865#. Named metadata are represented as a string of characters with the
866 metadata prefix. The rules for metadata names are the same as for
867 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
868 are still valid, which allows any character to be part of a name.
869
Sean Silvab084af42012-12-07 10:36:55 +0000870Syntax::
871
872 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000873 !0 = !{!"zero"}
874 !1 = !{!"one"}
875 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000876 ; A named metadata.
877 !name = !{!0, !1, !2}
878
879.. _paramattrs:
880
881Parameter Attributes
882--------------------
883
884The return type and each parameter of a function type may have a set of
885*parameter attributes* associated with them. Parameter attributes are
886used to communicate additional information about the result or
887parameters of a function. Parameter attributes are considered to be part
888of the function, not of the function type, so functions with different
889parameter attributes can have the same function type.
890
891Parameter attributes are simple keywords that follow the type specified.
892If multiple parameter attributes are needed, they are space separated.
893For example:
894
895.. code-block:: llvm
896
897 declare i32 @printf(i8* noalias nocapture, ...)
898 declare i32 @atoi(i8 zeroext)
899 declare signext i8 @returns_signed_char()
900
901Note that any attributes for the function result (``nounwind``,
902``readonly``) come immediately after the argument list.
903
904Currently, only the following parameter attributes are defined:
905
906``zeroext``
907 This indicates to the code generator that the parameter or return
908 value should be zero-extended to the extent required by the target's
909 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
910 the caller (for a parameter) or the callee (for a return value).
911``signext``
912 This indicates to the code generator that the parameter or return
913 value should be sign-extended to the extent required by the target's
914 ABI (which is usually 32-bits) by the caller (for a parameter) or
915 the callee (for a return value).
916``inreg``
917 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000918 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000919 a function call or return (usually, by putting it in a register as
920 opposed to memory, though some targets use it to distinguish between
921 two different kinds of registers). Use of this attribute is
922 target-specific.
923``byval``
924 This indicates that the pointer parameter should really be passed by
925 value to the function. The attribute implies that a hidden copy of
926 the pointee is made between the caller and the callee, so the callee
927 is unable to modify the value in the caller. This attribute is only
928 valid on LLVM pointer arguments. It is generally used to pass
929 structs and arrays by value, but is also valid on pointers to
930 scalars. The copy is considered to belong to the caller not the
931 callee (for example, ``readonly`` functions should not write to
932 ``byval`` parameters). This is not a valid attribute for return
933 values.
934
935 The byval attribute also supports specifying an alignment with the
936 align attribute. It indicates the alignment of the stack slot to
937 form and the known alignment of the pointer specified to the call
938 site. If the alignment is not specified, then the code generator
939 makes a target-specific assumption.
940
Reid Klecknera534a382013-12-19 02:14:12 +0000941.. _attr_inalloca:
942
943``inalloca``
944
Reid Kleckner60d3a832014-01-16 22:59:24 +0000945 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000946 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000947 be a pointer to stack memory produced by an ``alloca`` instruction.
948 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000949 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000950 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000951
Reid Kleckner436c42e2014-01-17 23:58:17 +0000952 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000953 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000954 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000955 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000956 ``inalloca`` attribute also disables LLVM's implicit lowering of
957 large aggregate return values, which means that frontend authors
958 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000959
Reid Kleckner60d3a832014-01-16 22:59:24 +0000960 When the call site is reached, the argument allocation must have
961 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000962 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000963 space after an argument allocation and before its call site, but it
964 must be cleared off with :ref:`llvm.stackrestore
965 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000966
967 See :doc:`InAlloca` for more information on how to use this
968 attribute.
969
Sean Silvab084af42012-12-07 10:36:55 +0000970``sret``
971 This indicates that the pointer parameter specifies the address of a
972 structure that is the return value of the function in the source
973 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000974 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000975 not to trap and to be properly aligned. This may only be applied to
976 the first parameter. This is not a valid attribute for return
977 values.
Sean Silva1703e702014-04-08 21:06:22 +0000978
Hal Finkelccc70902014-07-22 16:58:55 +0000979``align <n>``
980 This indicates that the pointer value may be assumed by the optimizer to
981 have the specified alignment.
982
983 Note that this attribute has additional semantics when combined with the
984 ``byval`` attribute.
985
Sean Silva1703e702014-04-08 21:06:22 +0000986.. _noalias:
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000989 This indicates that objects accessed via pointer values
990 :ref:`based <pointeraliasing>` on the argument or return value are not also
991 accessed, during the execution of the function, via pointer values not
992 *based* on the argument or return value. The attribute on a return value
993 also has additional semantics described below. The caller shares the
994 responsibility with the callee for ensuring that these requirements are met.
995 For further details, please see the discussion of the NoAlias response in
996 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000997
998 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000999 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001000
1001 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001002 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1003 attribute on return values are stronger than the semantics of the attribute
1004 when used on function arguments. On function return values, the ``noalias``
1005 attribute indicates that the function acts like a system memory allocation
1006 function, returning a pointer to allocated storage disjoint from the
1007 storage for any other object accessible to the caller.
1008
Sean Silvab084af42012-12-07 10:36:55 +00001009``nocapture``
1010 This indicates that the callee does not make any copies of the
1011 pointer that outlive the callee itself. This is not a valid
1012 attribute for return values.
1013
1014.. _nest:
1015
1016``nest``
1017 This indicates that the pointer parameter can be excised using the
1018 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001019 attribute for return values and can only be applied to one parameter.
1020
1021``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001022 This indicates that the function always returns the argument as its return
1023 value. This is an optimization hint to the code generator when generating
1024 the caller, allowing tail call optimization and omission of register saves
1025 and restores in some cases; it is not checked or enforced when generating
1026 the callee. The parameter and the function return type must be valid
1027 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1028 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001029
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001030``nonnull``
1031 This indicates that the parameter or return pointer is not null. This
1032 attribute may only be applied to pointer typed parameters. This is not
1033 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001034 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001035 is non-null.
1036
Hal Finkelb0407ba2014-07-18 15:51:28 +00001037``dereferenceable(<n>)``
1038 This indicates that the parameter or return pointer is dereferenceable. This
1039 attribute may only be applied to pointer typed parameters. A pointer that
1040 is dereferenceable can be loaded from speculatively without a risk of
1041 trapping. The number of bytes known to be dereferenceable must be provided
1042 in parentheses. It is legal for the number of bytes to be less than the
1043 size of the pointee type. The ``nonnull`` attribute does not imply
1044 dereferenceability (consider a pointer to one element past the end of an
1045 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1046 ``addrspace(0)`` (which is the default address space).
1047
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001048``dereferenceable_or_null(<n>)``
1049 This indicates that the parameter or return value isn't both
1050 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001051 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001052 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1053 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1054 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1055 and in other address spaces ``dereferenceable_or_null(<n>)``
1056 implies that a pointer is at least one of ``dereferenceable(<n>)``
1057 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001058 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001059 pointer typed parameters.
1060
Sean Silvab084af42012-12-07 10:36:55 +00001061.. _gc:
1062
Philip Reamesf80bbff2015-02-25 23:45:20 +00001063Garbage Collector Strategy Names
1064--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001065
Philip Reamesf80bbff2015-02-25 23:45:20 +00001066Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001067string:
1068
1069.. code-block:: llvm
1070
1071 define void @f() gc "name" { ... }
1072
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001073The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001074<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001075strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001076named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001077garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001078which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001079
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001080.. _prefixdata:
1081
1082Prefix Data
1083-----------
1084
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001085Prefix data is data associated with a function which the code
1086generator will emit immediately before the function's entrypoint.
1087The purpose of this feature is to allow frontends to associate
1088language-specific runtime metadata with specific functions and make it
1089available through the function pointer while still allowing the
1090function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001091
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001092To access the data for a given function, a program may bitcast the
1093function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001094index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001095the prefix data. For instance, take the example of a function annotated
1096with a single ``i32``,
1097
1098.. code-block:: llvm
1099
1100 define void @f() prefix i32 123 { ... }
1101
1102The prefix data can be referenced as,
1103
1104.. code-block:: llvm
1105
David Blaikie16a97eb2015-03-04 22:02:58 +00001106 %0 = bitcast void* () @f to i32*
1107 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001108 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001109
1110Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001111of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001112beginning of the prefix data is aligned. This means that if the size
1113of the prefix data is not a multiple of the alignment size, the
1114function's entrypoint will not be aligned. If alignment of the
1115function's entrypoint is desired, padding must be added to the prefix
1116data.
1117
Sean Silvaa1190322015-08-06 22:56:48 +00001118A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119to the ``available_externally`` linkage in that the data may be used by the
1120optimizers but will not be emitted in the object file.
1121
1122.. _prologuedata:
1123
1124Prologue Data
1125-------------
1126
1127The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1128be inserted prior to the function body. This can be used for enabling
1129function hot-patching and instrumentation.
1130
1131To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001132have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001133bytes which decode to a sequence of machine instructions, valid for the
1134module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001135the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001136the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001137definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001138makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001139
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001140A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001141which encodes the ``nop`` instruction:
1142
1143.. code-block:: llvm
1144
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001145 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001146
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001147Generally prologue data can be formed by encoding a relative branch instruction
1148which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001149x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1150
1151.. code-block:: llvm
1152
1153 %0 = type <{ i8, i8, i8* }>
1154
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001155 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001156
Sean Silvaa1190322015-08-06 22:56:48 +00001157A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001158to the ``available_externally`` linkage in that the data may be used by the
1159optimizers but will not be emitted in the object file.
1160
David Majnemer7fddecc2015-06-17 20:52:32 +00001161.. _personalityfn:
1162
1163Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001164--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001165
1166The ``personality`` attribute permits functions to specify what function
1167to use for exception handling.
1168
Bill Wendling63b88192013-02-06 06:52:58 +00001169.. _attrgrp:
1170
1171Attribute Groups
1172----------------
1173
1174Attribute groups are groups of attributes that are referenced by objects within
1175the IR. They are important for keeping ``.ll`` files readable, because a lot of
1176functions will use the same set of attributes. In the degenerative case of a
1177``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1178group will capture the important command line flags used to build that file.
1179
1180An attribute group is a module-level object. To use an attribute group, an
1181object references the attribute group's ID (e.g. ``#37``). An object may refer
1182to more than one attribute group. In that situation, the attributes from the
1183different groups are merged.
1184
1185Here is an example of attribute groups for a function that should always be
1186inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1187
1188.. code-block:: llvm
1189
1190 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001191 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001192
1193 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001194 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001195
1196 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1197 define void @f() #0 #1 { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199.. _fnattrs:
1200
1201Function Attributes
1202-------------------
1203
1204Function attributes are set to communicate additional information about
1205a function. Function attributes are considered to be part of the
1206function, not of the function type, so functions with different function
1207attributes can have the same function type.
1208
1209Function attributes are simple keywords that follow the type specified.
1210If multiple attributes are needed, they are space separated. For
1211example:
1212
1213.. code-block:: llvm
1214
1215 define void @f() noinline { ... }
1216 define void @f() alwaysinline { ... }
1217 define void @f() alwaysinline optsize { ... }
1218 define void @f() optsize { ... }
1219
Sean Silvab084af42012-12-07 10:36:55 +00001220``alignstack(<n>)``
1221 This attribute indicates that, when emitting the prologue and
1222 epilogue, the backend should forcibly align the stack pointer.
1223 Specify the desired alignment, which must be a power of two, in
1224 parentheses.
1225``alwaysinline``
1226 This attribute indicates that the inliner should attempt to inline
1227 this function into callers whenever possible, ignoring any active
1228 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001229``builtin``
1230 This indicates that the callee function at a call site should be
1231 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001232 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001233 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001234 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001235``cold``
1236 This attribute indicates that this function is rarely called. When
1237 computing edge weights, basic blocks post-dominated by a cold
1238 function call are also considered to be cold; and, thus, given low
1239 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001240``convergent``
1241 This attribute indicates that the callee is dependent on a convergent
1242 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001243 Transformations that are execution model agnostic may not make the execution
1244 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001245``inlinehint``
1246 This attribute indicates that the source code contained a hint that
1247 inlining this function is desirable (such as the "inline" keyword in
1248 C/C++). It is just a hint; it imposes no requirements on the
1249 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001250``jumptable``
1251 This attribute indicates that the function should be added to a
1252 jump-instruction table at code-generation time, and that all address-taken
1253 references to this function should be replaced with a reference to the
1254 appropriate jump-instruction-table function pointer. Note that this creates
1255 a new pointer for the original function, which means that code that depends
1256 on function-pointer identity can break. So, any function annotated with
1257 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001258``minsize``
1259 This attribute suggests that optimization passes and code generator
1260 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001261 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001262 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001263``naked``
1264 This attribute disables prologue / epilogue emission for the
1265 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001266``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001267 This indicates that the callee function at a call site is not recognized as
1268 a built-in function. LLVM will retain the original call and not replace it
1269 with equivalent code based on the semantics of the built-in function, unless
1270 the call site uses the ``builtin`` attribute. This is valid at call sites
1271 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001272``noduplicate``
1273 This attribute indicates that calls to the function cannot be
1274 duplicated. A call to a ``noduplicate`` function may be moved
1275 within its parent function, but may not be duplicated within
1276 its parent function.
1277
1278 A function containing a ``noduplicate`` call may still
1279 be an inlining candidate, provided that the call is not
1280 duplicated by inlining. That implies that the function has
1281 internal linkage and only has one call site, so the original
1282 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001283``noimplicitfloat``
1284 This attributes disables implicit floating point instructions.
1285``noinline``
1286 This attribute indicates that the inliner should never inline this
1287 function in any situation. This attribute may not be used together
1288 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001289``nonlazybind``
1290 This attribute suppresses lazy symbol binding for the function. This
1291 may make calls to the function faster, at the cost of extra program
1292 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001293``noredzone``
1294 This attribute indicates that the code generator should not use a
1295 red zone, even if the target-specific ABI normally permits it.
1296``noreturn``
1297 This function attribute indicates that the function never returns
1298 normally. This produces undefined behavior at runtime if the
1299 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001300``norecurse``
1301 This function attribute indicates that the function does not call itself
1302 either directly or indirectly down any possible call path. This produces
1303 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001304``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001305 This function attribute indicates that the function never raises an
1306 exception. If the function does raise an exception, its runtime
1307 behavior is undefined. However, functions marked nounwind may still
1308 trap or generate asynchronous exceptions. Exception handling schemes
1309 that are recognized by LLVM to handle asynchronous exceptions, such
1310 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001311``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001312 This function attribute indicates that most optimization passes will skip
1313 this function, with the exception of interprocedural optimization passes.
1314 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001315 This attribute cannot be used together with the ``alwaysinline``
1316 attribute; this attribute is also incompatible
1317 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001318
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001319 This attribute requires the ``noinline`` attribute to be specified on
1320 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001321 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001322 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001323``optsize``
1324 This attribute suggests that optimization passes and code generator
1325 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001326 and otherwise do optimizations specifically to reduce code size as
1327 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001328``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On a function, this attribute indicates that the function computes its
1330 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001331 without dereferencing any pointer arguments or otherwise accessing
1332 any mutable state (e.g. memory, control registers, etc) visible to
1333 caller functions. It does not write through any pointer arguments
1334 (including ``byval`` arguments) and never changes any state visible
1335 to callers. This means that it cannot unwind exceptions by calling
1336 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001337
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001338 On an argument, this attribute indicates that the function does not
1339 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001340 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001341``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001342 On a function, this attribute indicates that the function does not write
1343 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001344 modify any state (e.g. memory, control registers, etc) visible to
1345 caller functions. It may dereference pointer arguments and read
1346 state that may be set in the caller. A readonly function always
1347 returns the same value (or unwinds an exception identically) when
1348 called with the same set of arguments and global state. It cannot
1349 unwind an exception by calling the ``C++`` exception throwing
1350 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001351
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001352 On an argument, this attribute indicates that the function does not write
1353 through this pointer argument, even though it may write to the memory that
1354 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001355``argmemonly``
1356 This attribute indicates that the only memory accesses inside function are
1357 loads and stores from objects pointed to by its pointer-typed arguments,
1358 with arbitrary offsets. Or in other words, all memory operations in the
1359 function can refer to memory only using pointers based on its function
1360 arguments.
1361 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1362 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001363``returns_twice``
1364 This attribute indicates that this function can return twice. The C
1365 ``setjmp`` is an example of such a function. The compiler disables
1366 some optimizations (like tail calls) in the caller of these
1367 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001368``safestack``
1369 This attribute indicates that
1370 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1371 protection is enabled for this function.
1372
1373 If a function that has a ``safestack`` attribute is inlined into a
1374 function that doesn't have a ``safestack`` attribute or which has an
1375 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1376 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001377``sanitize_address``
1378 This attribute indicates that AddressSanitizer checks
1379 (dynamic address safety analysis) are enabled for this function.
1380``sanitize_memory``
1381 This attribute indicates that MemorySanitizer checks (dynamic detection
1382 of accesses to uninitialized memory) are enabled for this function.
1383``sanitize_thread``
1384 This attribute indicates that ThreadSanitizer checks
1385 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001386``ssp``
1387 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001388 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001389 placed on the stack before the local variables that's checked upon
1390 return from the function to see if it has been overwritten. A
1391 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001392 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001393
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001394 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1395 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1396 - Calls to alloca() with variable sizes or constant sizes greater than
1397 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001398
Josh Magee24c7f062014-02-01 01:36:16 +00001399 Variables that are identified as requiring a protector will be arranged
1400 on the stack such that they are adjacent to the stack protector guard.
1401
Sean Silvab084af42012-12-07 10:36:55 +00001402 If a function that has an ``ssp`` attribute is inlined into a
1403 function that doesn't have an ``ssp`` attribute, then the resulting
1404 function will have an ``ssp`` attribute.
1405``sspreq``
1406 This attribute indicates that the function should *always* emit a
1407 stack smashing protector. This overrides the ``ssp`` function
1408 attribute.
1409
Josh Magee24c7f062014-02-01 01:36:16 +00001410 Variables that are identified as requiring a protector will be arranged
1411 on the stack such that they are adjacent to the stack protector guard.
1412 The specific layout rules are:
1413
1414 #. Large arrays and structures containing large arrays
1415 (``>= ssp-buffer-size``) are closest to the stack protector.
1416 #. Small arrays and structures containing small arrays
1417 (``< ssp-buffer-size``) are 2nd closest to the protector.
1418 #. Variables that have had their address taken are 3rd closest to the
1419 protector.
1420
Sean Silvab084af42012-12-07 10:36:55 +00001421 If a function that has an ``sspreq`` attribute is inlined into a
1422 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001423 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1424 an ``sspreq`` attribute.
1425``sspstrong``
1426 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001427 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001428 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001429 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001430
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001431 - Arrays of any size and type
1432 - Aggregates containing an array of any size and type.
1433 - Calls to alloca().
1434 - Local variables that have had their address taken.
1435
Josh Magee24c7f062014-02-01 01:36:16 +00001436 Variables that are identified as requiring a protector will be arranged
1437 on the stack such that they are adjacent to the stack protector guard.
1438 The specific layout rules are:
1439
1440 #. Large arrays and structures containing large arrays
1441 (``>= ssp-buffer-size``) are closest to the stack protector.
1442 #. Small arrays and structures containing small arrays
1443 (``< ssp-buffer-size``) are 2nd closest to the protector.
1444 #. Variables that have had their address taken are 3rd closest to the
1445 protector.
1446
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001447 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001448
1449 If a function that has an ``sspstrong`` attribute is inlined into a
1450 function that doesn't have an ``sspstrong`` attribute, then the
1451 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001452``"thunk"``
1453 This attribute indicates that the function will delegate to some other
1454 function with a tail call. The prototype of a thunk should not be used for
1455 optimization purposes. The caller is expected to cast the thunk prototype to
1456 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001457``uwtable``
1458 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001459 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001460 show that no exceptions passes by it. This is normally the case for
1461 the ELF x86-64 abi, but it can be disabled for some compilation
1462 units.
Sean Silvab084af42012-12-07 10:36:55 +00001463
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001464
1465.. _opbundles:
1466
1467Operand Bundles
1468---------------
1469
1470Note: operand bundles are a work in progress, and they should be
1471considered experimental at this time.
1472
1473Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001474with certain LLVM instructions (currently only ``call`` s and
1475``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001476incorrect and will change program semantics.
1477
1478Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001479
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001480 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001481 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1482 bundle operand ::= SSA value
1483 tag ::= string constant
1484
1485Operand bundles are **not** part of a function's signature, and a
1486given function may be called from multiple places with different kinds
1487of operand bundles. This reflects the fact that the operand bundles
1488are conceptually a part of the ``call`` (or ``invoke``), not the
1489callee being dispatched to.
1490
1491Operand bundles are a generic mechanism intended to support
1492runtime-introspection-like functionality for managed languages. While
1493the exact semantics of an operand bundle depend on the bundle tag,
1494there are certain limitations to how much the presence of an operand
1495bundle can influence the semantics of a program. These restrictions
1496are described as the semantics of an "unknown" operand bundle. As
1497long as the behavior of an operand bundle is describable within these
1498restrictions, LLVM does not need to have special knowledge of the
1499operand bundle to not miscompile programs containing it.
1500
David Majnemer34cacb42015-10-22 01:46:38 +00001501- The bundle operands for an unknown operand bundle escape in unknown
1502 ways before control is transferred to the callee or invokee.
1503- Calls and invokes with operand bundles have unknown read / write
1504 effect on the heap on entry and exit (even if the call target is
Sanjoy Das98a341b2015-10-22 03:12:22 +00001505 ``readnone`` or ``readonly``), unless they're overriden with
1506 callsite specific attributes.
1507- An operand bundle at a call site cannot change the implementation
1508 of the called function. Inter-procedural optimizations work as
1509 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001510
Sanjoy Dascdafd842015-11-11 21:38:02 +00001511More specific types of operand bundles are described below.
1512
1513Deoptimization Operand Bundles
1514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1515
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001516Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001517operand bundle tag. These operand bundles represent an alternate
1518"safe" continuation for the call site they're attached to, and can be
1519used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001520specified call site. There can be at most one ``"deopt"`` operand
1521bundle attached to a call site. Exact details of deoptimization is
1522out of scope for the language reference, but it usually involves
1523rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001524
1525From the compiler's perspective, deoptimization operand bundles make
1526the call sites they're attached to at least ``readonly``. They read
1527through all of their pointer typed operands (even if they're not
1528otherwise escaped) and the entire visible heap. Deoptimization
1529operand bundles do not capture their operands except during
1530deoptimization, in which case control will not be returned to the
1531compiled frame.
1532
Sanjoy Das2d161452015-11-18 06:23:38 +00001533The inliner knows how to inline through calls that have deoptimization
1534operand bundles. Just like inlining through a normal call site
1535involves composing the normal and exceptional continuations, inlining
1536through a call site with a deoptimization operand bundle needs to
1537appropriately compose the "safe" deoptimization continuation. The
1538inliner does this by prepending the parent's deoptimization
1539continuation to every deoptimization continuation in the inlined body.
1540E.g. inlining ``@f`` into ``@g`` in the following example
1541
1542.. code-block:: llvm
1543
1544 define void @f() {
1545 call void @x() ;; no deopt state
1546 call void @y() [ "deopt"(i32 10) ]
1547 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1548 ret void
1549 }
1550
1551 define void @g() {
1552 call void @f() [ "deopt"(i32 20) ]
1553 ret void
1554 }
1555
1556will result in
1557
1558.. code-block:: llvm
1559
1560 define void @g() {
1561 call void @x() ;; still no deopt state
1562 call void @y() [ "deopt"(i32 20, i32 10) ]
1563 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1564 ret void
1565 }
1566
1567It is the frontend's responsibility to structure or encode the
1568deoptimization state in a way that syntactically prepending the
1569caller's deoptimization state to the callee's deoptimization state is
1570semantically equivalent to composing the caller's deoptimization
1571continuation after the callee's deoptimization continuation.
1572
Sean Silvab084af42012-12-07 10:36:55 +00001573.. _moduleasm:
1574
1575Module-Level Inline Assembly
1576----------------------------
1577
1578Modules may contain "module-level inline asm" blocks, which corresponds
1579to the GCC "file scope inline asm" blocks. These blocks are internally
1580concatenated by LLVM and treated as a single unit, but may be separated
1581in the ``.ll`` file if desired. The syntax is very simple:
1582
1583.. code-block:: llvm
1584
1585 module asm "inline asm code goes here"
1586 module asm "more can go here"
1587
1588The strings can contain any character by escaping non-printable
1589characters. The escape sequence used is simply "\\xx" where "xx" is the
1590two digit hex code for the number.
1591
James Y Knightbc832ed2015-07-08 18:08:36 +00001592Note that the assembly string *must* be parseable by LLVM's integrated assembler
1593(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001594
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001595.. _langref_datalayout:
1596
Sean Silvab084af42012-12-07 10:36:55 +00001597Data Layout
1598-----------
1599
1600A module may specify a target specific data layout string that specifies
1601how data is to be laid out in memory. The syntax for the data layout is
1602simply:
1603
1604.. code-block:: llvm
1605
1606 target datalayout = "layout specification"
1607
1608The *layout specification* consists of a list of specifications
1609separated by the minus sign character ('-'). Each specification starts
1610with a letter and may include other information after the letter to
1611define some aspect of the data layout. The specifications accepted are
1612as follows:
1613
1614``E``
1615 Specifies that the target lays out data in big-endian form. That is,
1616 the bits with the most significance have the lowest address
1617 location.
1618``e``
1619 Specifies that the target lays out data in little-endian form. That
1620 is, the bits with the least significance have the lowest address
1621 location.
1622``S<size>``
1623 Specifies the natural alignment of the stack in bits. Alignment
1624 promotion of stack variables is limited to the natural stack
1625 alignment to avoid dynamic stack realignment. The stack alignment
1626 must be a multiple of 8-bits. If omitted, the natural stack
1627 alignment defaults to "unspecified", which does not prevent any
1628 alignment promotions.
1629``p[n]:<size>:<abi>:<pref>``
1630 This specifies the *size* of a pointer and its ``<abi>`` and
1631 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001632 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001633 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001634 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001635``i<size>:<abi>:<pref>``
1636 This specifies the alignment for an integer type of a given bit
1637 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1638``v<size>:<abi>:<pref>``
1639 This specifies the alignment for a vector type of a given bit
1640 ``<size>``.
1641``f<size>:<abi>:<pref>``
1642 This specifies the alignment for a floating point type of a given bit
1643 ``<size>``. Only values of ``<size>`` that are supported by the target
1644 will work. 32 (float) and 64 (double) are supported on all targets; 80
1645 or 128 (different flavors of long double) are also supported on some
1646 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001647``a:<abi>:<pref>``
1648 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001649``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001650 If present, specifies that llvm names are mangled in the output. The
1651 options are
1652
1653 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1654 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1655 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1656 symbols get a ``_`` prefix.
1657 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1658 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001659 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1660 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001661``n<size1>:<size2>:<size3>...``
1662 This specifies a set of native integer widths for the target CPU in
1663 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1664 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1665 this set are considered to support most general arithmetic operations
1666 efficiently.
1667
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001668On every specification that takes a ``<abi>:<pref>``, specifying the
1669``<pref>`` alignment is optional. If omitted, the preceding ``:``
1670should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1671
Sean Silvab084af42012-12-07 10:36:55 +00001672When constructing the data layout for a given target, LLVM starts with a
1673default set of specifications which are then (possibly) overridden by
1674the specifications in the ``datalayout`` keyword. The default
1675specifications are given in this list:
1676
1677- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001678- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1679- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1680 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001681- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001682- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1683- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1684- ``i16:16:16`` - i16 is 16-bit aligned
1685- ``i32:32:32`` - i32 is 32-bit aligned
1686- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1687 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001688- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001689- ``f32:32:32`` - float is 32-bit aligned
1690- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001691- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001692- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1693- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001694- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001695
1696When LLVM is determining the alignment for a given type, it uses the
1697following rules:
1698
1699#. If the type sought is an exact match for one of the specifications,
1700 that specification is used.
1701#. If no match is found, and the type sought is an integer type, then
1702 the smallest integer type that is larger than the bitwidth of the
1703 sought type is used. If none of the specifications are larger than
1704 the bitwidth then the largest integer type is used. For example,
1705 given the default specifications above, the i7 type will use the
1706 alignment of i8 (next largest) while both i65 and i256 will use the
1707 alignment of i64 (largest specified).
1708#. If no match is found, and the type sought is a vector type, then the
1709 largest vector type that is smaller than the sought vector type will
1710 be used as a fall back. This happens because <128 x double> can be
1711 implemented in terms of 64 <2 x double>, for example.
1712
1713The function of the data layout string may not be what you expect.
1714Notably, this is not a specification from the frontend of what alignment
1715the code generator should use.
1716
1717Instead, if specified, the target data layout is required to match what
1718the ultimate *code generator* expects. This string is used by the
1719mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001720what the ultimate code generator uses. There is no way to generate IR
1721that does not embed this target-specific detail into the IR. If you
1722don't specify the string, the default specifications will be used to
1723generate a Data Layout and the optimization phases will operate
1724accordingly and introduce target specificity into the IR with respect to
1725these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001726
Bill Wendling5cc90842013-10-18 23:41:25 +00001727.. _langref_triple:
1728
1729Target Triple
1730-------------
1731
1732A module may specify a target triple string that describes the target
1733host. The syntax for the target triple is simply:
1734
1735.. code-block:: llvm
1736
1737 target triple = "x86_64-apple-macosx10.7.0"
1738
1739The *target triple* string consists of a series of identifiers delimited
1740by the minus sign character ('-'). The canonical forms are:
1741
1742::
1743
1744 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1745 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1746
1747This information is passed along to the backend so that it generates
1748code for the proper architecture. It's possible to override this on the
1749command line with the ``-mtriple`` command line option.
1750
Sean Silvab084af42012-12-07 10:36:55 +00001751.. _pointeraliasing:
1752
1753Pointer Aliasing Rules
1754----------------------
1755
1756Any memory access must be done through a pointer value associated with
1757an address range of the memory access, otherwise the behavior is
1758undefined. Pointer values are associated with address ranges according
1759to the following rules:
1760
1761- A pointer value is associated with the addresses associated with any
1762 value it is *based* on.
1763- An address of a global variable is associated with the address range
1764 of the variable's storage.
1765- The result value of an allocation instruction is associated with the
1766 address range of the allocated storage.
1767- A null pointer in the default address-space is associated with no
1768 address.
1769- An integer constant other than zero or a pointer value returned from
1770 a function not defined within LLVM may be associated with address
1771 ranges allocated through mechanisms other than those provided by
1772 LLVM. Such ranges shall not overlap with any ranges of addresses
1773 allocated by mechanisms provided by LLVM.
1774
1775A pointer value is *based* on another pointer value according to the
1776following rules:
1777
1778- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001779 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001780- The result value of a ``bitcast`` is *based* on the operand of the
1781 ``bitcast``.
1782- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1783 values that contribute (directly or indirectly) to the computation of
1784 the pointer's value.
1785- The "*based* on" relationship is transitive.
1786
1787Note that this definition of *"based"* is intentionally similar to the
1788definition of *"based"* in C99, though it is slightly weaker.
1789
1790LLVM IR does not associate types with memory. The result type of a
1791``load`` merely indicates the size and alignment of the memory from
1792which to load, as well as the interpretation of the value. The first
1793operand type of a ``store`` similarly only indicates the size and
1794alignment of the store.
1795
1796Consequently, type-based alias analysis, aka TBAA, aka
1797``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1798:ref:`Metadata <metadata>` may be used to encode additional information
1799which specialized optimization passes may use to implement type-based
1800alias analysis.
1801
1802.. _volatile:
1803
1804Volatile Memory Accesses
1805------------------------
1806
1807Certain memory accesses, such as :ref:`load <i_load>`'s,
1808:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1809marked ``volatile``. The optimizers must not change the number of
1810volatile operations or change their order of execution relative to other
1811volatile operations. The optimizers *may* change the order of volatile
1812operations relative to non-volatile operations. This is not Java's
1813"volatile" and has no cross-thread synchronization behavior.
1814
Andrew Trick89fc5a62013-01-30 21:19:35 +00001815IR-level volatile loads and stores cannot safely be optimized into
1816llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1817flagged volatile. Likewise, the backend should never split or merge
1818target-legal volatile load/store instructions.
1819
Andrew Trick7e6f9282013-01-31 00:49:39 +00001820.. admonition:: Rationale
1821
1822 Platforms may rely on volatile loads and stores of natively supported
1823 data width to be executed as single instruction. For example, in C
1824 this holds for an l-value of volatile primitive type with native
1825 hardware support, but not necessarily for aggregate types. The
1826 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001827 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001828 do not violate the frontend's contract with the language.
1829
Sean Silvab084af42012-12-07 10:36:55 +00001830.. _memmodel:
1831
1832Memory Model for Concurrent Operations
1833--------------------------------------
1834
1835The LLVM IR does not define any way to start parallel threads of
1836execution or to register signal handlers. Nonetheless, there are
1837platform-specific ways to create them, and we define LLVM IR's behavior
1838in their presence. This model is inspired by the C++0x memory model.
1839
1840For a more informal introduction to this model, see the :doc:`Atomics`.
1841
1842We define a *happens-before* partial order as the least partial order
1843that
1844
1845- Is a superset of single-thread program order, and
1846- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1847 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1848 techniques, like pthread locks, thread creation, thread joining,
1849 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1850 Constraints <ordering>`).
1851
1852Note that program order does not introduce *happens-before* edges
1853between a thread and signals executing inside that thread.
1854
1855Every (defined) read operation (load instructions, memcpy, atomic
1856loads/read-modify-writes, etc.) R reads a series of bytes written by
1857(defined) write operations (store instructions, atomic
1858stores/read-modify-writes, memcpy, etc.). For the purposes of this
1859section, initialized globals are considered to have a write of the
1860initializer which is atomic and happens before any other read or write
1861of the memory in question. For each byte of a read R, R\ :sub:`byte`
1862may see any write to the same byte, except:
1863
1864- If write\ :sub:`1` happens before write\ :sub:`2`, and
1865 write\ :sub:`2` happens before R\ :sub:`byte`, then
1866 R\ :sub:`byte` does not see write\ :sub:`1`.
1867- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1868 R\ :sub:`byte` does not see write\ :sub:`3`.
1869
1870Given that definition, R\ :sub:`byte` is defined as follows:
1871
1872- If R is volatile, the result is target-dependent. (Volatile is
1873 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001874 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001875 like normal memory. It does not generally provide cross-thread
1876 synchronization.)
1877- Otherwise, if there is no write to the same byte that happens before
1878 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1879- Otherwise, if R\ :sub:`byte` may see exactly one write,
1880 R\ :sub:`byte` returns the value written by that write.
1881- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1882 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1883 Memory Ordering Constraints <ordering>` section for additional
1884 constraints on how the choice is made.
1885- Otherwise R\ :sub:`byte` returns ``undef``.
1886
1887R returns the value composed of the series of bytes it read. This
1888implies that some bytes within the value may be ``undef`` **without**
1889the entire value being ``undef``. Note that this only defines the
1890semantics of the operation; it doesn't mean that targets will emit more
1891than one instruction to read the series of bytes.
1892
1893Note that in cases where none of the atomic intrinsics are used, this
1894model places only one restriction on IR transformations on top of what
1895is required for single-threaded execution: introducing a store to a byte
1896which might not otherwise be stored is not allowed in general.
1897(Specifically, in the case where another thread might write to and read
1898from an address, introducing a store can change a load that may see
1899exactly one write into a load that may see multiple writes.)
1900
1901.. _ordering:
1902
1903Atomic Memory Ordering Constraints
1904----------------------------------
1905
1906Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1907:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1908:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001909ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001910the same address they *synchronize with*. These semantics are borrowed
1911from Java and C++0x, but are somewhat more colloquial. If these
1912descriptions aren't precise enough, check those specs (see spec
1913references in the :doc:`atomics guide <Atomics>`).
1914:ref:`fence <i_fence>` instructions treat these orderings somewhat
1915differently since they don't take an address. See that instruction's
1916documentation for details.
1917
1918For a simpler introduction to the ordering constraints, see the
1919:doc:`Atomics`.
1920
1921``unordered``
1922 The set of values that can be read is governed by the happens-before
1923 partial order. A value cannot be read unless some operation wrote
1924 it. This is intended to provide a guarantee strong enough to model
1925 Java's non-volatile shared variables. This ordering cannot be
1926 specified for read-modify-write operations; it is not strong enough
1927 to make them atomic in any interesting way.
1928``monotonic``
1929 In addition to the guarantees of ``unordered``, there is a single
1930 total order for modifications by ``monotonic`` operations on each
1931 address. All modification orders must be compatible with the
1932 happens-before order. There is no guarantee that the modification
1933 orders can be combined to a global total order for the whole program
1934 (and this often will not be possible). The read in an atomic
1935 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1936 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1937 order immediately before the value it writes. If one atomic read
1938 happens before another atomic read of the same address, the later
1939 read must see the same value or a later value in the address's
1940 modification order. This disallows reordering of ``monotonic`` (or
1941 stronger) operations on the same address. If an address is written
1942 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1943 read that address repeatedly, the other threads must eventually see
1944 the write. This corresponds to the C++0x/C1x
1945 ``memory_order_relaxed``.
1946``acquire``
1947 In addition to the guarantees of ``monotonic``, a
1948 *synchronizes-with* edge may be formed with a ``release`` operation.
1949 This is intended to model C++'s ``memory_order_acquire``.
1950``release``
1951 In addition to the guarantees of ``monotonic``, if this operation
1952 writes a value which is subsequently read by an ``acquire``
1953 operation, it *synchronizes-with* that operation. (This isn't a
1954 complete description; see the C++0x definition of a release
1955 sequence.) This corresponds to the C++0x/C1x
1956 ``memory_order_release``.
1957``acq_rel`` (acquire+release)
1958 Acts as both an ``acquire`` and ``release`` operation on its
1959 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1960``seq_cst`` (sequentially consistent)
1961 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001962 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001963 writes), there is a global total order on all
1964 sequentially-consistent operations on all addresses, which is
1965 consistent with the *happens-before* partial order and with the
1966 modification orders of all the affected addresses. Each
1967 sequentially-consistent read sees the last preceding write to the
1968 same address in this global order. This corresponds to the C++0x/C1x
1969 ``memory_order_seq_cst`` and Java volatile.
1970
1971.. _singlethread:
1972
1973If an atomic operation is marked ``singlethread``, it only *synchronizes
1974with* or participates in modification and seq\_cst total orderings with
1975other operations running in the same thread (for example, in signal
1976handlers).
1977
1978.. _fastmath:
1979
1980Fast-Math Flags
1981---------------
1982
1983LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1984:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001985:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1986be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001987
1988``nnan``
1989 No NaNs - Allow optimizations to assume the arguments and result are not
1990 NaN. Such optimizations are required to retain defined behavior over
1991 NaNs, but the value of the result is undefined.
1992
1993``ninf``
1994 No Infs - Allow optimizations to assume the arguments and result are not
1995 +/-Inf. Such optimizations are required to retain defined behavior over
1996 +/-Inf, but the value of the result is undefined.
1997
1998``nsz``
1999 No Signed Zeros - Allow optimizations to treat the sign of a zero
2000 argument or result as insignificant.
2001
2002``arcp``
2003 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2004 argument rather than perform division.
2005
2006``fast``
2007 Fast - Allow algebraically equivalent transformations that may
2008 dramatically change results in floating point (e.g. reassociate). This
2009 flag implies all the others.
2010
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002011.. _uselistorder:
2012
2013Use-list Order Directives
2014-------------------------
2015
2016Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002017order to be recreated. ``<order-indexes>`` is a comma-separated list of
2018indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002019value's use-list is immediately sorted by these indexes.
2020
Sean Silvaa1190322015-08-06 22:56:48 +00002021Use-list directives may appear at function scope or global scope. They are not
2022instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002023function scope, they must appear after the terminator of the final basic block.
2024
2025If basic blocks have their address taken via ``blockaddress()`` expressions,
2026``uselistorder_bb`` can be used to reorder their use-lists from outside their
2027function's scope.
2028
2029:Syntax:
2030
2031::
2032
2033 uselistorder <ty> <value>, { <order-indexes> }
2034 uselistorder_bb @function, %block { <order-indexes> }
2035
2036:Examples:
2037
2038::
2039
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002040 define void @foo(i32 %arg1, i32 %arg2) {
2041 entry:
2042 ; ... instructions ...
2043 bb:
2044 ; ... instructions ...
2045
2046 ; At function scope.
2047 uselistorder i32 %arg1, { 1, 0, 2 }
2048 uselistorder label %bb, { 1, 0 }
2049 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002050
2051 ; At global scope.
2052 uselistorder i32* @global, { 1, 2, 0 }
2053 uselistorder i32 7, { 1, 0 }
2054 uselistorder i32 (i32) @bar, { 1, 0 }
2055 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2056
Sean Silvab084af42012-12-07 10:36:55 +00002057.. _typesystem:
2058
2059Type System
2060===========
2061
2062The LLVM type system is one of the most important features of the
2063intermediate representation. Being typed enables a number of
2064optimizations to be performed on the intermediate representation
2065directly, without having to do extra analyses on the side before the
2066transformation. A strong type system makes it easier to read the
2067generated code and enables novel analyses and transformations that are
2068not feasible to perform on normal three address code representations.
2069
Rafael Espindola08013342013-12-07 19:34:20 +00002070.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002071
Rafael Espindola08013342013-12-07 19:34:20 +00002072Void Type
2073---------
Sean Silvab084af42012-12-07 10:36:55 +00002074
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002075:Overview:
2076
Rafael Espindola08013342013-12-07 19:34:20 +00002077
2078The void type does not represent any value and has no size.
2079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
2081
Rafael Espindola08013342013-12-07 19:34:20 +00002082
2083::
2084
2085 void
Sean Silvab084af42012-12-07 10:36:55 +00002086
2087
Rafael Espindola08013342013-12-07 19:34:20 +00002088.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002089
Rafael Espindola08013342013-12-07 19:34:20 +00002090Function Type
2091-------------
Sean Silvab084af42012-12-07 10:36:55 +00002092
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002093:Overview:
2094
Sean Silvab084af42012-12-07 10:36:55 +00002095
Rafael Espindola08013342013-12-07 19:34:20 +00002096The function type can be thought of as a function signature. It consists of a
2097return type and a list of formal parameter types. The return type of a function
2098type is a void type or first class type --- except for :ref:`label <t_label>`
2099and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002100
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002101:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002102
Rafael Espindola08013342013-12-07 19:34:20 +00002103::
Sean Silvab084af42012-12-07 10:36:55 +00002104
Rafael Espindola08013342013-12-07 19:34:20 +00002105 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002106
Rafael Espindola08013342013-12-07 19:34:20 +00002107...where '``<parameter list>``' is a comma-separated list of type
2108specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002109indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002110argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002111handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002112except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002113
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002114:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002115
Rafael Espindola08013342013-12-07 19:34:20 +00002116+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2117| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2118+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2119| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2120+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2121| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2122+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2123| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2124+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2125
2126.. _t_firstclass:
2127
2128First Class Types
2129-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002130
2131The :ref:`first class <t_firstclass>` types are perhaps the most important.
2132Values of these types are the only ones which can be produced by
2133instructions.
2134
Rafael Espindola08013342013-12-07 19:34:20 +00002135.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002136
Rafael Espindola08013342013-12-07 19:34:20 +00002137Single Value Types
2138^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002139
Rafael Espindola08013342013-12-07 19:34:20 +00002140These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002141
2142.. _t_integer:
2143
2144Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002145""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002146
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002147:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002148
2149The integer type is a very simple type that simply specifies an
2150arbitrary bit width for the integer type desired. Any bit width from 1
2151bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2152
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002153:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002154
2155::
2156
2157 iN
2158
2159The number of bits the integer will occupy is specified by the ``N``
2160value.
2161
2162Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002163*********
Sean Silvab084af42012-12-07 10:36:55 +00002164
2165+----------------+------------------------------------------------+
2166| ``i1`` | a single-bit integer. |
2167+----------------+------------------------------------------------+
2168| ``i32`` | a 32-bit integer. |
2169+----------------+------------------------------------------------+
2170| ``i1942652`` | a really big integer of over 1 million bits. |
2171+----------------+------------------------------------------------+
2172
2173.. _t_floating:
2174
2175Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002176""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002177
2178.. list-table::
2179 :header-rows: 1
2180
2181 * - Type
2182 - Description
2183
2184 * - ``half``
2185 - 16-bit floating point value
2186
2187 * - ``float``
2188 - 32-bit floating point value
2189
2190 * - ``double``
2191 - 64-bit floating point value
2192
2193 * - ``fp128``
2194 - 128-bit floating point value (112-bit mantissa)
2195
2196 * - ``x86_fp80``
2197 - 80-bit floating point value (X87)
2198
2199 * - ``ppc_fp128``
2200 - 128-bit floating point value (two 64-bits)
2201
Reid Kleckner9a16d082014-03-05 02:41:37 +00002202X86_mmx Type
2203""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002204
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002205:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002206
Reid Kleckner9a16d082014-03-05 02:41:37 +00002207The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002208machine. The operations allowed on it are quite limited: parameters and
2209return values, load and store, and bitcast. User-specified MMX
2210instructions are represented as intrinsic or asm calls with arguments
2211and/or results of this type. There are no arrays, vectors or constants
2212of this type.
2213
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002214:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002215
2216::
2217
Reid Kleckner9a16d082014-03-05 02:41:37 +00002218 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002219
Sean Silvab084af42012-12-07 10:36:55 +00002220
Rafael Espindola08013342013-12-07 19:34:20 +00002221.. _t_pointer:
2222
2223Pointer Type
2224""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002225
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002226:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002227
Rafael Espindola08013342013-12-07 19:34:20 +00002228The pointer type is used to specify memory locations. Pointers are
2229commonly used to reference objects in memory.
2230
2231Pointer types may have an optional address space attribute defining the
2232numbered address space where the pointed-to object resides. The default
2233address space is number zero. The semantics of non-zero address spaces
2234are target-specific.
2235
2236Note that LLVM does not permit pointers to void (``void*``) nor does it
2237permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002238
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002239:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002240
2241::
2242
Rafael Espindola08013342013-12-07 19:34:20 +00002243 <type> *
2244
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002245:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002246
2247+-------------------------+--------------------------------------------------------------------------------------------------------------+
2248| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2249+-------------------------+--------------------------------------------------------------------------------------------------------------+
2250| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2251+-------------------------+--------------------------------------------------------------------------------------------------------------+
2252| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2253+-------------------------+--------------------------------------------------------------------------------------------------------------+
2254
2255.. _t_vector:
2256
2257Vector Type
2258"""""""""""
2259
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002260:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002261
2262A vector type is a simple derived type that represents a vector of
2263elements. Vector types are used when multiple primitive data are
2264operated in parallel using a single instruction (SIMD). A vector type
2265requires a size (number of elements) and an underlying primitive data
2266type. Vector types are considered :ref:`first class <t_firstclass>`.
2267
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002268:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002269
2270::
2271
2272 < <# elements> x <elementtype> >
2273
2274The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002275elementtype may be any integer, floating point or pointer type. Vectors
2276of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002277
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002278:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002279
2280+-------------------+--------------------------------------------------+
2281| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2282+-------------------+--------------------------------------------------+
2283| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2284+-------------------+--------------------------------------------------+
2285| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2286+-------------------+--------------------------------------------------+
2287| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2288+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002289
2290.. _t_label:
2291
2292Label Type
2293^^^^^^^^^^
2294
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002295:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002296
2297The label type represents code labels.
2298
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002299:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002300
2301::
2302
2303 label
2304
David Majnemerb611e3f2015-08-14 05:09:07 +00002305.. _t_token:
2306
2307Token Type
2308^^^^^^^^^^
2309
2310:Overview:
2311
2312The token type is used when a value is associated with an instruction
2313but all uses of the value must not attempt to introspect or obscure it.
2314As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2315:ref:`select <i_select>` of type token.
2316
2317:Syntax:
2318
2319::
2320
2321 token
2322
2323
2324
Sean Silvab084af42012-12-07 10:36:55 +00002325.. _t_metadata:
2326
2327Metadata Type
2328^^^^^^^^^^^^^
2329
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002330:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002331
2332The metadata type represents embedded metadata. No derived types may be
2333created from metadata except for :ref:`function <t_function>` arguments.
2334
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002335:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002336
2337::
2338
2339 metadata
2340
Sean Silvab084af42012-12-07 10:36:55 +00002341.. _t_aggregate:
2342
2343Aggregate Types
2344^^^^^^^^^^^^^^^
2345
2346Aggregate Types are a subset of derived types that can contain multiple
2347member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2348aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2349aggregate types.
2350
2351.. _t_array:
2352
2353Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002354""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002355
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002356:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002357
2358The array type is a very simple derived type that arranges elements
2359sequentially in memory. The array type requires a size (number of
2360elements) and an underlying data type.
2361
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002362:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002363
2364::
2365
2366 [<# elements> x <elementtype>]
2367
2368The number of elements is a constant integer value; ``elementtype`` may
2369be any type with a size.
2370
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002371:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373+------------------+--------------------------------------+
2374| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2375+------------------+--------------------------------------+
2376| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2377+------------------+--------------------------------------+
2378| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2379+------------------+--------------------------------------+
2380
2381Here are some examples of multidimensional arrays:
2382
2383+-----------------------------+----------------------------------------------------------+
2384| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2385+-----------------------------+----------------------------------------------------------+
2386| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2387+-----------------------------+----------------------------------------------------------+
2388| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2389+-----------------------------+----------------------------------------------------------+
2390
2391There is no restriction on indexing beyond the end of the array implied
2392by a static type (though there are restrictions on indexing beyond the
2393bounds of an allocated object in some cases). This means that
2394single-dimension 'variable sized array' addressing can be implemented in
2395LLVM with a zero length array type. An implementation of 'pascal style
2396arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2397example.
2398
Sean Silvab084af42012-12-07 10:36:55 +00002399.. _t_struct:
2400
2401Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002402""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002403
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002404:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002405
2406The structure type is used to represent a collection of data members
2407together in memory. The elements of a structure may be any type that has
2408a size.
2409
2410Structures in memory are accessed using '``load``' and '``store``' by
2411getting a pointer to a field with the '``getelementptr``' instruction.
2412Structures in registers are accessed using the '``extractvalue``' and
2413'``insertvalue``' instructions.
2414
2415Structures may optionally be "packed" structures, which indicate that
2416the alignment of the struct is one byte, and that there is no padding
2417between the elements. In non-packed structs, padding between field types
2418is inserted as defined by the DataLayout string in the module, which is
2419required to match what the underlying code generator expects.
2420
2421Structures can either be "literal" or "identified". A literal structure
2422is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2423identified types are always defined at the top level with a name.
2424Literal types are uniqued by their contents and can never be recursive
2425or opaque since there is no way to write one. Identified types can be
2426recursive, can be opaqued, and are never uniqued.
2427
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002428:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002429
2430::
2431
2432 %T1 = type { <type list> } ; Identified normal struct type
2433 %T2 = type <{ <type list> }> ; Identified packed struct type
2434
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002435:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002436
2437+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2438| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2439+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002440| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002441+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2442| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2443+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2444
2445.. _t_opaque:
2446
2447Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002448""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002449
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002450:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002451
2452Opaque structure types are used to represent named structure types that
2453do not have a body specified. This corresponds (for example) to the C
2454notion of a forward declared structure.
2455
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002456:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002457
2458::
2459
2460 %X = type opaque
2461 %52 = type opaque
2462
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002463:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002464
2465+--------------+-------------------+
2466| ``opaque`` | An opaque type. |
2467+--------------+-------------------+
2468
Sean Silva1703e702014-04-08 21:06:22 +00002469.. _constants:
2470
Sean Silvab084af42012-12-07 10:36:55 +00002471Constants
2472=========
2473
2474LLVM has several different basic types of constants. This section
2475describes them all and their syntax.
2476
2477Simple Constants
2478----------------
2479
2480**Boolean constants**
2481 The two strings '``true``' and '``false``' are both valid constants
2482 of the ``i1`` type.
2483**Integer constants**
2484 Standard integers (such as '4') are constants of the
2485 :ref:`integer <t_integer>` type. Negative numbers may be used with
2486 integer types.
2487**Floating point constants**
2488 Floating point constants use standard decimal notation (e.g.
2489 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2490 hexadecimal notation (see below). The assembler requires the exact
2491 decimal value of a floating-point constant. For example, the
2492 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2493 decimal in binary. Floating point constants must have a :ref:`floating
2494 point <t_floating>` type.
2495**Null pointer constants**
2496 The identifier '``null``' is recognized as a null pointer constant
2497 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002498**Token constants**
2499 The identifier '``none``' is recognized as an empty token constant
2500 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002501
2502The one non-intuitive notation for constants is the hexadecimal form of
2503floating point constants. For example, the form
2504'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2505than) '``double 4.5e+15``'. The only time hexadecimal floating point
2506constants are required (and the only time that they are generated by the
2507disassembler) is when a floating point constant must be emitted but it
2508cannot be represented as a decimal floating point number in a reasonable
2509number of digits. For example, NaN's, infinities, and other special
2510values are represented in their IEEE hexadecimal format so that assembly
2511and disassembly do not cause any bits to change in the constants.
2512
2513When using the hexadecimal form, constants of types half, float, and
2514double are represented using the 16-digit form shown above (which
2515matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002516must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002517precision, respectively. Hexadecimal format is always used for long
2518double, and there are three forms of long double. The 80-bit format used
2519by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2520128-bit format used by PowerPC (two adjacent doubles) is represented by
2521``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002522represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2523will only work if they match the long double format on your target.
2524The IEEE 16-bit format (half precision) is represented by ``0xH``
2525followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2526(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002527
Reid Kleckner9a16d082014-03-05 02:41:37 +00002528There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002529
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002530.. _complexconstants:
2531
Sean Silvab084af42012-12-07 10:36:55 +00002532Complex Constants
2533-----------------
2534
2535Complex constants are a (potentially recursive) combination of simple
2536constants and smaller complex constants.
2537
2538**Structure constants**
2539 Structure constants are represented with notation similar to
2540 structure type definitions (a comma separated list of elements,
2541 surrounded by braces (``{}``)). For example:
2542 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2543 "``@G = external global i32``". Structure constants must have
2544 :ref:`structure type <t_struct>`, and the number and types of elements
2545 must match those specified by the type.
2546**Array constants**
2547 Array constants are represented with notation similar to array type
2548 definitions (a comma separated list of elements, surrounded by
2549 square brackets (``[]``)). For example:
2550 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2551 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002552 match those specified by the type. As a special case, character array
2553 constants may also be represented as a double-quoted string using the ``c``
2554 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002555**Vector constants**
2556 Vector constants are represented with notation similar to vector
2557 type definitions (a comma separated list of elements, surrounded by
2558 less-than/greater-than's (``<>``)). For example:
2559 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2560 must have :ref:`vector type <t_vector>`, and the number and types of
2561 elements must match those specified by the type.
2562**Zero initialization**
2563 The string '``zeroinitializer``' can be used to zero initialize a
2564 value to zero of *any* type, including scalar and
2565 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2566 having to print large zero initializers (e.g. for large arrays) and
2567 is always exactly equivalent to using explicit zero initializers.
2568**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002569 A metadata node is a constant tuple without types. For example:
2570 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002571 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2572 Unlike other typed constants that are meant to be interpreted as part of
2573 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002574 information such as debug info.
2575
2576Global Variable and Function Addresses
2577--------------------------------------
2578
2579The addresses of :ref:`global variables <globalvars>` and
2580:ref:`functions <functionstructure>` are always implicitly valid
2581(link-time) constants. These constants are explicitly referenced when
2582the :ref:`identifier for the global <identifiers>` is used and always have
2583:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2584file:
2585
2586.. code-block:: llvm
2587
2588 @X = global i32 17
2589 @Y = global i32 42
2590 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2591
2592.. _undefvalues:
2593
2594Undefined Values
2595----------------
2596
2597The string '``undef``' can be used anywhere a constant is expected, and
2598indicates that the user of the value may receive an unspecified
2599bit-pattern. Undefined values may be of any type (other than '``label``'
2600or '``void``') and be used anywhere a constant is permitted.
2601
2602Undefined values are useful because they indicate to the compiler that
2603the program is well defined no matter what value is used. This gives the
2604compiler more freedom to optimize. Here are some examples of
2605(potentially surprising) transformations that are valid (in pseudo IR):
2606
2607.. code-block:: llvm
2608
2609 %A = add %X, undef
2610 %B = sub %X, undef
2611 %C = xor %X, undef
2612 Safe:
2613 %A = undef
2614 %B = undef
2615 %C = undef
2616
2617This is safe because all of the output bits are affected by the undef
2618bits. Any output bit can have a zero or one depending on the input bits.
2619
2620.. code-block:: llvm
2621
2622 %A = or %X, undef
2623 %B = and %X, undef
2624 Safe:
2625 %A = -1
2626 %B = 0
2627 Unsafe:
2628 %A = undef
2629 %B = undef
2630
2631These logical operations have bits that are not always affected by the
2632input. For example, if ``%X`` has a zero bit, then the output of the
2633'``and``' operation will always be a zero for that bit, no matter what
2634the corresponding bit from the '``undef``' is. As such, it is unsafe to
2635optimize or assume that the result of the '``and``' is '``undef``'.
2636However, it is safe to assume that all bits of the '``undef``' could be
26370, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2638all the bits of the '``undef``' operand to the '``or``' could be set,
2639allowing the '``or``' to be folded to -1.
2640
2641.. code-block:: llvm
2642
2643 %A = select undef, %X, %Y
2644 %B = select undef, 42, %Y
2645 %C = select %X, %Y, undef
2646 Safe:
2647 %A = %X (or %Y)
2648 %B = 42 (or %Y)
2649 %C = %Y
2650 Unsafe:
2651 %A = undef
2652 %B = undef
2653 %C = undef
2654
2655This set of examples shows that undefined '``select``' (and conditional
2656branch) conditions can go *either way*, but they have to come from one
2657of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2658both known to have a clear low bit, then ``%A`` would have to have a
2659cleared low bit. However, in the ``%C`` example, the optimizer is
2660allowed to assume that the '``undef``' operand could be the same as
2661``%Y``, allowing the whole '``select``' to be eliminated.
2662
2663.. code-block:: llvm
2664
2665 %A = xor undef, undef
2666
2667 %B = undef
2668 %C = xor %B, %B
2669
2670 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002671 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002672 %F = icmp gte %D, 4
2673
2674 Safe:
2675 %A = undef
2676 %B = undef
2677 %C = undef
2678 %D = undef
2679 %E = undef
2680 %F = undef
2681
2682This example points out that two '``undef``' operands are not
2683necessarily the same. This can be surprising to people (and also matches
2684C semantics) where they assume that "``X^X``" is always zero, even if
2685``X`` is undefined. This isn't true for a number of reasons, but the
2686short answer is that an '``undef``' "variable" can arbitrarily change
2687its value over its "live range". This is true because the variable
2688doesn't actually *have a live range*. Instead, the value is logically
2689read from arbitrary registers that happen to be around when needed, so
2690the value is not necessarily consistent over time. In fact, ``%A`` and
2691``%C`` need to have the same semantics or the core LLVM "replace all
2692uses with" concept would not hold.
2693
2694.. code-block:: llvm
2695
2696 %A = fdiv undef, %X
2697 %B = fdiv %X, undef
2698 Safe:
2699 %A = undef
2700 b: unreachable
2701
2702These examples show the crucial difference between an *undefined value*
2703and *undefined behavior*. An undefined value (like '``undef``') is
2704allowed to have an arbitrary bit-pattern. This means that the ``%A``
2705operation can be constant folded to '``undef``', because the '``undef``'
2706could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2707However, in the second example, we can make a more aggressive
2708assumption: because the ``undef`` is allowed to be an arbitrary value,
2709we are allowed to assume that it could be zero. Since a divide by zero
2710has *undefined behavior*, we are allowed to assume that the operation
2711does not execute at all. This allows us to delete the divide and all
2712code after it. Because the undefined operation "can't happen", the
2713optimizer can assume that it occurs in dead code.
2714
2715.. code-block:: llvm
2716
2717 a: store undef -> %X
2718 b: store %X -> undef
2719 Safe:
2720 a: <deleted>
2721 b: unreachable
2722
2723These examples reiterate the ``fdiv`` example: a store *of* an undefined
2724value can be assumed to not have any effect; we can assume that the
2725value is overwritten with bits that happen to match what was already
2726there. However, a store *to* an undefined location could clobber
2727arbitrary memory, therefore, it has undefined behavior.
2728
2729.. _poisonvalues:
2730
2731Poison Values
2732-------------
2733
2734Poison values are similar to :ref:`undef values <undefvalues>`, however
2735they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002736that cannot evoke side effects has nevertheless detected a condition
2737that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002738
2739There is currently no way of representing a poison value in the IR; they
2740only exist when produced by operations such as :ref:`add <i_add>` with
2741the ``nsw`` flag.
2742
2743Poison value behavior is defined in terms of value *dependence*:
2744
2745- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2746- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2747 their dynamic predecessor basic block.
2748- Function arguments depend on the corresponding actual argument values
2749 in the dynamic callers of their functions.
2750- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2751 instructions that dynamically transfer control back to them.
2752- :ref:`Invoke <i_invoke>` instructions depend on the
2753 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2754 call instructions that dynamically transfer control back to them.
2755- Non-volatile loads and stores depend on the most recent stores to all
2756 of the referenced memory addresses, following the order in the IR
2757 (including loads and stores implied by intrinsics such as
2758 :ref:`@llvm.memcpy <int_memcpy>`.)
2759- An instruction with externally visible side effects depends on the
2760 most recent preceding instruction with externally visible side
2761 effects, following the order in the IR. (This includes :ref:`volatile
2762 operations <volatile>`.)
2763- An instruction *control-depends* on a :ref:`terminator
2764 instruction <terminators>` if the terminator instruction has
2765 multiple successors and the instruction is always executed when
2766 control transfers to one of the successors, and may not be executed
2767 when control is transferred to another.
2768- Additionally, an instruction also *control-depends* on a terminator
2769 instruction if the set of instructions it otherwise depends on would
2770 be different if the terminator had transferred control to a different
2771 successor.
2772- Dependence is transitive.
2773
Richard Smith32dbdf62014-07-31 04:25:36 +00002774Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2775with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002776on a poison value has undefined behavior.
2777
2778Here are some examples:
2779
2780.. code-block:: llvm
2781
2782 entry:
2783 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2784 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002785 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002786 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2787
2788 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002789 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002790
2791 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2792
2793 %narrowaddr = bitcast i32* @g to i16*
2794 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002795 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2796 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002797
2798 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2799 br i1 %cmp, label %true, label %end ; Branch to either destination.
2800
2801 true:
2802 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2803 ; it has undefined behavior.
2804 br label %end
2805
2806 end:
2807 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2808 ; Both edges into this PHI are
2809 ; control-dependent on %cmp, so this
2810 ; always results in a poison value.
2811
2812 store volatile i32 0, i32* @g ; This would depend on the store in %true
2813 ; if %cmp is true, or the store in %entry
2814 ; otherwise, so this is undefined behavior.
2815
2816 br i1 %cmp, label %second_true, label %second_end
2817 ; The same branch again, but this time the
2818 ; true block doesn't have side effects.
2819
2820 second_true:
2821 ; No side effects!
2822 ret void
2823
2824 second_end:
2825 store volatile i32 0, i32* @g ; This time, the instruction always depends
2826 ; on the store in %end. Also, it is
2827 ; control-equivalent to %end, so this is
2828 ; well-defined (ignoring earlier undefined
2829 ; behavior in this example).
2830
2831.. _blockaddress:
2832
2833Addresses of Basic Blocks
2834-------------------------
2835
2836``blockaddress(@function, %block)``
2837
2838The '``blockaddress``' constant computes the address of the specified
2839basic block in the specified function, and always has an ``i8*`` type.
2840Taking the address of the entry block is illegal.
2841
2842This value only has defined behavior when used as an operand to the
2843':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2844against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002845undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002846no label is equal to the null pointer. This may be passed around as an
2847opaque pointer sized value as long as the bits are not inspected. This
2848allows ``ptrtoint`` and arithmetic to be performed on these values so
2849long as the original value is reconstituted before the ``indirectbr``
2850instruction.
2851
2852Finally, some targets may provide defined semantics when using the value
2853as the operand to an inline assembly, but that is target specific.
2854
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002855.. _constantexprs:
2856
Sean Silvab084af42012-12-07 10:36:55 +00002857Constant Expressions
2858--------------------
2859
2860Constant expressions are used to allow expressions involving other
2861constants to be used as constants. Constant expressions may be of any
2862:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2863that does not have side effects (e.g. load and call are not supported).
2864The following is the syntax for constant expressions:
2865
2866``trunc (CST to TYPE)``
2867 Truncate a constant to another type. The bit size of CST must be
2868 larger than the bit size of TYPE. Both types must be integers.
2869``zext (CST to TYPE)``
2870 Zero extend a constant to another type. The bit size of CST must be
2871 smaller than the bit size of TYPE. Both types must be integers.
2872``sext (CST to TYPE)``
2873 Sign extend a constant to another type. The bit size of CST must be
2874 smaller than the bit size of TYPE. Both types must be integers.
2875``fptrunc (CST to TYPE)``
2876 Truncate a floating point constant to another floating point type.
2877 The size of CST must be larger than the size of TYPE. Both types
2878 must be floating point.
2879``fpext (CST to TYPE)``
2880 Floating point extend a constant to another type. The size of CST
2881 must be smaller or equal to the size of TYPE. Both types must be
2882 floating point.
2883``fptoui (CST to TYPE)``
2884 Convert a floating point constant to the corresponding unsigned
2885 integer constant. TYPE must be a scalar or vector integer type. CST
2886 must be of scalar or vector floating point type. Both CST and TYPE
2887 must be scalars, or vectors of the same number of elements. If the
2888 value won't fit in the integer type, the results are undefined.
2889``fptosi (CST to TYPE)``
2890 Convert a floating point constant to the corresponding signed
2891 integer constant. TYPE must be a scalar or vector integer type. CST
2892 must be of scalar or vector floating point type. Both CST and TYPE
2893 must be scalars, or vectors of the same number of elements. If the
2894 value won't fit in the integer type, the results are undefined.
2895``uitofp (CST to TYPE)``
2896 Convert an unsigned integer constant to the corresponding floating
2897 point constant. TYPE must be a scalar or vector floating point type.
2898 CST must be of scalar or vector integer type. Both CST and TYPE must
2899 be scalars, or vectors of the same number of elements. If the value
2900 won't fit in the floating point type, the results are undefined.
2901``sitofp (CST to TYPE)``
2902 Convert a signed integer constant to the corresponding floating
2903 point constant. TYPE must be a scalar or vector floating point type.
2904 CST must be of scalar or vector integer type. Both CST and TYPE must
2905 be scalars, or vectors of the same number of elements. If the value
2906 won't fit in the floating point type, the results are undefined.
2907``ptrtoint (CST to TYPE)``
2908 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002909 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002910 pointer type. The ``CST`` value is zero extended, truncated, or
2911 unchanged to make it fit in ``TYPE``.
2912``inttoptr (CST to TYPE)``
2913 Convert an integer constant to a pointer constant. TYPE must be a
2914 pointer type. CST must be of integer type. The CST value is zero
2915 extended, truncated, or unchanged to make it fit in a pointer size.
2916 This one is *really* dangerous!
2917``bitcast (CST to TYPE)``
2918 Convert a constant, CST, to another TYPE. The constraints of the
2919 operands are the same as those for the :ref:`bitcast
2920 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002921``addrspacecast (CST to TYPE)``
2922 Convert a constant pointer or constant vector of pointer, CST, to another
2923 TYPE in a different address space. The constraints of the operands are the
2924 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002925``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002926 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2927 constants. As with the :ref:`getelementptr <i_getelementptr>`
2928 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002929 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002930``select (COND, VAL1, VAL2)``
2931 Perform the :ref:`select operation <i_select>` on constants.
2932``icmp COND (VAL1, VAL2)``
2933 Performs the :ref:`icmp operation <i_icmp>` on constants.
2934``fcmp COND (VAL1, VAL2)``
2935 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2936``extractelement (VAL, IDX)``
2937 Perform the :ref:`extractelement operation <i_extractelement>` on
2938 constants.
2939``insertelement (VAL, ELT, IDX)``
2940 Perform the :ref:`insertelement operation <i_insertelement>` on
2941 constants.
2942``shufflevector (VEC1, VEC2, IDXMASK)``
2943 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2944 constants.
2945``extractvalue (VAL, IDX0, IDX1, ...)``
2946 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2947 constants. The index list is interpreted in a similar manner as
2948 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2949 least one index value must be specified.
2950``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2951 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2952 The index list is interpreted in a similar manner as indices in a
2953 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2954 value must be specified.
2955``OPCODE (LHS, RHS)``
2956 Perform the specified operation of the LHS and RHS constants. OPCODE
2957 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2958 binary <bitwiseops>` operations. The constraints on operands are
2959 the same as those for the corresponding instruction (e.g. no bitwise
2960 operations on floating point values are allowed).
2961
2962Other Values
2963============
2964
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002965.. _inlineasmexprs:
2966
Sean Silvab084af42012-12-07 10:36:55 +00002967Inline Assembler Expressions
2968----------------------------
2969
2970LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002971Inline Assembly <moduleasm>`) through the use of a special value. This value
2972represents the inline assembler as a template string (containing the
2973instructions to emit), a list of operand constraints (stored as a string), a
2974flag that indicates whether or not the inline asm expression has side effects,
2975and a flag indicating whether the function containing the asm needs to align its
2976stack conservatively.
2977
2978The template string supports argument substitution of the operands using "``$``"
2979followed by a number, to indicate substitution of the given register/memory
2980location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2981be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2982operand (See :ref:`inline-asm-modifiers`).
2983
2984A literal "``$``" may be included by using "``$$``" in the template. To include
2985other special characters into the output, the usual "``\XX``" escapes may be
2986used, just as in other strings. Note that after template substitution, the
2987resulting assembly string is parsed by LLVM's integrated assembler unless it is
2988disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2989syntax known to LLVM.
2990
2991LLVM's support for inline asm is modeled closely on the requirements of Clang's
2992GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2993modifier codes listed here are similar or identical to those in GCC's inline asm
2994support. However, to be clear, the syntax of the template and constraint strings
2995described here is *not* the same as the syntax accepted by GCC and Clang, and,
2996while most constraint letters are passed through as-is by Clang, some get
2997translated to other codes when converting from the C source to the LLVM
2998assembly.
2999
3000An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003001
3002.. code-block:: llvm
3003
3004 i32 (i32) asm "bswap $0", "=r,r"
3005
3006Inline assembler expressions may **only** be used as the callee operand
3007of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3008Thus, typically we have:
3009
3010.. code-block:: llvm
3011
3012 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3013
3014Inline asms with side effects not visible in the constraint list must be
3015marked as having side effects. This is done through the use of the
3016'``sideeffect``' keyword, like so:
3017
3018.. code-block:: llvm
3019
3020 call void asm sideeffect "eieio", ""()
3021
3022In some cases inline asms will contain code that will not work unless
3023the stack is aligned in some way, such as calls or SSE instructions on
3024x86, yet will not contain code that does that alignment within the asm.
3025The compiler should make conservative assumptions about what the asm
3026might contain and should generate its usual stack alignment code in the
3027prologue if the '``alignstack``' keyword is present:
3028
3029.. code-block:: llvm
3030
3031 call void asm alignstack "eieio", ""()
3032
3033Inline asms also support using non-standard assembly dialects. The
3034assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3035the inline asm is using the Intel dialect. Currently, ATT and Intel are
3036the only supported dialects. An example is:
3037
3038.. code-block:: llvm
3039
3040 call void asm inteldialect "eieio", ""()
3041
3042If multiple keywords appear the '``sideeffect``' keyword must come
3043first, the '``alignstack``' keyword second and the '``inteldialect``'
3044keyword last.
3045
James Y Knightbc832ed2015-07-08 18:08:36 +00003046Inline Asm Constraint String
3047^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3048
3049The constraint list is a comma-separated string, each element containing one or
3050more constraint codes.
3051
3052For each element in the constraint list an appropriate register or memory
3053operand will be chosen, and it will be made available to assembly template
3054string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3055second, etc.
3056
3057There are three different types of constraints, which are distinguished by a
3058prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3059constraints must always be given in that order: outputs first, then inputs, then
3060clobbers. They cannot be intermingled.
3061
3062There are also three different categories of constraint codes:
3063
3064- Register constraint. This is either a register class, or a fixed physical
3065 register. This kind of constraint will allocate a register, and if necessary,
3066 bitcast the argument or result to the appropriate type.
3067- Memory constraint. This kind of constraint is for use with an instruction
3068 taking a memory operand. Different constraints allow for different addressing
3069 modes used by the target.
3070- Immediate value constraint. This kind of constraint is for an integer or other
3071 immediate value which can be rendered directly into an instruction. The
3072 various target-specific constraints allow the selection of a value in the
3073 proper range for the instruction you wish to use it with.
3074
3075Output constraints
3076""""""""""""""""""
3077
3078Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3079indicates that the assembly will write to this operand, and the operand will
3080then be made available as a return value of the ``asm`` expression. Output
3081constraints do not consume an argument from the call instruction. (Except, see
3082below about indirect outputs).
3083
3084Normally, it is expected that no output locations are written to by the assembly
3085expression until *all* of the inputs have been read. As such, LLVM may assign
3086the same register to an output and an input. If this is not safe (e.g. if the
3087assembly contains two instructions, where the first writes to one output, and
3088the second reads an input and writes to a second output), then the "``&``"
3089modifier must be used (e.g. "``=&r``") to specify that the output is an
3090"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3091will not use the same register for any inputs (other than an input tied to this
3092output).
3093
3094Input constraints
3095"""""""""""""""""
3096
3097Input constraints do not have a prefix -- just the constraint codes. Each input
3098constraint will consume one argument from the call instruction. It is not
3099permitted for the asm to write to any input register or memory location (unless
3100that input is tied to an output). Note also that multiple inputs may all be
3101assigned to the same register, if LLVM can determine that they necessarily all
3102contain the same value.
3103
3104Instead of providing a Constraint Code, input constraints may also "tie"
3105themselves to an output constraint, by providing an integer as the constraint
3106string. Tied inputs still consume an argument from the call instruction, and
3107take up a position in the asm template numbering as is usual -- they will simply
3108be constrained to always use the same register as the output they've been tied
3109to. For example, a constraint string of "``=r,0``" says to assign a register for
3110output, and use that register as an input as well (it being the 0'th
3111constraint).
3112
3113It is permitted to tie an input to an "early-clobber" output. In that case, no
3114*other* input may share the same register as the input tied to the early-clobber
3115(even when the other input has the same value).
3116
3117You may only tie an input to an output which has a register constraint, not a
3118memory constraint. Only a single input may be tied to an output.
3119
3120There is also an "interesting" feature which deserves a bit of explanation: if a
3121register class constraint allocates a register which is too small for the value
3122type operand provided as input, the input value will be split into multiple
3123registers, and all of them passed to the inline asm.
3124
3125However, this feature is often not as useful as you might think.
3126
3127Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3128architectures that have instructions which operate on multiple consecutive
3129instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3130SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3131hardware then loads into both the named register, and the next register. This
3132feature of inline asm would not be useful to support that.)
3133
3134A few of the targets provide a template string modifier allowing explicit access
3135to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3136``D``). On such an architecture, you can actually access the second allocated
3137register (yet, still, not any subsequent ones). But, in that case, you're still
3138probably better off simply splitting the value into two separate operands, for
3139clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3140despite existing only for use with this feature, is not really a good idea to
3141use)
3142
3143Indirect inputs and outputs
3144"""""""""""""""""""""""""""
3145
3146Indirect output or input constraints can be specified by the "``*``" modifier
3147(which goes after the "``=``" in case of an output). This indicates that the asm
3148will write to or read from the contents of an *address* provided as an input
3149argument. (Note that in this way, indirect outputs act more like an *input* than
3150an output: just like an input, they consume an argument of the call expression,
3151rather than producing a return value. An indirect output constraint is an
3152"output" only in that the asm is expected to write to the contents of the input
3153memory location, instead of just read from it).
3154
3155This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3156address of a variable as a value.
3157
3158It is also possible to use an indirect *register* constraint, but only on output
3159(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3160value normally, and then, separately emit a store to the address provided as
3161input, after the provided inline asm. (It's not clear what value this
3162functionality provides, compared to writing the store explicitly after the asm
3163statement, and it can only produce worse code, since it bypasses many
3164optimization passes. I would recommend not using it.)
3165
3166
3167Clobber constraints
3168"""""""""""""""""""
3169
3170A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3171consume an input operand, nor generate an output. Clobbers cannot use any of the
3172general constraint code letters -- they may use only explicit register
3173constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3174"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3175memory locations -- not only the memory pointed to by a declared indirect
3176output.
3177
3178
3179Constraint Codes
3180""""""""""""""""
3181After a potential prefix comes constraint code, or codes.
3182
3183A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3184followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3185(e.g. "``{eax}``").
3186
3187The one and two letter constraint codes are typically chosen to be the same as
3188GCC's constraint codes.
3189
3190A single constraint may include one or more than constraint code in it, leaving
3191it up to LLVM to choose which one to use. This is included mainly for
3192compatibility with the translation of GCC inline asm coming from clang.
3193
3194There are two ways to specify alternatives, and either or both may be used in an
3195inline asm constraint list:
3196
31971) Append the codes to each other, making a constraint code set. E.g. "``im``"
3198 or "``{eax}m``". This means "choose any of the options in the set". The
3199 choice of constraint is made independently for each constraint in the
3200 constraint list.
3201
32022) Use "``|``" between constraint code sets, creating alternatives. Every
3203 constraint in the constraint list must have the same number of alternative
3204 sets. With this syntax, the same alternative in *all* of the items in the
3205 constraint list will be chosen together.
3206
3207Putting those together, you might have a two operand constraint string like
3208``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3209operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3210may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3211
3212However, the use of either of the alternatives features is *NOT* recommended, as
3213LLVM is not able to make an intelligent choice about which one to use. (At the
3214point it currently needs to choose, not enough information is available to do so
3215in a smart way.) Thus, it simply tries to make a choice that's most likely to
3216compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3217always choose to use memory, not registers). And, if given multiple registers,
3218or multiple register classes, it will simply choose the first one. (In fact, it
3219doesn't currently even ensure explicitly specified physical registers are
3220unique, so specifying multiple physical registers as alternatives, like
3221``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3222intended.)
3223
3224Supported Constraint Code List
3225""""""""""""""""""""""""""""""
3226
3227The constraint codes are, in general, expected to behave the same way they do in
3228GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3229inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3230and GCC likely indicates a bug in LLVM.
3231
3232Some constraint codes are typically supported by all targets:
3233
3234- ``r``: A register in the target's general purpose register class.
3235- ``m``: A memory address operand. It is target-specific what addressing modes
3236 are supported, typical examples are register, or register + register offset,
3237 or register + immediate offset (of some target-specific size).
3238- ``i``: An integer constant (of target-specific width). Allows either a simple
3239 immediate, or a relocatable value.
3240- ``n``: An integer constant -- *not* including relocatable values.
3241- ``s``: An integer constant, but allowing *only* relocatable values.
3242- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3243 useful to pass a label for an asm branch or call.
3244
3245 .. FIXME: but that surely isn't actually okay to jump out of an asm
3246 block without telling llvm about the control transfer???)
3247
3248- ``{register-name}``: Requires exactly the named physical register.
3249
3250Other constraints are target-specific:
3251
3252AArch64:
3253
3254- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3255- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3256 i.e. 0 to 4095 with optional shift by 12.
3257- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3258 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3259- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3260 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3261- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3262 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3263- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3264 32-bit register. This is a superset of ``K``: in addition to the bitmask
3265 immediate, also allows immediate integers which can be loaded with a single
3266 ``MOVZ`` or ``MOVL`` instruction.
3267- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3268 64-bit register. This is a superset of ``L``.
3269- ``Q``: Memory address operand must be in a single register (no
3270 offsets). (However, LLVM currently does this for the ``m`` constraint as
3271 well.)
3272- ``r``: A 32 or 64-bit integer register (W* or X*).
3273- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3274- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3275
3276AMDGPU:
3277
3278- ``r``: A 32 or 64-bit integer register.
3279- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3280- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3281
3282
3283All ARM modes:
3284
3285- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3286 operand. Treated the same as operand ``m``, at the moment.
3287
3288ARM and ARM's Thumb2 mode:
3289
3290- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3291- ``I``: An immediate integer valid for a data-processing instruction.
3292- ``J``: An immediate integer between -4095 and 4095.
3293- ``K``: An immediate integer whose bitwise inverse is valid for a
3294 data-processing instruction. (Can be used with template modifier "``B``" to
3295 print the inverted value).
3296- ``L``: An immediate integer whose negation is valid for a data-processing
3297 instruction. (Can be used with template modifier "``n``" to print the negated
3298 value).
3299- ``M``: A power of two or a integer between 0 and 32.
3300- ``N``: Invalid immediate constraint.
3301- ``O``: Invalid immediate constraint.
3302- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3303- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3304 as ``r``.
3305- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3306 invalid.
3307- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3308 ``d0-d31``, or ``q0-q15``.
3309- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3310 ``d0-d7``, or ``q0-q3``.
3311- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3312 ``s0-s31``.
3313
3314ARM's Thumb1 mode:
3315
3316- ``I``: An immediate integer between 0 and 255.
3317- ``J``: An immediate integer between -255 and -1.
3318- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3319 some amount.
3320- ``L``: An immediate integer between -7 and 7.
3321- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3322- ``N``: An immediate integer between 0 and 31.
3323- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3324- ``r``: A low 32-bit GPR register (``r0-r7``).
3325- ``l``: A low 32-bit GPR register (``r0-r7``).
3326- ``h``: A high GPR register (``r0-r7``).
3327- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3328 ``d0-d31``, or ``q0-q15``.
3329- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3330 ``d0-d7``, or ``q0-q3``.
3331- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3332 ``s0-s31``.
3333
3334
3335Hexagon:
3336
3337- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3338 at the moment.
3339- ``r``: A 32 or 64-bit register.
3340
3341MSP430:
3342
3343- ``r``: An 8 or 16-bit register.
3344
3345MIPS:
3346
3347- ``I``: An immediate signed 16-bit integer.
3348- ``J``: An immediate integer zero.
3349- ``K``: An immediate unsigned 16-bit integer.
3350- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3351- ``N``: An immediate integer between -65535 and -1.
3352- ``O``: An immediate signed 15-bit integer.
3353- ``P``: An immediate integer between 1 and 65535.
3354- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3355 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3356- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3357 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3358 ``m``.
3359- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3360 ``sc`` instruction on the given subtarget (details vary).
3361- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3362- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003363 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3364 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003365- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3366 ``25``).
3367- ``l``: The ``lo`` register, 32 or 64-bit.
3368- ``x``: Invalid.
3369
3370NVPTX:
3371
3372- ``b``: A 1-bit integer register.
3373- ``c`` or ``h``: A 16-bit integer register.
3374- ``r``: A 32-bit integer register.
3375- ``l`` or ``N``: A 64-bit integer register.
3376- ``f``: A 32-bit float register.
3377- ``d``: A 64-bit float register.
3378
3379
3380PowerPC:
3381
3382- ``I``: An immediate signed 16-bit integer.
3383- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3384- ``K``: An immediate unsigned 16-bit integer.
3385- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3386- ``M``: An immediate integer greater than 31.
3387- ``N``: An immediate integer that is an exact power of 2.
3388- ``O``: The immediate integer constant 0.
3389- ``P``: An immediate integer constant whose negation is a signed 16-bit
3390 constant.
3391- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3392 treated the same as ``m``.
3393- ``r``: A 32 or 64-bit integer register.
3394- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3395 ``R1-R31``).
3396- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3397 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3398- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3399 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3400 altivec vector register (``V0-V31``).
3401
3402 .. FIXME: is this a bug that v accepts QPX registers? I think this
3403 is supposed to only use the altivec vector registers?
3404
3405- ``y``: Condition register (``CR0-CR7``).
3406- ``wc``: An individual CR bit in a CR register.
3407- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3408 register set (overlapping both the floating-point and vector register files).
3409- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3410 set.
3411
3412Sparc:
3413
3414- ``I``: An immediate 13-bit signed integer.
3415- ``r``: A 32-bit integer register.
3416
3417SystemZ:
3418
3419- ``I``: An immediate unsigned 8-bit integer.
3420- ``J``: An immediate unsigned 12-bit integer.
3421- ``K``: An immediate signed 16-bit integer.
3422- ``L``: An immediate signed 20-bit integer.
3423- ``M``: An immediate integer 0x7fffffff.
3424- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3425 ``m``, at the moment.
3426- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3427- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3428 address context evaluates as zero).
3429- ``h``: A 32-bit value in the high part of a 64bit data register
3430 (LLVM-specific)
3431- ``f``: A 32, 64, or 128-bit floating point register.
3432
3433X86:
3434
3435- ``I``: An immediate integer between 0 and 31.
3436- ``J``: An immediate integer between 0 and 64.
3437- ``K``: An immediate signed 8-bit integer.
3438- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3439 0xffffffff.
3440- ``M``: An immediate integer between 0 and 3.
3441- ``N``: An immediate unsigned 8-bit integer.
3442- ``O``: An immediate integer between 0 and 127.
3443- ``e``: An immediate 32-bit signed integer.
3444- ``Z``: An immediate 32-bit unsigned integer.
3445- ``o``, ``v``: Treated the same as ``m``, at the moment.
3446- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3447 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3448 registers, and on X86-64, it is all of the integer registers.
3449- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3450 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3451- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3452- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3453 existed since i386, and can be accessed without the REX prefix.
3454- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3455- ``y``: A 64-bit MMX register, if MMX is enabled.
3456- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3457 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3458 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3459 512-bit vector operand in an AVX512 register, Otherwise, an error.
3460- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3461- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3462 32-bit mode, a 64-bit integer operand will get split into two registers). It
3463 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3464 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3465 you're better off splitting it yourself, before passing it to the asm
3466 statement.
3467
3468XCore:
3469
3470- ``r``: A 32-bit integer register.
3471
3472
3473.. _inline-asm-modifiers:
3474
3475Asm template argument modifiers
3476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3477
3478In the asm template string, modifiers can be used on the operand reference, like
3479"``${0:n}``".
3480
3481The modifiers are, in general, expected to behave the same way they do in
3482GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3483inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3484and GCC likely indicates a bug in LLVM.
3485
3486Target-independent:
3487
Sean Silvaa1190322015-08-06 22:56:48 +00003488- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003489 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3490- ``n``: Negate and print immediate integer constant unadorned, without the
3491 target-specific immediate punctuation (e.g. no ``$`` prefix).
3492- ``l``: Print as an unadorned label, without the target-specific label
3493 punctuation (e.g. no ``$`` prefix).
3494
3495AArch64:
3496
3497- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3498 instead of ``x30``, print ``w30``.
3499- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3500- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3501 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3502 ``v*``.
3503
3504AMDGPU:
3505
3506- ``r``: No effect.
3507
3508ARM:
3509
3510- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3511 register).
3512- ``P``: No effect.
3513- ``q``: No effect.
3514- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3515 as ``d4[1]`` instead of ``s9``)
3516- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3517 prefix.
3518- ``L``: Print the low 16-bits of an immediate integer constant.
3519- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3520 register operands subsequent to the specified one (!), so use carefully.
3521- ``Q``: Print the low-order register of a register-pair, or the low-order
3522 register of a two-register operand.
3523- ``R``: Print the high-order register of a register-pair, or the high-order
3524 register of a two-register operand.
3525- ``H``: Print the second register of a register-pair. (On a big-endian system,
3526 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3527 to ``R``.)
3528
3529 .. FIXME: H doesn't currently support printing the second register
3530 of a two-register operand.
3531
3532- ``e``: Print the low doubleword register of a NEON quad register.
3533- ``f``: Print the high doubleword register of a NEON quad register.
3534- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3535 adornment.
3536
3537Hexagon:
3538
3539- ``L``: Print the second register of a two-register operand. Requires that it
3540 has been allocated consecutively to the first.
3541
3542 .. FIXME: why is it restricted to consecutive ones? And there's
3543 nothing that ensures that happens, is there?
3544
3545- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3546 nothing. Used to print 'addi' vs 'add' instructions.
3547
3548MSP430:
3549
3550No additional modifiers.
3551
3552MIPS:
3553
3554- ``X``: Print an immediate integer as hexadecimal
3555- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3556- ``d``: Print an immediate integer as decimal.
3557- ``m``: Subtract one and print an immediate integer as decimal.
3558- ``z``: Print $0 if an immediate zero, otherwise print normally.
3559- ``L``: Print the low-order register of a two-register operand, or prints the
3560 address of the low-order word of a double-word memory operand.
3561
3562 .. FIXME: L seems to be missing memory operand support.
3563
3564- ``M``: Print the high-order register of a two-register operand, or prints the
3565 address of the high-order word of a double-word memory operand.
3566
3567 .. FIXME: M seems to be missing memory operand support.
3568
3569- ``D``: Print the second register of a two-register operand, or prints the
3570 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3571 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3572 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003573- ``w``: No effect. Provided for compatibility with GCC which requires this
3574 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3575 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003576
3577NVPTX:
3578
3579- ``r``: No effect.
3580
3581PowerPC:
3582
3583- ``L``: Print the second register of a two-register operand. Requires that it
3584 has been allocated consecutively to the first.
3585
3586 .. FIXME: why is it restricted to consecutive ones? And there's
3587 nothing that ensures that happens, is there?
3588
3589- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3590 nothing. Used to print 'addi' vs 'add' instructions.
3591- ``y``: For a memory operand, prints formatter for a two-register X-form
3592 instruction. (Currently always prints ``r0,OPERAND``).
3593- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3594 otherwise. (NOTE: LLVM does not support update form, so this will currently
3595 always print nothing)
3596- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3597 not support indexed form, so this will currently always print nothing)
3598
3599Sparc:
3600
3601- ``r``: No effect.
3602
3603SystemZ:
3604
3605SystemZ implements only ``n``, and does *not* support any of the other
3606target-independent modifiers.
3607
3608X86:
3609
3610- ``c``: Print an unadorned integer or symbol name. (The latter is
3611 target-specific behavior for this typically target-independent modifier).
3612- ``A``: Print a register name with a '``*``' before it.
3613- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3614 operand.
3615- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3616 memory operand.
3617- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3618 operand.
3619- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3620 operand.
3621- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3622 available, otherwise the 32-bit register name; do nothing on a memory operand.
3623- ``n``: Negate and print an unadorned integer, or, for operands other than an
3624 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3625 the operand. (The behavior for relocatable symbol expressions is a
3626 target-specific behavior for this typically target-independent modifier)
3627- ``H``: Print a memory reference with additional offset +8.
3628- ``P``: Print a memory reference or operand for use as the argument of a call
3629 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3630
3631XCore:
3632
3633No additional modifiers.
3634
3635
Sean Silvab084af42012-12-07 10:36:55 +00003636Inline Asm Metadata
3637^^^^^^^^^^^^^^^^^^^
3638
3639The call instructions that wrap inline asm nodes may have a
3640"``!srcloc``" MDNode attached to it that contains a list of constant
3641integers. If present, the code generator will use the integer as the
3642location cookie value when report errors through the ``LLVMContext``
3643error reporting mechanisms. This allows a front-end to correlate backend
3644errors that occur with inline asm back to the source code that produced
3645it. For example:
3646
3647.. code-block:: llvm
3648
3649 call void asm sideeffect "something bad", ""(), !srcloc !42
3650 ...
3651 !42 = !{ i32 1234567 }
3652
3653It is up to the front-end to make sense of the magic numbers it places
3654in the IR. If the MDNode contains multiple constants, the code generator
3655will use the one that corresponds to the line of the asm that the error
3656occurs on.
3657
3658.. _metadata:
3659
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003660Metadata
3661========
Sean Silvab084af42012-12-07 10:36:55 +00003662
3663LLVM IR allows metadata to be attached to instructions in the program
3664that can convey extra information about the code to the optimizers and
3665code generator. One example application of metadata is source-level
3666debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003667
Sean Silvaa1190322015-08-06 22:56:48 +00003668Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003669``call`` instruction, it uses the ``metadata`` type.
3670
3671All metadata are identified in syntax by a exclamation point ('``!``').
3672
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003673.. _metadata-string:
3674
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003675Metadata Nodes and Metadata Strings
3676-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003677
3678A metadata string is a string surrounded by double quotes. It can
3679contain any character by escaping non-printable characters with
3680"``\xx``" where "``xx``" is the two digit hex code. For example:
3681"``!"test\00"``".
3682
3683Metadata nodes are represented with notation similar to structure
3684constants (a comma separated list of elements, surrounded by braces and
3685preceded by an exclamation point). Metadata nodes can have any values as
3686their operand. For example:
3687
3688.. code-block:: llvm
3689
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003690 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003691
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003692Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3693
3694.. code-block:: llvm
3695
3696 !0 = distinct !{!"test\00", i32 10}
3697
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003698``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003699content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003700when metadata operands change.
3701
Sean Silvab084af42012-12-07 10:36:55 +00003702A :ref:`named metadata <namedmetadatastructure>` is a collection of
3703metadata nodes, which can be looked up in the module symbol table. For
3704example:
3705
3706.. code-block:: llvm
3707
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003708 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003709
3710Metadata can be used as function arguments. Here ``llvm.dbg.value``
3711function is using two metadata arguments:
3712
3713.. code-block:: llvm
3714
3715 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3716
Peter Collingbourne50108682015-11-06 02:41:02 +00003717Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3718to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003719
3720.. code-block:: llvm
3721
3722 %indvar.next = add i64 %indvar, 1, !dbg !21
3723
Peter Collingbourne50108682015-11-06 02:41:02 +00003724Metadata can also be attached to a function definition. Here metadata ``!22``
3725is attached to the ``foo`` function using the ``!dbg`` identifier:
3726
3727.. code-block:: llvm
3728
3729 define void @foo() !dbg !22 {
3730 ret void
3731 }
3732
Sean Silvab084af42012-12-07 10:36:55 +00003733More information about specific metadata nodes recognized by the
3734optimizers and code generator is found below.
3735
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003736.. _specialized-metadata:
3737
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003738Specialized Metadata Nodes
3739^^^^^^^^^^^^^^^^^^^^^^^^^^
3740
3741Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003742to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003743order.
3744
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003745These aren't inherently debug info centric, but currently all the specialized
3746metadata nodes are related to debug info.
3747
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003748.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003749
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003750DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003751"""""""""""""
3752
Sean Silvaa1190322015-08-06 22:56:48 +00003753``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003754``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3755tuples containing the debug info to be emitted along with the compile unit,
3756regardless of code optimizations (some nodes are only emitted if there are
3757references to them from instructions).
3758
3759.. code-block:: llvm
3760
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003761 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003762 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3763 splitDebugFilename: "abc.debug", emissionKind: 1,
3764 enums: !2, retainedTypes: !3, subprograms: !4,
3765 globals: !5, imports: !6)
3766
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003767Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003768specific compilation unit. File descriptors are defined using this scope.
3769These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003770keep track of subprograms, global variables, type information, and imported
3771entities (declarations and namespaces).
3772
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003773.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003774
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003775DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003776""""""
3777
Sean Silvaa1190322015-08-06 22:56:48 +00003778``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003779
3780.. code-block:: llvm
3781
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003782 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003784Files are sometimes used in ``scope:`` fields, and are the only valid target
3785for ``file:`` fields.
3786
Michael Kuperstein605308a2015-05-14 10:58:59 +00003787.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003788
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003789DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790"""""""""""
3791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003793``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003794
3795.. code-block:: llvm
3796
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003797 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003798 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003799 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003800
Sean Silvaa1190322015-08-06 22:56:48 +00003801The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003802following:
3803
3804.. code-block:: llvm
3805
3806 DW_ATE_address = 1
3807 DW_ATE_boolean = 2
3808 DW_ATE_float = 4
3809 DW_ATE_signed = 5
3810 DW_ATE_signed_char = 6
3811 DW_ATE_unsigned = 7
3812 DW_ATE_unsigned_char = 8
3813
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003814.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003815
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003816DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003817""""""""""""""""
3818
Sean Silvaa1190322015-08-06 22:56:48 +00003819``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003820refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003821types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003822represents a function with no return value (such as ``void foo() {}`` in C++).
3823
3824.. code-block:: llvm
3825
3826 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3827 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003828 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003829
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003830.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003831
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003832DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003833"""""""""""""
3834
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003835``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003836qualified types.
3837
3838.. code-block:: llvm
3839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003842 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003843 align: 32)
3844
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003845The following ``tag:`` values are valid:
3846
3847.. code-block:: llvm
3848
3849 DW_TAG_formal_parameter = 5
3850 DW_TAG_member = 13
3851 DW_TAG_pointer_type = 15
3852 DW_TAG_reference_type = 16
3853 DW_TAG_typedef = 22
3854 DW_TAG_ptr_to_member_type = 31
3855 DW_TAG_const_type = 38
3856 DW_TAG_volatile_type = 53
3857 DW_TAG_restrict_type = 55
3858
3859``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003860<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3861is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003862``DW_TAG_formal_parameter`` is used to define a member which is a formal
3863argument of a subprogram.
3864
3865``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3866
3867``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3868``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3869``baseType:``.
3870
3871Note that the ``void *`` type is expressed as a type derived from NULL.
3872
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003873.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003874
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003875DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876"""""""""""""""
3877
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003878``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003879structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003880
3881If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003882identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003883can refer to composite types indirectly via a :ref:`metadata string
3884<metadata-string>` that matches their identifier.
3885
3886.. code-block:: llvm
3887
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003888 !0 = !DIEnumerator(name: "SixKind", value: 7)
3889 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3890 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3891 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3893 elements: !{!0, !1, !2})
3894
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003895The following ``tag:`` values are valid:
3896
3897.. code-block:: llvm
3898
3899 DW_TAG_array_type = 1
3900 DW_TAG_class_type = 2
3901 DW_TAG_enumeration_type = 4
3902 DW_TAG_structure_type = 19
3903 DW_TAG_union_type = 23
3904 DW_TAG_subroutine_type = 21
3905 DW_TAG_inheritance = 28
3906
3907
3908For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003909descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003910level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003911array type is a native packed vector.
3912
3913For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003914descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003915value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003917
3918For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3919``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003921
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003922.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003923
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003924DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003925""""""""""
3926
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003927``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003928:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003929
3930.. code-block:: llvm
3931
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003932 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3933 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3934 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003937
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003938DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939""""""""""""
3940
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003941``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3942variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003943
3944.. code-block:: llvm
3945
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946 !0 = !DIEnumerator(name: "SixKind", value: 7)
3947 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3948 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003950DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003951"""""""""""""""""""""""
3952
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003954language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003955:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003956
3957.. code-block:: llvm
3958
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003959 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962""""""""""""""""""""""""
3963
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003964``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003965language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003967``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969
3970.. code-block:: llvm
3971
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003972 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003973
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003974DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003975"""""""""""
3976
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003977``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003978
3979.. code-block:: llvm
3980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984""""""""""""""""
3985
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003986``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003987
3988.. code-block:: llvm
3989
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003990 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991 file: !2, line: 7, type: !3, isLocal: true,
3992 isDefinition: false, variable: i32* @foo,
3993 declaration: !4)
3994
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003995All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003996:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003997
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003998.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003999
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004000DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001""""""""""""
4002
Peter Collingbourne50108682015-11-06 02:41:02 +00004003``DISubprogram`` nodes represent functions from the source language. A
4004``DISubprogram`` may be attached to a function definition using ``!dbg``
4005metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4006that must be retained, even if their IR counterparts are optimized out of
4007the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004008
4009.. code-block:: llvm
4010
Peter Collingbourne50108682015-11-06 02:41:02 +00004011 define void @_Z3foov() !dbg !0 {
4012 ...
4013 }
4014
4015 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4016 file: !2, line: 7, type: !3, isLocal: true,
4017 isDefinition: false, scopeLine: 8,
4018 containingType: !4,
4019 virtuality: DW_VIRTUALITY_pure_virtual,
4020 virtualIndex: 10, flags: DIFlagPrototyped,
4021 isOptimized: true, templateParams: !5,
4022 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004024.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004025
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004026DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027""""""""""""""
4028
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004029``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004030<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004031two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004032fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033
4034.. code-block:: llvm
4035
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004037
4038Usually lexical blocks are ``distinct`` to prevent node merging based on
4039operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004040
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004041.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004043DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044""""""""""""""""""
4045
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004047:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048indicate textual inclusion, or the ``discriminator:`` field can be used to
4049discriminate between control flow within a single block in the source language.
4050
4051.. code-block:: llvm
4052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4054 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4055 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004056
Michael Kuperstein605308a2015-05-14 10:58:59 +00004057.. _DILocation:
4058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004060""""""""""
4061
Sean Silvaa1190322015-08-06 22:56:48 +00004062``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063mandatory, and points at an :ref:`DILexicalBlockFile`, an
4064:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004065
4066.. code-block:: llvm
4067
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004068 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004069
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004070.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004071
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004072DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004073"""""""""""""""
4074
Sean Silvaa1190322015-08-06 22:56:48 +00004075``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004076the ``arg:`` field is set to non-zero, then this variable is a subprogram
4077parameter, and it will be included in the ``variables:`` field of its
4078:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004080.. code-block:: llvm
4081
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004082 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4083 type: !3, flags: DIFlagArtificial)
4084 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4085 type: !3)
4086 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004088DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004089""""""""""""
4090
Sean Silvaa1190322015-08-06 22:56:48 +00004091``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004092:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4093describe how the referenced LLVM variable relates to the source language
4094variable.
4095
4096The current supported vocabulary is limited:
4097
4098- ``DW_OP_deref`` dereferences the working expression.
4099- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4100- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4101 here, respectively) of the variable piece from the working expression.
4102
4103.. code-block:: llvm
4104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105 !0 = !DIExpression(DW_OP_deref)
4106 !1 = !DIExpression(DW_OP_plus, 3)
4107 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4108 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004110DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111""""""""""""""
4112
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004113``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004114
4115.. code-block:: llvm
4116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004118 getter: "getFoo", attributes: 7, type: !2)
4119
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004121""""""""""""""""
4122
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004123``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124compile unit.
4125
4126.. code-block:: llvm
4127
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004128 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004129 entity: !1, line: 7)
4130
Sean Silvab084af42012-12-07 10:36:55 +00004131'``tbaa``' Metadata
4132^^^^^^^^^^^^^^^^^^^
4133
4134In LLVM IR, memory does not have types, so LLVM's own type system is not
4135suitable for doing TBAA. Instead, metadata is added to the IR to
4136describe a type system of a higher level language. This can be used to
4137implement typical C/C++ TBAA, but it can also be used to implement
4138custom alias analysis behavior for other languages.
4139
4140The current metadata format is very simple. TBAA metadata nodes have up
4141to three fields, e.g.:
4142
4143.. code-block:: llvm
4144
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004145 !0 = !{ !"an example type tree" }
4146 !1 = !{ !"int", !0 }
4147 !2 = !{ !"float", !0 }
4148 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004149
4150The first field is an identity field. It can be any value, usually a
4151metadata string, which uniquely identifies the type. The most important
4152name in the tree is the name of the root node. Two trees with different
4153root node names are entirely disjoint, even if they have leaves with
4154common names.
4155
4156The second field identifies the type's parent node in the tree, or is
4157null or omitted for a root node. A type is considered to alias all of
4158its descendants and all of its ancestors in the tree. Also, a type is
4159considered to alias all types in other trees, so that bitcode produced
4160from multiple front-ends is handled conservatively.
4161
4162If the third field is present, it's an integer which if equal to 1
4163indicates that the type is "constant" (meaning
4164``pointsToConstantMemory`` should return true; see `other useful
4165AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4166
4167'``tbaa.struct``' Metadata
4168^^^^^^^^^^^^^^^^^^^^^^^^^^
4169
4170The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4171aggregate assignment operations in C and similar languages, however it
4172is defined to copy a contiguous region of memory, which is more than
4173strictly necessary for aggregate types which contain holes due to
4174padding. Also, it doesn't contain any TBAA information about the fields
4175of the aggregate.
4176
4177``!tbaa.struct`` metadata can describe which memory subregions in a
4178memcpy are padding and what the TBAA tags of the struct are.
4179
4180The current metadata format is very simple. ``!tbaa.struct`` metadata
4181nodes are a list of operands which are in conceptual groups of three.
4182For each group of three, the first operand gives the byte offset of a
4183field in bytes, the second gives its size in bytes, and the third gives
4184its tbaa tag. e.g.:
4185
4186.. code-block:: llvm
4187
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004188 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004189
4190This describes a struct with two fields. The first is at offset 0 bytes
4191with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4192and has size 4 bytes and has tbaa tag !2.
4193
4194Note that the fields need not be contiguous. In this example, there is a
41954 byte gap between the two fields. This gap represents padding which
4196does not carry useful data and need not be preserved.
4197
Hal Finkel94146652014-07-24 14:25:39 +00004198'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004200
4201``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4202noalias memory-access sets. This means that some collection of memory access
4203instructions (loads, stores, memory-accessing calls, etc.) that carry
4204``noalias`` metadata can specifically be specified not to alias with some other
4205collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004206Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004207a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004208of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004209subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004210instruction's ``noalias`` list, then the two memory accesses are assumed not to
4211alias.
Hal Finkel94146652014-07-24 14:25:39 +00004212
Hal Finkel029cde62014-07-25 15:50:02 +00004213The metadata identifying each domain is itself a list containing one or two
4214entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004215string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004216self-reference can be used to create globally unique domain names. A
4217descriptive string may optionally be provided as a second list entry.
4218
4219The metadata identifying each scope is also itself a list containing two or
4220three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004221is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004222self-reference can be used to create globally unique scope names. A metadata
4223reference to the scope's domain is the second entry. A descriptive string may
4224optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004225
4226For example,
4227
4228.. code-block:: llvm
4229
Hal Finkel029cde62014-07-25 15:50:02 +00004230 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004231 !0 = !{!0}
4232 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004233
Hal Finkel029cde62014-07-25 15:50:02 +00004234 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004235 !2 = !{!2, !0}
4236 !3 = !{!3, !0}
4237 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004238
Hal Finkel029cde62014-07-25 15:50:02 +00004239 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004240 !5 = !{!4} ; A list containing only scope !4
4241 !6 = !{!4, !3, !2}
4242 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004243
4244 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004245 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004246 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004247
Hal Finkel029cde62014-07-25 15:50:02 +00004248 ; These two instructions also don't alias (for domain !1, the set of scopes
4249 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004250 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004251 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004252
Adam Nemet0a8416f2015-05-11 08:30:28 +00004253 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004254 ; the !noalias list is not a superset of, or equal to, the scopes in the
4255 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004256 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004257 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004258
Sean Silvab084af42012-12-07 10:36:55 +00004259'``fpmath``' Metadata
4260^^^^^^^^^^^^^^^^^^^^^
4261
4262``fpmath`` metadata may be attached to any instruction of floating point
4263type. It can be used to express the maximum acceptable error in the
4264result of that instruction, in ULPs, thus potentially allowing the
4265compiler to use a more efficient but less accurate method of computing
4266it. ULP is defined as follows:
4267
4268 If ``x`` is a real number that lies between two finite consecutive
4269 floating-point numbers ``a`` and ``b``, without being equal to one
4270 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4271 distance between the two non-equal finite floating-point numbers
4272 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4273
4274The metadata node shall consist of a single positive floating point
4275number representing the maximum relative error, for example:
4276
4277.. code-block:: llvm
4278
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004279 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004280
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004281.. _range-metadata:
4282
Sean Silvab084af42012-12-07 10:36:55 +00004283'``range``' Metadata
4284^^^^^^^^^^^^^^^^^^^^
4285
Jingyue Wu37fcb592014-06-19 16:50:16 +00004286``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4287integer types. It expresses the possible ranges the loaded value or the value
4288returned by the called function at this call site is in. The ranges are
4289represented with a flattened list of integers. The loaded value or the value
4290returned is known to be in the union of the ranges defined by each consecutive
4291pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004292
4293- The type must match the type loaded by the instruction.
4294- The pair ``a,b`` represents the range ``[a,b)``.
4295- Both ``a`` and ``b`` are constants.
4296- The range is allowed to wrap.
4297- The range should not represent the full or empty set. That is,
4298 ``a!=b``.
4299
4300In addition, the pairs must be in signed order of the lower bound and
4301they must be non-contiguous.
4302
4303Examples:
4304
4305.. code-block:: llvm
4306
David Blaikiec7aabbb2015-03-04 22:06:14 +00004307 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4308 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004309 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4310 %d = invoke i8 @bar() to label %cont
4311 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004312 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004313 !0 = !{ i8 0, i8 2 }
4314 !1 = !{ i8 255, i8 2 }
4315 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4316 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004317
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004318'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004319^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004320
4321``unpredictable`` metadata may be attached to any branch or switch
4322instruction. It can be used to express the unpredictability of control
4323flow. Similar to the llvm.expect intrinsic, it may be used to alter
4324optimizations related to compare and branch instructions. The metadata
4325is treated as a boolean value; if it exists, it signals that the branch
4326or switch that it is attached to is completely unpredictable.
4327
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004328'``llvm.loop``'
4329^^^^^^^^^^^^^^^
4330
4331It is sometimes useful to attach information to loop constructs. Currently,
4332loop metadata is implemented as metadata attached to the branch instruction
4333in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004334guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004335specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004336
4337The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004338itself to avoid merging it with any other identifier metadata, e.g.,
4339during module linkage or function inlining. That is, each loop should refer
4340to their own identification metadata even if they reside in separate functions.
4341The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004342constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004343
4344.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004345
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004346 !0 = !{!0}
4347 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004348
Mark Heffernan893752a2014-07-18 19:24:51 +00004349The loop identifier metadata can be used to specify additional
4350per-loop metadata. Any operands after the first operand can be treated
4351as user-defined metadata. For example the ``llvm.loop.unroll.count``
4352suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004353
Paul Redmond5fdf8362013-05-28 20:00:34 +00004354.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004355
Paul Redmond5fdf8362013-05-28 20:00:34 +00004356 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4357 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004358 !0 = !{!0, !1}
4359 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004360
Mark Heffernan9d20e422014-07-21 23:11:03 +00004361'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004363
Mark Heffernan9d20e422014-07-21 23:11:03 +00004364Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4365used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004366vectorization width and interleave count. These metadata should be used in
4367conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004368``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4369optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004370it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004371which contains information about loop-carried memory dependencies can be helpful
4372in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004373
Mark Heffernan9d20e422014-07-21 23:11:03 +00004374'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4376
Mark Heffernan9d20e422014-07-21 23:11:03 +00004377This metadata suggests an interleave count to the loop interleaver.
4378The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004379second operand is an integer specifying the interleave count. For
4380example:
4381
4382.. code-block:: llvm
4383
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004384 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004385
Mark Heffernan9d20e422014-07-21 23:11:03 +00004386Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004387multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004388then the interleave count will be determined automatically.
4389
4390'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004392
4393This metadata selectively enables or disables vectorization for the loop. The
4394first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004395is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000043960 disables vectorization:
4397
4398.. code-block:: llvm
4399
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004400 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4401 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004402
4403'``llvm.loop.vectorize.width``' Metadata
4404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4405
4406This metadata sets the target width of the vectorizer. The first
4407operand is the string ``llvm.loop.vectorize.width`` and the second
4408operand is an integer specifying the width. For example:
4409
4410.. code-block:: llvm
4411
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004412 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004413
4414Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004415vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000044160 or if the loop does not have this metadata the width will be
4417determined automatically.
4418
4419'``llvm.loop.unroll``'
4420^^^^^^^^^^^^^^^^^^^^^^
4421
4422Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4423optimization hints such as the unroll factor. ``llvm.loop.unroll``
4424metadata should be used in conjunction with ``llvm.loop`` loop
4425identification metadata. The ``llvm.loop.unroll`` metadata are only
4426optimization hints and the unrolling will only be performed if the
4427optimizer believes it is safe to do so.
4428
Mark Heffernan893752a2014-07-18 19:24:51 +00004429'``llvm.loop.unroll.count``' Metadata
4430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4431
4432This metadata suggests an unroll factor to the loop unroller. The
4433first operand is the string ``llvm.loop.unroll.count`` and the second
4434operand is a positive integer specifying the unroll factor. For
4435example:
4436
4437.. code-block:: llvm
4438
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004439 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004440
4441If the trip count of the loop is less than the unroll count the loop
4442will be partially unrolled.
4443
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004444'``llvm.loop.unroll.disable``' Metadata
4445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4446
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004447This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004448which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004449
4450.. code-block:: llvm
4451
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004452 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004453
Kevin Qin715b01e2015-03-09 06:14:18 +00004454'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004456
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004457This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004458operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004459
4460.. code-block:: llvm
4461
4462 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4463
Mark Heffernan89391542015-08-10 17:28:08 +00004464'``llvm.loop.unroll.enable``' Metadata
4465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4466
4467This metadata suggests that the loop should be fully unrolled if the trip count
4468is known at compile time and partially unrolled if the trip count is not known
4469at compile time. The metadata has a single operand which is the string
4470``llvm.loop.unroll.enable``. For example:
4471
4472.. code-block:: llvm
4473
4474 !0 = !{!"llvm.loop.unroll.enable"}
4475
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004476'``llvm.loop.unroll.full``' Metadata
4477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4478
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004479This metadata suggests that the loop should be unrolled fully. The
4480metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004481For example:
4482
4483.. code-block:: llvm
4484
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004485 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004486
4487'``llvm.mem``'
4488^^^^^^^^^^^^^^^
4489
4490Metadata types used to annotate memory accesses with information helpful
4491for optimizations are prefixed with ``llvm.mem``.
4492
4493'``llvm.mem.parallel_loop_access``' Metadata
4494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4495
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004496The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4497or metadata containing a list of loop identifiers for nested loops.
4498The metadata is attached to memory accessing instructions and denotes that
4499no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004500with the same loop identifier.
4501
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004502Precisely, given two instructions ``m1`` and ``m2`` that both have the
4503``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4504set of loops associated with that metadata, respectively, then there is no loop
4505carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004506``L2``.
4507
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004508As a special case, if all memory accessing instructions in a loop have
4509``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4510loop has no loop carried memory dependences and is considered to be a parallel
4511loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004512
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004513Note that if not all memory access instructions have such metadata referring to
4514the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004515memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004516safe mechanism, this causes loops that were originally parallel to be considered
4517sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004518insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004519
4520Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004521both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004522metadata types that refer to the same loop identifier metadata.
4523
4524.. code-block:: llvm
4525
4526 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004527 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004528 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004529 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004530 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004531 ...
4532 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004533
4534 for.end:
4535 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004536 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004537
4538It is also possible to have nested parallel loops. In that case the
4539memory accesses refer to a list of loop identifier metadata nodes instead of
4540the loop identifier metadata node directly:
4541
4542.. code-block:: llvm
4543
4544 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004545 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004546 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004547 ...
4548 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004549
4550 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004551 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004552 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004553 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004554 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004555 ...
4556 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004557
4558 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004559 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004560 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004561 ...
4562 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004563
4564 outer.for.end: ; preds = %for.body
4565 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004566 !0 = !{!1, !2} ; a list of loop identifiers
4567 !1 = !{!1} ; an identifier for the inner loop
4568 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004569
Peter Collingbournee6909c82015-02-20 20:30:47 +00004570'``llvm.bitsets``'
4571^^^^^^^^^^^^^^^^^^
4572
4573The ``llvm.bitsets`` global metadata is used to implement
4574:doc:`bitsets <BitSets>`.
4575
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004576'``invariant.group``' Metadata
4577^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4578
4579The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4580The existence of the ``invariant.group`` metadata on the instruction tells
4581the optimizer that every ``load`` and ``store`` to the same pointer operand
4582within the same invariant group can be assumed to load or store the same
4583value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4584when two pointers are considered the same).
4585
4586Examples:
4587
4588.. code-block:: llvm
4589
4590 @unknownPtr = external global i8
4591 ...
4592 %ptr = alloca i8
4593 store i8 42, i8* %ptr, !invariant.group !0
4594 call void @foo(i8* %ptr)
4595
4596 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4597 call void @foo(i8* %ptr)
4598 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4599
4600 %newPtr = call i8* @getPointer(i8* %ptr)
4601 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4602
4603 %unknownValue = load i8, i8* @unknownPtr
4604 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4605
4606 call void @foo(i8* %ptr)
4607 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4608 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4609
4610 ...
4611 declare void @foo(i8*)
4612 declare i8* @getPointer(i8*)
4613 declare i8* @llvm.invariant.group.barrier(i8*)
4614
4615 !0 = !{!"magic ptr"}
4616 !1 = !{!"other ptr"}
4617
4618
4619
Sean Silvab084af42012-12-07 10:36:55 +00004620Module Flags Metadata
4621=====================
4622
4623Information about the module as a whole is difficult to convey to LLVM's
4624subsystems. The LLVM IR isn't sufficient to transmit this information.
4625The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004626this. These flags are in the form of key / value pairs --- much like a
4627dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004628look it up.
4629
4630The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4631Each triplet has the following form:
4632
4633- The first element is a *behavior* flag, which specifies the behavior
4634 when two (or more) modules are merged together, and it encounters two
4635 (or more) metadata with the same ID. The supported behaviors are
4636 described below.
4637- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004638 metadata. Each module may only have one flag entry for each unique ID (not
4639 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004640- The third element is the value of the flag.
4641
4642When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004643``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4644each unique metadata ID string, there will be exactly one entry in the merged
4645modules ``llvm.module.flags`` metadata table, and the value for that entry will
4646be determined by the merge behavior flag, as described below. The only exception
4647is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004648
4649The following behaviors are supported:
4650
4651.. list-table::
4652 :header-rows: 1
4653 :widths: 10 90
4654
4655 * - Value
4656 - Behavior
4657
4658 * - 1
4659 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004660 Emits an error if two values disagree, otherwise the resulting value
4661 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004662
4663 * - 2
4664 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004665 Emits a warning if two values disagree. The result value will be the
4666 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004667
4668 * - 3
4669 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004670 Adds a requirement that another module flag be present and have a
4671 specified value after linking is performed. The value must be a
4672 metadata pair, where the first element of the pair is the ID of the
4673 module flag to be restricted, and the second element of the pair is
4674 the value the module flag should be restricted to. This behavior can
4675 be used to restrict the allowable results (via triggering of an
4676 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004677
4678 * - 4
4679 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004680 Uses the specified value, regardless of the behavior or value of the
4681 other module. If both modules specify **Override**, but the values
4682 differ, an error will be emitted.
4683
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004684 * - 5
4685 - **Append**
4686 Appends the two values, which are required to be metadata nodes.
4687
4688 * - 6
4689 - **AppendUnique**
4690 Appends the two values, which are required to be metadata
4691 nodes. However, duplicate entries in the second list are dropped
4692 during the append operation.
4693
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004694It is an error for a particular unique flag ID to have multiple behaviors,
4695except in the case of **Require** (which adds restrictions on another metadata
4696value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004697
4698An example of module flags:
4699
4700.. code-block:: llvm
4701
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004702 !0 = !{ i32 1, !"foo", i32 1 }
4703 !1 = !{ i32 4, !"bar", i32 37 }
4704 !2 = !{ i32 2, !"qux", i32 42 }
4705 !3 = !{ i32 3, !"qux",
4706 !{
4707 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004708 }
4709 }
4710 !llvm.module.flags = !{ !0, !1, !2, !3 }
4711
4712- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4713 if two or more ``!"foo"`` flags are seen is to emit an error if their
4714 values are not equal.
4715
4716- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4717 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004718 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004719
4720- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4721 behavior if two or more ``!"qux"`` flags are seen is to emit a
4722 warning if their values are not equal.
4723
4724- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4725
4726 ::
4727
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004728 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004729
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004730 The behavior is to emit an error if the ``llvm.module.flags`` does not
4731 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4732 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004733
4734Objective-C Garbage Collection Module Flags Metadata
4735----------------------------------------------------
4736
4737On the Mach-O platform, Objective-C stores metadata about garbage
4738collection in a special section called "image info". The metadata
4739consists of a version number and a bitmask specifying what types of
4740garbage collection are supported (if any) by the file. If two or more
4741modules are linked together their garbage collection metadata needs to
4742be merged rather than appended together.
4743
4744The Objective-C garbage collection module flags metadata consists of the
4745following key-value pairs:
4746
4747.. list-table::
4748 :header-rows: 1
4749 :widths: 30 70
4750
4751 * - Key
4752 - Value
4753
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004754 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004755 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004756
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004757 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004758 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004759 always 0.
4760
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004761 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004762 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004763 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4764 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4765 Objective-C ABI version 2.
4766
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004767 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004768 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004769 not. Valid values are 0, for no garbage collection, and 2, for garbage
4770 collection supported.
4771
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004772 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004773 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004774 If present, its value must be 6. This flag requires that the
4775 ``Objective-C Garbage Collection`` flag have the value 2.
4776
4777Some important flag interactions:
4778
4779- If a module with ``Objective-C Garbage Collection`` set to 0 is
4780 merged with a module with ``Objective-C Garbage Collection`` set to
4781 2, then the resulting module has the
4782 ``Objective-C Garbage Collection`` flag set to 0.
4783- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4784 merged with a module with ``Objective-C GC Only`` set to 6.
4785
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004786Automatic Linker Flags Module Flags Metadata
4787--------------------------------------------
4788
4789Some targets support embedding flags to the linker inside individual object
4790files. Typically this is used in conjunction with language extensions which
4791allow source files to explicitly declare the libraries they depend on, and have
4792these automatically be transmitted to the linker via object files.
4793
4794These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004795using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004796to be ``AppendUnique``, and the value for the key is expected to be a metadata
4797node which should be a list of other metadata nodes, each of which should be a
4798list of metadata strings defining linker options.
4799
4800For example, the following metadata section specifies two separate sets of
4801linker options, presumably to link against ``libz`` and the ``Cocoa``
4802framework::
4803
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004804 !0 = !{ i32 6, !"Linker Options",
4805 !{
4806 !{ !"-lz" },
4807 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004808 !llvm.module.flags = !{ !0 }
4809
4810The metadata encoding as lists of lists of options, as opposed to a collapsed
4811list of options, is chosen so that the IR encoding can use multiple option
4812strings to specify e.g., a single library, while still having that specifier be
4813preserved as an atomic element that can be recognized by a target specific
4814assembly writer or object file emitter.
4815
4816Each individual option is required to be either a valid option for the target's
4817linker, or an option that is reserved by the target specific assembly writer or
4818object file emitter. No other aspect of these options is defined by the IR.
4819
Oliver Stannard5dc29342014-06-20 10:08:11 +00004820C type width Module Flags Metadata
4821----------------------------------
4822
4823The ARM backend emits a section into each generated object file describing the
4824options that it was compiled with (in a compiler-independent way) to prevent
4825linking incompatible objects, and to allow automatic library selection. Some
4826of these options are not visible at the IR level, namely wchar_t width and enum
4827width.
4828
4829To pass this information to the backend, these options are encoded in module
4830flags metadata, using the following key-value pairs:
4831
4832.. list-table::
4833 :header-rows: 1
4834 :widths: 30 70
4835
4836 * - Key
4837 - Value
4838
4839 * - short_wchar
4840 - * 0 --- sizeof(wchar_t) == 4
4841 * 1 --- sizeof(wchar_t) == 2
4842
4843 * - short_enum
4844 - * 0 --- Enums are at least as large as an ``int``.
4845 * 1 --- Enums are stored in the smallest integer type which can
4846 represent all of its values.
4847
4848For example, the following metadata section specifies that the module was
4849compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4850enum is the smallest type which can represent all of its values::
4851
4852 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004853 !0 = !{i32 1, !"short_wchar", i32 1}
4854 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004855
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004856.. _intrinsicglobalvariables:
4857
Sean Silvab084af42012-12-07 10:36:55 +00004858Intrinsic Global Variables
4859==========================
4860
4861LLVM has a number of "magic" global variables that contain data that
4862affect code generation or other IR semantics. These are documented here.
4863All globals of this sort should have a section specified as
4864"``llvm.metadata``". This section and all globals that start with
4865"``llvm.``" are reserved for use by LLVM.
4866
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004867.. _gv_llvmused:
4868
Sean Silvab084af42012-12-07 10:36:55 +00004869The '``llvm.used``' Global Variable
4870-----------------------------------
4871
Rafael Espindola74f2e462013-04-22 14:58:02 +00004872The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004873:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004874pointers to named global variables, functions and aliases which may optionally
4875have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004876use of it is:
4877
4878.. code-block:: llvm
4879
4880 @X = global i8 4
4881 @Y = global i32 123
4882
4883 @llvm.used = appending global [2 x i8*] [
4884 i8* @X,
4885 i8* bitcast (i32* @Y to i8*)
4886 ], section "llvm.metadata"
4887
Rafael Espindola74f2e462013-04-22 14:58:02 +00004888If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4889and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004890symbol that it cannot see (which is why they have to be named). For example, if
4891a variable has internal linkage and no references other than that from the
4892``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4893references from inline asms and other things the compiler cannot "see", and
4894corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004895
4896On some targets, the code generator must emit a directive to the
4897assembler or object file to prevent the assembler and linker from
4898molesting the symbol.
4899
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004900.. _gv_llvmcompilerused:
4901
Sean Silvab084af42012-12-07 10:36:55 +00004902The '``llvm.compiler.used``' Global Variable
4903--------------------------------------------
4904
4905The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4906directive, except that it only prevents the compiler from touching the
4907symbol. On targets that support it, this allows an intelligent linker to
4908optimize references to the symbol without being impeded as it would be
4909by ``@llvm.used``.
4910
4911This is a rare construct that should only be used in rare circumstances,
4912and should not be exposed to source languages.
4913
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004914.. _gv_llvmglobalctors:
4915
Sean Silvab084af42012-12-07 10:36:55 +00004916The '``llvm.global_ctors``' Global Variable
4917-------------------------------------------
4918
4919.. code-block:: llvm
4920
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004921 %0 = type { i32, void ()*, i8* }
4922 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004923
4924The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004925functions, priorities, and an optional associated global or function.
4926The functions referenced by this array will be called in ascending order
4927of priority (i.e. lowest first) when the module is loaded. The order of
4928functions with the same priority is not defined.
4929
4930If the third field is present, non-null, and points to a global variable
4931or function, the initializer function will only run if the associated
4932data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004933
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004934.. _llvmglobaldtors:
4935
Sean Silvab084af42012-12-07 10:36:55 +00004936The '``llvm.global_dtors``' Global Variable
4937-------------------------------------------
4938
4939.. code-block:: llvm
4940
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004941 %0 = type { i32, void ()*, i8* }
4942 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004943
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004944The ``@llvm.global_dtors`` array contains a list of destructor
4945functions, priorities, and an optional associated global or function.
4946The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004947order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004948order of functions with the same priority is not defined.
4949
4950If the third field is present, non-null, and points to a global variable
4951or function, the destructor function will only run if the associated
4952data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004953
4954Instruction Reference
4955=====================
4956
4957The LLVM instruction set consists of several different classifications
4958of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4959instructions <binaryops>`, :ref:`bitwise binary
4960instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4961:ref:`other instructions <otherops>`.
4962
4963.. _terminators:
4964
4965Terminator Instructions
4966-----------------------
4967
4968As mentioned :ref:`previously <functionstructure>`, every basic block in a
4969program ends with a "Terminator" instruction, which indicates which
4970block should be executed after the current block is finished. These
4971terminator instructions typically yield a '``void``' value: they produce
4972control flow, not values (the one exception being the
4973':ref:`invoke <i_invoke>`' instruction).
4974
4975The terminator instructions are: ':ref:`ret <i_ret>`',
4976':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4977':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004978':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4979':ref:`catchendpad <i_catchendpad>`',
4980':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00004981':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00004982':ref:`cleanupret <i_cleanupret>`',
4983':ref:`terminatepad <i_terminatepad>`',
4984and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004985
4986.. _i_ret:
4987
4988'``ret``' Instruction
4989^^^^^^^^^^^^^^^^^^^^^
4990
4991Syntax:
4992"""""""
4993
4994::
4995
4996 ret <type> <value> ; Return a value from a non-void function
4997 ret void ; Return from void function
4998
4999Overview:
5000"""""""""
5001
5002The '``ret``' instruction is used to return control flow (and optionally
5003a value) from a function back to the caller.
5004
5005There are two forms of the '``ret``' instruction: one that returns a
5006value and then causes control flow, and one that just causes control
5007flow to occur.
5008
5009Arguments:
5010""""""""""
5011
5012The '``ret``' instruction optionally accepts a single argument, the
5013return value. The type of the return value must be a ':ref:`first
5014class <t_firstclass>`' type.
5015
5016A function is not :ref:`well formed <wellformed>` if it it has a non-void
5017return type and contains a '``ret``' instruction with no return value or
5018a return value with a type that does not match its type, or if it has a
5019void return type and contains a '``ret``' instruction with a return
5020value.
5021
5022Semantics:
5023""""""""""
5024
5025When the '``ret``' instruction is executed, control flow returns back to
5026the calling function's context. If the caller is a
5027":ref:`call <i_call>`" instruction, execution continues at the
5028instruction after the call. If the caller was an
5029":ref:`invoke <i_invoke>`" instruction, execution continues at the
5030beginning of the "normal" destination block. If the instruction returns
5031a value, that value shall set the call or invoke instruction's return
5032value.
5033
5034Example:
5035""""""""
5036
5037.. code-block:: llvm
5038
5039 ret i32 5 ; Return an integer value of 5
5040 ret void ; Return from a void function
5041 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5042
5043.. _i_br:
5044
5045'``br``' Instruction
5046^^^^^^^^^^^^^^^^^^^^
5047
5048Syntax:
5049"""""""
5050
5051::
5052
5053 br i1 <cond>, label <iftrue>, label <iffalse>
5054 br label <dest> ; Unconditional branch
5055
5056Overview:
5057"""""""""
5058
5059The '``br``' instruction is used to cause control flow to transfer to a
5060different basic block in the current function. There are two forms of
5061this instruction, corresponding to a conditional branch and an
5062unconditional branch.
5063
5064Arguments:
5065""""""""""
5066
5067The conditional branch form of the '``br``' instruction takes a single
5068'``i1``' value and two '``label``' values. The unconditional form of the
5069'``br``' instruction takes a single '``label``' value as a target.
5070
5071Semantics:
5072""""""""""
5073
5074Upon execution of a conditional '``br``' instruction, the '``i1``'
5075argument is evaluated. If the value is ``true``, control flows to the
5076'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5077to the '``iffalse``' ``label`` argument.
5078
5079Example:
5080""""""""
5081
5082.. code-block:: llvm
5083
5084 Test:
5085 %cond = icmp eq i32 %a, %b
5086 br i1 %cond, label %IfEqual, label %IfUnequal
5087 IfEqual:
5088 ret i32 1
5089 IfUnequal:
5090 ret i32 0
5091
5092.. _i_switch:
5093
5094'``switch``' Instruction
5095^^^^^^^^^^^^^^^^^^^^^^^^
5096
5097Syntax:
5098"""""""
5099
5100::
5101
5102 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5103
5104Overview:
5105"""""""""
5106
5107The '``switch``' instruction is used to transfer control flow to one of
5108several different places. It is a generalization of the '``br``'
5109instruction, allowing a branch to occur to one of many possible
5110destinations.
5111
5112Arguments:
5113""""""""""
5114
5115The '``switch``' instruction uses three parameters: an integer
5116comparison value '``value``', a default '``label``' destination, and an
5117array of pairs of comparison value constants and '``label``'s. The table
5118is not allowed to contain duplicate constant entries.
5119
5120Semantics:
5121""""""""""
5122
5123The ``switch`` instruction specifies a table of values and destinations.
5124When the '``switch``' instruction is executed, this table is searched
5125for the given value. If the value is found, control flow is transferred
5126to the corresponding destination; otherwise, control flow is transferred
5127to the default destination.
5128
5129Implementation:
5130"""""""""""""""
5131
5132Depending on properties of the target machine and the particular
5133``switch`` instruction, this instruction may be code generated in
5134different ways. For example, it could be generated as a series of
5135chained conditional branches or with a lookup table.
5136
5137Example:
5138""""""""
5139
5140.. code-block:: llvm
5141
5142 ; Emulate a conditional br instruction
5143 %Val = zext i1 %value to i32
5144 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5145
5146 ; Emulate an unconditional br instruction
5147 switch i32 0, label %dest [ ]
5148
5149 ; Implement a jump table:
5150 switch i32 %val, label %otherwise [ i32 0, label %onzero
5151 i32 1, label %onone
5152 i32 2, label %ontwo ]
5153
5154.. _i_indirectbr:
5155
5156'``indirectbr``' Instruction
5157^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5158
5159Syntax:
5160"""""""
5161
5162::
5163
5164 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5165
5166Overview:
5167"""""""""
5168
5169The '``indirectbr``' instruction implements an indirect branch to a
5170label within the current function, whose address is specified by
5171"``address``". Address must be derived from a
5172:ref:`blockaddress <blockaddress>` constant.
5173
5174Arguments:
5175""""""""""
5176
5177The '``address``' argument is the address of the label to jump to. The
5178rest of the arguments indicate the full set of possible destinations
5179that the address may point to. Blocks are allowed to occur multiple
5180times in the destination list, though this isn't particularly useful.
5181
5182This destination list is required so that dataflow analysis has an
5183accurate understanding of the CFG.
5184
5185Semantics:
5186""""""""""
5187
5188Control transfers to the block specified in the address argument. All
5189possible destination blocks must be listed in the label list, otherwise
5190this instruction has undefined behavior. This implies that jumps to
5191labels defined in other functions have undefined behavior as well.
5192
5193Implementation:
5194"""""""""""""""
5195
5196This is typically implemented with a jump through a register.
5197
5198Example:
5199""""""""
5200
5201.. code-block:: llvm
5202
5203 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5204
5205.. _i_invoke:
5206
5207'``invoke``' Instruction
5208^^^^^^^^^^^^^^^^^^^^^^^^
5209
5210Syntax:
5211"""""""
5212
5213::
5214
5215 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005216 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005217
5218Overview:
5219"""""""""
5220
5221The '``invoke``' instruction causes control to transfer to a specified
5222function, with the possibility of control flow transfer to either the
5223'``normal``' label or the '``exception``' label. If the callee function
5224returns with the "``ret``" instruction, control flow will return to the
5225"normal" label. If the callee (or any indirect callees) returns via the
5226":ref:`resume <i_resume>`" instruction or other exception handling
5227mechanism, control is interrupted and continued at the dynamically
5228nearest "exception" label.
5229
5230The '``exception``' label is a `landing
5231pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5232'``exception``' label is required to have the
5233":ref:`landingpad <i_landingpad>`" instruction, which contains the
5234information about the behavior of the program after unwinding happens,
5235as its first non-PHI instruction. The restrictions on the
5236"``landingpad``" instruction's tightly couples it to the "``invoke``"
5237instruction, so that the important information contained within the
5238"``landingpad``" instruction can't be lost through normal code motion.
5239
5240Arguments:
5241""""""""""
5242
5243This instruction requires several arguments:
5244
5245#. The optional "cconv" marker indicates which :ref:`calling
5246 convention <callingconv>` the call should use. If none is
5247 specified, the call defaults to using C calling conventions.
5248#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5249 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5250 are valid here.
5251#. '``ptr to function ty``': shall be the signature of the pointer to
5252 function value being invoked. In most cases, this is a direct
5253 function invocation, but indirect ``invoke``'s are just as possible,
5254 branching off an arbitrary pointer to function value.
5255#. '``function ptr val``': An LLVM value containing a pointer to a
5256 function to be invoked.
5257#. '``function args``': argument list whose types match the function
5258 signature argument types and parameter attributes. All arguments must
5259 be of :ref:`first class <t_firstclass>` type. If the function signature
5260 indicates the function accepts a variable number of arguments, the
5261 extra arguments can be specified.
5262#. '``normal label``': the label reached when the called function
5263 executes a '``ret``' instruction.
5264#. '``exception label``': the label reached when a callee returns via
5265 the :ref:`resume <i_resume>` instruction or other exception handling
5266 mechanism.
5267#. The optional :ref:`function attributes <fnattrs>` list. Only
5268 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5269 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005270#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005271
5272Semantics:
5273""""""""""
5274
5275This instruction is designed to operate as a standard '``call``'
5276instruction in most regards. The primary difference is that it
5277establishes an association with a label, which is used by the runtime
5278library to unwind the stack.
5279
5280This instruction is used in languages with destructors to ensure that
5281proper cleanup is performed in the case of either a ``longjmp`` or a
5282thrown exception. Additionally, this is important for implementation of
5283'``catch``' clauses in high-level languages that support them.
5284
5285For the purposes of the SSA form, the definition of the value returned
5286by the '``invoke``' instruction is deemed to occur on the edge from the
5287current block to the "normal" label. If the callee unwinds then no
5288return value is available.
5289
5290Example:
5291""""""""
5292
5293.. code-block:: llvm
5294
5295 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005296 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005297 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005298 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005299
5300.. _i_resume:
5301
5302'``resume``' Instruction
5303^^^^^^^^^^^^^^^^^^^^^^^^
5304
5305Syntax:
5306"""""""
5307
5308::
5309
5310 resume <type> <value>
5311
5312Overview:
5313"""""""""
5314
5315The '``resume``' instruction is a terminator instruction that has no
5316successors.
5317
5318Arguments:
5319""""""""""
5320
5321The '``resume``' instruction requires one argument, which must have the
5322same type as the result of any '``landingpad``' instruction in the same
5323function.
5324
5325Semantics:
5326""""""""""
5327
5328The '``resume``' instruction resumes propagation of an existing
5329(in-flight) exception whose unwinding was interrupted with a
5330:ref:`landingpad <i_landingpad>` instruction.
5331
5332Example:
5333""""""""
5334
5335.. code-block:: llvm
5336
5337 resume { i8*, i32 } %exn
5338
David Majnemer654e1302015-07-31 17:58:14 +00005339.. _i_catchpad:
5340
5341'``catchpad``' Instruction
5342^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5343
5344Syntax:
5345"""""""
5346
5347::
5348
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005349 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005350 to label <normal label> unwind label <exception label>
5351
5352Overview:
5353"""""""""
5354
5355The '``catchpad``' instruction is used by `LLVM's exception handling
5356system <ExceptionHandling.html#overview>`_ to specify that a basic block
5357is a catch block --- one where a personality routine attempts to transfer
5358control to catch an exception.
5359The ``args`` correspond to whatever information the personality
5360routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005361exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005362``catchpad`` is not an appropriate handler for the in-flight exception.
5363The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005364portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5365:ref:`token <t_token>` and is used to match the ``catchpad`` to
5366corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005367
5368Arguments:
5369""""""""""
5370
5371The instruction takes a list of arbitrary values which are interpreted
5372by the :ref:`personality function <personalityfn>`.
5373
5374The ``catchpad`` must be provided a ``normal`` label to transfer control
5375to if the ``catchpad`` matches the exception and an ``exception``
5376label to transfer control to if it doesn't.
5377
5378Semantics:
5379""""""""""
5380
David Majnemer654e1302015-07-31 17:58:14 +00005381When the call stack is being unwound due to an exception being thrown,
5382the exception is compared against the ``args``. If it doesn't match,
5383then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005384As with calling conventions, how the personality function results are
5385represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005386
5387The ``catchpad`` instruction has several restrictions:
5388
5389- A catch block is a basic block which is the unwind destination of
5390 an exceptional instruction.
5391- A catch block must have a '``catchpad``' instruction as its
5392 first non-PHI instruction.
5393- A catch block's ``exception`` edge must refer to a catch block or a
5394 catch-end block.
5395- There can be only one '``catchpad``' instruction within the
5396 catch block.
5397- A basic block that is not a catch block may not include a
5398 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005399- A catch block which has another catch block as a predecessor may not have
5400 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005401- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005402 ``ret`` without first executing a ``catchret`` that consumes the
5403 ``catchpad`` or unwinding through its ``catchendpad``.
5404- It is undefined behavior for control to transfer from a ``catchpad`` to
5405 itself without first executing a ``catchret`` that consumes the
5406 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005407
5408Example:
5409""""""""
5410
5411.. code-block:: llvm
5412
5413 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005414 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005415 to label %int.handler unwind label %terminate
5416
5417.. _i_catchendpad:
5418
5419'``catchendpad``' Instruction
5420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5421
5422Syntax:
5423"""""""
5424
5425::
5426
5427 catchendpad unwind label <nextaction>
5428 catchendpad unwind to caller
5429
5430Overview:
5431"""""""""
5432
5433The '``catchendpad``' instruction is used by `LLVM's exception handling
5434system <ExceptionHandling.html#overview>`_ to communicate to the
5435:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005436with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5437exception out of a catch handler is represented by unwinding through its
5438``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5439do not handle an exception is also represented by unwinding through their
5440``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005441
5442The ``nextaction`` label indicates where control should transfer to if
5443none of the ``catchpad`` instructions are suitable for catching the
5444in-flight exception.
5445
5446If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005447its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005448:ref:`personality function <personalityfn>` will continue processing
5449exception handling actions in the caller.
5450
5451Arguments:
5452""""""""""
5453
5454The instruction optionally takes a label, ``nextaction``, indicating
5455where control should transfer to if none of the preceding
5456``catchpad`` instructions are suitable for the in-flight exception.
5457
5458Semantics:
5459""""""""""
5460
5461When the call stack is being unwound due to an exception being thrown
5462and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005463control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005464present, control is transfered to the caller.
5465
5466The ``catchendpad`` instruction has several restrictions:
5467
5468- A catch-end block is a basic block which is the unwind destination of
5469 an exceptional instruction.
5470- A catch-end block must have a '``catchendpad``' instruction as its
5471 first non-PHI instruction.
5472- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005473 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005474- A basic block that is not a catch-end block may not include a
5475 '``catchendpad``' instruction.
5476- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005477- It is undefined behavior to execute a ``catchendpad`` if none of the
5478 '``catchpad``'s chained to it have been executed.
5479- It is undefined behavior to execute a ``catchendpad`` twice without an
5480 intervening execution of one or more of the '``catchpad``'s chained to it.
5481- It is undefined behavior to execute a ``catchendpad`` if, after the most
5482 recent execution of the normal successor edge of any ``catchpad`` chained
5483 to it, some ``catchret`` consuming that ``catchpad`` has already been
5484 executed.
5485- It is undefined behavior to execute a ``catchendpad`` if, after the most
5486 recent execution of the normal successor edge of any ``catchpad`` chained
5487 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5488 not had a corresponding
5489 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005490
5491Example:
5492""""""""
5493
5494.. code-block:: llvm
5495
5496 catchendpad unwind label %terminate
5497 catchendpad unwind to caller
5498
5499.. _i_catchret:
5500
5501'``catchret``' Instruction
5502^^^^^^^^^^^^^^^^^^^^^^^^^^
5503
5504Syntax:
5505"""""""
5506
5507::
5508
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005509 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005510
5511Overview:
5512"""""""""
5513
5514The '``catchret``' instruction is a terminator instruction that has a
5515single successor.
5516
5517
5518Arguments:
5519""""""""""
5520
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005521The first argument to a '``catchret``' indicates which ``catchpad`` it
5522exits. It must be a :ref:`catchpad <i_catchpad>`.
5523The second argument to a '``catchret``' specifies where control will
5524transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005525
5526Semantics:
5527""""""""""
5528
5529The '``catchret``' instruction ends the existing (in-flight) exception
5530whose unwinding was interrupted with a
5531:ref:`catchpad <i_catchpad>` instruction.
5532The :ref:`personality function <personalityfn>` gets a chance to execute
5533arbitrary code to, for example, run a C++ destructor.
5534Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005535It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005536
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005537It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5538not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005539
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005540It is undefined behavior to execute a ``catchret`` if, after the most recent
5541execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5542to the same ``catchpad`` has already been executed.
5543
5544It is undefined behavior to execute a ``catchret`` if, after the most recent
5545execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5546been executed but has not had a corresponding
5547``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005548
5549Example:
5550""""""""
5551
5552.. code-block:: llvm
5553
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005554 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005555
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005556.. _i_cleanupendpad:
5557
5558'``cleanupendpad``' Instruction
5559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5560
5561Syntax:
5562"""""""
5563
5564::
5565
5566 cleanupendpad <value> unwind label <nextaction>
5567 cleanupendpad <value> unwind to caller
5568
5569Overview:
5570"""""""""
5571
5572The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5573system <ExceptionHandling.html#overview>`_ to communicate to the
5574:ref:`personality function <personalityfn>` which invokes are associated
5575with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5576out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5577
5578The ``nextaction`` label indicates where control should unwind to next, in the
5579event that a cleanup is exited by means of an(other) exception being raised.
5580
5581If a ``nextaction`` label is not present, the instruction unwinds out of
5582its parent function. The
5583:ref:`personality function <personalityfn>` will continue processing
5584exception handling actions in the caller.
5585
5586Arguments:
5587""""""""""
5588
5589The '``cleanupendpad``' instruction requires one argument, which indicates
5590which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5591It also has an optional successor, ``nextaction``, indicating where control
5592should transfer to.
5593
5594Semantics:
5595""""""""""
5596
5597When and exception propagates to a ``cleanupendpad``, control is transfered to
5598``nextaction`` if it is present. If it is not present, control is transfered to
5599the caller.
5600
5601The ``cleanupendpad`` instruction has several restrictions:
5602
5603- A cleanup-end block is a basic block which is the unwind destination of
5604 an exceptional instruction.
5605- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5606 first non-PHI instruction.
5607- There can be only one '``cleanupendpad``' instruction within the
5608 cleanup-end block.
5609- A basic block that is not a cleanup-end block may not include a
5610 '``cleanupendpad``' instruction.
5611- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5612 has not been executed.
5613- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5614 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5615 consuming the same ``cleanuppad`` has already been executed.
5616- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5617 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5618 ``catchpad`` has been executed but has not had a corresponding
5619 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5620
5621Example:
5622""""""""
5623
5624.. code-block:: llvm
5625
5626 cleanupendpad %cleanup unwind label %terminate
5627 cleanupendpad %cleanup unwind to caller
5628
David Majnemer654e1302015-07-31 17:58:14 +00005629.. _i_cleanupret:
5630
5631'``cleanupret``' Instruction
5632^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5633
5634Syntax:
5635"""""""
5636
5637::
5638
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005639 cleanupret <value> unwind label <continue>
5640 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005641
5642Overview:
5643"""""""""
5644
5645The '``cleanupret``' instruction is a terminator instruction that has
5646an optional successor.
5647
5648
5649Arguments:
5650""""""""""
5651
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005652The '``cleanupret``' instruction requires one argument, which indicates
5653which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5654It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005655
5656Semantics:
5657""""""""""
5658
5659The '``cleanupret``' instruction indicates to the
5660:ref:`personality function <personalityfn>` that one
5661:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5662It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005663
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005664It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5665not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005666
5667It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5668execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5669consuming the same ``cleanuppad`` has already been executed.
5670
5671It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5672execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5673been executed but has not had a corresponding
5674``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005675
5676Example:
5677""""""""
5678
5679.. code-block:: llvm
5680
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005681 cleanupret %cleanup unwind to caller
5682 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005683
5684.. _i_terminatepad:
5685
5686'``terminatepad``' Instruction
5687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5688
5689Syntax:
5690"""""""
5691
5692::
5693
5694 terminatepad [<args>*] unwind label <exception label>
5695 terminatepad [<args>*] unwind to caller
5696
5697Overview:
5698"""""""""
5699
5700The '``terminatepad``' instruction is used by `LLVM's exception handling
5701system <ExceptionHandling.html#overview>`_ to specify that a basic block
5702is a terminate block --- one where a personality routine may decide to
5703terminate the program.
5704The ``args`` correspond to whatever information the personality
5705routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005706program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005707personality routine decides not to terminate the program for the
5708in-flight exception.
5709
5710Arguments:
5711""""""""""
5712
5713The instruction takes a list of arbitrary values which are interpreted
5714by the :ref:`personality function <personalityfn>`.
5715
5716The ``terminatepad`` may be given an ``exception`` label to
5717transfer control to if the in-flight exception matches the ``args``.
5718
5719Semantics:
5720""""""""""
5721
5722When the call stack is being unwound due to an exception being thrown,
5723the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005724then control is transfered to the ``exception`` basic block. Otherwise,
5725the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005726the first argument to ``terminatepad`` specifies what function the
5727personality should defer to in order to terminate the program.
5728
5729The ``terminatepad`` instruction has several restrictions:
5730
5731- A terminate block is a basic block which is the unwind destination of
5732 an exceptional instruction.
5733- A terminate block must have a '``terminatepad``' instruction as its
5734 first non-PHI instruction.
5735- There can be only one '``terminatepad``' instruction within the
5736 terminate block.
5737- A basic block that is not a terminate block may not include a
5738 '``terminatepad``' instruction.
5739
5740Example:
5741""""""""
5742
5743.. code-block:: llvm
5744
5745 ;; A terminate block which only permits integers.
5746 terminatepad [i8** @_ZTIi] unwind label %continue
5747
Sean Silvab084af42012-12-07 10:36:55 +00005748.. _i_unreachable:
5749
5750'``unreachable``' Instruction
5751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5752
5753Syntax:
5754"""""""
5755
5756::
5757
5758 unreachable
5759
5760Overview:
5761"""""""""
5762
5763The '``unreachable``' instruction has no defined semantics. This
5764instruction is used to inform the optimizer that a particular portion of
5765the code is not reachable. This can be used to indicate that the code
5766after a no-return function cannot be reached, and other facts.
5767
5768Semantics:
5769""""""""""
5770
5771The '``unreachable``' instruction has no defined semantics.
5772
5773.. _binaryops:
5774
5775Binary Operations
5776-----------------
5777
5778Binary operators are used to do most of the computation in a program.
5779They require two operands of the same type, execute an operation on
5780them, and produce a single value. The operands might represent multiple
5781data, as is the case with the :ref:`vector <t_vector>` data type. The
5782result value has the same type as its operands.
5783
5784There are several different binary operators:
5785
5786.. _i_add:
5787
5788'``add``' Instruction
5789^^^^^^^^^^^^^^^^^^^^^
5790
5791Syntax:
5792"""""""
5793
5794::
5795
Tim Northover675a0962014-06-13 14:24:23 +00005796 <result> = add <ty> <op1>, <op2> ; yields ty:result
5797 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5798 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5799 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005800
5801Overview:
5802"""""""""
5803
5804The '``add``' instruction returns the sum of its two operands.
5805
5806Arguments:
5807""""""""""
5808
5809The two arguments to the '``add``' instruction must be
5810:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5811arguments must have identical types.
5812
5813Semantics:
5814""""""""""
5815
5816The value produced is the integer sum of the two operands.
5817
5818If the sum has unsigned overflow, the result returned is the
5819mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5820the result.
5821
5822Because LLVM integers use a two's complement representation, this
5823instruction is appropriate for both signed and unsigned integers.
5824
5825``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5826respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5827result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5828unsigned and/or signed overflow, respectively, occurs.
5829
5830Example:
5831""""""""
5832
5833.. code-block:: llvm
5834
Tim Northover675a0962014-06-13 14:24:23 +00005835 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005836
5837.. _i_fadd:
5838
5839'``fadd``' Instruction
5840^^^^^^^^^^^^^^^^^^^^^^
5841
5842Syntax:
5843"""""""
5844
5845::
5846
Tim Northover675a0962014-06-13 14:24:23 +00005847 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005848
5849Overview:
5850"""""""""
5851
5852The '``fadd``' instruction returns the sum of its two operands.
5853
5854Arguments:
5855""""""""""
5856
5857The two arguments to the '``fadd``' instruction must be :ref:`floating
5858point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5859Both arguments must have identical types.
5860
5861Semantics:
5862""""""""""
5863
5864The value produced is the floating point sum of the two operands. This
5865instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5866which are optimization hints to enable otherwise unsafe floating point
5867optimizations:
5868
5869Example:
5870""""""""
5871
5872.. code-block:: llvm
5873
Tim Northover675a0962014-06-13 14:24:23 +00005874 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005875
5876'``sub``' Instruction
5877^^^^^^^^^^^^^^^^^^^^^
5878
5879Syntax:
5880"""""""
5881
5882::
5883
Tim Northover675a0962014-06-13 14:24:23 +00005884 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5885 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5886 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5887 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005888
5889Overview:
5890"""""""""
5891
5892The '``sub``' instruction returns the difference of its two operands.
5893
5894Note that the '``sub``' instruction is used to represent the '``neg``'
5895instruction present in most other intermediate representations.
5896
5897Arguments:
5898""""""""""
5899
5900The two arguments to the '``sub``' instruction must be
5901:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5902arguments must have identical types.
5903
5904Semantics:
5905""""""""""
5906
5907The value produced is the integer difference of the two operands.
5908
5909If the difference has unsigned overflow, the result returned is the
5910mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5911the result.
5912
5913Because LLVM integers use a two's complement representation, this
5914instruction is appropriate for both signed and unsigned integers.
5915
5916``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5917respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5918result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5919unsigned and/or signed overflow, respectively, occurs.
5920
5921Example:
5922""""""""
5923
5924.. code-block:: llvm
5925
Tim Northover675a0962014-06-13 14:24:23 +00005926 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5927 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005928
5929.. _i_fsub:
5930
5931'``fsub``' Instruction
5932^^^^^^^^^^^^^^^^^^^^^^
5933
5934Syntax:
5935"""""""
5936
5937::
5938
Tim Northover675a0962014-06-13 14:24:23 +00005939 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005940
5941Overview:
5942"""""""""
5943
5944The '``fsub``' instruction returns the difference of its two operands.
5945
5946Note that the '``fsub``' instruction is used to represent the '``fneg``'
5947instruction present in most other intermediate representations.
5948
5949Arguments:
5950""""""""""
5951
5952The two arguments to the '``fsub``' instruction must be :ref:`floating
5953point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5954Both arguments must have identical types.
5955
5956Semantics:
5957""""""""""
5958
5959The value produced is the floating point difference of the two operands.
5960This instruction can also take any number of :ref:`fast-math
5961flags <fastmath>`, which are optimization hints to enable otherwise
5962unsafe floating point optimizations:
5963
5964Example:
5965""""""""
5966
5967.. code-block:: llvm
5968
Tim Northover675a0962014-06-13 14:24:23 +00005969 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5970 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005971
5972'``mul``' Instruction
5973^^^^^^^^^^^^^^^^^^^^^
5974
5975Syntax:
5976"""""""
5977
5978::
5979
Tim Northover675a0962014-06-13 14:24:23 +00005980 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5981 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5982 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5983 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005984
5985Overview:
5986"""""""""
5987
5988The '``mul``' instruction returns the product of its two operands.
5989
5990Arguments:
5991""""""""""
5992
5993The two arguments to the '``mul``' instruction must be
5994:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5995arguments must have identical types.
5996
5997Semantics:
5998""""""""""
5999
6000The value produced is the integer product of the two operands.
6001
6002If the result of the multiplication has unsigned overflow, the result
6003returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6004bit width of the result.
6005
6006Because LLVM integers use a two's complement representation, and the
6007result is the same width as the operands, this instruction returns the
6008correct result for both signed and unsigned integers. If a full product
6009(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6010sign-extended or zero-extended as appropriate to the width of the full
6011product.
6012
6013``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6014respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6015result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6016unsigned and/or signed overflow, respectively, occurs.
6017
6018Example:
6019""""""""
6020
6021.. code-block:: llvm
6022
Tim Northover675a0962014-06-13 14:24:23 +00006023 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006024
6025.. _i_fmul:
6026
6027'``fmul``' Instruction
6028^^^^^^^^^^^^^^^^^^^^^^
6029
6030Syntax:
6031"""""""
6032
6033::
6034
Tim Northover675a0962014-06-13 14:24:23 +00006035 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006036
6037Overview:
6038"""""""""
6039
6040The '``fmul``' instruction returns the product of its two operands.
6041
6042Arguments:
6043""""""""""
6044
6045The two arguments to the '``fmul``' instruction must be :ref:`floating
6046point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6047Both arguments must have identical types.
6048
6049Semantics:
6050""""""""""
6051
6052The value produced is the floating point product of the two operands.
6053This instruction can also take any number of :ref:`fast-math
6054flags <fastmath>`, which are optimization hints to enable otherwise
6055unsafe floating point optimizations:
6056
6057Example:
6058""""""""
6059
6060.. code-block:: llvm
6061
Tim Northover675a0962014-06-13 14:24:23 +00006062 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006063
6064'``udiv``' Instruction
6065^^^^^^^^^^^^^^^^^^^^^^
6066
6067Syntax:
6068"""""""
6069
6070::
6071
Tim Northover675a0962014-06-13 14:24:23 +00006072 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6073 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006074
6075Overview:
6076"""""""""
6077
6078The '``udiv``' instruction returns the quotient of its two operands.
6079
6080Arguments:
6081""""""""""
6082
6083The two arguments to the '``udiv``' instruction must be
6084:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6085arguments must have identical types.
6086
6087Semantics:
6088""""""""""
6089
6090The value produced is the unsigned integer quotient of the two operands.
6091
6092Note that unsigned integer division and signed integer division are
6093distinct operations; for signed integer division, use '``sdiv``'.
6094
6095Division by zero leads to undefined behavior.
6096
6097If the ``exact`` keyword is present, the result value of the ``udiv`` is
6098a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6099such, "((a udiv exact b) mul b) == a").
6100
6101Example:
6102""""""""
6103
6104.. code-block:: llvm
6105
Tim Northover675a0962014-06-13 14:24:23 +00006106 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006107
6108'``sdiv``' Instruction
6109^^^^^^^^^^^^^^^^^^^^^^
6110
6111Syntax:
6112"""""""
6113
6114::
6115
Tim Northover675a0962014-06-13 14:24:23 +00006116 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6117 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006118
6119Overview:
6120"""""""""
6121
6122The '``sdiv``' instruction returns the quotient of its two operands.
6123
6124Arguments:
6125""""""""""
6126
6127The two arguments to the '``sdiv``' instruction must be
6128:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6129arguments must have identical types.
6130
6131Semantics:
6132""""""""""
6133
6134The value produced is the signed integer quotient of the two operands
6135rounded towards zero.
6136
6137Note that signed integer division and unsigned integer division are
6138distinct operations; for unsigned integer division, use '``udiv``'.
6139
6140Division by zero leads to undefined behavior. Overflow also leads to
6141undefined behavior; this is a rare case, but can occur, for example, by
6142doing a 32-bit division of -2147483648 by -1.
6143
6144If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6145a :ref:`poison value <poisonvalues>` if the result would be rounded.
6146
6147Example:
6148""""""""
6149
6150.. code-block:: llvm
6151
Tim Northover675a0962014-06-13 14:24:23 +00006152 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006153
6154.. _i_fdiv:
6155
6156'``fdiv``' Instruction
6157^^^^^^^^^^^^^^^^^^^^^^
6158
6159Syntax:
6160"""""""
6161
6162::
6163
Tim Northover675a0962014-06-13 14:24:23 +00006164 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006165
6166Overview:
6167"""""""""
6168
6169The '``fdiv``' instruction returns the quotient of its two operands.
6170
6171Arguments:
6172""""""""""
6173
6174The two arguments to the '``fdiv``' instruction must be :ref:`floating
6175point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6176Both arguments must have identical types.
6177
6178Semantics:
6179""""""""""
6180
6181The value produced is the floating point quotient of the two operands.
6182This instruction can also take any number of :ref:`fast-math
6183flags <fastmath>`, which are optimization hints to enable otherwise
6184unsafe floating point optimizations:
6185
6186Example:
6187""""""""
6188
6189.. code-block:: llvm
6190
Tim Northover675a0962014-06-13 14:24:23 +00006191 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006192
6193'``urem``' Instruction
6194^^^^^^^^^^^^^^^^^^^^^^
6195
6196Syntax:
6197"""""""
6198
6199::
6200
Tim Northover675a0962014-06-13 14:24:23 +00006201 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006202
6203Overview:
6204"""""""""
6205
6206The '``urem``' instruction returns the remainder from the unsigned
6207division of its two arguments.
6208
6209Arguments:
6210""""""""""
6211
6212The two arguments to the '``urem``' instruction must be
6213:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6214arguments must have identical types.
6215
6216Semantics:
6217""""""""""
6218
6219This instruction returns the unsigned integer *remainder* of a division.
6220This instruction always performs an unsigned division to get the
6221remainder.
6222
6223Note that unsigned integer remainder and signed integer remainder are
6224distinct operations; for signed integer remainder, use '``srem``'.
6225
6226Taking the remainder of a division by zero leads to undefined behavior.
6227
6228Example:
6229""""""""
6230
6231.. code-block:: llvm
6232
Tim Northover675a0962014-06-13 14:24:23 +00006233 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006234
6235'``srem``' Instruction
6236^^^^^^^^^^^^^^^^^^^^^^
6237
6238Syntax:
6239"""""""
6240
6241::
6242
Tim Northover675a0962014-06-13 14:24:23 +00006243 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006244
6245Overview:
6246"""""""""
6247
6248The '``srem``' instruction returns the remainder from the signed
6249division of its two operands. This instruction can also take
6250:ref:`vector <t_vector>` versions of the values in which case the elements
6251must be integers.
6252
6253Arguments:
6254""""""""""
6255
6256The two arguments to the '``srem``' instruction must be
6257:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6258arguments must have identical types.
6259
6260Semantics:
6261""""""""""
6262
6263This instruction returns the *remainder* of a division (where the result
6264is either zero or has the same sign as the dividend, ``op1``), not the
6265*modulo* operator (where the result is either zero or has the same sign
6266as the divisor, ``op2``) of a value. For more information about the
6267difference, see `The Math
6268Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6269table of how this is implemented in various languages, please see
6270`Wikipedia: modulo
6271operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6272
6273Note that signed integer remainder and unsigned integer remainder are
6274distinct operations; for unsigned integer remainder, use '``urem``'.
6275
6276Taking the remainder of a division by zero leads to undefined behavior.
6277Overflow also leads to undefined behavior; this is a rare case, but can
6278occur, for example, by taking the remainder of a 32-bit division of
6279-2147483648 by -1. (The remainder doesn't actually overflow, but this
6280rule lets srem be implemented using instructions that return both the
6281result of the division and the remainder.)
6282
6283Example:
6284""""""""
6285
6286.. code-block:: llvm
6287
Tim Northover675a0962014-06-13 14:24:23 +00006288 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006289
6290.. _i_frem:
6291
6292'``frem``' Instruction
6293^^^^^^^^^^^^^^^^^^^^^^
6294
6295Syntax:
6296"""""""
6297
6298::
6299
Tim Northover675a0962014-06-13 14:24:23 +00006300 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006301
6302Overview:
6303"""""""""
6304
6305The '``frem``' instruction returns the remainder from the division of
6306its two operands.
6307
6308Arguments:
6309""""""""""
6310
6311The two arguments to the '``frem``' instruction must be :ref:`floating
6312point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6313Both arguments must have identical types.
6314
6315Semantics:
6316""""""""""
6317
6318This instruction returns the *remainder* of a division. The remainder
6319has the same sign as the dividend. This instruction can also take any
6320number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6321to enable otherwise unsafe floating point optimizations:
6322
6323Example:
6324""""""""
6325
6326.. code-block:: llvm
6327
Tim Northover675a0962014-06-13 14:24:23 +00006328 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006329
6330.. _bitwiseops:
6331
6332Bitwise Binary Operations
6333-------------------------
6334
6335Bitwise binary operators are used to do various forms of bit-twiddling
6336in a program. They are generally very efficient instructions and can
6337commonly be strength reduced from other instructions. They require two
6338operands of the same type, execute an operation on them, and produce a
6339single value. The resulting value is the same type as its operands.
6340
6341'``shl``' Instruction
6342^^^^^^^^^^^^^^^^^^^^^
6343
6344Syntax:
6345"""""""
6346
6347::
6348
Tim Northover675a0962014-06-13 14:24:23 +00006349 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6350 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6351 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6352 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006353
6354Overview:
6355"""""""""
6356
6357The '``shl``' instruction returns the first operand shifted to the left
6358a specified number of bits.
6359
6360Arguments:
6361""""""""""
6362
6363Both arguments to the '``shl``' instruction must be the same
6364:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6365'``op2``' is treated as an unsigned value.
6366
6367Semantics:
6368""""""""""
6369
6370The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6371where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006372dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006373``op1``, the result is undefined. If the arguments are vectors, each
6374vector element of ``op1`` is shifted by the corresponding shift amount
6375in ``op2``.
6376
6377If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6378value <poisonvalues>` if it shifts out any non-zero bits. If the
6379``nsw`` keyword is present, then the shift produces a :ref:`poison
6380value <poisonvalues>` if it shifts out any bits that disagree with the
6381resultant sign bit. As such, NUW/NSW have the same semantics as they
6382would if the shift were expressed as a mul instruction with the same
6383nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6384
6385Example:
6386""""""""
6387
6388.. code-block:: llvm
6389
Tim Northover675a0962014-06-13 14:24:23 +00006390 <result> = shl i32 4, %var ; yields i32: 4 << %var
6391 <result> = shl i32 4, 2 ; yields i32: 16
6392 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006393 <result> = shl i32 1, 32 ; undefined
6394 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6395
6396'``lshr``' Instruction
6397^^^^^^^^^^^^^^^^^^^^^^
6398
6399Syntax:
6400"""""""
6401
6402::
6403
Tim Northover675a0962014-06-13 14:24:23 +00006404 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6405 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006406
6407Overview:
6408"""""""""
6409
6410The '``lshr``' instruction (logical shift right) returns the first
6411operand shifted to the right a specified number of bits with zero fill.
6412
6413Arguments:
6414""""""""""
6415
6416Both arguments to the '``lshr``' instruction must be the same
6417:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6418'``op2``' is treated as an unsigned value.
6419
6420Semantics:
6421""""""""""
6422
6423This instruction always performs a logical shift right operation. The
6424most significant bits of the result will be filled with zero bits after
6425the shift. If ``op2`` is (statically or dynamically) equal to or larger
6426than the number of bits in ``op1``, the result is undefined. If the
6427arguments are vectors, each vector element of ``op1`` is shifted by the
6428corresponding shift amount in ``op2``.
6429
6430If the ``exact`` keyword is present, the result value of the ``lshr`` is
6431a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6432non-zero.
6433
6434Example:
6435""""""""
6436
6437.. code-block:: llvm
6438
Tim Northover675a0962014-06-13 14:24:23 +00006439 <result> = lshr i32 4, 1 ; yields i32:result = 2
6440 <result> = lshr i32 4, 2 ; yields i32:result = 1
6441 <result> = lshr i8 4, 3 ; yields i8:result = 0
6442 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006443 <result> = lshr i32 1, 32 ; undefined
6444 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6445
6446'``ashr``' Instruction
6447^^^^^^^^^^^^^^^^^^^^^^
6448
6449Syntax:
6450"""""""
6451
6452::
6453
Tim Northover675a0962014-06-13 14:24:23 +00006454 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6455 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006456
6457Overview:
6458"""""""""
6459
6460The '``ashr``' instruction (arithmetic shift right) returns the first
6461operand shifted to the right a specified number of bits with sign
6462extension.
6463
6464Arguments:
6465""""""""""
6466
6467Both arguments to the '``ashr``' instruction must be the same
6468:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6469'``op2``' is treated as an unsigned value.
6470
6471Semantics:
6472""""""""""
6473
6474This instruction always performs an arithmetic shift right operation,
6475The most significant bits of the result will be filled with the sign bit
6476of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6477than the number of bits in ``op1``, the result is undefined. If the
6478arguments are vectors, each vector element of ``op1`` is shifted by the
6479corresponding shift amount in ``op2``.
6480
6481If the ``exact`` keyword is present, the result value of the ``ashr`` is
6482a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6483non-zero.
6484
6485Example:
6486""""""""
6487
6488.. code-block:: llvm
6489
Tim Northover675a0962014-06-13 14:24:23 +00006490 <result> = ashr i32 4, 1 ; yields i32:result = 2
6491 <result> = ashr i32 4, 2 ; yields i32:result = 1
6492 <result> = ashr i8 4, 3 ; yields i8:result = 0
6493 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006494 <result> = ashr i32 1, 32 ; undefined
6495 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6496
6497'``and``' Instruction
6498^^^^^^^^^^^^^^^^^^^^^
6499
6500Syntax:
6501"""""""
6502
6503::
6504
Tim Northover675a0962014-06-13 14:24:23 +00006505 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006506
6507Overview:
6508"""""""""
6509
6510The '``and``' instruction returns the bitwise logical and of its two
6511operands.
6512
6513Arguments:
6514""""""""""
6515
6516The two arguments to the '``and``' instruction must be
6517:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6518arguments must have identical types.
6519
6520Semantics:
6521""""""""""
6522
6523The truth table used for the '``and``' instruction is:
6524
6525+-----+-----+-----+
6526| In0 | In1 | Out |
6527+-----+-----+-----+
6528| 0 | 0 | 0 |
6529+-----+-----+-----+
6530| 0 | 1 | 0 |
6531+-----+-----+-----+
6532| 1 | 0 | 0 |
6533+-----+-----+-----+
6534| 1 | 1 | 1 |
6535+-----+-----+-----+
6536
6537Example:
6538""""""""
6539
6540.. code-block:: llvm
6541
Tim Northover675a0962014-06-13 14:24:23 +00006542 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6543 <result> = and i32 15, 40 ; yields i32:result = 8
6544 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006545
6546'``or``' Instruction
6547^^^^^^^^^^^^^^^^^^^^
6548
6549Syntax:
6550"""""""
6551
6552::
6553
Tim Northover675a0962014-06-13 14:24:23 +00006554 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006555
6556Overview:
6557"""""""""
6558
6559The '``or``' instruction returns the bitwise logical inclusive or of its
6560two operands.
6561
6562Arguments:
6563""""""""""
6564
6565The two arguments to the '``or``' instruction must be
6566:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6567arguments must have identical types.
6568
6569Semantics:
6570""""""""""
6571
6572The truth table used for the '``or``' instruction is:
6573
6574+-----+-----+-----+
6575| In0 | In1 | Out |
6576+-----+-----+-----+
6577| 0 | 0 | 0 |
6578+-----+-----+-----+
6579| 0 | 1 | 1 |
6580+-----+-----+-----+
6581| 1 | 0 | 1 |
6582+-----+-----+-----+
6583| 1 | 1 | 1 |
6584+-----+-----+-----+
6585
6586Example:
6587""""""""
6588
6589::
6590
Tim Northover675a0962014-06-13 14:24:23 +00006591 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6592 <result> = or i32 15, 40 ; yields i32:result = 47
6593 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006594
6595'``xor``' Instruction
6596^^^^^^^^^^^^^^^^^^^^^
6597
6598Syntax:
6599"""""""
6600
6601::
6602
Tim Northover675a0962014-06-13 14:24:23 +00006603 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006604
6605Overview:
6606"""""""""
6607
6608The '``xor``' instruction returns the bitwise logical exclusive or of
6609its two operands. The ``xor`` is used to implement the "one's
6610complement" operation, which is the "~" operator in C.
6611
6612Arguments:
6613""""""""""
6614
6615The two arguments to the '``xor``' instruction must be
6616:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6617arguments must have identical types.
6618
6619Semantics:
6620""""""""""
6621
6622The truth table used for the '``xor``' instruction is:
6623
6624+-----+-----+-----+
6625| In0 | In1 | Out |
6626+-----+-----+-----+
6627| 0 | 0 | 0 |
6628+-----+-----+-----+
6629| 0 | 1 | 1 |
6630+-----+-----+-----+
6631| 1 | 0 | 1 |
6632+-----+-----+-----+
6633| 1 | 1 | 0 |
6634+-----+-----+-----+
6635
6636Example:
6637""""""""
6638
6639.. code-block:: llvm
6640
Tim Northover675a0962014-06-13 14:24:23 +00006641 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6642 <result> = xor i32 15, 40 ; yields i32:result = 39
6643 <result> = xor i32 4, 8 ; yields i32:result = 12
6644 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006645
6646Vector Operations
6647-----------------
6648
6649LLVM supports several instructions to represent vector operations in a
6650target-independent manner. These instructions cover the element-access
6651and vector-specific operations needed to process vectors effectively.
6652While LLVM does directly support these vector operations, many
6653sophisticated algorithms will want to use target-specific intrinsics to
6654take full advantage of a specific target.
6655
6656.. _i_extractelement:
6657
6658'``extractelement``' Instruction
6659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6660
6661Syntax:
6662"""""""
6663
6664::
6665
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006666 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006667
6668Overview:
6669"""""""""
6670
6671The '``extractelement``' instruction extracts a single scalar element
6672from a vector at a specified index.
6673
6674Arguments:
6675""""""""""
6676
6677The first operand of an '``extractelement``' instruction is a value of
6678:ref:`vector <t_vector>` type. The second operand is an index indicating
6679the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006680variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006681
6682Semantics:
6683""""""""""
6684
6685The result is a scalar of the same type as the element type of ``val``.
6686Its value is the value at position ``idx`` of ``val``. If ``idx``
6687exceeds the length of ``val``, the results are undefined.
6688
6689Example:
6690""""""""
6691
6692.. code-block:: llvm
6693
6694 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6695
6696.. _i_insertelement:
6697
6698'``insertelement``' Instruction
6699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6700
6701Syntax:
6702"""""""
6703
6704::
6705
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006706 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006707
6708Overview:
6709"""""""""
6710
6711The '``insertelement``' instruction inserts a scalar element into a
6712vector at a specified index.
6713
6714Arguments:
6715""""""""""
6716
6717The first operand of an '``insertelement``' instruction is a value of
6718:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6719type must equal the element type of the first operand. The third operand
6720is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006721index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006722
6723Semantics:
6724""""""""""
6725
6726The result is a vector of the same type as ``val``. Its element values
6727are those of ``val`` except at position ``idx``, where it gets the value
6728``elt``. If ``idx`` exceeds the length of ``val``, the results are
6729undefined.
6730
6731Example:
6732""""""""
6733
6734.. code-block:: llvm
6735
6736 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6737
6738.. _i_shufflevector:
6739
6740'``shufflevector``' Instruction
6741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6742
6743Syntax:
6744"""""""
6745
6746::
6747
6748 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6749
6750Overview:
6751"""""""""
6752
6753The '``shufflevector``' instruction constructs a permutation of elements
6754from two input vectors, returning a vector with the same element type as
6755the input and length that is the same as the shuffle mask.
6756
6757Arguments:
6758""""""""""
6759
6760The first two operands of a '``shufflevector``' instruction are vectors
6761with the same type. The third argument is a shuffle mask whose element
6762type is always 'i32'. The result of the instruction is a vector whose
6763length is the same as the shuffle mask and whose element type is the
6764same as the element type of the first two operands.
6765
6766The shuffle mask operand is required to be a constant vector with either
6767constant integer or undef values.
6768
6769Semantics:
6770""""""""""
6771
6772The elements of the two input vectors are numbered from left to right
6773across both of the vectors. The shuffle mask operand specifies, for each
6774element of the result vector, which element of the two input vectors the
6775result element gets. The element selector may be undef (meaning "don't
6776care") and the second operand may be undef if performing a shuffle from
6777only one vector.
6778
6779Example:
6780""""""""
6781
6782.. code-block:: llvm
6783
6784 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6785 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6786 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6787 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6788 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6789 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6790 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6791 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6792
6793Aggregate Operations
6794--------------------
6795
6796LLVM supports several instructions for working with
6797:ref:`aggregate <t_aggregate>` values.
6798
6799.. _i_extractvalue:
6800
6801'``extractvalue``' Instruction
6802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6803
6804Syntax:
6805"""""""
6806
6807::
6808
6809 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6810
6811Overview:
6812"""""""""
6813
6814The '``extractvalue``' instruction extracts the value of a member field
6815from an :ref:`aggregate <t_aggregate>` value.
6816
6817Arguments:
6818""""""""""
6819
6820The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006821:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006822constant indices to specify which value to extract in a similar manner
6823as indices in a '``getelementptr``' instruction.
6824
6825The major differences to ``getelementptr`` indexing are:
6826
6827- Since the value being indexed is not a pointer, the first index is
6828 omitted and assumed to be zero.
6829- At least one index must be specified.
6830- Not only struct indices but also array indices must be in bounds.
6831
6832Semantics:
6833""""""""""
6834
6835The result is the value at the position in the aggregate specified by
6836the index operands.
6837
6838Example:
6839""""""""
6840
6841.. code-block:: llvm
6842
6843 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6844
6845.. _i_insertvalue:
6846
6847'``insertvalue``' Instruction
6848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6849
6850Syntax:
6851"""""""
6852
6853::
6854
6855 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6856
6857Overview:
6858"""""""""
6859
6860The '``insertvalue``' instruction inserts a value into a member field in
6861an :ref:`aggregate <t_aggregate>` value.
6862
6863Arguments:
6864""""""""""
6865
6866The first operand of an '``insertvalue``' instruction is a value of
6867:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6868a first-class value to insert. The following operands are constant
6869indices indicating the position at which to insert the value in a
6870similar manner as indices in a '``extractvalue``' instruction. The value
6871to insert must have the same type as the value identified by the
6872indices.
6873
6874Semantics:
6875""""""""""
6876
6877The result is an aggregate of the same type as ``val``. Its value is
6878that of ``val`` except that the value at the position specified by the
6879indices is that of ``elt``.
6880
6881Example:
6882""""""""
6883
6884.. code-block:: llvm
6885
6886 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6887 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006888 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006889
6890.. _memoryops:
6891
6892Memory Access and Addressing Operations
6893---------------------------------------
6894
6895A key design point of an SSA-based representation is how it represents
6896memory. In LLVM, no memory locations are in SSA form, which makes things
6897very simple. This section describes how to read, write, and allocate
6898memory in LLVM.
6899
6900.. _i_alloca:
6901
6902'``alloca``' Instruction
6903^^^^^^^^^^^^^^^^^^^^^^^^
6904
6905Syntax:
6906"""""""
6907
6908::
6909
Tim Northover675a0962014-06-13 14:24:23 +00006910 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006911
6912Overview:
6913"""""""""
6914
6915The '``alloca``' instruction allocates memory on the stack frame of the
6916currently executing function, to be automatically released when this
6917function returns to its caller. The object is always allocated in the
6918generic address space (address space zero).
6919
6920Arguments:
6921""""""""""
6922
6923The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6924bytes of memory on the runtime stack, returning a pointer of the
6925appropriate type to the program. If "NumElements" is specified, it is
6926the number of elements allocated, otherwise "NumElements" is defaulted
6927to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006928allocation is guaranteed to be aligned to at least that boundary. The
6929alignment may not be greater than ``1 << 29``. If not specified, or if
6930zero, the target can choose to align the allocation on any convenient
6931boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006932
6933'``type``' may be any sized type.
6934
6935Semantics:
6936""""""""""
6937
6938Memory is allocated; a pointer is returned. The operation is undefined
6939if there is insufficient stack space for the allocation. '``alloca``'d
6940memory is automatically released when the function returns. The
6941'``alloca``' instruction is commonly used to represent automatic
6942variables that must have an address available. When the function returns
6943(either with the ``ret`` or ``resume`` instructions), the memory is
6944reclaimed. Allocating zero bytes is legal, but the result is undefined.
6945The order in which memory is allocated (ie., which way the stack grows)
6946is not specified.
6947
6948Example:
6949""""""""
6950
6951.. code-block:: llvm
6952
Tim Northover675a0962014-06-13 14:24:23 +00006953 %ptr = alloca i32 ; yields i32*:ptr
6954 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6955 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6956 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006957
6958.. _i_load:
6959
6960'``load``' Instruction
6961^^^^^^^^^^^^^^^^^^^^^^
6962
6963Syntax:
6964"""""""
6965
6966::
6967
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006968 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006969 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006970 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006971 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006972 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006973
6974Overview:
6975"""""""""
6976
6977The '``load``' instruction is used to read from memory.
6978
6979Arguments:
6980""""""""""
6981
Eli Bendersky239a78b2013-04-17 20:17:08 +00006982The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006983from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006984class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6985then the optimizer is not allowed to modify the number or order of
6986execution of this ``load`` with other :ref:`volatile
6987operations <volatile>`.
6988
6989If the ``load`` is marked as ``atomic``, it takes an extra
6990:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6991``release`` and ``acq_rel`` orderings are not valid on ``load``
6992instructions. Atomic loads produce :ref:`defined <memmodel>` results
6993when they may see multiple atomic stores. The type of the pointee must
6994be an integer type whose bit width is a power of two greater than or
6995equal to eight and less than or equal to a target-specific size limit.
6996``align`` must be explicitly specified on atomic loads, and the load has
6997undefined behavior if the alignment is not set to a value which is at
6998least the size in bytes of the pointee. ``!nontemporal`` does not have
6999any defined semantics for atomic loads.
7000
7001The optional constant ``align`` argument specifies the alignment of the
7002operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007003or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007004alignment for the target. It is the responsibility of the code emitter
7005to ensure that the alignment information is correct. Overestimating the
7006alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007007may produce less efficient code. An alignment of 1 is always safe. The
7008maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007009
7010The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007011metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007012``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007013metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007014that this load is not expected to be reused in the cache. The code
7015generator may select special instructions to save cache bandwidth, such
7016as the ``MOVNT`` instruction on x86.
7017
7018The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007019metadata name ``<index>`` corresponding to a metadata node with no
7020entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00007021instruction tells the optimizer and code generator that the address
7022operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007023Being invariant does not imply that a location is dereferenceable,
7024but it does imply that once the location is known dereferenceable
7025its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00007026
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007027The optional ``!invariant.group`` metadata must reference a single metadata name
7028 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7029
Philip Reamescdb72f32014-10-20 22:40:55 +00007030The optional ``!nonnull`` metadata must reference a single
7031metadata name ``<index>`` corresponding to a metadata node with no
7032entries. The existence of the ``!nonnull`` metadata on the
7033instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007034never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007035on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007036to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007037
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007038The optional ``!dereferenceable`` metadata must reference a single metadata
7039name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007040entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007041tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007042The number of bytes known to be dereferenceable is specified by the integer
7043value in the metadata node. This is analogous to the ''dereferenceable''
7044attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007045to loads of a pointer type.
7046
7047The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007048metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7049``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007050instruction tells the optimizer that the value loaded is known to be either
7051dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007052The number of bytes known to be dereferenceable is specified by the integer
7053value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7054attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007055to loads of a pointer type.
7056
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007057The optional ``!align`` metadata must reference a single metadata name
7058``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7059The existence of the ``!align`` metadata on the instruction tells the
7060optimizer that the value loaded is known to be aligned to a boundary specified
7061by the integer value in the metadata node. The alignment must be a power of 2.
7062This is analogous to the ''align'' attribute on parameters and return values.
7063This metadata can only be applied to loads of a pointer type.
7064
Sean Silvab084af42012-12-07 10:36:55 +00007065Semantics:
7066""""""""""
7067
7068The location of memory pointed to is loaded. If the value being loaded
7069is of scalar type then the number of bytes read does not exceed the
7070minimum number of bytes needed to hold all bits of the type. For
7071example, loading an ``i24`` reads at most three bytes. When loading a
7072value of a type like ``i20`` with a size that is not an integral number
7073of bytes, the result is undefined if the value was not originally
7074written using a store of the same type.
7075
7076Examples:
7077"""""""""
7078
7079.. code-block:: llvm
7080
Tim Northover675a0962014-06-13 14:24:23 +00007081 %ptr = alloca i32 ; yields i32*:ptr
7082 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007083 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007084
7085.. _i_store:
7086
7087'``store``' Instruction
7088^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093::
7094
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007095 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7096 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007097
7098Overview:
7099"""""""""
7100
7101The '``store``' instruction is used to write to memory.
7102
7103Arguments:
7104""""""""""
7105
Eli Benderskyca380842013-04-17 17:17:20 +00007106There are two arguments to the ``store`` instruction: a value to store
7107and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007108operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007109the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007110then the optimizer is not allowed to modify the number or order of
7111execution of this ``store`` with other :ref:`volatile
7112operations <volatile>`.
7113
7114If the ``store`` is marked as ``atomic``, it takes an extra
7115:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7116``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
7117instructions. Atomic loads produce :ref:`defined <memmodel>` results
7118when they may see multiple atomic stores. The type of the pointee must
7119be an integer type whose bit width is a power of two greater than or
7120equal to eight and less than or equal to a target-specific size limit.
7121``align`` must be explicitly specified on atomic stores, and the store
7122has undefined behavior if the alignment is not set to a value which is
7123at least the size in bytes of the pointee. ``!nontemporal`` does not
7124have any defined semantics for atomic stores.
7125
Eli Benderskyca380842013-04-17 17:17:20 +00007126The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007127operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007128or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007129alignment for the target. It is the responsibility of the code emitter
7130to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007131alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007132alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007133safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007134
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007135The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007136name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007137value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007138tells the optimizer and code generator that this load is not expected to
7139be reused in the cache. The code generator may select special
7140instructions to save cache bandwidth, such as the MOVNT instruction on
7141x86.
7142
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007143The optional ``!invariant.group`` metadata must reference a
7144single metadata name ``<index>``. See ``invariant.group`` metadata.
7145
Sean Silvab084af42012-12-07 10:36:55 +00007146Semantics:
7147""""""""""
7148
Eli Benderskyca380842013-04-17 17:17:20 +00007149The contents of memory are updated to contain ``<value>`` at the
7150location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007151of scalar type then the number of bytes written does not exceed the
7152minimum number of bytes needed to hold all bits of the type. For
7153example, storing an ``i24`` writes at most three bytes. When writing a
7154value of a type like ``i20`` with a size that is not an integral number
7155of bytes, it is unspecified what happens to the extra bits that do not
7156belong to the type, but they will typically be overwritten.
7157
7158Example:
7159""""""""
7160
7161.. code-block:: llvm
7162
Tim Northover675a0962014-06-13 14:24:23 +00007163 %ptr = alloca i32 ; yields i32*:ptr
7164 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007165 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007166
7167.. _i_fence:
7168
7169'``fence``' Instruction
7170^^^^^^^^^^^^^^^^^^^^^^^
7171
7172Syntax:
7173"""""""
7174
7175::
7176
Tim Northover675a0962014-06-13 14:24:23 +00007177 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007178
7179Overview:
7180"""""""""
7181
7182The '``fence``' instruction is used to introduce happens-before edges
7183between operations.
7184
7185Arguments:
7186""""""""""
7187
7188'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7189defines what *synchronizes-with* edges they add. They can only be given
7190``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7191
7192Semantics:
7193""""""""""
7194
7195A fence A which has (at least) ``release`` ordering semantics
7196*synchronizes with* a fence B with (at least) ``acquire`` ordering
7197semantics if and only if there exist atomic operations X and Y, both
7198operating on some atomic object M, such that A is sequenced before X, X
7199modifies M (either directly or through some side effect of a sequence
7200headed by X), Y is sequenced before B, and Y observes M. This provides a
7201*happens-before* dependency between A and B. Rather than an explicit
7202``fence``, one (but not both) of the atomic operations X or Y might
7203provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7204still *synchronize-with* the explicit ``fence`` and establish the
7205*happens-before* edge.
7206
7207A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7208``acquire`` and ``release`` semantics specified above, participates in
7209the global program order of other ``seq_cst`` operations and/or fences.
7210
7211The optional ":ref:`singlethread <singlethread>`" argument specifies
7212that the fence only synchronizes with other fences in the same thread.
7213(This is useful for interacting with signal handlers.)
7214
7215Example:
7216""""""""
7217
7218.. code-block:: llvm
7219
Tim Northover675a0962014-06-13 14:24:23 +00007220 fence acquire ; yields void
7221 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007222
7223.. _i_cmpxchg:
7224
7225'``cmpxchg``' Instruction
7226^^^^^^^^^^^^^^^^^^^^^^^^^
7227
7228Syntax:
7229"""""""
7230
7231::
7232
Tim Northover675a0962014-06-13 14:24:23 +00007233 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007234
7235Overview:
7236"""""""""
7237
7238The '``cmpxchg``' instruction is used to atomically modify memory. It
7239loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007240equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007241
7242Arguments:
7243""""""""""
7244
7245There are three arguments to the '``cmpxchg``' instruction: an address
7246to operate on, a value to compare to the value currently be at that
7247address, and a new value to place at that address if the compared values
7248are equal. The type of '<cmp>' must be an integer type whose bit width
7249is a power of two greater than or equal to eight and less than or equal
7250to a target-specific size limit. '<cmp>' and '<new>' must have the same
7251type, and the type of '<pointer>' must be a pointer to that type. If the
7252``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7253to modify the number or order of execution of this ``cmpxchg`` with
7254other :ref:`volatile operations <volatile>`.
7255
Tim Northovere94a5182014-03-11 10:48:52 +00007256The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007257``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7258must be at least ``monotonic``, the ordering constraint on failure must be no
7259stronger than that on success, and the failure ordering cannot be either
7260``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007261
7262The optional "``singlethread``" argument declares that the ``cmpxchg``
7263is only atomic with respect to code (usually signal handlers) running in
7264the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7265respect to all other code in the system.
7266
7267The pointer passed into cmpxchg must have alignment greater than or
7268equal to the size in memory of the operand.
7269
7270Semantics:
7271""""""""""
7272
Tim Northover420a2162014-06-13 14:24:07 +00007273The contents of memory at the location specified by the '``<pointer>``' operand
7274is read and compared to '``<cmp>``'; if the read value is the equal, the
7275'``<new>``' is written. The original value at the location is returned, together
7276with a flag indicating success (true) or failure (false).
7277
7278If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7279permitted: the operation may not write ``<new>`` even if the comparison
7280matched.
7281
7282If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7283if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007284
Tim Northovere94a5182014-03-11 10:48:52 +00007285A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7286identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7287load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007288
7289Example:
7290""""""""
7291
7292.. code-block:: llvm
7293
7294 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007295 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007296 br label %loop
7297
7298 loop:
7299 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7300 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007301 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007302 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7303 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007304 br i1 %success, label %done, label %loop
7305
7306 done:
7307 ...
7308
7309.. _i_atomicrmw:
7310
7311'``atomicrmw``' Instruction
7312^^^^^^^^^^^^^^^^^^^^^^^^^^^
7313
7314Syntax:
7315"""""""
7316
7317::
7318
Tim Northover675a0962014-06-13 14:24:23 +00007319 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007320
7321Overview:
7322"""""""""
7323
7324The '``atomicrmw``' instruction is used to atomically modify memory.
7325
7326Arguments:
7327""""""""""
7328
7329There are three arguments to the '``atomicrmw``' instruction: an
7330operation to apply, an address whose value to modify, an argument to the
7331operation. The operation must be one of the following keywords:
7332
7333- xchg
7334- add
7335- sub
7336- and
7337- nand
7338- or
7339- xor
7340- max
7341- min
7342- umax
7343- umin
7344
7345The type of '<value>' must be an integer type whose bit width is a power
7346of two greater than or equal to eight and less than or equal to a
7347target-specific size limit. The type of the '``<pointer>``' operand must
7348be a pointer to that type. If the ``atomicrmw`` is marked as
7349``volatile``, then the optimizer is not allowed to modify the number or
7350order of execution of this ``atomicrmw`` with other :ref:`volatile
7351operations <volatile>`.
7352
7353Semantics:
7354""""""""""
7355
7356The contents of memory at the location specified by the '``<pointer>``'
7357operand are atomically read, modified, and written back. The original
7358value at the location is returned. The modification is specified by the
7359operation argument:
7360
7361- xchg: ``*ptr = val``
7362- add: ``*ptr = *ptr + val``
7363- sub: ``*ptr = *ptr - val``
7364- and: ``*ptr = *ptr & val``
7365- nand: ``*ptr = ~(*ptr & val)``
7366- or: ``*ptr = *ptr | val``
7367- xor: ``*ptr = *ptr ^ val``
7368- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7369- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7370- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7371 comparison)
7372- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7373 comparison)
7374
7375Example:
7376""""""""
7377
7378.. code-block:: llvm
7379
Tim Northover675a0962014-06-13 14:24:23 +00007380 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007381
7382.. _i_getelementptr:
7383
7384'``getelementptr``' Instruction
7385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7386
7387Syntax:
7388"""""""
7389
7390::
7391
David Blaikie16a97eb2015-03-04 22:02:58 +00007392 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7393 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7394 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007395
7396Overview:
7397"""""""""
7398
7399The '``getelementptr``' instruction is used to get the address of a
7400subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007401address calculation only and does not access memory. The instruction can also
7402be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007403
7404Arguments:
7405""""""""""
7406
David Blaikie16a97eb2015-03-04 22:02:58 +00007407The first argument is always a type used as the basis for the calculations.
7408The second argument is always a pointer or a vector of pointers, and is the
7409base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007410that indicate which of the elements of the aggregate object are indexed.
7411The interpretation of each index is dependent on the type being indexed
7412into. The first index always indexes the pointer value given as the
7413first argument, the second index indexes a value of the type pointed to
7414(not necessarily the value directly pointed to, since the first index
7415can be non-zero), etc. The first type indexed into must be a pointer
7416value, subsequent types can be arrays, vectors, and structs. Note that
7417subsequent types being indexed into can never be pointers, since that
7418would require loading the pointer before continuing calculation.
7419
7420The type of each index argument depends on the type it is indexing into.
7421When indexing into a (optionally packed) structure, only ``i32`` integer
7422**constants** are allowed (when using a vector of indices they must all
7423be the **same** ``i32`` integer constant). When indexing into an array,
7424pointer or vector, integers of any width are allowed, and they are not
7425required to be constant. These integers are treated as signed values
7426where relevant.
7427
7428For example, let's consider a C code fragment and how it gets compiled
7429to LLVM:
7430
7431.. code-block:: c
7432
7433 struct RT {
7434 char A;
7435 int B[10][20];
7436 char C;
7437 };
7438 struct ST {
7439 int X;
7440 double Y;
7441 struct RT Z;
7442 };
7443
7444 int *foo(struct ST *s) {
7445 return &s[1].Z.B[5][13];
7446 }
7447
7448The LLVM code generated by Clang is:
7449
7450.. code-block:: llvm
7451
7452 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7453 %struct.ST = type { i32, double, %struct.RT }
7454
7455 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7456 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007457 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007458 ret i32* %arrayidx
7459 }
7460
7461Semantics:
7462""""""""""
7463
7464In the example above, the first index is indexing into the
7465'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7466= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7467indexes into the third element of the structure, yielding a
7468'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7469structure. The third index indexes into the second element of the
7470structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7471dimensions of the array are subscripted into, yielding an '``i32``'
7472type. The '``getelementptr``' instruction returns a pointer to this
7473element, thus computing a value of '``i32*``' type.
7474
7475Note that it is perfectly legal to index partially through a structure,
7476returning a pointer to an inner element. Because of this, the LLVM code
7477for the given testcase is equivalent to:
7478
7479.. code-block:: llvm
7480
7481 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007482 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7483 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7484 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7485 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7486 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007487 ret i32* %t5
7488 }
7489
7490If the ``inbounds`` keyword is present, the result value of the
7491``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7492pointer is not an *in bounds* address of an allocated object, or if any
7493of the addresses that would be formed by successive addition of the
7494offsets implied by the indices to the base address with infinitely
7495precise signed arithmetic are not an *in bounds* address of that
7496allocated object. The *in bounds* addresses for an allocated object are
7497all the addresses that point into the object, plus the address one byte
7498past the end. In cases where the base is a vector of pointers the
7499``inbounds`` keyword applies to each of the computations element-wise.
7500
7501If the ``inbounds`` keyword is not present, the offsets are added to the
7502base address with silently-wrapping two's complement arithmetic. If the
7503offsets have a different width from the pointer, they are sign-extended
7504or truncated to the width of the pointer. The result value of the
7505``getelementptr`` may be outside the object pointed to by the base
7506pointer. The result value may not necessarily be used to access memory
7507though, even if it happens to point into allocated storage. See the
7508:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7509information.
7510
7511The getelementptr instruction is often confusing. For some more insight
7512into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7513
7514Example:
7515""""""""
7516
7517.. code-block:: llvm
7518
7519 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007520 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007521 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007522 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007523 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007524 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007525 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007526 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007527
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007528Vector of pointers:
7529"""""""""""""""""""
7530
7531The ``getelementptr`` returns a vector of pointers, instead of a single address,
7532when one or more of its arguments is a vector. In such cases, all vector
7533arguments should have the same number of elements, and every scalar argument
7534will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007535
7536.. code-block:: llvm
7537
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007538 ; All arguments are vectors:
7539 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7540 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007541
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007542 ; Add the same scalar offset to each pointer of a vector:
7543 ; A[i] = ptrs[i] + offset*sizeof(i8)
7544 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007545
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007546 ; Add distinct offsets to the same pointer:
7547 ; A[i] = ptr + offsets[i]*sizeof(i8)
7548 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007549
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007550 ; In all cases described above the type of the result is <4 x i8*>
7551
7552The two following instructions are equivalent:
7553
7554.. code-block:: llvm
7555
7556 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7557 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7558 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7559 <4 x i32> %ind4,
7560 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007561
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007562 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7563 i32 2, i32 1, <4 x i32> %ind4, i64 13
7564
7565Let's look at the C code, where the vector version of ``getelementptr``
7566makes sense:
7567
7568.. code-block:: c
7569
7570 // Let's assume that we vectorize the following loop:
7571 double *A, B; int *C;
7572 for (int i = 0; i < size; ++i) {
7573 A[i] = B[C[i]];
7574 }
7575
7576.. code-block:: llvm
7577
7578 ; get pointers for 8 elements from array B
7579 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7580 ; load 8 elements from array B into A
7581 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7582 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007583
7584Conversion Operations
7585---------------------
7586
7587The instructions in this category are the conversion instructions
7588(casting) which all take a single operand and a type. They perform
7589various bit conversions on the operand.
7590
7591'``trunc .. to``' Instruction
7592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7593
7594Syntax:
7595"""""""
7596
7597::
7598
7599 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7600
7601Overview:
7602"""""""""
7603
7604The '``trunc``' instruction truncates its operand to the type ``ty2``.
7605
7606Arguments:
7607""""""""""
7608
7609The '``trunc``' instruction takes a value to trunc, and a type to trunc
7610it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7611of the same number of integers. The bit size of the ``value`` must be
7612larger than the bit size of the destination type, ``ty2``. Equal sized
7613types are not allowed.
7614
7615Semantics:
7616""""""""""
7617
7618The '``trunc``' instruction truncates the high order bits in ``value``
7619and converts the remaining bits to ``ty2``. Since the source size must
7620be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7621It will always truncate bits.
7622
7623Example:
7624""""""""
7625
7626.. code-block:: llvm
7627
7628 %X = trunc i32 257 to i8 ; yields i8:1
7629 %Y = trunc i32 123 to i1 ; yields i1:true
7630 %Z = trunc i32 122 to i1 ; yields i1:false
7631 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7632
7633'``zext .. to``' Instruction
7634^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7635
7636Syntax:
7637"""""""
7638
7639::
7640
7641 <result> = zext <ty> <value> to <ty2> ; yields ty2
7642
7643Overview:
7644"""""""""
7645
7646The '``zext``' instruction zero extends its operand to type ``ty2``.
7647
7648Arguments:
7649""""""""""
7650
7651The '``zext``' instruction takes a value to cast, and a type to cast it
7652to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7653the same number of integers. The bit size of the ``value`` must be
7654smaller than the bit size of the destination type, ``ty2``.
7655
7656Semantics:
7657""""""""""
7658
7659The ``zext`` fills the high order bits of the ``value`` with zero bits
7660until it reaches the size of the destination type, ``ty2``.
7661
7662When zero extending from i1, the result will always be either 0 or 1.
7663
7664Example:
7665""""""""
7666
7667.. code-block:: llvm
7668
7669 %X = zext i32 257 to i64 ; yields i64:257
7670 %Y = zext i1 true to i32 ; yields i32:1
7671 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7672
7673'``sext .. to``' Instruction
7674^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7675
7676Syntax:
7677"""""""
7678
7679::
7680
7681 <result> = sext <ty> <value> to <ty2> ; yields ty2
7682
7683Overview:
7684"""""""""
7685
7686The '``sext``' sign extends ``value`` to the type ``ty2``.
7687
7688Arguments:
7689""""""""""
7690
7691The '``sext``' instruction takes a value to cast, and a type to cast it
7692to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7693the same number of integers. The bit size of the ``value`` must be
7694smaller than the bit size of the destination type, ``ty2``.
7695
7696Semantics:
7697""""""""""
7698
7699The '``sext``' instruction performs a sign extension by copying the sign
7700bit (highest order bit) of the ``value`` until it reaches the bit size
7701of the type ``ty2``.
7702
7703When sign extending from i1, the extension always results in -1 or 0.
7704
7705Example:
7706""""""""
7707
7708.. code-block:: llvm
7709
7710 %X = sext i8 -1 to i16 ; yields i16 :65535
7711 %Y = sext i1 true to i32 ; yields i32:-1
7712 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7713
7714'``fptrunc .. to``' Instruction
7715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7716
7717Syntax:
7718"""""""
7719
7720::
7721
7722 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7723
7724Overview:
7725"""""""""
7726
7727The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7728
7729Arguments:
7730""""""""""
7731
7732The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7733value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7734The size of ``value`` must be larger than the size of ``ty2``. This
7735implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7736
7737Semantics:
7738""""""""""
7739
Dan Liew50456fb2015-09-03 18:43:56 +00007740The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007741:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007742point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7743destination type, ``ty2``, then the results are undefined. If the cast produces
7744an inexact result, how rounding is performed (e.g. truncation, also known as
7745round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007746
7747Example:
7748""""""""
7749
7750.. code-block:: llvm
7751
7752 %X = fptrunc double 123.0 to float ; yields float:123.0
7753 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7754
7755'``fpext .. to``' Instruction
7756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7757
7758Syntax:
7759"""""""
7760
7761::
7762
7763 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7764
7765Overview:
7766"""""""""
7767
7768The '``fpext``' extends a floating point ``value`` to a larger floating
7769point value.
7770
7771Arguments:
7772""""""""""
7773
7774The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7775``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7776to. The source type must be smaller than the destination type.
7777
7778Semantics:
7779""""""""""
7780
7781The '``fpext``' instruction extends the ``value`` from a smaller
7782:ref:`floating point <t_floating>` type to a larger :ref:`floating
7783point <t_floating>` type. The ``fpext`` cannot be used to make a
7784*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7785*no-op cast* for a floating point cast.
7786
7787Example:
7788""""""""
7789
7790.. code-block:: llvm
7791
7792 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7793 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7794
7795'``fptoui .. to``' Instruction
7796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7797
7798Syntax:
7799"""""""
7800
7801::
7802
7803 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7804
7805Overview:
7806"""""""""
7807
7808The '``fptoui``' converts a floating point ``value`` to its unsigned
7809integer equivalent of type ``ty2``.
7810
7811Arguments:
7812""""""""""
7813
7814The '``fptoui``' instruction takes a value to cast, which must be a
7815scalar or vector :ref:`floating point <t_floating>` value, and a type to
7816cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7817``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7818type with the same number of elements as ``ty``
7819
7820Semantics:
7821""""""""""
7822
7823The '``fptoui``' instruction converts its :ref:`floating
7824point <t_floating>` operand into the nearest (rounding towards zero)
7825unsigned integer value. If the value cannot fit in ``ty2``, the results
7826are undefined.
7827
7828Example:
7829""""""""
7830
7831.. code-block:: llvm
7832
7833 %X = fptoui double 123.0 to i32 ; yields i32:123
7834 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7835 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7836
7837'``fptosi .. to``' Instruction
7838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7839
7840Syntax:
7841"""""""
7842
7843::
7844
7845 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7846
7847Overview:
7848"""""""""
7849
7850The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7851``value`` to type ``ty2``.
7852
7853Arguments:
7854""""""""""
7855
7856The '``fptosi``' instruction takes a value to cast, which must be a
7857scalar or vector :ref:`floating point <t_floating>` value, and a type to
7858cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7859``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7860type with the same number of elements as ``ty``
7861
7862Semantics:
7863""""""""""
7864
7865The '``fptosi``' instruction converts its :ref:`floating
7866point <t_floating>` operand into the nearest (rounding towards zero)
7867signed integer value. If the value cannot fit in ``ty2``, the results
7868are undefined.
7869
7870Example:
7871""""""""
7872
7873.. code-block:: llvm
7874
7875 %X = fptosi double -123.0 to i32 ; yields i32:-123
7876 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7877 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7878
7879'``uitofp .. to``' Instruction
7880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7881
7882Syntax:
7883"""""""
7884
7885::
7886
7887 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7888
7889Overview:
7890"""""""""
7891
7892The '``uitofp``' instruction regards ``value`` as an unsigned integer
7893and converts that value to the ``ty2`` type.
7894
7895Arguments:
7896""""""""""
7897
7898The '``uitofp``' instruction takes a value to cast, which must be a
7899scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7900``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7901``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7902type with the same number of elements as ``ty``
7903
7904Semantics:
7905""""""""""
7906
7907The '``uitofp``' instruction interprets its operand as an unsigned
7908integer quantity and converts it to the corresponding floating point
7909value. If the value cannot fit in the floating point value, the results
7910are undefined.
7911
7912Example:
7913""""""""
7914
7915.. code-block:: llvm
7916
7917 %X = uitofp i32 257 to float ; yields float:257.0
7918 %Y = uitofp i8 -1 to double ; yields double:255.0
7919
7920'``sitofp .. to``' Instruction
7921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7922
7923Syntax:
7924"""""""
7925
7926::
7927
7928 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7929
7930Overview:
7931"""""""""
7932
7933The '``sitofp``' instruction regards ``value`` as a signed integer and
7934converts that value to the ``ty2`` type.
7935
7936Arguments:
7937""""""""""
7938
7939The '``sitofp``' instruction takes a value to cast, which must be a
7940scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7941``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7942``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7943type with the same number of elements as ``ty``
7944
7945Semantics:
7946""""""""""
7947
7948The '``sitofp``' instruction interprets its operand as a signed integer
7949quantity and converts it to the corresponding floating point value. If
7950the value cannot fit in the floating point value, the results are
7951undefined.
7952
7953Example:
7954""""""""
7955
7956.. code-block:: llvm
7957
7958 %X = sitofp i32 257 to float ; yields float:257.0
7959 %Y = sitofp i8 -1 to double ; yields double:-1.0
7960
7961.. _i_ptrtoint:
7962
7963'``ptrtoint .. to``' Instruction
7964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7965
7966Syntax:
7967"""""""
7968
7969::
7970
7971 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7972
7973Overview:
7974"""""""""
7975
7976The '``ptrtoint``' instruction converts the pointer or a vector of
7977pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7978
7979Arguments:
7980""""""""""
7981
7982The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007983a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007984type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7985a vector of integers type.
7986
7987Semantics:
7988""""""""""
7989
7990The '``ptrtoint``' instruction converts ``value`` to integer type
7991``ty2`` by interpreting the pointer value as an integer and either
7992truncating or zero extending that value to the size of the integer type.
7993If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7994``value`` is larger than ``ty2`` then a truncation is done. If they are
7995the same size, then nothing is done (*no-op cast*) other than a type
7996change.
7997
7998Example:
7999""""""""
8000
8001.. code-block:: llvm
8002
8003 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8004 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8005 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8006
8007.. _i_inttoptr:
8008
8009'``inttoptr .. to``' Instruction
8010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8011
8012Syntax:
8013"""""""
8014
8015::
8016
8017 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8018
8019Overview:
8020"""""""""
8021
8022The '``inttoptr``' instruction converts an integer ``value`` to a
8023pointer type, ``ty2``.
8024
8025Arguments:
8026""""""""""
8027
8028The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8029cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8030type.
8031
8032Semantics:
8033""""""""""
8034
8035The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8036applying either a zero extension or a truncation depending on the size
8037of the integer ``value``. If ``value`` is larger than the size of a
8038pointer then a truncation is done. If ``value`` is smaller than the size
8039of a pointer then a zero extension is done. If they are the same size,
8040nothing is done (*no-op cast*).
8041
8042Example:
8043""""""""
8044
8045.. code-block:: llvm
8046
8047 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8048 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8049 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8050 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8051
8052.. _i_bitcast:
8053
8054'``bitcast .. to``' Instruction
8055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8056
8057Syntax:
8058"""""""
8059
8060::
8061
8062 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8063
8064Overview:
8065"""""""""
8066
8067The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8068changing any bits.
8069
8070Arguments:
8071""""""""""
8072
8073The '``bitcast``' instruction takes a value to cast, which must be a
8074non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008075also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8076bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008077identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008078also be a pointer of the same size. This instruction supports bitwise
8079conversion of vectors to integers and to vectors of other types (as
8080long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008081
8082Semantics:
8083""""""""""
8084
Matt Arsenault24b49c42013-07-31 17:49:08 +00008085The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8086is always a *no-op cast* because no bits change with this
8087conversion. The conversion is done as if the ``value`` had been stored
8088to memory and read back as type ``ty2``. Pointer (or vector of
8089pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008090pointers) types with the same address space through this instruction.
8091To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8092or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008093
8094Example:
8095""""""""
8096
8097.. code-block:: llvm
8098
8099 %X = bitcast i8 255 to i8 ; yields i8 :-1
8100 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8101 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8102 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8103
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008104.. _i_addrspacecast:
8105
8106'``addrspacecast .. to``' Instruction
8107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8108
8109Syntax:
8110"""""""
8111
8112::
8113
8114 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8115
8116Overview:
8117"""""""""
8118
8119The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8120address space ``n`` to type ``pty2`` in address space ``m``.
8121
8122Arguments:
8123""""""""""
8124
8125The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8126to cast and a pointer type to cast it to, which must have a different
8127address space.
8128
8129Semantics:
8130""""""""""
8131
8132The '``addrspacecast``' instruction converts the pointer value
8133``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008134value modification, depending on the target and the address space
8135pair. Pointer conversions within the same address space must be
8136performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008137conversion is legal then both result and operand refer to the same memory
8138location.
8139
8140Example:
8141""""""""
8142
8143.. code-block:: llvm
8144
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008145 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8146 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8147 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008148
Sean Silvab084af42012-12-07 10:36:55 +00008149.. _otherops:
8150
8151Other Operations
8152----------------
8153
8154The instructions in this category are the "miscellaneous" instructions,
8155which defy better classification.
8156
8157.. _i_icmp:
8158
8159'``icmp``' Instruction
8160^^^^^^^^^^^^^^^^^^^^^^
8161
8162Syntax:
8163"""""""
8164
8165::
8166
Tim Northover675a0962014-06-13 14:24:23 +00008167 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008168
8169Overview:
8170"""""""""
8171
8172The '``icmp``' instruction returns a boolean value or a vector of
8173boolean values based on comparison of its two integer, integer vector,
8174pointer, or pointer vector operands.
8175
8176Arguments:
8177""""""""""
8178
8179The '``icmp``' instruction takes three operands. The first operand is
8180the condition code indicating the kind of comparison to perform. It is
8181not a value, just a keyword. The possible condition code are:
8182
8183#. ``eq``: equal
8184#. ``ne``: not equal
8185#. ``ugt``: unsigned greater than
8186#. ``uge``: unsigned greater or equal
8187#. ``ult``: unsigned less than
8188#. ``ule``: unsigned less or equal
8189#. ``sgt``: signed greater than
8190#. ``sge``: signed greater or equal
8191#. ``slt``: signed less than
8192#. ``sle``: signed less or equal
8193
8194The remaining two arguments must be :ref:`integer <t_integer>` or
8195:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8196must also be identical types.
8197
8198Semantics:
8199""""""""""
8200
8201The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8202code given as ``cond``. The comparison performed always yields either an
8203:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8204
8205#. ``eq``: yields ``true`` if the operands are equal, ``false``
8206 otherwise. No sign interpretation is necessary or performed.
8207#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8208 otherwise. No sign interpretation is necessary or performed.
8209#. ``ugt``: interprets the operands as unsigned values and yields
8210 ``true`` if ``op1`` is greater than ``op2``.
8211#. ``uge``: interprets the operands as unsigned values and yields
8212 ``true`` if ``op1`` is greater than or equal to ``op2``.
8213#. ``ult``: interprets the operands as unsigned values and yields
8214 ``true`` if ``op1`` is less than ``op2``.
8215#. ``ule``: interprets the operands as unsigned values and yields
8216 ``true`` if ``op1`` is less than or equal to ``op2``.
8217#. ``sgt``: interprets the operands as signed values and yields ``true``
8218 if ``op1`` is greater than ``op2``.
8219#. ``sge``: interprets the operands as signed values and yields ``true``
8220 if ``op1`` is greater than or equal to ``op2``.
8221#. ``slt``: interprets the operands as signed values and yields ``true``
8222 if ``op1`` is less than ``op2``.
8223#. ``sle``: interprets the operands as signed values and yields ``true``
8224 if ``op1`` is less than or equal to ``op2``.
8225
8226If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8227are compared as if they were integers.
8228
8229If the operands are integer vectors, then they are compared element by
8230element. The result is an ``i1`` vector with the same number of elements
8231as the values being compared. Otherwise, the result is an ``i1``.
8232
8233Example:
8234""""""""
8235
8236.. code-block:: llvm
8237
8238 <result> = icmp eq i32 4, 5 ; yields: result=false
8239 <result> = icmp ne float* %X, %X ; yields: result=false
8240 <result> = icmp ult i16 4, 5 ; yields: result=true
8241 <result> = icmp sgt i16 4, 5 ; yields: result=false
8242 <result> = icmp ule i16 -4, 5 ; yields: result=false
8243 <result> = icmp sge i16 4, 5 ; yields: result=false
8244
8245Note that the code generator does not yet support vector types with the
8246``icmp`` instruction.
8247
8248.. _i_fcmp:
8249
8250'``fcmp``' Instruction
8251^^^^^^^^^^^^^^^^^^^^^^
8252
8253Syntax:
8254"""""""
8255
8256::
8257
James Molloy88eb5352015-07-10 12:52:00 +00008258 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008259
8260Overview:
8261"""""""""
8262
8263The '``fcmp``' instruction returns a boolean value or vector of boolean
8264values based on comparison of its operands.
8265
8266If the operands are floating point scalars, then the result type is a
8267boolean (:ref:`i1 <t_integer>`).
8268
8269If the operands are floating point vectors, then the result type is a
8270vector of boolean with the same number of elements as the operands being
8271compared.
8272
8273Arguments:
8274""""""""""
8275
8276The '``fcmp``' instruction takes three operands. The first operand is
8277the condition code indicating the kind of comparison to perform. It is
8278not a value, just a keyword. The possible condition code are:
8279
8280#. ``false``: no comparison, always returns false
8281#. ``oeq``: ordered and equal
8282#. ``ogt``: ordered and greater than
8283#. ``oge``: ordered and greater than or equal
8284#. ``olt``: ordered and less than
8285#. ``ole``: ordered and less than or equal
8286#. ``one``: ordered and not equal
8287#. ``ord``: ordered (no nans)
8288#. ``ueq``: unordered or equal
8289#. ``ugt``: unordered or greater than
8290#. ``uge``: unordered or greater than or equal
8291#. ``ult``: unordered or less than
8292#. ``ule``: unordered or less than or equal
8293#. ``une``: unordered or not equal
8294#. ``uno``: unordered (either nans)
8295#. ``true``: no comparison, always returns true
8296
8297*Ordered* means that neither operand is a QNAN while *unordered* means
8298that either operand may be a QNAN.
8299
8300Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8301point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8302type. They must have identical types.
8303
8304Semantics:
8305""""""""""
8306
8307The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8308condition code given as ``cond``. If the operands are vectors, then the
8309vectors are compared element by element. Each comparison performed
8310always yields an :ref:`i1 <t_integer>` result, as follows:
8311
8312#. ``false``: always yields ``false``, regardless of operands.
8313#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8314 is equal to ``op2``.
8315#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8316 is greater than ``op2``.
8317#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8318 is greater than or equal to ``op2``.
8319#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8320 is less than ``op2``.
8321#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8322 is less than or equal to ``op2``.
8323#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8324 is not equal to ``op2``.
8325#. ``ord``: yields ``true`` if both operands are not a QNAN.
8326#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8327 equal to ``op2``.
8328#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8329 greater than ``op2``.
8330#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8331 greater than or equal to ``op2``.
8332#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8333 less than ``op2``.
8334#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8335 less than or equal to ``op2``.
8336#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8337 not equal to ``op2``.
8338#. ``uno``: yields ``true`` if either operand is a QNAN.
8339#. ``true``: always yields ``true``, regardless of operands.
8340
James Molloy88eb5352015-07-10 12:52:00 +00008341The ``fcmp`` instruction can also optionally take any number of
8342:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8343otherwise unsafe floating point optimizations.
8344
8345Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8346only flags that have any effect on its semantics are those that allow
8347assumptions to be made about the values of input arguments; namely
8348``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8349
Sean Silvab084af42012-12-07 10:36:55 +00008350Example:
8351""""""""
8352
8353.. code-block:: llvm
8354
8355 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8356 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8357 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8358 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8359
8360Note that the code generator does not yet support vector types with the
8361``fcmp`` instruction.
8362
8363.. _i_phi:
8364
8365'``phi``' Instruction
8366^^^^^^^^^^^^^^^^^^^^^
8367
8368Syntax:
8369"""""""
8370
8371::
8372
8373 <result> = phi <ty> [ <val0>, <label0>], ...
8374
8375Overview:
8376"""""""""
8377
8378The '``phi``' instruction is used to implement the φ node in the SSA
8379graph representing the function.
8380
8381Arguments:
8382""""""""""
8383
8384The type of the incoming values is specified with the first type field.
8385After this, the '``phi``' instruction takes a list of pairs as
8386arguments, with one pair for each predecessor basic block of the current
8387block. Only values of :ref:`first class <t_firstclass>` type may be used as
8388the value arguments to the PHI node. Only labels may be used as the
8389label arguments.
8390
8391There must be no non-phi instructions between the start of a basic block
8392and the PHI instructions: i.e. PHI instructions must be first in a basic
8393block.
8394
8395For the purposes of the SSA form, the use of each incoming value is
8396deemed to occur on the edge from the corresponding predecessor block to
8397the current block (but after any definition of an '``invoke``'
8398instruction's return value on the same edge).
8399
8400Semantics:
8401""""""""""
8402
8403At runtime, the '``phi``' instruction logically takes on the value
8404specified by the pair corresponding to the predecessor basic block that
8405executed just prior to the current block.
8406
8407Example:
8408""""""""
8409
8410.. code-block:: llvm
8411
8412 Loop: ; Infinite loop that counts from 0 on up...
8413 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8414 %nextindvar = add i32 %indvar, 1
8415 br label %Loop
8416
8417.. _i_select:
8418
8419'``select``' Instruction
8420^^^^^^^^^^^^^^^^^^^^^^^^
8421
8422Syntax:
8423"""""""
8424
8425::
8426
8427 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8428
8429 selty is either i1 or {<N x i1>}
8430
8431Overview:
8432"""""""""
8433
8434The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008435condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008436
8437Arguments:
8438""""""""""
8439
8440The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8441values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008442class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008443
8444Semantics:
8445""""""""""
8446
8447If the condition is an i1 and it evaluates to 1, the instruction returns
8448the first value argument; otherwise, it returns the second value
8449argument.
8450
8451If the condition is a vector of i1, then the value arguments must be
8452vectors of the same size, and the selection is done element by element.
8453
David Majnemer40a0b592015-03-03 22:45:47 +00008454If the condition is an i1 and the value arguments are vectors of the
8455same size, then an entire vector is selected.
8456
Sean Silvab084af42012-12-07 10:36:55 +00008457Example:
8458""""""""
8459
8460.. code-block:: llvm
8461
8462 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8463
8464.. _i_call:
8465
8466'``call``' Instruction
8467^^^^^^^^^^^^^^^^^^^^^^
8468
8469Syntax:
8470"""""""
8471
8472::
8473
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008474 <result> = [tail | musttail | notail ] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008475 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008476
8477Overview:
8478"""""""""
8479
8480The '``call``' instruction represents a simple function call.
8481
8482Arguments:
8483""""""""""
8484
8485This instruction requires several arguments:
8486
Reid Kleckner5772b772014-04-24 20:14:34 +00008487#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008488 should perform tail call optimization. The ``tail`` marker is a hint that
8489 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008490 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008491 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008492
8493 #. The call will not cause unbounded stack growth if it is part of a
8494 recursive cycle in the call graph.
8495 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8496 forwarded in place.
8497
8498 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008499 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008500 rules:
8501
8502 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8503 or a pointer bitcast followed by a ret instruction.
8504 - The ret instruction must return the (possibly bitcasted) value
8505 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008506 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008507 parameters or return types may differ in pointee type, but not
8508 in address space.
8509 - The calling conventions of the caller and callee must match.
8510 - All ABI-impacting function attributes, such as sret, byval, inreg,
8511 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008512 - The callee must be varargs iff the caller is varargs. Bitcasting a
8513 non-varargs function to the appropriate varargs type is legal so
8514 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008515
8516 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8517 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008518
8519 - Caller and callee both have the calling convention ``fastcc``.
8520 - The call is in tail position (ret immediately follows call and ret
8521 uses value of call or is void).
8522 - Option ``-tailcallopt`` is enabled, or
8523 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008524 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008525 met. <CodeGenerator.html#tailcallopt>`_
8526
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008527#. The optional ``notail`` marker indicates that the optimizers should not add
8528 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8529 call optimization from being performed on the call.
8530
Sean Silvab084af42012-12-07 10:36:55 +00008531#. The optional "cconv" marker indicates which :ref:`calling
8532 convention <callingconv>` the call should use. If none is
8533 specified, the call defaults to using C calling conventions. The
8534 calling convention of the call must match the calling convention of
8535 the target function, or else the behavior is undefined.
8536#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8537 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8538 are valid here.
8539#. '``ty``': the type of the call instruction itself which is also the
8540 type of the return value. Functions that return no value are marked
8541 ``void``.
8542#. '``fnty``': shall be the signature of the pointer to function value
8543 being invoked. The argument types must match the types implied by
8544 this signature. This type can be omitted if the function is not
8545 varargs and if the function type does not return a pointer to a
8546 function.
8547#. '``fnptrval``': An LLVM value containing a pointer to a function to
8548 be invoked. In most cases, this is a direct function invocation, but
8549 indirect ``call``'s are just as possible, calling an arbitrary pointer
8550 to function value.
8551#. '``function args``': argument list whose types match the function
8552 signature argument types and parameter attributes. All arguments must
8553 be of :ref:`first class <t_firstclass>` type. If the function signature
8554 indicates the function accepts a variable number of arguments, the
8555 extra arguments can be specified.
8556#. The optional :ref:`function attributes <fnattrs>` list. Only
8557 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8558 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008559#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008560
8561Semantics:
8562""""""""""
8563
8564The '``call``' instruction is used to cause control flow to transfer to
8565a specified function, with its incoming arguments bound to the specified
8566values. Upon a '``ret``' instruction in the called function, control
8567flow continues with the instruction after the function call, and the
8568return value of the function is bound to the result argument.
8569
8570Example:
8571""""""""
8572
8573.. code-block:: llvm
8574
8575 %retval = call i32 @test(i32 %argc)
8576 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8577 %X = tail call i32 @foo() ; yields i32
8578 %Y = tail call fastcc i32 @foo() ; yields i32
8579 call void %foo(i8 97 signext)
8580
8581 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008582 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008583 %gr = extractvalue %struct.A %r, 0 ; yields i32
8584 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8585 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8586 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8587
8588llvm treats calls to some functions with names and arguments that match
8589the standard C99 library as being the C99 library functions, and may
8590perform optimizations or generate code for them under that assumption.
8591This is something we'd like to change in the future to provide better
8592support for freestanding environments and non-C-based languages.
8593
8594.. _i_va_arg:
8595
8596'``va_arg``' Instruction
8597^^^^^^^^^^^^^^^^^^^^^^^^
8598
8599Syntax:
8600"""""""
8601
8602::
8603
8604 <resultval> = va_arg <va_list*> <arglist>, <argty>
8605
8606Overview:
8607"""""""""
8608
8609The '``va_arg``' instruction is used to access arguments passed through
8610the "variable argument" area of a function call. It is used to implement
8611the ``va_arg`` macro in C.
8612
8613Arguments:
8614""""""""""
8615
8616This instruction takes a ``va_list*`` value and the type of the
8617argument. It returns a value of the specified argument type and
8618increments the ``va_list`` to point to the next argument. The actual
8619type of ``va_list`` is target specific.
8620
8621Semantics:
8622""""""""""
8623
8624The '``va_arg``' instruction loads an argument of the specified type
8625from the specified ``va_list`` and causes the ``va_list`` to point to
8626the next argument. For more information, see the variable argument
8627handling :ref:`Intrinsic Functions <int_varargs>`.
8628
8629It is legal for this instruction to be called in a function which does
8630not take a variable number of arguments, for example, the ``vfprintf``
8631function.
8632
8633``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8634function <intrinsics>` because it takes a type as an argument.
8635
8636Example:
8637""""""""
8638
8639See the :ref:`variable argument processing <int_varargs>` section.
8640
8641Note that the code generator does not yet fully support va\_arg on many
8642targets. Also, it does not currently support va\_arg with aggregate
8643types on any target.
8644
8645.. _i_landingpad:
8646
8647'``landingpad``' Instruction
8648^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8649
8650Syntax:
8651"""""""
8652
8653::
8654
David Majnemer7fddecc2015-06-17 20:52:32 +00008655 <resultval> = landingpad <resultty> <clause>+
8656 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008657
8658 <clause> := catch <type> <value>
8659 <clause> := filter <array constant type> <array constant>
8660
8661Overview:
8662"""""""""
8663
8664The '``landingpad``' instruction is used by `LLVM's exception handling
8665system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008666is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008667code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008668defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008669re-entry to the function. The ``resultval`` has the type ``resultty``.
8670
8671Arguments:
8672""""""""""
8673
David Majnemer7fddecc2015-06-17 20:52:32 +00008674The optional
Sean Silvab084af42012-12-07 10:36:55 +00008675``cleanup`` flag indicates that the landing pad block is a cleanup.
8676
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008677A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008678contains the global variable representing the "type" that may be caught
8679or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8680clause takes an array constant as its argument. Use
8681"``[0 x i8**] undef``" for a filter which cannot throw. The
8682'``landingpad``' instruction must contain *at least* one ``clause`` or
8683the ``cleanup`` flag.
8684
8685Semantics:
8686""""""""""
8687
8688The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008689:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008690therefore the "result type" of the ``landingpad`` instruction. As with
8691calling conventions, how the personality function results are
8692represented in LLVM IR is target specific.
8693
8694The clauses are applied in order from top to bottom. If two
8695``landingpad`` instructions are merged together through inlining, the
8696clauses from the calling function are appended to the list of clauses.
8697When the call stack is being unwound due to an exception being thrown,
8698the exception is compared against each ``clause`` in turn. If it doesn't
8699match any of the clauses, and the ``cleanup`` flag is not set, then
8700unwinding continues further up the call stack.
8701
8702The ``landingpad`` instruction has several restrictions:
8703
8704- A landing pad block is a basic block which is the unwind destination
8705 of an '``invoke``' instruction.
8706- A landing pad block must have a '``landingpad``' instruction as its
8707 first non-PHI instruction.
8708- There can be only one '``landingpad``' instruction within the landing
8709 pad block.
8710- A basic block that is not a landing pad block may not include a
8711 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008712
8713Example:
8714""""""""
8715
8716.. code-block:: llvm
8717
8718 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008719 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008720 catch i8** @_ZTIi
8721 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008722 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008723 cleanup
8724 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008725 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008726 catch i8** @_ZTIi
8727 filter [1 x i8**] [@_ZTId]
8728
David Majnemer654e1302015-07-31 17:58:14 +00008729.. _i_cleanuppad:
8730
8731'``cleanuppad``' Instruction
8732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8733
8734Syntax:
8735"""""""
8736
8737::
8738
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008739 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008740
8741Overview:
8742"""""""""
8743
8744The '``cleanuppad``' instruction is used by `LLVM's exception handling
8745system <ExceptionHandling.html#overview>`_ to specify that a basic block
8746is a cleanup block --- one where a personality routine attempts to
8747transfer control to run cleanup actions.
8748The ``args`` correspond to whatever additional
8749information the :ref:`personality function <personalityfn>` requires to
8750execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008751The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008752match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8753and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008754
8755Arguments:
8756""""""""""
8757
8758The instruction takes a list of arbitrary values which are interpreted
8759by the :ref:`personality function <personalityfn>`.
8760
8761Semantics:
8762""""""""""
8763
David Majnemer654e1302015-07-31 17:58:14 +00008764When the call stack is being unwound due to an exception being thrown,
8765the :ref:`personality function <personalityfn>` transfers control to the
8766``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008767As with calling conventions, how the personality function results are
8768represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008769
8770The ``cleanuppad`` instruction has several restrictions:
8771
8772- A cleanup block is a basic block which is the unwind destination of
8773 an exceptional instruction.
8774- A cleanup block must have a '``cleanuppad``' instruction as its
8775 first non-PHI instruction.
8776- There can be only one '``cleanuppad``' instruction within the
8777 cleanup block.
8778- A basic block that is not a cleanup block may not include a
8779 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008780- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8781 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008782- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008783 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8784 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008785- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008786 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8787 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008788
8789Example:
8790""""""""
8791
8792.. code-block:: llvm
8793
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008794 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008795
Sean Silvab084af42012-12-07 10:36:55 +00008796.. _intrinsics:
8797
8798Intrinsic Functions
8799===================
8800
8801LLVM supports the notion of an "intrinsic function". These functions
8802have well known names and semantics and are required to follow certain
8803restrictions. Overall, these intrinsics represent an extension mechanism
8804for the LLVM language that does not require changing all of the
8805transformations in LLVM when adding to the language (or the bitcode
8806reader/writer, the parser, etc...).
8807
8808Intrinsic function names must all start with an "``llvm.``" prefix. This
8809prefix is reserved in LLVM for intrinsic names; thus, function names may
8810not begin with this prefix. Intrinsic functions must always be external
8811functions: you cannot define the body of intrinsic functions. Intrinsic
8812functions may only be used in call or invoke instructions: it is illegal
8813to take the address of an intrinsic function. Additionally, because
8814intrinsic functions are part of the LLVM language, it is required if any
8815are added that they be documented here.
8816
8817Some intrinsic functions can be overloaded, i.e., the intrinsic
8818represents a family of functions that perform the same operation but on
8819different data types. Because LLVM can represent over 8 million
8820different integer types, overloading is used commonly to allow an
8821intrinsic function to operate on any integer type. One or more of the
8822argument types or the result type can be overloaded to accept any
8823integer type. Argument types may also be defined as exactly matching a
8824previous argument's type or the result type. This allows an intrinsic
8825function which accepts multiple arguments, but needs all of them to be
8826of the same type, to only be overloaded with respect to a single
8827argument or the result.
8828
8829Overloaded intrinsics will have the names of its overloaded argument
8830types encoded into its function name, each preceded by a period. Only
8831those types which are overloaded result in a name suffix. Arguments
8832whose type is matched against another type do not. For example, the
8833``llvm.ctpop`` function can take an integer of any width and returns an
8834integer of exactly the same integer width. This leads to a family of
8835functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8836``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8837overloaded, and only one type suffix is required. Because the argument's
8838type is matched against the return type, it does not require its own
8839name suffix.
8840
8841To learn how to add an intrinsic function, please see the `Extending
8842LLVM Guide <ExtendingLLVM.html>`_.
8843
8844.. _int_varargs:
8845
8846Variable Argument Handling Intrinsics
8847-------------------------------------
8848
8849Variable argument support is defined in LLVM with the
8850:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8851functions. These functions are related to the similarly named macros
8852defined in the ``<stdarg.h>`` header file.
8853
8854All of these functions operate on arguments that use a target-specific
8855value type "``va_list``". The LLVM assembly language reference manual
8856does not define what this type is, so all transformations should be
8857prepared to handle these functions regardless of the type used.
8858
8859This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8860variable argument handling intrinsic functions are used.
8861
8862.. code-block:: llvm
8863
Tim Northoverab60bb92014-11-02 01:21:51 +00008864 ; This struct is different for every platform. For most platforms,
8865 ; it is merely an i8*.
8866 %struct.va_list = type { i8* }
8867
8868 ; For Unix x86_64 platforms, va_list is the following struct:
8869 ; %struct.va_list = type { i32, i32, i8*, i8* }
8870
Sean Silvab084af42012-12-07 10:36:55 +00008871 define i32 @test(i32 %X, ...) {
8872 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008873 %ap = alloca %struct.va_list
8874 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008875 call void @llvm.va_start(i8* %ap2)
8876
8877 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008878 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008879
8880 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8881 %aq = alloca i8*
8882 %aq2 = bitcast i8** %aq to i8*
8883 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8884 call void @llvm.va_end(i8* %aq2)
8885
8886 ; Stop processing of arguments.
8887 call void @llvm.va_end(i8* %ap2)
8888 ret i32 %tmp
8889 }
8890
8891 declare void @llvm.va_start(i8*)
8892 declare void @llvm.va_copy(i8*, i8*)
8893 declare void @llvm.va_end(i8*)
8894
8895.. _int_va_start:
8896
8897'``llvm.va_start``' Intrinsic
8898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8899
8900Syntax:
8901"""""""
8902
8903::
8904
Nick Lewycky04f6de02013-09-11 22:04:52 +00008905 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008906
8907Overview:
8908"""""""""
8909
8910The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8911subsequent use by ``va_arg``.
8912
8913Arguments:
8914""""""""""
8915
8916The argument is a pointer to a ``va_list`` element to initialize.
8917
8918Semantics:
8919""""""""""
8920
8921The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8922available in C. In a target-dependent way, it initializes the
8923``va_list`` element to which the argument points, so that the next call
8924to ``va_arg`` will produce the first variable argument passed to the
8925function. Unlike the C ``va_start`` macro, this intrinsic does not need
8926to know the last argument of the function as the compiler can figure
8927that out.
8928
8929'``llvm.va_end``' Intrinsic
8930^^^^^^^^^^^^^^^^^^^^^^^^^^^
8931
8932Syntax:
8933"""""""
8934
8935::
8936
8937 declare void @llvm.va_end(i8* <arglist>)
8938
8939Overview:
8940"""""""""
8941
8942The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8943initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8944
8945Arguments:
8946""""""""""
8947
8948The argument is a pointer to a ``va_list`` to destroy.
8949
8950Semantics:
8951""""""""""
8952
8953The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8954available in C. In a target-dependent way, it destroys the ``va_list``
8955element to which the argument points. Calls to
8956:ref:`llvm.va_start <int_va_start>` and
8957:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8958``llvm.va_end``.
8959
8960.. _int_va_copy:
8961
8962'``llvm.va_copy``' Intrinsic
8963^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8964
8965Syntax:
8966"""""""
8967
8968::
8969
8970 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8971
8972Overview:
8973"""""""""
8974
8975The '``llvm.va_copy``' intrinsic copies the current argument position
8976from the source argument list to the destination argument list.
8977
8978Arguments:
8979""""""""""
8980
8981The first argument is a pointer to a ``va_list`` element to initialize.
8982The second argument is a pointer to a ``va_list`` element to copy from.
8983
8984Semantics:
8985""""""""""
8986
8987The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8988available in C. In a target-dependent way, it copies the source
8989``va_list`` element into the destination ``va_list`` element. This
8990intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8991arbitrarily complex and require, for example, memory allocation.
8992
8993Accurate Garbage Collection Intrinsics
8994--------------------------------------
8995
Philip Reamesc5b0f562015-02-25 23:52:06 +00008996LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008997(GC) requires the frontend to generate code containing appropriate intrinsic
8998calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008999intrinsics in a manner which is appropriate for the target collector.
9000
Sean Silvab084af42012-12-07 10:36:55 +00009001These intrinsics allow identification of :ref:`GC roots on the
9002stack <int_gcroot>`, as well as garbage collector implementations that
9003require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009004Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009005these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009006details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009007
Philip Reamesf80bbff2015-02-25 23:45:20 +00009008Experimental Statepoint Intrinsics
9009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9010
9011LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009012collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009013to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009014:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009015differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009016<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009017described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009018
9019.. _int_gcroot:
9020
9021'``llvm.gcroot``' Intrinsic
9022^^^^^^^^^^^^^^^^^^^^^^^^^^^
9023
9024Syntax:
9025"""""""
9026
9027::
9028
9029 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9030
9031Overview:
9032"""""""""
9033
9034The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9035the code generator, and allows some metadata to be associated with it.
9036
9037Arguments:
9038""""""""""
9039
9040The first argument specifies the address of a stack object that contains
9041the root pointer. The second pointer (which must be either a constant or
9042a global value address) contains the meta-data to be associated with the
9043root.
9044
9045Semantics:
9046""""""""""
9047
9048At runtime, a call to this intrinsic stores a null pointer into the
9049"ptrloc" location. At compile-time, the code generator generates
9050information to allow the runtime to find the pointer at GC safe points.
9051The '``llvm.gcroot``' intrinsic may only be used in a function which
9052:ref:`specifies a GC algorithm <gc>`.
9053
9054.. _int_gcread:
9055
9056'``llvm.gcread``' Intrinsic
9057^^^^^^^^^^^^^^^^^^^^^^^^^^^
9058
9059Syntax:
9060"""""""
9061
9062::
9063
9064 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9065
9066Overview:
9067"""""""""
9068
9069The '``llvm.gcread``' intrinsic identifies reads of references from heap
9070locations, allowing garbage collector implementations that require read
9071barriers.
9072
9073Arguments:
9074""""""""""
9075
9076The second argument is the address to read from, which should be an
9077address allocated from the garbage collector. The first object is a
9078pointer to the start of the referenced object, if needed by the language
9079runtime (otherwise null).
9080
9081Semantics:
9082""""""""""
9083
9084The '``llvm.gcread``' intrinsic has the same semantics as a load
9085instruction, but may be replaced with substantially more complex code by
9086the garbage collector runtime, as needed. The '``llvm.gcread``'
9087intrinsic may only be used in a function which :ref:`specifies a GC
9088algorithm <gc>`.
9089
9090.. _int_gcwrite:
9091
9092'``llvm.gcwrite``' Intrinsic
9093^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9094
9095Syntax:
9096"""""""
9097
9098::
9099
9100 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9101
9102Overview:
9103"""""""""
9104
9105The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9106locations, allowing garbage collector implementations that require write
9107barriers (such as generational or reference counting collectors).
9108
9109Arguments:
9110""""""""""
9111
9112The first argument is the reference to store, the second is the start of
9113the object to store it to, and the third is the address of the field of
9114Obj to store to. If the runtime does not require a pointer to the
9115object, Obj may be null.
9116
9117Semantics:
9118""""""""""
9119
9120The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9121instruction, but may be replaced with substantially more complex code by
9122the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9123intrinsic may only be used in a function which :ref:`specifies a GC
9124algorithm <gc>`.
9125
9126Code Generator Intrinsics
9127-------------------------
9128
9129These intrinsics are provided by LLVM to expose special features that
9130may only be implemented with code generator support.
9131
9132'``llvm.returnaddress``' Intrinsic
9133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9134
9135Syntax:
9136"""""""
9137
9138::
9139
9140 declare i8 *@llvm.returnaddress(i32 <level>)
9141
9142Overview:
9143"""""""""
9144
9145The '``llvm.returnaddress``' intrinsic attempts to compute a
9146target-specific value indicating the return address of the current
9147function or one of its callers.
9148
9149Arguments:
9150""""""""""
9151
9152The argument to this intrinsic indicates which function to return the
9153address for. Zero indicates the calling function, one indicates its
9154caller, etc. The argument is **required** to be a constant integer
9155value.
9156
9157Semantics:
9158""""""""""
9159
9160The '``llvm.returnaddress``' intrinsic either returns a pointer
9161indicating the return address of the specified call frame, or zero if it
9162cannot be identified. The value returned by this intrinsic is likely to
9163be incorrect or 0 for arguments other than zero, so it should only be
9164used for debugging purposes.
9165
9166Note that calling this intrinsic does not prevent function inlining or
9167other aggressive transformations, so the value returned may not be that
9168of the obvious source-language caller.
9169
9170'``llvm.frameaddress``' Intrinsic
9171^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9172
9173Syntax:
9174"""""""
9175
9176::
9177
9178 declare i8* @llvm.frameaddress(i32 <level>)
9179
9180Overview:
9181"""""""""
9182
9183The '``llvm.frameaddress``' intrinsic attempts to return the
9184target-specific frame pointer value for the specified stack frame.
9185
9186Arguments:
9187""""""""""
9188
9189The argument to this intrinsic indicates which function to return the
9190frame pointer for. Zero indicates the calling function, one indicates
9191its caller, etc. The argument is **required** to be a constant integer
9192value.
9193
9194Semantics:
9195""""""""""
9196
9197The '``llvm.frameaddress``' intrinsic either returns a pointer
9198indicating the frame address of the specified call frame, or zero if it
9199cannot be identified. The value returned by this intrinsic is likely to
9200be incorrect or 0 for arguments other than zero, so it should only be
9201used for debugging purposes.
9202
9203Note that calling this intrinsic does not prevent function inlining or
9204other aggressive transformations, so the value returned may not be that
9205of the obvious source-language caller.
9206
Reid Kleckner60381792015-07-07 22:25:32 +00009207'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9209
9210Syntax:
9211"""""""
9212
9213::
9214
Reid Kleckner60381792015-07-07 22:25:32 +00009215 declare void @llvm.localescape(...)
9216 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009217
9218Overview:
9219"""""""""
9220
Reid Kleckner60381792015-07-07 22:25:32 +00009221The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9222allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009223live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009224computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009225
9226Arguments:
9227""""""""""
9228
Reid Kleckner60381792015-07-07 22:25:32 +00009229All arguments to '``llvm.localescape``' must be pointers to static allocas or
9230casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009231once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009232
Reid Kleckner60381792015-07-07 22:25:32 +00009233The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009234bitcasted pointer to a function defined in the current module. The code
9235generator cannot determine the frame allocation offset of functions defined in
9236other modules.
9237
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009238The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9239call frame that is currently live. The return value of '``llvm.localaddress``'
9240is one way to produce such a value, but various runtimes also expose a suitable
9241pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009242
Reid Kleckner60381792015-07-07 22:25:32 +00009243The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9244'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009245
Reid Klecknere9b89312015-01-13 00:48:10 +00009246Semantics:
9247""""""""""
9248
Reid Kleckner60381792015-07-07 22:25:32 +00009249These intrinsics allow a group of functions to share access to a set of local
9250stack allocations of a one parent function. The parent function may call the
9251'``llvm.localescape``' intrinsic once from the function entry block, and the
9252child functions can use '``llvm.localrecover``' to access the escaped allocas.
9253The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9254the escaped allocas are allocated, which would break attempts to use
9255'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009256
Renato Golinc7aea402014-05-06 16:51:25 +00009257.. _int_read_register:
9258.. _int_write_register:
9259
9260'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9262
9263Syntax:
9264"""""""
9265
9266::
9267
9268 declare i32 @llvm.read_register.i32(metadata)
9269 declare i64 @llvm.read_register.i64(metadata)
9270 declare void @llvm.write_register.i32(metadata, i32 @value)
9271 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009272 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009273
9274Overview:
9275"""""""""
9276
9277The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9278provides access to the named register. The register must be valid on
9279the architecture being compiled to. The type needs to be compatible
9280with the register being read.
9281
9282Semantics:
9283""""""""""
9284
9285The '``llvm.read_register``' intrinsic returns the current value of the
9286register, where possible. The '``llvm.write_register``' intrinsic sets
9287the current value of the register, where possible.
9288
9289This is useful to implement named register global variables that need
9290to always be mapped to a specific register, as is common practice on
9291bare-metal programs including OS kernels.
9292
9293The compiler doesn't check for register availability or use of the used
9294register in surrounding code, including inline assembly. Because of that,
9295allocatable registers are not supported.
9296
9297Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009298architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009299work is needed to support other registers and even more so, allocatable
9300registers.
9301
Sean Silvab084af42012-12-07 10:36:55 +00009302.. _int_stacksave:
9303
9304'``llvm.stacksave``' Intrinsic
9305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9306
9307Syntax:
9308"""""""
9309
9310::
9311
9312 declare i8* @llvm.stacksave()
9313
9314Overview:
9315"""""""""
9316
9317The '``llvm.stacksave``' intrinsic is used to remember the current state
9318of the function stack, for use with
9319:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9320implementing language features like scoped automatic variable sized
9321arrays in C99.
9322
9323Semantics:
9324""""""""""
9325
9326This intrinsic returns a opaque pointer value that can be passed to
9327:ref:`llvm.stackrestore <int_stackrestore>`. When an
9328``llvm.stackrestore`` intrinsic is executed with a value saved from
9329``llvm.stacksave``, it effectively restores the state of the stack to
9330the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9331practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9332were allocated after the ``llvm.stacksave`` was executed.
9333
9334.. _int_stackrestore:
9335
9336'``llvm.stackrestore``' Intrinsic
9337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9338
9339Syntax:
9340"""""""
9341
9342::
9343
9344 declare void @llvm.stackrestore(i8* %ptr)
9345
9346Overview:
9347"""""""""
9348
9349The '``llvm.stackrestore``' intrinsic is used to restore the state of
9350the function stack to the state it was in when the corresponding
9351:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9352useful for implementing language features like scoped automatic variable
9353sized arrays in C99.
9354
9355Semantics:
9356""""""""""
9357
9358See the description for :ref:`llvm.stacksave <int_stacksave>`.
9359
Yury Gribovd7dbb662015-12-01 11:40:55 +00009360.. _int_get_dynamic_area_offset:
9361
9362'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009364
9365Syntax:
9366"""""""
9367
9368::
9369
9370 declare i32 @llvm.get.dynamic.area.offset.i32()
9371 declare i64 @llvm.get.dynamic.area.offset.i64()
9372
9373 Overview:
9374 """""""""
9375
9376 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9377 get the offset from native stack pointer to the address of the most
9378 recent dynamic alloca on the caller's stack. These intrinsics are
9379 intendend for use in combination with
9380 :ref:`llvm.stacksave <int_stacksave>` to get a
9381 pointer to the most recent dynamic alloca. This is useful, for example,
9382 for AddressSanitizer's stack unpoisoning routines.
9383
9384Semantics:
9385""""""""""
9386
9387 These intrinsics return a non-negative integer value that can be used to
9388 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9389 on the caller's stack. In particular, for targets where stack grows downwards,
9390 adding this offset to the native stack pointer would get the address of the most
9391 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9392 complicated, because substracting this value from stack pointer would get the address
9393 one past the end of the most recent dynamic alloca.
9394
9395 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9396 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9397 compile-time-known constant value.
9398
9399 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9400 must match the target's generic address space's (address space 0) pointer type.
9401
Sean Silvab084af42012-12-07 10:36:55 +00009402'``llvm.prefetch``' Intrinsic
9403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9404
9405Syntax:
9406"""""""
9407
9408::
9409
9410 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9411
9412Overview:
9413"""""""""
9414
9415The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9416insert a prefetch instruction if supported; otherwise, it is a noop.
9417Prefetches have no effect on the behavior of the program but can change
9418its performance characteristics.
9419
9420Arguments:
9421""""""""""
9422
9423``address`` is the address to be prefetched, ``rw`` is the specifier
9424determining if the fetch should be for a read (0) or write (1), and
9425``locality`` is a temporal locality specifier ranging from (0) - no
9426locality, to (3) - extremely local keep in cache. The ``cache type``
9427specifies whether the prefetch is performed on the data (1) or
9428instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9429arguments must be constant integers.
9430
9431Semantics:
9432""""""""""
9433
9434This intrinsic does not modify the behavior of the program. In
9435particular, prefetches cannot trap and do not produce a value. On
9436targets that support this intrinsic, the prefetch can provide hints to
9437the processor cache for better performance.
9438
9439'``llvm.pcmarker``' Intrinsic
9440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9441
9442Syntax:
9443"""""""
9444
9445::
9446
9447 declare void @llvm.pcmarker(i32 <id>)
9448
9449Overview:
9450"""""""""
9451
9452The '``llvm.pcmarker``' intrinsic is a method to export a Program
9453Counter (PC) in a region of code to simulators and other tools. The
9454method is target specific, but it is expected that the marker will use
9455exported symbols to transmit the PC of the marker. The marker makes no
9456guarantees that it will remain with any specific instruction after
9457optimizations. It is possible that the presence of a marker will inhibit
9458optimizations. The intended use is to be inserted after optimizations to
9459allow correlations of simulation runs.
9460
9461Arguments:
9462""""""""""
9463
9464``id`` is a numerical id identifying the marker.
9465
9466Semantics:
9467""""""""""
9468
9469This intrinsic does not modify the behavior of the program. Backends
9470that do not support this intrinsic may ignore it.
9471
9472'``llvm.readcyclecounter``' Intrinsic
9473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9474
9475Syntax:
9476"""""""
9477
9478::
9479
9480 declare i64 @llvm.readcyclecounter()
9481
9482Overview:
9483"""""""""
9484
9485The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9486counter register (or similar low latency, high accuracy clocks) on those
9487targets that support it. On X86, it should map to RDTSC. On Alpha, it
9488should map to RPCC. As the backing counters overflow quickly (on the
9489order of 9 seconds on alpha), this should only be used for small
9490timings.
9491
9492Semantics:
9493""""""""""
9494
9495When directly supported, reading the cycle counter should not modify any
9496memory. Implementations are allowed to either return a application
9497specific value or a system wide value. On backends without support, this
9498is lowered to a constant 0.
9499
Tim Northoverbc933082013-05-23 19:11:20 +00009500Note that runtime support may be conditional on the privilege-level code is
9501running at and the host platform.
9502
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009503'``llvm.clear_cache``' Intrinsic
9504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9505
9506Syntax:
9507"""""""
9508
9509::
9510
9511 declare void @llvm.clear_cache(i8*, i8*)
9512
9513Overview:
9514"""""""""
9515
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009516The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9517in the specified range to the execution unit of the processor. On
9518targets with non-unified instruction and data cache, the implementation
9519flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009520
9521Semantics:
9522""""""""""
9523
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009524On platforms with coherent instruction and data caches (e.g. x86), this
9525intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009526cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009527instructions or a system call, if cache flushing requires special
9528privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009529
Sean Silvad02bf3e2014-04-07 22:29:53 +00009530The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009531time library.
Renato Golin93010e62014-03-26 14:01:32 +00009532
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009533This instrinsic does *not* empty the instruction pipeline. Modifications
9534of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009535
Justin Bogner61ba2e32014-12-08 18:02:35 +00009536'``llvm.instrprof_increment``' Intrinsic
9537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9538
9539Syntax:
9540"""""""
9541
9542::
9543
9544 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9545 i32 <num-counters>, i32 <index>)
9546
9547Overview:
9548"""""""""
9549
9550The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9551frontend for use with instrumentation based profiling. These will be
9552lowered by the ``-instrprof`` pass to generate execution counts of a
9553program at runtime.
9554
9555Arguments:
9556""""""""""
9557
9558The first argument is a pointer to a global variable containing the
9559name of the entity being instrumented. This should generally be the
9560(mangled) function name for a set of counters.
9561
9562The second argument is a hash value that can be used by the consumer
9563of the profile data to detect changes to the instrumented source, and
9564the third is the number of counters associated with ``name``. It is an
9565error if ``hash`` or ``num-counters`` differ between two instances of
9566``instrprof_increment`` that refer to the same name.
9567
9568The last argument refers to which of the counters for ``name`` should
9569be incremented. It should be a value between 0 and ``num-counters``.
9570
9571Semantics:
9572""""""""""
9573
9574This intrinsic represents an increment of a profiling counter. It will
9575cause the ``-instrprof`` pass to generate the appropriate data
9576structures and the code to increment the appropriate value, in a
9577format that can be written out by a compiler runtime and consumed via
9578the ``llvm-profdata`` tool.
9579
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009580'``llvm.instrprof_value_profile``' Intrinsic
9581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9582
9583Syntax:
9584"""""""
9585
9586::
9587
9588 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9589 i64 <value>, i32 <value_kind>,
9590 i32 <index>)
9591
9592Overview:
9593"""""""""
9594
9595The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9596frontend for use with instrumentation based profiling. This will be
9597lowered by the ``-instrprof`` pass to find out the target values,
9598instrumented expressions take in a program at runtime.
9599
9600Arguments:
9601""""""""""
9602
9603The first argument is a pointer to a global variable containing the
9604name of the entity being instrumented. ``name`` should generally be the
9605(mangled) function name for a set of counters.
9606
9607The second argument is a hash value that can be used by the consumer
9608of the profile data to detect changes to the instrumented source. It
9609is an error if ``hash`` differs between two instances of
9610``llvm.instrprof_*`` that refer to the same name.
9611
9612The third argument is the value of the expression being profiled. The profiled
9613expression's value should be representable as an unsigned 64-bit value. The
9614fourth argument represents the kind of value profiling that is being done. The
9615supported value profiling kinds are enumerated through the
9616``InstrProfValueKind`` type declared in the
9617``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9618index of the instrumented expression within ``name``. It should be >= 0.
9619
9620Semantics:
9621""""""""""
9622
9623This intrinsic represents the point where a call to a runtime routine
9624should be inserted for value profiling of target expressions. ``-instrprof``
9625pass will generate the appropriate data structures and replace the
9626``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9627runtime library with proper arguments.
9628
Sean Silvab084af42012-12-07 10:36:55 +00009629Standard C Library Intrinsics
9630-----------------------------
9631
9632LLVM provides intrinsics for a few important standard C library
9633functions. These intrinsics allow source-language front-ends to pass
9634information about the alignment of the pointer arguments to the code
9635generator, providing opportunity for more efficient code generation.
9636
9637.. _int_memcpy:
9638
9639'``llvm.memcpy``' Intrinsic
9640^^^^^^^^^^^^^^^^^^^^^^^^^^^
9641
9642Syntax:
9643"""""""
9644
9645This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9646integer bit width and for different address spaces. Not all targets
9647support all bit widths however.
9648
9649::
9650
9651 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9652 i32 <len>, i32 <align>, i1 <isvolatile>)
9653 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9654 i64 <len>, i32 <align>, i1 <isvolatile>)
9655
9656Overview:
9657"""""""""
9658
9659The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9660source location to the destination location.
9661
9662Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9663intrinsics do not return a value, takes extra alignment/isvolatile
9664arguments and the pointers can be in specified address spaces.
9665
9666Arguments:
9667""""""""""
9668
9669The first argument is a pointer to the destination, the second is a
9670pointer to the source. The third argument is an integer argument
9671specifying the number of bytes to copy, the fourth argument is the
9672alignment of the source and destination locations, and the fifth is a
9673boolean indicating a volatile access.
9674
9675If the call to this intrinsic has an alignment value that is not 0 or 1,
9676then the caller guarantees that both the source and destination pointers
9677are aligned to that boundary.
9678
9679If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9680a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9681very cleanly specified and it is unwise to depend on it.
9682
9683Semantics:
9684""""""""""
9685
9686The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9687source location to the destination location, which are not allowed to
9688overlap. It copies "len" bytes of memory over. If the argument is known
9689to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009690argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009691
9692'``llvm.memmove``' Intrinsic
9693^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9694
9695Syntax:
9696"""""""
9697
9698This is an overloaded intrinsic. You can use llvm.memmove on any integer
9699bit width and for different address space. Not all targets support all
9700bit widths however.
9701
9702::
9703
9704 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9705 i32 <len>, i32 <align>, i1 <isvolatile>)
9706 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9707 i64 <len>, i32 <align>, i1 <isvolatile>)
9708
9709Overview:
9710"""""""""
9711
9712The '``llvm.memmove.*``' intrinsics move a block of memory from the
9713source location to the destination location. It is similar to the
9714'``llvm.memcpy``' intrinsic but allows the two memory locations to
9715overlap.
9716
9717Note that, unlike the standard libc function, the ``llvm.memmove.*``
9718intrinsics do not return a value, takes extra alignment/isvolatile
9719arguments and the pointers can be in specified address spaces.
9720
9721Arguments:
9722""""""""""
9723
9724The first argument is a pointer to the destination, the second is a
9725pointer to the source. The third argument is an integer argument
9726specifying the number of bytes to copy, the fourth argument is the
9727alignment of the source and destination locations, and the fifth is a
9728boolean indicating a volatile access.
9729
9730If the call to this intrinsic has an alignment value that is not 0 or 1,
9731then the caller guarantees that the source and destination pointers are
9732aligned to that boundary.
9733
9734If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9735is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9736not very cleanly specified and it is unwise to depend on it.
9737
9738Semantics:
9739""""""""""
9740
9741The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9742source location to the destination location, which may overlap. It
9743copies "len" bytes of memory over. If the argument is known to be
9744aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009745otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009746
9747'``llvm.memset.*``' Intrinsics
9748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9749
9750Syntax:
9751"""""""
9752
9753This is an overloaded intrinsic. You can use llvm.memset on any integer
9754bit width and for different address spaces. However, not all targets
9755support all bit widths.
9756
9757::
9758
9759 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9760 i32 <len>, i32 <align>, i1 <isvolatile>)
9761 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9762 i64 <len>, i32 <align>, i1 <isvolatile>)
9763
9764Overview:
9765"""""""""
9766
9767The '``llvm.memset.*``' intrinsics fill a block of memory with a
9768particular byte value.
9769
9770Note that, unlike the standard libc function, the ``llvm.memset``
9771intrinsic does not return a value and takes extra alignment/volatile
9772arguments. Also, the destination can be in an arbitrary address space.
9773
9774Arguments:
9775""""""""""
9776
9777The first argument is a pointer to the destination to fill, the second
9778is the byte value with which to fill it, the third argument is an
9779integer argument specifying the number of bytes to fill, and the fourth
9780argument is the known alignment of the destination location.
9781
9782If the call to this intrinsic has an alignment value that is not 0 or 1,
9783then the caller guarantees that the destination pointer is aligned to
9784that boundary.
9785
9786If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9787a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9788very cleanly specified and it is unwise to depend on it.
9789
9790Semantics:
9791""""""""""
9792
9793The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9794at the destination location. If the argument is known to be aligned to
9795some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009796it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009797
9798'``llvm.sqrt.*``' Intrinsic
9799^^^^^^^^^^^^^^^^^^^^^^^^^^^
9800
9801Syntax:
9802"""""""
9803
9804This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9805floating point or vector of floating point type. Not all targets support
9806all types however.
9807
9808::
9809
9810 declare float @llvm.sqrt.f32(float %Val)
9811 declare double @llvm.sqrt.f64(double %Val)
9812 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9813 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9814 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9815
9816Overview:
9817"""""""""
9818
9819The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9820returning the same value as the libm '``sqrt``' functions would. Unlike
9821``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9822negative numbers other than -0.0 (which allows for better optimization,
9823because there is no need to worry about errno being set).
9824``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9825
9826Arguments:
9827""""""""""
9828
9829The argument and return value are floating point numbers of the same
9830type.
9831
9832Semantics:
9833""""""""""
9834
9835This function returns the sqrt of the specified operand if it is a
9836nonnegative floating point number.
9837
9838'``llvm.powi.*``' Intrinsic
9839^^^^^^^^^^^^^^^^^^^^^^^^^^^
9840
9841Syntax:
9842"""""""
9843
9844This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9845floating point or vector of floating point type. Not all targets support
9846all types however.
9847
9848::
9849
9850 declare float @llvm.powi.f32(float %Val, i32 %power)
9851 declare double @llvm.powi.f64(double %Val, i32 %power)
9852 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9853 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9854 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9855
9856Overview:
9857"""""""""
9858
9859The '``llvm.powi.*``' intrinsics return the first operand raised to the
9860specified (positive or negative) power. The order of evaluation of
9861multiplications is not defined. When a vector of floating point type is
9862used, the second argument remains a scalar integer value.
9863
9864Arguments:
9865""""""""""
9866
9867The second argument is an integer power, and the first is a value to
9868raise to that power.
9869
9870Semantics:
9871""""""""""
9872
9873This function returns the first value raised to the second power with an
9874unspecified sequence of rounding operations.
9875
9876'``llvm.sin.*``' Intrinsic
9877^^^^^^^^^^^^^^^^^^^^^^^^^^
9878
9879Syntax:
9880"""""""
9881
9882This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9883floating point or vector of floating point type. Not all targets support
9884all types however.
9885
9886::
9887
9888 declare float @llvm.sin.f32(float %Val)
9889 declare double @llvm.sin.f64(double %Val)
9890 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9891 declare fp128 @llvm.sin.f128(fp128 %Val)
9892 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9893
9894Overview:
9895"""""""""
9896
9897The '``llvm.sin.*``' intrinsics return the sine of the operand.
9898
9899Arguments:
9900""""""""""
9901
9902The argument and return value are floating point numbers of the same
9903type.
9904
9905Semantics:
9906""""""""""
9907
9908This function returns the sine of the specified operand, returning the
9909same values as the libm ``sin`` functions would, and handles error
9910conditions in the same way.
9911
9912'``llvm.cos.*``' Intrinsic
9913^^^^^^^^^^^^^^^^^^^^^^^^^^
9914
9915Syntax:
9916"""""""
9917
9918This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9919floating point or vector of floating point type. Not all targets support
9920all types however.
9921
9922::
9923
9924 declare float @llvm.cos.f32(float %Val)
9925 declare double @llvm.cos.f64(double %Val)
9926 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9927 declare fp128 @llvm.cos.f128(fp128 %Val)
9928 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9929
9930Overview:
9931"""""""""
9932
9933The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9934
9935Arguments:
9936""""""""""
9937
9938The argument and return value are floating point numbers of the same
9939type.
9940
9941Semantics:
9942""""""""""
9943
9944This function returns the cosine of the specified operand, returning the
9945same values as the libm ``cos`` functions would, and handles error
9946conditions in the same way.
9947
9948'``llvm.pow.*``' Intrinsic
9949^^^^^^^^^^^^^^^^^^^^^^^^^^
9950
9951Syntax:
9952"""""""
9953
9954This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9955floating point or vector of floating point type. Not all targets support
9956all types however.
9957
9958::
9959
9960 declare float @llvm.pow.f32(float %Val, float %Power)
9961 declare double @llvm.pow.f64(double %Val, double %Power)
9962 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9963 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9964 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9965
9966Overview:
9967"""""""""
9968
9969The '``llvm.pow.*``' intrinsics return the first operand raised to the
9970specified (positive or negative) power.
9971
9972Arguments:
9973""""""""""
9974
9975The second argument is a floating point power, and the first is a value
9976to raise to that power.
9977
9978Semantics:
9979""""""""""
9980
9981This function returns the first value raised to the second power,
9982returning the same values as the libm ``pow`` functions would, and
9983handles error conditions in the same way.
9984
9985'``llvm.exp.*``' Intrinsic
9986^^^^^^^^^^^^^^^^^^^^^^^^^^
9987
9988Syntax:
9989"""""""
9990
9991This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9992floating point or vector of floating point type. Not all targets support
9993all types however.
9994
9995::
9996
9997 declare float @llvm.exp.f32(float %Val)
9998 declare double @llvm.exp.f64(double %Val)
9999 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10000 declare fp128 @llvm.exp.f128(fp128 %Val)
10001 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10002
10003Overview:
10004"""""""""
10005
10006The '``llvm.exp.*``' intrinsics perform the exp function.
10007
10008Arguments:
10009""""""""""
10010
10011The argument and return value are floating point numbers of the same
10012type.
10013
10014Semantics:
10015""""""""""
10016
10017This function returns the same values as the libm ``exp`` functions
10018would, and handles error conditions in the same way.
10019
10020'``llvm.exp2.*``' Intrinsic
10021^^^^^^^^^^^^^^^^^^^^^^^^^^^
10022
10023Syntax:
10024"""""""
10025
10026This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10027floating point or vector of floating point type. Not all targets support
10028all types however.
10029
10030::
10031
10032 declare float @llvm.exp2.f32(float %Val)
10033 declare double @llvm.exp2.f64(double %Val)
10034 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10035 declare fp128 @llvm.exp2.f128(fp128 %Val)
10036 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10037
10038Overview:
10039"""""""""
10040
10041The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10042
10043Arguments:
10044""""""""""
10045
10046The argument and return value are floating point numbers of the same
10047type.
10048
10049Semantics:
10050""""""""""
10051
10052This function returns the same values as the libm ``exp2`` functions
10053would, and handles error conditions in the same way.
10054
10055'``llvm.log.*``' Intrinsic
10056^^^^^^^^^^^^^^^^^^^^^^^^^^
10057
10058Syntax:
10059"""""""
10060
10061This is an overloaded intrinsic. You can use ``llvm.log`` on any
10062floating point or vector of floating point type. Not all targets support
10063all types however.
10064
10065::
10066
10067 declare float @llvm.log.f32(float %Val)
10068 declare double @llvm.log.f64(double %Val)
10069 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10070 declare fp128 @llvm.log.f128(fp128 %Val)
10071 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10072
10073Overview:
10074"""""""""
10075
10076The '``llvm.log.*``' intrinsics perform the log function.
10077
10078Arguments:
10079""""""""""
10080
10081The argument and return value are floating point numbers of the same
10082type.
10083
10084Semantics:
10085""""""""""
10086
10087This function returns the same values as the libm ``log`` functions
10088would, and handles error conditions in the same way.
10089
10090'``llvm.log10.*``' Intrinsic
10091^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10092
10093Syntax:
10094"""""""
10095
10096This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10097floating point or vector of floating point type. Not all targets support
10098all types however.
10099
10100::
10101
10102 declare float @llvm.log10.f32(float %Val)
10103 declare double @llvm.log10.f64(double %Val)
10104 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10105 declare fp128 @llvm.log10.f128(fp128 %Val)
10106 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10107
10108Overview:
10109"""""""""
10110
10111The '``llvm.log10.*``' intrinsics perform the log10 function.
10112
10113Arguments:
10114""""""""""
10115
10116The argument and return value are floating point numbers of the same
10117type.
10118
10119Semantics:
10120""""""""""
10121
10122This function returns the same values as the libm ``log10`` functions
10123would, and handles error conditions in the same way.
10124
10125'``llvm.log2.*``' Intrinsic
10126^^^^^^^^^^^^^^^^^^^^^^^^^^^
10127
10128Syntax:
10129"""""""
10130
10131This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10132floating point or vector of floating point type. Not all targets support
10133all types however.
10134
10135::
10136
10137 declare float @llvm.log2.f32(float %Val)
10138 declare double @llvm.log2.f64(double %Val)
10139 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10140 declare fp128 @llvm.log2.f128(fp128 %Val)
10141 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10142
10143Overview:
10144"""""""""
10145
10146The '``llvm.log2.*``' intrinsics perform the log2 function.
10147
10148Arguments:
10149""""""""""
10150
10151The argument and return value are floating point numbers of the same
10152type.
10153
10154Semantics:
10155""""""""""
10156
10157This function returns the same values as the libm ``log2`` functions
10158would, and handles error conditions in the same way.
10159
10160'``llvm.fma.*``' Intrinsic
10161^^^^^^^^^^^^^^^^^^^^^^^^^^
10162
10163Syntax:
10164"""""""
10165
10166This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10167floating point or vector of floating point type. Not all targets support
10168all types however.
10169
10170::
10171
10172 declare float @llvm.fma.f32(float %a, float %b, float %c)
10173 declare double @llvm.fma.f64(double %a, double %b, double %c)
10174 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10175 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10176 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10177
10178Overview:
10179"""""""""
10180
10181The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10182operation.
10183
10184Arguments:
10185""""""""""
10186
10187The argument and return value are floating point numbers of the same
10188type.
10189
10190Semantics:
10191""""""""""
10192
10193This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010194would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010195
10196'``llvm.fabs.*``' Intrinsic
10197^^^^^^^^^^^^^^^^^^^^^^^^^^^
10198
10199Syntax:
10200"""""""
10201
10202This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10203floating point or vector of floating point type. Not all targets support
10204all types however.
10205
10206::
10207
10208 declare float @llvm.fabs.f32(float %Val)
10209 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010210 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010211 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010212 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010213
10214Overview:
10215"""""""""
10216
10217The '``llvm.fabs.*``' intrinsics return the absolute value of the
10218operand.
10219
10220Arguments:
10221""""""""""
10222
10223The argument and return value are floating point numbers of the same
10224type.
10225
10226Semantics:
10227""""""""""
10228
10229This function returns the same values as the libm ``fabs`` functions
10230would, and handles error conditions in the same way.
10231
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010232'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010234
10235Syntax:
10236"""""""
10237
10238This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10239floating point or vector of floating point type. Not all targets support
10240all types however.
10241
10242::
10243
Matt Arsenault64313c92014-10-22 18:25:02 +000010244 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10245 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10246 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10247 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10248 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010249
10250Overview:
10251"""""""""
10252
10253The '``llvm.minnum.*``' intrinsics return the minimum of the two
10254arguments.
10255
10256
10257Arguments:
10258""""""""""
10259
10260The arguments and return value are floating point numbers of the same
10261type.
10262
10263Semantics:
10264""""""""""
10265
10266Follows the IEEE-754 semantics for minNum, which also match for libm's
10267fmin.
10268
10269If either operand is a NaN, returns the other non-NaN operand. Returns
10270NaN only if both operands are NaN. If the operands compare equal,
10271returns a value that compares equal to both operands. This means that
10272fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10273
10274'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010276
10277Syntax:
10278"""""""
10279
10280This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10281floating point or vector of floating point type. Not all targets support
10282all types however.
10283
10284::
10285
Matt Arsenault64313c92014-10-22 18:25:02 +000010286 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10287 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10288 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10289 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10290 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010291
10292Overview:
10293"""""""""
10294
10295The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10296arguments.
10297
10298
10299Arguments:
10300""""""""""
10301
10302The arguments and return value are floating point numbers of the same
10303type.
10304
10305Semantics:
10306""""""""""
10307Follows the IEEE-754 semantics for maxNum, which also match for libm's
10308fmax.
10309
10310If either operand is a NaN, returns the other non-NaN operand. Returns
10311NaN only if both operands are NaN. If the operands compare equal,
10312returns a value that compares equal to both operands. This means that
10313fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10314
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010315'``llvm.copysign.*``' Intrinsic
10316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10317
10318Syntax:
10319"""""""
10320
10321This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10322floating point or vector of floating point type. Not all targets support
10323all types however.
10324
10325::
10326
10327 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10328 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10329 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10330 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10331 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10332
10333Overview:
10334"""""""""
10335
10336The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10337first operand and the sign of the second operand.
10338
10339Arguments:
10340""""""""""
10341
10342The arguments and return value are floating point numbers of the same
10343type.
10344
10345Semantics:
10346""""""""""
10347
10348This function returns the same values as the libm ``copysign``
10349functions would, and handles error conditions in the same way.
10350
Sean Silvab084af42012-12-07 10:36:55 +000010351'``llvm.floor.*``' Intrinsic
10352^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10353
10354Syntax:
10355"""""""
10356
10357This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10358floating point or vector of floating point type. Not all targets support
10359all types however.
10360
10361::
10362
10363 declare float @llvm.floor.f32(float %Val)
10364 declare double @llvm.floor.f64(double %Val)
10365 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10366 declare fp128 @llvm.floor.f128(fp128 %Val)
10367 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10368
10369Overview:
10370"""""""""
10371
10372The '``llvm.floor.*``' intrinsics return the floor of the operand.
10373
10374Arguments:
10375""""""""""
10376
10377The argument and return value are floating point numbers of the same
10378type.
10379
10380Semantics:
10381""""""""""
10382
10383This function returns the same values as the libm ``floor`` functions
10384would, and handles error conditions in the same way.
10385
10386'``llvm.ceil.*``' Intrinsic
10387^^^^^^^^^^^^^^^^^^^^^^^^^^^
10388
10389Syntax:
10390"""""""
10391
10392This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10393floating point or vector of floating point type. Not all targets support
10394all types however.
10395
10396::
10397
10398 declare float @llvm.ceil.f32(float %Val)
10399 declare double @llvm.ceil.f64(double %Val)
10400 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10401 declare fp128 @llvm.ceil.f128(fp128 %Val)
10402 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10403
10404Overview:
10405"""""""""
10406
10407The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10408
10409Arguments:
10410""""""""""
10411
10412The argument and return value are floating point numbers of the same
10413type.
10414
10415Semantics:
10416""""""""""
10417
10418This function returns the same values as the libm ``ceil`` functions
10419would, and handles error conditions in the same way.
10420
10421'``llvm.trunc.*``' Intrinsic
10422^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10423
10424Syntax:
10425"""""""
10426
10427This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10428floating point or vector of floating point type. Not all targets support
10429all types however.
10430
10431::
10432
10433 declare float @llvm.trunc.f32(float %Val)
10434 declare double @llvm.trunc.f64(double %Val)
10435 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10436 declare fp128 @llvm.trunc.f128(fp128 %Val)
10437 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10438
10439Overview:
10440"""""""""
10441
10442The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10443nearest integer not larger in magnitude than the operand.
10444
10445Arguments:
10446""""""""""
10447
10448The argument and return value are floating point numbers of the same
10449type.
10450
10451Semantics:
10452""""""""""
10453
10454This function returns the same values as the libm ``trunc`` functions
10455would, and handles error conditions in the same way.
10456
10457'``llvm.rint.*``' Intrinsic
10458^^^^^^^^^^^^^^^^^^^^^^^^^^^
10459
10460Syntax:
10461"""""""
10462
10463This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10464floating point or vector of floating point type. Not all targets support
10465all types however.
10466
10467::
10468
10469 declare float @llvm.rint.f32(float %Val)
10470 declare double @llvm.rint.f64(double %Val)
10471 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10472 declare fp128 @llvm.rint.f128(fp128 %Val)
10473 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10474
10475Overview:
10476"""""""""
10477
10478The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10479nearest integer. It may raise an inexact floating-point exception if the
10480operand isn't an integer.
10481
10482Arguments:
10483""""""""""
10484
10485The argument and return value are floating point numbers of the same
10486type.
10487
10488Semantics:
10489""""""""""
10490
10491This function returns the same values as the libm ``rint`` functions
10492would, and handles error conditions in the same way.
10493
10494'``llvm.nearbyint.*``' Intrinsic
10495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10496
10497Syntax:
10498"""""""
10499
10500This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10501floating point or vector of floating point type. Not all targets support
10502all types however.
10503
10504::
10505
10506 declare float @llvm.nearbyint.f32(float %Val)
10507 declare double @llvm.nearbyint.f64(double %Val)
10508 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10509 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10510 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10511
10512Overview:
10513"""""""""
10514
10515The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10516nearest integer.
10517
10518Arguments:
10519""""""""""
10520
10521The argument and return value are floating point numbers of the same
10522type.
10523
10524Semantics:
10525""""""""""
10526
10527This function returns the same values as the libm ``nearbyint``
10528functions would, and handles error conditions in the same way.
10529
Hal Finkel171817e2013-08-07 22:49:12 +000010530'``llvm.round.*``' Intrinsic
10531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10532
10533Syntax:
10534"""""""
10535
10536This is an overloaded intrinsic. You can use ``llvm.round`` on any
10537floating point or vector of floating point type. Not all targets support
10538all types however.
10539
10540::
10541
10542 declare float @llvm.round.f32(float %Val)
10543 declare double @llvm.round.f64(double %Val)
10544 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10545 declare fp128 @llvm.round.f128(fp128 %Val)
10546 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10547
10548Overview:
10549"""""""""
10550
10551The '``llvm.round.*``' intrinsics returns the operand rounded to the
10552nearest integer.
10553
10554Arguments:
10555""""""""""
10556
10557The argument and return value are floating point numbers of the same
10558type.
10559
10560Semantics:
10561""""""""""
10562
10563This function returns the same values as the libm ``round``
10564functions would, and handles error conditions in the same way.
10565
Sean Silvab084af42012-12-07 10:36:55 +000010566Bit Manipulation Intrinsics
10567---------------------------
10568
10569LLVM provides intrinsics for a few important bit manipulation
10570operations. These allow efficient code generation for some algorithms.
10571
James Molloy90111f72015-11-12 12:29:09 +000010572'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010574
10575Syntax:
10576"""""""
10577
10578This is an overloaded intrinsic function. You can use bitreverse on any
10579integer type.
10580
10581::
10582
10583 declare i16 @llvm.bitreverse.i16(i16 <id>)
10584 declare i32 @llvm.bitreverse.i32(i32 <id>)
10585 declare i64 @llvm.bitreverse.i64(i64 <id>)
10586
10587Overview:
10588"""""""""
10589
10590The '``llvm.bitreverse``' family of intrinsics is used to reverse the
10591bitpattern of an integer value; for example ``0b1234567`` becomes
10592``0b7654321``.
10593
10594Semantics:
10595""""""""""
10596
10597The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10598``M`` in the input moved to bit ``N-M`` in the output.
10599
Sean Silvab084af42012-12-07 10:36:55 +000010600'``llvm.bswap.*``' Intrinsics
10601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10602
10603Syntax:
10604"""""""
10605
10606This is an overloaded intrinsic function. You can use bswap on any
10607integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10608
10609::
10610
10611 declare i16 @llvm.bswap.i16(i16 <id>)
10612 declare i32 @llvm.bswap.i32(i32 <id>)
10613 declare i64 @llvm.bswap.i64(i64 <id>)
10614
10615Overview:
10616"""""""""
10617
10618The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10619values with an even number of bytes (positive multiple of 16 bits).
10620These are useful for performing operations on data that is not in the
10621target's native byte order.
10622
10623Semantics:
10624""""""""""
10625
10626The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10627and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10628intrinsic returns an i32 value that has the four bytes of the input i32
10629swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10630returned i32 will have its bytes in 3, 2, 1, 0 order. The
10631``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10632concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10633respectively).
10634
10635'``llvm.ctpop.*``' Intrinsic
10636^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10637
10638Syntax:
10639"""""""
10640
10641This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10642bit width, or on any vector with integer elements. Not all targets
10643support all bit widths or vector types, however.
10644
10645::
10646
10647 declare i8 @llvm.ctpop.i8(i8 <src>)
10648 declare i16 @llvm.ctpop.i16(i16 <src>)
10649 declare i32 @llvm.ctpop.i32(i32 <src>)
10650 declare i64 @llvm.ctpop.i64(i64 <src>)
10651 declare i256 @llvm.ctpop.i256(i256 <src>)
10652 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10653
10654Overview:
10655"""""""""
10656
10657The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10658in a value.
10659
10660Arguments:
10661""""""""""
10662
10663The only argument is the value to be counted. The argument may be of any
10664integer type, or a vector with integer elements. The return type must
10665match the argument type.
10666
10667Semantics:
10668""""""""""
10669
10670The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10671each element of a vector.
10672
10673'``llvm.ctlz.*``' Intrinsic
10674^^^^^^^^^^^^^^^^^^^^^^^^^^^
10675
10676Syntax:
10677"""""""
10678
10679This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10680integer bit width, or any vector whose elements are integers. Not all
10681targets support all bit widths or vector types, however.
10682
10683::
10684
10685 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10686 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10687 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10688 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10689 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10690 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10691
10692Overview:
10693"""""""""
10694
10695The '``llvm.ctlz``' family of intrinsic functions counts the number of
10696leading zeros in a variable.
10697
10698Arguments:
10699""""""""""
10700
10701The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010702any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010703type must match the first argument type.
10704
10705The second argument must be a constant and is a flag to indicate whether
10706the intrinsic should ensure that a zero as the first argument produces a
10707defined result. Historically some architectures did not provide a
10708defined result for zero values as efficiently, and many algorithms are
10709now predicated on avoiding zero-value inputs.
10710
10711Semantics:
10712""""""""""
10713
10714The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10715zeros in a variable, or within each element of the vector. If
10716``src == 0`` then the result is the size in bits of the type of ``src``
10717if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10718``llvm.ctlz(i32 2) = 30``.
10719
10720'``llvm.cttz.*``' Intrinsic
10721^^^^^^^^^^^^^^^^^^^^^^^^^^^
10722
10723Syntax:
10724"""""""
10725
10726This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10727integer bit width, or any vector of integer elements. Not all targets
10728support all bit widths or vector types, however.
10729
10730::
10731
10732 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10733 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10734 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10735 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10736 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10737 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10738
10739Overview:
10740"""""""""
10741
10742The '``llvm.cttz``' family of intrinsic functions counts the number of
10743trailing zeros.
10744
10745Arguments:
10746""""""""""
10747
10748The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010749any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010750type must match the first argument type.
10751
10752The second argument must be a constant and is a flag to indicate whether
10753the intrinsic should ensure that a zero as the first argument produces a
10754defined result. Historically some architectures did not provide a
10755defined result for zero values as efficiently, and many algorithms are
10756now predicated on avoiding zero-value inputs.
10757
10758Semantics:
10759""""""""""
10760
10761The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10762zeros in a variable, or within each element of a vector. If ``src == 0``
10763then the result is the size in bits of the type of ``src`` if
10764``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10765``llvm.cttz(2) = 1``.
10766
Philip Reames34843ae2015-03-05 05:55:55 +000010767.. _int_overflow:
10768
Sean Silvab084af42012-12-07 10:36:55 +000010769Arithmetic with Overflow Intrinsics
10770-----------------------------------
10771
10772LLVM provides intrinsics for some arithmetic with overflow operations.
10773
10774'``llvm.sadd.with.overflow.*``' Intrinsics
10775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10776
10777Syntax:
10778"""""""
10779
10780This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10781on any integer bit width.
10782
10783::
10784
10785 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10786 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10787 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10788
10789Overview:
10790"""""""""
10791
10792The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10793a signed addition of the two arguments, and indicate whether an overflow
10794occurred during the signed summation.
10795
10796Arguments:
10797""""""""""
10798
10799The arguments (%a and %b) and the first element of the result structure
10800may be of integer types of any bit width, but they must have the same
10801bit width. The second element of the result structure must be of type
10802``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10803addition.
10804
10805Semantics:
10806""""""""""
10807
10808The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010809a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010810first element of which is the signed summation, and the second element
10811of which is a bit specifying if the signed summation resulted in an
10812overflow.
10813
10814Examples:
10815"""""""""
10816
10817.. code-block:: llvm
10818
10819 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10820 %sum = extractvalue {i32, i1} %res, 0
10821 %obit = extractvalue {i32, i1} %res, 1
10822 br i1 %obit, label %overflow, label %normal
10823
10824'``llvm.uadd.with.overflow.*``' Intrinsics
10825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10826
10827Syntax:
10828"""""""
10829
10830This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10831on any integer bit width.
10832
10833::
10834
10835 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10836 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10837 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10838
10839Overview:
10840"""""""""
10841
10842The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10843an unsigned addition of the two arguments, and indicate whether a carry
10844occurred during the unsigned summation.
10845
10846Arguments:
10847""""""""""
10848
10849The arguments (%a and %b) and the first element of the result structure
10850may be of integer types of any bit width, but they must have the same
10851bit width. The second element of the result structure must be of type
10852``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10853addition.
10854
10855Semantics:
10856""""""""""
10857
10858The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010859an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010860first element of which is the sum, and the second element of which is a
10861bit specifying if the unsigned summation resulted in a carry.
10862
10863Examples:
10864"""""""""
10865
10866.. code-block:: llvm
10867
10868 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10869 %sum = extractvalue {i32, i1} %res, 0
10870 %obit = extractvalue {i32, i1} %res, 1
10871 br i1 %obit, label %carry, label %normal
10872
10873'``llvm.ssub.with.overflow.*``' Intrinsics
10874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10875
10876Syntax:
10877"""""""
10878
10879This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10880on any integer bit width.
10881
10882::
10883
10884 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10885 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10886 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10887
10888Overview:
10889"""""""""
10890
10891The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10892a signed subtraction of the two arguments, and indicate whether an
10893overflow occurred during the signed subtraction.
10894
10895Arguments:
10896""""""""""
10897
10898The arguments (%a and %b) and the first element of the result structure
10899may be of integer types of any bit width, but they must have the same
10900bit width. The second element of the result structure must be of type
10901``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10902subtraction.
10903
10904Semantics:
10905""""""""""
10906
10907The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010908a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010909first element of which is the subtraction, and the second element of
10910which is a bit specifying if the signed subtraction resulted in an
10911overflow.
10912
10913Examples:
10914"""""""""
10915
10916.. code-block:: llvm
10917
10918 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10919 %sum = extractvalue {i32, i1} %res, 0
10920 %obit = extractvalue {i32, i1} %res, 1
10921 br i1 %obit, label %overflow, label %normal
10922
10923'``llvm.usub.with.overflow.*``' Intrinsics
10924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10925
10926Syntax:
10927"""""""
10928
10929This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10930on any integer bit width.
10931
10932::
10933
10934 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10935 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10936 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10937
10938Overview:
10939"""""""""
10940
10941The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10942an unsigned subtraction of the two arguments, and indicate whether an
10943overflow occurred during the unsigned subtraction.
10944
10945Arguments:
10946""""""""""
10947
10948The arguments (%a and %b) and the first element of the result structure
10949may be of integer types of any bit width, but they must have the same
10950bit width. The second element of the result structure must be of type
10951``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10952subtraction.
10953
10954Semantics:
10955""""""""""
10956
10957The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010958an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010959the first element of which is the subtraction, and the second element of
10960which is a bit specifying if the unsigned subtraction resulted in an
10961overflow.
10962
10963Examples:
10964"""""""""
10965
10966.. code-block:: llvm
10967
10968 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10969 %sum = extractvalue {i32, i1} %res, 0
10970 %obit = extractvalue {i32, i1} %res, 1
10971 br i1 %obit, label %overflow, label %normal
10972
10973'``llvm.smul.with.overflow.*``' Intrinsics
10974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10975
10976Syntax:
10977"""""""
10978
10979This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10980on any integer bit width.
10981
10982::
10983
10984 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10985 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10986 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10987
10988Overview:
10989"""""""""
10990
10991The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10992a signed multiplication of the two arguments, and indicate whether an
10993overflow occurred during the signed multiplication.
10994
10995Arguments:
10996""""""""""
10997
10998The arguments (%a and %b) and the first element of the result structure
10999may be of integer types of any bit width, but they must have the same
11000bit width. The second element of the result structure must be of type
11001``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11002multiplication.
11003
11004Semantics:
11005""""""""""
11006
11007The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011008a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011009the first element of which is the multiplication, and the second element
11010of which is a bit specifying if the signed multiplication resulted in an
11011overflow.
11012
11013Examples:
11014"""""""""
11015
11016.. code-block:: llvm
11017
11018 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11019 %sum = extractvalue {i32, i1} %res, 0
11020 %obit = extractvalue {i32, i1} %res, 1
11021 br i1 %obit, label %overflow, label %normal
11022
11023'``llvm.umul.with.overflow.*``' Intrinsics
11024^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11025
11026Syntax:
11027"""""""
11028
11029This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11030on any integer bit width.
11031
11032::
11033
11034 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11035 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11036 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11037
11038Overview:
11039"""""""""
11040
11041The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11042a unsigned multiplication of the two arguments, and indicate whether an
11043overflow occurred during the unsigned multiplication.
11044
11045Arguments:
11046""""""""""
11047
11048The arguments (%a and %b) and the first element of the result structure
11049may be of integer types of any bit width, but they must have the same
11050bit width. The second element of the result structure must be of type
11051``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11052multiplication.
11053
11054Semantics:
11055""""""""""
11056
11057The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011058an unsigned multiplication of the two arguments. They return a structure ---
11059the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011060element of which is a bit specifying if the unsigned multiplication
11061resulted in an overflow.
11062
11063Examples:
11064"""""""""
11065
11066.. code-block:: llvm
11067
11068 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11069 %sum = extractvalue {i32, i1} %res, 0
11070 %obit = extractvalue {i32, i1} %res, 1
11071 br i1 %obit, label %overflow, label %normal
11072
11073Specialised Arithmetic Intrinsics
11074---------------------------------
11075
Owen Anderson1056a922015-07-11 07:01:27 +000011076'``llvm.canonicalize.*``' Intrinsic
11077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11078
11079Syntax:
11080"""""""
11081
11082::
11083
11084 declare float @llvm.canonicalize.f32(float %a)
11085 declare double @llvm.canonicalize.f64(double %b)
11086
11087Overview:
11088"""""""""
11089
11090The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011091encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011092implementing certain numeric primitives such as frexp. The canonical encoding is
11093defined by IEEE-754-2008 to be:
11094
11095::
11096
11097 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011098 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011099 numbers, infinities, and NaNs, especially in decimal formats.
11100
11101This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011102conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011103according to section 6.2.
11104
11105Examples of non-canonical encodings:
11106
Sean Silvaa1190322015-08-06 22:56:48 +000011107- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011108 converted to a canonical representation per hardware-specific protocol.
11109- Many normal decimal floating point numbers have non-canonical alternative
11110 encodings.
11111- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
11112 These are treated as non-canonical encodings of zero and with be flushed to
11113 a zero of the same sign by this operation.
11114
11115Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11116default exception handling must signal an invalid exception, and produce a
11117quiet NaN result.
11118
11119This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011120that the compiler does not constant fold the operation. Likewise, division by
111211.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011122-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11123
Sean Silvaa1190322015-08-06 22:56:48 +000011124``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011125
11126- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11127- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11128 to ``(x == y)``
11129
11130Additionally, the sign of zero must be conserved:
11131``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11132
11133The payload bits of a NaN must be conserved, with two exceptions.
11134First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011135must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011136usual methods.
11137
11138The canonicalization operation may be optimized away if:
11139
Sean Silvaa1190322015-08-06 22:56:48 +000011140- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011141 floating-point operation that is required by the standard to be canonical.
11142- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011143 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011144
Sean Silvab084af42012-12-07 10:36:55 +000011145'``llvm.fmuladd.*``' Intrinsic
11146^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11147
11148Syntax:
11149"""""""
11150
11151::
11152
11153 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11154 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11155
11156Overview:
11157"""""""""
11158
11159The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011160expressions that can be fused if the code generator determines that (a) the
11161target instruction set has support for a fused operation, and (b) that the
11162fused operation is more efficient than the equivalent, separate pair of mul
11163and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011164
11165Arguments:
11166""""""""""
11167
11168The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11169multiplicands, a and b, and an addend c.
11170
11171Semantics:
11172""""""""""
11173
11174The expression:
11175
11176::
11177
11178 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11179
11180is equivalent to the expression a \* b + c, except that rounding will
11181not be performed between the multiplication and addition steps if the
11182code generator fuses the operations. Fusion is not guaranteed, even if
11183the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011184corresponding llvm.fma.\* intrinsic function should be used
11185instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011186
11187Examples:
11188"""""""""
11189
11190.. code-block:: llvm
11191
Tim Northover675a0962014-06-13 14:24:23 +000011192 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011193
James Molloy7395a812015-07-16 15:22:46 +000011194
11195'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
11196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11197
11198Syntax:
11199"""""""
11200This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
11201
11202.. code-block:: llvm
11203
11204 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
11205
11206
11207Overview:
11208"""""""""
11209
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011210The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
11211of the two operands, treating them both as unsigned integers. The intermediate
11212calculations are computed using infinitely precise unsigned arithmetic. The final
11213result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000011214
Mohammad Shahid18715532015-08-21 05:31:07 +000011215The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011216the two operands, treating them both as signed integers. If the result overflows, the
11217behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000011218
11219.. note::
11220
11221 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011222 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000011223 recommended for users to create them manually.
11224
11225Arguments:
11226""""""""""
11227
11228Both intrinsics take two integer of the same bitwidth.
11229
11230Semantics:
11231""""""""""
11232
11233The expression::
11234
11235 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11236
11237is equivalent to::
11238
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011239 %1 = zext <4 x i32> %a to <4 x i64>
11240 %2 = zext <4 x i32> %b to <4 x i64>
11241 %sub = sub <4 x i64> %1, %2
11242 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000011243
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011244and the expression::
James Molloy7395a812015-07-16 15:22:46 +000011245
11246 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11247
11248is equivalent to::
11249
11250 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011251 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000011252 %neg = sub nsw <4 x i32> zeroinitializer, %sub
11253 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
11254
11255
Sean Silvab084af42012-12-07 10:36:55 +000011256Half Precision Floating Point Intrinsics
11257----------------------------------------
11258
11259For most target platforms, half precision floating point is a
11260storage-only format. This means that it is a dense encoding (in memory)
11261but does not support computation in the format.
11262
11263This means that code must first load the half-precision floating point
11264value as an i16, then convert it to float with
11265:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11266then be performed on the float value (including extending to double
11267etc). To store the value back to memory, it is first converted to float
11268if needed, then converted to i16 with
11269:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11270i16 value.
11271
11272.. _int_convert_to_fp16:
11273
11274'``llvm.convert.to.fp16``' Intrinsic
11275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11276
11277Syntax:
11278"""""""
11279
11280::
11281
Tim Northoverfd7e4242014-07-17 10:51:23 +000011282 declare i16 @llvm.convert.to.fp16.f32(float %a)
11283 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011284
11285Overview:
11286"""""""""
11287
Tim Northoverfd7e4242014-07-17 10:51:23 +000011288The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11289conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011290
11291Arguments:
11292""""""""""
11293
11294The intrinsic function contains single argument - the value to be
11295converted.
11296
11297Semantics:
11298""""""""""
11299
Tim Northoverfd7e4242014-07-17 10:51:23 +000011300The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11301conventional floating point format to half precision floating point format. The
11302return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011303
11304Examples:
11305"""""""""
11306
11307.. code-block:: llvm
11308
Tim Northoverfd7e4242014-07-17 10:51:23 +000011309 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011310 store i16 %res, i16* @x, align 2
11311
11312.. _int_convert_from_fp16:
11313
11314'``llvm.convert.from.fp16``' Intrinsic
11315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11316
11317Syntax:
11318"""""""
11319
11320::
11321
Tim Northoverfd7e4242014-07-17 10:51:23 +000011322 declare float @llvm.convert.from.fp16.f32(i16 %a)
11323 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011324
11325Overview:
11326"""""""""
11327
11328The '``llvm.convert.from.fp16``' intrinsic function performs a
11329conversion from half precision floating point format to single precision
11330floating point format.
11331
11332Arguments:
11333""""""""""
11334
11335The intrinsic function contains single argument - the value to be
11336converted.
11337
11338Semantics:
11339""""""""""
11340
11341The '``llvm.convert.from.fp16``' intrinsic function performs a
11342conversion from half single precision floating point format to single
11343precision floating point format. The input half-float value is
11344represented by an ``i16`` value.
11345
11346Examples:
11347"""""""""
11348
11349.. code-block:: llvm
11350
David Blaikiec7aabbb2015-03-04 22:06:14 +000011351 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011352 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011353
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011354.. _dbg_intrinsics:
11355
Sean Silvab084af42012-12-07 10:36:55 +000011356Debugger Intrinsics
11357-------------------
11358
11359The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11360prefix), are described in the `LLVM Source Level
11361Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11362document.
11363
11364Exception Handling Intrinsics
11365-----------------------------
11366
11367The LLVM exception handling intrinsics (which all start with
11368``llvm.eh.`` prefix), are described in the `LLVM Exception
11369Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11370
11371.. _int_trampoline:
11372
11373Trampoline Intrinsics
11374---------------------
11375
11376These intrinsics make it possible to excise one parameter, marked with
11377the :ref:`nest <nest>` attribute, from a function. The result is a
11378callable function pointer lacking the nest parameter - the caller does
11379not need to provide a value for it. Instead, the value to use is stored
11380in advance in a "trampoline", a block of memory usually allocated on the
11381stack, which also contains code to splice the nest value into the
11382argument list. This is used to implement the GCC nested function address
11383extension.
11384
11385For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11386then the resulting function pointer has signature ``i32 (i32, i32)*``.
11387It can be created as follows:
11388
11389.. code-block:: llvm
11390
11391 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011392 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011393 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11394 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11395 %fp = bitcast i8* %p to i32 (i32, i32)*
11396
11397The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11398``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11399
11400.. _int_it:
11401
11402'``llvm.init.trampoline``' Intrinsic
11403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11404
11405Syntax:
11406"""""""
11407
11408::
11409
11410 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11411
11412Overview:
11413"""""""""
11414
11415This fills the memory pointed to by ``tramp`` with executable code,
11416turning it into a trampoline.
11417
11418Arguments:
11419""""""""""
11420
11421The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11422pointers. The ``tramp`` argument must point to a sufficiently large and
11423sufficiently aligned block of memory; this memory is written to by the
11424intrinsic. Note that the size and the alignment are target-specific -
11425LLVM currently provides no portable way of determining them, so a
11426front-end that generates this intrinsic needs to have some
11427target-specific knowledge. The ``func`` argument must hold a function
11428bitcast to an ``i8*``.
11429
11430Semantics:
11431""""""""""
11432
11433The block of memory pointed to by ``tramp`` is filled with target
11434dependent code, turning it into a function. Then ``tramp`` needs to be
11435passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11436be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11437function's signature is the same as that of ``func`` with any arguments
11438marked with the ``nest`` attribute removed. At most one such ``nest``
11439argument is allowed, and it must be of pointer type. Calling the new
11440function is equivalent to calling ``func`` with the same argument list,
11441but with ``nval`` used for the missing ``nest`` argument. If, after
11442calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11443modified, then the effect of any later call to the returned function
11444pointer is undefined.
11445
11446.. _int_at:
11447
11448'``llvm.adjust.trampoline``' Intrinsic
11449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11450
11451Syntax:
11452"""""""
11453
11454::
11455
11456 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11457
11458Overview:
11459"""""""""
11460
11461This performs any required machine-specific adjustment to the address of
11462a trampoline (passed as ``tramp``).
11463
11464Arguments:
11465""""""""""
11466
11467``tramp`` must point to a block of memory which already has trampoline
11468code filled in by a previous call to
11469:ref:`llvm.init.trampoline <int_it>`.
11470
11471Semantics:
11472""""""""""
11473
11474On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011475different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011476intrinsic returns the executable address corresponding to ``tramp``
11477after performing the required machine specific adjustments. The pointer
11478returned can then be :ref:`bitcast and executed <int_trampoline>`.
11479
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011480.. _int_mload_mstore:
11481
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011482Masked Vector Load and Store Intrinsics
11483---------------------------------------
11484
11485LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11486
11487.. _int_mload:
11488
11489'``llvm.masked.load.*``' Intrinsics
11490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11491
11492Syntax:
11493"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011494This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011495
11496::
11497
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011498 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11499 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11500 ;; The data is a vector of pointers to double
11501 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
11502 ;; The data is a vector of function pointers
11503 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011504
11505Overview:
11506"""""""""
11507
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011508Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011509
11510
11511Arguments:
11512""""""""""
11513
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011514The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011515
11516
11517Semantics:
11518""""""""""
11519
11520The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11521The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11522
11523
11524::
11525
11526 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011527
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011528 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011529 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011530 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011531
11532.. _int_mstore:
11533
11534'``llvm.masked.store.*``' Intrinsics
11535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11536
11537Syntax:
11538"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011539This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011540
11541::
11542
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011543 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11544 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11545 ;; The data is a vector of pointers to double
11546 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11547 ;; The data is a vector of function pointers
11548 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011549
11550Overview:
11551"""""""""
11552
11553Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11554
11555Arguments:
11556""""""""""
11557
11558The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11559
11560
11561Semantics:
11562""""""""""
11563
11564The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11565The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11566
11567::
11568
11569 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011570
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011571 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011572 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011573 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11574 store <16 x float> %res, <16 x float>* %ptr, align 4
11575
11576
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011577Masked Vector Gather and Scatter Intrinsics
11578-------------------------------------------
11579
11580LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11581
11582.. _int_mgather:
11583
11584'``llvm.masked.gather.*``' Intrinsics
11585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11586
11587Syntax:
11588"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011589This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011590
11591::
11592
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011593 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11594 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11595 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011596
11597Overview:
11598"""""""""
11599
11600Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11601
11602
11603Arguments:
11604""""""""""
11605
11606The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11607
11608
11609Semantics:
11610""""""""""
11611
11612The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11613The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11614
11615
11616::
11617
11618 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11619
11620 ;; The gather with all-true mask is equivalent to the following instruction sequence
11621 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11622 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11623 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11624 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11625
11626 %val0 = load double, double* %ptr0, align 8
11627 %val1 = load double, double* %ptr1, align 8
11628 %val2 = load double, double* %ptr2, align 8
11629 %val3 = load double, double* %ptr3, align 8
11630
11631 %vec0 = insertelement <4 x double>undef, %val0, 0
11632 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11633 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11634 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11635
11636.. _int_mscatter:
11637
11638'``llvm.masked.scatter.*``' Intrinsics
11639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11640
11641Syntax:
11642"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011643This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011644
11645::
11646
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011647 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11648 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11649 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011650
11651Overview:
11652"""""""""
11653
11654Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11655
11656Arguments:
11657""""""""""
11658
11659The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11660
11661
11662Semantics:
11663""""""""""
11664
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011665The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011666
11667::
11668
11669 ;; This instruction unconditionaly stores data vector in multiple addresses
11670 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11671
11672 ;; It is equivalent to a list of scalar stores
11673 %val0 = extractelement <8 x i32> %value, i32 0
11674 %val1 = extractelement <8 x i32> %value, i32 1
11675 ..
11676 %val7 = extractelement <8 x i32> %value, i32 7
11677 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11678 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11679 ..
11680 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11681 ;; Note: the order of the following stores is important when they overlap:
11682 store i32 %val0, i32* %ptr0, align 4
11683 store i32 %val1, i32* %ptr1, align 4
11684 ..
11685 store i32 %val7, i32* %ptr7, align 4
11686
11687
Sean Silvab084af42012-12-07 10:36:55 +000011688Memory Use Markers
11689------------------
11690
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011691This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011692memory objects and ranges where variables are immutable.
11693
Reid Klecknera534a382013-12-19 02:14:12 +000011694.. _int_lifestart:
11695
Sean Silvab084af42012-12-07 10:36:55 +000011696'``llvm.lifetime.start``' Intrinsic
11697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11698
11699Syntax:
11700"""""""
11701
11702::
11703
11704 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11705
11706Overview:
11707"""""""""
11708
11709The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11710object's lifetime.
11711
11712Arguments:
11713""""""""""
11714
11715The first argument is a constant integer representing the size of the
11716object, or -1 if it is variable sized. The second argument is a pointer
11717to the object.
11718
11719Semantics:
11720""""""""""
11721
11722This intrinsic indicates that before this point in the code, the value
11723of the memory pointed to by ``ptr`` is dead. This means that it is known
11724to never be used and has an undefined value. A load from the pointer
11725that precedes this intrinsic can be replaced with ``'undef'``.
11726
Reid Klecknera534a382013-12-19 02:14:12 +000011727.. _int_lifeend:
11728
Sean Silvab084af42012-12-07 10:36:55 +000011729'``llvm.lifetime.end``' Intrinsic
11730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11731
11732Syntax:
11733"""""""
11734
11735::
11736
11737 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11738
11739Overview:
11740"""""""""
11741
11742The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11743object's lifetime.
11744
11745Arguments:
11746""""""""""
11747
11748The first argument is a constant integer representing the size of the
11749object, or -1 if it is variable sized. The second argument is a pointer
11750to the object.
11751
11752Semantics:
11753""""""""""
11754
11755This intrinsic indicates that after this point in the code, the value of
11756the memory pointed to by ``ptr`` is dead. This means that it is known to
11757never be used and has an undefined value. Any stores into the memory
11758object following this intrinsic may be removed as dead.
11759
11760'``llvm.invariant.start``' Intrinsic
11761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11762
11763Syntax:
11764"""""""
11765
11766::
11767
11768 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11769
11770Overview:
11771"""""""""
11772
11773The '``llvm.invariant.start``' intrinsic specifies that the contents of
11774a memory object will not change.
11775
11776Arguments:
11777""""""""""
11778
11779The first argument is a constant integer representing the size of the
11780object, or -1 if it is variable sized. The second argument is a pointer
11781to the object.
11782
11783Semantics:
11784""""""""""
11785
11786This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11787the return value, the referenced memory location is constant and
11788unchanging.
11789
11790'``llvm.invariant.end``' Intrinsic
11791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11792
11793Syntax:
11794"""""""
11795
11796::
11797
11798 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11799
11800Overview:
11801"""""""""
11802
11803The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11804memory object are mutable.
11805
11806Arguments:
11807""""""""""
11808
11809The first argument is the matching ``llvm.invariant.start`` intrinsic.
11810The second argument is a constant integer representing the size of the
11811object, or -1 if it is variable sized and the third argument is a
11812pointer to the object.
11813
11814Semantics:
11815""""""""""
11816
11817This intrinsic indicates that the memory is mutable again.
11818
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011819'``llvm.invariant.group.barrier``' Intrinsic
11820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11821
11822Syntax:
11823"""""""
11824
11825::
11826
11827 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11828
11829Overview:
11830"""""""""
11831
11832The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11833established by invariant.group metadata no longer holds, to obtain a new pointer
11834value that does not carry the invariant information.
11835
11836
11837Arguments:
11838""""""""""
11839
11840The ``llvm.invariant.group.barrier`` takes only one argument, which is
11841the pointer to the memory for which the ``invariant.group`` no longer holds.
11842
11843Semantics:
11844""""""""""
11845
11846Returns another pointer that aliases its argument but which is considered different
11847for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11848
Sean Silvab084af42012-12-07 10:36:55 +000011849General Intrinsics
11850------------------
11851
11852This class of intrinsics is designed to be generic and has no specific
11853purpose.
11854
11855'``llvm.var.annotation``' Intrinsic
11856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11857
11858Syntax:
11859"""""""
11860
11861::
11862
11863 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11864
11865Overview:
11866"""""""""
11867
11868The '``llvm.var.annotation``' intrinsic.
11869
11870Arguments:
11871""""""""""
11872
11873The first argument is a pointer to a value, the second is a pointer to a
11874global string, the third is a pointer to a global string which is the
11875source file name, and the last argument is the line number.
11876
11877Semantics:
11878""""""""""
11879
11880This intrinsic allows annotation of local variables with arbitrary
11881strings. This can be useful for special purpose optimizations that want
11882to look for these annotations. These have no other defined use; they are
11883ignored by code generation and optimization.
11884
Michael Gottesman88d18832013-03-26 00:34:27 +000011885'``llvm.ptr.annotation.*``' Intrinsic
11886^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11887
11888Syntax:
11889"""""""
11890
11891This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11892pointer to an integer of any width. *NOTE* you must specify an address space for
11893the pointer. The identifier for the default address space is the integer
11894'``0``'.
11895
11896::
11897
11898 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11899 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11900 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11901 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11902 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11903
11904Overview:
11905"""""""""
11906
11907The '``llvm.ptr.annotation``' intrinsic.
11908
11909Arguments:
11910""""""""""
11911
11912The first argument is a pointer to an integer value of arbitrary bitwidth
11913(result of some expression), the second is a pointer to a global string, the
11914third is a pointer to a global string which is the source file name, and the
11915last argument is the line number. It returns the value of the first argument.
11916
11917Semantics:
11918""""""""""
11919
11920This intrinsic allows annotation of a pointer to an integer with arbitrary
11921strings. This can be useful for special purpose optimizations that want to look
11922for these annotations. These have no other defined use; they are ignored by code
11923generation and optimization.
11924
Sean Silvab084af42012-12-07 10:36:55 +000011925'``llvm.annotation.*``' Intrinsic
11926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11927
11928Syntax:
11929"""""""
11930
11931This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11932any integer bit width.
11933
11934::
11935
11936 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11937 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11938 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11939 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11940 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11941
11942Overview:
11943"""""""""
11944
11945The '``llvm.annotation``' intrinsic.
11946
11947Arguments:
11948""""""""""
11949
11950The first argument is an integer value (result of some expression), the
11951second is a pointer to a global string, the third is a pointer to a
11952global string which is the source file name, and the last argument is
11953the line number. It returns the value of the first argument.
11954
11955Semantics:
11956""""""""""
11957
11958This intrinsic allows annotations to be put on arbitrary expressions
11959with arbitrary strings. This can be useful for special purpose
11960optimizations that want to look for these annotations. These have no
11961other defined use; they are ignored by code generation and optimization.
11962
11963'``llvm.trap``' Intrinsic
11964^^^^^^^^^^^^^^^^^^^^^^^^^
11965
11966Syntax:
11967"""""""
11968
11969::
11970
11971 declare void @llvm.trap() noreturn nounwind
11972
11973Overview:
11974"""""""""
11975
11976The '``llvm.trap``' intrinsic.
11977
11978Arguments:
11979""""""""""
11980
11981None.
11982
11983Semantics:
11984""""""""""
11985
11986This intrinsic is lowered to the target dependent trap instruction. If
11987the target does not have a trap instruction, this intrinsic will be
11988lowered to a call of the ``abort()`` function.
11989
11990'``llvm.debugtrap``' Intrinsic
11991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11992
11993Syntax:
11994"""""""
11995
11996::
11997
11998 declare void @llvm.debugtrap() nounwind
11999
12000Overview:
12001"""""""""
12002
12003The '``llvm.debugtrap``' intrinsic.
12004
12005Arguments:
12006""""""""""
12007
12008None.
12009
12010Semantics:
12011""""""""""
12012
12013This intrinsic is lowered to code which is intended to cause an
12014execution trap with the intention of requesting the attention of a
12015debugger.
12016
12017'``llvm.stackprotector``' Intrinsic
12018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12019
12020Syntax:
12021"""""""
12022
12023::
12024
12025 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12026
12027Overview:
12028"""""""""
12029
12030The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12031onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12032is placed on the stack before local variables.
12033
12034Arguments:
12035""""""""""
12036
12037The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12038The first argument is the value loaded from the stack guard
12039``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12040enough space to hold the value of the guard.
12041
12042Semantics:
12043""""""""""
12044
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012045This intrinsic causes the prologue/epilogue inserter to force the position of
12046the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12047to ensure that if a local variable on the stack is overwritten, it will destroy
12048the value of the guard. When the function exits, the guard on the stack is
12049checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12050different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12051calling the ``__stack_chk_fail()`` function.
12052
12053'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000012054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012055
12056Syntax:
12057"""""""
12058
12059::
12060
12061 declare void @llvm.stackprotectorcheck(i8** <guard>)
12062
12063Overview:
12064"""""""""
12065
12066The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000012067created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000012068``__stack_chk_fail()`` function.
12069
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012070Arguments:
12071""""""""""
12072
12073The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
12074the variable ``@__stack_chk_guard``.
12075
12076Semantics:
12077""""""""""
12078
12079This intrinsic is provided to perform the stack protector check by comparing
12080``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
12081values do not match call the ``__stack_chk_fail()`` function.
12082
12083The reason to provide this as an IR level intrinsic instead of implementing it
12084via other IR operations is that in order to perform this operation at the IR
12085level without an intrinsic, one would need to create additional basic blocks to
12086handle the success/failure cases. This makes it difficult to stop the stack
12087protector check from disrupting sibling tail calls in Codegen. With this
12088intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000012089codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012090
Sean Silvab084af42012-12-07 10:36:55 +000012091'``llvm.objectsize``' Intrinsic
12092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12093
12094Syntax:
12095"""""""
12096
12097::
12098
12099 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12100 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12101
12102Overview:
12103"""""""""
12104
12105The ``llvm.objectsize`` intrinsic is designed to provide information to
12106the optimizers to determine at compile time whether a) an operation
12107(like memcpy) will overflow a buffer that corresponds to an object, or
12108b) that a runtime check for overflow isn't necessary. An object in this
12109context means an allocation of a specific class, structure, array, or
12110other object.
12111
12112Arguments:
12113""""""""""
12114
12115The ``llvm.objectsize`` intrinsic takes two arguments. The first
12116argument is a pointer to or into the ``object``. The second argument is
12117a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12118or -1 (if false) when the object size is unknown. The second argument
12119only accepts constants.
12120
12121Semantics:
12122""""""""""
12123
12124The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12125the size of the object concerned. If the size cannot be determined at
12126compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12127on the ``min`` argument).
12128
12129'``llvm.expect``' Intrinsic
12130^^^^^^^^^^^^^^^^^^^^^^^^^^^
12131
12132Syntax:
12133"""""""
12134
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012135This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12136integer bit width.
12137
Sean Silvab084af42012-12-07 10:36:55 +000012138::
12139
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012140 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012141 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12142 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12143
12144Overview:
12145"""""""""
12146
12147The ``llvm.expect`` intrinsic provides information about expected (the
12148most probable) value of ``val``, which can be used by optimizers.
12149
12150Arguments:
12151""""""""""
12152
12153The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12154a value. The second argument is an expected value, this needs to be a
12155constant value, variables are not allowed.
12156
12157Semantics:
12158""""""""""
12159
12160This intrinsic is lowered to the ``val``.
12161
Philip Reamese0e90832015-04-26 22:23:12 +000012162.. _int_assume:
12163
Hal Finkel93046912014-07-25 21:13:35 +000012164'``llvm.assume``' Intrinsic
12165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12166
12167Syntax:
12168"""""""
12169
12170::
12171
12172 declare void @llvm.assume(i1 %cond)
12173
12174Overview:
12175"""""""""
12176
12177The ``llvm.assume`` allows the optimizer to assume that the provided
12178condition is true. This information can then be used in simplifying other parts
12179of the code.
12180
12181Arguments:
12182""""""""""
12183
12184The condition which the optimizer may assume is always true.
12185
12186Semantics:
12187""""""""""
12188
12189The intrinsic allows the optimizer to assume that the provided condition is
12190always true whenever the control flow reaches the intrinsic call. No code is
12191generated for this intrinsic, and instructions that contribute only to the
12192provided condition are not used for code generation. If the condition is
12193violated during execution, the behavior is undefined.
12194
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012195Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012196used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12197only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012198if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012199sufficient overall improvement in code quality. For this reason,
12200``llvm.assume`` should not be used to document basic mathematical invariants
12201that the optimizer can otherwise deduce or facts that are of little use to the
12202optimizer.
12203
Peter Collingbournee6909c82015-02-20 20:30:47 +000012204.. _bitset.test:
12205
12206'``llvm.bitset.test``' Intrinsic
12207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12208
12209Syntax:
12210"""""""
12211
12212::
12213
12214 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12215
12216
12217Arguments:
12218""""""""""
12219
12220The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012221metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012222
12223Overview:
12224"""""""""
12225
12226The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12227member of the given bitset.
12228
Sean Silvab084af42012-12-07 10:36:55 +000012229'``llvm.donothing``' Intrinsic
12230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12231
12232Syntax:
12233"""""""
12234
12235::
12236
12237 declare void @llvm.donothing() nounwind readnone
12238
12239Overview:
12240"""""""""
12241
Juergen Ributzkac9161192014-10-23 22:36:13 +000012242The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12243two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12244with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012245
12246Arguments:
12247""""""""""
12248
12249None.
12250
12251Semantics:
12252""""""""""
12253
12254This intrinsic does nothing, and it's removed by optimizers and ignored
12255by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012256
12257Stack Map Intrinsics
12258--------------------
12259
12260LLVM provides experimental intrinsics to support runtime patching
12261mechanisms commonly desired in dynamic language JITs. These intrinsics
12262are described in :doc:`StackMaps`.