blob: 21ca7ec0c30203985ea4945dcf304b5c210edb91 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000430"``cc <n>``" - Numbered convention
431 Any calling convention may be specified by number, allowing
432 target-specific calling conventions to be used. Target specific
433 calling conventions start at 64.
434
435More calling conventions can be added/defined on an as-needed basis, to
436support Pascal conventions or any other well-known target-independent
437convention.
438
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000439.. _visibilitystyles:
440
Sean Silvab084af42012-12-07 10:36:55 +0000441Visibility Styles
442-----------------
443
444All Global Variables and Functions have one of the following visibility
445styles:
446
447"``default``" - Default style
448 On targets that use the ELF object file format, default visibility
449 means that the declaration is visible to other modules and, in
450 shared libraries, means that the declared entity may be overridden.
451 On Darwin, default visibility means that the declaration is visible
452 to other modules. Default visibility corresponds to "external
453 linkage" in the language.
454"``hidden``" - Hidden style
455 Two declarations of an object with hidden visibility refer to the
456 same object if they are in the same shared object. Usually, hidden
457 visibility indicates that the symbol will not be placed into the
458 dynamic symbol table, so no other module (executable or shared
459 library) can reference it directly.
460"``protected``" - Protected style
461 On ELF, protected visibility indicates that the symbol will be
462 placed in the dynamic symbol table, but that references within the
463 defining module will bind to the local symbol. That is, the symbol
464 cannot be overridden by another module.
465
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000466A symbol with ``internal`` or ``private`` linkage must have ``default``
467visibility.
468
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000469.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000470
Nico Rieck7157bb72014-01-14 15:22:47 +0000471DLL Storage Classes
472-------------------
473
474All Global Variables, Functions and Aliases can have one of the following
475DLL storage class:
476
477``dllimport``
478 "``dllimport``" causes the compiler to reference a function or variable via
479 a global pointer to a pointer that is set up by the DLL exporting the
480 symbol. On Microsoft Windows targets, the pointer name is formed by
481 combining ``__imp_`` and the function or variable name.
482``dllexport``
483 "``dllexport``" causes the compiler to provide a global pointer to a pointer
484 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
485 Microsoft Windows targets, the pointer name is formed by combining
486 ``__imp_`` and the function or variable name. Since this storage class
487 exists for defining a dll interface, the compiler, assembler and linker know
488 it is externally referenced and must refrain from deleting the symbol.
489
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000490.. _tls_model:
491
492Thread Local Storage Models
493---------------------------
494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507If no explicit model is given, the "general dynamic" model is used.
508
509The models correspond to the ELF TLS models; see `ELF Handling For
510Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
511more information on under which circumstances the different models may
512be used. The target may choose a different TLS model if the specified
513model is not supported, or if a better choice of model can be made.
514
Sean Silva706fba52015-08-06 22:56:24 +0000515A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000516the alias is accessed. It will not have any effect in the aliasee.
517
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000518For platforms without linker support of ELF TLS model, the -femulated-tls
519flag can be used to generate GCC compatible emulated TLS code.
520
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000521.. _namedtypes:
522
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000523Structure Types
524---------------
Sean Silvab084af42012-12-07 10:36:55 +0000525
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000526LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000527types <t_struct>`. Literal types are uniqued structurally, but identified types
528are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000529to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530
Sean Silva706fba52015-08-06 22:56:24 +0000531An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000532
533.. code-block:: llvm
534
535 %mytype = type { %mytype*, i32 }
536
Sean Silvaa1190322015-08-06 22:56:48 +0000537Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000538literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000539
540.. _globalvars:
541
542Global Variables
543----------------
544
545Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000546instead of run-time.
547
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000548Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000549
550Global variables in other translation units can also be declared, in which
551case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000552
Bob Wilson85b24f22014-06-12 20:40:33 +0000553Either global variable definitions or declarations may have an explicit section
554to be placed in and may have an optional explicit alignment specified.
555
Michael Gottesman006039c2013-01-31 05:48:48 +0000556A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000557the contents of the variable will **never** be modified (enabling better
558optimization, allowing the global data to be placed in the read-only
559section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000560initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000561variable.
562
563LLVM explicitly allows *declarations* of global variables to be marked
564constant, even if the final definition of the global is not. This
565capability can be used to enable slightly better optimization of the
566program, but requires the language definition to guarantee that
567optimizations based on the 'constantness' are valid for the translation
568units that do not include the definition.
569
570As SSA values, global variables define pointer values that are in scope
571(i.e. they dominate) all basic blocks in the program. Global variables
572always define a pointer to their "content" type because they describe a
573region of memory, and all memory objects in LLVM are accessed through
574pointers.
575
576Global variables can be marked with ``unnamed_addr`` which indicates
577that the address is not significant, only the content. Constants marked
578like this can be merged with other constants if they have the same
579initializer. Note that a constant with significant address *can* be
580merged with a ``unnamed_addr`` constant, the result being a constant
581whose address is significant.
582
583A global variable may be declared to reside in a target-specific
584numbered address space. For targets that support them, address spaces
585may affect how optimizations are performed and/or what target
586instructions are used to access the variable. The default address space
587is zero. The address space qualifier must precede any other attributes.
588
589LLVM allows an explicit section to be specified for globals. If the
590target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000591Additionally, the global can placed in a comdat if the target has the necessary
592support.
Sean Silvab084af42012-12-07 10:36:55 +0000593
Michael Gottesmane743a302013-02-04 03:22:00 +0000594By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000595variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000596initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000597true even for variables potentially accessible from outside the
598module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000599``@llvm.used`` or dllexported variables. This assumption may be suppressed
600by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602An explicit alignment may be specified for a global, which must be a
603power of 2. If not present, or if the alignment is set to zero, the
604alignment of the global is set by the target to whatever it feels
605convenient. If an explicit alignment is specified, the global is forced
606to have exactly that alignment. Targets and optimizers are not allowed
607to over-align the global if the global has an assigned section. In this
608case, the extra alignment could be observable: for example, code could
609assume that the globals are densely packed in their section and try to
610iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000611iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000612
Nico Rieck7157bb72014-01-14 15:22:47 +0000613Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
614
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000615Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000616:ref:`Thread Local Storage Model <tls_model>`.
617
Nico Rieck7157bb72014-01-14 15:22:47 +0000618Syntax::
619
620 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000621 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000622 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000623 [, section "name"] [, comdat [($name)]]
624 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000625
Sean Silvab084af42012-12-07 10:36:55 +0000626For example, the following defines a global in a numbered address space
627with an initializer, section, and alignment:
628
629.. code-block:: llvm
630
631 @G = addrspace(5) constant float 1.0, section "foo", align 4
632
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000633The following example just declares a global variable
634
635.. code-block:: llvm
636
637 @G = external global i32
638
Sean Silvab084af42012-12-07 10:36:55 +0000639The following example defines a thread-local global with the
640``initialexec`` TLS model:
641
642.. code-block:: llvm
643
644 @G = thread_local(initialexec) global i32 0, align 4
645
646.. _functionstructure:
647
648Functions
649---------
650
651LLVM function definitions consist of the "``define``" keyword, an
652optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000653style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
654an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000655an optional ``unnamed_addr`` attribute, a return type, an optional
656:ref:`parameter attribute <paramattrs>` for the return type, a function
657name, a (possibly empty) argument list (each with optional :ref:`parameter
658attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000659an optional section, an optional alignment,
660an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000661an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000662an optional :ref:`prologue <prologuedata>`,
663an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000664an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000665an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667LLVM function declarations consist of the "``declare``" keyword, an
668optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000669style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
670an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000671an optional ``unnamed_addr`` attribute, a return type, an optional
672:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000673name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000674:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
675and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000676
Bill Wendling6822ecb2013-10-27 05:09:12 +0000677A function definition contains a list of basic blocks, forming the CFG (Control
678Flow Graph) for the function. Each basic block may optionally start with a label
679(giving the basic block a symbol table entry), contains a list of instructions,
680and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
681function return). If an explicit label is not provided, a block is assigned an
682implicit numbered label, using the next value from the same counter as used for
683unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
684entry block does not have an explicit label, it will be assigned label "%0",
685then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000686
687The first basic block in a function is special in two ways: it is
688immediately executed on entrance to the function, and it is not allowed
689to have predecessor basic blocks (i.e. there can not be any branches to
690the entry block of a function). Because the block can have no
691predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
692
693LLVM allows an explicit section to be specified for functions. If the
694target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000695Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000696
697An explicit alignment may be specified for a function. If not present,
698or if the alignment is set to zero, the alignment of the function is set
699by the target to whatever it feels convenient. If an explicit alignment
700is specified, the function is forced to have at least that much
701alignment. All alignments must be a power of 2.
702
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000703If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000704be significant and two identical functions can be merged.
705
706Syntax::
707
Nico Rieck7157bb72014-01-14 15:22:47 +0000708 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000709 [cconv] [ret attrs]
710 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000711 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000712 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000713 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000714
Sean Silva706fba52015-08-06 22:56:24 +0000715The argument list is a comma separated sequence of arguments where each
716argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000717
718Syntax::
719
720 <type> [parameter Attrs] [name]
721
722
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000723.. _langref_aliases:
724
Sean Silvab084af42012-12-07 10:36:55 +0000725Aliases
726-------
727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Aliases, unlike function or variables, don't create any new data. They
729are just a new symbol and metadata for an existing position.
730
731Aliases have a name and an aliasee that is either a global value or a
732constant expression.
733
Nico Rieck7157bb72014-01-14 15:22:47 +0000734Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000735:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
736<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000737
738Syntax::
739
David Blaikie196582e2015-10-22 01:17:29 +0000740 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000741
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000742The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000743``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000744might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000745
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000746Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000747the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
748to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000749
Rafael Espindola64c1e182014-06-03 02:41:57 +0000750Since aliases are only a second name, some restrictions apply, of which
751some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000752
Rafael Espindola64c1e182014-06-03 02:41:57 +0000753* The expression defining the aliasee must be computable at assembly
754 time. Since it is just a name, no relocations can be used.
755
756* No alias in the expression can be weak as the possibility of the
757 intermediate alias being overridden cannot be represented in an
758 object file.
759
760* No global value in the expression can be a declaration, since that
761 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000762
David Majnemerdad0a642014-06-27 18:19:56 +0000763.. _langref_comdats:
764
765Comdats
766-------
767
768Comdat IR provides access to COFF and ELF object file COMDAT functionality.
769
Sean Silvaa1190322015-08-06 22:56:48 +0000770Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000771specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000772that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000773aliasee computes to, if any.
774
775Comdats have a selection kind to provide input on how the linker should
776choose between keys in two different object files.
777
778Syntax::
779
780 $<Name> = comdat SelectionKind
781
782The selection kind must be one of the following:
783
784``any``
785 The linker may choose any COMDAT key, the choice is arbitrary.
786``exactmatch``
787 The linker may choose any COMDAT key but the sections must contain the
788 same data.
789``largest``
790 The linker will choose the section containing the largest COMDAT key.
791``noduplicates``
792 The linker requires that only section with this COMDAT key exist.
793``samesize``
794 The linker may choose any COMDAT key but the sections must contain the
795 same amount of data.
796
797Note that the Mach-O platform doesn't support COMDATs and ELF only supports
798``any`` as a selection kind.
799
800Here is an example of a COMDAT group where a function will only be selected if
801the COMDAT key's section is the largest:
802
803.. code-block:: llvm
804
805 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000806 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000807
Rafael Espindola83a362c2015-01-06 22:55:16 +0000808 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000809 ret void
810 }
811
Rafael Espindola83a362c2015-01-06 22:55:16 +0000812As a syntactic sugar the ``$name`` can be omitted if the name is the same as
813the global name:
814
815.. code-block:: llvm
816
817 $foo = comdat any
818 @foo = global i32 2, comdat
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821In a COFF object file, this will create a COMDAT section with selection kind
822``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
823and another COMDAT section with selection kind
824``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000825section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000826
827There are some restrictions on the properties of the global object.
828It, or an alias to it, must have the same name as the COMDAT group when
829targeting COFF.
830The contents and size of this object may be used during link-time to determine
831which COMDAT groups get selected depending on the selection kind.
832Because the name of the object must match the name of the COMDAT group, the
833linkage of the global object must not be local; local symbols can get renamed
834if a collision occurs in the symbol table.
835
836The combined use of COMDATS and section attributes may yield surprising results.
837For example:
838
839.. code-block:: llvm
840
841 $foo = comdat any
842 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000843 @g1 = global i32 42, section "sec", comdat($foo)
844 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000845
846From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000847with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000848COMDAT groups and COMDATs, at the object file level, are represented by
849sections.
850
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000851Note that certain IR constructs like global variables and functions may
852create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000853COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000854in individual sections (e.g. when `-data-sections` or `-function-sections`
855is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000856
Sean Silvab084af42012-12-07 10:36:55 +0000857.. _namedmetadatastructure:
858
859Named Metadata
860--------------
861
862Named metadata is a collection of metadata. :ref:`Metadata
863nodes <metadata>` (but not metadata strings) are the only valid
864operands for a named metadata.
865
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000866#. Named metadata are represented as a string of characters with the
867 metadata prefix. The rules for metadata names are the same as for
868 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
869 are still valid, which allows any character to be part of a name.
870
Sean Silvab084af42012-12-07 10:36:55 +0000871Syntax::
872
873 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000874 !0 = !{!"zero"}
875 !1 = !{!"one"}
876 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000877 ; A named metadata.
878 !name = !{!0, !1, !2}
879
880.. _paramattrs:
881
882Parameter Attributes
883--------------------
884
885The return type and each parameter of a function type may have a set of
886*parameter attributes* associated with them. Parameter attributes are
887used to communicate additional information about the result or
888parameters of a function. Parameter attributes are considered to be part
889of the function, not of the function type, so functions with different
890parameter attributes can have the same function type.
891
892Parameter attributes are simple keywords that follow the type specified.
893If multiple parameter attributes are needed, they are space separated.
894For example:
895
896.. code-block:: llvm
897
898 declare i32 @printf(i8* noalias nocapture, ...)
899 declare i32 @atoi(i8 zeroext)
900 declare signext i8 @returns_signed_char()
901
902Note that any attributes for the function result (``nounwind``,
903``readonly``) come immediately after the argument list.
904
905Currently, only the following parameter attributes are defined:
906
907``zeroext``
908 This indicates to the code generator that the parameter or return
909 value should be zero-extended to the extent required by the target's
910 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
911 the caller (for a parameter) or the callee (for a return value).
912``signext``
913 This indicates to the code generator that the parameter or return
914 value should be sign-extended to the extent required by the target's
915 ABI (which is usually 32-bits) by the caller (for a parameter) or
916 the callee (for a return value).
917``inreg``
918 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000919 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000920 a function call or return (usually, by putting it in a register as
921 opposed to memory, though some targets use it to distinguish between
922 two different kinds of registers). Use of this attribute is
923 target-specific.
924``byval``
925 This indicates that the pointer parameter should really be passed by
926 value to the function. The attribute implies that a hidden copy of
927 the pointee is made between the caller and the callee, so the callee
928 is unable to modify the value in the caller. This attribute is only
929 valid on LLVM pointer arguments. It is generally used to pass
930 structs and arrays by value, but is also valid on pointers to
931 scalars. The copy is considered to belong to the caller not the
932 callee (for example, ``readonly`` functions should not write to
933 ``byval`` parameters). This is not a valid attribute for return
934 values.
935
936 The byval attribute also supports specifying an alignment with the
937 align attribute. It indicates the alignment of the stack slot to
938 form and the known alignment of the pointer specified to the call
939 site. If the alignment is not specified, then the code generator
940 makes a target-specific assumption.
941
Reid Klecknera534a382013-12-19 02:14:12 +0000942.. _attr_inalloca:
943
944``inalloca``
945
Reid Kleckner60d3a832014-01-16 22:59:24 +0000946 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000947 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000948 be a pointer to stack memory produced by an ``alloca`` instruction.
949 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000950 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000951 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000952
Reid Kleckner436c42e2014-01-17 23:58:17 +0000953 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000954 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000955 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000956 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000957 ``inalloca`` attribute also disables LLVM's implicit lowering of
958 large aggregate return values, which means that frontend authors
959 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000960
Reid Kleckner60d3a832014-01-16 22:59:24 +0000961 When the call site is reached, the argument allocation must have
962 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000963 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000964 space after an argument allocation and before its call site, but it
965 must be cleared off with :ref:`llvm.stackrestore
966 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000967
968 See :doc:`InAlloca` for more information on how to use this
969 attribute.
970
Sean Silvab084af42012-12-07 10:36:55 +0000971``sret``
972 This indicates that the pointer parameter specifies the address of a
973 structure that is the return value of the function in the source
974 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000975 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000976 not to trap and to be properly aligned. This may only be applied to
977 the first parameter. This is not a valid attribute for return
978 values.
Sean Silva1703e702014-04-08 21:06:22 +0000979
Hal Finkelccc70902014-07-22 16:58:55 +0000980``align <n>``
981 This indicates that the pointer value may be assumed by the optimizer to
982 have the specified alignment.
983
984 Note that this attribute has additional semantics when combined with the
985 ``byval`` attribute.
986
Sean Silva1703e702014-04-08 21:06:22 +0000987.. _noalias:
988
Sean Silvab084af42012-12-07 10:36:55 +0000989``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000990 This indicates that objects accessed via pointer values
991 :ref:`based <pointeraliasing>` on the argument or return value are not also
992 accessed, during the execution of the function, via pointer values not
993 *based* on the argument or return value. The attribute on a return value
994 also has additional semantics described below. The caller shares the
995 responsibility with the callee for ensuring that these requirements are met.
996 For further details, please see the discussion of the NoAlias response in
997 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000998
999 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001000 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001001
1002 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001003 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1004 attribute on return values are stronger than the semantics of the attribute
1005 when used on function arguments. On function return values, the ``noalias``
1006 attribute indicates that the function acts like a system memory allocation
1007 function, returning a pointer to allocated storage disjoint from the
1008 storage for any other object accessible to the caller.
1009
Sean Silvab084af42012-12-07 10:36:55 +00001010``nocapture``
1011 This indicates that the callee does not make any copies of the
1012 pointer that outlive the callee itself. This is not a valid
1013 attribute for return values.
1014
1015.. _nest:
1016
1017``nest``
1018 This indicates that the pointer parameter can be excised using the
1019 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001020 attribute for return values and can only be applied to one parameter.
1021
1022``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001023 This indicates that the function always returns the argument as its return
1024 value. This is an optimization hint to the code generator when generating
1025 the caller, allowing tail call optimization and omission of register saves
1026 and restores in some cases; it is not checked or enforced when generating
1027 the callee. The parameter and the function return type must be valid
1028 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1029 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001030
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001031``nonnull``
1032 This indicates that the parameter or return pointer is not null. This
1033 attribute may only be applied to pointer typed parameters. This is not
1034 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001035 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001036 is non-null.
1037
Hal Finkelb0407ba2014-07-18 15:51:28 +00001038``dereferenceable(<n>)``
1039 This indicates that the parameter or return pointer is dereferenceable. This
1040 attribute may only be applied to pointer typed parameters. A pointer that
1041 is dereferenceable can be loaded from speculatively without a risk of
1042 trapping. The number of bytes known to be dereferenceable must be provided
1043 in parentheses. It is legal for the number of bytes to be less than the
1044 size of the pointee type. The ``nonnull`` attribute does not imply
1045 dereferenceability (consider a pointer to one element past the end of an
1046 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1047 ``addrspace(0)`` (which is the default address space).
1048
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001049``dereferenceable_or_null(<n>)``
1050 This indicates that the parameter or return value isn't both
1051 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001052 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001053 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1054 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1055 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1056 and in other address spaces ``dereferenceable_or_null(<n>)``
1057 implies that a pointer is at least one of ``dereferenceable(<n>)``
1058 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001059 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001060 pointer typed parameters.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062.. _gc:
1063
Philip Reamesf80bbff2015-02-25 23:45:20 +00001064Garbage Collector Strategy Names
1065--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001066
Philip Reamesf80bbff2015-02-25 23:45:20 +00001067Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001068string:
1069
1070.. code-block:: llvm
1071
1072 define void @f() gc "name" { ... }
1073
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001074The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001075<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001076strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001077named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001078garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001079which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001080
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001081.. _prefixdata:
1082
1083Prefix Data
1084-----------
1085
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086Prefix data is data associated with a function which the code
1087generator will emit immediately before the function's entrypoint.
1088The purpose of this feature is to allow frontends to associate
1089language-specific runtime metadata with specific functions and make it
1090available through the function pointer while still allowing the
1091function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001092
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001093To access the data for a given function, a program may bitcast the
1094function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001095index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096the prefix data. For instance, take the example of a function annotated
1097with a single ``i32``,
1098
1099.. code-block:: llvm
1100
1101 define void @f() prefix i32 123 { ... }
1102
1103The prefix data can be referenced as,
1104
1105.. code-block:: llvm
1106
David Blaikie16a97eb2015-03-04 22:02:58 +00001107 %0 = bitcast void* () @f to i32*
1108 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001109 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001110
1111Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001112of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001113beginning of the prefix data is aligned. This means that if the size
1114of the prefix data is not a multiple of the alignment size, the
1115function's entrypoint will not be aligned. If alignment of the
1116function's entrypoint is desired, padding must be added to the prefix
1117data.
1118
Sean Silvaa1190322015-08-06 22:56:48 +00001119A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001120to the ``available_externally`` linkage in that the data may be used by the
1121optimizers but will not be emitted in the object file.
1122
1123.. _prologuedata:
1124
1125Prologue Data
1126-------------
1127
1128The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1129be inserted prior to the function body. This can be used for enabling
1130function hot-patching and instrumentation.
1131
1132To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001133have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134bytes which decode to a sequence of machine instructions, valid for the
1135module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001136the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001138definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001140
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001141A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001142which encodes the ``nop`` instruction:
1143
1144.. code-block:: llvm
1145
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001146 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001147
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001148Generally prologue data can be formed by encoding a relative branch instruction
1149which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001150x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1151
1152.. code-block:: llvm
1153
1154 %0 = type <{ i8, i8, i8* }>
1155
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001157
Sean Silvaa1190322015-08-06 22:56:48 +00001158A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001159to the ``available_externally`` linkage in that the data may be used by the
1160optimizers but will not be emitted in the object file.
1161
David Majnemer7fddecc2015-06-17 20:52:32 +00001162.. _personalityfn:
1163
1164Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001165--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001166
1167The ``personality`` attribute permits functions to specify what function
1168to use for exception handling.
1169
Bill Wendling63b88192013-02-06 06:52:58 +00001170.. _attrgrp:
1171
1172Attribute Groups
1173----------------
1174
1175Attribute groups are groups of attributes that are referenced by objects within
1176the IR. They are important for keeping ``.ll`` files readable, because a lot of
1177functions will use the same set of attributes. In the degenerative case of a
1178``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1179group will capture the important command line flags used to build that file.
1180
1181An attribute group is a module-level object. To use an attribute group, an
1182object references the attribute group's ID (e.g. ``#37``). An object may refer
1183to more than one attribute group. In that situation, the attributes from the
1184different groups are merged.
1185
1186Here is an example of attribute groups for a function that should always be
1187inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1188
1189.. code-block:: llvm
1190
1191 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001192 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001193
1194 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001195 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001196
1197 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1198 define void @f() #0 #1 { ... }
1199
Sean Silvab084af42012-12-07 10:36:55 +00001200.. _fnattrs:
1201
1202Function Attributes
1203-------------------
1204
1205Function attributes are set to communicate additional information about
1206a function. Function attributes are considered to be part of the
1207function, not of the function type, so functions with different function
1208attributes can have the same function type.
1209
1210Function attributes are simple keywords that follow the type specified.
1211If multiple attributes are needed, they are space separated. For
1212example:
1213
1214.. code-block:: llvm
1215
1216 define void @f() noinline { ... }
1217 define void @f() alwaysinline { ... }
1218 define void @f() alwaysinline optsize { ... }
1219 define void @f() optsize { ... }
1220
Sean Silvab084af42012-12-07 10:36:55 +00001221``alignstack(<n>)``
1222 This attribute indicates that, when emitting the prologue and
1223 epilogue, the backend should forcibly align the stack pointer.
1224 Specify the desired alignment, which must be a power of two, in
1225 parentheses.
1226``alwaysinline``
1227 This attribute indicates that the inliner should attempt to inline
1228 this function into callers whenever possible, ignoring any active
1229 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001230``builtin``
1231 This indicates that the callee function at a call site should be
1232 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001233 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001234 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001235 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001236``cold``
1237 This attribute indicates that this function is rarely called. When
1238 computing edge weights, basic blocks post-dominated by a cold
1239 function call are also considered to be cold; and, thus, given low
1240 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001241``convergent``
1242 This attribute indicates that the callee is dependent on a convergent
1243 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001244 Transformations that are execution model agnostic may not make the execution
1245 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001246``inlinehint``
1247 This attribute indicates that the source code contained a hint that
1248 inlining this function is desirable (such as the "inline" keyword in
1249 C/C++). It is just a hint; it imposes no requirements on the
1250 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001251``jumptable``
1252 This attribute indicates that the function should be added to a
1253 jump-instruction table at code-generation time, and that all address-taken
1254 references to this function should be replaced with a reference to the
1255 appropriate jump-instruction-table function pointer. Note that this creates
1256 a new pointer for the original function, which means that code that depends
1257 on function-pointer identity can break. So, any function annotated with
1258 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001259``minsize``
1260 This attribute suggests that optimization passes and code generator
1261 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001262 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001263 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001264``naked``
1265 This attribute disables prologue / epilogue emission for the
1266 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001267``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001268 This indicates that the callee function at a call site is not recognized as
1269 a built-in function. LLVM will retain the original call and not replace it
1270 with equivalent code based on the semantics of the built-in function, unless
1271 the call site uses the ``builtin`` attribute. This is valid at call sites
1272 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001273``noduplicate``
1274 This attribute indicates that calls to the function cannot be
1275 duplicated. A call to a ``noduplicate`` function may be moved
1276 within its parent function, but may not be duplicated within
1277 its parent function.
1278
1279 A function containing a ``noduplicate`` call may still
1280 be an inlining candidate, provided that the call is not
1281 duplicated by inlining. That implies that the function has
1282 internal linkage and only has one call site, so the original
1283 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001284``noimplicitfloat``
1285 This attributes disables implicit floating point instructions.
1286``noinline``
1287 This attribute indicates that the inliner should never inline this
1288 function in any situation. This attribute may not be used together
1289 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001290``nonlazybind``
1291 This attribute suppresses lazy symbol binding for the function. This
1292 may make calls to the function faster, at the cost of extra program
1293 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001294``noredzone``
1295 This attribute indicates that the code generator should not use a
1296 red zone, even if the target-specific ABI normally permits it.
1297``noreturn``
1298 This function attribute indicates that the function never returns
1299 normally. This produces undefined behavior at runtime if the
1300 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001301``norecurse``
1302 This function attribute indicates that the function does not call itself
1303 either directly or indirectly down any possible call path. This produces
1304 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001305``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001306 This function attribute indicates that the function never raises an
1307 exception. If the function does raise an exception, its runtime
1308 behavior is undefined. However, functions marked nounwind may still
1309 trap or generate asynchronous exceptions. Exception handling schemes
1310 that are recognized by LLVM to handle asynchronous exceptions, such
1311 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001312``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001313 This function attribute indicates that most optimization passes will skip
1314 this function, with the exception of interprocedural optimization passes.
1315 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001316 This attribute cannot be used together with the ``alwaysinline``
1317 attribute; this attribute is also incompatible
1318 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001319
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001320 This attribute requires the ``noinline`` attribute to be specified on
1321 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001322 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001323 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001324``optsize``
1325 This attribute suggests that optimization passes and code generator
1326 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001327 and otherwise do optimizations specifically to reduce code size as
1328 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001329``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001330 On a function, this attribute indicates that the function computes its
1331 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001332 without dereferencing any pointer arguments or otherwise accessing
1333 any mutable state (e.g. memory, control registers, etc) visible to
1334 caller functions. It does not write through any pointer arguments
1335 (including ``byval`` arguments) and never changes any state visible
1336 to callers. This means that it cannot unwind exceptions by calling
1337 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001338
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001339 On an argument, this attribute indicates that the function does not
1340 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001341 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001342``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001343 On a function, this attribute indicates that the function does not write
1344 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001345 modify any state (e.g. memory, control registers, etc) visible to
1346 caller functions. It may dereference pointer arguments and read
1347 state that may be set in the caller. A readonly function always
1348 returns the same value (or unwinds an exception identically) when
1349 called with the same set of arguments and global state. It cannot
1350 unwind an exception by calling the ``C++`` exception throwing
1351 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001352
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001353 On an argument, this attribute indicates that the function does not write
1354 through this pointer argument, even though it may write to the memory that
1355 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001356``argmemonly``
1357 This attribute indicates that the only memory accesses inside function are
1358 loads and stores from objects pointed to by its pointer-typed arguments,
1359 with arbitrary offsets. Or in other words, all memory operations in the
1360 function can refer to memory only using pointers based on its function
1361 arguments.
1362 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1363 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001364``returns_twice``
1365 This attribute indicates that this function can return twice. The C
1366 ``setjmp`` is an example of such a function. The compiler disables
1367 some optimizations (like tail calls) in the caller of these
1368 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001369``safestack``
1370 This attribute indicates that
1371 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1372 protection is enabled for this function.
1373
1374 If a function that has a ``safestack`` attribute is inlined into a
1375 function that doesn't have a ``safestack`` attribute or which has an
1376 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1377 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001378``sanitize_address``
1379 This attribute indicates that AddressSanitizer checks
1380 (dynamic address safety analysis) are enabled for this function.
1381``sanitize_memory``
1382 This attribute indicates that MemorySanitizer checks (dynamic detection
1383 of accesses to uninitialized memory) are enabled for this function.
1384``sanitize_thread``
1385 This attribute indicates that ThreadSanitizer checks
1386 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001387``ssp``
1388 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001389 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001390 placed on the stack before the local variables that's checked upon
1391 return from the function to see if it has been overwritten. A
1392 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001393 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001394
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001395 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1396 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1397 - Calls to alloca() with variable sizes or constant sizes greater than
1398 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001399
Josh Magee24c7f062014-02-01 01:36:16 +00001400 Variables that are identified as requiring a protector will be arranged
1401 on the stack such that they are adjacent to the stack protector guard.
1402
Sean Silvab084af42012-12-07 10:36:55 +00001403 If a function that has an ``ssp`` attribute is inlined into a
1404 function that doesn't have an ``ssp`` attribute, then the resulting
1405 function will have an ``ssp`` attribute.
1406``sspreq``
1407 This attribute indicates that the function should *always* emit a
1408 stack smashing protector. This overrides the ``ssp`` function
1409 attribute.
1410
Josh Magee24c7f062014-02-01 01:36:16 +00001411 Variables that are identified as requiring a protector will be arranged
1412 on the stack such that they are adjacent to the stack protector guard.
1413 The specific layout rules are:
1414
1415 #. Large arrays and structures containing large arrays
1416 (``>= ssp-buffer-size``) are closest to the stack protector.
1417 #. Small arrays and structures containing small arrays
1418 (``< ssp-buffer-size``) are 2nd closest to the protector.
1419 #. Variables that have had their address taken are 3rd closest to the
1420 protector.
1421
Sean Silvab084af42012-12-07 10:36:55 +00001422 If a function that has an ``sspreq`` attribute is inlined into a
1423 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001424 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1425 an ``sspreq`` attribute.
1426``sspstrong``
1427 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001428 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001429 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001430 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001431
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001432 - Arrays of any size and type
1433 - Aggregates containing an array of any size and type.
1434 - Calls to alloca().
1435 - Local variables that have had their address taken.
1436
Josh Magee24c7f062014-02-01 01:36:16 +00001437 Variables that are identified as requiring a protector will be arranged
1438 on the stack such that they are adjacent to the stack protector guard.
1439 The specific layout rules are:
1440
1441 #. Large arrays and structures containing large arrays
1442 (``>= ssp-buffer-size``) are closest to the stack protector.
1443 #. Small arrays and structures containing small arrays
1444 (``< ssp-buffer-size``) are 2nd closest to the protector.
1445 #. Variables that have had their address taken are 3rd closest to the
1446 protector.
1447
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001448 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001449
1450 If a function that has an ``sspstrong`` attribute is inlined into a
1451 function that doesn't have an ``sspstrong`` attribute, then the
1452 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001453``"thunk"``
1454 This attribute indicates that the function will delegate to some other
1455 function with a tail call. The prototype of a thunk should not be used for
1456 optimization purposes. The caller is expected to cast the thunk prototype to
1457 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001458``uwtable``
1459 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001460 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001461 show that no exceptions passes by it. This is normally the case for
1462 the ELF x86-64 abi, but it can be disabled for some compilation
1463 units.
Sean Silvab084af42012-12-07 10:36:55 +00001464
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001465
1466.. _opbundles:
1467
1468Operand Bundles
1469---------------
1470
1471Note: operand bundles are a work in progress, and they should be
1472considered experimental at this time.
1473
1474Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001475with certain LLVM instructions (currently only ``call`` s and
1476``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001477incorrect and will change program semantics.
1478
1479Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001480
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001481 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001482 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1483 bundle operand ::= SSA value
1484 tag ::= string constant
1485
1486Operand bundles are **not** part of a function's signature, and a
1487given function may be called from multiple places with different kinds
1488of operand bundles. This reflects the fact that the operand bundles
1489are conceptually a part of the ``call`` (or ``invoke``), not the
1490callee being dispatched to.
1491
1492Operand bundles are a generic mechanism intended to support
1493runtime-introspection-like functionality for managed languages. While
1494the exact semantics of an operand bundle depend on the bundle tag,
1495there are certain limitations to how much the presence of an operand
1496bundle can influence the semantics of a program. These restrictions
1497are described as the semantics of an "unknown" operand bundle. As
1498long as the behavior of an operand bundle is describable within these
1499restrictions, LLVM does not need to have special knowledge of the
1500operand bundle to not miscompile programs containing it.
1501
David Majnemer34cacb42015-10-22 01:46:38 +00001502- The bundle operands for an unknown operand bundle escape in unknown
1503 ways before control is transferred to the callee or invokee.
1504- Calls and invokes with operand bundles have unknown read / write
1505 effect on the heap on entry and exit (even if the call target is
Sanjoy Das98a341b2015-10-22 03:12:22 +00001506 ``readnone`` or ``readonly``), unless they're overriden with
1507 callsite specific attributes.
1508- An operand bundle at a call site cannot change the implementation
1509 of the called function. Inter-procedural optimizations work as
1510 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001511
Sanjoy Dascdafd842015-11-11 21:38:02 +00001512More specific types of operand bundles are described below.
1513
1514Deoptimization Operand Bundles
1515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1516
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001517Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001518operand bundle tag. These operand bundles represent an alternate
1519"safe" continuation for the call site they're attached to, and can be
1520used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001521specified call site. There can be at most one ``"deopt"`` operand
1522bundle attached to a call site. Exact details of deoptimization is
1523out of scope for the language reference, but it usually involves
1524rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001525
1526From the compiler's perspective, deoptimization operand bundles make
1527the call sites they're attached to at least ``readonly``. They read
1528through all of their pointer typed operands (even if they're not
1529otherwise escaped) and the entire visible heap. Deoptimization
1530operand bundles do not capture their operands except during
1531deoptimization, in which case control will not be returned to the
1532compiled frame.
1533
Sanjoy Das2d161452015-11-18 06:23:38 +00001534The inliner knows how to inline through calls that have deoptimization
1535operand bundles. Just like inlining through a normal call site
1536involves composing the normal and exceptional continuations, inlining
1537through a call site with a deoptimization operand bundle needs to
1538appropriately compose the "safe" deoptimization continuation. The
1539inliner does this by prepending the parent's deoptimization
1540continuation to every deoptimization continuation in the inlined body.
1541E.g. inlining ``@f`` into ``@g`` in the following example
1542
1543.. code-block:: llvm
1544
1545 define void @f() {
1546 call void @x() ;; no deopt state
1547 call void @y() [ "deopt"(i32 10) ]
1548 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1549 ret void
1550 }
1551
1552 define void @g() {
1553 call void @f() [ "deopt"(i32 20) ]
1554 ret void
1555 }
1556
1557will result in
1558
1559.. code-block:: llvm
1560
1561 define void @g() {
1562 call void @x() ;; still no deopt state
1563 call void @y() [ "deopt"(i32 20, i32 10) ]
1564 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1565 ret void
1566 }
1567
1568It is the frontend's responsibility to structure or encode the
1569deoptimization state in a way that syntactically prepending the
1570caller's deoptimization state to the callee's deoptimization state is
1571semantically equivalent to composing the caller's deoptimization
1572continuation after the callee's deoptimization continuation.
1573
Sean Silvab084af42012-12-07 10:36:55 +00001574.. _moduleasm:
1575
1576Module-Level Inline Assembly
1577----------------------------
1578
1579Modules may contain "module-level inline asm" blocks, which corresponds
1580to the GCC "file scope inline asm" blocks. These blocks are internally
1581concatenated by LLVM and treated as a single unit, but may be separated
1582in the ``.ll`` file if desired. The syntax is very simple:
1583
1584.. code-block:: llvm
1585
1586 module asm "inline asm code goes here"
1587 module asm "more can go here"
1588
1589The strings can contain any character by escaping non-printable
1590characters. The escape sequence used is simply "\\xx" where "xx" is the
1591two digit hex code for the number.
1592
James Y Knightbc832ed2015-07-08 18:08:36 +00001593Note that the assembly string *must* be parseable by LLVM's integrated assembler
1594(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001595
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001596.. _langref_datalayout:
1597
Sean Silvab084af42012-12-07 10:36:55 +00001598Data Layout
1599-----------
1600
1601A module may specify a target specific data layout string that specifies
1602how data is to be laid out in memory. The syntax for the data layout is
1603simply:
1604
1605.. code-block:: llvm
1606
1607 target datalayout = "layout specification"
1608
1609The *layout specification* consists of a list of specifications
1610separated by the minus sign character ('-'). Each specification starts
1611with a letter and may include other information after the letter to
1612define some aspect of the data layout. The specifications accepted are
1613as follows:
1614
1615``E``
1616 Specifies that the target lays out data in big-endian form. That is,
1617 the bits with the most significance have the lowest address
1618 location.
1619``e``
1620 Specifies that the target lays out data in little-endian form. That
1621 is, the bits with the least significance have the lowest address
1622 location.
1623``S<size>``
1624 Specifies the natural alignment of the stack in bits. Alignment
1625 promotion of stack variables is limited to the natural stack
1626 alignment to avoid dynamic stack realignment. The stack alignment
1627 must be a multiple of 8-bits. If omitted, the natural stack
1628 alignment defaults to "unspecified", which does not prevent any
1629 alignment promotions.
1630``p[n]:<size>:<abi>:<pref>``
1631 This specifies the *size* of a pointer and its ``<abi>`` and
1632 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001633 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001634 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001635 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001636``i<size>:<abi>:<pref>``
1637 This specifies the alignment for an integer type of a given bit
1638 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1639``v<size>:<abi>:<pref>``
1640 This specifies the alignment for a vector type of a given bit
1641 ``<size>``.
1642``f<size>:<abi>:<pref>``
1643 This specifies the alignment for a floating point type of a given bit
1644 ``<size>``. Only values of ``<size>`` that are supported by the target
1645 will work. 32 (float) and 64 (double) are supported on all targets; 80
1646 or 128 (different flavors of long double) are also supported on some
1647 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001648``a:<abi>:<pref>``
1649 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001650``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001651 If present, specifies that llvm names are mangled in the output. The
1652 options are
1653
1654 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1655 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1656 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1657 symbols get a ``_`` prefix.
1658 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1659 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001660 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1661 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001662``n<size1>:<size2>:<size3>...``
1663 This specifies a set of native integer widths for the target CPU in
1664 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1665 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1666 this set are considered to support most general arithmetic operations
1667 efficiently.
1668
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001669On every specification that takes a ``<abi>:<pref>``, specifying the
1670``<pref>`` alignment is optional. If omitted, the preceding ``:``
1671should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1672
Sean Silvab084af42012-12-07 10:36:55 +00001673When constructing the data layout for a given target, LLVM starts with a
1674default set of specifications which are then (possibly) overridden by
1675the specifications in the ``datalayout`` keyword. The default
1676specifications are given in this list:
1677
1678- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001679- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1680- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1681 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001682- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001683- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1684- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1685- ``i16:16:16`` - i16 is 16-bit aligned
1686- ``i32:32:32`` - i32 is 32-bit aligned
1687- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1688 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001689- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001690- ``f32:32:32`` - float is 32-bit aligned
1691- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001692- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001693- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1694- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001695- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001696
1697When LLVM is determining the alignment for a given type, it uses the
1698following rules:
1699
1700#. If the type sought is an exact match for one of the specifications,
1701 that specification is used.
1702#. If no match is found, and the type sought is an integer type, then
1703 the smallest integer type that is larger than the bitwidth of the
1704 sought type is used. If none of the specifications are larger than
1705 the bitwidth then the largest integer type is used. For example,
1706 given the default specifications above, the i7 type will use the
1707 alignment of i8 (next largest) while both i65 and i256 will use the
1708 alignment of i64 (largest specified).
1709#. If no match is found, and the type sought is a vector type, then the
1710 largest vector type that is smaller than the sought vector type will
1711 be used as a fall back. This happens because <128 x double> can be
1712 implemented in terms of 64 <2 x double>, for example.
1713
1714The function of the data layout string may not be what you expect.
1715Notably, this is not a specification from the frontend of what alignment
1716the code generator should use.
1717
1718Instead, if specified, the target data layout is required to match what
1719the ultimate *code generator* expects. This string is used by the
1720mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001721what the ultimate code generator uses. There is no way to generate IR
1722that does not embed this target-specific detail into the IR. If you
1723don't specify the string, the default specifications will be used to
1724generate a Data Layout and the optimization phases will operate
1725accordingly and introduce target specificity into the IR with respect to
1726these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001727
Bill Wendling5cc90842013-10-18 23:41:25 +00001728.. _langref_triple:
1729
1730Target Triple
1731-------------
1732
1733A module may specify a target triple string that describes the target
1734host. The syntax for the target triple is simply:
1735
1736.. code-block:: llvm
1737
1738 target triple = "x86_64-apple-macosx10.7.0"
1739
1740The *target triple* string consists of a series of identifiers delimited
1741by the minus sign character ('-'). The canonical forms are:
1742
1743::
1744
1745 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1746 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1747
1748This information is passed along to the backend so that it generates
1749code for the proper architecture. It's possible to override this on the
1750command line with the ``-mtriple`` command line option.
1751
Sean Silvab084af42012-12-07 10:36:55 +00001752.. _pointeraliasing:
1753
1754Pointer Aliasing Rules
1755----------------------
1756
1757Any memory access must be done through a pointer value associated with
1758an address range of the memory access, otherwise the behavior is
1759undefined. Pointer values are associated with address ranges according
1760to the following rules:
1761
1762- A pointer value is associated with the addresses associated with any
1763 value it is *based* on.
1764- An address of a global variable is associated with the address range
1765 of the variable's storage.
1766- The result value of an allocation instruction is associated with the
1767 address range of the allocated storage.
1768- A null pointer in the default address-space is associated with no
1769 address.
1770- An integer constant other than zero or a pointer value returned from
1771 a function not defined within LLVM may be associated with address
1772 ranges allocated through mechanisms other than those provided by
1773 LLVM. Such ranges shall not overlap with any ranges of addresses
1774 allocated by mechanisms provided by LLVM.
1775
1776A pointer value is *based* on another pointer value according to the
1777following rules:
1778
1779- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001780 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001781- The result value of a ``bitcast`` is *based* on the operand of the
1782 ``bitcast``.
1783- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1784 values that contribute (directly or indirectly) to the computation of
1785 the pointer's value.
1786- The "*based* on" relationship is transitive.
1787
1788Note that this definition of *"based"* is intentionally similar to the
1789definition of *"based"* in C99, though it is slightly weaker.
1790
1791LLVM IR does not associate types with memory. The result type of a
1792``load`` merely indicates the size and alignment of the memory from
1793which to load, as well as the interpretation of the value. The first
1794operand type of a ``store`` similarly only indicates the size and
1795alignment of the store.
1796
1797Consequently, type-based alias analysis, aka TBAA, aka
1798``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1799:ref:`Metadata <metadata>` may be used to encode additional information
1800which specialized optimization passes may use to implement type-based
1801alias analysis.
1802
1803.. _volatile:
1804
1805Volatile Memory Accesses
1806------------------------
1807
1808Certain memory accesses, such as :ref:`load <i_load>`'s,
1809:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1810marked ``volatile``. The optimizers must not change the number of
1811volatile operations or change their order of execution relative to other
1812volatile operations. The optimizers *may* change the order of volatile
1813operations relative to non-volatile operations. This is not Java's
1814"volatile" and has no cross-thread synchronization behavior.
1815
Andrew Trick89fc5a62013-01-30 21:19:35 +00001816IR-level volatile loads and stores cannot safely be optimized into
1817llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1818flagged volatile. Likewise, the backend should never split or merge
1819target-legal volatile load/store instructions.
1820
Andrew Trick7e6f9282013-01-31 00:49:39 +00001821.. admonition:: Rationale
1822
1823 Platforms may rely on volatile loads and stores of natively supported
1824 data width to be executed as single instruction. For example, in C
1825 this holds for an l-value of volatile primitive type with native
1826 hardware support, but not necessarily for aggregate types. The
1827 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001828 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001829 do not violate the frontend's contract with the language.
1830
Sean Silvab084af42012-12-07 10:36:55 +00001831.. _memmodel:
1832
1833Memory Model for Concurrent Operations
1834--------------------------------------
1835
1836The LLVM IR does not define any way to start parallel threads of
1837execution or to register signal handlers. Nonetheless, there are
1838platform-specific ways to create them, and we define LLVM IR's behavior
1839in their presence. This model is inspired by the C++0x memory model.
1840
1841For a more informal introduction to this model, see the :doc:`Atomics`.
1842
1843We define a *happens-before* partial order as the least partial order
1844that
1845
1846- Is a superset of single-thread program order, and
1847- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1848 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1849 techniques, like pthread locks, thread creation, thread joining,
1850 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1851 Constraints <ordering>`).
1852
1853Note that program order does not introduce *happens-before* edges
1854between a thread and signals executing inside that thread.
1855
1856Every (defined) read operation (load instructions, memcpy, atomic
1857loads/read-modify-writes, etc.) R reads a series of bytes written by
1858(defined) write operations (store instructions, atomic
1859stores/read-modify-writes, memcpy, etc.). For the purposes of this
1860section, initialized globals are considered to have a write of the
1861initializer which is atomic and happens before any other read or write
1862of the memory in question. For each byte of a read R, R\ :sub:`byte`
1863may see any write to the same byte, except:
1864
1865- If write\ :sub:`1` happens before write\ :sub:`2`, and
1866 write\ :sub:`2` happens before R\ :sub:`byte`, then
1867 R\ :sub:`byte` does not see write\ :sub:`1`.
1868- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1869 R\ :sub:`byte` does not see write\ :sub:`3`.
1870
1871Given that definition, R\ :sub:`byte` is defined as follows:
1872
1873- If R is volatile, the result is target-dependent. (Volatile is
1874 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001875 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001876 like normal memory. It does not generally provide cross-thread
1877 synchronization.)
1878- Otherwise, if there is no write to the same byte that happens before
1879 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1880- Otherwise, if R\ :sub:`byte` may see exactly one write,
1881 R\ :sub:`byte` returns the value written by that write.
1882- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1883 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1884 Memory Ordering Constraints <ordering>` section for additional
1885 constraints on how the choice is made.
1886- Otherwise R\ :sub:`byte` returns ``undef``.
1887
1888R returns the value composed of the series of bytes it read. This
1889implies that some bytes within the value may be ``undef`` **without**
1890the entire value being ``undef``. Note that this only defines the
1891semantics of the operation; it doesn't mean that targets will emit more
1892than one instruction to read the series of bytes.
1893
1894Note that in cases where none of the atomic intrinsics are used, this
1895model places only one restriction on IR transformations on top of what
1896is required for single-threaded execution: introducing a store to a byte
1897which might not otherwise be stored is not allowed in general.
1898(Specifically, in the case where another thread might write to and read
1899from an address, introducing a store can change a load that may see
1900exactly one write into a load that may see multiple writes.)
1901
1902.. _ordering:
1903
1904Atomic Memory Ordering Constraints
1905----------------------------------
1906
1907Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1908:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1909:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001910ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001911the same address they *synchronize with*. These semantics are borrowed
1912from Java and C++0x, but are somewhat more colloquial. If these
1913descriptions aren't precise enough, check those specs (see spec
1914references in the :doc:`atomics guide <Atomics>`).
1915:ref:`fence <i_fence>` instructions treat these orderings somewhat
1916differently since they don't take an address. See that instruction's
1917documentation for details.
1918
1919For a simpler introduction to the ordering constraints, see the
1920:doc:`Atomics`.
1921
1922``unordered``
1923 The set of values that can be read is governed by the happens-before
1924 partial order. A value cannot be read unless some operation wrote
1925 it. This is intended to provide a guarantee strong enough to model
1926 Java's non-volatile shared variables. This ordering cannot be
1927 specified for read-modify-write operations; it is not strong enough
1928 to make them atomic in any interesting way.
1929``monotonic``
1930 In addition to the guarantees of ``unordered``, there is a single
1931 total order for modifications by ``monotonic`` operations on each
1932 address. All modification orders must be compatible with the
1933 happens-before order. There is no guarantee that the modification
1934 orders can be combined to a global total order for the whole program
1935 (and this often will not be possible). The read in an atomic
1936 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1937 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1938 order immediately before the value it writes. If one atomic read
1939 happens before another atomic read of the same address, the later
1940 read must see the same value or a later value in the address's
1941 modification order. This disallows reordering of ``monotonic`` (or
1942 stronger) operations on the same address. If an address is written
1943 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1944 read that address repeatedly, the other threads must eventually see
1945 the write. This corresponds to the C++0x/C1x
1946 ``memory_order_relaxed``.
1947``acquire``
1948 In addition to the guarantees of ``monotonic``, a
1949 *synchronizes-with* edge may be formed with a ``release`` operation.
1950 This is intended to model C++'s ``memory_order_acquire``.
1951``release``
1952 In addition to the guarantees of ``monotonic``, if this operation
1953 writes a value which is subsequently read by an ``acquire``
1954 operation, it *synchronizes-with* that operation. (This isn't a
1955 complete description; see the C++0x definition of a release
1956 sequence.) This corresponds to the C++0x/C1x
1957 ``memory_order_release``.
1958``acq_rel`` (acquire+release)
1959 Acts as both an ``acquire`` and ``release`` operation on its
1960 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1961``seq_cst`` (sequentially consistent)
1962 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001963 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001964 writes), there is a global total order on all
1965 sequentially-consistent operations on all addresses, which is
1966 consistent with the *happens-before* partial order and with the
1967 modification orders of all the affected addresses. Each
1968 sequentially-consistent read sees the last preceding write to the
1969 same address in this global order. This corresponds to the C++0x/C1x
1970 ``memory_order_seq_cst`` and Java volatile.
1971
1972.. _singlethread:
1973
1974If an atomic operation is marked ``singlethread``, it only *synchronizes
1975with* or participates in modification and seq\_cst total orderings with
1976other operations running in the same thread (for example, in signal
1977handlers).
1978
1979.. _fastmath:
1980
1981Fast-Math Flags
1982---------------
1983
1984LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1985:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001986:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1987be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001988
1989``nnan``
1990 No NaNs - Allow optimizations to assume the arguments and result are not
1991 NaN. Such optimizations are required to retain defined behavior over
1992 NaNs, but the value of the result is undefined.
1993
1994``ninf``
1995 No Infs - Allow optimizations to assume the arguments and result are not
1996 +/-Inf. Such optimizations are required to retain defined behavior over
1997 +/-Inf, but the value of the result is undefined.
1998
1999``nsz``
2000 No Signed Zeros - Allow optimizations to treat the sign of a zero
2001 argument or result as insignificant.
2002
2003``arcp``
2004 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2005 argument rather than perform division.
2006
2007``fast``
2008 Fast - Allow algebraically equivalent transformations that may
2009 dramatically change results in floating point (e.g. reassociate). This
2010 flag implies all the others.
2011
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002012.. _uselistorder:
2013
2014Use-list Order Directives
2015-------------------------
2016
2017Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002018order to be recreated. ``<order-indexes>`` is a comma-separated list of
2019indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002020value's use-list is immediately sorted by these indexes.
2021
Sean Silvaa1190322015-08-06 22:56:48 +00002022Use-list directives may appear at function scope or global scope. They are not
2023instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002024function scope, they must appear after the terminator of the final basic block.
2025
2026If basic blocks have their address taken via ``blockaddress()`` expressions,
2027``uselistorder_bb`` can be used to reorder their use-lists from outside their
2028function's scope.
2029
2030:Syntax:
2031
2032::
2033
2034 uselistorder <ty> <value>, { <order-indexes> }
2035 uselistorder_bb @function, %block { <order-indexes> }
2036
2037:Examples:
2038
2039::
2040
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002041 define void @foo(i32 %arg1, i32 %arg2) {
2042 entry:
2043 ; ... instructions ...
2044 bb:
2045 ; ... instructions ...
2046
2047 ; At function scope.
2048 uselistorder i32 %arg1, { 1, 0, 2 }
2049 uselistorder label %bb, { 1, 0 }
2050 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002051
2052 ; At global scope.
2053 uselistorder i32* @global, { 1, 2, 0 }
2054 uselistorder i32 7, { 1, 0 }
2055 uselistorder i32 (i32) @bar, { 1, 0 }
2056 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2057
Sean Silvab084af42012-12-07 10:36:55 +00002058.. _typesystem:
2059
2060Type System
2061===========
2062
2063The LLVM type system is one of the most important features of the
2064intermediate representation. Being typed enables a number of
2065optimizations to be performed on the intermediate representation
2066directly, without having to do extra analyses on the side before the
2067transformation. A strong type system makes it easier to read the
2068generated code and enables novel analyses and transformations that are
2069not feasible to perform on normal three address code representations.
2070
Rafael Espindola08013342013-12-07 19:34:20 +00002071.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002072
Rafael Espindola08013342013-12-07 19:34:20 +00002073Void Type
2074---------
Sean Silvab084af42012-12-07 10:36:55 +00002075
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002076:Overview:
2077
Rafael Espindola08013342013-12-07 19:34:20 +00002078
2079The void type does not represent any value and has no size.
2080
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002081:Syntax:
2082
Rafael Espindola08013342013-12-07 19:34:20 +00002083
2084::
2085
2086 void
Sean Silvab084af42012-12-07 10:36:55 +00002087
2088
Rafael Espindola08013342013-12-07 19:34:20 +00002089.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002090
Rafael Espindola08013342013-12-07 19:34:20 +00002091Function Type
2092-------------
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002094:Overview:
2095
Sean Silvab084af42012-12-07 10:36:55 +00002096
Rafael Espindola08013342013-12-07 19:34:20 +00002097The function type can be thought of as a function signature. It consists of a
2098return type and a list of formal parameter types. The return type of a function
2099type is a void type or first class type --- except for :ref:`label <t_label>`
2100and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002101
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002102:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002103
Rafael Espindola08013342013-12-07 19:34:20 +00002104::
Sean Silvab084af42012-12-07 10:36:55 +00002105
Rafael Espindola08013342013-12-07 19:34:20 +00002106 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002107
Rafael Espindola08013342013-12-07 19:34:20 +00002108...where '``<parameter list>``' is a comma-separated list of type
2109specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002110indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002111argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002112handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002113except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002114
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002115:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002116
Rafael Espindola08013342013-12-07 19:34:20 +00002117+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2118| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2119+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2120| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2121+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2122| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2123+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2124| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2125+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2126
2127.. _t_firstclass:
2128
2129First Class Types
2130-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002131
2132The :ref:`first class <t_firstclass>` types are perhaps the most important.
2133Values of these types are the only ones which can be produced by
2134instructions.
2135
Rafael Espindola08013342013-12-07 19:34:20 +00002136.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002137
Rafael Espindola08013342013-12-07 19:34:20 +00002138Single Value Types
2139^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002140
Rafael Espindola08013342013-12-07 19:34:20 +00002141These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002142
2143.. _t_integer:
2144
2145Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002146""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002147
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002148:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002149
2150The integer type is a very simple type that simply specifies an
2151arbitrary bit width for the integer type desired. Any bit width from 1
2152bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2153
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002154:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156::
2157
2158 iN
2159
2160The number of bits the integer will occupy is specified by the ``N``
2161value.
2162
2163Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002164*********
Sean Silvab084af42012-12-07 10:36:55 +00002165
2166+----------------+------------------------------------------------+
2167| ``i1`` | a single-bit integer. |
2168+----------------+------------------------------------------------+
2169| ``i32`` | a 32-bit integer. |
2170+----------------+------------------------------------------------+
2171| ``i1942652`` | a really big integer of over 1 million bits. |
2172+----------------+------------------------------------------------+
2173
2174.. _t_floating:
2175
2176Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002177""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002178
2179.. list-table::
2180 :header-rows: 1
2181
2182 * - Type
2183 - Description
2184
2185 * - ``half``
2186 - 16-bit floating point value
2187
2188 * - ``float``
2189 - 32-bit floating point value
2190
2191 * - ``double``
2192 - 64-bit floating point value
2193
2194 * - ``fp128``
2195 - 128-bit floating point value (112-bit mantissa)
2196
2197 * - ``x86_fp80``
2198 - 80-bit floating point value (X87)
2199
2200 * - ``ppc_fp128``
2201 - 128-bit floating point value (two 64-bits)
2202
Reid Kleckner9a16d082014-03-05 02:41:37 +00002203X86_mmx Type
2204""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002205
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002206:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002207
Reid Kleckner9a16d082014-03-05 02:41:37 +00002208The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002209machine. The operations allowed on it are quite limited: parameters and
2210return values, load and store, and bitcast. User-specified MMX
2211instructions are represented as intrinsic or asm calls with arguments
2212and/or results of this type. There are no arrays, vectors or constants
2213of this type.
2214
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002215:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002216
2217::
2218
Reid Kleckner9a16d082014-03-05 02:41:37 +00002219 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002220
Sean Silvab084af42012-12-07 10:36:55 +00002221
Rafael Espindola08013342013-12-07 19:34:20 +00002222.. _t_pointer:
2223
2224Pointer Type
2225""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002226
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002227:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002228
Rafael Espindola08013342013-12-07 19:34:20 +00002229The pointer type is used to specify memory locations. Pointers are
2230commonly used to reference objects in memory.
2231
2232Pointer types may have an optional address space attribute defining the
2233numbered address space where the pointed-to object resides. The default
2234address space is number zero. The semantics of non-zero address spaces
2235are target-specific.
2236
2237Note that LLVM does not permit pointers to void (``void*``) nor does it
2238permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002239
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002240:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002241
2242::
2243
Rafael Espindola08013342013-12-07 19:34:20 +00002244 <type> *
2245
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002246:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002247
2248+-------------------------+--------------------------------------------------------------------------------------------------------------+
2249| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2250+-------------------------+--------------------------------------------------------------------------------------------------------------+
2251| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2252+-------------------------+--------------------------------------------------------------------------------------------------------------+
2253| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2254+-------------------------+--------------------------------------------------------------------------------------------------------------+
2255
2256.. _t_vector:
2257
2258Vector Type
2259"""""""""""
2260
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002261:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002262
2263A vector type is a simple derived type that represents a vector of
2264elements. Vector types are used when multiple primitive data are
2265operated in parallel using a single instruction (SIMD). A vector type
2266requires a size (number of elements) and an underlying primitive data
2267type. Vector types are considered :ref:`first class <t_firstclass>`.
2268
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002269:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002270
2271::
2272
2273 < <# elements> x <elementtype> >
2274
2275The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002276elementtype may be any integer, floating point or pointer type. Vectors
2277of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002278
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002279:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002280
2281+-------------------+--------------------------------------------------+
2282| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2283+-------------------+--------------------------------------------------+
2284| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2285+-------------------+--------------------------------------------------+
2286| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2287+-------------------+--------------------------------------------------+
2288| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2289+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002290
2291.. _t_label:
2292
2293Label Type
2294^^^^^^^^^^
2295
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002296:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002297
2298The label type represents code labels.
2299
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002300:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002301
2302::
2303
2304 label
2305
David Majnemerb611e3f2015-08-14 05:09:07 +00002306.. _t_token:
2307
2308Token Type
2309^^^^^^^^^^
2310
2311:Overview:
2312
2313The token type is used when a value is associated with an instruction
2314but all uses of the value must not attempt to introspect or obscure it.
2315As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2316:ref:`select <i_select>` of type token.
2317
2318:Syntax:
2319
2320::
2321
2322 token
2323
2324
2325
Sean Silvab084af42012-12-07 10:36:55 +00002326.. _t_metadata:
2327
2328Metadata Type
2329^^^^^^^^^^^^^
2330
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002331:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002332
2333The metadata type represents embedded metadata. No derived types may be
2334created from metadata except for :ref:`function <t_function>` arguments.
2335
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002336:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002337
2338::
2339
2340 metadata
2341
Sean Silvab084af42012-12-07 10:36:55 +00002342.. _t_aggregate:
2343
2344Aggregate Types
2345^^^^^^^^^^^^^^^
2346
2347Aggregate Types are a subset of derived types that can contain multiple
2348member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2349aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2350aggregate types.
2351
2352.. _t_array:
2353
2354Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002355""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002356
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002357:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002358
2359The array type is a very simple derived type that arranges elements
2360sequentially in memory. The array type requires a size (number of
2361elements) and an underlying data type.
2362
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002363:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002364
2365::
2366
2367 [<# elements> x <elementtype>]
2368
2369The number of elements is a constant integer value; ``elementtype`` may
2370be any type with a size.
2371
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002372:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002373
2374+------------------+--------------------------------------+
2375| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2376+------------------+--------------------------------------+
2377| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2378+------------------+--------------------------------------+
2379| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2380+------------------+--------------------------------------+
2381
2382Here are some examples of multidimensional arrays:
2383
2384+-----------------------------+----------------------------------------------------------+
2385| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2386+-----------------------------+----------------------------------------------------------+
2387| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2388+-----------------------------+----------------------------------------------------------+
2389| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2390+-----------------------------+----------------------------------------------------------+
2391
2392There is no restriction on indexing beyond the end of the array implied
2393by a static type (though there are restrictions on indexing beyond the
2394bounds of an allocated object in some cases). This means that
2395single-dimension 'variable sized array' addressing can be implemented in
2396LLVM with a zero length array type. An implementation of 'pascal style
2397arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2398example.
2399
Sean Silvab084af42012-12-07 10:36:55 +00002400.. _t_struct:
2401
2402Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002403""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002404
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002405:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002406
2407The structure type is used to represent a collection of data members
2408together in memory. The elements of a structure may be any type that has
2409a size.
2410
2411Structures in memory are accessed using '``load``' and '``store``' by
2412getting a pointer to a field with the '``getelementptr``' instruction.
2413Structures in registers are accessed using the '``extractvalue``' and
2414'``insertvalue``' instructions.
2415
2416Structures may optionally be "packed" structures, which indicate that
2417the alignment of the struct is one byte, and that there is no padding
2418between the elements. In non-packed structs, padding between field types
2419is inserted as defined by the DataLayout string in the module, which is
2420required to match what the underlying code generator expects.
2421
2422Structures can either be "literal" or "identified". A literal structure
2423is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2424identified types are always defined at the top level with a name.
2425Literal types are uniqued by their contents and can never be recursive
2426or opaque since there is no way to write one. Identified types can be
2427recursive, can be opaqued, and are never uniqued.
2428
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002429:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002430
2431::
2432
2433 %T1 = type { <type list> } ; Identified normal struct type
2434 %T2 = type <{ <type list> }> ; Identified packed struct type
2435
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002436:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002437
2438+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2439| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2440+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002441| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002442+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2443| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2444+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2445
2446.. _t_opaque:
2447
2448Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002449""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002450
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002451:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002452
2453Opaque structure types are used to represent named structure types that
2454do not have a body specified. This corresponds (for example) to the C
2455notion of a forward declared structure.
2456
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002457:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002458
2459::
2460
2461 %X = type opaque
2462 %52 = type opaque
2463
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002464:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002465
2466+--------------+-------------------+
2467| ``opaque`` | An opaque type. |
2468+--------------+-------------------+
2469
Sean Silva1703e702014-04-08 21:06:22 +00002470.. _constants:
2471
Sean Silvab084af42012-12-07 10:36:55 +00002472Constants
2473=========
2474
2475LLVM has several different basic types of constants. This section
2476describes them all and their syntax.
2477
2478Simple Constants
2479----------------
2480
2481**Boolean constants**
2482 The two strings '``true``' and '``false``' are both valid constants
2483 of the ``i1`` type.
2484**Integer constants**
2485 Standard integers (such as '4') are constants of the
2486 :ref:`integer <t_integer>` type. Negative numbers may be used with
2487 integer types.
2488**Floating point constants**
2489 Floating point constants use standard decimal notation (e.g.
2490 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2491 hexadecimal notation (see below). The assembler requires the exact
2492 decimal value of a floating-point constant. For example, the
2493 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2494 decimal in binary. Floating point constants must have a :ref:`floating
2495 point <t_floating>` type.
2496**Null pointer constants**
2497 The identifier '``null``' is recognized as a null pointer constant
2498 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002499**Token constants**
2500 The identifier '``none``' is recognized as an empty token constant
2501 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002502
2503The one non-intuitive notation for constants is the hexadecimal form of
2504floating point constants. For example, the form
2505'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2506than) '``double 4.5e+15``'. The only time hexadecimal floating point
2507constants are required (and the only time that they are generated by the
2508disassembler) is when a floating point constant must be emitted but it
2509cannot be represented as a decimal floating point number in a reasonable
2510number of digits. For example, NaN's, infinities, and other special
2511values are represented in their IEEE hexadecimal format so that assembly
2512and disassembly do not cause any bits to change in the constants.
2513
2514When using the hexadecimal form, constants of types half, float, and
2515double are represented using the 16-digit form shown above (which
2516matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002517must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002518precision, respectively. Hexadecimal format is always used for long
2519double, and there are three forms of long double. The 80-bit format used
2520by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2521128-bit format used by PowerPC (two adjacent doubles) is represented by
2522``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002523represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2524will only work if they match the long double format on your target.
2525The IEEE 16-bit format (half precision) is represented by ``0xH``
2526followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2527(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002528
Reid Kleckner9a16d082014-03-05 02:41:37 +00002529There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002530
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002531.. _complexconstants:
2532
Sean Silvab084af42012-12-07 10:36:55 +00002533Complex Constants
2534-----------------
2535
2536Complex constants are a (potentially recursive) combination of simple
2537constants and smaller complex constants.
2538
2539**Structure constants**
2540 Structure constants are represented with notation similar to
2541 structure type definitions (a comma separated list of elements,
2542 surrounded by braces (``{}``)). For example:
2543 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2544 "``@G = external global i32``". Structure constants must have
2545 :ref:`structure type <t_struct>`, and the number and types of elements
2546 must match those specified by the type.
2547**Array constants**
2548 Array constants are represented with notation similar to array type
2549 definitions (a comma separated list of elements, surrounded by
2550 square brackets (``[]``)). For example:
2551 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2552 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002553 match those specified by the type. As a special case, character array
2554 constants may also be represented as a double-quoted string using the ``c``
2555 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002556**Vector constants**
2557 Vector constants are represented with notation similar to vector
2558 type definitions (a comma separated list of elements, surrounded by
2559 less-than/greater-than's (``<>``)). For example:
2560 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2561 must have :ref:`vector type <t_vector>`, and the number and types of
2562 elements must match those specified by the type.
2563**Zero initialization**
2564 The string '``zeroinitializer``' can be used to zero initialize a
2565 value to zero of *any* type, including scalar and
2566 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2567 having to print large zero initializers (e.g. for large arrays) and
2568 is always exactly equivalent to using explicit zero initializers.
2569**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002570 A metadata node is a constant tuple without types. For example:
2571 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002572 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2573 Unlike other typed constants that are meant to be interpreted as part of
2574 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002575 information such as debug info.
2576
2577Global Variable and Function Addresses
2578--------------------------------------
2579
2580The addresses of :ref:`global variables <globalvars>` and
2581:ref:`functions <functionstructure>` are always implicitly valid
2582(link-time) constants. These constants are explicitly referenced when
2583the :ref:`identifier for the global <identifiers>` is used and always have
2584:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2585file:
2586
2587.. code-block:: llvm
2588
2589 @X = global i32 17
2590 @Y = global i32 42
2591 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2592
2593.. _undefvalues:
2594
2595Undefined Values
2596----------------
2597
2598The string '``undef``' can be used anywhere a constant is expected, and
2599indicates that the user of the value may receive an unspecified
2600bit-pattern. Undefined values may be of any type (other than '``label``'
2601or '``void``') and be used anywhere a constant is permitted.
2602
2603Undefined values are useful because they indicate to the compiler that
2604the program is well defined no matter what value is used. This gives the
2605compiler more freedom to optimize. Here are some examples of
2606(potentially surprising) transformations that are valid (in pseudo IR):
2607
2608.. code-block:: llvm
2609
2610 %A = add %X, undef
2611 %B = sub %X, undef
2612 %C = xor %X, undef
2613 Safe:
2614 %A = undef
2615 %B = undef
2616 %C = undef
2617
2618This is safe because all of the output bits are affected by the undef
2619bits. Any output bit can have a zero or one depending on the input bits.
2620
2621.. code-block:: llvm
2622
2623 %A = or %X, undef
2624 %B = and %X, undef
2625 Safe:
2626 %A = -1
2627 %B = 0
2628 Unsafe:
2629 %A = undef
2630 %B = undef
2631
2632These logical operations have bits that are not always affected by the
2633input. For example, if ``%X`` has a zero bit, then the output of the
2634'``and``' operation will always be a zero for that bit, no matter what
2635the corresponding bit from the '``undef``' is. As such, it is unsafe to
2636optimize or assume that the result of the '``and``' is '``undef``'.
2637However, it is safe to assume that all bits of the '``undef``' could be
26380, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2639all the bits of the '``undef``' operand to the '``or``' could be set,
2640allowing the '``or``' to be folded to -1.
2641
2642.. code-block:: llvm
2643
2644 %A = select undef, %X, %Y
2645 %B = select undef, 42, %Y
2646 %C = select %X, %Y, undef
2647 Safe:
2648 %A = %X (or %Y)
2649 %B = 42 (or %Y)
2650 %C = %Y
2651 Unsafe:
2652 %A = undef
2653 %B = undef
2654 %C = undef
2655
2656This set of examples shows that undefined '``select``' (and conditional
2657branch) conditions can go *either way*, but they have to come from one
2658of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2659both known to have a clear low bit, then ``%A`` would have to have a
2660cleared low bit. However, in the ``%C`` example, the optimizer is
2661allowed to assume that the '``undef``' operand could be the same as
2662``%Y``, allowing the whole '``select``' to be eliminated.
2663
2664.. code-block:: llvm
2665
2666 %A = xor undef, undef
2667
2668 %B = undef
2669 %C = xor %B, %B
2670
2671 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002672 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002673 %F = icmp gte %D, 4
2674
2675 Safe:
2676 %A = undef
2677 %B = undef
2678 %C = undef
2679 %D = undef
2680 %E = undef
2681 %F = undef
2682
2683This example points out that two '``undef``' operands are not
2684necessarily the same. This can be surprising to people (and also matches
2685C semantics) where they assume that "``X^X``" is always zero, even if
2686``X`` is undefined. This isn't true for a number of reasons, but the
2687short answer is that an '``undef``' "variable" can arbitrarily change
2688its value over its "live range". This is true because the variable
2689doesn't actually *have a live range*. Instead, the value is logically
2690read from arbitrary registers that happen to be around when needed, so
2691the value is not necessarily consistent over time. In fact, ``%A`` and
2692``%C`` need to have the same semantics or the core LLVM "replace all
2693uses with" concept would not hold.
2694
2695.. code-block:: llvm
2696
2697 %A = fdiv undef, %X
2698 %B = fdiv %X, undef
2699 Safe:
2700 %A = undef
2701 b: unreachable
2702
2703These examples show the crucial difference between an *undefined value*
2704and *undefined behavior*. An undefined value (like '``undef``') is
2705allowed to have an arbitrary bit-pattern. This means that the ``%A``
2706operation can be constant folded to '``undef``', because the '``undef``'
2707could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2708However, in the second example, we can make a more aggressive
2709assumption: because the ``undef`` is allowed to be an arbitrary value,
2710we are allowed to assume that it could be zero. Since a divide by zero
2711has *undefined behavior*, we are allowed to assume that the operation
2712does not execute at all. This allows us to delete the divide and all
2713code after it. Because the undefined operation "can't happen", the
2714optimizer can assume that it occurs in dead code.
2715
2716.. code-block:: llvm
2717
2718 a: store undef -> %X
2719 b: store %X -> undef
2720 Safe:
2721 a: <deleted>
2722 b: unreachable
2723
2724These examples reiterate the ``fdiv`` example: a store *of* an undefined
2725value can be assumed to not have any effect; we can assume that the
2726value is overwritten with bits that happen to match what was already
2727there. However, a store *to* an undefined location could clobber
2728arbitrary memory, therefore, it has undefined behavior.
2729
2730.. _poisonvalues:
2731
2732Poison Values
2733-------------
2734
2735Poison values are similar to :ref:`undef values <undefvalues>`, however
2736they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002737that cannot evoke side effects has nevertheless detected a condition
2738that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002739
2740There is currently no way of representing a poison value in the IR; they
2741only exist when produced by operations such as :ref:`add <i_add>` with
2742the ``nsw`` flag.
2743
2744Poison value behavior is defined in terms of value *dependence*:
2745
2746- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2747- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2748 their dynamic predecessor basic block.
2749- Function arguments depend on the corresponding actual argument values
2750 in the dynamic callers of their functions.
2751- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2752 instructions that dynamically transfer control back to them.
2753- :ref:`Invoke <i_invoke>` instructions depend on the
2754 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2755 call instructions that dynamically transfer control back to them.
2756- Non-volatile loads and stores depend on the most recent stores to all
2757 of the referenced memory addresses, following the order in the IR
2758 (including loads and stores implied by intrinsics such as
2759 :ref:`@llvm.memcpy <int_memcpy>`.)
2760- An instruction with externally visible side effects depends on the
2761 most recent preceding instruction with externally visible side
2762 effects, following the order in the IR. (This includes :ref:`volatile
2763 operations <volatile>`.)
2764- An instruction *control-depends* on a :ref:`terminator
2765 instruction <terminators>` if the terminator instruction has
2766 multiple successors and the instruction is always executed when
2767 control transfers to one of the successors, and may not be executed
2768 when control is transferred to another.
2769- Additionally, an instruction also *control-depends* on a terminator
2770 instruction if the set of instructions it otherwise depends on would
2771 be different if the terminator had transferred control to a different
2772 successor.
2773- Dependence is transitive.
2774
Richard Smith32dbdf62014-07-31 04:25:36 +00002775Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2776with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002777on a poison value has undefined behavior.
2778
2779Here are some examples:
2780
2781.. code-block:: llvm
2782
2783 entry:
2784 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2785 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002786 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002787 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2788
2789 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002790 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002791
2792 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2793
2794 %narrowaddr = bitcast i32* @g to i16*
2795 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002796 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2797 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002798
2799 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2800 br i1 %cmp, label %true, label %end ; Branch to either destination.
2801
2802 true:
2803 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2804 ; it has undefined behavior.
2805 br label %end
2806
2807 end:
2808 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2809 ; Both edges into this PHI are
2810 ; control-dependent on %cmp, so this
2811 ; always results in a poison value.
2812
2813 store volatile i32 0, i32* @g ; This would depend on the store in %true
2814 ; if %cmp is true, or the store in %entry
2815 ; otherwise, so this is undefined behavior.
2816
2817 br i1 %cmp, label %second_true, label %second_end
2818 ; The same branch again, but this time the
2819 ; true block doesn't have side effects.
2820
2821 second_true:
2822 ; No side effects!
2823 ret void
2824
2825 second_end:
2826 store volatile i32 0, i32* @g ; This time, the instruction always depends
2827 ; on the store in %end. Also, it is
2828 ; control-equivalent to %end, so this is
2829 ; well-defined (ignoring earlier undefined
2830 ; behavior in this example).
2831
2832.. _blockaddress:
2833
2834Addresses of Basic Blocks
2835-------------------------
2836
2837``blockaddress(@function, %block)``
2838
2839The '``blockaddress``' constant computes the address of the specified
2840basic block in the specified function, and always has an ``i8*`` type.
2841Taking the address of the entry block is illegal.
2842
2843This value only has defined behavior when used as an operand to the
2844':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2845against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002846undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002847no label is equal to the null pointer. This may be passed around as an
2848opaque pointer sized value as long as the bits are not inspected. This
2849allows ``ptrtoint`` and arithmetic to be performed on these values so
2850long as the original value is reconstituted before the ``indirectbr``
2851instruction.
2852
2853Finally, some targets may provide defined semantics when using the value
2854as the operand to an inline assembly, but that is target specific.
2855
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002856.. _constantexprs:
2857
Sean Silvab084af42012-12-07 10:36:55 +00002858Constant Expressions
2859--------------------
2860
2861Constant expressions are used to allow expressions involving other
2862constants to be used as constants. Constant expressions may be of any
2863:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2864that does not have side effects (e.g. load and call are not supported).
2865The following is the syntax for constant expressions:
2866
2867``trunc (CST to TYPE)``
2868 Truncate a constant to another type. The bit size of CST must be
2869 larger than the bit size of TYPE. Both types must be integers.
2870``zext (CST to TYPE)``
2871 Zero extend a constant to another type. The bit size of CST must be
2872 smaller than the bit size of TYPE. Both types must be integers.
2873``sext (CST to TYPE)``
2874 Sign extend a constant to another type. The bit size of CST must be
2875 smaller than the bit size of TYPE. Both types must be integers.
2876``fptrunc (CST to TYPE)``
2877 Truncate a floating point constant to another floating point type.
2878 The size of CST must be larger than the size of TYPE. Both types
2879 must be floating point.
2880``fpext (CST to TYPE)``
2881 Floating point extend a constant to another type. The size of CST
2882 must be smaller or equal to the size of TYPE. Both types must be
2883 floating point.
2884``fptoui (CST to TYPE)``
2885 Convert a floating point constant to the corresponding unsigned
2886 integer constant. TYPE must be a scalar or vector integer type. CST
2887 must be of scalar or vector floating point type. Both CST and TYPE
2888 must be scalars, or vectors of the same number of elements. If the
2889 value won't fit in the integer type, the results are undefined.
2890``fptosi (CST to TYPE)``
2891 Convert a floating point constant to the corresponding signed
2892 integer constant. TYPE must be a scalar or vector integer type. CST
2893 must be of scalar or vector floating point type. Both CST and TYPE
2894 must be scalars, or vectors of the same number of elements. If the
2895 value won't fit in the integer type, the results are undefined.
2896``uitofp (CST to TYPE)``
2897 Convert an unsigned integer constant to the corresponding floating
2898 point constant. TYPE must be a scalar or vector floating point type.
2899 CST must be of scalar or vector integer type. Both CST and TYPE must
2900 be scalars, or vectors of the same number of elements. If the value
2901 won't fit in the floating point type, the results are undefined.
2902``sitofp (CST to TYPE)``
2903 Convert a signed integer constant to the corresponding floating
2904 point constant. TYPE must be a scalar or vector floating point type.
2905 CST must be of scalar or vector integer type. Both CST and TYPE must
2906 be scalars, or vectors of the same number of elements. If the value
2907 won't fit in the floating point type, the results are undefined.
2908``ptrtoint (CST to TYPE)``
2909 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002910 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002911 pointer type. The ``CST`` value is zero extended, truncated, or
2912 unchanged to make it fit in ``TYPE``.
2913``inttoptr (CST to TYPE)``
2914 Convert an integer constant to a pointer constant. TYPE must be a
2915 pointer type. CST must be of integer type. The CST value is zero
2916 extended, truncated, or unchanged to make it fit in a pointer size.
2917 This one is *really* dangerous!
2918``bitcast (CST to TYPE)``
2919 Convert a constant, CST, to another TYPE. The constraints of the
2920 operands are the same as those for the :ref:`bitcast
2921 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002922``addrspacecast (CST to TYPE)``
2923 Convert a constant pointer or constant vector of pointer, CST, to another
2924 TYPE in a different address space. The constraints of the operands are the
2925 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002926``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002927 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2928 constants. As with the :ref:`getelementptr <i_getelementptr>`
2929 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002930 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002931``select (COND, VAL1, VAL2)``
2932 Perform the :ref:`select operation <i_select>` on constants.
2933``icmp COND (VAL1, VAL2)``
2934 Performs the :ref:`icmp operation <i_icmp>` on constants.
2935``fcmp COND (VAL1, VAL2)``
2936 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2937``extractelement (VAL, IDX)``
2938 Perform the :ref:`extractelement operation <i_extractelement>` on
2939 constants.
2940``insertelement (VAL, ELT, IDX)``
2941 Perform the :ref:`insertelement operation <i_insertelement>` on
2942 constants.
2943``shufflevector (VEC1, VEC2, IDXMASK)``
2944 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2945 constants.
2946``extractvalue (VAL, IDX0, IDX1, ...)``
2947 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2948 constants. The index list is interpreted in a similar manner as
2949 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2950 least one index value must be specified.
2951``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2952 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2953 The index list is interpreted in a similar manner as indices in a
2954 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2955 value must be specified.
2956``OPCODE (LHS, RHS)``
2957 Perform the specified operation of the LHS and RHS constants. OPCODE
2958 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2959 binary <bitwiseops>` operations. The constraints on operands are
2960 the same as those for the corresponding instruction (e.g. no bitwise
2961 operations on floating point values are allowed).
2962
2963Other Values
2964============
2965
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002966.. _inlineasmexprs:
2967
Sean Silvab084af42012-12-07 10:36:55 +00002968Inline Assembler Expressions
2969----------------------------
2970
2971LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002972Inline Assembly <moduleasm>`) through the use of a special value. This value
2973represents the inline assembler as a template string (containing the
2974instructions to emit), a list of operand constraints (stored as a string), a
2975flag that indicates whether or not the inline asm expression has side effects,
2976and a flag indicating whether the function containing the asm needs to align its
2977stack conservatively.
2978
2979The template string supports argument substitution of the operands using "``$``"
2980followed by a number, to indicate substitution of the given register/memory
2981location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2982be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2983operand (See :ref:`inline-asm-modifiers`).
2984
2985A literal "``$``" may be included by using "``$$``" in the template. To include
2986other special characters into the output, the usual "``\XX``" escapes may be
2987used, just as in other strings. Note that after template substitution, the
2988resulting assembly string is parsed by LLVM's integrated assembler unless it is
2989disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2990syntax known to LLVM.
2991
2992LLVM's support for inline asm is modeled closely on the requirements of Clang's
2993GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2994modifier codes listed here are similar or identical to those in GCC's inline asm
2995support. However, to be clear, the syntax of the template and constraint strings
2996described here is *not* the same as the syntax accepted by GCC and Clang, and,
2997while most constraint letters are passed through as-is by Clang, some get
2998translated to other codes when converting from the C source to the LLVM
2999assembly.
3000
3001An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003002
3003.. code-block:: llvm
3004
3005 i32 (i32) asm "bswap $0", "=r,r"
3006
3007Inline assembler expressions may **only** be used as the callee operand
3008of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3009Thus, typically we have:
3010
3011.. code-block:: llvm
3012
3013 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3014
3015Inline asms with side effects not visible in the constraint list must be
3016marked as having side effects. This is done through the use of the
3017'``sideeffect``' keyword, like so:
3018
3019.. code-block:: llvm
3020
3021 call void asm sideeffect "eieio", ""()
3022
3023In some cases inline asms will contain code that will not work unless
3024the stack is aligned in some way, such as calls or SSE instructions on
3025x86, yet will not contain code that does that alignment within the asm.
3026The compiler should make conservative assumptions about what the asm
3027might contain and should generate its usual stack alignment code in the
3028prologue if the '``alignstack``' keyword is present:
3029
3030.. code-block:: llvm
3031
3032 call void asm alignstack "eieio", ""()
3033
3034Inline asms also support using non-standard assembly dialects. The
3035assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3036the inline asm is using the Intel dialect. Currently, ATT and Intel are
3037the only supported dialects. An example is:
3038
3039.. code-block:: llvm
3040
3041 call void asm inteldialect "eieio", ""()
3042
3043If multiple keywords appear the '``sideeffect``' keyword must come
3044first, the '``alignstack``' keyword second and the '``inteldialect``'
3045keyword last.
3046
James Y Knightbc832ed2015-07-08 18:08:36 +00003047Inline Asm Constraint String
3048^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3049
3050The constraint list is a comma-separated string, each element containing one or
3051more constraint codes.
3052
3053For each element in the constraint list an appropriate register or memory
3054operand will be chosen, and it will be made available to assembly template
3055string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3056second, etc.
3057
3058There are three different types of constraints, which are distinguished by a
3059prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3060constraints must always be given in that order: outputs first, then inputs, then
3061clobbers. They cannot be intermingled.
3062
3063There are also three different categories of constraint codes:
3064
3065- Register constraint. This is either a register class, or a fixed physical
3066 register. This kind of constraint will allocate a register, and if necessary,
3067 bitcast the argument or result to the appropriate type.
3068- Memory constraint. This kind of constraint is for use with an instruction
3069 taking a memory operand. Different constraints allow for different addressing
3070 modes used by the target.
3071- Immediate value constraint. This kind of constraint is for an integer or other
3072 immediate value which can be rendered directly into an instruction. The
3073 various target-specific constraints allow the selection of a value in the
3074 proper range for the instruction you wish to use it with.
3075
3076Output constraints
3077""""""""""""""""""
3078
3079Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3080indicates that the assembly will write to this operand, and the operand will
3081then be made available as a return value of the ``asm`` expression. Output
3082constraints do not consume an argument from the call instruction. (Except, see
3083below about indirect outputs).
3084
3085Normally, it is expected that no output locations are written to by the assembly
3086expression until *all* of the inputs have been read. As such, LLVM may assign
3087the same register to an output and an input. If this is not safe (e.g. if the
3088assembly contains two instructions, where the first writes to one output, and
3089the second reads an input and writes to a second output), then the "``&``"
3090modifier must be used (e.g. "``=&r``") to specify that the output is an
3091"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3092will not use the same register for any inputs (other than an input tied to this
3093output).
3094
3095Input constraints
3096"""""""""""""""""
3097
3098Input constraints do not have a prefix -- just the constraint codes. Each input
3099constraint will consume one argument from the call instruction. It is not
3100permitted for the asm to write to any input register or memory location (unless
3101that input is tied to an output). Note also that multiple inputs may all be
3102assigned to the same register, if LLVM can determine that they necessarily all
3103contain the same value.
3104
3105Instead of providing a Constraint Code, input constraints may also "tie"
3106themselves to an output constraint, by providing an integer as the constraint
3107string. Tied inputs still consume an argument from the call instruction, and
3108take up a position in the asm template numbering as is usual -- they will simply
3109be constrained to always use the same register as the output they've been tied
3110to. For example, a constraint string of "``=r,0``" says to assign a register for
3111output, and use that register as an input as well (it being the 0'th
3112constraint).
3113
3114It is permitted to tie an input to an "early-clobber" output. In that case, no
3115*other* input may share the same register as the input tied to the early-clobber
3116(even when the other input has the same value).
3117
3118You may only tie an input to an output which has a register constraint, not a
3119memory constraint. Only a single input may be tied to an output.
3120
3121There is also an "interesting" feature which deserves a bit of explanation: if a
3122register class constraint allocates a register which is too small for the value
3123type operand provided as input, the input value will be split into multiple
3124registers, and all of them passed to the inline asm.
3125
3126However, this feature is often not as useful as you might think.
3127
3128Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3129architectures that have instructions which operate on multiple consecutive
3130instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3131SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3132hardware then loads into both the named register, and the next register. This
3133feature of inline asm would not be useful to support that.)
3134
3135A few of the targets provide a template string modifier allowing explicit access
3136to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3137``D``). On such an architecture, you can actually access the second allocated
3138register (yet, still, not any subsequent ones). But, in that case, you're still
3139probably better off simply splitting the value into two separate operands, for
3140clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3141despite existing only for use with this feature, is not really a good idea to
3142use)
3143
3144Indirect inputs and outputs
3145"""""""""""""""""""""""""""
3146
3147Indirect output or input constraints can be specified by the "``*``" modifier
3148(which goes after the "``=``" in case of an output). This indicates that the asm
3149will write to or read from the contents of an *address* provided as an input
3150argument. (Note that in this way, indirect outputs act more like an *input* than
3151an output: just like an input, they consume an argument of the call expression,
3152rather than producing a return value. An indirect output constraint is an
3153"output" only in that the asm is expected to write to the contents of the input
3154memory location, instead of just read from it).
3155
3156This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3157address of a variable as a value.
3158
3159It is also possible to use an indirect *register* constraint, but only on output
3160(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3161value normally, and then, separately emit a store to the address provided as
3162input, after the provided inline asm. (It's not clear what value this
3163functionality provides, compared to writing the store explicitly after the asm
3164statement, and it can only produce worse code, since it bypasses many
3165optimization passes. I would recommend not using it.)
3166
3167
3168Clobber constraints
3169"""""""""""""""""""
3170
3171A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3172consume an input operand, nor generate an output. Clobbers cannot use any of the
3173general constraint code letters -- they may use only explicit register
3174constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3175"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3176memory locations -- not only the memory pointed to by a declared indirect
3177output.
3178
3179
3180Constraint Codes
3181""""""""""""""""
3182After a potential prefix comes constraint code, or codes.
3183
3184A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3185followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3186(e.g. "``{eax}``").
3187
3188The one and two letter constraint codes are typically chosen to be the same as
3189GCC's constraint codes.
3190
3191A single constraint may include one or more than constraint code in it, leaving
3192it up to LLVM to choose which one to use. This is included mainly for
3193compatibility with the translation of GCC inline asm coming from clang.
3194
3195There are two ways to specify alternatives, and either or both may be used in an
3196inline asm constraint list:
3197
31981) Append the codes to each other, making a constraint code set. E.g. "``im``"
3199 or "``{eax}m``". This means "choose any of the options in the set". The
3200 choice of constraint is made independently for each constraint in the
3201 constraint list.
3202
32032) Use "``|``" between constraint code sets, creating alternatives. Every
3204 constraint in the constraint list must have the same number of alternative
3205 sets. With this syntax, the same alternative in *all* of the items in the
3206 constraint list will be chosen together.
3207
3208Putting those together, you might have a two operand constraint string like
3209``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3210operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3211may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3212
3213However, the use of either of the alternatives features is *NOT* recommended, as
3214LLVM is not able to make an intelligent choice about which one to use. (At the
3215point it currently needs to choose, not enough information is available to do so
3216in a smart way.) Thus, it simply tries to make a choice that's most likely to
3217compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3218always choose to use memory, not registers). And, if given multiple registers,
3219or multiple register classes, it will simply choose the first one. (In fact, it
3220doesn't currently even ensure explicitly specified physical registers are
3221unique, so specifying multiple physical registers as alternatives, like
3222``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3223intended.)
3224
3225Supported Constraint Code List
3226""""""""""""""""""""""""""""""
3227
3228The constraint codes are, in general, expected to behave the same way they do in
3229GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3230inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3231and GCC likely indicates a bug in LLVM.
3232
3233Some constraint codes are typically supported by all targets:
3234
3235- ``r``: A register in the target's general purpose register class.
3236- ``m``: A memory address operand. It is target-specific what addressing modes
3237 are supported, typical examples are register, or register + register offset,
3238 or register + immediate offset (of some target-specific size).
3239- ``i``: An integer constant (of target-specific width). Allows either a simple
3240 immediate, or a relocatable value.
3241- ``n``: An integer constant -- *not* including relocatable values.
3242- ``s``: An integer constant, but allowing *only* relocatable values.
3243- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3244 useful to pass a label for an asm branch or call.
3245
3246 .. FIXME: but that surely isn't actually okay to jump out of an asm
3247 block without telling llvm about the control transfer???)
3248
3249- ``{register-name}``: Requires exactly the named physical register.
3250
3251Other constraints are target-specific:
3252
3253AArch64:
3254
3255- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3256- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3257 i.e. 0 to 4095 with optional shift by 12.
3258- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3259 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3260- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3261 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3262- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3263 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3264- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3265 32-bit register. This is a superset of ``K``: in addition to the bitmask
3266 immediate, also allows immediate integers which can be loaded with a single
3267 ``MOVZ`` or ``MOVL`` instruction.
3268- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3269 64-bit register. This is a superset of ``L``.
3270- ``Q``: Memory address operand must be in a single register (no
3271 offsets). (However, LLVM currently does this for the ``m`` constraint as
3272 well.)
3273- ``r``: A 32 or 64-bit integer register (W* or X*).
3274- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3275- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3276
3277AMDGPU:
3278
3279- ``r``: A 32 or 64-bit integer register.
3280- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3281- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3282
3283
3284All ARM modes:
3285
3286- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3287 operand. Treated the same as operand ``m``, at the moment.
3288
3289ARM and ARM's Thumb2 mode:
3290
3291- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3292- ``I``: An immediate integer valid for a data-processing instruction.
3293- ``J``: An immediate integer between -4095 and 4095.
3294- ``K``: An immediate integer whose bitwise inverse is valid for a
3295 data-processing instruction. (Can be used with template modifier "``B``" to
3296 print the inverted value).
3297- ``L``: An immediate integer whose negation is valid for a data-processing
3298 instruction. (Can be used with template modifier "``n``" to print the negated
3299 value).
3300- ``M``: A power of two or a integer between 0 and 32.
3301- ``N``: Invalid immediate constraint.
3302- ``O``: Invalid immediate constraint.
3303- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3304- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3305 as ``r``.
3306- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3307 invalid.
3308- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3309 ``d0-d31``, or ``q0-q15``.
3310- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3311 ``d0-d7``, or ``q0-q3``.
3312- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3313 ``s0-s31``.
3314
3315ARM's Thumb1 mode:
3316
3317- ``I``: An immediate integer between 0 and 255.
3318- ``J``: An immediate integer between -255 and -1.
3319- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3320 some amount.
3321- ``L``: An immediate integer between -7 and 7.
3322- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3323- ``N``: An immediate integer between 0 and 31.
3324- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3325- ``r``: A low 32-bit GPR register (``r0-r7``).
3326- ``l``: A low 32-bit GPR register (``r0-r7``).
3327- ``h``: A high GPR register (``r0-r7``).
3328- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3329 ``d0-d31``, or ``q0-q15``.
3330- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3331 ``d0-d7``, or ``q0-q3``.
3332- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3333 ``s0-s31``.
3334
3335
3336Hexagon:
3337
3338- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3339 at the moment.
3340- ``r``: A 32 or 64-bit register.
3341
3342MSP430:
3343
3344- ``r``: An 8 or 16-bit register.
3345
3346MIPS:
3347
3348- ``I``: An immediate signed 16-bit integer.
3349- ``J``: An immediate integer zero.
3350- ``K``: An immediate unsigned 16-bit integer.
3351- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3352- ``N``: An immediate integer between -65535 and -1.
3353- ``O``: An immediate signed 15-bit integer.
3354- ``P``: An immediate integer between 1 and 65535.
3355- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3356 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3357- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3358 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3359 ``m``.
3360- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3361 ``sc`` instruction on the given subtarget (details vary).
3362- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3363- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003364 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3365 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003366- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3367 ``25``).
3368- ``l``: The ``lo`` register, 32 or 64-bit.
3369- ``x``: Invalid.
3370
3371NVPTX:
3372
3373- ``b``: A 1-bit integer register.
3374- ``c`` or ``h``: A 16-bit integer register.
3375- ``r``: A 32-bit integer register.
3376- ``l`` or ``N``: A 64-bit integer register.
3377- ``f``: A 32-bit float register.
3378- ``d``: A 64-bit float register.
3379
3380
3381PowerPC:
3382
3383- ``I``: An immediate signed 16-bit integer.
3384- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3385- ``K``: An immediate unsigned 16-bit integer.
3386- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3387- ``M``: An immediate integer greater than 31.
3388- ``N``: An immediate integer that is an exact power of 2.
3389- ``O``: The immediate integer constant 0.
3390- ``P``: An immediate integer constant whose negation is a signed 16-bit
3391 constant.
3392- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3393 treated the same as ``m``.
3394- ``r``: A 32 or 64-bit integer register.
3395- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3396 ``R1-R31``).
3397- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3398 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3399- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3400 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3401 altivec vector register (``V0-V31``).
3402
3403 .. FIXME: is this a bug that v accepts QPX registers? I think this
3404 is supposed to only use the altivec vector registers?
3405
3406- ``y``: Condition register (``CR0-CR7``).
3407- ``wc``: An individual CR bit in a CR register.
3408- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3409 register set (overlapping both the floating-point and vector register files).
3410- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3411 set.
3412
3413Sparc:
3414
3415- ``I``: An immediate 13-bit signed integer.
3416- ``r``: A 32-bit integer register.
3417
3418SystemZ:
3419
3420- ``I``: An immediate unsigned 8-bit integer.
3421- ``J``: An immediate unsigned 12-bit integer.
3422- ``K``: An immediate signed 16-bit integer.
3423- ``L``: An immediate signed 20-bit integer.
3424- ``M``: An immediate integer 0x7fffffff.
3425- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3426 ``m``, at the moment.
3427- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3428- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3429 address context evaluates as zero).
3430- ``h``: A 32-bit value in the high part of a 64bit data register
3431 (LLVM-specific)
3432- ``f``: A 32, 64, or 128-bit floating point register.
3433
3434X86:
3435
3436- ``I``: An immediate integer between 0 and 31.
3437- ``J``: An immediate integer between 0 and 64.
3438- ``K``: An immediate signed 8-bit integer.
3439- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3440 0xffffffff.
3441- ``M``: An immediate integer between 0 and 3.
3442- ``N``: An immediate unsigned 8-bit integer.
3443- ``O``: An immediate integer between 0 and 127.
3444- ``e``: An immediate 32-bit signed integer.
3445- ``Z``: An immediate 32-bit unsigned integer.
3446- ``o``, ``v``: Treated the same as ``m``, at the moment.
3447- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3448 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3449 registers, and on X86-64, it is all of the integer registers.
3450- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3451 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3452- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3453- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3454 existed since i386, and can be accessed without the REX prefix.
3455- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3456- ``y``: A 64-bit MMX register, if MMX is enabled.
3457- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3458 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3459 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3460 512-bit vector operand in an AVX512 register, Otherwise, an error.
3461- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3462- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3463 32-bit mode, a 64-bit integer operand will get split into two registers). It
3464 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3465 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3466 you're better off splitting it yourself, before passing it to the asm
3467 statement.
3468
3469XCore:
3470
3471- ``r``: A 32-bit integer register.
3472
3473
3474.. _inline-asm-modifiers:
3475
3476Asm template argument modifiers
3477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3478
3479In the asm template string, modifiers can be used on the operand reference, like
3480"``${0:n}``".
3481
3482The modifiers are, in general, expected to behave the same way they do in
3483GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3484inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3485and GCC likely indicates a bug in LLVM.
3486
3487Target-independent:
3488
Sean Silvaa1190322015-08-06 22:56:48 +00003489- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003490 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3491- ``n``: Negate and print immediate integer constant unadorned, without the
3492 target-specific immediate punctuation (e.g. no ``$`` prefix).
3493- ``l``: Print as an unadorned label, without the target-specific label
3494 punctuation (e.g. no ``$`` prefix).
3495
3496AArch64:
3497
3498- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3499 instead of ``x30``, print ``w30``.
3500- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3501- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3502 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3503 ``v*``.
3504
3505AMDGPU:
3506
3507- ``r``: No effect.
3508
3509ARM:
3510
3511- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3512 register).
3513- ``P``: No effect.
3514- ``q``: No effect.
3515- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3516 as ``d4[1]`` instead of ``s9``)
3517- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3518 prefix.
3519- ``L``: Print the low 16-bits of an immediate integer constant.
3520- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3521 register operands subsequent to the specified one (!), so use carefully.
3522- ``Q``: Print the low-order register of a register-pair, or the low-order
3523 register of a two-register operand.
3524- ``R``: Print the high-order register of a register-pair, or the high-order
3525 register of a two-register operand.
3526- ``H``: Print the second register of a register-pair. (On a big-endian system,
3527 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3528 to ``R``.)
3529
3530 .. FIXME: H doesn't currently support printing the second register
3531 of a two-register operand.
3532
3533- ``e``: Print the low doubleword register of a NEON quad register.
3534- ``f``: Print the high doubleword register of a NEON quad register.
3535- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3536 adornment.
3537
3538Hexagon:
3539
3540- ``L``: Print the second register of a two-register operand. Requires that it
3541 has been allocated consecutively to the first.
3542
3543 .. FIXME: why is it restricted to consecutive ones? And there's
3544 nothing that ensures that happens, is there?
3545
3546- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3547 nothing. Used to print 'addi' vs 'add' instructions.
3548
3549MSP430:
3550
3551No additional modifiers.
3552
3553MIPS:
3554
3555- ``X``: Print an immediate integer as hexadecimal
3556- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3557- ``d``: Print an immediate integer as decimal.
3558- ``m``: Subtract one and print an immediate integer as decimal.
3559- ``z``: Print $0 if an immediate zero, otherwise print normally.
3560- ``L``: Print the low-order register of a two-register operand, or prints the
3561 address of the low-order word of a double-word memory operand.
3562
3563 .. FIXME: L seems to be missing memory operand support.
3564
3565- ``M``: Print the high-order register of a two-register operand, or prints the
3566 address of the high-order word of a double-word memory operand.
3567
3568 .. FIXME: M seems to be missing memory operand support.
3569
3570- ``D``: Print the second register of a two-register operand, or prints the
3571 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3572 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3573 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003574- ``w``: No effect. Provided for compatibility with GCC which requires this
3575 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3576 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003577
3578NVPTX:
3579
3580- ``r``: No effect.
3581
3582PowerPC:
3583
3584- ``L``: Print the second register of a two-register operand. Requires that it
3585 has been allocated consecutively to the first.
3586
3587 .. FIXME: why is it restricted to consecutive ones? And there's
3588 nothing that ensures that happens, is there?
3589
3590- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3591 nothing. Used to print 'addi' vs 'add' instructions.
3592- ``y``: For a memory operand, prints formatter for a two-register X-form
3593 instruction. (Currently always prints ``r0,OPERAND``).
3594- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3595 otherwise. (NOTE: LLVM does not support update form, so this will currently
3596 always print nothing)
3597- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3598 not support indexed form, so this will currently always print nothing)
3599
3600Sparc:
3601
3602- ``r``: No effect.
3603
3604SystemZ:
3605
3606SystemZ implements only ``n``, and does *not* support any of the other
3607target-independent modifiers.
3608
3609X86:
3610
3611- ``c``: Print an unadorned integer or symbol name. (The latter is
3612 target-specific behavior for this typically target-independent modifier).
3613- ``A``: Print a register name with a '``*``' before it.
3614- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3615 operand.
3616- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3617 memory operand.
3618- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3619 operand.
3620- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3621 operand.
3622- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3623 available, otherwise the 32-bit register name; do nothing on a memory operand.
3624- ``n``: Negate and print an unadorned integer, or, for operands other than an
3625 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3626 the operand. (The behavior for relocatable symbol expressions is a
3627 target-specific behavior for this typically target-independent modifier)
3628- ``H``: Print a memory reference with additional offset +8.
3629- ``P``: Print a memory reference or operand for use as the argument of a call
3630 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3631
3632XCore:
3633
3634No additional modifiers.
3635
3636
Sean Silvab084af42012-12-07 10:36:55 +00003637Inline Asm Metadata
3638^^^^^^^^^^^^^^^^^^^
3639
3640The call instructions that wrap inline asm nodes may have a
3641"``!srcloc``" MDNode attached to it that contains a list of constant
3642integers. If present, the code generator will use the integer as the
3643location cookie value when report errors through the ``LLVMContext``
3644error reporting mechanisms. This allows a front-end to correlate backend
3645errors that occur with inline asm back to the source code that produced
3646it. For example:
3647
3648.. code-block:: llvm
3649
3650 call void asm sideeffect "something bad", ""(), !srcloc !42
3651 ...
3652 !42 = !{ i32 1234567 }
3653
3654It is up to the front-end to make sense of the magic numbers it places
3655in the IR. If the MDNode contains multiple constants, the code generator
3656will use the one that corresponds to the line of the asm that the error
3657occurs on.
3658
3659.. _metadata:
3660
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003661Metadata
3662========
Sean Silvab084af42012-12-07 10:36:55 +00003663
3664LLVM IR allows metadata to be attached to instructions in the program
3665that can convey extra information about the code to the optimizers and
3666code generator. One example application of metadata is source-level
3667debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003668
Sean Silvaa1190322015-08-06 22:56:48 +00003669Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003670``call`` instruction, it uses the ``metadata`` type.
3671
3672All metadata are identified in syntax by a exclamation point ('``!``').
3673
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003674.. _metadata-string:
3675
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003676Metadata Nodes and Metadata Strings
3677-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003678
3679A metadata string is a string surrounded by double quotes. It can
3680contain any character by escaping non-printable characters with
3681"``\xx``" where "``xx``" is the two digit hex code. For example:
3682"``!"test\00"``".
3683
3684Metadata nodes are represented with notation similar to structure
3685constants (a comma separated list of elements, surrounded by braces and
3686preceded by an exclamation point). Metadata nodes can have any values as
3687their operand. For example:
3688
3689.. code-block:: llvm
3690
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003691 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003692
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003693Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3694
3695.. code-block:: llvm
3696
3697 !0 = distinct !{!"test\00", i32 10}
3698
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003699``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003700content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003701when metadata operands change.
3702
Sean Silvab084af42012-12-07 10:36:55 +00003703A :ref:`named metadata <namedmetadatastructure>` is a collection of
3704metadata nodes, which can be looked up in the module symbol table. For
3705example:
3706
3707.. code-block:: llvm
3708
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003709 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003710
3711Metadata can be used as function arguments. Here ``llvm.dbg.value``
3712function is using two metadata arguments:
3713
3714.. code-block:: llvm
3715
3716 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3717
Peter Collingbourne50108682015-11-06 02:41:02 +00003718Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3719to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003720
3721.. code-block:: llvm
3722
3723 %indvar.next = add i64 %indvar, 1, !dbg !21
3724
Peter Collingbourne50108682015-11-06 02:41:02 +00003725Metadata can also be attached to a function definition. Here metadata ``!22``
3726is attached to the ``foo`` function using the ``!dbg`` identifier:
3727
3728.. code-block:: llvm
3729
3730 define void @foo() !dbg !22 {
3731 ret void
3732 }
3733
Sean Silvab084af42012-12-07 10:36:55 +00003734More information about specific metadata nodes recognized by the
3735optimizers and code generator is found below.
3736
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003737.. _specialized-metadata:
3738
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003739Specialized Metadata Nodes
3740^^^^^^^^^^^^^^^^^^^^^^^^^^
3741
3742Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003743to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003744order.
3745
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003746These aren't inherently debug info centric, but currently all the specialized
3747metadata nodes are related to debug info.
3748
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003749.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003750
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003751DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003752"""""""""""""
3753
Sean Silvaa1190322015-08-06 22:56:48 +00003754``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003755``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3756fields are tuples containing the debug info to be emitted along with the compile
3757unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003758references to them from instructions).
3759
3760.. code-block:: llvm
3761
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003762 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003763 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3764 splitDebugFilename: "abc.debug", emissionKind: 1,
3765 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003766 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003767
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003768Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003769specific compilation unit. File descriptors are defined using this scope.
3770These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003771keep track of subprograms, global variables, type information, and imported
3772entities (declarations and namespaces).
3773
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003774.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003775
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003776DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003777""""""
3778
Sean Silvaa1190322015-08-06 22:56:48 +00003779``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003780
3781.. code-block:: llvm
3782
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003783 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003784
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003785Files are sometimes used in ``scope:`` fields, and are the only valid target
3786for ``file:`` fields.
3787
Michael Kuperstein605308a2015-05-14 10:58:59 +00003788.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003790DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003791"""""""""""
3792
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003793``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003794``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003795
3796.. code-block:: llvm
3797
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003798 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003799 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003800 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003801
Sean Silvaa1190322015-08-06 22:56:48 +00003802The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003803following:
3804
3805.. code-block:: llvm
3806
3807 DW_ATE_address = 1
3808 DW_ATE_boolean = 2
3809 DW_ATE_float = 4
3810 DW_ATE_signed = 5
3811 DW_ATE_signed_char = 6
3812 DW_ATE_unsigned = 7
3813 DW_ATE_unsigned_char = 8
3814
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003816
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003817DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003818""""""""""""""""
3819
Sean Silvaa1190322015-08-06 22:56:48 +00003820``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003821refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003822types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823represents a function with no return value (such as ``void foo() {}`` in C++).
3824
3825.. code-block:: llvm
3826
3827 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3828 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003829 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003830
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003831.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003832
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003833DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003834"""""""""""""
3835
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003836``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003837qualified types.
3838
3839.. code-block:: llvm
3840
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003841 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003842 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003843 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003844 align: 32)
3845
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003846The following ``tag:`` values are valid:
3847
3848.. code-block:: llvm
3849
3850 DW_TAG_formal_parameter = 5
3851 DW_TAG_member = 13
3852 DW_TAG_pointer_type = 15
3853 DW_TAG_reference_type = 16
3854 DW_TAG_typedef = 22
3855 DW_TAG_ptr_to_member_type = 31
3856 DW_TAG_const_type = 38
3857 DW_TAG_volatile_type = 53
3858 DW_TAG_restrict_type = 55
3859
3860``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003861<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3862is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003863``DW_TAG_formal_parameter`` is used to define a member which is a formal
3864argument of a subprogram.
3865
3866``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3867
3868``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3869``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3870``baseType:``.
3871
3872Note that the ``void *`` type is expressed as a type derived from NULL.
3873
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003875
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003876DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003877"""""""""""""""
3878
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003879``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003880structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881
3882If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003883identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003884can refer to composite types indirectly via a :ref:`metadata string
3885<metadata-string>` that matches their identifier.
3886
3887.. code-block:: llvm
3888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889 !0 = !DIEnumerator(name: "SixKind", value: 7)
3890 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3891 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3892 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003893 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3894 elements: !{!0, !1, !2})
3895
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003896The following ``tag:`` values are valid:
3897
3898.. code-block:: llvm
3899
3900 DW_TAG_array_type = 1
3901 DW_TAG_class_type = 2
3902 DW_TAG_enumeration_type = 4
3903 DW_TAG_structure_type = 19
3904 DW_TAG_union_type = 23
3905 DW_TAG_subroutine_type = 21
3906 DW_TAG_inheritance = 28
3907
3908
3909For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003910descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003911level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003912array type is a native packed vector.
3913
3914For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003915descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003916value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003918
3919For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3920``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003921<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003922
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003923.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003924
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003925DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003926""""""""""
3927
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003928``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003929:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003930
3931.. code-block:: llvm
3932
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003933 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3934 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3935 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003938
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003939DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940""""""""""""
3941
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003942``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3943variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003944
3945.. code-block:: llvm
3946
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003947 !0 = !DIEnumerator(name: "SixKind", value: 7)
3948 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3949 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003952"""""""""""""""""""""""
3953
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003954``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003955language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003956:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957
3958.. code-block:: llvm
3959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003961
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003962DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003963""""""""""""""""""""""""
3964
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003966language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003967but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003968``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003969:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003970
3971.. code-block:: llvm
3972
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003973 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003974
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003975DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003976"""""""""""
3977
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003978``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
3980.. code-block:: llvm
3981
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003982 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003984DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003985""""""""""""""""
3986
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003987``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003988
3989.. code-block:: llvm
3990
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003991 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003992 file: !2, line: 7, type: !3, isLocal: true,
3993 isDefinition: false, variable: i32* @foo,
3994 declaration: !4)
3995
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003996All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003998
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003999.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004001DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004002""""""""""""
4003
Peter Collingbourne50108682015-11-06 02:41:02 +00004004``DISubprogram`` nodes represent functions from the source language. A
4005``DISubprogram`` may be attached to a function definition using ``!dbg``
4006metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4007that must be retained, even if their IR counterparts are optimized out of
4008the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009
4010.. code-block:: llvm
4011
Peter Collingbourne50108682015-11-06 02:41:02 +00004012 define void @_Z3foov() !dbg !0 {
4013 ...
4014 }
4015
4016 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4017 file: !2, line: 7, type: !3, isLocal: true,
4018 isDefinition: false, scopeLine: 8,
4019 containingType: !4,
4020 virtuality: DW_VIRTUALITY_pure_virtual,
4021 virtualIndex: 10, flags: DIFlagPrototyped,
4022 isOptimized: true, templateParams: !5,
4023 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004024
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004025.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004026
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028""""""""""""""
4029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004031<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004032two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004033fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004034
4035.. code-block:: llvm
4036
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004037 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004038
4039Usually lexical blocks are ``distinct`` to prevent node merging based on
4040operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004041
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004042.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045""""""""""""""""""
4046
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004047``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004048:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004049indicate textual inclusion, or the ``discriminator:`` field can be used to
4050discriminate between control flow within a single block in the source language.
4051
4052.. code-block:: llvm
4053
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004054 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4055 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4056 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057
Michael Kuperstein605308a2015-05-14 10:58:59 +00004058.. _DILocation:
4059
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004060DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004061""""""""""
4062
Sean Silvaa1190322015-08-06 22:56:48 +00004063``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004064mandatory, and points at an :ref:`DILexicalBlockFile`, an
4065:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004066
4067.. code-block:: llvm
4068
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004069 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004070
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004071.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004072
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004073DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074"""""""""""""""
4075
Sean Silvaa1190322015-08-06 22:56:48 +00004076``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004077the ``arg:`` field is set to non-zero, then this variable is a subprogram
4078parameter, and it will be included in the ``variables:`` field of its
4079:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004080
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081.. code-block:: llvm
4082
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004083 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4084 type: !3, flags: DIFlagArtificial)
4085 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4086 type: !3)
4087 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004088
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004089DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090""""""""""""
4091
Sean Silvaa1190322015-08-06 22:56:48 +00004092``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004093:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4094describe how the referenced LLVM variable relates to the source language
4095variable.
4096
4097The current supported vocabulary is limited:
4098
4099- ``DW_OP_deref`` dereferences the working expression.
4100- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4101- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4102 here, respectively) of the variable piece from the working expression.
4103
4104.. code-block:: llvm
4105
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004106 !0 = !DIExpression(DW_OP_deref)
4107 !1 = !DIExpression(DW_OP_plus, 3)
4108 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4109 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004110
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004111DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112""""""""""""""
4113
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004114``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004115
4116.. code-block:: llvm
4117
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004118 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004119 getter: "getFoo", attributes: 7, type: !2)
4120
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004121DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004122""""""""""""""""
4123
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004124``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004125compile unit.
4126
4127.. code-block:: llvm
4128
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004129 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004130 entity: !1, line: 7)
4131
Amjad Abouda9bcf162015-12-10 12:56:35 +00004132DIMacro
4133"""""""
4134
4135``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4136The ``name:`` field is the macro identifier, followed by macro parameters when
4137definining a function-like macro, and the ``value`` field is the token-string
4138used to expand the macro identifier.
4139
4140.. code-block:: llvm
4141
4142 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4143 value: "((x) + 1)")
4144 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4145
4146DIMacroFile
4147"""""""""""
4148
4149``DIMacroFile`` nodes represent inclusion of source files.
4150The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4151appear in the included source file.
4152
4153.. code-block:: llvm
4154
4155 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4156 nodes: !3)
4157
Sean Silvab084af42012-12-07 10:36:55 +00004158'``tbaa``' Metadata
4159^^^^^^^^^^^^^^^^^^^
4160
4161In LLVM IR, memory does not have types, so LLVM's own type system is not
4162suitable for doing TBAA. Instead, metadata is added to the IR to
4163describe a type system of a higher level language. This can be used to
4164implement typical C/C++ TBAA, but it can also be used to implement
4165custom alias analysis behavior for other languages.
4166
4167The current metadata format is very simple. TBAA metadata nodes have up
4168to three fields, e.g.:
4169
4170.. code-block:: llvm
4171
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004172 !0 = !{ !"an example type tree" }
4173 !1 = !{ !"int", !0 }
4174 !2 = !{ !"float", !0 }
4175 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004176
4177The first field is an identity field. It can be any value, usually a
4178metadata string, which uniquely identifies the type. The most important
4179name in the tree is the name of the root node. Two trees with different
4180root node names are entirely disjoint, even if they have leaves with
4181common names.
4182
4183The second field identifies the type's parent node in the tree, or is
4184null or omitted for a root node. A type is considered to alias all of
4185its descendants and all of its ancestors in the tree. Also, a type is
4186considered to alias all types in other trees, so that bitcode produced
4187from multiple front-ends is handled conservatively.
4188
4189If the third field is present, it's an integer which if equal to 1
4190indicates that the type is "constant" (meaning
4191``pointsToConstantMemory`` should return true; see `other useful
4192AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4193
4194'``tbaa.struct``' Metadata
4195^^^^^^^^^^^^^^^^^^^^^^^^^^
4196
4197The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4198aggregate assignment operations in C and similar languages, however it
4199is defined to copy a contiguous region of memory, which is more than
4200strictly necessary for aggregate types which contain holes due to
4201padding. Also, it doesn't contain any TBAA information about the fields
4202of the aggregate.
4203
4204``!tbaa.struct`` metadata can describe which memory subregions in a
4205memcpy are padding and what the TBAA tags of the struct are.
4206
4207The current metadata format is very simple. ``!tbaa.struct`` metadata
4208nodes are a list of operands which are in conceptual groups of three.
4209For each group of three, the first operand gives the byte offset of a
4210field in bytes, the second gives its size in bytes, and the third gives
4211its tbaa tag. e.g.:
4212
4213.. code-block:: llvm
4214
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004215 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004216
4217This describes a struct with two fields. The first is at offset 0 bytes
4218with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4219and has size 4 bytes and has tbaa tag !2.
4220
4221Note that the fields need not be contiguous. In this example, there is a
42224 byte gap between the two fields. This gap represents padding which
4223does not carry useful data and need not be preserved.
4224
Hal Finkel94146652014-07-24 14:25:39 +00004225'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004227
4228``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4229noalias memory-access sets. This means that some collection of memory access
4230instructions (loads, stores, memory-accessing calls, etc.) that carry
4231``noalias`` metadata can specifically be specified not to alias with some other
4232collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004233Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004234a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004235of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004236subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004237instruction's ``noalias`` list, then the two memory accesses are assumed not to
4238alias.
Hal Finkel94146652014-07-24 14:25:39 +00004239
Hal Finkel029cde62014-07-25 15:50:02 +00004240The metadata identifying each domain is itself a list containing one or two
4241entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004242string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004243self-reference can be used to create globally unique domain names. A
4244descriptive string may optionally be provided as a second list entry.
4245
4246The metadata identifying each scope is also itself a list containing two or
4247three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004248is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004249self-reference can be used to create globally unique scope names. A metadata
4250reference to the scope's domain is the second entry. A descriptive string may
4251optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004252
4253For example,
4254
4255.. code-block:: llvm
4256
Hal Finkel029cde62014-07-25 15:50:02 +00004257 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004258 !0 = !{!0}
4259 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004260
Hal Finkel029cde62014-07-25 15:50:02 +00004261 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004262 !2 = !{!2, !0}
4263 !3 = !{!3, !0}
4264 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004265
Hal Finkel029cde62014-07-25 15:50:02 +00004266 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004267 !5 = !{!4} ; A list containing only scope !4
4268 !6 = !{!4, !3, !2}
4269 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004270
4271 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004272 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004273 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004274
Hal Finkel029cde62014-07-25 15:50:02 +00004275 ; These two instructions also don't alias (for domain !1, the set of scopes
4276 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004277 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004278 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004279
Adam Nemet0a8416f2015-05-11 08:30:28 +00004280 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004281 ; the !noalias list is not a superset of, or equal to, the scopes in the
4282 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004283 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004284 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004285
Sean Silvab084af42012-12-07 10:36:55 +00004286'``fpmath``' Metadata
4287^^^^^^^^^^^^^^^^^^^^^
4288
4289``fpmath`` metadata may be attached to any instruction of floating point
4290type. It can be used to express the maximum acceptable error in the
4291result of that instruction, in ULPs, thus potentially allowing the
4292compiler to use a more efficient but less accurate method of computing
4293it. ULP is defined as follows:
4294
4295 If ``x`` is a real number that lies between two finite consecutive
4296 floating-point numbers ``a`` and ``b``, without being equal to one
4297 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4298 distance between the two non-equal finite floating-point numbers
4299 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4300
4301The metadata node shall consist of a single positive floating point
4302number representing the maximum relative error, for example:
4303
4304.. code-block:: llvm
4305
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004306 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004307
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004308.. _range-metadata:
4309
Sean Silvab084af42012-12-07 10:36:55 +00004310'``range``' Metadata
4311^^^^^^^^^^^^^^^^^^^^
4312
Jingyue Wu37fcb592014-06-19 16:50:16 +00004313``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4314integer types. It expresses the possible ranges the loaded value or the value
4315returned by the called function at this call site is in. The ranges are
4316represented with a flattened list of integers. The loaded value or the value
4317returned is known to be in the union of the ranges defined by each consecutive
4318pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004319
4320- The type must match the type loaded by the instruction.
4321- The pair ``a,b`` represents the range ``[a,b)``.
4322- Both ``a`` and ``b`` are constants.
4323- The range is allowed to wrap.
4324- The range should not represent the full or empty set. That is,
4325 ``a!=b``.
4326
4327In addition, the pairs must be in signed order of the lower bound and
4328they must be non-contiguous.
4329
4330Examples:
4331
4332.. code-block:: llvm
4333
David Blaikiec7aabbb2015-03-04 22:06:14 +00004334 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4335 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004336 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4337 %d = invoke i8 @bar() to label %cont
4338 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004339 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004340 !0 = !{ i8 0, i8 2 }
4341 !1 = !{ i8 255, i8 2 }
4342 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4343 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004344
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004345'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004346^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004347
4348``unpredictable`` metadata may be attached to any branch or switch
4349instruction. It can be used to express the unpredictability of control
4350flow. Similar to the llvm.expect intrinsic, it may be used to alter
4351optimizations related to compare and branch instructions. The metadata
4352is treated as a boolean value; if it exists, it signals that the branch
4353or switch that it is attached to is completely unpredictable.
4354
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004355'``llvm.loop``'
4356^^^^^^^^^^^^^^^
4357
4358It is sometimes useful to attach information to loop constructs. Currently,
4359loop metadata is implemented as metadata attached to the branch instruction
4360in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004361guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004362specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004363
4364The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004365itself to avoid merging it with any other identifier metadata, e.g.,
4366during module linkage or function inlining. That is, each loop should refer
4367to their own identification metadata even if they reside in separate functions.
4368The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004369constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004370
4371.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004372
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004373 !0 = !{!0}
4374 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004375
Mark Heffernan893752a2014-07-18 19:24:51 +00004376The loop identifier metadata can be used to specify additional
4377per-loop metadata. Any operands after the first operand can be treated
4378as user-defined metadata. For example the ``llvm.loop.unroll.count``
4379suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004380
Paul Redmond5fdf8362013-05-28 20:00:34 +00004381.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004382
Paul Redmond5fdf8362013-05-28 20:00:34 +00004383 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4384 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004385 !0 = !{!0, !1}
4386 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004387
Mark Heffernan9d20e422014-07-21 23:11:03 +00004388'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004390
Mark Heffernan9d20e422014-07-21 23:11:03 +00004391Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4392used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004393vectorization width and interleave count. These metadata should be used in
4394conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004395``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4396optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004397it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004398which contains information about loop-carried memory dependencies can be helpful
4399in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004400
Mark Heffernan9d20e422014-07-21 23:11:03 +00004401'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4403
Mark Heffernan9d20e422014-07-21 23:11:03 +00004404This metadata suggests an interleave count to the loop interleaver.
4405The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004406second operand is an integer specifying the interleave count. For
4407example:
4408
4409.. code-block:: llvm
4410
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004411 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004412
Mark Heffernan9d20e422014-07-21 23:11:03 +00004413Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004414multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004415then the interleave count will be determined automatically.
4416
4417'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004418^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004419
4420This metadata selectively enables or disables vectorization for the loop. The
4421first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004422is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000044230 disables vectorization:
4424
4425.. code-block:: llvm
4426
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004427 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4428 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004429
4430'``llvm.loop.vectorize.width``' Metadata
4431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4432
4433This metadata sets the target width of the vectorizer. The first
4434operand is the string ``llvm.loop.vectorize.width`` and the second
4435operand is an integer specifying the width. For example:
4436
4437.. code-block:: llvm
4438
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004439 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004440
4441Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004442vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000044430 or if the loop does not have this metadata the width will be
4444determined automatically.
4445
4446'``llvm.loop.unroll``'
4447^^^^^^^^^^^^^^^^^^^^^^
4448
4449Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4450optimization hints such as the unroll factor. ``llvm.loop.unroll``
4451metadata should be used in conjunction with ``llvm.loop`` loop
4452identification metadata. The ``llvm.loop.unroll`` metadata are only
4453optimization hints and the unrolling will only be performed if the
4454optimizer believes it is safe to do so.
4455
Mark Heffernan893752a2014-07-18 19:24:51 +00004456'``llvm.loop.unroll.count``' Metadata
4457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4458
4459This metadata suggests an unroll factor to the loop unroller. The
4460first operand is the string ``llvm.loop.unroll.count`` and the second
4461operand is a positive integer specifying the unroll factor. For
4462example:
4463
4464.. code-block:: llvm
4465
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004466 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004467
4468If the trip count of the loop is less than the unroll count the loop
4469will be partially unrolled.
4470
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004471'``llvm.loop.unroll.disable``' Metadata
4472^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4473
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004474This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004475which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004476
4477.. code-block:: llvm
4478
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004479 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004480
Kevin Qin715b01e2015-03-09 06:14:18 +00004481'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004483
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004484This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004485operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004486
4487.. code-block:: llvm
4488
4489 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4490
Mark Heffernan89391542015-08-10 17:28:08 +00004491'``llvm.loop.unroll.enable``' Metadata
4492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4493
4494This metadata suggests that the loop should be fully unrolled if the trip count
4495is known at compile time and partially unrolled if the trip count is not known
4496at compile time. The metadata has a single operand which is the string
4497``llvm.loop.unroll.enable``. For example:
4498
4499.. code-block:: llvm
4500
4501 !0 = !{!"llvm.loop.unroll.enable"}
4502
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004503'``llvm.loop.unroll.full``' Metadata
4504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4505
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004506This metadata suggests that the loop should be unrolled fully. The
4507metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004508For example:
4509
4510.. code-block:: llvm
4511
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004512 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004513
4514'``llvm.mem``'
4515^^^^^^^^^^^^^^^
4516
4517Metadata types used to annotate memory accesses with information helpful
4518for optimizations are prefixed with ``llvm.mem``.
4519
4520'``llvm.mem.parallel_loop_access``' Metadata
4521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4522
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004523The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4524or metadata containing a list of loop identifiers for nested loops.
4525The metadata is attached to memory accessing instructions and denotes that
4526no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004527with the same loop identifier.
4528
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004529Precisely, given two instructions ``m1`` and ``m2`` that both have the
4530``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4531set of loops associated with that metadata, respectively, then there is no loop
4532carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004533``L2``.
4534
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004535As a special case, if all memory accessing instructions in a loop have
4536``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4537loop has no loop carried memory dependences and is considered to be a parallel
4538loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004539
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004540Note that if not all memory access instructions have such metadata referring to
4541the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004542memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004543safe mechanism, this causes loops that were originally parallel to be considered
4544sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004545insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004546
4547Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004548both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004549metadata types that refer to the same loop identifier metadata.
4550
4551.. code-block:: llvm
4552
4553 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004554 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004555 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004556 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004557 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004558 ...
4559 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004560
4561 for.end:
4562 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004563 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004564
4565It is also possible to have nested parallel loops. In that case the
4566memory accesses refer to a list of loop identifier metadata nodes instead of
4567the loop identifier metadata node directly:
4568
4569.. code-block:: llvm
4570
4571 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004572 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004573 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004574 ...
4575 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004576
4577 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004578 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004579 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004580 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004581 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004582 ...
4583 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004584
4585 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004586 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004587 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004588 ...
4589 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004590
4591 outer.for.end: ; preds = %for.body
4592 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004593 !0 = !{!1, !2} ; a list of loop identifiers
4594 !1 = !{!1} ; an identifier for the inner loop
4595 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004596
Peter Collingbournee6909c82015-02-20 20:30:47 +00004597'``llvm.bitsets``'
4598^^^^^^^^^^^^^^^^^^
4599
4600The ``llvm.bitsets`` global metadata is used to implement
4601:doc:`bitsets <BitSets>`.
4602
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004603'``invariant.group``' Metadata
4604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4605
4606The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4607The existence of the ``invariant.group`` metadata on the instruction tells
4608the optimizer that every ``load`` and ``store`` to the same pointer operand
4609within the same invariant group can be assumed to load or store the same
4610value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4611when two pointers are considered the same).
4612
4613Examples:
4614
4615.. code-block:: llvm
4616
4617 @unknownPtr = external global i8
4618 ...
4619 %ptr = alloca i8
4620 store i8 42, i8* %ptr, !invariant.group !0
4621 call void @foo(i8* %ptr)
4622
4623 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4624 call void @foo(i8* %ptr)
4625 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4626
4627 %newPtr = call i8* @getPointer(i8* %ptr)
4628 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4629
4630 %unknownValue = load i8, i8* @unknownPtr
4631 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4632
4633 call void @foo(i8* %ptr)
4634 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4635 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4636
4637 ...
4638 declare void @foo(i8*)
4639 declare i8* @getPointer(i8*)
4640 declare i8* @llvm.invariant.group.barrier(i8*)
4641
4642 !0 = !{!"magic ptr"}
4643 !1 = !{!"other ptr"}
4644
4645
4646
Sean Silvab084af42012-12-07 10:36:55 +00004647Module Flags Metadata
4648=====================
4649
4650Information about the module as a whole is difficult to convey to LLVM's
4651subsystems. The LLVM IR isn't sufficient to transmit this information.
4652The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004653this. These flags are in the form of key / value pairs --- much like a
4654dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004655look it up.
4656
4657The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4658Each triplet has the following form:
4659
4660- The first element is a *behavior* flag, which specifies the behavior
4661 when two (or more) modules are merged together, and it encounters two
4662 (or more) metadata with the same ID. The supported behaviors are
4663 described below.
4664- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004665 metadata. Each module may only have one flag entry for each unique ID (not
4666 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004667- The third element is the value of the flag.
4668
4669When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004670``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4671each unique metadata ID string, there will be exactly one entry in the merged
4672modules ``llvm.module.flags`` metadata table, and the value for that entry will
4673be determined by the merge behavior flag, as described below. The only exception
4674is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004675
4676The following behaviors are supported:
4677
4678.. list-table::
4679 :header-rows: 1
4680 :widths: 10 90
4681
4682 * - Value
4683 - Behavior
4684
4685 * - 1
4686 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004687 Emits an error if two values disagree, otherwise the resulting value
4688 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004689
4690 * - 2
4691 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004692 Emits a warning if two values disagree. The result value will be the
4693 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004694
4695 * - 3
4696 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004697 Adds a requirement that another module flag be present and have a
4698 specified value after linking is performed. The value must be a
4699 metadata pair, where the first element of the pair is the ID of the
4700 module flag to be restricted, and the second element of the pair is
4701 the value the module flag should be restricted to. This behavior can
4702 be used to restrict the allowable results (via triggering of an
4703 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004704
4705 * - 4
4706 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004707 Uses the specified value, regardless of the behavior or value of the
4708 other module. If both modules specify **Override**, but the values
4709 differ, an error will be emitted.
4710
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004711 * - 5
4712 - **Append**
4713 Appends the two values, which are required to be metadata nodes.
4714
4715 * - 6
4716 - **AppendUnique**
4717 Appends the two values, which are required to be metadata
4718 nodes. However, duplicate entries in the second list are dropped
4719 during the append operation.
4720
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004721It is an error for a particular unique flag ID to have multiple behaviors,
4722except in the case of **Require** (which adds restrictions on another metadata
4723value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004724
4725An example of module flags:
4726
4727.. code-block:: llvm
4728
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004729 !0 = !{ i32 1, !"foo", i32 1 }
4730 !1 = !{ i32 4, !"bar", i32 37 }
4731 !2 = !{ i32 2, !"qux", i32 42 }
4732 !3 = !{ i32 3, !"qux",
4733 !{
4734 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004735 }
4736 }
4737 !llvm.module.flags = !{ !0, !1, !2, !3 }
4738
4739- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4740 if two or more ``!"foo"`` flags are seen is to emit an error if their
4741 values are not equal.
4742
4743- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4744 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004745 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004746
4747- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4748 behavior if two or more ``!"qux"`` flags are seen is to emit a
4749 warning if their values are not equal.
4750
4751- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4752
4753 ::
4754
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004755 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004756
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004757 The behavior is to emit an error if the ``llvm.module.flags`` does not
4758 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4759 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004760
4761Objective-C Garbage Collection Module Flags Metadata
4762----------------------------------------------------
4763
4764On the Mach-O platform, Objective-C stores metadata about garbage
4765collection in a special section called "image info". The metadata
4766consists of a version number and a bitmask specifying what types of
4767garbage collection are supported (if any) by the file. If two or more
4768modules are linked together their garbage collection metadata needs to
4769be merged rather than appended together.
4770
4771The Objective-C garbage collection module flags metadata consists of the
4772following key-value pairs:
4773
4774.. list-table::
4775 :header-rows: 1
4776 :widths: 30 70
4777
4778 * - Key
4779 - Value
4780
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004781 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004782 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004783
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004784 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004785 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004786 always 0.
4787
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004788 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004789 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004790 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4791 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4792 Objective-C ABI version 2.
4793
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004794 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004795 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004796 not. Valid values are 0, for no garbage collection, and 2, for garbage
4797 collection supported.
4798
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004799 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004800 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004801 If present, its value must be 6. This flag requires that the
4802 ``Objective-C Garbage Collection`` flag have the value 2.
4803
4804Some important flag interactions:
4805
4806- If a module with ``Objective-C Garbage Collection`` set to 0 is
4807 merged with a module with ``Objective-C Garbage Collection`` set to
4808 2, then the resulting module has the
4809 ``Objective-C Garbage Collection`` flag set to 0.
4810- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4811 merged with a module with ``Objective-C GC Only`` set to 6.
4812
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004813Automatic Linker Flags Module Flags Metadata
4814--------------------------------------------
4815
4816Some targets support embedding flags to the linker inside individual object
4817files. Typically this is used in conjunction with language extensions which
4818allow source files to explicitly declare the libraries they depend on, and have
4819these automatically be transmitted to the linker via object files.
4820
4821These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004822using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004823to be ``AppendUnique``, and the value for the key is expected to be a metadata
4824node which should be a list of other metadata nodes, each of which should be a
4825list of metadata strings defining linker options.
4826
4827For example, the following metadata section specifies two separate sets of
4828linker options, presumably to link against ``libz`` and the ``Cocoa``
4829framework::
4830
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004831 !0 = !{ i32 6, !"Linker Options",
4832 !{
4833 !{ !"-lz" },
4834 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004835 !llvm.module.flags = !{ !0 }
4836
4837The metadata encoding as lists of lists of options, as opposed to a collapsed
4838list of options, is chosen so that the IR encoding can use multiple option
4839strings to specify e.g., a single library, while still having that specifier be
4840preserved as an atomic element that can be recognized by a target specific
4841assembly writer or object file emitter.
4842
4843Each individual option is required to be either a valid option for the target's
4844linker, or an option that is reserved by the target specific assembly writer or
4845object file emitter. No other aspect of these options is defined by the IR.
4846
Oliver Stannard5dc29342014-06-20 10:08:11 +00004847C type width Module Flags Metadata
4848----------------------------------
4849
4850The ARM backend emits a section into each generated object file describing the
4851options that it was compiled with (in a compiler-independent way) to prevent
4852linking incompatible objects, and to allow automatic library selection. Some
4853of these options are not visible at the IR level, namely wchar_t width and enum
4854width.
4855
4856To pass this information to the backend, these options are encoded in module
4857flags metadata, using the following key-value pairs:
4858
4859.. list-table::
4860 :header-rows: 1
4861 :widths: 30 70
4862
4863 * - Key
4864 - Value
4865
4866 * - short_wchar
4867 - * 0 --- sizeof(wchar_t) == 4
4868 * 1 --- sizeof(wchar_t) == 2
4869
4870 * - short_enum
4871 - * 0 --- Enums are at least as large as an ``int``.
4872 * 1 --- Enums are stored in the smallest integer type which can
4873 represent all of its values.
4874
4875For example, the following metadata section specifies that the module was
4876compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4877enum is the smallest type which can represent all of its values::
4878
4879 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004880 !0 = !{i32 1, !"short_wchar", i32 1}
4881 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004882
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004883.. _intrinsicglobalvariables:
4884
Sean Silvab084af42012-12-07 10:36:55 +00004885Intrinsic Global Variables
4886==========================
4887
4888LLVM has a number of "magic" global variables that contain data that
4889affect code generation or other IR semantics. These are documented here.
4890All globals of this sort should have a section specified as
4891"``llvm.metadata``". This section and all globals that start with
4892"``llvm.``" are reserved for use by LLVM.
4893
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004894.. _gv_llvmused:
4895
Sean Silvab084af42012-12-07 10:36:55 +00004896The '``llvm.used``' Global Variable
4897-----------------------------------
4898
Rafael Espindola74f2e462013-04-22 14:58:02 +00004899The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004900:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004901pointers to named global variables, functions and aliases which may optionally
4902have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004903use of it is:
4904
4905.. code-block:: llvm
4906
4907 @X = global i8 4
4908 @Y = global i32 123
4909
4910 @llvm.used = appending global [2 x i8*] [
4911 i8* @X,
4912 i8* bitcast (i32* @Y to i8*)
4913 ], section "llvm.metadata"
4914
Rafael Espindola74f2e462013-04-22 14:58:02 +00004915If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4916and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004917symbol that it cannot see (which is why they have to be named). For example, if
4918a variable has internal linkage and no references other than that from the
4919``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4920references from inline asms and other things the compiler cannot "see", and
4921corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004922
4923On some targets, the code generator must emit a directive to the
4924assembler or object file to prevent the assembler and linker from
4925molesting the symbol.
4926
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004927.. _gv_llvmcompilerused:
4928
Sean Silvab084af42012-12-07 10:36:55 +00004929The '``llvm.compiler.used``' Global Variable
4930--------------------------------------------
4931
4932The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4933directive, except that it only prevents the compiler from touching the
4934symbol. On targets that support it, this allows an intelligent linker to
4935optimize references to the symbol without being impeded as it would be
4936by ``@llvm.used``.
4937
4938This is a rare construct that should only be used in rare circumstances,
4939and should not be exposed to source languages.
4940
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004941.. _gv_llvmglobalctors:
4942
Sean Silvab084af42012-12-07 10:36:55 +00004943The '``llvm.global_ctors``' Global Variable
4944-------------------------------------------
4945
4946.. code-block:: llvm
4947
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004948 %0 = type { i32, void ()*, i8* }
4949 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004950
4951The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004952functions, priorities, and an optional associated global or function.
4953The functions referenced by this array will be called in ascending order
4954of priority (i.e. lowest first) when the module is loaded. The order of
4955functions with the same priority is not defined.
4956
4957If the third field is present, non-null, and points to a global variable
4958or function, the initializer function will only run if the associated
4959data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004960
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004961.. _llvmglobaldtors:
4962
Sean Silvab084af42012-12-07 10:36:55 +00004963The '``llvm.global_dtors``' Global Variable
4964-------------------------------------------
4965
4966.. code-block:: llvm
4967
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004968 %0 = type { i32, void ()*, i8* }
4969 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004970
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004971The ``@llvm.global_dtors`` array contains a list of destructor
4972functions, priorities, and an optional associated global or function.
4973The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004974order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004975order of functions with the same priority is not defined.
4976
4977If the third field is present, non-null, and points to a global variable
4978or function, the destructor function will only run if the associated
4979data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004980
4981Instruction Reference
4982=====================
4983
4984The LLVM instruction set consists of several different classifications
4985of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4986instructions <binaryops>`, :ref:`bitwise binary
4987instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4988:ref:`other instructions <otherops>`.
4989
4990.. _terminators:
4991
4992Terminator Instructions
4993-----------------------
4994
4995As mentioned :ref:`previously <functionstructure>`, every basic block in a
4996program ends with a "Terminator" instruction, which indicates which
4997block should be executed after the current block is finished. These
4998terminator instructions typically yield a '``void``' value: they produce
4999control flow, not values (the one exception being the
5000':ref:`invoke <i_invoke>`' instruction).
5001
5002The terminator instructions are: ':ref:`ret <i_ret>`',
5003':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5004':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005005':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005006':ref:`catchret <i_catchret>`',
5007':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005008and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005009
5010.. _i_ret:
5011
5012'``ret``' Instruction
5013^^^^^^^^^^^^^^^^^^^^^
5014
5015Syntax:
5016"""""""
5017
5018::
5019
5020 ret <type> <value> ; Return a value from a non-void function
5021 ret void ; Return from void function
5022
5023Overview:
5024"""""""""
5025
5026The '``ret``' instruction is used to return control flow (and optionally
5027a value) from a function back to the caller.
5028
5029There are two forms of the '``ret``' instruction: one that returns a
5030value and then causes control flow, and one that just causes control
5031flow to occur.
5032
5033Arguments:
5034""""""""""
5035
5036The '``ret``' instruction optionally accepts a single argument, the
5037return value. The type of the return value must be a ':ref:`first
5038class <t_firstclass>`' type.
5039
5040A function is not :ref:`well formed <wellformed>` if it it has a non-void
5041return type and contains a '``ret``' instruction with no return value or
5042a return value with a type that does not match its type, or if it has a
5043void return type and contains a '``ret``' instruction with a return
5044value.
5045
5046Semantics:
5047""""""""""
5048
5049When the '``ret``' instruction is executed, control flow returns back to
5050the calling function's context. If the caller is a
5051":ref:`call <i_call>`" instruction, execution continues at the
5052instruction after the call. If the caller was an
5053":ref:`invoke <i_invoke>`" instruction, execution continues at the
5054beginning of the "normal" destination block. If the instruction returns
5055a value, that value shall set the call or invoke instruction's return
5056value.
5057
5058Example:
5059""""""""
5060
5061.. code-block:: llvm
5062
5063 ret i32 5 ; Return an integer value of 5
5064 ret void ; Return from a void function
5065 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5066
5067.. _i_br:
5068
5069'``br``' Instruction
5070^^^^^^^^^^^^^^^^^^^^
5071
5072Syntax:
5073"""""""
5074
5075::
5076
5077 br i1 <cond>, label <iftrue>, label <iffalse>
5078 br label <dest> ; Unconditional branch
5079
5080Overview:
5081"""""""""
5082
5083The '``br``' instruction is used to cause control flow to transfer to a
5084different basic block in the current function. There are two forms of
5085this instruction, corresponding to a conditional branch and an
5086unconditional branch.
5087
5088Arguments:
5089""""""""""
5090
5091The conditional branch form of the '``br``' instruction takes a single
5092'``i1``' value and two '``label``' values. The unconditional form of the
5093'``br``' instruction takes a single '``label``' value as a target.
5094
5095Semantics:
5096""""""""""
5097
5098Upon execution of a conditional '``br``' instruction, the '``i1``'
5099argument is evaluated. If the value is ``true``, control flows to the
5100'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5101to the '``iffalse``' ``label`` argument.
5102
5103Example:
5104""""""""
5105
5106.. code-block:: llvm
5107
5108 Test:
5109 %cond = icmp eq i32 %a, %b
5110 br i1 %cond, label %IfEqual, label %IfUnequal
5111 IfEqual:
5112 ret i32 1
5113 IfUnequal:
5114 ret i32 0
5115
5116.. _i_switch:
5117
5118'``switch``' Instruction
5119^^^^^^^^^^^^^^^^^^^^^^^^
5120
5121Syntax:
5122"""""""
5123
5124::
5125
5126 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5127
5128Overview:
5129"""""""""
5130
5131The '``switch``' instruction is used to transfer control flow to one of
5132several different places. It is a generalization of the '``br``'
5133instruction, allowing a branch to occur to one of many possible
5134destinations.
5135
5136Arguments:
5137""""""""""
5138
5139The '``switch``' instruction uses three parameters: an integer
5140comparison value '``value``', a default '``label``' destination, and an
5141array of pairs of comparison value constants and '``label``'s. The table
5142is not allowed to contain duplicate constant entries.
5143
5144Semantics:
5145""""""""""
5146
5147The ``switch`` instruction specifies a table of values and destinations.
5148When the '``switch``' instruction is executed, this table is searched
5149for the given value. If the value is found, control flow is transferred
5150to the corresponding destination; otherwise, control flow is transferred
5151to the default destination.
5152
5153Implementation:
5154"""""""""""""""
5155
5156Depending on properties of the target machine and the particular
5157``switch`` instruction, this instruction may be code generated in
5158different ways. For example, it could be generated as a series of
5159chained conditional branches or with a lookup table.
5160
5161Example:
5162""""""""
5163
5164.. code-block:: llvm
5165
5166 ; Emulate a conditional br instruction
5167 %Val = zext i1 %value to i32
5168 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5169
5170 ; Emulate an unconditional br instruction
5171 switch i32 0, label %dest [ ]
5172
5173 ; Implement a jump table:
5174 switch i32 %val, label %otherwise [ i32 0, label %onzero
5175 i32 1, label %onone
5176 i32 2, label %ontwo ]
5177
5178.. _i_indirectbr:
5179
5180'``indirectbr``' Instruction
5181^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5182
5183Syntax:
5184"""""""
5185
5186::
5187
5188 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5189
5190Overview:
5191"""""""""
5192
5193The '``indirectbr``' instruction implements an indirect branch to a
5194label within the current function, whose address is specified by
5195"``address``". Address must be derived from a
5196:ref:`blockaddress <blockaddress>` constant.
5197
5198Arguments:
5199""""""""""
5200
5201The '``address``' argument is the address of the label to jump to. The
5202rest of the arguments indicate the full set of possible destinations
5203that the address may point to. Blocks are allowed to occur multiple
5204times in the destination list, though this isn't particularly useful.
5205
5206This destination list is required so that dataflow analysis has an
5207accurate understanding of the CFG.
5208
5209Semantics:
5210""""""""""
5211
5212Control transfers to the block specified in the address argument. All
5213possible destination blocks must be listed in the label list, otherwise
5214this instruction has undefined behavior. This implies that jumps to
5215labels defined in other functions have undefined behavior as well.
5216
5217Implementation:
5218"""""""""""""""
5219
5220This is typically implemented with a jump through a register.
5221
5222Example:
5223""""""""
5224
5225.. code-block:: llvm
5226
5227 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5228
5229.. _i_invoke:
5230
5231'``invoke``' Instruction
5232^^^^^^^^^^^^^^^^^^^^^^^^
5233
5234Syntax:
5235"""""""
5236
5237::
5238
5239 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005240 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005241
5242Overview:
5243"""""""""
5244
5245The '``invoke``' instruction causes control to transfer to a specified
5246function, with the possibility of control flow transfer to either the
5247'``normal``' label or the '``exception``' label. If the callee function
5248returns with the "``ret``" instruction, control flow will return to the
5249"normal" label. If the callee (or any indirect callees) returns via the
5250":ref:`resume <i_resume>`" instruction or other exception handling
5251mechanism, control is interrupted and continued at the dynamically
5252nearest "exception" label.
5253
5254The '``exception``' label is a `landing
5255pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5256'``exception``' label is required to have the
5257":ref:`landingpad <i_landingpad>`" instruction, which contains the
5258information about the behavior of the program after unwinding happens,
5259as its first non-PHI instruction. The restrictions on the
5260"``landingpad``" instruction's tightly couples it to the "``invoke``"
5261instruction, so that the important information contained within the
5262"``landingpad``" instruction can't be lost through normal code motion.
5263
5264Arguments:
5265""""""""""
5266
5267This instruction requires several arguments:
5268
5269#. The optional "cconv" marker indicates which :ref:`calling
5270 convention <callingconv>` the call should use. If none is
5271 specified, the call defaults to using C calling conventions.
5272#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5273 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5274 are valid here.
5275#. '``ptr to function ty``': shall be the signature of the pointer to
5276 function value being invoked. In most cases, this is a direct
5277 function invocation, but indirect ``invoke``'s are just as possible,
5278 branching off an arbitrary pointer to function value.
5279#. '``function ptr val``': An LLVM value containing a pointer to a
5280 function to be invoked.
5281#. '``function args``': argument list whose types match the function
5282 signature argument types and parameter attributes. All arguments must
5283 be of :ref:`first class <t_firstclass>` type. If the function signature
5284 indicates the function accepts a variable number of arguments, the
5285 extra arguments can be specified.
5286#. '``normal label``': the label reached when the called function
5287 executes a '``ret``' instruction.
5288#. '``exception label``': the label reached when a callee returns via
5289 the :ref:`resume <i_resume>` instruction or other exception handling
5290 mechanism.
5291#. The optional :ref:`function attributes <fnattrs>` list. Only
5292 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5293 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005294#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005295
5296Semantics:
5297""""""""""
5298
5299This instruction is designed to operate as a standard '``call``'
5300instruction in most regards. The primary difference is that it
5301establishes an association with a label, which is used by the runtime
5302library to unwind the stack.
5303
5304This instruction is used in languages with destructors to ensure that
5305proper cleanup is performed in the case of either a ``longjmp`` or a
5306thrown exception. Additionally, this is important for implementation of
5307'``catch``' clauses in high-level languages that support them.
5308
5309For the purposes of the SSA form, the definition of the value returned
5310by the '``invoke``' instruction is deemed to occur on the edge from the
5311current block to the "normal" label. If the callee unwinds then no
5312return value is available.
5313
5314Example:
5315""""""""
5316
5317.. code-block:: llvm
5318
5319 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005320 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005321 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005322 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005323
5324.. _i_resume:
5325
5326'``resume``' Instruction
5327^^^^^^^^^^^^^^^^^^^^^^^^
5328
5329Syntax:
5330"""""""
5331
5332::
5333
5334 resume <type> <value>
5335
5336Overview:
5337"""""""""
5338
5339The '``resume``' instruction is a terminator instruction that has no
5340successors.
5341
5342Arguments:
5343""""""""""
5344
5345The '``resume``' instruction requires one argument, which must have the
5346same type as the result of any '``landingpad``' instruction in the same
5347function.
5348
5349Semantics:
5350""""""""""
5351
5352The '``resume``' instruction resumes propagation of an existing
5353(in-flight) exception whose unwinding was interrupted with a
5354:ref:`landingpad <i_landingpad>` instruction.
5355
5356Example:
5357""""""""
5358
5359.. code-block:: llvm
5360
5361 resume { i8*, i32 } %exn
5362
David Majnemer8a1c45d2015-12-12 05:38:55 +00005363.. _i_catchswitch:
5364
5365'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005366^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005367
5368Syntax:
5369"""""""
5370
5371::
5372
5373 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5374 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5375
5376Overview:
5377"""""""""
5378
5379The '``catchswitch``' instruction is used by `LLVM's exception handling system
5380<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5381that may be executed by the :ref:`EH personality routine <personalityfn>`.
5382
5383Arguments:
5384""""""""""
5385
5386The ``parent`` argument is the token of the funclet that contains the
5387``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5388this operand may be the token ``none``.
5389
5390The ``default`` argument is the label of another basic block beginning with a
David Majnemerbbfc7212015-12-14 18:34:23 +00005391"pad" instruction, one of ``cleanuppad`` or ``catchswitch``.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005392
5393The ``handlers`` are a list of successor blocks that each begin with a
5394:ref:`catchpad <i_catchpad>` instruction.
5395
5396Semantics:
5397""""""""""
5398
5399Executing this instruction transfers control to one of the successors in
5400``handlers``, if appropriate, or continues to unwind via the unwind label if
5401present.
5402
5403The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5404it must be both the first non-phi instruction and last instruction in the basic
5405block. Therefore, it must be the only non-phi instruction in the block.
5406
5407Example:
5408""""""""
5409
5410.. code-block:: llvm
5411
5412 dispatch1:
5413 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5414 dispatch2:
5415 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5416
David Majnemer654e1302015-07-31 17:58:14 +00005417.. _i_catchpad:
5418
5419'``catchpad``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005420^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer654e1302015-07-31 17:58:14 +00005421
5422Syntax:
5423"""""""
5424
5425::
5426
David Majnemer8a1c45d2015-12-12 05:38:55 +00005427 <resultval> = catchpad within <catchswitch> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005428
5429Overview:
5430"""""""""
5431
5432The '``catchpad``' instruction is used by `LLVM's exception handling
5433system <ExceptionHandling.html#overview>`_ to specify that a basic block
David Majnemer8a1c45d2015-12-12 05:38:55 +00005434begins a catch handler --- one where a personality routine attempts to transfer
David Majnemer654e1302015-07-31 17:58:14 +00005435control to catch an exception.
David Majnemer654e1302015-07-31 17:58:14 +00005436
5437Arguments:
5438""""""""""
5439
David Majnemer8a1c45d2015-12-12 05:38:55 +00005440The ``catchswitch`` operand must always be a token produced by a
5441:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
5442ensures that each ``catchpad`` has exactly one predecessor block, and it always
5443terminates in a ``catchswitch``.
David Majnemer654e1302015-07-31 17:58:14 +00005444
David Majnemer8a1c45d2015-12-12 05:38:55 +00005445The ``args`` correspond to whatever information the personality routine
5446requires to know if this is an appropriate handler for the exception. Control
5447will transfer to the ``catchpad`` if this is the first appropriate handler for
5448the exception.
5449
5450The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
5451``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
5452pads.
David Majnemer654e1302015-07-31 17:58:14 +00005453
5454Semantics:
5455""""""""""
5456
David Majnemer8a1c45d2015-12-12 05:38:55 +00005457When the call stack is being unwound due to an exception being thrown, the
5458exception is compared against the ``args``. If it doesn't match, control will
5459not reach the ``catchpad`` instruction. The representation of ``args`` is
5460entirely target and personality function-specific.
David Majnemer654e1302015-07-31 17:58:14 +00005461
David Majnemer8a1c45d2015-12-12 05:38:55 +00005462Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
5463instruction must be the first non-phi of its parent basic block.
David Majnemer654e1302015-07-31 17:58:14 +00005464
David Majnemer8a1c45d2015-12-12 05:38:55 +00005465The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
5466instructions is described in the
5467`Windows exception handling documentation <ExceptionHandling.html#wineh>`.
5468
5469Executing a ``catchpad`` instruction constitutes "entering" that pad.
5470The pad may then be "exited" in one of three ways:
Akira Hatanakaa84428e2015-12-15 19:11:48 +00005471
David Majnemer8a1c45d2015-12-12 05:38:55 +000054721) explicitly via a ``catchret`` that consumes it. Executing such a ``catchret``
5473 is undefined behavior if any descendant pads have been entered but not yet
5474 exited.
54752) implicitly via a call (which unwinds all the way to the current function's caller),
David Majnemerbbfc7212015-12-14 18:34:23 +00005476 or via a ``catchswitch`` or a ``cleanupret`` that unwinds to caller.
David Majnemer8a1c45d2015-12-12 05:38:55 +000054773) implicitly via an unwind edge whose destination EH pad isn't a descendant of
5478 the ``catchpad``. When the ``catchpad`` is exited in this manner, it is
5479 undefined behavior if the destination EH pad has a parent which is not an
5480 ancestor of the ``catchpad`` being exited.
David Majnemer654e1302015-07-31 17:58:14 +00005481
5482Example:
5483""""""""
5484
5485.. code-block:: llvm
5486
David Majnemer8a1c45d2015-12-12 05:38:55 +00005487 dispatch:
5488 %cs = catchswitch within none [label %handler0] unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005489 ;; A catch block which can catch an integer.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005490 handler0:
5491 %tok = catchpad within %cs [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005492
5493.. _i_catchret:
5494
5495'``catchret``' Instruction
5496^^^^^^^^^^^^^^^^^^^^^^^^^^
5497
5498Syntax:
5499"""""""
5500
5501::
5502
David Majnemer8a1c45d2015-12-12 05:38:55 +00005503 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005504
5505Overview:
5506"""""""""
5507
5508The '``catchret``' instruction is a terminator instruction that has a
5509single successor.
5510
5511
5512Arguments:
5513""""""""""
5514
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005515The first argument to a '``catchret``' indicates which ``catchpad`` it
5516exits. It must be a :ref:`catchpad <i_catchpad>`.
5517The second argument to a '``catchret``' specifies where control will
5518transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005519
5520Semantics:
5521""""""""""
5522
David Majnemer8a1c45d2015-12-12 05:38:55 +00005523The '``catchret``' instruction ends an existing (in-flight) exception whose
5524unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5525:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5526code to, for example, destroy the active exception. Control then transfers to
5527``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005528
David Majnemer8a1c45d2015-12-12 05:38:55 +00005529The ``token`` argument must be a token produced by a dominating ``catchpad``
5530instruction. The ``catchret`` destroys the physical frame established by
5531``catchpad``, so executing multiple returns on the same token without
5532re-executing the ``catchpad`` will result in undefined behavior.
5533See :ref:`catchpad <i_catchpad>` for more details.
David Majnemer654e1302015-07-31 17:58:14 +00005534
5535Example:
5536""""""""
5537
5538.. code-block:: llvm
5539
David Majnemer8a1c45d2015-12-12 05:38:55 +00005540 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005541
David Majnemer654e1302015-07-31 17:58:14 +00005542.. _i_cleanupret:
5543
5544'``cleanupret``' Instruction
5545^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5546
5547Syntax:
5548"""""""
5549
5550::
5551
David Majnemer8a1c45d2015-12-12 05:38:55 +00005552 cleanupret from <value> unwind label <continue>
5553 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005554
5555Overview:
5556"""""""""
5557
5558The '``cleanupret``' instruction is a terminator instruction that has
5559an optional successor.
5560
5561
5562Arguments:
5563""""""""""
5564
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005565The '``cleanupret``' instruction requires one argument, which indicates
5566which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5567It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005568
5569Semantics:
5570""""""""""
5571
5572The '``cleanupret``' instruction indicates to the
5573:ref:`personality function <personalityfn>` that one
5574:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5575It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005576
David Majnemer8a1c45d2015-12-12 05:38:55 +00005577The unwind destination ``continue``, if present, must be an EH pad
5578whose parent is either ``none`` or an ancestor of the ``cleanuppad``
5579being returned from. This constitutes an exceptional exit from all
5580ancestors of the completed ``cleanuppad``, up to but not including
5581the parent of ``continue``.
5582See :ref:`cleanuppad <i_cleanuppad>` for more details.
David Majnemer654e1302015-07-31 17:58:14 +00005583
5584Example:
5585""""""""
5586
5587.. code-block:: llvm
5588
David Majnemer8a1c45d2015-12-12 05:38:55 +00005589 cleanupret from %cleanup unwind to caller
5590 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005591
Sean Silvab084af42012-12-07 10:36:55 +00005592.. _i_unreachable:
5593
5594'``unreachable``' Instruction
5595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5596
5597Syntax:
5598"""""""
5599
5600::
5601
5602 unreachable
5603
5604Overview:
5605"""""""""
5606
5607The '``unreachable``' instruction has no defined semantics. This
5608instruction is used to inform the optimizer that a particular portion of
5609the code is not reachable. This can be used to indicate that the code
5610after a no-return function cannot be reached, and other facts.
5611
5612Semantics:
5613""""""""""
5614
5615The '``unreachable``' instruction has no defined semantics.
5616
5617.. _binaryops:
5618
5619Binary Operations
5620-----------------
5621
5622Binary operators are used to do most of the computation in a program.
5623They require two operands of the same type, execute an operation on
5624them, and produce a single value. The operands might represent multiple
5625data, as is the case with the :ref:`vector <t_vector>` data type. The
5626result value has the same type as its operands.
5627
5628There are several different binary operators:
5629
5630.. _i_add:
5631
5632'``add``' Instruction
5633^^^^^^^^^^^^^^^^^^^^^
5634
5635Syntax:
5636"""""""
5637
5638::
5639
Tim Northover675a0962014-06-13 14:24:23 +00005640 <result> = add <ty> <op1>, <op2> ; yields ty:result
5641 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5642 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5643 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005644
5645Overview:
5646"""""""""
5647
5648The '``add``' instruction returns the sum of its two operands.
5649
5650Arguments:
5651""""""""""
5652
5653The two arguments to the '``add``' instruction must be
5654:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5655arguments must have identical types.
5656
5657Semantics:
5658""""""""""
5659
5660The value produced is the integer sum of the two operands.
5661
5662If the sum has unsigned overflow, the result returned is the
5663mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5664the result.
5665
5666Because LLVM integers use a two's complement representation, this
5667instruction is appropriate for both signed and unsigned integers.
5668
5669``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5670respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5671result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5672unsigned and/or signed overflow, respectively, occurs.
5673
5674Example:
5675""""""""
5676
5677.. code-block:: llvm
5678
Tim Northover675a0962014-06-13 14:24:23 +00005679 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005680
5681.. _i_fadd:
5682
5683'``fadd``' Instruction
5684^^^^^^^^^^^^^^^^^^^^^^
5685
5686Syntax:
5687"""""""
5688
5689::
5690
Tim Northover675a0962014-06-13 14:24:23 +00005691 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005692
5693Overview:
5694"""""""""
5695
5696The '``fadd``' instruction returns the sum of its two operands.
5697
5698Arguments:
5699""""""""""
5700
5701The two arguments to the '``fadd``' instruction must be :ref:`floating
5702point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5703Both arguments must have identical types.
5704
5705Semantics:
5706""""""""""
5707
5708The value produced is the floating point sum of the two operands. This
5709instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5710which are optimization hints to enable otherwise unsafe floating point
5711optimizations:
5712
5713Example:
5714""""""""
5715
5716.. code-block:: llvm
5717
Tim Northover675a0962014-06-13 14:24:23 +00005718 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005719
5720'``sub``' Instruction
5721^^^^^^^^^^^^^^^^^^^^^
5722
5723Syntax:
5724"""""""
5725
5726::
5727
Tim Northover675a0962014-06-13 14:24:23 +00005728 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5729 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5730 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5731 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005732
5733Overview:
5734"""""""""
5735
5736The '``sub``' instruction returns the difference of its two operands.
5737
5738Note that the '``sub``' instruction is used to represent the '``neg``'
5739instruction present in most other intermediate representations.
5740
5741Arguments:
5742""""""""""
5743
5744The two arguments to the '``sub``' instruction must be
5745:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5746arguments must have identical types.
5747
5748Semantics:
5749""""""""""
5750
5751The value produced is the integer difference of the two operands.
5752
5753If the difference has unsigned overflow, the result returned is the
5754mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5755the result.
5756
5757Because LLVM integers use a two's complement representation, this
5758instruction is appropriate for both signed and unsigned integers.
5759
5760``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5761respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5762result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5763unsigned and/or signed overflow, respectively, occurs.
5764
5765Example:
5766""""""""
5767
5768.. code-block:: llvm
5769
Tim Northover675a0962014-06-13 14:24:23 +00005770 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5771 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005772
5773.. _i_fsub:
5774
5775'``fsub``' Instruction
5776^^^^^^^^^^^^^^^^^^^^^^
5777
5778Syntax:
5779"""""""
5780
5781::
5782
Tim Northover675a0962014-06-13 14:24:23 +00005783 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005784
5785Overview:
5786"""""""""
5787
5788The '``fsub``' instruction returns the difference of its two operands.
5789
5790Note that the '``fsub``' instruction is used to represent the '``fneg``'
5791instruction present in most other intermediate representations.
5792
5793Arguments:
5794""""""""""
5795
5796The two arguments to the '``fsub``' instruction must be :ref:`floating
5797point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5798Both arguments must have identical types.
5799
5800Semantics:
5801""""""""""
5802
5803The value produced is the floating point difference of the two operands.
5804This instruction can also take any number of :ref:`fast-math
5805flags <fastmath>`, which are optimization hints to enable otherwise
5806unsafe floating point optimizations:
5807
5808Example:
5809""""""""
5810
5811.. code-block:: llvm
5812
Tim Northover675a0962014-06-13 14:24:23 +00005813 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5814 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005815
5816'``mul``' Instruction
5817^^^^^^^^^^^^^^^^^^^^^
5818
5819Syntax:
5820"""""""
5821
5822::
5823
Tim Northover675a0962014-06-13 14:24:23 +00005824 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5825 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5826 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5827 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005828
5829Overview:
5830"""""""""
5831
5832The '``mul``' instruction returns the product of its two operands.
5833
5834Arguments:
5835""""""""""
5836
5837The two arguments to the '``mul``' instruction must be
5838:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5839arguments must have identical types.
5840
5841Semantics:
5842""""""""""
5843
5844The value produced is the integer product of the two operands.
5845
5846If the result of the multiplication has unsigned overflow, the result
5847returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5848bit width of the result.
5849
5850Because LLVM integers use a two's complement representation, and the
5851result is the same width as the operands, this instruction returns the
5852correct result for both signed and unsigned integers. If a full product
5853(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5854sign-extended or zero-extended as appropriate to the width of the full
5855product.
5856
5857``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5858respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5859result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5860unsigned and/or signed overflow, respectively, occurs.
5861
5862Example:
5863""""""""
5864
5865.. code-block:: llvm
5866
Tim Northover675a0962014-06-13 14:24:23 +00005867 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005868
5869.. _i_fmul:
5870
5871'``fmul``' Instruction
5872^^^^^^^^^^^^^^^^^^^^^^
5873
5874Syntax:
5875"""""""
5876
5877::
5878
Tim Northover675a0962014-06-13 14:24:23 +00005879 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005880
5881Overview:
5882"""""""""
5883
5884The '``fmul``' instruction returns the product of its two operands.
5885
5886Arguments:
5887""""""""""
5888
5889The two arguments to the '``fmul``' instruction must be :ref:`floating
5890point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5891Both arguments must have identical types.
5892
5893Semantics:
5894""""""""""
5895
5896The value produced is the floating point product of the two operands.
5897This instruction can also take any number of :ref:`fast-math
5898flags <fastmath>`, which are optimization hints to enable otherwise
5899unsafe floating point optimizations:
5900
5901Example:
5902""""""""
5903
5904.. code-block:: llvm
5905
Tim Northover675a0962014-06-13 14:24:23 +00005906 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005907
5908'``udiv``' Instruction
5909^^^^^^^^^^^^^^^^^^^^^^
5910
5911Syntax:
5912"""""""
5913
5914::
5915
Tim Northover675a0962014-06-13 14:24:23 +00005916 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5917 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005918
5919Overview:
5920"""""""""
5921
5922The '``udiv``' instruction returns the quotient of its two operands.
5923
5924Arguments:
5925""""""""""
5926
5927The two arguments to the '``udiv``' instruction must be
5928:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5929arguments must have identical types.
5930
5931Semantics:
5932""""""""""
5933
5934The value produced is the unsigned integer quotient of the two operands.
5935
5936Note that unsigned integer division and signed integer division are
5937distinct operations; for signed integer division, use '``sdiv``'.
5938
5939Division by zero leads to undefined behavior.
5940
5941If the ``exact`` keyword is present, the result value of the ``udiv`` is
5942a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5943such, "((a udiv exact b) mul b) == a").
5944
5945Example:
5946""""""""
5947
5948.. code-block:: llvm
5949
Tim Northover675a0962014-06-13 14:24:23 +00005950 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005951
5952'``sdiv``' Instruction
5953^^^^^^^^^^^^^^^^^^^^^^
5954
5955Syntax:
5956"""""""
5957
5958::
5959
Tim Northover675a0962014-06-13 14:24:23 +00005960 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5961 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005962
5963Overview:
5964"""""""""
5965
5966The '``sdiv``' instruction returns the quotient of its two operands.
5967
5968Arguments:
5969""""""""""
5970
5971The two arguments to the '``sdiv``' instruction must be
5972:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5973arguments must have identical types.
5974
5975Semantics:
5976""""""""""
5977
5978The value produced is the signed integer quotient of the two operands
5979rounded towards zero.
5980
5981Note that signed integer division and unsigned integer division are
5982distinct operations; for unsigned integer division, use '``udiv``'.
5983
5984Division by zero leads to undefined behavior. Overflow also leads to
5985undefined behavior; this is a rare case, but can occur, for example, by
5986doing a 32-bit division of -2147483648 by -1.
5987
5988If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5989a :ref:`poison value <poisonvalues>` if the result would be rounded.
5990
5991Example:
5992""""""""
5993
5994.. code-block:: llvm
5995
Tim Northover675a0962014-06-13 14:24:23 +00005996 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005997
5998.. _i_fdiv:
5999
6000'``fdiv``' Instruction
6001^^^^^^^^^^^^^^^^^^^^^^
6002
6003Syntax:
6004"""""""
6005
6006::
6007
Tim Northover675a0962014-06-13 14:24:23 +00006008 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006009
6010Overview:
6011"""""""""
6012
6013The '``fdiv``' instruction returns the quotient of its two operands.
6014
6015Arguments:
6016""""""""""
6017
6018The two arguments to the '``fdiv``' instruction must be :ref:`floating
6019point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6020Both arguments must have identical types.
6021
6022Semantics:
6023""""""""""
6024
6025The value produced is the floating point quotient of the two operands.
6026This instruction can also take any number of :ref:`fast-math
6027flags <fastmath>`, which are optimization hints to enable otherwise
6028unsafe floating point optimizations:
6029
6030Example:
6031""""""""
6032
6033.. code-block:: llvm
6034
Tim Northover675a0962014-06-13 14:24:23 +00006035 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006036
6037'``urem``' Instruction
6038^^^^^^^^^^^^^^^^^^^^^^
6039
6040Syntax:
6041"""""""
6042
6043::
6044
Tim Northover675a0962014-06-13 14:24:23 +00006045 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006046
6047Overview:
6048"""""""""
6049
6050The '``urem``' instruction returns the remainder from the unsigned
6051division of its two arguments.
6052
6053Arguments:
6054""""""""""
6055
6056The two arguments to the '``urem``' instruction must be
6057:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6058arguments must have identical types.
6059
6060Semantics:
6061""""""""""
6062
6063This instruction returns the unsigned integer *remainder* of a division.
6064This instruction always performs an unsigned division to get the
6065remainder.
6066
6067Note that unsigned integer remainder and signed integer remainder are
6068distinct operations; for signed integer remainder, use '``srem``'.
6069
6070Taking the remainder of a division by zero leads to undefined behavior.
6071
6072Example:
6073""""""""
6074
6075.. code-block:: llvm
6076
Tim Northover675a0962014-06-13 14:24:23 +00006077 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006078
6079'``srem``' Instruction
6080^^^^^^^^^^^^^^^^^^^^^^
6081
6082Syntax:
6083"""""""
6084
6085::
6086
Tim Northover675a0962014-06-13 14:24:23 +00006087 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006088
6089Overview:
6090"""""""""
6091
6092The '``srem``' instruction returns the remainder from the signed
6093division of its two operands. This instruction can also take
6094:ref:`vector <t_vector>` versions of the values in which case the elements
6095must be integers.
6096
6097Arguments:
6098""""""""""
6099
6100The two arguments to the '``srem``' instruction must be
6101:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6102arguments must have identical types.
6103
6104Semantics:
6105""""""""""
6106
6107This instruction returns the *remainder* of a division (where the result
6108is either zero or has the same sign as the dividend, ``op1``), not the
6109*modulo* operator (where the result is either zero or has the same sign
6110as the divisor, ``op2``) of a value. For more information about the
6111difference, see `The Math
6112Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6113table of how this is implemented in various languages, please see
6114`Wikipedia: modulo
6115operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6116
6117Note that signed integer remainder and unsigned integer remainder are
6118distinct operations; for unsigned integer remainder, use '``urem``'.
6119
6120Taking the remainder of a division by zero leads to undefined behavior.
6121Overflow also leads to undefined behavior; this is a rare case, but can
6122occur, for example, by taking the remainder of a 32-bit division of
6123-2147483648 by -1. (The remainder doesn't actually overflow, but this
6124rule lets srem be implemented using instructions that return both the
6125result of the division and the remainder.)
6126
6127Example:
6128""""""""
6129
6130.. code-block:: llvm
6131
Tim Northover675a0962014-06-13 14:24:23 +00006132 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006133
6134.. _i_frem:
6135
6136'``frem``' Instruction
6137^^^^^^^^^^^^^^^^^^^^^^
6138
6139Syntax:
6140"""""""
6141
6142::
6143
Tim Northover675a0962014-06-13 14:24:23 +00006144 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006145
6146Overview:
6147"""""""""
6148
6149The '``frem``' instruction returns the remainder from the division of
6150its two operands.
6151
6152Arguments:
6153""""""""""
6154
6155The two arguments to the '``frem``' instruction must be :ref:`floating
6156point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6157Both arguments must have identical types.
6158
6159Semantics:
6160""""""""""
6161
6162This instruction returns the *remainder* of a division. The remainder
6163has the same sign as the dividend. This instruction can also take any
6164number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6165to enable otherwise unsafe floating point optimizations:
6166
6167Example:
6168""""""""
6169
6170.. code-block:: llvm
6171
Tim Northover675a0962014-06-13 14:24:23 +00006172 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006173
6174.. _bitwiseops:
6175
6176Bitwise Binary Operations
6177-------------------------
6178
6179Bitwise binary operators are used to do various forms of bit-twiddling
6180in a program. They are generally very efficient instructions and can
6181commonly be strength reduced from other instructions. They require two
6182operands of the same type, execute an operation on them, and produce a
6183single value. The resulting value is the same type as its operands.
6184
6185'``shl``' Instruction
6186^^^^^^^^^^^^^^^^^^^^^
6187
6188Syntax:
6189"""""""
6190
6191::
6192
Tim Northover675a0962014-06-13 14:24:23 +00006193 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6194 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6195 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6196 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006197
6198Overview:
6199"""""""""
6200
6201The '``shl``' instruction returns the first operand shifted to the left
6202a specified number of bits.
6203
6204Arguments:
6205""""""""""
6206
6207Both arguments to the '``shl``' instruction must be the same
6208:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6209'``op2``' is treated as an unsigned value.
6210
6211Semantics:
6212""""""""""
6213
6214The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6215where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006216dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006217``op1``, the result is undefined. If the arguments are vectors, each
6218vector element of ``op1`` is shifted by the corresponding shift amount
6219in ``op2``.
6220
6221If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6222value <poisonvalues>` if it shifts out any non-zero bits. If the
6223``nsw`` keyword is present, then the shift produces a :ref:`poison
6224value <poisonvalues>` if it shifts out any bits that disagree with the
6225resultant sign bit. As such, NUW/NSW have the same semantics as they
6226would if the shift were expressed as a mul instruction with the same
6227nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6228
6229Example:
6230""""""""
6231
6232.. code-block:: llvm
6233
Tim Northover675a0962014-06-13 14:24:23 +00006234 <result> = shl i32 4, %var ; yields i32: 4 << %var
6235 <result> = shl i32 4, 2 ; yields i32: 16
6236 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006237 <result> = shl i32 1, 32 ; undefined
6238 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6239
6240'``lshr``' Instruction
6241^^^^^^^^^^^^^^^^^^^^^^
6242
6243Syntax:
6244"""""""
6245
6246::
6247
Tim Northover675a0962014-06-13 14:24:23 +00006248 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6249 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006250
6251Overview:
6252"""""""""
6253
6254The '``lshr``' instruction (logical shift right) returns the first
6255operand shifted to the right a specified number of bits with zero fill.
6256
6257Arguments:
6258""""""""""
6259
6260Both arguments to the '``lshr``' instruction must be the same
6261:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6262'``op2``' is treated as an unsigned value.
6263
6264Semantics:
6265""""""""""
6266
6267This instruction always performs a logical shift right operation. The
6268most significant bits of the result will be filled with zero bits after
6269the shift. If ``op2`` is (statically or dynamically) equal to or larger
6270than the number of bits in ``op1``, the result is undefined. If the
6271arguments are vectors, each vector element of ``op1`` is shifted by the
6272corresponding shift amount in ``op2``.
6273
6274If the ``exact`` keyword is present, the result value of the ``lshr`` is
6275a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6276non-zero.
6277
6278Example:
6279""""""""
6280
6281.. code-block:: llvm
6282
Tim Northover675a0962014-06-13 14:24:23 +00006283 <result> = lshr i32 4, 1 ; yields i32:result = 2
6284 <result> = lshr i32 4, 2 ; yields i32:result = 1
6285 <result> = lshr i8 4, 3 ; yields i8:result = 0
6286 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006287 <result> = lshr i32 1, 32 ; undefined
6288 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6289
6290'``ashr``' Instruction
6291^^^^^^^^^^^^^^^^^^^^^^
6292
6293Syntax:
6294"""""""
6295
6296::
6297
Tim Northover675a0962014-06-13 14:24:23 +00006298 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6299 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006300
6301Overview:
6302"""""""""
6303
6304The '``ashr``' instruction (arithmetic shift right) returns the first
6305operand shifted to the right a specified number of bits with sign
6306extension.
6307
6308Arguments:
6309""""""""""
6310
6311Both arguments to the '``ashr``' instruction must be the same
6312:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6313'``op2``' is treated as an unsigned value.
6314
6315Semantics:
6316""""""""""
6317
6318This instruction always performs an arithmetic shift right operation,
6319The most significant bits of the result will be filled with the sign bit
6320of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6321than the number of bits in ``op1``, the result is undefined. If the
6322arguments are vectors, each vector element of ``op1`` is shifted by the
6323corresponding shift amount in ``op2``.
6324
6325If the ``exact`` keyword is present, the result value of the ``ashr`` is
6326a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6327non-zero.
6328
6329Example:
6330""""""""
6331
6332.. code-block:: llvm
6333
Tim Northover675a0962014-06-13 14:24:23 +00006334 <result> = ashr i32 4, 1 ; yields i32:result = 2
6335 <result> = ashr i32 4, 2 ; yields i32:result = 1
6336 <result> = ashr i8 4, 3 ; yields i8:result = 0
6337 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006338 <result> = ashr i32 1, 32 ; undefined
6339 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6340
6341'``and``' Instruction
6342^^^^^^^^^^^^^^^^^^^^^
6343
6344Syntax:
6345"""""""
6346
6347::
6348
Tim Northover675a0962014-06-13 14:24:23 +00006349 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006350
6351Overview:
6352"""""""""
6353
6354The '``and``' instruction returns the bitwise logical and of its two
6355operands.
6356
6357Arguments:
6358""""""""""
6359
6360The two arguments to the '``and``' instruction must be
6361:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6362arguments must have identical types.
6363
6364Semantics:
6365""""""""""
6366
6367The truth table used for the '``and``' instruction is:
6368
6369+-----+-----+-----+
6370| In0 | In1 | Out |
6371+-----+-----+-----+
6372| 0 | 0 | 0 |
6373+-----+-----+-----+
6374| 0 | 1 | 0 |
6375+-----+-----+-----+
6376| 1 | 0 | 0 |
6377+-----+-----+-----+
6378| 1 | 1 | 1 |
6379+-----+-----+-----+
6380
6381Example:
6382""""""""
6383
6384.. code-block:: llvm
6385
Tim Northover675a0962014-06-13 14:24:23 +00006386 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6387 <result> = and i32 15, 40 ; yields i32:result = 8
6388 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006389
6390'``or``' Instruction
6391^^^^^^^^^^^^^^^^^^^^
6392
6393Syntax:
6394"""""""
6395
6396::
6397
Tim Northover675a0962014-06-13 14:24:23 +00006398 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006399
6400Overview:
6401"""""""""
6402
6403The '``or``' instruction returns the bitwise logical inclusive or of its
6404two operands.
6405
6406Arguments:
6407""""""""""
6408
6409The two arguments to the '``or``' instruction must be
6410:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6411arguments must have identical types.
6412
6413Semantics:
6414""""""""""
6415
6416The truth table used for the '``or``' instruction is:
6417
6418+-----+-----+-----+
6419| In0 | In1 | Out |
6420+-----+-----+-----+
6421| 0 | 0 | 0 |
6422+-----+-----+-----+
6423| 0 | 1 | 1 |
6424+-----+-----+-----+
6425| 1 | 0 | 1 |
6426+-----+-----+-----+
6427| 1 | 1 | 1 |
6428+-----+-----+-----+
6429
6430Example:
6431""""""""
6432
6433::
6434
Tim Northover675a0962014-06-13 14:24:23 +00006435 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6436 <result> = or i32 15, 40 ; yields i32:result = 47
6437 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006438
6439'``xor``' Instruction
6440^^^^^^^^^^^^^^^^^^^^^
6441
6442Syntax:
6443"""""""
6444
6445::
6446
Tim Northover675a0962014-06-13 14:24:23 +00006447 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006448
6449Overview:
6450"""""""""
6451
6452The '``xor``' instruction returns the bitwise logical exclusive or of
6453its two operands. The ``xor`` is used to implement the "one's
6454complement" operation, which is the "~" operator in C.
6455
6456Arguments:
6457""""""""""
6458
6459The two arguments to the '``xor``' instruction must be
6460:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6461arguments must have identical types.
6462
6463Semantics:
6464""""""""""
6465
6466The truth table used for the '``xor``' instruction is:
6467
6468+-----+-----+-----+
6469| In0 | In1 | Out |
6470+-----+-----+-----+
6471| 0 | 0 | 0 |
6472+-----+-----+-----+
6473| 0 | 1 | 1 |
6474+-----+-----+-----+
6475| 1 | 0 | 1 |
6476+-----+-----+-----+
6477| 1 | 1 | 0 |
6478+-----+-----+-----+
6479
6480Example:
6481""""""""
6482
6483.. code-block:: llvm
6484
Tim Northover675a0962014-06-13 14:24:23 +00006485 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6486 <result> = xor i32 15, 40 ; yields i32:result = 39
6487 <result> = xor i32 4, 8 ; yields i32:result = 12
6488 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006489
6490Vector Operations
6491-----------------
6492
6493LLVM supports several instructions to represent vector operations in a
6494target-independent manner. These instructions cover the element-access
6495and vector-specific operations needed to process vectors effectively.
6496While LLVM does directly support these vector operations, many
6497sophisticated algorithms will want to use target-specific intrinsics to
6498take full advantage of a specific target.
6499
6500.. _i_extractelement:
6501
6502'``extractelement``' Instruction
6503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6504
6505Syntax:
6506"""""""
6507
6508::
6509
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006510 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006511
6512Overview:
6513"""""""""
6514
6515The '``extractelement``' instruction extracts a single scalar element
6516from a vector at a specified index.
6517
6518Arguments:
6519""""""""""
6520
6521The first operand of an '``extractelement``' instruction is a value of
6522:ref:`vector <t_vector>` type. The second operand is an index indicating
6523the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006524variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006525
6526Semantics:
6527""""""""""
6528
6529The result is a scalar of the same type as the element type of ``val``.
6530Its value is the value at position ``idx`` of ``val``. If ``idx``
6531exceeds the length of ``val``, the results are undefined.
6532
6533Example:
6534""""""""
6535
6536.. code-block:: llvm
6537
6538 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6539
6540.. _i_insertelement:
6541
6542'``insertelement``' Instruction
6543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6544
6545Syntax:
6546"""""""
6547
6548::
6549
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006550 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006551
6552Overview:
6553"""""""""
6554
6555The '``insertelement``' instruction inserts a scalar element into a
6556vector at a specified index.
6557
6558Arguments:
6559""""""""""
6560
6561The first operand of an '``insertelement``' instruction is a value of
6562:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6563type must equal the element type of the first operand. The third operand
6564is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006565index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006566
6567Semantics:
6568""""""""""
6569
6570The result is a vector of the same type as ``val``. Its element values
6571are those of ``val`` except at position ``idx``, where it gets the value
6572``elt``. If ``idx`` exceeds the length of ``val``, the results are
6573undefined.
6574
6575Example:
6576""""""""
6577
6578.. code-block:: llvm
6579
6580 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6581
6582.. _i_shufflevector:
6583
6584'``shufflevector``' Instruction
6585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6586
6587Syntax:
6588"""""""
6589
6590::
6591
6592 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6593
6594Overview:
6595"""""""""
6596
6597The '``shufflevector``' instruction constructs a permutation of elements
6598from two input vectors, returning a vector with the same element type as
6599the input and length that is the same as the shuffle mask.
6600
6601Arguments:
6602""""""""""
6603
6604The first two operands of a '``shufflevector``' instruction are vectors
6605with the same type. The third argument is a shuffle mask whose element
6606type is always 'i32'. The result of the instruction is a vector whose
6607length is the same as the shuffle mask and whose element type is the
6608same as the element type of the first two operands.
6609
6610The shuffle mask operand is required to be a constant vector with either
6611constant integer or undef values.
6612
6613Semantics:
6614""""""""""
6615
6616The elements of the two input vectors are numbered from left to right
6617across both of the vectors. The shuffle mask operand specifies, for each
6618element of the result vector, which element of the two input vectors the
6619result element gets. The element selector may be undef (meaning "don't
6620care") and the second operand may be undef if performing a shuffle from
6621only one vector.
6622
6623Example:
6624""""""""
6625
6626.. code-block:: llvm
6627
6628 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6629 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6630 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6631 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6632 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6633 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6634 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6635 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6636
6637Aggregate Operations
6638--------------------
6639
6640LLVM supports several instructions for working with
6641:ref:`aggregate <t_aggregate>` values.
6642
6643.. _i_extractvalue:
6644
6645'``extractvalue``' Instruction
6646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6647
6648Syntax:
6649"""""""
6650
6651::
6652
6653 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6654
6655Overview:
6656"""""""""
6657
6658The '``extractvalue``' instruction extracts the value of a member field
6659from an :ref:`aggregate <t_aggregate>` value.
6660
6661Arguments:
6662""""""""""
6663
6664The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006665:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006666constant indices to specify which value to extract in a similar manner
6667as indices in a '``getelementptr``' instruction.
6668
6669The major differences to ``getelementptr`` indexing are:
6670
6671- Since the value being indexed is not a pointer, the first index is
6672 omitted and assumed to be zero.
6673- At least one index must be specified.
6674- Not only struct indices but also array indices must be in bounds.
6675
6676Semantics:
6677""""""""""
6678
6679The result is the value at the position in the aggregate specified by
6680the index operands.
6681
6682Example:
6683""""""""
6684
6685.. code-block:: llvm
6686
6687 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6688
6689.. _i_insertvalue:
6690
6691'``insertvalue``' Instruction
6692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6693
6694Syntax:
6695"""""""
6696
6697::
6698
6699 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6700
6701Overview:
6702"""""""""
6703
6704The '``insertvalue``' instruction inserts a value into a member field in
6705an :ref:`aggregate <t_aggregate>` value.
6706
6707Arguments:
6708""""""""""
6709
6710The first operand of an '``insertvalue``' instruction is a value of
6711:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6712a first-class value to insert. The following operands are constant
6713indices indicating the position at which to insert the value in a
6714similar manner as indices in a '``extractvalue``' instruction. The value
6715to insert must have the same type as the value identified by the
6716indices.
6717
6718Semantics:
6719""""""""""
6720
6721The result is an aggregate of the same type as ``val``. Its value is
6722that of ``val`` except that the value at the position specified by the
6723indices is that of ``elt``.
6724
6725Example:
6726""""""""
6727
6728.. code-block:: llvm
6729
6730 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6731 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006732 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006733
6734.. _memoryops:
6735
6736Memory Access and Addressing Operations
6737---------------------------------------
6738
6739A key design point of an SSA-based representation is how it represents
6740memory. In LLVM, no memory locations are in SSA form, which makes things
6741very simple. This section describes how to read, write, and allocate
6742memory in LLVM.
6743
6744.. _i_alloca:
6745
6746'``alloca``' Instruction
6747^^^^^^^^^^^^^^^^^^^^^^^^
6748
6749Syntax:
6750"""""""
6751
6752::
6753
Tim Northover675a0962014-06-13 14:24:23 +00006754 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006755
6756Overview:
6757"""""""""
6758
6759The '``alloca``' instruction allocates memory on the stack frame of the
6760currently executing function, to be automatically released when this
6761function returns to its caller. The object is always allocated in the
6762generic address space (address space zero).
6763
6764Arguments:
6765""""""""""
6766
6767The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6768bytes of memory on the runtime stack, returning a pointer of the
6769appropriate type to the program. If "NumElements" is specified, it is
6770the number of elements allocated, otherwise "NumElements" is defaulted
6771to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006772allocation is guaranteed to be aligned to at least that boundary. The
6773alignment may not be greater than ``1 << 29``. If not specified, or if
6774zero, the target can choose to align the allocation on any convenient
6775boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006776
6777'``type``' may be any sized type.
6778
6779Semantics:
6780""""""""""
6781
6782Memory is allocated; a pointer is returned. The operation is undefined
6783if there is insufficient stack space for the allocation. '``alloca``'d
6784memory is automatically released when the function returns. The
6785'``alloca``' instruction is commonly used to represent automatic
6786variables that must have an address available. When the function returns
6787(either with the ``ret`` or ``resume`` instructions), the memory is
6788reclaimed. Allocating zero bytes is legal, but the result is undefined.
6789The order in which memory is allocated (ie., which way the stack grows)
6790is not specified.
6791
6792Example:
6793""""""""
6794
6795.. code-block:: llvm
6796
Tim Northover675a0962014-06-13 14:24:23 +00006797 %ptr = alloca i32 ; yields i32*:ptr
6798 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6799 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6800 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006801
6802.. _i_load:
6803
6804'``load``' Instruction
6805^^^^^^^^^^^^^^^^^^^^^^
6806
6807Syntax:
6808"""""""
6809
6810::
6811
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006812 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006813 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006814 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006815 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006816 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006817
6818Overview:
6819"""""""""
6820
6821The '``load``' instruction is used to read from memory.
6822
6823Arguments:
6824""""""""""
6825
Eli Bendersky239a78b2013-04-17 20:17:08 +00006826The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006827from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006828class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6829then the optimizer is not allowed to modify the number or order of
6830execution of this ``load`` with other :ref:`volatile
6831operations <volatile>`.
6832
6833If the ``load`` is marked as ``atomic``, it takes an extra
6834:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6835``release`` and ``acq_rel`` orderings are not valid on ``load``
6836instructions. Atomic loads produce :ref:`defined <memmodel>` results
6837when they may see multiple atomic stores. The type of the pointee must
6838be an integer type whose bit width is a power of two greater than or
6839equal to eight and less than or equal to a target-specific size limit.
6840``align`` must be explicitly specified on atomic loads, and the load has
6841undefined behavior if the alignment is not set to a value which is at
6842least the size in bytes of the pointee. ``!nontemporal`` does not have
6843any defined semantics for atomic loads.
6844
6845The optional constant ``align`` argument specifies the alignment of the
6846operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006847or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006848alignment for the target. It is the responsibility of the code emitter
6849to ensure that the alignment information is correct. Overestimating the
6850alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006851may produce less efficient code. An alignment of 1 is always safe. The
6852maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006853
6854The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006855metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006856``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006857metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006858that this load is not expected to be reused in the cache. The code
6859generator may select special instructions to save cache bandwidth, such
6860as the ``MOVNT`` instruction on x86.
6861
6862The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006863metadata name ``<index>`` corresponding to a metadata node with no
6864entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006865instruction tells the optimizer and code generator that the address
6866operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006867Being invariant does not imply that a location is dereferenceable,
6868but it does imply that once the location is known dereferenceable
6869its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006870
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006871The optional ``!invariant.group`` metadata must reference a single metadata name
6872 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6873
Philip Reamescdb72f32014-10-20 22:40:55 +00006874The optional ``!nonnull`` metadata must reference a single
6875metadata name ``<index>`` corresponding to a metadata node with no
6876entries. The existence of the ``!nonnull`` metadata on the
6877instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006878never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006879on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006880to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006881
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006882The optional ``!dereferenceable`` metadata must reference a single metadata
6883name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006884entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006885tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006886The number of bytes known to be dereferenceable is specified by the integer
6887value in the metadata node. This is analogous to the ''dereferenceable''
6888attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006889to loads of a pointer type.
6890
6891The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006892metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6893``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006894instruction tells the optimizer that the value loaded is known to be either
6895dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006896The number of bytes known to be dereferenceable is specified by the integer
6897value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6898attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006899to loads of a pointer type.
6900
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006901The optional ``!align`` metadata must reference a single metadata name
6902``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6903The existence of the ``!align`` metadata on the instruction tells the
6904optimizer that the value loaded is known to be aligned to a boundary specified
6905by the integer value in the metadata node. The alignment must be a power of 2.
6906This is analogous to the ''align'' attribute on parameters and return values.
6907This metadata can only be applied to loads of a pointer type.
6908
Sean Silvab084af42012-12-07 10:36:55 +00006909Semantics:
6910""""""""""
6911
6912The location of memory pointed to is loaded. If the value being loaded
6913is of scalar type then the number of bytes read does not exceed the
6914minimum number of bytes needed to hold all bits of the type. For
6915example, loading an ``i24`` reads at most three bytes. When loading a
6916value of a type like ``i20`` with a size that is not an integral number
6917of bytes, the result is undefined if the value was not originally
6918written using a store of the same type.
6919
6920Examples:
6921"""""""""
6922
6923.. code-block:: llvm
6924
Tim Northover675a0962014-06-13 14:24:23 +00006925 %ptr = alloca i32 ; yields i32*:ptr
6926 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006927 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006928
6929.. _i_store:
6930
6931'``store``' Instruction
6932^^^^^^^^^^^^^^^^^^^^^^^
6933
6934Syntax:
6935"""""""
6936
6937::
6938
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006939 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6940 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006941
6942Overview:
6943"""""""""
6944
6945The '``store``' instruction is used to write to memory.
6946
6947Arguments:
6948""""""""""
6949
Eli Benderskyca380842013-04-17 17:17:20 +00006950There are two arguments to the ``store`` instruction: a value to store
6951and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006952operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006953the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006954then the optimizer is not allowed to modify the number or order of
6955execution of this ``store`` with other :ref:`volatile
6956operations <volatile>`.
6957
6958If the ``store`` is marked as ``atomic``, it takes an extra
6959:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6960``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6961instructions. Atomic loads produce :ref:`defined <memmodel>` results
6962when they may see multiple atomic stores. The type of the pointee must
6963be an integer type whose bit width is a power of two greater than or
6964equal to eight and less than or equal to a target-specific size limit.
6965``align`` must be explicitly specified on atomic stores, and the store
6966has undefined behavior if the alignment is not set to a value which is
6967at least the size in bytes of the pointee. ``!nontemporal`` does not
6968have any defined semantics for atomic stores.
6969
Eli Benderskyca380842013-04-17 17:17:20 +00006970The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006971operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006972or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006973alignment for the target. It is the responsibility of the code emitter
6974to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006975alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006976alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006977safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006978
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006979The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006980name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006981value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006982tells the optimizer and code generator that this load is not expected to
6983be reused in the cache. The code generator may select special
6984instructions to save cache bandwidth, such as the MOVNT instruction on
6985x86.
6986
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006987The optional ``!invariant.group`` metadata must reference a
6988single metadata name ``<index>``. See ``invariant.group`` metadata.
6989
Sean Silvab084af42012-12-07 10:36:55 +00006990Semantics:
6991""""""""""
6992
Eli Benderskyca380842013-04-17 17:17:20 +00006993The contents of memory are updated to contain ``<value>`` at the
6994location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006995of scalar type then the number of bytes written does not exceed the
6996minimum number of bytes needed to hold all bits of the type. For
6997example, storing an ``i24`` writes at most three bytes. When writing a
6998value of a type like ``i20`` with a size that is not an integral number
6999of bytes, it is unspecified what happens to the extra bits that do not
7000belong to the type, but they will typically be overwritten.
7001
7002Example:
7003""""""""
7004
7005.. code-block:: llvm
7006
Tim Northover675a0962014-06-13 14:24:23 +00007007 %ptr = alloca i32 ; yields i32*:ptr
7008 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007009 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007010
7011.. _i_fence:
7012
7013'``fence``' Instruction
7014^^^^^^^^^^^^^^^^^^^^^^^
7015
7016Syntax:
7017"""""""
7018
7019::
7020
Tim Northover675a0962014-06-13 14:24:23 +00007021 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007022
7023Overview:
7024"""""""""
7025
7026The '``fence``' instruction is used to introduce happens-before edges
7027between operations.
7028
7029Arguments:
7030""""""""""
7031
7032'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7033defines what *synchronizes-with* edges they add. They can only be given
7034``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7035
7036Semantics:
7037""""""""""
7038
7039A fence A which has (at least) ``release`` ordering semantics
7040*synchronizes with* a fence B with (at least) ``acquire`` ordering
7041semantics if and only if there exist atomic operations X and Y, both
7042operating on some atomic object M, such that A is sequenced before X, X
7043modifies M (either directly or through some side effect of a sequence
7044headed by X), Y is sequenced before B, and Y observes M. This provides a
7045*happens-before* dependency between A and B. Rather than an explicit
7046``fence``, one (but not both) of the atomic operations X or Y might
7047provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7048still *synchronize-with* the explicit ``fence`` and establish the
7049*happens-before* edge.
7050
7051A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7052``acquire`` and ``release`` semantics specified above, participates in
7053the global program order of other ``seq_cst`` operations and/or fences.
7054
7055The optional ":ref:`singlethread <singlethread>`" argument specifies
7056that the fence only synchronizes with other fences in the same thread.
7057(This is useful for interacting with signal handlers.)
7058
7059Example:
7060""""""""
7061
7062.. code-block:: llvm
7063
Tim Northover675a0962014-06-13 14:24:23 +00007064 fence acquire ; yields void
7065 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007066
7067.. _i_cmpxchg:
7068
7069'``cmpxchg``' Instruction
7070^^^^^^^^^^^^^^^^^^^^^^^^^
7071
7072Syntax:
7073"""""""
7074
7075::
7076
Tim Northover675a0962014-06-13 14:24:23 +00007077 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007078
7079Overview:
7080"""""""""
7081
7082The '``cmpxchg``' instruction is used to atomically modify memory. It
7083loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007084equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007085
7086Arguments:
7087""""""""""
7088
7089There are three arguments to the '``cmpxchg``' instruction: an address
7090to operate on, a value to compare to the value currently be at that
7091address, and a new value to place at that address if the compared values
7092are equal. The type of '<cmp>' must be an integer type whose bit width
7093is a power of two greater than or equal to eight and less than or equal
7094to a target-specific size limit. '<cmp>' and '<new>' must have the same
7095type, and the type of '<pointer>' must be a pointer to that type. If the
7096``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7097to modify the number or order of execution of this ``cmpxchg`` with
7098other :ref:`volatile operations <volatile>`.
7099
Tim Northovere94a5182014-03-11 10:48:52 +00007100The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007101``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7102must be at least ``monotonic``, the ordering constraint on failure must be no
7103stronger than that on success, and the failure ordering cannot be either
7104``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007105
7106The optional "``singlethread``" argument declares that the ``cmpxchg``
7107is only atomic with respect to code (usually signal handlers) running in
7108the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7109respect to all other code in the system.
7110
7111The pointer passed into cmpxchg must have alignment greater than or
7112equal to the size in memory of the operand.
7113
7114Semantics:
7115""""""""""
7116
Tim Northover420a2162014-06-13 14:24:07 +00007117The contents of memory at the location specified by the '``<pointer>``' operand
7118is read and compared to '``<cmp>``'; if the read value is the equal, the
7119'``<new>``' is written. The original value at the location is returned, together
7120with a flag indicating success (true) or failure (false).
7121
7122If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7123permitted: the operation may not write ``<new>`` even if the comparison
7124matched.
7125
7126If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7127if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007128
Tim Northovere94a5182014-03-11 10:48:52 +00007129A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7130identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7131load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007132
7133Example:
7134""""""""
7135
7136.. code-block:: llvm
7137
7138 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007139 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007140 br label %loop
7141
7142 loop:
7143 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7144 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007145 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007146 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7147 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007148 br i1 %success, label %done, label %loop
7149
7150 done:
7151 ...
7152
7153.. _i_atomicrmw:
7154
7155'``atomicrmw``' Instruction
7156^^^^^^^^^^^^^^^^^^^^^^^^^^^
7157
7158Syntax:
7159"""""""
7160
7161::
7162
Tim Northover675a0962014-06-13 14:24:23 +00007163 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007164
7165Overview:
7166"""""""""
7167
7168The '``atomicrmw``' instruction is used to atomically modify memory.
7169
7170Arguments:
7171""""""""""
7172
7173There are three arguments to the '``atomicrmw``' instruction: an
7174operation to apply, an address whose value to modify, an argument to the
7175operation. The operation must be one of the following keywords:
7176
7177- xchg
7178- add
7179- sub
7180- and
7181- nand
7182- or
7183- xor
7184- max
7185- min
7186- umax
7187- umin
7188
7189The type of '<value>' must be an integer type whose bit width is a power
7190of two greater than or equal to eight and less than or equal to a
7191target-specific size limit. The type of the '``<pointer>``' operand must
7192be a pointer to that type. If the ``atomicrmw`` is marked as
7193``volatile``, then the optimizer is not allowed to modify the number or
7194order of execution of this ``atomicrmw`` with other :ref:`volatile
7195operations <volatile>`.
7196
7197Semantics:
7198""""""""""
7199
7200The contents of memory at the location specified by the '``<pointer>``'
7201operand are atomically read, modified, and written back. The original
7202value at the location is returned. The modification is specified by the
7203operation argument:
7204
7205- xchg: ``*ptr = val``
7206- add: ``*ptr = *ptr + val``
7207- sub: ``*ptr = *ptr - val``
7208- and: ``*ptr = *ptr & val``
7209- nand: ``*ptr = ~(*ptr & val)``
7210- or: ``*ptr = *ptr | val``
7211- xor: ``*ptr = *ptr ^ val``
7212- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7213- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7214- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7215 comparison)
7216- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7217 comparison)
7218
7219Example:
7220""""""""
7221
7222.. code-block:: llvm
7223
Tim Northover675a0962014-06-13 14:24:23 +00007224 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007225
7226.. _i_getelementptr:
7227
7228'``getelementptr``' Instruction
7229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7230
7231Syntax:
7232"""""""
7233
7234::
7235
David Blaikie16a97eb2015-03-04 22:02:58 +00007236 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7237 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7238 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007239
7240Overview:
7241"""""""""
7242
7243The '``getelementptr``' instruction is used to get the address of a
7244subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007245address calculation only and does not access memory. The instruction can also
7246be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007247
7248Arguments:
7249""""""""""
7250
David Blaikie16a97eb2015-03-04 22:02:58 +00007251The first argument is always a type used as the basis for the calculations.
7252The second argument is always a pointer or a vector of pointers, and is the
7253base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007254that indicate which of the elements of the aggregate object are indexed.
7255The interpretation of each index is dependent on the type being indexed
7256into. The first index always indexes the pointer value given as the
7257first argument, the second index indexes a value of the type pointed to
7258(not necessarily the value directly pointed to, since the first index
7259can be non-zero), etc. The first type indexed into must be a pointer
7260value, subsequent types can be arrays, vectors, and structs. Note that
7261subsequent types being indexed into can never be pointers, since that
7262would require loading the pointer before continuing calculation.
7263
7264The type of each index argument depends on the type it is indexing into.
7265When indexing into a (optionally packed) structure, only ``i32`` integer
7266**constants** are allowed (when using a vector of indices they must all
7267be the **same** ``i32`` integer constant). When indexing into an array,
7268pointer or vector, integers of any width are allowed, and they are not
7269required to be constant. These integers are treated as signed values
7270where relevant.
7271
7272For example, let's consider a C code fragment and how it gets compiled
7273to LLVM:
7274
7275.. code-block:: c
7276
7277 struct RT {
7278 char A;
7279 int B[10][20];
7280 char C;
7281 };
7282 struct ST {
7283 int X;
7284 double Y;
7285 struct RT Z;
7286 };
7287
7288 int *foo(struct ST *s) {
7289 return &s[1].Z.B[5][13];
7290 }
7291
7292The LLVM code generated by Clang is:
7293
7294.. code-block:: llvm
7295
7296 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7297 %struct.ST = type { i32, double, %struct.RT }
7298
7299 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7300 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007301 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007302 ret i32* %arrayidx
7303 }
7304
7305Semantics:
7306""""""""""
7307
7308In the example above, the first index is indexing into the
7309'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7310= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7311indexes into the third element of the structure, yielding a
7312'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7313structure. The third index indexes into the second element of the
7314structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7315dimensions of the array are subscripted into, yielding an '``i32``'
7316type. The '``getelementptr``' instruction returns a pointer to this
7317element, thus computing a value of '``i32*``' type.
7318
7319Note that it is perfectly legal to index partially through a structure,
7320returning a pointer to an inner element. Because of this, the LLVM code
7321for the given testcase is equivalent to:
7322
7323.. code-block:: llvm
7324
7325 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007326 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7327 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7328 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7329 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7330 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007331 ret i32* %t5
7332 }
7333
7334If the ``inbounds`` keyword is present, the result value of the
7335``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7336pointer is not an *in bounds* address of an allocated object, or if any
7337of the addresses that would be formed by successive addition of the
7338offsets implied by the indices to the base address with infinitely
7339precise signed arithmetic are not an *in bounds* address of that
7340allocated object. The *in bounds* addresses for an allocated object are
7341all the addresses that point into the object, plus the address one byte
7342past the end. In cases where the base is a vector of pointers the
7343``inbounds`` keyword applies to each of the computations element-wise.
7344
7345If the ``inbounds`` keyword is not present, the offsets are added to the
7346base address with silently-wrapping two's complement arithmetic. If the
7347offsets have a different width from the pointer, they are sign-extended
7348or truncated to the width of the pointer. The result value of the
7349``getelementptr`` may be outside the object pointed to by the base
7350pointer. The result value may not necessarily be used to access memory
7351though, even if it happens to point into allocated storage. See the
7352:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7353information.
7354
7355The getelementptr instruction is often confusing. For some more insight
7356into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7357
7358Example:
7359""""""""
7360
7361.. code-block:: llvm
7362
7363 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007364 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007365 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007366 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007367 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007368 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007369 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007370 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007371
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007372Vector of pointers:
7373"""""""""""""""""""
7374
7375The ``getelementptr`` returns a vector of pointers, instead of a single address,
7376when one or more of its arguments is a vector. In such cases, all vector
7377arguments should have the same number of elements, and every scalar argument
7378will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007379
7380.. code-block:: llvm
7381
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007382 ; All arguments are vectors:
7383 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7384 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007385
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007386 ; Add the same scalar offset to each pointer of a vector:
7387 ; A[i] = ptrs[i] + offset*sizeof(i8)
7388 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007389
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007390 ; Add distinct offsets to the same pointer:
7391 ; A[i] = ptr + offsets[i]*sizeof(i8)
7392 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007393
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007394 ; In all cases described above the type of the result is <4 x i8*>
7395
7396The two following instructions are equivalent:
7397
7398.. code-block:: llvm
7399
7400 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7401 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7402 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7403 <4 x i32> %ind4,
7404 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007405
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007406 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7407 i32 2, i32 1, <4 x i32> %ind4, i64 13
7408
7409Let's look at the C code, where the vector version of ``getelementptr``
7410makes sense:
7411
7412.. code-block:: c
7413
7414 // Let's assume that we vectorize the following loop:
7415 double *A, B; int *C;
7416 for (int i = 0; i < size; ++i) {
7417 A[i] = B[C[i]];
7418 }
7419
7420.. code-block:: llvm
7421
7422 ; get pointers for 8 elements from array B
7423 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7424 ; load 8 elements from array B into A
7425 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7426 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007427
7428Conversion Operations
7429---------------------
7430
7431The instructions in this category are the conversion instructions
7432(casting) which all take a single operand and a type. They perform
7433various bit conversions on the operand.
7434
7435'``trunc .. to``' Instruction
7436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7437
7438Syntax:
7439"""""""
7440
7441::
7442
7443 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7444
7445Overview:
7446"""""""""
7447
7448The '``trunc``' instruction truncates its operand to the type ``ty2``.
7449
7450Arguments:
7451""""""""""
7452
7453The '``trunc``' instruction takes a value to trunc, and a type to trunc
7454it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7455of the same number of integers. The bit size of the ``value`` must be
7456larger than the bit size of the destination type, ``ty2``. Equal sized
7457types are not allowed.
7458
7459Semantics:
7460""""""""""
7461
7462The '``trunc``' instruction truncates the high order bits in ``value``
7463and converts the remaining bits to ``ty2``. Since the source size must
7464be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7465It will always truncate bits.
7466
7467Example:
7468""""""""
7469
7470.. code-block:: llvm
7471
7472 %X = trunc i32 257 to i8 ; yields i8:1
7473 %Y = trunc i32 123 to i1 ; yields i1:true
7474 %Z = trunc i32 122 to i1 ; yields i1:false
7475 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7476
7477'``zext .. to``' Instruction
7478^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7479
7480Syntax:
7481"""""""
7482
7483::
7484
7485 <result> = zext <ty> <value> to <ty2> ; yields ty2
7486
7487Overview:
7488"""""""""
7489
7490The '``zext``' instruction zero extends its operand to type ``ty2``.
7491
7492Arguments:
7493""""""""""
7494
7495The '``zext``' instruction takes a value to cast, and a type to cast it
7496to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7497the same number of integers. The bit size of the ``value`` must be
7498smaller than the bit size of the destination type, ``ty2``.
7499
7500Semantics:
7501""""""""""
7502
7503The ``zext`` fills the high order bits of the ``value`` with zero bits
7504until it reaches the size of the destination type, ``ty2``.
7505
7506When zero extending from i1, the result will always be either 0 or 1.
7507
7508Example:
7509""""""""
7510
7511.. code-block:: llvm
7512
7513 %X = zext i32 257 to i64 ; yields i64:257
7514 %Y = zext i1 true to i32 ; yields i32:1
7515 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7516
7517'``sext .. to``' Instruction
7518^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7519
7520Syntax:
7521"""""""
7522
7523::
7524
7525 <result> = sext <ty> <value> to <ty2> ; yields ty2
7526
7527Overview:
7528"""""""""
7529
7530The '``sext``' sign extends ``value`` to the type ``ty2``.
7531
7532Arguments:
7533""""""""""
7534
7535The '``sext``' instruction takes a value to cast, and a type to cast it
7536to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7537the same number of integers. The bit size of the ``value`` must be
7538smaller than the bit size of the destination type, ``ty2``.
7539
7540Semantics:
7541""""""""""
7542
7543The '``sext``' instruction performs a sign extension by copying the sign
7544bit (highest order bit) of the ``value`` until it reaches the bit size
7545of the type ``ty2``.
7546
7547When sign extending from i1, the extension always results in -1 or 0.
7548
7549Example:
7550""""""""
7551
7552.. code-block:: llvm
7553
7554 %X = sext i8 -1 to i16 ; yields i16 :65535
7555 %Y = sext i1 true to i32 ; yields i32:-1
7556 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7557
7558'``fptrunc .. to``' Instruction
7559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7560
7561Syntax:
7562"""""""
7563
7564::
7565
7566 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7567
7568Overview:
7569"""""""""
7570
7571The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7572
7573Arguments:
7574""""""""""
7575
7576The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7577value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7578The size of ``value`` must be larger than the size of ``ty2``. This
7579implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7580
7581Semantics:
7582""""""""""
7583
Dan Liew50456fb2015-09-03 18:43:56 +00007584The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007585:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007586point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7587destination type, ``ty2``, then the results are undefined. If the cast produces
7588an inexact result, how rounding is performed (e.g. truncation, also known as
7589round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007590
7591Example:
7592""""""""
7593
7594.. code-block:: llvm
7595
7596 %X = fptrunc double 123.0 to float ; yields float:123.0
7597 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7598
7599'``fpext .. to``' Instruction
7600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7601
7602Syntax:
7603"""""""
7604
7605::
7606
7607 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7608
7609Overview:
7610"""""""""
7611
7612The '``fpext``' extends a floating point ``value`` to a larger floating
7613point value.
7614
7615Arguments:
7616""""""""""
7617
7618The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7619``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7620to. The source type must be smaller than the destination type.
7621
7622Semantics:
7623""""""""""
7624
7625The '``fpext``' instruction extends the ``value`` from a smaller
7626:ref:`floating point <t_floating>` type to a larger :ref:`floating
7627point <t_floating>` type. The ``fpext`` cannot be used to make a
7628*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7629*no-op cast* for a floating point cast.
7630
7631Example:
7632""""""""
7633
7634.. code-block:: llvm
7635
7636 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7637 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7638
7639'``fptoui .. to``' Instruction
7640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7641
7642Syntax:
7643"""""""
7644
7645::
7646
7647 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7648
7649Overview:
7650"""""""""
7651
7652The '``fptoui``' converts a floating point ``value`` to its unsigned
7653integer equivalent of type ``ty2``.
7654
7655Arguments:
7656""""""""""
7657
7658The '``fptoui``' instruction takes a value to cast, which must be a
7659scalar or vector :ref:`floating point <t_floating>` value, and a type to
7660cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7661``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7662type with the same number of elements as ``ty``
7663
7664Semantics:
7665""""""""""
7666
7667The '``fptoui``' instruction converts its :ref:`floating
7668point <t_floating>` operand into the nearest (rounding towards zero)
7669unsigned integer value. If the value cannot fit in ``ty2``, the results
7670are undefined.
7671
7672Example:
7673""""""""
7674
7675.. code-block:: llvm
7676
7677 %X = fptoui double 123.0 to i32 ; yields i32:123
7678 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7679 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7680
7681'``fptosi .. to``' Instruction
7682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7683
7684Syntax:
7685"""""""
7686
7687::
7688
7689 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7690
7691Overview:
7692"""""""""
7693
7694The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7695``value`` to type ``ty2``.
7696
7697Arguments:
7698""""""""""
7699
7700The '``fptosi``' instruction takes a value to cast, which must be a
7701scalar or vector :ref:`floating point <t_floating>` value, and a type to
7702cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7703``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7704type with the same number of elements as ``ty``
7705
7706Semantics:
7707""""""""""
7708
7709The '``fptosi``' instruction converts its :ref:`floating
7710point <t_floating>` operand into the nearest (rounding towards zero)
7711signed integer value. If the value cannot fit in ``ty2``, the results
7712are undefined.
7713
7714Example:
7715""""""""
7716
7717.. code-block:: llvm
7718
7719 %X = fptosi double -123.0 to i32 ; yields i32:-123
7720 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7721 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7722
7723'``uitofp .. to``' Instruction
7724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7725
7726Syntax:
7727"""""""
7728
7729::
7730
7731 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7732
7733Overview:
7734"""""""""
7735
7736The '``uitofp``' instruction regards ``value`` as an unsigned integer
7737and converts that value to the ``ty2`` type.
7738
7739Arguments:
7740""""""""""
7741
7742The '``uitofp``' instruction takes a value to cast, which must be a
7743scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7744``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7745``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7746type with the same number of elements as ``ty``
7747
7748Semantics:
7749""""""""""
7750
7751The '``uitofp``' instruction interprets its operand as an unsigned
7752integer quantity and converts it to the corresponding floating point
7753value. If the value cannot fit in the floating point value, the results
7754are undefined.
7755
7756Example:
7757""""""""
7758
7759.. code-block:: llvm
7760
7761 %X = uitofp i32 257 to float ; yields float:257.0
7762 %Y = uitofp i8 -1 to double ; yields double:255.0
7763
7764'``sitofp .. to``' Instruction
7765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7766
7767Syntax:
7768"""""""
7769
7770::
7771
7772 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7773
7774Overview:
7775"""""""""
7776
7777The '``sitofp``' instruction regards ``value`` as a signed integer and
7778converts that value to the ``ty2`` type.
7779
7780Arguments:
7781""""""""""
7782
7783The '``sitofp``' instruction takes a value to cast, which must be a
7784scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7785``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7786``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7787type with the same number of elements as ``ty``
7788
7789Semantics:
7790""""""""""
7791
7792The '``sitofp``' instruction interprets its operand as a signed integer
7793quantity and converts it to the corresponding floating point value. If
7794the value cannot fit in the floating point value, the results are
7795undefined.
7796
7797Example:
7798""""""""
7799
7800.. code-block:: llvm
7801
7802 %X = sitofp i32 257 to float ; yields float:257.0
7803 %Y = sitofp i8 -1 to double ; yields double:-1.0
7804
7805.. _i_ptrtoint:
7806
7807'``ptrtoint .. to``' Instruction
7808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7809
7810Syntax:
7811"""""""
7812
7813::
7814
7815 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7816
7817Overview:
7818"""""""""
7819
7820The '``ptrtoint``' instruction converts the pointer or a vector of
7821pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7822
7823Arguments:
7824""""""""""
7825
7826The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007827a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007828type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7829a vector of integers type.
7830
7831Semantics:
7832""""""""""
7833
7834The '``ptrtoint``' instruction converts ``value`` to integer type
7835``ty2`` by interpreting the pointer value as an integer and either
7836truncating or zero extending that value to the size of the integer type.
7837If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7838``value`` is larger than ``ty2`` then a truncation is done. If they are
7839the same size, then nothing is done (*no-op cast*) other than a type
7840change.
7841
7842Example:
7843""""""""
7844
7845.. code-block:: llvm
7846
7847 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7848 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7849 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7850
7851.. _i_inttoptr:
7852
7853'``inttoptr .. to``' Instruction
7854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7855
7856Syntax:
7857"""""""
7858
7859::
7860
7861 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7862
7863Overview:
7864"""""""""
7865
7866The '``inttoptr``' instruction converts an integer ``value`` to a
7867pointer type, ``ty2``.
7868
7869Arguments:
7870""""""""""
7871
7872The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7873cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7874type.
7875
7876Semantics:
7877""""""""""
7878
7879The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7880applying either a zero extension or a truncation depending on the size
7881of the integer ``value``. If ``value`` is larger than the size of a
7882pointer then a truncation is done. If ``value`` is smaller than the size
7883of a pointer then a zero extension is done. If they are the same size,
7884nothing is done (*no-op cast*).
7885
7886Example:
7887""""""""
7888
7889.. code-block:: llvm
7890
7891 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7892 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7893 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7894 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7895
7896.. _i_bitcast:
7897
7898'``bitcast .. to``' Instruction
7899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7900
7901Syntax:
7902"""""""
7903
7904::
7905
7906 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7907
7908Overview:
7909"""""""""
7910
7911The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7912changing any bits.
7913
7914Arguments:
7915""""""""""
7916
7917The '``bitcast``' instruction takes a value to cast, which must be a
7918non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007919also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7920bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007921identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007922also be a pointer of the same size. This instruction supports bitwise
7923conversion of vectors to integers and to vectors of other types (as
7924long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007925
7926Semantics:
7927""""""""""
7928
Matt Arsenault24b49c42013-07-31 17:49:08 +00007929The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7930is always a *no-op cast* because no bits change with this
7931conversion. The conversion is done as if the ``value`` had been stored
7932to memory and read back as type ``ty2``. Pointer (or vector of
7933pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007934pointers) types with the same address space through this instruction.
7935To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7936or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007937
7938Example:
7939""""""""
7940
7941.. code-block:: llvm
7942
7943 %X = bitcast i8 255 to i8 ; yields i8 :-1
7944 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7945 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7946 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7947
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007948.. _i_addrspacecast:
7949
7950'``addrspacecast .. to``' Instruction
7951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7952
7953Syntax:
7954"""""""
7955
7956::
7957
7958 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7959
7960Overview:
7961"""""""""
7962
7963The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7964address space ``n`` to type ``pty2`` in address space ``m``.
7965
7966Arguments:
7967""""""""""
7968
7969The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7970to cast and a pointer type to cast it to, which must have a different
7971address space.
7972
7973Semantics:
7974""""""""""
7975
7976The '``addrspacecast``' instruction converts the pointer value
7977``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007978value modification, depending on the target and the address space
7979pair. Pointer conversions within the same address space must be
7980performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007981conversion is legal then both result and operand refer to the same memory
7982location.
7983
7984Example:
7985""""""""
7986
7987.. code-block:: llvm
7988
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007989 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7990 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7991 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007992
Sean Silvab084af42012-12-07 10:36:55 +00007993.. _otherops:
7994
7995Other Operations
7996----------------
7997
7998The instructions in this category are the "miscellaneous" instructions,
7999which defy better classification.
8000
8001.. _i_icmp:
8002
8003'``icmp``' Instruction
8004^^^^^^^^^^^^^^^^^^^^^^
8005
8006Syntax:
8007"""""""
8008
8009::
8010
Tim Northover675a0962014-06-13 14:24:23 +00008011 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008012
8013Overview:
8014"""""""""
8015
8016The '``icmp``' instruction returns a boolean value or a vector of
8017boolean values based on comparison of its two integer, integer vector,
8018pointer, or pointer vector operands.
8019
8020Arguments:
8021""""""""""
8022
8023The '``icmp``' instruction takes three operands. The first operand is
8024the condition code indicating the kind of comparison to perform. It is
8025not a value, just a keyword. The possible condition code are:
8026
8027#. ``eq``: equal
8028#. ``ne``: not equal
8029#. ``ugt``: unsigned greater than
8030#. ``uge``: unsigned greater or equal
8031#. ``ult``: unsigned less than
8032#. ``ule``: unsigned less or equal
8033#. ``sgt``: signed greater than
8034#. ``sge``: signed greater or equal
8035#. ``slt``: signed less than
8036#. ``sle``: signed less or equal
8037
8038The remaining two arguments must be :ref:`integer <t_integer>` or
8039:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8040must also be identical types.
8041
8042Semantics:
8043""""""""""
8044
8045The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8046code given as ``cond``. The comparison performed always yields either an
8047:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8048
8049#. ``eq``: yields ``true`` if the operands are equal, ``false``
8050 otherwise. No sign interpretation is necessary or performed.
8051#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8052 otherwise. No sign interpretation is necessary or performed.
8053#. ``ugt``: interprets the operands as unsigned values and yields
8054 ``true`` if ``op1`` is greater than ``op2``.
8055#. ``uge``: interprets the operands as unsigned values and yields
8056 ``true`` if ``op1`` is greater than or equal to ``op2``.
8057#. ``ult``: interprets the operands as unsigned values and yields
8058 ``true`` if ``op1`` is less than ``op2``.
8059#. ``ule``: interprets the operands as unsigned values and yields
8060 ``true`` if ``op1`` is less than or equal to ``op2``.
8061#. ``sgt``: interprets the operands as signed values and yields ``true``
8062 if ``op1`` is greater than ``op2``.
8063#. ``sge``: interprets the operands as signed values and yields ``true``
8064 if ``op1`` is greater than or equal to ``op2``.
8065#. ``slt``: interprets the operands as signed values and yields ``true``
8066 if ``op1`` is less than ``op2``.
8067#. ``sle``: interprets the operands as signed values and yields ``true``
8068 if ``op1`` is less than or equal to ``op2``.
8069
8070If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8071are compared as if they were integers.
8072
8073If the operands are integer vectors, then they are compared element by
8074element. The result is an ``i1`` vector with the same number of elements
8075as the values being compared. Otherwise, the result is an ``i1``.
8076
8077Example:
8078""""""""
8079
8080.. code-block:: llvm
8081
8082 <result> = icmp eq i32 4, 5 ; yields: result=false
8083 <result> = icmp ne float* %X, %X ; yields: result=false
8084 <result> = icmp ult i16 4, 5 ; yields: result=true
8085 <result> = icmp sgt i16 4, 5 ; yields: result=false
8086 <result> = icmp ule i16 -4, 5 ; yields: result=false
8087 <result> = icmp sge i16 4, 5 ; yields: result=false
8088
8089Note that the code generator does not yet support vector types with the
8090``icmp`` instruction.
8091
8092.. _i_fcmp:
8093
8094'``fcmp``' Instruction
8095^^^^^^^^^^^^^^^^^^^^^^
8096
8097Syntax:
8098"""""""
8099
8100::
8101
James Molloy88eb5352015-07-10 12:52:00 +00008102 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008103
8104Overview:
8105"""""""""
8106
8107The '``fcmp``' instruction returns a boolean value or vector of boolean
8108values based on comparison of its operands.
8109
8110If the operands are floating point scalars, then the result type is a
8111boolean (:ref:`i1 <t_integer>`).
8112
8113If the operands are floating point vectors, then the result type is a
8114vector of boolean with the same number of elements as the operands being
8115compared.
8116
8117Arguments:
8118""""""""""
8119
8120The '``fcmp``' instruction takes three operands. The first operand is
8121the condition code indicating the kind of comparison to perform. It is
8122not a value, just a keyword. The possible condition code are:
8123
8124#. ``false``: no comparison, always returns false
8125#. ``oeq``: ordered and equal
8126#. ``ogt``: ordered and greater than
8127#. ``oge``: ordered and greater than or equal
8128#. ``olt``: ordered and less than
8129#. ``ole``: ordered and less than or equal
8130#. ``one``: ordered and not equal
8131#. ``ord``: ordered (no nans)
8132#. ``ueq``: unordered or equal
8133#. ``ugt``: unordered or greater than
8134#. ``uge``: unordered or greater than or equal
8135#. ``ult``: unordered or less than
8136#. ``ule``: unordered or less than or equal
8137#. ``une``: unordered or not equal
8138#. ``uno``: unordered (either nans)
8139#. ``true``: no comparison, always returns true
8140
8141*Ordered* means that neither operand is a QNAN while *unordered* means
8142that either operand may be a QNAN.
8143
8144Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8145point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8146type. They must have identical types.
8147
8148Semantics:
8149""""""""""
8150
8151The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8152condition code given as ``cond``. If the operands are vectors, then the
8153vectors are compared element by element. Each comparison performed
8154always yields an :ref:`i1 <t_integer>` result, as follows:
8155
8156#. ``false``: always yields ``false``, regardless of operands.
8157#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8158 is equal to ``op2``.
8159#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8160 is greater than ``op2``.
8161#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8162 is greater than or equal to ``op2``.
8163#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8164 is less than ``op2``.
8165#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8166 is less than or equal to ``op2``.
8167#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8168 is not equal to ``op2``.
8169#. ``ord``: yields ``true`` if both operands are not a QNAN.
8170#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8171 equal to ``op2``.
8172#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8173 greater than ``op2``.
8174#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8175 greater than or equal to ``op2``.
8176#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8177 less than ``op2``.
8178#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8179 less than or equal to ``op2``.
8180#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8181 not equal to ``op2``.
8182#. ``uno``: yields ``true`` if either operand is a QNAN.
8183#. ``true``: always yields ``true``, regardless of operands.
8184
James Molloy88eb5352015-07-10 12:52:00 +00008185The ``fcmp`` instruction can also optionally take any number of
8186:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8187otherwise unsafe floating point optimizations.
8188
8189Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8190only flags that have any effect on its semantics are those that allow
8191assumptions to be made about the values of input arguments; namely
8192``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8193
Sean Silvab084af42012-12-07 10:36:55 +00008194Example:
8195""""""""
8196
8197.. code-block:: llvm
8198
8199 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8200 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8201 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8202 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8203
8204Note that the code generator does not yet support vector types with the
8205``fcmp`` instruction.
8206
8207.. _i_phi:
8208
8209'``phi``' Instruction
8210^^^^^^^^^^^^^^^^^^^^^
8211
8212Syntax:
8213"""""""
8214
8215::
8216
8217 <result> = phi <ty> [ <val0>, <label0>], ...
8218
8219Overview:
8220"""""""""
8221
8222The '``phi``' instruction is used to implement the φ node in the SSA
8223graph representing the function.
8224
8225Arguments:
8226""""""""""
8227
8228The type of the incoming values is specified with the first type field.
8229After this, the '``phi``' instruction takes a list of pairs as
8230arguments, with one pair for each predecessor basic block of the current
8231block. Only values of :ref:`first class <t_firstclass>` type may be used as
8232the value arguments to the PHI node. Only labels may be used as the
8233label arguments.
8234
8235There must be no non-phi instructions between the start of a basic block
8236and the PHI instructions: i.e. PHI instructions must be first in a basic
8237block.
8238
8239For the purposes of the SSA form, the use of each incoming value is
8240deemed to occur on the edge from the corresponding predecessor block to
8241the current block (but after any definition of an '``invoke``'
8242instruction's return value on the same edge).
8243
8244Semantics:
8245""""""""""
8246
8247At runtime, the '``phi``' instruction logically takes on the value
8248specified by the pair corresponding to the predecessor basic block that
8249executed just prior to the current block.
8250
8251Example:
8252""""""""
8253
8254.. code-block:: llvm
8255
8256 Loop: ; Infinite loop that counts from 0 on up...
8257 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8258 %nextindvar = add i32 %indvar, 1
8259 br label %Loop
8260
8261.. _i_select:
8262
8263'``select``' Instruction
8264^^^^^^^^^^^^^^^^^^^^^^^^
8265
8266Syntax:
8267"""""""
8268
8269::
8270
8271 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8272
8273 selty is either i1 or {<N x i1>}
8274
8275Overview:
8276"""""""""
8277
8278The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008279condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008280
8281Arguments:
8282""""""""""
8283
8284The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8285values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008286class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008287
8288Semantics:
8289""""""""""
8290
8291If the condition is an i1 and it evaluates to 1, the instruction returns
8292the first value argument; otherwise, it returns the second value
8293argument.
8294
8295If the condition is a vector of i1, then the value arguments must be
8296vectors of the same size, and the selection is done element by element.
8297
David Majnemer40a0b592015-03-03 22:45:47 +00008298If the condition is an i1 and the value arguments are vectors of the
8299same size, then an entire vector is selected.
8300
Sean Silvab084af42012-12-07 10:36:55 +00008301Example:
8302""""""""
8303
8304.. code-block:: llvm
8305
8306 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8307
8308.. _i_call:
8309
8310'``call``' Instruction
8311^^^^^^^^^^^^^^^^^^^^^^
8312
8313Syntax:
8314"""""""
8315
8316::
8317
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008318 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008319 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008320
8321Overview:
8322"""""""""
8323
8324The '``call``' instruction represents a simple function call.
8325
8326Arguments:
8327""""""""""
8328
8329This instruction requires several arguments:
8330
Reid Kleckner5772b772014-04-24 20:14:34 +00008331#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008332 should perform tail call optimization. The ``tail`` marker is a hint that
8333 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008334 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008335 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008336
8337 #. The call will not cause unbounded stack growth if it is part of a
8338 recursive cycle in the call graph.
8339 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8340 forwarded in place.
8341
8342 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008343 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008344 rules:
8345
8346 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8347 or a pointer bitcast followed by a ret instruction.
8348 - The ret instruction must return the (possibly bitcasted) value
8349 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008350 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008351 parameters or return types may differ in pointee type, but not
8352 in address space.
8353 - The calling conventions of the caller and callee must match.
8354 - All ABI-impacting function attributes, such as sret, byval, inreg,
8355 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008356 - The callee must be varargs iff the caller is varargs. Bitcasting a
8357 non-varargs function to the appropriate varargs type is legal so
8358 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008359
8360 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8361 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008362
8363 - Caller and callee both have the calling convention ``fastcc``.
8364 - The call is in tail position (ret immediately follows call and ret
8365 uses value of call or is void).
8366 - Option ``-tailcallopt`` is enabled, or
8367 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008368 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008369 met. <CodeGenerator.html#tailcallopt>`_
8370
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008371#. The optional ``notail`` marker indicates that the optimizers should not add
8372 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8373 call optimization from being performed on the call.
8374
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008375#. The optional ``fast-math flags`` marker indicates that the call has one or more
8376 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8377 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8378 for calls that return a floating-point scalar or vector type.
8379
Sean Silvab084af42012-12-07 10:36:55 +00008380#. The optional "cconv" marker indicates which :ref:`calling
8381 convention <callingconv>` the call should use. If none is
8382 specified, the call defaults to using C calling conventions. The
8383 calling convention of the call must match the calling convention of
8384 the target function, or else the behavior is undefined.
8385#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8386 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8387 are valid here.
8388#. '``ty``': the type of the call instruction itself which is also the
8389 type of the return value. Functions that return no value are marked
8390 ``void``.
8391#. '``fnty``': shall be the signature of the pointer to function value
8392 being invoked. The argument types must match the types implied by
8393 this signature. This type can be omitted if the function is not
8394 varargs and if the function type does not return a pointer to a
8395 function.
8396#. '``fnptrval``': An LLVM value containing a pointer to a function to
8397 be invoked. In most cases, this is a direct function invocation, but
8398 indirect ``call``'s are just as possible, calling an arbitrary pointer
8399 to function value.
8400#. '``function args``': argument list whose types match the function
8401 signature argument types and parameter attributes. All arguments must
8402 be of :ref:`first class <t_firstclass>` type. If the function signature
8403 indicates the function accepts a variable number of arguments, the
8404 extra arguments can be specified.
8405#. The optional :ref:`function attributes <fnattrs>` list. Only
8406 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8407 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008408#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008409
8410Semantics:
8411""""""""""
8412
8413The '``call``' instruction is used to cause control flow to transfer to
8414a specified function, with its incoming arguments bound to the specified
8415values. Upon a '``ret``' instruction in the called function, control
8416flow continues with the instruction after the function call, and the
8417return value of the function is bound to the result argument.
8418
8419Example:
8420""""""""
8421
8422.. code-block:: llvm
8423
8424 %retval = call i32 @test(i32 %argc)
8425 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8426 %X = tail call i32 @foo() ; yields i32
8427 %Y = tail call fastcc i32 @foo() ; yields i32
8428 call void %foo(i8 97 signext)
8429
8430 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008431 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008432 %gr = extractvalue %struct.A %r, 0 ; yields i32
8433 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8434 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8435 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8436
8437llvm treats calls to some functions with names and arguments that match
8438the standard C99 library as being the C99 library functions, and may
8439perform optimizations or generate code for them under that assumption.
8440This is something we'd like to change in the future to provide better
8441support for freestanding environments and non-C-based languages.
8442
8443.. _i_va_arg:
8444
8445'``va_arg``' Instruction
8446^^^^^^^^^^^^^^^^^^^^^^^^
8447
8448Syntax:
8449"""""""
8450
8451::
8452
8453 <resultval> = va_arg <va_list*> <arglist>, <argty>
8454
8455Overview:
8456"""""""""
8457
8458The '``va_arg``' instruction is used to access arguments passed through
8459the "variable argument" area of a function call. It is used to implement
8460the ``va_arg`` macro in C.
8461
8462Arguments:
8463""""""""""
8464
8465This instruction takes a ``va_list*`` value and the type of the
8466argument. It returns a value of the specified argument type and
8467increments the ``va_list`` to point to the next argument. The actual
8468type of ``va_list`` is target specific.
8469
8470Semantics:
8471""""""""""
8472
8473The '``va_arg``' instruction loads an argument of the specified type
8474from the specified ``va_list`` and causes the ``va_list`` to point to
8475the next argument. For more information, see the variable argument
8476handling :ref:`Intrinsic Functions <int_varargs>`.
8477
8478It is legal for this instruction to be called in a function which does
8479not take a variable number of arguments, for example, the ``vfprintf``
8480function.
8481
8482``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8483function <intrinsics>` because it takes a type as an argument.
8484
8485Example:
8486""""""""
8487
8488See the :ref:`variable argument processing <int_varargs>` section.
8489
8490Note that the code generator does not yet fully support va\_arg on many
8491targets. Also, it does not currently support va\_arg with aggregate
8492types on any target.
8493
8494.. _i_landingpad:
8495
8496'``landingpad``' Instruction
8497^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8498
8499Syntax:
8500"""""""
8501
8502::
8503
David Majnemer7fddecc2015-06-17 20:52:32 +00008504 <resultval> = landingpad <resultty> <clause>+
8505 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008506
8507 <clause> := catch <type> <value>
8508 <clause> := filter <array constant type> <array constant>
8509
8510Overview:
8511"""""""""
8512
8513The '``landingpad``' instruction is used by `LLVM's exception handling
8514system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008515is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008516code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008517defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008518re-entry to the function. The ``resultval`` has the type ``resultty``.
8519
8520Arguments:
8521""""""""""
8522
David Majnemer7fddecc2015-06-17 20:52:32 +00008523The optional
Sean Silvab084af42012-12-07 10:36:55 +00008524``cleanup`` flag indicates that the landing pad block is a cleanup.
8525
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008526A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008527contains the global variable representing the "type" that may be caught
8528or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8529clause takes an array constant as its argument. Use
8530"``[0 x i8**] undef``" for a filter which cannot throw. The
8531'``landingpad``' instruction must contain *at least* one ``clause`` or
8532the ``cleanup`` flag.
8533
8534Semantics:
8535""""""""""
8536
8537The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008538:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008539therefore the "result type" of the ``landingpad`` instruction. As with
8540calling conventions, how the personality function results are
8541represented in LLVM IR is target specific.
8542
8543The clauses are applied in order from top to bottom. If two
8544``landingpad`` instructions are merged together through inlining, the
8545clauses from the calling function are appended to the list of clauses.
8546When the call stack is being unwound due to an exception being thrown,
8547the exception is compared against each ``clause`` in turn. If it doesn't
8548match any of the clauses, and the ``cleanup`` flag is not set, then
8549unwinding continues further up the call stack.
8550
8551The ``landingpad`` instruction has several restrictions:
8552
8553- A landing pad block is a basic block which is the unwind destination
8554 of an '``invoke``' instruction.
8555- A landing pad block must have a '``landingpad``' instruction as its
8556 first non-PHI instruction.
8557- There can be only one '``landingpad``' instruction within the landing
8558 pad block.
8559- A basic block that is not a landing pad block may not include a
8560 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008561
8562Example:
8563""""""""
8564
8565.. code-block:: llvm
8566
8567 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008568 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008569 catch i8** @_ZTIi
8570 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008571 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008572 cleanup
8573 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008574 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008575 catch i8** @_ZTIi
8576 filter [1 x i8**] [@_ZTId]
8577
David Majnemer654e1302015-07-31 17:58:14 +00008578.. _i_cleanuppad:
8579
8580'``cleanuppad``' Instruction
8581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8582
8583Syntax:
8584"""""""
8585
8586::
8587
David Majnemer8a1c45d2015-12-12 05:38:55 +00008588 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008589
8590Overview:
8591"""""""""
8592
8593The '``cleanuppad``' instruction is used by `LLVM's exception handling
8594system <ExceptionHandling.html#overview>`_ to specify that a basic block
8595is a cleanup block --- one where a personality routine attempts to
8596transfer control to run cleanup actions.
8597The ``args`` correspond to whatever additional
8598information the :ref:`personality function <personalityfn>` requires to
8599execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008600The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008601match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8602The ``parent`` argument is the token of the funclet that contains the
8603``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8604this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008605
8606Arguments:
8607""""""""""
8608
8609The instruction takes a list of arbitrary values which are interpreted
8610by the :ref:`personality function <personalityfn>`.
8611
8612Semantics:
8613""""""""""
8614
David Majnemer654e1302015-07-31 17:58:14 +00008615When the call stack is being unwound due to an exception being thrown,
8616the :ref:`personality function <personalityfn>` transfers control to the
8617``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008618As with calling conventions, how the personality function results are
8619represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008620
8621The ``cleanuppad`` instruction has several restrictions:
8622
8623- A cleanup block is a basic block which is the unwind destination of
8624 an exceptional instruction.
8625- A cleanup block must have a '``cleanuppad``' instruction as its
8626 first non-PHI instruction.
8627- There can be only one '``cleanuppad``' instruction within the
8628 cleanup block.
8629- A basic block that is not a cleanup block may not include a
8630 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008631
8632Executing a ``cleanuppad`` instruction constitutes "entering" that pad.
8633The pad may then be "exited" in one of three ways:
Akira Hatanakaa84428e2015-12-15 19:11:48 +00008634
David Majnemer8a1c45d2015-12-12 05:38:55 +000086351) explicitly via a ``cleanupret`` that consumes it. Executing such a ``cleanupret``
8636 is undefined behavior if any descendant pads have been entered but not yet
8637 exited.
86382) implicitly via a call (which unwinds all the way to the current function's caller),
David Majnemerbbfc7212015-12-14 18:34:23 +00008639 or via a ``catchswitch`` or a ``cleanupret`` that unwinds to caller.
David Majnemer8a1c45d2015-12-12 05:38:55 +000086403) implicitly via an unwind edge whose destination EH pad isn't a descendant of
8641 the ``cleanuppad``. When the ``cleanuppad`` is exited in this manner, it is
8642 undefined behavior if the destination EH pad has a parent which is not an
8643 ancestor of the ``cleanuppad`` being exited.
8644
8645It is undefined behavior for the ``cleanuppad`` to exit via an unwind edge which
8646does not transitively unwind to the same destination as a constituent
8647``cleanupret``.
David Majnemer654e1302015-07-31 17:58:14 +00008648
8649Example:
8650""""""""
8651
8652.. code-block:: llvm
8653
David Majnemer8a1c45d2015-12-12 05:38:55 +00008654 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008655
Sean Silvab084af42012-12-07 10:36:55 +00008656.. _intrinsics:
8657
8658Intrinsic Functions
8659===================
8660
8661LLVM supports the notion of an "intrinsic function". These functions
8662have well known names and semantics and are required to follow certain
8663restrictions. Overall, these intrinsics represent an extension mechanism
8664for the LLVM language that does not require changing all of the
8665transformations in LLVM when adding to the language (or the bitcode
8666reader/writer, the parser, etc...).
8667
8668Intrinsic function names must all start with an "``llvm.``" prefix. This
8669prefix is reserved in LLVM for intrinsic names; thus, function names may
8670not begin with this prefix. Intrinsic functions must always be external
8671functions: you cannot define the body of intrinsic functions. Intrinsic
8672functions may only be used in call or invoke instructions: it is illegal
8673to take the address of an intrinsic function. Additionally, because
8674intrinsic functions are part of the LLVM language, it is required if any
8675are added that they be documented here.
8676
8677Some intrinsic functions can be overloaded, i.e., the intrinsic
8678represents a family of functions that perform the same operation but on
8679different data types. Because LLVM can represent over 8 million
8680different integer types, overloading is used commonly to allow an
8681intrinsic function to operate on any integer type. One or more of the
8682argument types or the result type can be overloaded to accept any
8683integer type. Argument types may also be defined as exactly matching a
8684previous argument's type or the result type. This allows an intrinsic
8685function which accepts multiple arguments, but needs all of them to be
8686of the same type, to only be overloaded with respect to a single
8687argument or the result.
8688
8689Overloaded intrinsics will have the names of its overloaded argument
8690types encoded into its function name, each preceded by a period. Only
8691those types which are overloaded result in a name suffix. Arguments
8692whose type is matched against another type do not. For example, the
8693``llvm.ctpop`` function can take an integer of any width and returns an
8694integer of exactly the same integer width. This leads to a family of
8695functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8696``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8697overloaded, and only one type suffix is required. Because the argument's
8698type is matched against the return type, it does not require its own
8699name suffix.
8700
8701To learn how to add an intrinsic function, please see the `Extending
8702LLVM Guide <ExtendingLLVM.html>`_.
8703
8704.. _int_varargs:
8705
8706Variable Argument Handling Intrinsics
8707-------------------------------------
8708
8709Variable argument support is defined in LLVM with the
8710:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8711functions. These functions are related to the similarly named macros
8712defined in the ``<stdarg.h>`` header file.
8713
8714All of these functions operate on arguments that use a target-specific
8715value type "``va_list``". The LLVM assembly language reference manual
8716does not define what this type is, so all transformations should be
8717prepared to handle these functions regardless of the type used.
8718
8719This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8720variable argument handling intrinsic functions are used.
8721
8722.. code-block:: llvm
8723
Tim Northoverab60bb92014-11-02 01:21:51 +00008724 ; This struct is different for every platform. For most platforms,
8725 ; it is merely an i8*.
8726 %struct.va_list = type { i8* }
8727
8728 ; For Unix x86_64 platforms, va_list is the following struct:
8729 ; %struct.va_list = type { i32, i32, i8*, i8* }
8730
Sean Silvab084af42012-12-07 10:36:55 +00008731 define i32 @test(i32 %X, ...) {
8732 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008733 %ap = alloca %struct.va_list
8734 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008735 call void @llvm.va_start(i8* %ap2)
8736
8737 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008738 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008739
8740 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8741 %aq = alloca i8*
8742 %aq2 = bitcast i8** %aq to i8*
8743 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8744 call void @llvm.va_end(i8* %aq2)
8745
8746 ; Stop processing of arguments.
8747 call void @llvm.va_end(i8* %ap2)
8748 ret i32 %tmp
8749 }
8750
8751 declare void @llvm.va_start(i8*)
8752 declare void @llvm.va_copy(i8*, i8*)
8753 declare void @llvm.va_end(i8*)
8754
8755.. _int_va_start:
8756
8757'``llvm.va_start``' Intrinsic
8758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8759
8760Syntax:
8761"""""""
8762
8763::
8764
Nick Lewycky04f6de02013-09-11 22:04:52 +00008765 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008766
8767Overview:
8768"""""""""
8769
8770The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8771subsequent use by ``va_arg``.
8772
8773Arguments:
8774""""""""""
8775
8776The argument is a pointer to a ``va_list`` element to initialize.
8777
8778Semantics:
8779""""""""""
8780
8781The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8782available in C. In a target-dependent way, it initializes the
8783``va_list`` element to which the argument points, so that the next call
8784to ``va_arg`` will produce the first variable argument passed to the
8785function. Unlike the C ``va_start`` macro, this intrinsic does not need
8786to know the last argument of the function as the compiler can figure
8787that out.
8788
8789'``llvm.va_end``' Intrinsic
8790^^^^^^^^^^^^^^^^^^^^^^^^^^^
8791
8792Syntax:
8793"""""""
8794
8795::
8796
8797 declare void @llvm.va_end(i8* <arglist>)
8798
8799Overview:
8800"""""""""
8801
8802The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8803initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8804
8805Arguments:
8806""""""""""
8807
8808The argument is a pointer to a ``va_list`` to destroy.
8809
8810Semantics:
8811""""""""""
8812
8813The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8814available in C. In a target-dependent way, it destroys the ``va_list``
8815element to which the argument points. Calls to
8816:ref:`llvm.va_start <int_va_start>` and
8817:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8818``llvm.va_end``.
8819
8820.. _int_va_copy:
8821
8822'``llvm.va_copy``' Intrinsic
8823^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8824
8825Syntax:
8826"""""""
8827
8828::
8829
8830 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8831
8832Overview:
8833"""""""""
8834
8835The '``llvm.va_copy``' intrinsic copies the current argument position
8836from the source argument list to the destination argument list.
8837
8838Arguments:
8839""""""""""
8840
8841The first argument is a pointer to a ``va_list`` element to initialize.
8842The second argument is a pointer to a ``va_list`` element to copy from.
8843
8844Semantics:
8845""""""""""
8846
8847The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8848available in C. In a target-dependent way, it copies the source
8849``va_list`` element into the destination ``va_list`` element. This
8850intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8851arbitrarily complex and require, for example, memory allocation.
8852
8853Accurate Garbage Collection Intrinsics
8854--------------------------------------
8855
Philip Reamesc5b0f562015-02-25 23:52:06 +00008856LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008857(GC) requires the frontend to generate code containing appropriate intrinsic
8858calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008859intrinsics in a manner which is appropriate for the target collector.
8860
Sean Silvab084af42012-12-07 10:36:55 +00008861These intrinsics allow identification of :ref:`GC roots on the
8862stack <int_gcroot>`, as well as garbage collector implementations that
8863require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008864Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008865these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008866details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008867
Philip Reamesf80bbff2015-02-25 23:45:20 +00008868Experimental Statepoint Intrinsics
8869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8870
8871LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008872collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008873to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008874:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008875differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008876<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008877described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008878
8879.. _int_gcroot:
8880
8881'``llvm.gcroot``' Intrinsic
8882^^^^^^^^^^^^^^^^^^^^^^^^^^^
8883
8884Syntax:
8885"""""""
8886
8887::
8888
8889 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8890
8891Overview:
8892"""""""""
8893
8894The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8895the code generator, and allows some metadata to be associated with it.
8896
8897Arguments:
8898""""""""""
8899
8900The first argument specifies the address of a stack object that contains
8901the root pointer. The second pointer (which must be either a constant or
8902a global value address) contains the meta-data to be associated with the
8903root.
8904
8905Semantics:
8906""""""""""
8907
8908At runtime, a call to this intrinsic stores a null pointer into the
8909"ptrloc" location. At compile-time, the code generator generates
8910information to allow the runtime to find the pointer at GC safe points.
8911The '``llvm.gcroot``' intrinsic may only be used in a function which
8912:ref:`specifies a GC algorithm <gc>`.
8913
8914.. _int_gcread:
8915
8916'``llvm.gcread``' Intrinsic
8917^^^^^^^^^^^^^^^^^^^^^^^^^^^
8918
8919Syntax:
8920"""""""
8921
8922::
8923
8924 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8925
8926Overview:
8927"""""""""
8928
8929The '``llvm.gcread``' intrinsic identifies reads of references from heap
8930locations, allowing garbage collector implementations that require read
8931barriers.
8932
8933Arguments:
8934""""""""""
8935
8936The second argument is the address to read from, which should be an
8937address allocated from the garbage collector. The first object is a
8938pointer to the start of the referenced object, if needed by the language
8939runtime (otherwise null).
8940
8941Semantics:
8942""""""""""
8943
8944The '``llvm.gcread``' intrinsic has the same semantics as a load
8945instruction, but may be replaced with substantially more complex code by
8946the garbage collector runtime, as needed. The '``llvm.gcread``'
8947intrinsic may only be used in a function which :ref:`specifies a GC
8948algorithm <gc>`.
8949
8950.. _int_gcwrite:
8951
8952'``llvm.gcwrite``' Intrinsic
8953^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8954
8955Syntax:
8956"""""""
8957
8958::
8959
8960 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8961
8962Overview:
8963"""""""""
8964
8965The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8966locations, allowing garbage collector implementations that require write
8967barriers (such as generational or reference counting collectors).
8968
8969Arguments:
8970""""""""""
8971
8972The first argument is the reference to store, the second is the start of
8973the object to store it to, and the third is the address of the field of
8974Obj to store to. If the runtime does not require a pointer to the
8975object, Obj may be null.
8976
8977Semantics:
8978""""""""""
8979
8980The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8981instruction, but may be replaced with substantially more complex code by
8982the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8983intrinsic may only be used in a function which :ref:`specifies a GC
8984algorithm <gc>`.
8985
8986Code Generator Intrinsics
8987-------------------------
8988
8989These intrinsics are provided by LLVM to expose special features that
8990may only be implemented with code generator support.
8991
8992'``llvm.returnaddress``' Intrinsic
8993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8994
8995Syntax:
8996"""""""
8997
8998::
8999
9000 declare i8 *@llvm.returnaddress(i32 <level>)
9001
9002Overview:
9003"""""""""
9004
9005The '``llvm.returnaddress``' intrinsic attempts to compute a
9006target-specific value indicating the return address of the current
9007function or one of its callers.
9008
9009Arguments:
9010""""""""""
9011
9012The argument to this intrinsic indicates which function to return the
9013address for. Zero indicates the calling function, one indicates its
9014caller, etc. The argument is **required** to be a constant integer
9015value.
9016
9017Semantics:
9018""""""""""
9019
9020The '``llvm.returnaddress``' intrinsic either returns a pointer
9021indicating the return address of the specified call frame, or zero if it
9022cannot be identified. The value returned by this intrinsic is likely to
9023be incorrect or 0 for arguments other than zero, so it should only be
9024used for debugging purposes.
9025
9026Note that calling this intrinsic does not prevent function inlining or
9027other aggressive transformations, so the value returned may not be that
9028of the obvious source-language caller.
9029
9030'``llvm.frameaddress``' Intrinsic
9031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9032
9033Syntax:
9034"""""""
9035
9036::
9037
9038 declare i8* @llvm.frameaddress(i32 <level>)
9039
9040Overview:
9041"""""""""
9042
9043The '``llvm.frameaddress``' intrinsic attempts to return the
9044target-specific frame pointer value for the specified stack frame.
9045
9046Arguments:
9047""""""""""
9048
9049The argument to this intrinsic indicates which function to return the
9050frame pointer for. Zero indicates the calling function, one indicates
9051its caller, etc. The argument is **required** to be a constant integer
9052value.
9053
9054Semantics:
9055""""""""""
9056
9057The '``llvm.frameaddress``' intrinsic either returns a pointer
9058indicating the frame address of the specified call frame, or zero if it
9059cannot be identified. The value returned by this intrinsic is likely to
9060be incorrect or 0 for arguments other than zero, so it should only be
9061used for debugging purposes.
9062
9063Note that calling this intrinsic does not prevent function inlining or
9064other aggressive transformations, so the value returned may not be that
9065of the obvious source-language caller.
9066
Reid Kleckner60381792015-07-07 22:25:32 +00009067'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9069
9070Syntax:
9071"""""""
9072
9073::
9074
Reid Kleckner60381792015-07-07 22:25:32 +00009075 declare void @llvm.localescape(...)
9076 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009077
9078Overview:
9079"""""""""
9080
Reid Kleckner60381792015-07-07 22:25:32 +00009081The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9082allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009083live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009084computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009085
9086Arguments:
9087""""""""""
9088
Reid Kleckner60381792015-07-07 22:25:32 +00009089All arguments to '``llvm.localescape``' must be pointers to static allocas or
9090casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009091once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009092
Reid Kleckner60381792015-07-07 22:25:32 +00009093The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009094bitcasted pointer to a function defined in the current module. The code
9095generator cannot determine the frame allocation offset of functions defined in
9096other modules.
9097
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009098The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9099call frame that is currently live. The return value of '``llvm.localaddress``'
9100is one way to produce such a value, but various runtimes also expose a suitable
9101pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009102
Reid Kleckner60381792015-07-07 22:25:32 +00009103The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9104'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009105
Reid Klecknere9b89312015-01-13 00:48:10 +00009106Semantics:
9107""""""""""
9108
Reid Kleckner60381792015-07-07 22:25:32 +00009109These intrinsics allow a group of functions to share access to a set of local
9110stack allocations of a one parent function. The parent function may call the
9111'``llvm.localescape``' intrinsic once from the function entry block, and the
9112child functions can use '``llvm.localrecover``' to access the escaped allocas.
9113The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9114the escaped allocas are allocated, which would break attempts to use
9115'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009116
Renato Golinc7aea402014-05-06 16:51:25 +00009117.. _int_read_register:
9118.. _int_write_register:
9119
9120'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9122
9123Syntax:
9124"""""""
9125
9126::
9127
9128 declare i32 @llvm.read_register.i32(metadata)
9129 declare i64 @llvm.read_register.i64(metadata)
9130 declare void @llvm.write_register.i32(metadata, i32 @value)
9131 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009132 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009133
9134Overview:
9135"""""""""
9136
9137The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9138provides access to the named register. The register must be valid on
9139the architecture being compiled to. The type needs to be compatible
9140with the register being read.
9141
9142Semantics:
9143""""""""""
9144
9145The '``llvm.read_register``' intrinsic returns the current value of the
9146register, where possible. The '``llvm.write_register``' intrinsic sets
9147the current value of the register, where possible.
9148
9149This is useful to implement named register global variables that need
9150to always be mapped to a specific register, as is common practice on
9151bare-metal programs including OS kernels.
9152
9153The compiler doesn't check for register availability or use of the used
9154register in surrounding code, including inline assembly. Because of that,
9155allocatable registers are not supported.
9156
9157Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009158architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009159work is needed to support other registers and even more so, allocatable
9160registers.
9161
Sean Silvab084af42012-12-07 10:36:55 +00009162.. _int_stacksave:
9163
9164'``llvm.stacksave``' Intrinsic
9165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9166
9167Syntax:
9168"""""""
9169
9170::
9171
9172 declare i8* @llvm.stacksave()
9173
9174Overview:
9175"""""""""
9176
9177The '``llvm.stacksave``' intrinsic is used to remember the current state
9178of the function stack, for use with
9179:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9180implementing language features like scoped automatic variable sized
9181arrays in C99.
9182
9183Semantics:
9184""""""""""
9185
9186This intrinsic returns a opaque pointer value that can be passed to
9187:ref:`llvm.stackrestore <int_stackrestore>`. When an
9188``llvm.stackrestore`` intrinsic is executed with a value saved from
9189``llvm.stacksave``, it effectively restores the state of the stack to
9190the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9191practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9192were allocated after the ``llvm.stacksave`` was executed.
9193
9194.. _int_stackrestore:
9195
9196'``llvm.stackrestore``' Intrinsic
9197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9198
9199Syntax:
9200"""""""
9201
9202::
9203
9204 declare void @llvm.stackrestore(i8* %ptr)
9205
9206Overview:
9207"""""""""
9208
9209The '``llvm.stackrestore``' intrinsic is used to restore the state of
9210the function stack to the state it was in when the corresponding
9211:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9212useful for implementing language features like scoped automatic variable
9213sized arrays in C99.
9214
9215Semantics:
9216""""""""""
9217
9218See the description for :ref:`llvm.stacksave <int_stacksave>`.
9219
Yury Gribovd7dbb662015-12-01 11:40:55 +00009220.. _int_get_dynamic_area_offset:
9221
9222'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009224
9225Syntax:
9226"""""""
9227
9228::
9229
9230 declare i32 @llvm.get.dynamic.area.offset.i32()
9231 declare i64 @llvm.get.dynamic.area.offset.i64()
9232
9233 Overview:
9234 """""""""
9235
9236 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9237 get the offset from native stack pointer to the address of the most
9238 recent dynamic alloca on the caller's stack. These intrinsics are
9239 intendend for use in combination with
9240 :ref:`llvm.stacksave <int_stacksave>` to get a
9241 pointer to the most recent dynamic alloca. This is useful, for example,
9242 for AddressSanitizer's stack unpoisoning routines.
9243
9244Semantics:
9245""""""""""
9246
9247 These intrinsics return a non-negative integer value that can be used to
9248 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9249 on the caller's stack. In particular, for targets where stack grows downwards,
9250 adding this offset to the native stack pointer would get the address of the most
9251 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9252 complicated, because substracting this value from stack pointer would get the address
9253 one past the end of the most recent dynamic alloca.
9254
9255 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9256 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9257 compile-time-known constant value.
9258
9259 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9260 must match the target's generic address space's (address space 0) pointer type.
9261
Sean Silvab084af42012-12-07 10:36:55 +00009262'``llvm.prefetch``' Intrinsic
9263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9264
9265Syntax:
9266"""""""
9267
9268::
9269
9270 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9271
9272Overview:
9273"""""""""
9274
9275The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9276insert a prefetch instruction if supported; otherwise, it is a noop.
9277Prefetches have no effect on the behavior of the program but can change
9278its performance characteristics.
9279
9280Arguments:
9281""""""""""
9282
9283``address`` is the address to be prefetched, ``rw`` is the specifier
9284determining if the fetch should be for a read (0) or write (1), and
9285``locality`` is a temporal locality specifier ranging from (0) - no
9286locality, to (3) - extremely local keep in cache. The ``cache type``
9287specifies whether the prefetch is performed on the data (1) or
9288instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9289arguments must be constant integers.
9290
9291Semantics:
9292""""""""""
9293
9294This intrinsic does not modify the behavior of the program. In
9295particular, prefetches cannot trap and do not produce a value. On
9296targets that support this intrinsic, the prefetch can provide hints to
9297the processor cache for better performance.
9298
9299'``llvm.pcmarker``' Intrinsic
9300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9301
9302Syntax:
9303"""""""
9304
9305::
9306
9307 declare void @llvm.pcmarker(i32 <id>)
9308
9309Overview:
9310"""""""""
9311
9312The '``llvm.pcmarker``' intrinsic is a method to export a Program
9313Counter (PC) in a region of code to simulators and other tools. The
9314method is target specific, but it is expected that the marker will use
9315exported symbols to transmit the PC of the marker. The marker makes no
9316guarantees that it will remain with any specific instruction after
9317optimizations. It is possible that the presence of a marker will inhibit
9318optimizations. The intended use is to be inserted after optimizations to
9319allow correlations of simulation runs.
9320
9321Arguments:
9322""""""""""
9323
9324``id`` is a numerical id identifying the marker.
9325
9326Semantics:
9327""""""""""
9328
9329This intrinsic does not modify the behavior of the program. Backends
9330that do not support this intrinsic may ignore it.
9331
9332'``llvm.readcyclecounter``' Intrinsic
9333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9334
9335Syntax:
9336"""""""
9337
9338::
9339
9340 declare i64 @llvm.readcyclecounter()
9341
9342Overview:
9343"""""""""
9344
9345The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9346counter register (or similar low latency, high accuracy clocks) on those
9347targets that support it. On X86, it should map to RDTSC. On Alpha, it
9348should map to RPCC. As the backing counters overflow quickly (on the
9349order of 9 seconds on alpha), this should only be used for small
9350timings.
9351
9352Semantics:
9353""""""""""
9354
9355When directly supported, reading the cycle counter should not modify any
9356memory. Implementations are allowed to either return a application
9357specific value or a system wide value. On backends without support, this
9358is lowered to a constant 0.
9359
Tim Northoverbc933082013-05-23 19:11:20 +00009360Note that runtime support may be conditional on the privilege-level code is
9361running at and the host platform.
9362
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009363'``llvm.clear_cache``' Intrinsic
9364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9365
9366Syntax:
9367"""""""
9368
9369::
9370
9371 declare void @llvm.clear_cache(i8*, i8*)
9372
9373Overview:
9374"""""""""
9375
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009376The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9377in the specified range to the execution unit of the processor. On
9378targets with non-unified instruction and data cache, the implementation
9379flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009380
9381Semantics:
9382""""""""""
9383
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009384On platforms with coherent instruction and data caches (e.g. x86), this
9385intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009386cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009387instructions or a system call, if cache flushing requires special
9388privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009389
Sean Silvad02bf3e2014-04-07 22:29:53 +00009390The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009391time library.
Renato Golin93010e62014-03-26 14:01:32 +00009392
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009393This instrinsic does *not* empty the instruction pipeline. Modifications
9394of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009395
Justin Bogner61ba2e32014-12-08 18:02:35 +00009396'``llvm.instrprof_increment``' Intrinsic
9397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9398
9399Syntax:
9400"""""""
9401
9402::
9403
9404 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9405 i32 <num-counters>, i32 <index>)
9406
9407Overview:
9408"""""""""
9409
9410The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9411frontend for use with instrumentation based profiling. These will be
9412lowered by the ``-instrprof`` pass to generate execution counts of a
9413program at runtime.
9414
9415Arguments:
9416""""""""""
9417
9418The first argument is a pointer to a global variable containing the
9419name of the entity being instrumented. This should generally be the
9420(mangled) function name for a set of counters.
9421
9422The second argument is a hash value that can be used by the consumer
9423of the profile data to detect changes to the instrumented source, and
9424the third is the number of counters associated with ``name``. It is an
9425error if ``hash`` or ``num-counters`` differ between two instances of
9426``instrprof_increment`` that refer to the same name.
9427
9428The last argument refers to which of the counters for ``name`` should
9429be incremented. It should be a value between 0 and ``num-counters``.
9430
9431Semantics:
9432""""""""""
9433
9434This intrinsic represents an increment of a profiling counter. It will
9435cause the ``-instrprof`` pass to generate the appropriate data
9436structures and the code to increment the appropriate value, in a
9437format that can be written out by a compiler runtime and consumed via
9438the ``llvm-profdata`` tool.
9439
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009440'``llvm.instrprof_value_profile``' Intrinsic
9441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9442
9443Syntax:
9444"""""""
9445
9446::
9447
9448 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9449 i64 <value>, i32 <value_kind>,
9450 i32 <index>)
9451
9452Overview:
9453"""""""""
9454
9455The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9456frontend for use with instrumentation based profiling. This will be
9457lowered by the ``-instrprof`` pass to find out the target values,
9458instrumented expressions take in a program at runtime.
9459
9460Arguments:
9461""""""""""
9462
9463The first argument is a pointer to a global variable containing the
9464name of the entity being instrumented. ``name`` should generally be the
9465(mangled) function name for a set of counters.
9466
9467The second argument is a hash value that can be used by the consumer
9468of the profile data to detect changes to the instrumented source. It
9469is an error if ``hash`` differs between two instances of
9470``llvm.instrprof_*`` that refer to the same name.
9471
9472The third argument is the value of the expression being profiled. The profiled
9473expression's value should be representable as an unsigned 64-bit value. The
9474fourth argument represents the kind of value profiling that is being done. The
9475supported value profiling kinds are enumerated through the
9476``InstrProfValueKind`` type declared in the
9477``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9478index of the instrumented expression within ``name``. It should be >= 0.
9479
9480Semantics:
9481""""""""""
9482
9483This intrinsic represents the point where a call to a runtime routine
9484should be inserted for value profiling of target expressions. ``-instrprof``
9485pass will generate the appropriate data structures and replace the
9486``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9487runtime library with proper arguments.
9488
Sean Silvab084af42012-12-07 10:36:55 +00009489Standard C Library Intrinsics
9490-----------------------------
9491
9492LLVM provides intrinsics for a few important standard C library
9493functions. These intrinsics allow source-language front-ends to pass
9494information about the alignment of the pointer arguments to the code
9495generator, providing opportunity for more efficient code generation.
9496
9497.. _int_memcpy:
9498
9499'``llvm.memcpy``' Intrinsic
9500^^^^^^^^^^^^^^^^^^^^^^^^^^^
9501
9502Syntax:
9503"""""""
9504
9505This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9506integer bit width and for different address spaces. Not all targets
9507support all bit widths however.
9508
9509::
9510
9511 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9512 i32 <len>, i32 <align>, i1 <isvolatile>)
9513 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9514 i64 <len>, i32 <align>, i1 <isvolatile>)
9515
9516Overview:
9517"""""""""
9518
9519The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9520source location to the destination location.
9521
9522Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9523intrinsics do not return a value, takes extra alignment/isvolatile
9524arguments and the pointers can be in specified address spaces.
9525
9526Arguments:
9527""""""""""
9528
9529The first argument is a pointer to the destination, the second is a
9530pointer to the source. The third argument is an integer argument
9531specifying the number of bytes to copy, the fourth argument is the
9532alignment of the source and destination locations, and the fifth is a
9533boolean indicating a volatile access.
9534
9535If the call to this intrinsic has an alignment value that is not 0 or 1,
9536then the caller guarantees that both the source and destination pointers
9537are aligned to that boundary.
9538
9539If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9540a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9541very cleanly specified and it is unwise to depend on it.
9542
9543Semantics:
9544""""""""""
9545
9546The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9547source location to the destination location, which are not allowed to
9548overlap. It copies "len" bytes of memory over. If the argument is known
9549to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009550argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009551
9552'``llvm.memmove``' Intrinsic
9553^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9554
9555Syntax:
9556"""""""
9557
9558This is an overloaded intrinsic. You can use llvm.memmove on any integer
9559bit width and for different address space. Not all targets support all
9560bit widths however.
9561
9562::
9563
9564 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9565 i32 <len>, i32 <align>, i1 <isvolatile>)
9566 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9567 i64 <len>, i32 <align>, i1 <isvolatile>)
9568
9569Overview:
9570"""""""""
9571
9572The '``llvm.memmove.*``' intrinsics move a block of memory from the
9573source location to the destination location. It is similar to the
9574'``llvm.memcpy``' intrinsic but allows the two memory locations to
9575overlap.
9576
9577Note that, unlike the standard libc function, the ``llvm.memmove.*``
9578intrinsics do not return a value, takes extra alignment/isvolatile
9579arguments and the pointers can be in specified address spaces.
9580
9581Arguments:
9582""""""""""
9583
9584The first argument is a pointer to the destination, the second is a
9585pointer to the source. The third argument is an integer argument
9586specifying the number of bytes to copy, the fourth argument is the
9587alignment of the source and destination locations, and the fifth is a
9588boolean indicating a volatile access.
9589
9590If the call to this intrinsic has an alignment value that is not 0 or 1,
9591then the caller guarantees that the source and destination pointers are
9592aligned to that boundary.
9593
9594If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9595is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9596not very cleanly specified and it is unwise to depend on it.
9597
9598Semantics:
9599""""""""""
9600
9601The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9602source location to the destination location, which may overlap. It
9603copies "len" bytes of memory over. If the argument is known to be
9604aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009605otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009606
9607'``llvm.memset.*``' Intrinsics
9608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9609
9610Syntax:
9611"""""""
9612
9613This is an overloaded intrinsic. You can use llvm.memset on any integer
9614bit width and for different address spaces. However, not all targets
9615support all bit widths.
9616
9617::
9618
9619 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9620 i32 <len>, i32 <align>, i1 <isvolatile>)
9621 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9622 i64 <len>, i32 <align>, i1 <isvolatile>)
9623
9624Overview:
9625"""""""""
9626
9627The '``llvm.memset.*``' intrinsics fill a block of memory with a
9628particular byte value.
9629
9630Note that, unlike the standard libc function, the ``llvm.memset``
9631intrinsic does not return a value and takes extra alignment/volatile
9632arguments. Also, the destination can be in an arbitrary address space.
9633
9634Arguments:
9635""""""""""
9636
9637The first argument is a pointer to the destination to fill, the second
9638is the byte value with which to fill it, the third argument is an
9639integer argument specifying the number of bytes to fill, and the fourth
9640argument is the known alignment of the destination location.
9641
9642If the call to this intrinsic has an alignment value that is not 0 or 1,
9643then the caller guarantees that the destination pointer is aligned to
9644that boundary.
9645
9646If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9647a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9648very cleanly specified and it is unwise to depend on it.
9649
9650Semantics:
9651""""""""""
9652
9653The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9654at the destination location. If the argument is known to be aligned to
9655some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009656it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009657
9658'``llvm.sqrt.*``' Intrinsic
9659^^^^^^^^^^^^^^^^^^^^^^^^^^^
9660
9661Syntax:
9662"""""""
9663
9664This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9665floating point or vector of floating point type. Not all targets support
9666all types however.
9667
9668::
9669
9670 declare float @llvm.sqrt.f32(float %Val)
9671 declare double @llvm.sqrt.f64(double %Val)
9672 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9673 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9674 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9675
9676Overview:
9677"""""""""
9678
9679The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9680returning the same value as the libm '``sqrt``' functions would. Unlike
9681``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9682negative numbers other than -0.0 (which allows for better optimization,
9683because there is no need to worry about errno being set).
9684``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9685
9686Arguments:
9687""""""""""
9688
9689The argument and return value are floating point numbers of the same
9690type.
9691
9692Semantics:
9693""""""""""
9694
9695This function returns the sqrt of the specified operand if it is a
9696nonnegative floating point number.
9697
9698'``llvm.powi.*``' Intrinsic
9699^^^^^^^^^^^^^^^^^^^^^^^^^^^
9700
9701Syntax:
9702"""""""
9703
9704This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9705floating point or vector of floating point type. Not all targets support
9706all types however.
9707
9708::
9709
9710 declare float @llvm.powi.f32(float %Val, i32 %power)
9711 declare double @llvm.powi.f64(double %Val, i32 %power)
9712 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9713 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9714 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9715
9716Overview:
9717"""""""""
9718
9719The '``llvm.powi.*``' intrinsics return the first operand raised to the
9720specified (positive or negative) power. The order of evaluation of
9721multiplications is not defined. When a vector of floating point type is
9722used, the second argument remains a scalar integer value.
9723
9724Arguments:
9725""""""""""
9726
9727The second argument is an integer power, and the first is a value to
9728raise to that power.
9729
9730Semantics:
9731""""""""""
9732
9733This function returns the first value raised to the second power with an
9734unspecified sequence of rounding operations.
9735
9736'``llvm.sin.*``' Intrinsic
9737^^^^^^^^^^^^^^^^^^^^^^^^^^
9738
9739Syntax:
9740"""""""
9741
9742This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9743floating point or vector of floating point type. Not all targets support
9744all types however.
9745
9746::
9747
9748 declare float @llvm.sin.f32(float %Val)
9749 declare double @llvm.sin.f64(double %Val)
9750 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9751 declare fp128 @llvm.sin.f128(fp128 %Val)
9752 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9753
9754Overview:
9755"""""""""
9756
9757The '``llvm.sin.*``' intrinsics return the sine of the operand.
9758
9759Arguments:
9760""""""""""
9761
9762The argument and return value are floating point numbers of the same
9763type.
9764
9765Semantics:
9766""""""""""
9767
9768This function returns the sine of the specified operand, returning the
9769same values as the libm ``sin`` functions would, and handles error
9770conditions in the same way.
9771
9772'``llvm.cos.*``' Intrinsic
9773^^^^^^^^^^^^^^^^^^^^^^^^^^
9774
9775Syntax:
9776"""""""
9777
9778This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9779floating point or vector of floating point type. Not all targets support
9780all types however.
9781
9782::
9783
9784 declare float @llvm.cos.f32(float %Val)
9785 declare double @llvm.cos.f64(double %Val)
9786 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9787 declare fp128 @llvm.cos.f128(fp128 %Val)
9788 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9789
9790Overview:
9791"""""""""
9792
9793The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9794
9795Arguments:
9796""""""""""
9797
9798The argument and return value are floating point numbers of the same
9799type.
9800
9801Semantics:
9802""""""""""
9803
9804This function returns the cosine of the specified operand, returning the
9805same values as the libm ``cos`` functions would, and handles error
9806conditions in the same way.
9807
9808'``llvm.pow.*``' Intrinsic
9809^^^^^^^^^^^^^^^^^^^^^^^^^^
9810
9811Syntax:
9812"""""""
9813
9814This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9815floating point or vector of floating point type. Not all targets support
9816all types however.
9817
9818::
9819
9820 declare float @llvm.pow.f32(float %Val, float %Power)
9821 declare double @llvm.pow.f64(double %Val, double %Power)
9822 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9823 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9824 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9825
9826Overview:
9827"""""""""
9828
9829The '``llvm.pow.*``' intrinsics return the first operand raised to the
9830specified (positive or negative) power.
9831
9832Arguments:
9833""""""""""
9834
9835The second argument is a floating point power, and the first is a value
9836to raise to that power.
9837
9838Semantics:
9839""""""""""
9840
9841This function returns the first value raised to the second power,
9842returning the same values as the libm ``pow`` functions would, and
9843handles error conditions in the same way.
9844
9845'``llvm.exp.*``' Intrinsic
9846^^^^^^^^^^^^^^^^^^^^^^^^^^
9847
9848Syntax:
9849"""""""
9850
9851This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9852floating point or vector of floating point type. Not all targets support
9853all types however.
9854
9855::
9856
9857 declare float @llvm.exp.f32(float %Val)
9858 declare double @llvm.exp.f64(double %Val)
9859 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9860 declare fp128 @llvm.exp.f128(fp128 %Val)
9861 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9862
9863Overview:
9864"""""""""
9865
9866The '``llvm.exp.*``' intrinsics perform the exp function.
9867
9868Arguments:
9869""""""""""
9870
9871The argument and return value are floating point numbers of the same
9872type.
9873
9874Semantics:
9875""""""""""
9876
9877This function returns the same values as the libm ``exp`` functions
9878would, and handles error conditions in the same way.
9879
9880'``llvm.exp2.*``' Intrinsic
9881^^^^^^^^^^^^^^^^^^^^^^^^^^^
9882
9883Syntax:
9884"""""""
9885
9886This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9887floating point or vector of floating point type. Not all targets support
9888all types however.
9889
9890::
9891
9892 declare float @llvm.exp2.f32(float %Val)
9893 declare double @llvm.exp2.f64(double %Val)
9894 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9895 declare fp128 @llvm.exp2.f128(fp128 %Val)
9896 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9897
9898Overview:
9899"""""""""
9900
9901The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9902
9903Arguments:
9904""""""""""
9905
9906The argument and return value are floating point numbers of the same
9907type.
9908
9909Semantics:
9910""""""""""
9911
9912This function returns the same values as the libm ``exp2`` functions
9913would, and handles error conditions in the same way.
9914
9915'``llvm.log.*``' Intrinsic
9916^^^^^^^^^^^^^^^^^^^^^^^^^^
9917
9918Syntax:
9919"""""""
9920
9921This is an overloaded intrinsic. You can use ``llvm.log`` on any
9922floating point or vector of floating point type. Not all targets support
9923all types however.
9924
9925::
9926
9927 declare float @llvm.log.f32(float %Val)
9928 declare double @llvm.log.f64(double %Val)
9929 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9930 declare fp128 @llvm.log.f128(fp128 %Val)
9931 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9932
9933Overview:
9934"""""""""
9935
9936The '``llvm.log.*``' intrinsics perform the log function.
9937
9938Arguments:
9939""""""""""
9940
9941The argument and return value are floating point numbers of the same
9942type.
9943
9944Semantics:
9945""""""""""
9946
9947This function returns the same values as the libm ``log`` functions
9948would, and handles error conditions in the same way.
9949
9950'``llvm.log10.*``' Intrinsic
9951^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9952
9953Syntax:
9954"""""""
9955
9956This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9957floating point or vector of floating point type. Not all targets support
9958all types however.
9959
9960::
9961
9962 declare float @llvm.log10.f32(float %Val)
9963 declare double @llvm.log10.f64(double %Val)
9964 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9965 declare fp128 @llvm.log10.f128(fp128 %Val)
9966 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9967
9968Overview:
9969"""""""""
9970
9971The '``llvm.log10.*``' intrinsics perform the log10 function.
9972
9973Arguments:
9974""""""""""
9975
9976The argument and return value are floating point numbers of the same
9977type.
9978
9979Semantics:
9980""""""""""
9981
9982This function returns the same values as the libm ``log10`` functions
9983would, and handles error conditions in the same way.
9984
9985'``llvm.log2.*``' Intrinsic
9986^^^^^^^^^^^^^^^^^^^^^^^^^^^
9987
9988Syntax:
9989"""""""
9990
9991This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9992floating point or vector of floating point type. Not all targets support
9993all types however.
9994
9995::
9996
9997 declare float @llvm.log2.f32(float %Val)
9998 declare double @llvm.log2.f64(double %Val)
9999 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10000 declare fp128 @llvm.log2.f128(fp128 %Val)
10001 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10002
10003Overview:
10004"""""""""
10005
10006The '``llvm.log2.*``' intrinsics perform the log2 function.
10007
10008Arguments:
10009""""""""""
10010
10011The argument and return value are floating point numbers of the same
10012type.
10013
10014Semantics:
10015""""""""""
10016
10017This function returns the same values as the libm ``log2`` functions
10018would, and handles error conditions in the same way.
10019
10020'``llvm.fma.*``' Intrinsic
10021^^^^^^^^^^^^^^^^^^^^^^^^^^
10022
10023Syntax:
10024"""""""
10025
10026This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10027floating point or vector of floating point type. Not all targets support
10028all types however.
10029
10030::
10031
10032 declare float @llvm.fma.f32(float %a, float %b, float %c)
10033 declare double @llvm.fma.f64(double %a, double %b, double %c)
10034 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10035 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10036 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10037
10038Overview:
10039"""""""""
10040
10041The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10042operation.
10043
10044Arguments:
10045""""""""""
10046
10047The argument and return value are floating point numbers of the same
10048type.
10049
10050Semantics:
10051""""""""""
10052
10053This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010054would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010055
10056'``llvm.fabs.*``' Intrinsic
10057^^^^^^^^^^^^^^^^^^^^^^^^^^^
10058
10059Syntax:
10060"""""""
10061
10062This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10063floating point or vector of floating point type. Not all targets support
10064all types however.
10065
10066::
10067
10068 declare float @llvm.fabs.f32(float %Val)
10069 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010070 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010071 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010072 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010073
10074Overview:
10075"""""""""
10076
10077The '``llvm.fabs.*``' intrinsics return the absolute value of the
10078operand.
10079
10080Arguments:
10081""""""""""
10082
10083The argument and return value are floating point numbers of the same
10084type.
10085
10086Semantics:
10087""""""""""
10088
10089This function returns the same values as the libm ``fabs`` functions
10090would, and handles error conditions in the same way.
10091
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010092'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010094
10095Syntax:
10096"""""""
10097
10098This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10099floating point or vector of floating point type. Not all targets support
10100all types however.
10101
10102::
10103
Matt Arsenault64313c92014-10-22 18:25:02 +000010104 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10105 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10106 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10107 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10108 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010109
10110Overview:
10111"""""""""
10112
10113The '``llvm.minnum.*``' intrinsics return the minimum of the two
10114arguments.
10115
10116
10117Arguments:
10118""""""""""
10119
10120The arguments and return value are floating point numbers of the same
10121type.
10122
10123Semantics:
10124""""""""""
10125
10126Follows the IEEE-754 semantics for minNum, which also match for libm's
10127fmin.
10128
10129If either operand is a NaN, returns the other non-NaN operand. Returns
10130NaN only if both operands are NaN. If the operands compare equal,
10131returns a value that compares equal to both operands. This means that
10132fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10133
10134'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010136
10137Syntax:
10138"""""""
10139
10140This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10141floating point or vector of floating point type. Not all targets support
10142all types however.
10143
10144::
10145
Matt Arsenault64313c92014-10-22 18:25:02 +000010146 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10147 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10148 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10149 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10150 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010151
10152Overview:
10153"""""""""
10154
10155The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10156arguments.
10157
10158
10159Arguments:
10160""""""""""
10161
10162The arguments and return value are floating point numbers of the same
10163type.
10164
10165Semantics:
10166""""""""""
10167Follows the IEEE-754 semantics for maxNum, which also match for libm's
10168fmax.
10169
10170If either operand is a NaN, returns the other non-NaN operand. Returns
10171NaN only if both operands are NaN. If the operands compare equal,
10172returns a value that compares equal to both operands. This means that
10173fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10174
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010175'``llvm.copysign.*``' Intrinsic
10176^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10177
10178Syntax:
10179"""""""
10180
10181This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10182floating point or vector of floating point type. Not all targets support
10183all types however.
10184
10185::
10186
10187 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10188 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10189 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10190 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10191 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10192
10193Overview:
10194"""""""""
10195
10196The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10197first operand and the sign of the second operand.
10198
10199Arguments:
10200""""""""""
10201
10202The arguments and return value are floating point numbers of the same
10203type.
10204
10205Semantics:
10206""""""""""
10207
10208This function returns the same values as the libm ``copysign``
10209functions would, and handles error conditions in the same way.
10210
Sean Silvab084af42012-12-07 10:36:55 +000010211'``llvm.floor.*``' Intrinsic
10212^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10213
10214Syntax:
10215"""""""
10216
10217This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10218floating point or vector of floating point type. Not all targets support
10219all types however.
10220
10221::
10222
10223 declare float @llvm.floor.f32(float %Val)
10224 declare double @llvm.floor.f64(double %Val)
10225 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10226 declare fp128 @llvm.floor.f128(fp128 %Val)
10227 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10228
10229Overview:
10230"""""""""
10231
10232The '``llvm.floor.*``' intrinsics return the floor of the operand.
10233
10234Arguments:
10235""""""""""
10236
10237The argument and return value are floating point numbers of the same
10238type.
10239
10240Semantics:
10241""""""""""
10242
10243This function returns the same values as the libm ``floor`` functions
10244would, and handles error conditions in the same way.
10245
10246'``llvm.ceil.*``' Intrinsic
10247^^^^^^^^^^^^^^^^^^^^^^^^^^^
10248
10249Syntax:
10250"""""""
10251
10252This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10253floating point or vector of floating point type. Not all targets support
10254all types however.
10255
10256::
10257
10258 declare float @llvm.ceil.f32(float %Val)
10259 declare double @llvm.ceil.f64(double %Val)
10260 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10261 declare fp128 @llvm.ceil.f128(fp128 %Val)
10262 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10263
10264Overview:
10265"""""""""
10266
10267The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10268
10269Arguments:
10270""""""""""
10271
10272The argument and return value are floating point numbers of the same
10273type.
10274
10275Semantics:
10276""""""""""
10277
10278This function returns the same values as the libm ``ceil`` functions
10279would, and handles error conditions in the same way.
10280
10281'``llvm.trunc.*``' Intrinsic
10282^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10283
10284Syntax:
10285"""""""
10286
10287This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10288floating point or vector of floating point type. Not all targets support
10289all types however.
10290
10291::
10292
10293 declare float @llvm.trunc.f32(float %Val)
10294 declare double @llvm.trunc.f64(double %Val)
10295 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10296 declare fp128 @llvm.trunc.f128(fp128 %Val)
10297 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10298
10299Overview:
10300"""""""""
10301
10302The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10303nearest integer not larger in magnitude than the operand.
10304
10305Arguments:
10306""""""""""
10307
10308The argument and return value are floating point numbers of the same
10309type.
10310
10311Semantics:
10312""""""""""
10313
10314This function returns the same values as the libm ``trunc`` functions
10315would, and handles error conditions in the same way.
10316
10317'``llvm.rint.*``' Intrinsic
10318^^^^^^^^^^^^^^^^^^^^^^^^^^^
10319
10320Syntax:
10321"""""""
10322
10323This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10324floating point or vector of floating point type. Not all targets support
10325all types however.
10326
10327::
10328
10329 declare float @llvm.rint.f32(float %Val)
10330 declare double @llvm.rint.f64(double %Val)
10331 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10332 declare fp128 @llvm.rint.f128(fp128 %Val)
10333 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10334
10335Overview:
10336"""""""""
10337
10338The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10339nearest integer. It may raise an inexact floating-point exception if the
10340operand isn't an integer.
10341
10342Arguments:
10343""""""""""
10344
10345The argument and return value are floating point numbers of the same
10346type.
10347
10348Semantics:
10349""""""""""
10350
10351This function returns the same values as the libm ``rint`` functions
10352would, and handles error conditions in the same way.
10353
10354'``llvm.nearbyint.*``' Intrinsic
10355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10356
10357Syntax:
10358"""""""
10359
10360This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10361floating point or vector of floating point type. Not all targets support
10362all types however.
10363
10364::
10365
10366 declare float @llvm.nearbyint.f32(float %Val)
10367 declare double @llvm.nearbyint.f64(double %Val)
10368 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10369 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10370 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10371
10372Overview:
10373"""""""""
10374
10375The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10376nearest integer.
10377
10378Arguments:
10379""""""""""
10380
10381The argument and return value are floating point numbers of the same
10382type.
10383
10384Semantics:
10385""""""""""
10386
10387This function returns the same values as the libm ``nearbyint``
10388functions would, and handles error conditions in the same way.
10389
Hal Finkel171817e2013-08-07 22:49:12 +000010390'``llvm.round.*``' Intrinsic
10391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10392
10393Syntax:
10394"""""""
10395
10396This is an overloaded intrinsic. You can use ``llvm.round`` on any
10397floating point or vector of floating point type. Not all targets support
10398all types however.
10399
10400::
10401
10402 declare float @llvm.round.f32(float %Val)
10403 declare double @llvm.round.f64(double %Val)
10404 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10405 declare fp128 @llvm.round.f128(fp128 %Val)
10406 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10407
10408Overview:
10409"""""""""
10410
10411The '``llvm.round.*``' intrinsics returns the operand rounded to the
10412nearest integer.
10413
10414Arguments:
10415""""""""""
10416
10417The argument and return value are floating point numbers of the same
10418type.
10419
10420Semantics:
10421""""""""""
10422
10423This function returns the same values as the libm ``round``
10424functions would, and handles error conditions in the same way.
10425
Sean Silvab084af42012-12-07 10:36:55 +000010426Bit Manipulation Intrinsics
10427---------------------------
10428
10429LLVM provides intrinsics for a few important bit manipulation
10430operations. These allow efficient code generation for some algorithms.
10431
James Molloy90111f72015-11-12 12:29:09 +000010432'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010434
10435Syntax:
10436"""""""
10437
10438This is an overloaded intrinsic function. You can use bitreverse on any
10439integer type.
10440
10441::
10442
10443 declare i16 @llvm.bitreverse.i16(i16 <id>)
10444 declare i32 @llvm.bitreverse.i32(i32 <id>)
10445 declare i64 @llvm.bitreverse.i64(i64 <id>)
10446
10447Overview:
10448"""""""""
10449
10450The '``llvm.bitreverse``' family of intrinsics is used to reverse the
10451bitpattern of an integer value; for example ``0b1234567`` becomes
10452``0b7654321``.
10453
10454Semantics:
10455""""""""""
10456
10457The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10458``M`` in the input moved to bit ``N-M`` in the output.
10459
Sean Silvab084af42012-12-07 10:36:55 +000010460'``llvm.bswap.*``' Intrinsics
10461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10462
10463Syntax:
10464"""""""
10465
10466This is an overloaded intrinsic function. You can use bswap on any
10467integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10468
10469::
10470
10471 declare i16 @llvm.bswap.i16(i16 <id>)
10472 declare i32 @llvm.bswap.i32(i32 <id>)
10473 declare i64 @llvm.bswap.i64(i64 <id>)
10474
10475Overview:
10476"""""""""
10477
10478The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10479values with an even number of bytes (positive multiple of 16 bits).
10480These are useful for performing operations on data that is not in the
10481target's native byte order.
10482
10483Semantics:
10484""""""""""
10485
10486The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10487and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10488intrinsic returns an i32 value that has the four bytes of the input i32
10489swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10490returned i32 will have its bytes in 3, 2, 1, 0 order. The
10491``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10492concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10493respectively).
10494
10495'``llvm.ctpop.*``' Intrinsic
10496^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10497
10498Syntax:
10499"""""""
10500
10501This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10502bit width, or on any vector with integer elements. Not all targets
10503support all bit widths or vector types, however.
10504
10505::
10506
10507 declare i8 @llvm.ctpop.i8(i8 <src>)
10508 declare i16 @llvm.ctpop.i16(i16 <src>)
10509 declare i32 @llvm.ctpop.i32(i32 <src>)
10510 declare i64 @llvm.ctpop.i64(i64 <src>)
10511 declare i256 @llvm.ctpop.i256(i256 <src>)
10512 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10513
10514Overview:
10515"""""""""
10516
10517The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10518in a value.
10519
10520Arguments:
10521""""""""""
10522
10523The only argument is the value to be counted. The argument may be of any
10524integer type, or a vector with integer elements. The return type must
10525match the argument type.
10526
10527Semantics:
10528""""""""""
10529
10530The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10531each element of a vector.
10532
10533'``llvm.ctlz.*``' Intrinsic
10534^^^^^^^^^^^^^^^^^^^^^^^^^^^
10535
10536Syntax:
10537"""""""
10538
10539This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10540integer bit width, or any vector whose elements are integers. Not all
10541targets support all bit widths or vector types, however.
10542
10543::
10544
10545 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10546 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10547 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10548 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10549 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10550 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10551
10552Overview:
10553"""""""""
10554
10555The '``llvm.ctlz``' family of intrinsic functions counts the number of
10556leading zeros in a variable.
10557
10558Arguments:
10559""""""""""
10560
10561The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010562any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010563type must match the first argument type.
10564
10565The second argument must be a constant and is a flag to indicate whether
10566the intrinsic should ensure that a zero as the first argument produces a
10567defined result. Historically some architectures did not provide a
10568defined result for zero values as efficiently, and many algorithms are
10569now predicated on avoiding zero-value inputs.
10570
10571Semantics:
10572""""""""""
10573
10574The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10575zeros in a variable, or within each element of the vector. If
10576``src == 0`` then the result is the size in bits of the type of ``src``
10577if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10578``llvm.ctlz(i32 2) = 30``.
10579
10580'``llvm.cttz.*``' Intrinsic
10581^^^^^^^^^^^^^^^^^^^^^^^^^^^
10582
10583Syntax:
10584"""""""
10585
10586This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10587integer bit width, or any vector of integer elements. Not all targets
10588support all bit widths or vector types, however.
10589
10590::
10591
10592 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10593 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10594 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10595 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10596 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10597 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10598
10599Overview:
10600"""""""""
10601
10602The '``llvm.cttz``' family of intrinsic functions counts the number of
10603trailing zeros.
10604
10605Arguments:
10606""""""""""
10607
10608The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010609any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010610type must match the first argument type.
10611
10612The second argument must be a constant and is a flag to indicate whether
10613the intrinsic should ensure that a zero as the first argument produces a
10614defined result. Historically some architectures did not provide a
10615defined result for zero values as efficiently, and many algorithms are
10616now predicated on avoiding zero-value inputs.
10617
10618Semantics:
10619""""""""""
10620
10621The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10622zeros in a variable, or within each element of a vector. If ``src == 0``
10623then the result is the size in bits of the type of ``src`` if
10624``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10625``llvm.cttz(2) = 1``.
10626
Philip Reames34843ae2015-03-05 05:55:55 +000010627.. _int_overflow:
10628
Sean Silvab084af42012-12-07 10:36:55 +000010629Arithmetic with Overflow Intrinsics
10630-----------------------------------
10631
10632LLVM provides intrinsics for some arithmetic with overflow operations.
10633
10634'``llvm.sadd.with.overflow.*``' Intrinsics
10635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10636
10637Syntax:
10638"""""""
10639
10640This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10641on any integer bit width.
10642
10643::
10644
10645 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10646 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10647 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10648
10649Overview:
10650"""""""""
10651
10652The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10653a signed addition of the two arguments, and indicate whether an overflow
10654occurred during the signed summation.
10655
10656Arguments:
10657""""""""""
10658
10659The arguments (%a and %b) and the first element of the result structure
10660may be of integer types of any bit width, but they must have the same
10661bit width. The second element of the result structure must be of type
10662``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10663addition.
10664
10665Semantics:
10666""""""""""
10667
10668The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010669a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010670first element of which is the signed summation, and the second element
10671of which is a bit specifying if the signed summation resulted in an
10672overflow.
10673
10674Examples:
10675"""""""""
10676
10677.. code-block:: llvm
10678
10679 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10680 %sum = extractvalue {i32, i1} %res, 0
10681 %obit = extractvalue {i32, i1} %res, 1
10682 br i1 %obit, label %overflow, label %normal
10683
10684'``llvm.uadd.with.overflow.*``' Intrinsics
10685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10686
10687Syntax:
10688"""""""
10689
10690This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10691on any integer bit width.
10692
10693::
10694
10695 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10696 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10697 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10698
10699Overview:
10700"""""""""
10701
10702The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10703an unsigned addition of the two arguments, and indicate whether a carry
10704occurred during the unsigned summation.
10705
10706Arguments:
10707""""""""""
10708
10709The arguments (%a and %b) and the first element of the result structure
10710may be of integer types of any bit width, but they must have the same
10711bit width. The second element of the result structure must be of type
10712``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10713addition.
10714
10715Semantics:
10716""""""""""
10717
10718The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010719an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010720first element of which is the sum, and the second element of which is a
10721bit specifying if the unsigned summation resulted in a carry.
10722
10723Examples:
10724"""""""""
10725
10726.. code-block:: llvm
10727
10728 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10729 %sum = extractvalue {i32, i1} %res, 0
10730 %obit = extractvalue {i32, i1} %res, 1
10731 br i1 %obit, label %carry, label %normal
10732
10733'``llvm.ssub.with.overflow.*``' Intrinsics
10734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10735
10736Syntax:
10737"""""""
10738
10739This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10740on any integer bit width.
10741
10742::
10743
10744 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10745 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10746 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10747
10748Overview:
10749"""""""""
10750
10751The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10752a signed subtraction of the two arguments, and indicate whether an
10753overflow occurred during the signed subtraction.
10754
10755Arguments:
10756""""""""""
10757
10758The arguments (%a and %b) and the first element of the result structure
10759may be of integer types of any bit width, but they must have the same
10760bit width. The second element of the result structure must be of type
10761``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10762subtraction.
10763
10764Semantics:
10765""""""""""
10766
10767The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010768a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010769first element of which is the subtraction, and the second element of
10770which is a bit specifying if the signed subtraction resulted in an
10771overflow.
10772
10773Examples:
10774"""""""""
10775
10776.. code-block:: llvm
10777
10778 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10779 %sum = extractvalue {i32, i1} %res, 0
10780 %obit = extractvalue {i32, i1} %res, 1
10781 br i1 %obit, label %overflow, label %normal
10782
10783'``llvm.usub.with.overflow.*``' Intrinsics
10784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10785
10786Syntax:
10787"""""""
10788
10789This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10790on any integer bit width.
10791
10792::
10793
10794 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10795 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10796 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10797
10798Overview:
10799"""""""""
10800
10801The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10802an unsigned subtraction of the two arguments, and indicate whether an
10803overflow occurred during the unsigned subtraction.
10804
10805Arguments:
10806""""""""""
10807
10808The arguments (%a and %b) and the first element of the result structure
10809may be of integer types of any bit width, but they must have the same
10810bit width. The second element of the result structure must be of type
10811``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10812subtraction.
10813
10814Semantics:
10815""""""""""
10816
10817The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010818an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010819the first element of which is the subtraction, and the second element of
10820which is a bit specifying if the unsigned subtraction resulted in an
10821overflow.
10822
10823Examples:
10824"""""""""
10825
10826.. code-block:: llvm
10827
10828 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10829 %sum = extractvalue {i32, i1} %res, 0
10830 %obit = extractvalue {i32, i1} %res, 1
10831 br i1 %obit, label %overflow, label %normal
10832
10833'``llvm.smul.with.overflow.*``' Intrinsics
10834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10835
10836Syntax:
10837"""""""
10838
10839This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10840on any integer bit width.
10841
10842::
10843
10844 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10845 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10846 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10847
10848Overview:
10849"""""""""
10850
10851The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10852a signed multiplication of the two arguments, and indicate whether an
10853overflow occurred during the signed multiplication.
10854
10855Arguments:
10856""""""""""
10857
10858The arguments (%a and %b) and the first element of the result structure
10859may be of integer types of any bit width, but they must have the same
10860bit width. The second element of the result structure must be of type
10861``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10862multiplication.
10863
10864Semantics:
10865""""""""""
10866
10867The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010868a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010869the first element of which is the multiplication, and the second element
10870of which is a bit specifying if the signed multiplication resulted in an
10871overflow.
10872
10873Examples:
10874"""""""""
10875
10876.. code-block:: llvm
10877
10878 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10879 %sum = extractvalue {i32, i1} %res, 0
10880 %obit = extractvalue {i32, i1} %res, 1
10881 br i1 %obit, label %overflow, label %normal
10882
10883'``llvm.umul.with.overflow.*``' Intrinsics
10884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10885
10886Syntax:
10887"""""""
10888
10889This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10890on any integer bit width.
10891
10892::
10893
10894 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10895 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10896 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10897
10898Overview:
10899"""""""""
10900
10901The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10902a unsigned multiplication of the two arguments, and indicate whether an
10903overflow occurred during the unsigned multiplication.
10904
10905Arguments:
10906""""""""""
10907
10908The arguments (%a and %b) and the first element of the result structure
10909may be of integer types of any bit width, but they must have the same
10910bit width. The second element of the result structure must be of type
10911``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10912multiplication.
10913
10914Semantics:
10915""""""""""
10916
10917The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010918an unsigned multiplication of the two arguments. They return a structure ---
10919the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010920element of which is a bit specifying if the unsigned multiplication
10921resulted in an overflow.
10922
10923Examples:
10924"""""""""
10925
10926.. code-block:: llvm
10927
10928 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10929 %sum = extractvalue {i32, i1} %res, 0
10930 %obit = extractvalue {i32, i1} %res, 1
10931 br i1 %obit, label %overflow, label %normal
10932
10933Specialised Arithmetic Intrinsics
10934---------------------------------
10935
Owen Anderson1056a922015-07-11 07:01:27 +000010936'``llvm.canonicalize.*``' Intrinsic
10937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10938
10939Syntax:
10940"""""""
10941
10942::
10943
10944 declare float @llvm.canonicalize.f32(float %a)
10945 declare double @llvm.canonicalize.f64(double %b)
10946
10947Overview:
10948"""""""""
10949
10950The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010951encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010952implementing certain numeric primitives such as frexp. The canonical encoding is
10953defined by IEEE-754-2008 to be:
10954
10955::
10956
10957 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010958 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010959 numbers, infinities, and NaNs, especially in decimal formats.
10960
10961This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010962conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010963according to section 6.2.
10964
10965Examples of non-canonical encodings:
10966
Sean Silvaa1190322015-08-06 22:56:48 +000010967- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010968 converted to a canonical representation per hardware-specific protocol.
10969- Many normal decimal floating point numbers have non-canonical alternative
10970 encodings.
10971- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10972 These are treated as non-canonical encodings of zero and with be flushed to
10973 a zero of the same sign by this operation.
10974
10975Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10976default exception handling must signal an invalid exception, and produce a
10977quiet NaN result.
10978
10979This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010980that the compiler does not constant fold the operation. Likewise, division by
109811.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010982-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10983
Sean Silvaa1190322015-08-06 22:56:48 +000010984``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010985
10986- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10987- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10988 to ``(x == y)``
10989
10990Additionally, the sign of zero must be conserved:
10991``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10992
10993The payload bits of a NaN must be conserved, with two exceptions.
10994First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010995must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010996usual methods.
10997
10998The canonicalization operation may be optimized away if:
10999
Sean Silvaa1190322015-08-06 22:56:48 +000011000- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011001 floating-point operation that is required by the standard to be canonical.
11002- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011003 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011004
Sean Silvab084af42012-12-07 10:36:55 +000011005'``llvm.fmuladd.*``' Intrinsic
11006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11007
11008Syntax:
11009"""""""
11010
11011::
11012
11013 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11014 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11015
11016Overview:
11017"""""""""
11018
11019The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011020expressions that can be fused if the code generator determines that (a) the
11021target instruction set has support for a fused operation, and (b) that the
11022fused operation is more efficient than the equivalent, separate pair of mul
11023and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011024
11025Arguments:
11026""""""""""
11027
11028The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11029multiplicands, a and b, and an addend c.
11030
11031Semantics:
11032""""""""""
11033
11034The expression:
11035
11036::
11037
11038 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11039
11040is equivalent to the expression a \* b + c, except that rounding will
11041not be performed between the multiplication and addition steps if the
11042code generator fuses the operations. Fusion is not guaranteed, even if
11043the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011044corresponding llvm.fma.\* intrinsic function should be used
11045instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011046
11047Examples:
11048"""""""""
11049
11050.. code-block:: llvm
11051
Tim Northover675a0962014-06-13 14:24:23 +000011052 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011053
11054Half Precision Floating Point Intrinsics
11055----------------------------------------
11056
11057For most target platforms, half precision floating point is a
11058storage-only format. This means that it is a dense encoding (in memory)
11059but does not support computation in the format.
11060
11061This means that code must first load the half-precision floating point
11062value as an i16, then convert it to float with
11063:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11064then be performed on the float value (including extending to double
11065etc). To store the value back to memory, it is first converted to float
11066if needed, then converted to i16 with
11067:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11068i16 value.
11069
11070.. _int_convert_to_fp16:
11071
11072'``llvm.convert.to.fp16``' Intrinsic
11073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11074
11075Syntax:
11076"""""""
11077
11078::
11079
Tim Northoverfd7e4242014-07-17 10:51:23 +000011080 declare i16 @llvm.convert.to.fp16.f32(float %a)
11081 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011082
11083Overview:
11084"""""""""
11085
Tim Northoverfd7e4242014-07-17 10:51:23 +000011086The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11087conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011088
11089Arguments:
11090""""""""""
11091
11092The intrinsic function contains single argument - the value to be
11093converted.
11094
11095Semantics:
11096""""""""""
11097
Tim Northoverfd7e4242014-07-17 10:51:23 +000011098The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11099conventional floating point format to half precision floating point format. The
11100return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011101
11102Examples:
11103"""""""""
11104
11105.. code-block:: llvm
11106
Tim Northoverfd7e4242014-07-17 10:51:23 +000011107 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011108 store i16 %res, i16* @x, align 2
11109
11110.. _int_convert_from_fp16:
11111
11112'``llvm.convert.from.fp16``' Intrinsic
11113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11114
11115Syntax:
11116"""""""
11117
11118::
11119
Tim Northoverfd7e4242014-07-17 10:51:23 +000011120 declare float @llvm.convert.from.fp16.f32(i16 %a)
11121 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011122
11123Overview:
11124"""""""""
11125
11126The '``llvm.convert.from.fp16``' intrinsic function performs a
11127conversion from half precision floating point format to single precision
11128floating point format.
11129
11130Arguments:
11131""""""""""
11132
11133The intrinsic function contains single argument - the value to be
11134converted.
11135
11136Semantics:
11137""""""""""
11138
11139The '``llvm.convert.from.fp16``' intrinsic function performs a
11140conversion from half single precision floating point format to single
11141precision floating point format. The input half-float value is
11142represented by an ``i16`` value.
11143
11144Examples:
11145"""""""""
11146
11147.. code-block:: llvm
11148
David Blaikiec7aabbb2015-03-04 22:06:14 +000011149 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011150 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011151
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011152.. _dbg_intrinsics:
11153
Sean Silvab084af42012-12-07 10:36:55 +000011154Debugger Intrinsics
11155-------------------
11156
11157The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11158prefix), are described in the `LLVM Source Level
11159Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11160document.
11161
11162Exception Handling Intrinsics
11163-----------------------------
11164
11165The LLVM exception handling intrinsics (which all start with
11166``llvm.eh.`` prefix), are described in the `LLVM Exception
11167Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11168
11169.. _int_trampoline:
11170
11171Trampoline Intrinsics
11172---------------------
11173
11174These intrinsics make it possible to excise one parameter, marked with
11175the :ref:`nest <nest>` attribute, from a function. The result is a
11176callable function pointer lacking the nest parameter - the caller does
11177not need to provide a value for it. Instead, the value to use is stored
11178in advance in a "trampoline", a block of memory usually allocated on the
11179stack, which also contains code to splice the nest value into the
11180argument list. This is used to implement the GCC nested function address
11181extension.
11182
11183For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11184then the resulting function pointer has signature ``i32 (i32, i32)*``.
11185It can be created as follows:
11186
11187.. code-block:: llvm
11188
11189 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011190 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011191 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11192 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11193 %fp = bitcast i8* %p to i32 (i32, i32)*
11194
11195The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11196``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11197
11198.. _int_it:
11199
11200'``llvm.init.trampoline``' Intrinsic
11201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11202
11203Syntax:
11204"""""""
11205
11206::
11207
11208 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11209
11210Overview:
11211"""""""""
11212
11213This fills the memory pointed to by ``tramp`` with executable code,
11214turning it into a trampoline.
11215
11216Arguments:
11217""""""""""
11218
11219The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11220pointers. The ``tramp`` argument must point to a sufficiently large and
11221sufficiently aligned block of memory; this memory is written to by the
11222intrinsic. Note that the size and the alignment are target-specific -
11223LLVM currently provides no portable way of determining them, so a
11224front-end that generates this intrinsic needs to have some
11225target-specific knowledge. The ``func`` argument must hold a function
11226bitcast to an ``i8*``.
11227
11228Semantics:
11229""""""""""
11230
11231The block of memory pointed to by ``tramp`` is filled with target
11232dependent code, turning it into a function. Then ``tramp`` needs to be
11233passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11234be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11235function's signature is the same as that of ``func`` with any arguments
11236marked with the ``nest`` attribute removed. At most one such ``nest``
11237argument is allowed, and it must be of pointer type. Calling the new
11238function is equivalent to calling ``func`` with the same argument list,
11239but with ``nval`` used for the missing ``nest`` argument. If, after
11240calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11241modified, then the effect of any later call to the returned function
11242pointer is undefined.
11243
11244.. _int_at:
11245
11246'``llvm.adjust.trampoline``' Intrinsic
11247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11248
11249Syntax:
11250"""""""
11251
11252::
11253
11254 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11255
11256Overview:
11257"""""""""
11258
11259This performs any required machine-specific adjustment to the address of
11260a trampoline (passed as ``tramp``).
11261
11262Arguments:
11263""""""""""
11264
11265``tramp`` must point to a block of memory which already has trampoline
11266code filled in by a previous call to
11267:ref:`llvm.init.trampoline <int_it>`.
11268
11269Semantics:
11270""""""""""
11271
11272On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011273different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011274intrinsic returns the executable address corresponding to ``tramp``
11275after performing the required machine specific adjustments. The pointer
11276returned can then be :ref:`bitcast and executed <int_trampoline>`.
11277
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011278.. _int_mload_mstore:
11279
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011280Masked Vector Load and Store Intrinsics
11281---------------------------------------
11282
11283LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11284
11285.. _int_mload:
11286
11287'``llvm.masked.load.*``' Intrinsics
11288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11289
11290Syntax:
11291"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011292This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011293
11294::
11295
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011296 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11297 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11298 ;; The data is a vector of pointers to double
11299 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
11300 ;; The data is a vector of function pointers
11301 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011302
11303Overview:
11304"""""""""
11305
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011306Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011307
11308
11309Arguments:
11310""""""""""
11311
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011312The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011313
11314
11315Semantics:
11316""""""""""
11317
11318The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11319The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11320
11321
11322::
11323
11324 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011325
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011326 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011327 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011328 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011329
11330.. _int_mstore:
11331
11332'``llvm.masked.store.*``' Intrinsics
11333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11334
11335Syntax:
11336"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011337This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011338
11339::
11340
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011341 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11342 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11343 ;; The data is a vector of pointers to double
11344 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11345 ;; The data is a vector of function pointers
11346 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011347
11348Overview:
11349"""""""""
11350
11351Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11352
11353Arguments:
11354""""""""""
11355
11356The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11357
11358
11359Semantics:
11360""""""""""
11361
11362The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11363The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11364
11365::
11366
11367 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011368
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011369 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011370 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011371 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11372 store <16 x float> %res, <16 x float>* %ptr, align 4
11373
11374
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011375Masked Vector Gather and Scatter Intrinsics
11376-------------------------------------------
11377
11378LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11379
11380.. _int_mgather:
11381
11382'``llvm.masked.gather.*``' Intrinsics
11383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11384
11385Syntax:
11386"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011387This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011388
11389::
11390
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011391 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11392 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11393 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011394
11395Overview:
11396"""""""""
11397
11398Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11399
11400
11401Arguments:
11402""""""""""
11403
11404The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11405
11406
11407Semantics:
11408""""""""""
11409
11410The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11411The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11412
11413
11414::
11415
11416 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11417
11418 ;; The gather with all-true mask is equivalent to the following instruction sequence
11419 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11420 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11421 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11422 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11423
11424 %val0 = load double, double* %ptr0, align 8
11425 %val1 = load double, double* %ptr1, align 8
11426 %val2 = load double, double* %ptr2, align 8
11427 %val3 = load double, double* %ptr3, align 8
11428
11429 %vec0 = insertelement <4 x double>undef, %val0, 0
11430 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11431 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11432 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11433
11434.. _int_mscatter:
11435
11436'``llvm.masked.scatter.*``' Intrinsics
11437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11438
11439Syntax:
11440"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011441This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011442
11443::
11444
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011445 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11446 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11447 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011448
11449Overview:
11450"""""""""
11451
11452Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11453
11454Arguments:
11455""""""""""
11456
11457The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11458
11459
11460Semantics:
11461""""""""""
11462
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011463The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011464
11465::
11466
11467 ;; This instruction unconditionaly stores data vector in multiple addresses
11468 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11469
11470 ;; It is equivalent to a list of scalar stores
11471 %val0 = extractelement <8 x i32> %value, i32 0
11472 %val1 = extractelement <8 x i32> %value, i32 1
11473 ..
11474 %val7 = extractelement <8 x i32> %value, i32 7
11475 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11476 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11477 ..
11478 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11479 ;; Note: the order of the following stores is important when they overlap:
11480 store i32 %val0, i32* %ptr0, align 4
11481 store i32 %val1, i32* %ptr1, align 4
11482 ..
11483 store i32 %val7, i32* %ptr7, align 4
11484
11485
Sean Silvab084af42012-12-07 10:36:55 +000011486Memory Use Markers
11487------------------
11488
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011489This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011490memory objects and ranges where variables are immutable.
11491
Reid Klecknera534a382013-12-19 02:14:12 +000011492.. _int_lifestart:
11493
Sean Silvab084af42012-12-07 10:36:55 +000011494'``llvm.lifetime.start``' Intrinsic
11495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11496
11497Syntax:
11498"""""""
11499
11500::
11501
11502 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11503
11504Overview:
11505"""""""""
11506
11507The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11508object's lifetime.
11509
11510Arguments:
11511""""""""""
11512
11513The first argument is a constant integer representing the size of the
11514object, or -1 if it is variable sized. The second argument is a pointer
11515to the object.
11516
11517Semantics:
11518""""""""""
11519
11520This intrinsic indicates that before this point in the code, the value
11521of the memory pointed to by ``ptr`` is dead. This means that it is known
11522to never be used and has an undefined value. A load from the pointer
11523that precedes this intrinsic can be replaced with ``'undef'``.
11524
Reid Klecknera534a382013-12-19 02:14:12 +000011525.. _int_lifeend:
11526
Sean Silvab084af42012-12-07 10:36:55 +000011527'``llvm.lifetime.end``' Intrinsic
11528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11529
11530Syntax:
11531"""""""
11532
11533::
11534
11535 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11536
11537Overview:
11538"""""""""
11539
11540The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11541object's lifetime.
11542
11543Arguments:
11544""""""""""
11545
11546The first argument is a constant integer representing the size of the
11547object, or -1 if it is variable sized. The second argument is a pointer
11548to the object.
11549
11550Semantics:
11551""""""""""
11552
11553This intrinsic indicates that after this point in the code, the value of
11554the memory pointed to by ``ptr`` is dead. This means that it is known to
11555never be used and has an undefined value. Any stores into the memory
11556object following this intrinsic may be removed as dead.
11557
11558'``llvm.invariant.start``' Intrinsic
11559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11560
11561Syntax:
11562"""""""
11563
11564::
11565
11566 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11567
11568Overview:
11569"""""""""
11570
11571The '``llvm.invariant.start``' intrinsic specifies that the contents of
11572a memory object will not change.
11573
11574Arguments:
11575""""""""""
11576
11577The first argument is a constant integer representing the size of the
11578object, or -1 if it is variable sized. The second argument is a pointer
11579to the object.
11580
11581Semantics:
11582""""""""""
11583
11584This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11585the return value, the referenced memory location is constant and
11586unchanging.
11587
11588'``llvm.invariant.end``' Intrinsic
11589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11590
11591Syntax:
11592"""""""
11593
11594::
11595
11596 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11597
11598Overview:
11599"""""""""
11600
11601The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11602memory object are mutable.
11603
11604Arguments:
11605""""""""""
11606
11607The first argument is the matching ``llvm.invariant.start`` intrinsic.
11608The second argument is a constant integer representing the size of the
11609object, or -1 if it is variable sized and the third argument is a
11610pointer to the object.
11611
11612Semantics:
11613""""""""""
11614
11615This intrinsic indicates that the memory is mutable again.
11616
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011617'``llvm.invariant.group.barrier``' Intrinsic
11618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11619
11620Syntax:
11621"""""""
11622
11623::
11624
11625 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11626
11627Overview:
11628"""""""""
11629
11630The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11631established by invariant.group metadata no longer holds, to obtain a new pointer
11632value that does not carry the invariant information.
11633
11634
11635Arguments:
11636""""""""""
11637
11638The ``llvm.invariant.group.barrier`` takes only one argument, which is
11639the pointer to the memory for which the ``invariant.group`` no longer holds.
11640
11641Semantics:
11642""""""""""
11643
11644Returns another pointer that aliases its argument but which is considered different
11645for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11646
Sean Silvab084af42012-12-07 10:36:55 +000011647General Intrinsics
11648------------------
11649
11650This class of intrinsics is designed to be generic and has no specific
11651purpose.
11652
11653'``llvm.var.annotation``' Intrinsic
11654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11655
11656Syntax:
11657"""""""
11658
11659::
11660
11661 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11662
11663Overview:
11664"""""""""
11665
11666The '``llvm.var.annotation``' intrinsic.
11667
11668Arguments:
11669""""""""""
11670
11671The first argument is a pointer to a value, the second is a pointer to a
11672global string, the third is a pointer to a global string which is the
11673source file name, and the last argument is the line number.
11674
11675Semantics:
11676""""""""""
11677
11678This intrinsic allows annotation of local variables with arbitrary
11679strings. This can be useful for special purpose optimizations that want
11680to look for these annotations. These have no other defined use; they are
11681ignored by code generation and optimization.
11682
Michael Gottesman88d18832013-03-26 00:34:27 +000011683'``llvm.ptr.annotation.*``' Intrinsic
11684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11685
11686Syntax:
11687"""""""
11688
11689This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11690pointer to an integer of any width. *NOTE* you must specify an address space for
11691the pointer. The identifier for the default address space is the integer
11692'``0``'.
11693
11694::
11695
11696 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11697 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11698 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11699 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11700 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11701
11702Overview:
11703"""""""""
11704
11705The '``llvm.ptr.annotation``' intrinsic.
11706
11707Arguments:
11708""""""""""
11709
11710The first argument is a pointer to an integer value of arbitrary bitwidth
11711(result of some expression), the second is a pointer to a global string, the
11712third is a pointer to a global string which is the source file name, and the
11713last argument is the line number. It returns the value of the first argument.
11714
11715Semantics:
11716""""""""""
11717
11718This intrinsic allows annotation of a pointer to an integer with arbitrary
11719strings. This can be useful for special purpose optimizations that want to look
11720for these annotations. These have no other defined use; they are ignored by code
11721generation and optimization.
11722
Sean Silvab084af42012-12-07 10:36:55 +000011723'``llvm.annotation.*``' Intrinsic
11724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11725
11726Syntax:
11727"""""""
11728
11729This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11730any integer bit width.
11731
11732::
11733
11734 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11735 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11736 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11737 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11738 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11739
11740Overview:
11741"""""""""
11742
11743The '``llvm.annotation``' intrinsic.
11744
11745Arguments:
11746""""""""""
11747
11748The first argument is an integer value (result of some expression), the
11749second is a pointer to a global string, the third is a pointer to a
11750global string which is the source file name, and the last argument is
11751the line number. It returns the value of the first argument.
11752
11753Semantics:
11754""""""""""
11755
11756This intrinsic allows annotations to be put on arbitrary expressions
11757with arbitrary strings. This can be useful for special purpose
11758optimizations that want to look for these annotations. These have no
11759other defined use; they are ignored by code generation and optimization.
11760
11761'``llvm.trap``' Intrinsic
11762^^^^^^^^^^^^^^^^^^^^^^^^^
11763
11764Syntax:
11765"""""""
11766
11767::
11768
11769 declare void @llvm.trap() noreturn nounwind
11770
11771Overview:
11772"""""""""
11773
11774The '``llvm.trap``' intrinsic.
11775
11776Arguments:
11777""""""""""
11778
11779None.
11780
11781Semantics:
11782""""""""""
11783
11784This intrinsic is lowered to the target dependent trap instruction. If
11785the target does not have a trap instruction, this intrinsic will be
11786lowered to a call of the ``abort()`` function.
11787
11788'``llvm.debugtrap``' Intrinsic
11789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11790
11791Syntax:
11792"""""""
11793
11794::
11795
11796 declare void @llvm.debugtrap() nounwind
11797
11798Overview:
11799"""""""""
11800
11801The '``llvm.debugtrap``' intrinsic.
11802
11803Arguments:
11804""""""""""
11805
11806None.
11807
11808Semantics:
11809""""""""""
11810
11811This intrinsic is lowered to code which is intended to cause an
11812execution trap with the intention of requesting the attention of a
11813debugger.
11814
11815'``llvm.stackprotector``' Intrinsic
11816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11817
11818Syntax:
11819"""""""
11820
11821::
11822
11823 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11824
11825Overview:
11826"""""""""
11827
11828The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11829onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11830is placed on the stack before local variables.
11831
11832Arguments:
11833""""""""""
11834
11835The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11836The first argument is the value loaded from the stack guard
11837``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11838enough space to hold the value of the guard.
11839
11840Semantics:
11841""""""""""
11842
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011843This intrinsic causes the prologue/epilogue inserter to force the position of
11844the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11845to ensure that if a local variable on the stack is overwritten, it will destroy
11846the value of the guard. When the function exits, the guard on the stack is
11847checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11848different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11849calling the ``__stack_chk_fail()`` function.
11850
11851'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011853
11854Syntax:
11855"""""""
11856
11857::
11858
11859 declare void @llvm.stackprotectorcheck(i8** <guard>)
11860
11861Overview:
11862"""""""""
11863
11864The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011865created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011866``__stack_chk_fail()`` function.
11867
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011868Arguments:
11869""""""""""
11870
11871The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11872the variable ``@__stack_chk_guard``.
11873
11874Semantics:
11875""""""""""
11876
11877This intrinsic is provided to perform the stack protector check by comparing
11878``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11879values do not match call the ``__stack_chk_fail()`` function.
11880
11881The reason to provide this as an IR level intrinsic instead of implementing it
11882via other IR operations is that in order to perform this operation at the IR
11883level without an intrinsic, one would need to create additional basic blocks to
11884handle the success/failure cases. This makes it difficult to stop the stack
11885protector check from disrupting sibling tail calls in Codegen. With this
11886intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011887codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011888
Sean Silvab084af42012-12-07 10:36:55 +000011889'``llvm.objectsize``' Intrinsic
11890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11891
11892Syntax:
11893"""""""
11894
11895::
11896
11897 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11898 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11899
11900Overview:
11901"""""""""
11902
11903The ``llvm.objectsize`` intrinsic is designed to provide information to
11904the optimizers to determine at compile time whether a) an operation
11905(like memcpy) will overflow a buffer that corresponds to an object, or
11906b) that a runtime check for overflow isn't necessary. An object in this
11907context means an allocation of a specific class, structure, array, or
11908other object.
11909
11910Arguments:
11911""""""""""
11912
11913The ``llvm.objectsize`` intrinsic takes two arguments. The first
11914argument is a pointer to or into the ``object``. The second argument is
11915a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11916or -1 (if false) when the object size is unknown. The second argument
11917only accepts constants.
11918
11919Semantics:
11920""""""""""
11921
11922The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11923the size of the object concerned. If the size cannot be determined at
11924compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11925on the ``min`` argument).
11926
11927'``llvm.expect``' Intrinsic
11928^^^^^^^^^^^^^^^^^^^^^^^^^^^
11929
11930Syntax:
11931"""""""
11932
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011933This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11934integer bit width.
11935
Sean Silvab084af42012-12-07 10:36:55 +000011936::
11937
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011938 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011939 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11940 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11941
11942Overview:
11943"""""""""
11944
11945The ``llvm.expect`` intrinsic provides information about expected (the
11946most probable) value of ``val``, which can be used by optimizers.
11947
11948Arguments:
11949""""""""""
11950
11951The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11952a value. The second argument is an expected value, this needs to be a
11953constant value, variables are not allowed.
11954
11955Semantics:
11956""""""""""
11957
11958This intrinsic is lowered to the ``val``.
11959
Philip Reamese0e90832015-04-26 22:23:12 +000011960.. _int_assume:
11961
Hal Finkel93046912014-07-25 21:13:35 +000011962'``llvm.assume``' Intrinsic
11963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11964
11965Syntax:
11966"""""""
11967
11968::
11969
11970 declare void @llvm.assume(i1 %cond)
11971
11972Overview:
11973"""""""""
11974
11975The ``llvm.assume`` allows the optimizer to assume that the provided
11976condition is true. This information can then be used in simplifying other parts
11977of the code.
11978
11979Arguments:
11980""""""""""
11981
11982The condition which the optimizer may assume is always true.
11983
11984Semantics:
11985""""""""""
11986
11987The intrinsic allows the optimizer to assume that the provided condition is
11988always true whenever the control flow reaches the intrinsic call. No code is
11989generated for this intrinsic, and instructions that contribute only to the
11990provided condition are not used for code generation. If the condition is
11991violated during execution, the behavior is undefined.
11992
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011993Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011994used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11995only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011996if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011997sufficient overall improvement in code quality. For this reason,
11998``llvm.assume`` should not be used to document basic mathematical invariants
11999that the optimizer can otherwise deduce or facts that are of little use to the
12000optimizer.
12001
Peter Collingbournee6909c82015-02-20 20:30:47 +000012002.. _bitset.test:
12003
12004'``llvm.bitset.test``' Intrinsic
12005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12006
12007Syntax:
12008"""""""
12009
12010::
12011
12012 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12013
12014
12015Arguments:
12016""""""""""
12017
12018The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012019metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012020
12021Overview:
12022"""""""""
12023
12024The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12025member of the given bitset.
12026
Sean Silvab084af42012-12-07 10:36:55 +000012027'``llvm.donothing``' Intrinsic
12028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12029
12030Syntax:
12031"""""""
12032
12033::
12034
12035 declare void @llvm.donothing() nounwind readnone
12036
12037Overview:
12038"""""""""
12039
Juergen Ributzkac9161192014-10-23 22:36:13 +000012040The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12041two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12042with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012043
12044Arguments:
12045""""""""""
12046
12047None.
12048
12049Semantics:
12050""""""""""
12051
12052This intrinsic does nothing, and it's removed by optimizers and ignored
12053by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012054
12055Stack Map Intrinsics
12056--------------------
12057
12058LLVM provides experimental intrinsics to support runtime patching
12059mechanisms commonly desired in dynamic language JITs. These intrinsics
12060are described in :doc:`StackMaps`.