blob: 7f1a97428ee2b6f4b8964ada9a66107d071f2241 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000409"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000410 Clang generates an access function to access C++-style TLS. The access
411 function generally has an entry block, an exit block and an initialization
412 block that is run at the first time. The entry and exit blocks can access
413 a few TLS IR variables, each access will be lowered to a platform-specific
414 sequence.
415
Manman Ren19c7bbe2015-12-04 17:40:13 +0000416 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000417 preserving as many registers as possible (all the registers that are
418 perserved on the fast path, composed of the entry and exit blocks).
419
420 This calling convention behaves identical to the `C` calling convention on
421 how arguments and return values are passed, but it uses a different set of
422 caller/callee-saved registers.
423
424 Given that each platform has its own lowering sequence, hence its own set
425 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000426
427 - On X86-64 the callee preserves all general purpose registers, except for
428 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000429"``cc <n>``" - Numbered convention
430 Any calling convention may be specified by number, allowing
431 target-specific calling conventions to be used. Target specific
432 calling conventions start at 64.
433
434More calling conventions can be added/defined on an as-needed basis, to
435support Pascal conventions or any other well-known target-independent
436convention.
437
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000438.. _visibilitystyles:
439
Sean Silvab084af42012-12-07 10:36:55 +0000440Visibility Styles
441-----------------
442
443All Global Variables and Functions have one of the following visibility
444styles:
445
446"``default``" - Default style
447 On targets that use the ELF object file format, default visibility
448 means that the declaration is visible to other modules and, in
449 shared libraries, means that the declared entity may be overridden.
450 On Darwin, default visibility means that the declaration is visible
451 to other modules. Default visibility corresponds to "external
452 linkage" in the language.
453"``hidden``" - Hidden style
454 Two declarations of an object with hidden visibility refer to the
455 same object if they are in the same shared object. Usually, hidden
456 visibility indicates that the symbol will not be placed into the
457 dynamic symbol table, so no other module (executable or shared
458 library) can reference it directly.
459"``protected``" - Protected style
460 On ELF, protected visibility indicates that the symbol will be
461 placed in the dynamic symbol table, but that references within the
462 defining module will bind to the local symbol. That is, the symbol
463 cannot be overridden by another module.
464
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000465A symbol with ``internal`` or ``private`` linkage must have ``default``
466visibility.
467
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000468.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000469
Nico Rieck7157bb72014-01-14 15:22:47 +0000470DLL Storage Classes
471-------------------
472
473All Global Variables, Functions and Aliases can have one of the following
474DLL storage class:
475
476``dllimport``
477 "``dllimport``" causes the compiler to reference a function or variable via
478 a global pointer to a pointer that is set up by the DLL exporting the
479 symbol. On Microsoft Windows targets, the pointer name is formed by
480 combining ``__imp_`` and the function or variable name.
481``dllexport``
482 "``dllexport``" causes the compiler to provide a global pointer to a pointer
483 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
484 Microsoft Windows targets, the pointer name is formed by combining
485 ``__imp_`` and the function or variable name. Since this storage class
486 exists for defining a dll interface, the compiler, assembler and linker know
487 it is externally referenced and must refrain from deleting the symbol.
488
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000489.. _tls_model:
490
491Thread Local Storage Models
492---------------------------
493
494A variable may be defined as ``thread_local``, which means that it will
495not be shared by threads (each thread will have a separated copy of the
496variable). Not all targets support thread-local variables. Optionally, a
497TLS model may be specified:
498
499``localdynamic``
500 For variables that are only used within the current shared library.
501``initialexec``
502 For variables in modules that will not be loaded dynamically.
503``localexec``
504 For variables defined in the executable and only used within it.
505
506If no explicit model is given, the "general dynamic" model is used.
507
508The models correspond to the ELF TLS models; see `ELF Handling For
509Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
510more information on under which circumstances the different models may
511be used. The target may choose a different TLS model if the specified
512model is not supported, or if a better choice of model can be made.
513
Sean Silva706fba52015-08-06 22:56:24 +0000514A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000515the alias is accessed. It will not have any effect in the aliasee.
516
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000517For platforms without linker support of ELF TLS model, the -femulated-tls
518flag can be used to generate GCC compatible emulated TLS code.
519
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000520.. _namedtypes:
521
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000522Structure Types
523---------------
Sean Silvab084af42012-12-07 10:36:55 +0000524
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000525LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000526types <t_struct>`. Literal types are uniqued structurally, but identified types
527are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000528to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000529
Sean Silva706fba52015-08-06 22:56:24 +0000530An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000531
532.. code-block:: llvm
533
534 %mytype = type { %mytype*, i32 }
535
Sean Silvaa1190322015-08-06 22:56:48 +0000536Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000537literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000538
539.. _globalvars:
540
541Global Variables
542----------------
543
544Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000545instead of run-time.
546
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000547Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000548
549Global variables in other translation units can also be declared, in which
550case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000551
Bob Wilson85b24f22014-06-12 20:40:33 +0000552Either global variable definitions or declarations may have an explicit section
553to be placed in and may have an optional explicit alignment specified.
554
Michael Gottesman006039c2013-01-31 05:48:48 +0000555A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000556the contents of the variable will **never** be modified (enabling better
557optimization, allowing the global data to be placed in the read-only
558section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000559initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000560variable.
561
562LLVM explicitly allows *declarations* of global variables to be marked
563constant, even if the final definition of the global is not. This
564capability can be used to enable slightly better optimization of the
565program, but requires the language definition to guarantee that
566optimizations based on the 'constantness' are valid for the translation
567units that do not include the definition.
568
569As SSA values, global variables define pointer values that are in scope
570(i.e. they dominate) all basic blocks in the program. Global variables
571always define a pointer to their "content" type because they describe a
572region of memory, and all memory objects in LLVM are accessed through
573pointers.
574
575Global variables can be marked with ``unnamed_addr`` which indicates
576that the address is not significant, only the content. Constants marked
577like this can be merged with other constants if they have the same
578initializer. Note that a constant with significant address *can* be
579merged with a ``unnamed_addr`` constant, the result being a constant
580whose address is significant.
581
582A global variable may be declared to reside in a target-specific
583numbered address space. For targets that support them, address spaces
584may affect how optimizations are performed and/or what target
585instructions are used to access the variable. The default address space
586is zero. The address space qualifier must precede any other attributes.
587
588LLVM allows an explicit section to be specified for globals. If the
589target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000590Additionally, the global can placed in a comdat if the target has the necessary
591support.
Sean Silvab084af42012-12-07 10:36:55 +0000592
Michael Gottesmane743a302013-02-04 03:22:00 +0000593By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000594variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000595initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000596true even for variables potentially accessible from outside the
597module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000598``@llvm.used`` or dllexported variables. This assumption may be suppressed
599by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000600
Sean Silvab084af42012-12-07 10:36:55 +0000601An explicit alignment may be specified for a global, which must be a
602power of 2. If not present, or if the alignment is set to zero, the
603alignment of the global is set by the target to whatever it feels
604convenient. If an explicit alignment is specified, the global is forced
605to have exactly that alignment. Targets and optimizers are not allowed
606to over-align the global if the global has an assigned section. In this
607case, the extra alignment could be observable: for example, code could
608assume that the globals are densely packed in their section and try to
609iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000610iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000611
Nico Rieck7157bb72014-01-14 15:22:47 +0000612Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
613
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000614Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000615:ref:`Thread Local Storage Model <tls_model>`.
616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617Syntax::
618
619 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000620 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000621 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000622 [, section "name"] [, comdat [($name)]]
623 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000624
Sean Silvab084af42012-12-07 10:36:55 +0000625For example, the following defines a global in a numbered address space
626with an initializer, section, and alignment:
627
628.. code-block:: llvm
629
630 @G = addrspace(5) constant float 1.0, section "foo", align 4
631
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000632The following example just declares a global variable
633
634.. code-block:: llvm
635
636 @G = external global i32
637
Sean Silvab084af42012-12-07 10:36:55 +0000638The following example defines a thread-local global with the
639``initialexec`` TLS model:
640
641.. code-block:: llvm
642
643 @G = thread_local(initialexec) global i32 0, align 4
644
645.. _functionstructure:
646
647Functions
648---------
649
650LLVM function definitions consist of the "``define``" keyword, an
651optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000652style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
653an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000654an optional ``unnamed_addr`` attribute, a return type, an optional
655:ref:`parameter attribute <paramattrs>` for the return type, a function
656name, a (possibly empty) argument list (each with optional :ref:`parameter
657attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000658an optional section, an optional alignment,
659an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000660an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000661an optional :ref:`prologue <prologuedata>`,
662an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000663an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000664an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000665
666LLVM function declarations consist of the "``declare``" keyword, an
667optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000668style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
669an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000670an optional ``unnamed_addr`` attribute, a return type, an optional
671:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000672name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000673:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
674and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000675
Bill Wendling6822ecb2013-10-27 05:09:12 +0000676A function definition contains a list of basic blocks, forming the CFG (Control
677Flow Graph) for the function. Each basic block may optionally start with a label
678(giving the basic block a symbol table entry), contains a list of instructions,
679and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
680function return). If an explicit label is not provided, a block is assigned an
681implicit numbered label, using the next value from the same counter as used for
682unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
683entry block does not have an explicit label, it will be assigned label "%0",
684then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000685
686The first basic block in a function is special in two ways: it is
687immediately executed on entrance to the function, and it is not allowed
688to have predecessor basic blocks (i.e. there can not be any branches to
689the entry block of a function). Because the block can have no
690predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
691
692LLVM allows an explicit section to be specified for functions. If the
693target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000694Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000695
696An explicit alignment may be specified for a function. If not present,
697or if the alignment is set to zero, the alignment of the function is set
698by the target to whatever it feels convenient. If an explicit alignment
699is specified, the function is forced to have at least that much
700alignment. All alignments must be a power of 2.
701
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000702If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000703be significant and two identical functions can be merged.
704
705Syntax::
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000708 [cconv] [ret attrs]
709 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000710 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000711 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000712 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000713
Sean Silva706fba52015-08-06 22:56:24 +0000714The argument list is a comma separated sequence of arguments where each
715argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000716
717Syntax::
718
719 <type> [parameter Attrs] [name]
720
721
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000722.. _langref_aliases:
723
Sean Silvab084af42012-12-07 10:36:55 +0000724Aliases
725-------
726
Rafael Espindola64c1e182014-06-03 02:41:57 +0000727Aliases, unlike function or variables, don't create any new data. They
728are just a new symbol and metadata for an existing position.
729
730Aliases have a name and an aliasee that is either a global value or a
731constant expression.
732
Nico Rieck7157bb72014-01-14 15:22:47 +0000733Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000734:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
735<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000736
737Syntax::
738
David Blaikie196582e2015-10-22 01:17:29 +0000739 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000740
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000741The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000742``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000743might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000744
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000745Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000746the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
747to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000748
Rafael Espindola64c1e182014-06-03 02:41:57 +0000749Since aliases are only a second name, some restrictions apply, of which
750some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000751
Rafael Espindola64c1e182014-06-03 02:41:57 +0000752* The expression defining the aliasee must be computable at assembly
753 time. Since it is just a name, no relocations can be used.
754
755* No alias in the expression can be weak as the possibility of the
756 intermediate alias being overridden cannot be represented in an
757 object file.
758
759* No global value in the expression can be a declaration, since that
760 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000761
David Majnemerdad0a642014-06-27 18:19:56 +0000762.. _langref_comdats:
763
764Comdats
765-------
766
767Comdat IR provides access to COFF and ELF object file COMDAT functionality.
768
Sean Silvaa1190322015-08-06 22:56:48 +0000769Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000770specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000771that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000772aliasee computes to, if any.
773
774Comdats have a selection kind to provide input on how the linker should
775choose between keys in two different object files.
776
777Syntax::
778
779 $<Name> = comdat SelectionKind
780
781The selection kind must be one of the following:
782
783``any``
784 The linker may choose any COMDAT key, the choice is arbitrary.
785``exactmatch``
786 The linker may choose any COMDAT key but the sections must contain the
787 same data.
788``largest``
789 The linker will choose the section containing the largest COMDAT key.
790``noduplicates``
791 The linker requires that only section with this COMDAT key exist.
792``samesize``
793 The linker may choose any COMDAT key but the sections must contain the
794 same amount of data.
795
796Note that the Mach-O platform doesn't support COMDATs and ELF only supports
797``any`` as a selection kind.
798
799Here is an example of a COMDAT group where a function will only be selected if
800the COMDAT key's section is the largest:
801
802.. code-block:: llvm
803
804 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000805 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000806
Rafael Espindola83a362c2015-01-06 22:55:16 +0000807 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000808 ret void
809 }
810
Rafael Espindola83a362c2015-01-06 22:55:16 +0000811As a syntactic sugar the ``$name`` can be omitted if the name is the same as
812the global name:
813
814.. code-block:: llvm
815
816 $foo = comdat any
817 @foo = global i32 2, comdat
818
819
David Majnemerdad0a642014-06-27 18:19:56 +0000820In a COFF object file, this will create a COMDAT section with selection kind
821``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
822and another COMDAT section with selection kind
823``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000824section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000825
826There are some restrictions on the properties of the global object.
827It, or an alias to it, must have the same name as the COMDAT group when
828targeting COFF.
829The contents and size of this object may be used during link-time to determine
830which COMDAT groups get selected depending on the selection kind.
831Because the name of the object must match the name of the COMDAT group, the
832linkage of the global object must not be local; local symbols can get renamed
833if a collision occurs in the symbol table.
834
835The combined use of COMDATS and section attributes may yield surprising results.
836For example:
837
838.. code-block:: llvm
839
840 $foo = comdat any
841 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000842 @g1 = global i32 42, section "sec", comdat($foo)
843 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000844
845From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000846with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000847COMDAT groups and COMDATs, at the object file level, are represented by
848sections.
849
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000850Note that certain IR constructs like global variables and functions may
851create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000852COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000853in individual sections (e.g. when `-data-sections` or `-function-sections`
854is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000855
Sean Silvab084af42012-12-07 10:36:55 +0000856.. _namedmetadatastructure:
857
858Named Metadata
859--------------
860
861Named metadata is a collection of metadata. :ref:`Metadata
862nodes <metadata>` (but not metadata strings) are the only valid
863operands for a named metadata.
864
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000865#. Named metadata are represented as a string of characters with the
866 metadata prefix. The rules for metadata names are the same as for
867 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
868 are still valid, which allows any character to be part of a name.
869
Sean Silvab084af42012-12-07 10:36:55 +0000870Syntax::
871
872 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000873 !0 = !{!"zero"}
874 !1 = !{!"one"}
875 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000876 ; A named metadata.
877 !name = !{!0, !1, !2}
878
879.. _paramattrs:
880
881Parameter Attributes
882--------------------
883
884The return type and each parameter of a function type may have a set of
885*parameter attributes* associated with them. Parameter attributes are
886used to communicate additional information about the result or
887parameters of a function. Parameter attributes are considered to be part
888of the function, not of the function type, so functions with different
889parameter attributes can have the same function type.
890
891Parameter attributes are simple keywords that follow the type specified.
892If multiple parameter attributes are needed, they are space separated.
893For example:
894
895.. code-block:: llvm
896
897 declare i32 @printf(i8* noalias nocapture, ...)
898 declare i32 @atoi(i8 zeroext)
899 declare signext i8 @returns_signed_char()
900
901Note that any attributes for the function result (``nounwind``,
902``readonly``) come immediately after the argument list.
903
904Currently, only the following parameter attributes are defined:
905
906``zeroext``
907 This indicates to the code generator that the parameter or return
908 value should be zero-extended to the extent required by the target's
909 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
910 the caller (for a parameter) or the callee (for a return value).
911``signext``
912 This indicates to the code generator that the parameter or return
913 value should be sign-extended to the extent required by the target's
914 ABI (which is usually 32-bits) by the caller (for a parameter) or
915 the callee (for a return value).
916``inreg``
917 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000918 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000919 a function call or return (usually, by putting it in a register as
920 opposed to memory, though some targets use it to distinguish between
921 two different kinds of registers). Use of this attribute is
922 target-specific.
923``byval``
924 This indicates that the pointer parameter should really be passed by
925 value to the function. The attribute implies that a hidden copy of
926 the pointee is made between the caller and the callee, so the callee
927 is unable to modify the value in the caller. This attribute is only
928 valid on LLVM pointer arguments. It is generally used to pass
929 structs and arrays by value, but is also valid on pointers to
930 scalars. The copy is considered to belong to the caller not the
931 callee (for example, ``readonly`` functions should not write to
932 ``byval`` parameters). This is not a valid attribute for return
933 values.
934
935 The byval attribute also supports specifying an alignment with the
936 align attribute. It indicates the alignment of the stack slot to
937 form and the known alignment of the pointer specified to the call
938 site. If the alignment is not specified, then the code generator
939 makes a target-specific assumption.
940
Reid Klecknera534a382013-12-19 02:14:12 +0000941.. _attr_inalloca:
942
943``inalloca``
944
Reid Kleckner60d3a832014-01-16 22:59:24 +0000945 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000946 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000947 be a pointer to stack memory produced by an ``alloca`` instruction.
948 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000949 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000950 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000951
Reid Kleckner436c42e2014-01-17 23:58:17 +0000952 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000953 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000954 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000955 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000956 ``inalloca`` attribute also disables LLVM's implicit lowering of
957 large aggregate return values, which means that frontend authors
958 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000959
Reid Kleckner60d3a832014-01-16 22:59:24 +0000960 When the call site is reached, the argument allocation must have
961 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000962 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000963 space after an argument allocation and before its call site, but it
964 must be cleared off with :ref:`llvm.stackrestore
965 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000966
967 See :doc:`InAlloca` for more information on how to use this
968 attribute.
969
Sean Silvab084af42012-12-07 10:36:55 +0000970``sret``
971 This indicates that the pointer parameter specifies the address of a
972 structure that is the return value of the function in the source
973 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000974 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000975 not to trap and to be properly aligned. This may only be applied to
976 the first parameter. This is not a valid attribute for return
977 values.
Sean Silva1703e702014-04-08 21:06:22 +0000978
Hal Finkelccc70902014-07-22 16:58:55 +0000979``align <n>``
980 This indicates that the pointer value may be assumed by the optimizer to
981 have the specified alignment.
982
983 Note that this attribute has additional semantics when combined with the
984 ``byval`` attribute.
985
Sean Silva1703e702014-04-08 21:06:22 +0000986.. _noalias:
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000989 This indicates that objects accessed via pointer values
990 :ref:`based <pointeraliasing>` on the argument or return value are not also
991 accessed, during the execution of the function, via pointer values not
992 *based* on the argument or return value. The attribute on a return value
993 also has additional semantics described below. The caller shares the
994 responsibility with the callee for ensuring that these requirements are met.
995 For further details, please see the discussion of the NoAlias response in
996 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000997
998 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000999 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001000
1001 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001002 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1003 attribute on return values are stronger than the semantics of the attribute
1004 when used on function arguments. On function return values, the ``noalias``
1005 attribute indicates that the function acts like a system memory allocation
1006 function, returning a pointer to allocated storage disjoint from the
1007 storage for any other object accessible to the caller.
1008
Sean Silvab084af42012-12-07 10:36:55 +00001009``nocapture``
1010 This indicates that the callee does not make any copies of the
1011 pointer that outlive the callee itself. This is not a valid
1012 attribute for return values.
1013
1014.. _nest:
1015
1016``nest``
1017 This indicates that the pointer parameter can be excised using the
1018 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001019 attribute for return values and can only be applied to one parameter.
1020
1021``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001022 This indicates that the function always returns the argument as its return
1023 value. This is an optimization hint to the code generator when generating
1024 the caller, allowing tail call optimization and omission of register saves
1025 and restores in some cases; it is not checked or enforced when generating
1026 the callee. The parameter and the function return type must be valid
1027 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1028 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001029
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001030``nonnull``
1031 This indicates that the parameter or return pointer is not null. This
1032 attribute may only be applied to pointer typed parameters. This is not
1033 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001034 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001035 is non-null.
1036
Hal Finkelb0407ba2014-07-18 15:51:28 +00001037``dereferenceable(<n>)``
1038 This indicates that the parameter or return pointer is dereferenceable. This
1039 attribute may only be applied to pointer typed parameters. A pointer that
1040 is dereferenceable can be loaded from speculatively without a risk of
1041 trapping. The number of bytes known to be dereferenceable must be provided
1042 in parentheses. It is legal for the number of bytes to be less than the
1043 size of the pointee type. The ``nonnull`` attribute does not imply
1044 dereferenceability (consider a pointer to one element past the end of an
1045 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1046 ``addrspace(0)`` (which is the default address space).
1047
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001048``dereferenceable_or_null(<n>)``
1049 This indicates that the parameter or return value isn't both
1050 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001051 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001052 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1053 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1054 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1055 and in other address spaces ``dereferenceable_or_null(<n>)``
1056 implies that a pointer is at least one of ``dereferenceable(<n>)``
1057 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001058 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001059 pointer typed parameters.
1060
Sean Silvab084af42012-12-07 10:36:55 +00001061.. _gc:
1062
Philip Reamesf80bbff2015-02-25 23:45:20 +00001063Garbage Collector Strategy Names
1064--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001065
Philip Reamesf80bbff2015-02-25 23:45:20 +00001066Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001067string:
1068
1069.. code-block:: llvm
1070
1071 define void @f() gc "name" { ... }
1072
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001073The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001074<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001075strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001076named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001077garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001078which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001079
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001080.. _prefixdata:
1081
1082Prefix Data
1083-----------
1084
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001085Prefix data is data associated with a function which the code
1086generator will emit immediately before the function's entrypoint.
1087The purpose of this feature is to allow frontends to associate
1088language-specific runtime metadata with specific functions and make it
1089available through the function pointer while still allowing the
1090function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001091
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001092To access the data for a given function, a program may bitcast the
1093function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001094index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001095the prefix data. For instance, take the example of a function annotated
1096with a single ``i32``,
1097
1098.. code-block:: llvm
1099
1100 define void @f() prefix i32 123 { ... }
1101
1102The prefix data can be referenced as,
1103
1104.. code-block:: llvm
1105
David Blaikie16a97eb2015-03-04 22:02:58 +00001106 %0 = bitcast void* () @f to i32*
1107 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001108 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001109
1110Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001111of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001112beginning of the prefix data is aligned. This means that if the size
1113of the prefix data is not a multiple of the alignment size, the
1114function's entrypoint will not be aligned. If alignment of the
1115function's entrypoint is desired, padding must be added to the prefix
1116data.
1117
Sean Silvaa1190322015-08-06 22:56:48 +00001118A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119to the ``available_externally`` linkage in that the data may be used by the
1120optimizers but will not be emitted in the object file.
1121
1122.. _prologuedata:
1123
1124Prologue Data
1125-------------
1126
1127The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1128be inserted prior to the function body. This can be used for enabling
1129function hot-patching and instrumentation.
1130
1131To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001132have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001133bytes which decode to a sequence of machine instructions, valid for the
1134module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001135the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001136the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001137definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001138makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001139
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001140A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001141which encodes the ``nop`` instruction:
1142
1143.. code-block:: llvm
1144
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001145 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001146
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001147Generally prologue data can be formed by encoding a relative branch instruction
1148which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001149x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1150
1151.. code-block:: llvm
1152
1153 %0 = type <{ i8, i8, i8* }>
1154
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001155 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001156
Sean Silvaa1190322015-08-06 22:56:48 +00001157A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001158to the ``available_externally`` linkage in that the data may be used by the
1159optimizers but will not be emitted in the object file.
1160
David Majnemer7fddecc2015-06-17 20:52:32 +00001161.. _personalityfn:
1162
1163Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001164--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001165
1166The ``personality`` attribute permits functions to specify what function
1167to use for exception handling.
1168
Bill Wendling63b88192013-02-06 06:52:58 +00001169.. _attrgrp:
1170
1171Attribute Groups
1172----------------
1173
1174Attribute groups are groups of attributes that are referenced by objects within
1175the IR. They are important for keeping ``.ll`` files readable, because a lot of
1176functions will use the same set of attributes. In the degenerative case of a
1177``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1178group will capture the important command line flags used to build that file.
1179
1180An attribute group is a module-level object. To use an attribute group, an
1181object references the attribute group's ID (e.g. ``#37``). An object may refer
1182to more than one attribute group. In that situation, the attributes from the
1183different groups are merged.
1184
1185Here is an example of attribute groups for a function that should always be
1186inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1187
1188.. code-block:: llvm
1189
1190 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001191 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001192
1193 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001194 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001195
1196 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1197 define void @f() #0 #1 { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199.. _fnattrs:
1200
1201Function Attributes
1202-------------------
1203
1204Function attributes are set to communicate additional information about
1205a function. Function attributes are considered to be part of the
1206function, not of the function type, so functions with different function
1207attributes can have the same function type.
1208
1209Function attributes are simple keywords that follow the type specified.
1210If multiple attributes are needed, they are space separated. For
1211example:
1212
1213.. code-block:: llvm
1214
1215 define void @f() noinline { ... }
1216 define void @f() alwaysinline { ... }
1217 define void @f() alwaysinline optsize { ... }
1218 define void @f() optsize { ... }
1219
Sean Silvab084af42012-12-07 10:36:55 +00001220``alignstack(<n>)``
1221 This attribute indicates that, when emitting the prologue and
1222 epilogue, the backend should forcibly align the stack pointer.
1223 Specify the desired alignment, which must be a power of two, in
1224 parentheses.
1225``alwaysinline``
1226 This attribute indicates that the inliner should attempt to inline
1227 this function into callers whenever possible, ignoring any active
1228 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001229``builtin``
1230 This indicates that the callee function at a call site should be
1231 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001232 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001233 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001234 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001235``cold``
1236 This attribute indicates that this function is rarely called. When
1237 computing edge weights, basic blocks post-dominated by a cold
1238 function call are also considered to be cold; and, thus, given low
1239 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001240``convergent``
1241 This attribute indicates that the callee is dependent on a convergent
1242 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001243 Transformations that are execution model agnostic may not make the execution
1244 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001245``inlinehint``
1246 This attribute indicates that the source code contained a hint that
1247 inlining this function is desirable (such as the "inline" keyword in
1248 C/C++). It is just a hint; it imposes no requirements on the
1249 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001250``jumptable``
1251 This attribute indicates that the function should be added to a
1252 jump-instruction table at code-generation time, and that all address-taken
1253 references to this function should be replaced with a reference to the
1254 appropriate jump-instruction-table function pointer. Note that this creates
1255 a new pointer for the original function, which means that code that depends
1256 on function-pointer identity can break. So, any function annotated with
1257 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001258``minsize``
1259 This attribute suggests that optimization passes and code generator
1260 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001261 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001262 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001263``naked``
1264 This attribute disables prologue / epilogue emission for the
1265 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001266``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001267 This indicates that the callee function at a call site is not recognized as
1268 a built-in function. LLVM will retain the original call and not replace it
1269 with equivalent code based on the semantics of the built-in function, unless
1270 the call site uses the ``builtin`` attribute. This is valid at call sites
1271 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001272``noduplicate``
1273 This attribute indicates that calls to the function cannot be
1274 duplicated. A call to a ``noduplicate`` function may be moved
1275 within its parent function, but may not be duplicated within
1276 its parent function.
1277
1278 A function containing a ``noduplicate`` call may still
1279 be an inlining candidate, provided that the call is not
1280 duplicated by inlining. That implies that the function has
1281 internal linkage and only has one call site, so the original
1282 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001283``noimplicitfloat``
1284 This attributes disables implicit floating point instructions.
1285``noinline``
1286 This attribute indicates that the inliner should never inline this
1287 function in any situation. This attribute may not be used together
1288 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001289``nonlazybind``
1290 This attribute suppresses lazy symbol binding for the function. This
1291 may make calls to the function faster, at the cost of extra program
1292 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001293``noredzone``
1294 This attribute indicates that the code generator should not use a
1295 red zone, even if the target-specific ABI normally permits it.
1296``noreturn``
1297 This function attribute indicates that the function never returns
1298 normally. This produces undefined behavior at runtime if the
1299 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001300``norecurse``
1301 This function attribute indicates that the function does not call itself
1302 either directly or indirectly down any possible call path. This produces
1303 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001304``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001305 This function attribute indicates that the function never raises an
1306 exception. If the function does raise an exception, its runtime
1307 behavior is undefined. However, functions marked nounwind may still
1308 trap or generate asynchronous exceptions. Exception handling schemes
1309 that are recognized by LLVM to handle asynchronous exceptions, such
1310 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001311``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001312 This function attribute indicates that most optimization passes will skip
1313 this function, with the exception of interprocedural optimization passes.
1314 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001315 This attribute cannot be used together with the ``alwaysinline``
1316 attribute; this attribute is also incompatible
1317 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001318
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001319 This attribute requires the ``noinline`` attribute to be specified on
1320 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001321 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001322 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001323``optsize``
1324 This attribute suggests that optimization passes and code generator
1325 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001326 and otherwise do optimizations specifically to reduce code size as
1327 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001328``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On a function, this attribute indicates that the function computes its
1330 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001331 without dereferencing any pointer arguments or otherwise accessing
1332 any mutable state (e.g. memory, control registers, etc) visible to
1333 caller functions. It does not write through any pointer arguments
1334 (including ``byval`` arguments) and never changes any state visible
1335 to callers. This means that it cannot unwind exceptions by calling
1336 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001337
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001338 On an argument, this attribute indicates that the function does not
1339 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001340 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001341``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001342 On a function, this attribute indicates that the function does not write
1343 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001344 modify any state (e.g. memory, control registers, etc) visible to
1345 caller functions. It may dereference pointer arguments and read
1346 state that may be set in the caller. A readonly function always
1347 returns the same value (or unwinds an exception identically) when
1348 called with the same set of arguments and global state. It cannot
1349 unwind an exception by calling the ``C++`` exception throwing
1350 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001351
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001352 On an argument, this attribute indicates that the function does not write
1353 through this pointer argument, even though it may write to the memory that
1354 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001355``argmemonly``
1356 This attribute indicates that the only memory accesses inside function are
1357 loads and stores from objects pointed to by its pointer-typed arguments,
1358 with arbitrary offsets. Or in other words, all memory operations in the
1359 function can refer to memory only using pointers based on its function
1360 arguments.
1361 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1362 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001363``returns_twice``
1364 This attribute indicates that this function can return twice. The C
1365 ``setjmp`` is an example of such a function. The compiler disables
1366 some optimizations (like tail calls) in the caller of these
1367 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001368``safestack``
1369 This attribute indicates that
1370 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1371 protection is enabled for this function.
1372
1373 If a function that has a ``safestack`` attribute is inlined into a
1374 function that doesn't have a ``safestack`` attribute or which has an
1375 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1376 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001377``sanitize_address``
1378 This attribute indicates that AddressSanitizer checks
1379 (dynamic address safety analysis) are enabled for this function.
1380``sanitize_memory``
1381 This attribute indicates that MemorySanitizer checks (dynamic detection
1382 of accesses to uninitialized memory) are enabled for this function.
1383``sanitize_thread``
1384 This attribute indicates that ThreadSanitizer checks
1385 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001386``ssp``
1387 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001388 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001389 placed on the stack before the local variables that's checked upon
1390 return from the function to see if it has been overwritten. A
1391 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001392 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001393
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001394 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1395 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1396 - Calls to alloca() with variable sizes or constant sizes greater than
1397 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001398
Josh Magee24c7f062014-02-01 01:36:16 +00001399 Variables that are identified as requiring a protector will be arranged
1400 on the stack such that they are adjacent to the stack protector guard.
1401
Sean Silvab084af42012-12-07 10:36:55 +00001402 If a function that has an ``ssp`` attribute is inlined into a
1403 function that doesn't have an ``ssp`` attribute, then the resulting
1404 function will have an ``ssp`` attribute.
1405``sspreq``
1406 This attribute indicates that the function should *always* emit a
1407 stack smashing protector. This overrides the ``ssp`` function
1408 attribute.
1409
Josh Magee24c7f062014-02-01 01:36:16 +00001410 Variables that are identified as requiring a protector will be arranged
1411 on the stack such that they are adjacent to the stack protector guard.
1412 The specific layout rules are:
1413
1414 #. Large arrays and structures containing large arrays
1415 (``>= ssp-buffer-size``) are closest to the stack protector.
1416 #. Small arrays and structures containing small arrays
1417 (``< ssp-buffer-size``) are 2nd closest to the protector.
1418 #. Variables that have had their address taken are 3rd closest to the
1419 protector.
1420
Sean Silvab084af42012-12-07 10:36:55 +00001421 If a function that has an ``sspreq`` attribute is inlined into a
1422 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001423 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1424 an ``sspreq`` attribute.
1425``sspstrong``
1426 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001427 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001428 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001429 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001430
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001431 - Arrays of any size and type
1432 - Aggregates containing an array of any size and type.
1433 - Calls to alloca().
1434 - Local variables that have had their address taken.
1435
Josh Magee24c7f062014-02-01 01:36:16 +00001436 Variables that are identified as requiring a protector will be arranged
1437 on the stack such that they are adjacent to the stack protector guard.
1438 The specific layout rules are:
1439
1440 #. Large arrays and structures containing large arrays
1441 (``>= ssp-buffer-size``) are closest to the stack protector.
1442 #. Small arrays and structures containing small arrays
1443 (``< ssp-buffer-size``) are 2nd closest to the protector.
1444 #. Variables that have had their address taken are 3rd closest to the
1445 protector.
1446
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001447 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001448
1449 If a function that has an ``sspstrong`` attribute is inlined into a
1450 function that doesn't have an ``sspstrong`` attribute, then the
1451 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001452``"thunk"``
1453 This attribute indicates that the function will delegate to some other
1454 function with a tail call. The prototype of a thunk should not be used for
1455 optimization purposes. The caller is expected to cast the thunk prototype to
1456 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001457``uwtable``
1458 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001459 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001460 show that no exceptions passes by it. This is normally the case for
1461 the ELF x86-64 abi, but it can be disabled for some compilation
1462 units.
Sean Silvab084af42012-12-07 10:36:55 +00001463
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001464
1465.. _opbundles:
1466
1467Operand Bundles
1468---------------
1469
1470Note: operand bundles are a work in progress, and they should be
1471considered experimental at this time.
1472
1473Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001474with certain LLVM instructions (currently only ``call`` s and
1475``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001476incorrect and will change program semantics.
1477
1478Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001479
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001480 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001481 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1482 bundle operand ::= SSA value
1483 tag ::= string constant
1484
1485Operand bundles are **not** part of a function's signature, and a
1486given function may be called from multiple places with different kinds
1487of operand bundles. This reflects the fact that the operand bundles
1488are conceptually a part of the ``call`` (or ``invoke``), not the
1489callee being dispatched to.
1490
1491Operand bundles are a generic mechanism intended to support
1492runtime-introspection-like functionality for managed languages. While
1493the exact semantics of an operand bundle depend on the bundle tag,
1494there are certain limitations to how much the presence of an operand
1495bundle can influence the semantics of a program. These restrictions
1496are described as the semantics of an "unknown" operand bundle. As
1497long as the behavior of an operand bundle is describable within these
1498restrictions, LLVM does not need to have special knowledge of the
1499operand bundle to not miscompile programs containing it.
1500
David Majnemer34cacb42015-10-22 01:46:38 +00001501- The bundle operands for an unknown operand bundle escape in unknown
1502 ways before control is transferred to the callee or invokee.
1503- Calls and invokes with operand bundles have unknown read / write
1504 effect on the heap on entry and exit (even if the call target is
Sanjoy Das98a341b2015-10-22 03:12:22 +00001505 ``readnone`` or ``readonly``), unless they're overriden with
1506 callsite specific attributes.
1507- An operand bundle at a call site cannot change the implementation
1508 of the called function. Inter-procedural optimizations work as
1509 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001510
Sanjoy Dascdafd842015-11-11 21:38:02 +00001511More specific types of operand bundles are described below.
1512
1513Deoptimization Operand Bundles
1514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1515
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001516Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001517operand bundle tag. These operand bundles represent an alternate
1518"safe" continuation for the call site they're attached to, and can be
1519used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001520specified call site. There can be at most one ``"deopt"`` operand
1521bundle attached to a call site. Exact details of deoptimization is
1522out of scope for the language reference, but it usually involves
1523rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001524
1525From the compiler's perspective, deoptimization operand bundles make
1526the call sites they're attached to at least ``readonly``. They read
1527through all of their pointer typed operands (even if they're not
1528otherwise escaped) and the entire visible heap. Deoptimization
1529operand bundles do not capture their operands except during
1530deoptimization, in which case control will not be returned to the
1531compiled frame.
1532
Sanjoy Das2d161452015-11-18 06:23:38 +00001533The inliner knows how to inline through calls that have deoptimization
1534operand bundles. Just like inlining through a normal call site
1535involves composing the normal and exceptional continuations, inlining
1536through a call site with a deoptimization operand bundle needs to
1537appropriately compose the "safe" deoptimization continuation. The
1538inliner does this by prepending the parent's deoptimization
1539continuation to every deoptimization continuation in the inlined body.
1540E.g. inlining ``@f`` into ``@g`` in the following example
1541
1542.. code-block:: llvm
1543
1544 define void @f() {
1545 call void @x() ;; no deopt state
1546 call void @y() [ "deopt"(i32 10) ]
1547 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1548 ret void
1549 }
1550
1551 define void @g() {
1552 call void @f() [ "deopt"(i32 20) ]
1553 ret void
1554 }
1555
1556will result in
1557
1558.. code-block:: llvm
1559
1560 define void @g() {
1561 call void @x() ;; still no deopt state
1562 call void @y() [ "deopt"(i32 20, i32 10) ]
1563 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1564 ret void
1565 }
1566
1567It is the frontend's responsibility to structure or encode the
1568deoptimization state in a way that syntactically prepending the
1569caller's deoptimization state to the callee's deoptimization state is
1570semantically equivalent to composing the caller's deoptimization
1571continuation after the callee's deoptimization continuation.
1572
Sean Silvab084af42012-12-07 10:36:55 +00001573.. _moduleasm:
1574
1575Module-Level Inline Assembly
1576----------------------------
1577
1578Modules may contain "module-level inline asm" blocks, which corresponds
1579to the GCC "file scope inline asm" blocks. These blocks are internally
1580concatenated by LLVM and treated as a single unit, but may be separated
1581in the ``.ll`` file if desired. The syntax is very simple:
1582
1583.. code-block:: llvm
1584
1585 module asm "inline asm code goes here"
1586 module asm "more can go here"
1587
1588The strings can contain any character by escaping non-printable
1589characters. The escape sequence used is simply "\\xx" where "xx" is the
1590two digit hex code for the number.
1591
James Y Knightbc832ed2015-07-08 18:08:36 +00001592Note that the assembly string *must* be parseable by LLVM's integrated assembler
1593(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001594
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001595.. _langref_datalayout:
1596
Sean Silvab084af42012-12-07 10:36:55 +00001597Data Layout
1598-----------
1599
1600A module may specify a target specific data layout string that specifies
1601how data is to be laid out in memory. The syntax for the data layout is
1602simply:
1603
1604.. code-block:: llvm
1605
1606 target datalayout = "layout specification"
1607
1608The *layout specification* consists of a list of specifications
1609separated by the minus sign character ('-'). Each specification starts
1610with a letter and may include other information after the letter to
1611define some aspect of the data layout. The specifications accepted are
1612as follows:
1613
1614``E``
1615 Specifies that the target lays out data in big-endian form. That is,
1616 the bits with the most significance have the lowest address
1617 location.
1618``e``
1619 Specifies that the target lays out data in little-endian form. That
1620 is, the bits with the least significance have the lowest address
1621 location.
1622``S<size>``
1623 Specifies the natural alignment of the stack in bits. Alignment
1624 promotion of stack variables is limited to the natural stack
1625 alignment to avoid dynamic stack realignment. The stack alignment
1626 must be a multiple of 8-bits. If omitted, the natural stack
1627 alignment defaults to "unspecified", which does not prevent any
1628 alignment promotions.
1629``p[n]:<size>:<abi>:<pref>``
1630 This specifies the *size* of a pointer and its ``<abi>`` and
1631 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001632 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001633 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001634 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001635``i<size>:<abi>:<pref>``
1636 This specifies the alignment for an integer type of a given bit
1637 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1638``v<size>:<abi>:<pref>``
1639 This specifies the alignment for a vector type of a given bit
1640 ``<size>``.
1641``f<size>:<abi>:<pref>``
1642 This specifies the alignment for a floating point type of a given bit
1643 ``<size>``. Only values of ``<size>`` that are supported by the target
1644 will work. 32 (float) and 64 (double) are supported on all targets; 80
1645 or 128 (different flavors of long double) are also supported on some
1646 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001647``a:<abi>:<pref>``
1648 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001649``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001650 If present, specifies that llvm names are mangled in the output. The
1651 options are
1652
1653 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1654 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1655 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1656 symbols get a ``_`` prefix.
1657 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1658 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001659 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1660 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001661``n<size1>:<size2>:<size3>...``
1662 This specifies a set of native integer widths for the target CPU in
1663 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1664 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1665 this set are considered to support most general arithmetic operations
1666 efficiently.
1667
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001668On every specification that takes a ``<abi>:<pref>``, specifying the
1669``<pref>`` alignment is optional. If omitted, the preceding ``:``
1670should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1671
Sean Silvab084af42012-12-07 10:36:55 +00001672When constructing the data layout for a given target, LLVM starts with a
1673default set of specifications which are then (possibly) overridden by
1674the specifications in the ``datalayout`` keyword. The default
1675specifications are given in this list:
1676
1677- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001678- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1679- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1680 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001681- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001682- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1683- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1684- ``i16:16:16`` - i16 is 16-bit aligned
1685- ``i32:32:32`` - i32 is 32-bit aligned
1686- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1687 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001688- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001689- ``f32:32:32`` - float is 32-bit aligned
1690- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001691- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001692- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1693- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001694- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001695
1696When LLVM is determining the alignment for a given type, it uses the
1697following rules:
1698
1699#. If the type sought is an exact match for one of the specifications,
1700 that specification is used.
1701#. If no match is found, and the type sought is an integer type, then
1702 the smallest integer type that is larger than the bitwidth of the
1703 sought type is used. If none of the specifications are larger than
1704 the bitwidth then the largest integer type is used. For example,
1705 given the default specifications above, the i7 type will use the
1706 alignment of i8 (next largest) while both i65 and i256 will use the
1707 alignment of i64 (largest specified).
1708#. If no match is found, and the type sought is a vector type, then the
1709 largest vector type that is smaller than the sought vector type will
1710 be used as a fall back. This happens because <128 x double> can be
1711 implemented in terms of 64 <2 x double>, for example.
1712
1713The function of the data layout string may not be what you expect.
1714Notably, this is not a specification from the frontend of what alignment
1715the code generator should use.
1716
1717Instead, if specified, the target data layout is required to match what
1718the ultimate *code generator* expects. This string is used by the
1719mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001720what the ultimate code generator uses. There is no way to generate IR
1721that does not embed this target-specific detail into the IR. If you
1722don't specify the string, the default specifications will be used to
1723generate a Data Layout and the optimization phases will operate
1724accordingly and introduce target specificity into the IR with respect to
1725these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001726
Bill Wendling5cc90842013-10-18 23:41:25 +00001727.. _langref_triple:
1728
1729Target Triple
1730-------------
1731
1732A module may specify a target triple string that describes the target
1733host. The syntax for the target triple is simply:
1734
1735.. code-block:: llvm
1736
1737 target triple = "x86_64-apple-macosx10.7.0"
1738
1739The *target triple* string consists of a series of identifiers delimited
1740by the minus sign character ('-'). The canonical forms are:
1741
1742::
1743
1744 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1745 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1746
1747This information is passed along to the backend so that it generates
1748code for the proper architecture. It's possible to override this on the
1749command line with the ``-mtriple`` command line option.
1750
Sean Silvab084af42012-12-07 10:36:55 +00001751.. _pointeraliasing:
1752
1753Pointer Aliasing Rules
1754----------------------
1755
1756Any memory access must be done through a pointer value associated with
1757an address range of the memory access, otherwise the behavior is
1758undefined. Pointer values are associated with address ranges according
1759to the following rules:
1760
1761- A pointer value is associated with the addresses associated with any
1762 value it is *based* on.
1763- An address of a global variable is associated with the address range
1764 of the variable's storage.
1765- The result value of an allocation instruction is associated with the
1766 address range of the allocated storage.
1767- A null pointer in the default address-space is associated with no
1768 address.
1769- An integer constant other than zero or a pointer value returned from
1770 a function not defined within LLVM may be associated with address
1771 ranges allocated through mechanisms other than those provided by
1772 LLVM. Such ranges shall not overlap with any ranges of addresses
1773 allocated by mechanisms provided by LLVM.
1774
1775A pointer value is *based* on another pointer value according to the
1776following rules:
1777
1778- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001779 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001780- The result value of a ``bitcast`` is *based* on the operand of the
1781 ``bitcast``.
1782- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1783 values that contribute (directly or indirectly) to the computation of
1784 the pointer's value.
1785- The "*based* on" relationship is transitive.
1786
1787Note that this definition of *"based"* is intentionally similar to the
1788definition of *"based"* in C99, though it is slightly weaker.
1789
1790LLVM IR does not associate types with memory. The result type of a
1791``load`` merely indicates the size and alignment of the memory from
1792which to load, as well as the interpretation of the value. The first
1793operand type of a ``store`` similarly only indicates the size and
1794alignment of the store.
1795
1796Consequently, type-based alias analysis, aka TBAA, aka
1797``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1798:ref:`Metadata <metadata>` may be used to encode additional information
1799which specialized optimization passes may use to implement type-based
1800alias analysis.
1801
1802.. _volatile:
1803
1804Volatile Memory Accesses
1805------------------------
1806
1807Certain memory accesses, such as :ref:`load <i_load>`'s,
1808:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1809marked ``volatile``. The optimizers must not change the number of
1810volatile operations or change their order of execution relative to other
1811volatile operations. The optimizers *may* change the order of volatile
1812operations relative to non-volatile operations. This is not Java's
1813"volatile" and has no cross-thread synchronization behavior.
1814
Andrew Trick89fc5a62013-01-30 21:19:35 +00001815IR-level volatile loads and stores cannot safely be optimized into
1816llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1817flagged volatile. Likewise, the backend should never split or merge
1818target-legal volatile load/store instructions.
1819
Andrew Trick7e6f9282013-01-31 00:49:39 +00001820.. admonition:: Rationale
1821
1822 Platforms may rely on volatile loads and stores of natively supported
1823 data width to be executed as single instruction. For example, in C
1824 this holds for an l-value of volatile primitive type with native
1825 hardware support, but not necessarily for aggregate types. The
1826 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001827 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001828 do not violate the frontend's contract with the language.
1829
Sean Silvab084af42012-12-07 10:36:55 +00001830.. _memmodel:
1831
1832Memory Model for Concurrent Operations
1833--------------------------------------
1834
1835The LLVM IR does not define any way to start parallel threads of
1836execution or to register signal handlers. Nonetheless, there are
1837platform-specific ways to create them, and we define LLVM IR's behavior
1838in their presence. This model is inspired by the C++0x memory model.
1839
1840For a more informal introduction to this model, see the :doc:`Atomics`.
1841
1842We define a *happens-before* partial order as the least partial order
1843that
1844
1845- Is a superset of single-thread program order, and
1846- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1847 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1848 techniques, like pthread locks, thread creation, thread joining,
1849 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1850 Constraints <ordering>`).
1851
1852Note that program order does not introduce *happens-before* edges
1853between a thread and signals executing inside that thread.
1854
1855Every (defined) read operation (load instructions, memcpy, atomic
1856loads/read-modify-writes, etc.) R reads a series of bytes written by
1857(defined) write operations (store instructions, atomic
1858stores/read-modify-writes, memcpy, etc.). For the purposes of this
1859section, initialized globals are considered to have a write of the
1860initializer which is atomic and happens before any other read or write
1861of the memory in question. For each byte of a read R, R\ :sub:`byte`
1862may see any write to the same byte, except:
1863
1864- If write\ :sub:`1` happens before write\ :sub:`2`, and
1865 write\ :sub:`2` happens before R\ :sub:`byte`, then
1866 R\ :sub:`byte` does not see write\ :sub:`1`.
1867- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1868 R\ :sub:`byte` does not see write\ :sub:`3`.
1869
1870Given that definition, R\ :sub:`byte` is defined as follows:
1871
1872- If R is volatile, the result is target-dependent. (Volatile is
1873 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001874 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001875 like normal memory. It does not generally provide cross-thread
1876 synchronization.)
1877- Otherwise, if there is no write to the same byte that happens before
1878 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1879- Otherwise, if R\ :sub:`byte` may see exactly one write,
1880 R\ :sub:`byte` returns the value written by that write.
1881- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1882 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1883 Memory Ordering Constraints <ordering>` section for additional
1884 constraints on how the choice is made.
1885- Otherwise R\ :sub:`byte` returns ``undef``.
1886
1887R returns the value composed of the series of bytes it read. This
1888implies that some bytes within the value may be ``undef`` **without**
1889the entire value being ``undef``. Note that this only defines the
1890semantics of the operation; it doesn't mean that targets will emit more
1891than one instruction to read the series of bytes.
1892
1893Note that in cases where none of the atomic intrinsics are used, this
1894model places only one restriction on IR transformations on top of what
1895is required for single-threaded execution: introducing a store to a byte
1896which might not otherwise be stored is not allowed in general.
1897(Specifically, in the case where another thread might write to and read
1898from an address, introducing a store can change a load that may see
1899exactly one write into a load that may see multiple writes.)
1900
1901.. _ordering:
1902
1903Atomic Memory Ordering Constraints
1904----------------------------------
1905
1906Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1907:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1908:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001909ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001910the same address they *synchronize with*. These semantics are borrowed
1911from Java and C++0x, but are somewhat more colloquial. If these
1912descriptions aren't precise enough, check those specs (see spec
1913references in the :doc:`atomics guide <Atomics>`).
1914:ref:`fence <i_fence>` instructions treat these orderings somewhat
1915differently since they don't take an address. See that instruction's
1916documentation for details.
1917
1918For a simpler introduction to the ordering constraints, see the
1919:doc:`Atomics`.
1920
1921``unordered``
1922 The set of values that can be read is governed by the happens-before
1923 partial order. A value cannot be read unless some operation wrote
1924 it. This is intended to provide a guarantee strong enough to model
1925 Java's non-volatile shared variables. This ordering cannot be
1926 specified for read-modify-write operations; it is not strong enough
1927 to make them atomic in any interesting way.
1928``monotonic``
1929 In addition to the guarantees of ``unordered``, there is a single
1930 total order for modifications by ``monotonic`` operations on each
1931 address. All modification orders must be compatible with the
1932 happens-before order. There is no guarantee that the modification
1933 orders can be combined to a global total order for the whole program
1934 (and this often will not be possible). The read in an atomic
1935 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1936 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1937 order immediately before the value it writes. If one atomic read
1938 happens before another atomic read of the same address, the later
1939 read must see the same value or a later value in the address's
1940 modification order. This disallows reordering of ``monotonic`` (or
1941 stronger) operations on the same address. If an address is written
1942 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1943 read that address repeatedly, the other threads must eventually see
1944 the write. This corresponds to the C++0x/C1x
1945 ``memory_order_relaxed``.
1946``acquire``
1947 In addition to the guarantees of ``monotonic``, a
1948 *synchronizes-with* edge may be formed with a ``release`` operation.
1949 This is intended to model C++'s ``memory_order_acquire``.
1950``release``
1951 In addition to the guarantees of ``monotonic``, if this operation
1952 writes a value which is subsequently read by an ``acquire``
1953 operation, it *synchronizes-with* that operation. (This isn't a
1954 complete description; see the C++0x definition of a release
1955 sequence.) This corresponds to the C++0x/C1x
1956 ``memory_order_release``.
1957``acq_rel`` (acquire+release)
1958 Acts as both an ``acquire`` and ``release`` operation on its
1959 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1960``seq_cst`` (sequentially consistent)
1961 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001962 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001963 writes), there is a global total order on all
1964 sequentially-consistent operations on all addresses, which is
1965 consistent with the *happens-before* partial order and with the
1966 modification orders of all the affected addresses. Each
1967 sequentially-consistent read sees the last preceding write to the
1968 same address in this global order. This corresponds to the C++0x/C1x
1969 ``memory_order_seq_cst`` and Java volatile.
1970
1971.. _singlethread:
1972
1973If an atomic operation is marked ``singlethread``, it only *synchronizes
1974with* or participates in modification and seq\_cst total orderings with
1975other operations running in the same thread (for example, in signal
1976handlers).
1977
1978.. _fastmath:
1979
1980Fast-Math Flags
1981---------------
1982
1983LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1984:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001985:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1986be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001987
1988``nnan``
1989 No NaNs - Allow optimizations to assume the arguments and result are not
1990 NaN. Such optimizations are required to retain defined behavior over
1991 NaNs, but the value of the result is undefined.
1992
1993``ninf``
1994 No Infs - Allow optimizations to assume the arguments and result are not
1995 +/-Inf. Such optimizations are required to retain defined behavior over
1996 +/-Inf, but the value of the result is undefined.
1997
1998``nsz``
1999 No Signed Zeros - Allow optimizations to treat the sign of a zero
2000 argument or result as insignificant.
2001
2002``arcp``
2003 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2004 argument rather than perform division.
2005
2006``fast``
2007 Fast - Allow algebraically equivalent transformations that may
2008 dramatically change results in floating point (e.g. reassociate). This
2009 flag implies all the others.
2010
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002011.. _uselistorder:
2012
2013Use-list Order Directives
2014-------------------------
2015
2016Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002017order to be recreated. ``<order-indexes>`` is a comma-separated list of
2018indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002019value's use-list is immediately sorted by these indexes.
2020
Sean Silvaa1190322015-08-06 22:56:48 +00002021Use-list directives may appear at function scope or global scope. They are not
2022instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002023function scope, they must appear after the terminator of the final basic block.
2024
2025If basic blocks have their address taken via ``blockaddress()`` expressions,
2026``uselistorder_bb`` can be used to reorder their use-lists from outside their
2027function's scope.
2028
2029:Syntax:
2030
2031::
2032
2033 uselistorder <ty> <value>, { <order-indexes> }
2034 uselistorder_bb @function, %block { <order-indexes> }
2035
2036:Examples:
2037
2038::
2039
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002040 define void @foo(i32 %arg1, i32 %arg2) {
2041 entry:
2042 ; ... instructions ...
2043 bb:
2044 ; ... instructions ...
2045
2046 ; At function scope.
2047 uselistorder i32 %arg1, { 1, 0, 2 }
2048 uselistorder label %bb, { 1, 0 }
2049 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002050
2051 ; At global scope.
2052 uselistorder i32* @global, { 1, 2, 0 }
2053 uselistorder i32 7, { 1, 0 }
2054 uselistorder i32 (i32) @bar, { 1, 0 }
2055 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2056
Sean Silvab084af42012-12-07 10:36:55 +00002057.. _typesystem:
2058
2059Type System
2060===========
2061
2062The LLVM type system is one of the most important features of the
2063intermediate representation. Being typed enables a number of
2064optimizations to be performed on the intermediate representation
2065directly, without having to do extra analyses on the side before the
2066transformation. A strong type system makes it easier to read the
2067generated code and enables novel analyses and transformations that are
2068not feasible to perform on normal three address code representations.
2069
Rafael Espindola08013342013-12-07 19:34:20 +00002070.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002071
Rafael Espindola08013342013-12-07 19:34:20 +00002072Void Type
2073---------
Sean Silvab084af42012-12-07 10:36:55 +00002074
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002075:Overview:
2076
Rafael Espindola08013342013-12-07 19:34:20 +00002077
2078The void type does not represent any value and has no size.
2079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
2081
Rafael Espindola08013342013-12-07 19:34:20 +00002082
2083::
2084
2085 void
Sean Silvab084af42012-12-07 10:36:55 +00002086
2087
Rafael Espindola08013342013-12-07 19:34:20 +00002088.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002089
Rafael Espindola08013342013-12-07 19:34:20 +00002090Function Type
2091-------------
Sean Silvab084af42012-12-07 10:36:55 +00002092
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002093:Overview:
2094
Sean Silvab084af42012-12-07 10:36:55 +00002095
Rafael Espindola08013342013-12-07 19:34:20 +00002096The function type can be thought of as a function signature. It consists of a
2097return type and a list of formal parameter types. The return type of a function
2098type is a void type or first class type --- except for :ref:`label <t_label>`
2099and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002100
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002101:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002102
Rafael Espindola08013342013-12-07 19:34:20 +00002103::
Sean Silvab084af42012-12-07 10:36:55 +00002104
Rafael Espindola08013342013-12-07 19:34:20 +00002105 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002106
Rafael Espindola08013342013-12-07 19:34:20 +00002107...where '``<parameter list>``' is a comma-separated list of type
2108specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002109indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002110argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002111handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002112except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002113
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002114:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002115
Rafael Espindola08013342013-12-07 19:34:20 +00002116+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2117| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2118+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2119| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2120+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2121| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2122+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2123| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2124+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2125
2126.. _t_firstclass:
2127
2128First Class Types
2129-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002130
2131The :ref:`first class <t_firstclass>` types are perhaps the most important.
2132Values of these types are the only ones which can be produced by
2133instructions.
2134
Rafael Espindola08013342013-12-07 19:34:20 +00002135.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002136
Rafael Espindola08013342013-12-07 19:34:20 +00002137Single Value Types
2138^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002139
Rafael Espindola08013342013-12-07 19:34:20 +00002140These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002141
2142.. _t_integer:
2143
2144Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002145""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002146
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002147:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002148
2149The integer type is a very simple type that simply specifies an
2150arbitrary bit width for the integer type desired. Any bit width from 1
2151bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2152
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002153:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002154
2155::
2156
2157 iN
2158
2159The number of bits the integer will occupy is specified by the ``N``
2160value.
2161
2162Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002163*********
Sean Silvab084af42012-12-07 10:36:55 +00002164
2165+----------------+------------------------------------------------+
2166| ``i1`` | a single-bit integer. |
2167+----------------+------------------------------------------------+
2168| ``i32`` | a 32-bit integer. |
2169+----------------+------------------------------------------------+
2170| ``i1942652`` | a really big integer of over 1 million bits. |
2171+----------------+------------------------------------------------+
2172
2173.. _t_floating:
2174
2175Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002176""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002177
2178.. list-table::
2179 :header-rows: 1
2180
2181 * - Type
2182 - Description
2183
2184 * - ``half``
2185 - 16-bit floating point value
2186
2187 * - ``float``
2188 - 32-bit floating point value
2189
2190 * - ``double``
2191 - 64-bit floating point value
2192
2193 * - ``fp128``
2194 - 128-bit floating point value (112-bit mantissa)
2195
2196 * - ``x86_fp80``
2197 - 80-bit floating point value (X87)
2198
2199 * - ``ppc_fp128``
2200 - 128-bit floating point value (two 64-bits)
2201
Reid Kleckner9a16d082014-03-05 02:41:37 +00002202X86_mmx Type
2203""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002204
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002205:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002206
Reid Kleckner9a16d082014-03-05 02:41:37 +00002207The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002208machine. The operations allowed on it are quite limited: parameters and
2209return values, load and store, and bitcast. User-specified MMX
2210instructions are represented as intrinsic or asm calls with arguments
2211and/or results of this type. There are no arrays, vectors or constants
2212of this type.
2213
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002214:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002215
2216::
2217
Reid Kleckner9a16d082014-03-05 02:41:37 +00002218 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002219
Sean Silvab084af42012-12-07 10:36:55 +00002220
Rafael Espindola08013342013-12-07 19:34:20 +00002221.. _t_pointer:
2222
2223Pointer Type
2224""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002225
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002226:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002227
Rafael Espindola08013342013-12-07 19:34:20 +00002228The pointer type is used to specify memory locations. Pointers are
2229commonly used to reference objects in memory.
2230
2231Pointer types may have an optional address space attribute defining the
2232numbered address space where the pointed-to object resides. The default
2233address space is number zero. The semantics of non-zero address spaces
2234are target-specific.
2235
2236Note that LLVM does not permit pointers to void (``void*``) nor does it
2237permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002238
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002239:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002240
2241::
2242
Rafael Espindola08013342013-12-07 19:34:20 +00002243 <type> *
2244
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002245:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002246
2247+-------------------------+--------------------------------------------------------------------------------------------------------------+
2248| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2249+-------------------------+--------------------------------------------------------------------------------------------------------------+
2250| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2251+-------------------------+--------------------------------------------------------------------------------------------------------------+
2252| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2253+-------------------------+--------------------------------------------------------------------------------------------------------------+
2254
2255.. _t_vector:
2256
2257Vector Type
2258"""""""""""
2259
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002260:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002261
2262A vector type is a simple derived type that represents a vector of
2263elements. Vector types are used when multiple primitive data are
2264operated in parallel using a single instruction (SIMD). A vector type
2265requires a size (number of elements) and an underlying primitive data
2266type. Vector types are considered :ref:`first class <t_firstclass>`.
2267
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002268:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002269
2270::
2271
2272 < <# elements> x <elementtype> >
2273
2274The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002275elementtype may be any integer, floating point or pointer type. Vectors
2276of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002277
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002278:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002279
2280+-------------------+--------------------------------------------------+
2281| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2282+-------------------+--------------------------------------------------+
2283| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2284+-------------------+--------------------------------------------------+
2285| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2286+-------------------+--------------------------------------------------+
2287| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2288+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002289
2290.. _t_label:
2291
2292Label Type
2293^^^^^^^^^^
2294
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002295:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002296
2297The label type represents code labels.
2298
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002299:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002300
2301::
2302
2303 label
2304
David Majnemerb611e3f2015-08-14 05:09:07 +00002305.. _t_token:
2306
2307Token Type
2308^^^^^^^^^^
2309
2310:Overview:
2311
2312The token type is used when a value is associated with an instruction
2313but all uses of the value must not attempt to introspect or obscure it.
2314As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2315:ref:`select <i_select>` of type token.
2316
2317:Syntax:
2318
2319::
2320
2321 token
2322
2323
2324
Sean Silvab084af42012-12-07 10:36:55 +00002325.. _t_metadata:
2326
2327Metadata Type
2328^^^^^^^^^^^^^
2329
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002330:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002331
2332The metadata type represents embedded metadata. No derived types may be
2333created from metadata except for :ref:`function <t_function>` arguments.
2334
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002335:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002336
2337::
2338
2339 metadata
2340
Sean Silvab084af42012-12-07 10:36:55 +00002341.. _t_aggregate:
2342
2343Aggregate Types
2344^^^^^^^^^^^^^^^
2345
2346Aggregate Types are a subset of derived types that can contain multiple
2347member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2348aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2349aggregate types.
2350
2351.. _t_array:
2352
2353Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002354""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002355
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002356:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002357
2358The array type is a very simple derived type that arranges elements
2359sequentially in memory. The array type requires a size (number of
2360elements) and an underlying data type.
2361
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002362:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002363
2364::
2365
2366 [<# elements> x <elementtype>]
2367
2368The number of elements is a constant integer value; ``elementtype`` may
2369be any type with a size.
2370
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002371:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002372
2373+------------------+--------------------------------------+
2374| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2375+------------------+--------------------------------------+
2376| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2377+------------------+--------------------------------------+
2378| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2379+------------------+--------------------------------------+
2380
2381Here are some examples of multidimensional arrays:
2382
2383+-----------------------------+----------------------------------------------------------+
2384| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2385+-----------------------------+----------------------------------------------------------+
2386| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2387+-----------------------------+----------------------------------------------------------+
2388| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2389+-----------------------------+----------------------------------------------------------+
2390
2391There is no restriction on indexing beyond the end of the array implied
2392by a static type (though there are restrictions on indexing beyond the
2393bounds of an allocated object in some cases). This means that
2394single-dimension 'variable sized array' addressing can be implemented in
2395LLVM with a zero length array type. An implementation of 'pascal style
2396arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2397example.
2398
Sean Silvab084af42012-12-07 10:36:55 +00002399.. _t_struct:
2400
2401Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002402""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002403
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002404:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002405
2406The structure type is used to represent a collection of data members
2407together in memory. The elements of a structure may be any type that has
2408a size.
2409
2410Structures in memory are accessed using '``load``' and '``store``' by
2411getting a pointer to a field with the '``getelementptr``' instruction.
2412Structures in registers are accessed using the '``extractvalue``' and
2413'``insertvalue``' instructions.
2414
2415Structures may optionally be "packed" structures, which indicate that
2416the alignment of the struct is one byte, and that there is no padding
2417between the elements. In non-packed structs, padding between field types
2418is inserted as defined by the DataLayout string in the module, which is
2419required to match what the underlying code generator expects.
2420
2421Structures can either be "literal" or "identified". A literal structure
2422is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2423identified types are always defined at the top level with a name.
2424Literal types are uniqued by their contents and can never be recursive
2425or opaque since there is no way to write one. Identified types can be
2426recursive, can be opaqued, and are never uniqued.
2427
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002428:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002429
2430::
2431
2432 %T1 = type { <type list> } ; Identified normal struct type
2433 %T2 = type <{ <type list> }> ; Identified packed struct type
2434
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002435:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002436
2437+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2438| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2439+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002440| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002441+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2442| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2443+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2444
2445.. _t_opaque:
2446
2447Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002448""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002449
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002450:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002451
2452Opaque structure types are used to represent named structure types that
2453do not have a body specified. This corresponds (for example) to the C
2454notion of a forward declared structure.
2455
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002456:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002457
2458::
2459
2460 %X = type opaque
2461 %52 = type opaque
2462
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002463:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002464
2465+--------------+-------------------+
2466| ``opaque`` | An opaque type. |
2467+--------------+-------------------+
2468
Sean Silva1703e702014-04-08 21:06:22 +00002469.. _constants:
2470
Sean Silvab084af42012-12-07 10:36:55 +00002471Constants
2472=========
2473
2474LLVM has several different basic types of constants. This section
2475describes them all and their syntax.
2476
2477Simple Constants
2478----------------
2479
2480**Boolean constants**
2481 The two strings '``true``' and '``false``' are both valid constants
2482 of the ``i1`` type.
2483**Integer constants**
2484 Standard integers (such as '4') are constants of the
2485 :ref:`integer <t_integer>` type. Negative numbers may be used with
2486 integer types.
2487**Floating point constants**
2488 Floating point constants use standard decimal notation (e.g.
2489 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2490 hexadecimal notation (see below). The assembler requires the exact
2491 decimal value of a floating-point constant. For example, the
2492 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2493 decimal in binary. Floating point constants must have a :ref:`floating
2494 point <t_floating>` type.
2495**Null pointer constants**
2496 The identifier '``null``' is recognized as a null pointer constant
2497 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002498**Token constants**
2499 The identifier '``none``' is recognized as an empty token constant
2500 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002501
2502The one non-intuitive notation for constants is the hexadecimal form of
2503floating point constants. For example, the form
2504'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2505than) '``double 4.5e+15``'. The only time hexadecimal floating point
2506constants are required (and the only time that they are generated by the
2507disassembler) is when a floating point constant must be emitted but it
2508cannot be represented as a decimal floating point number in a reasonable
2509number of digits. For example, NaN's, infinities, and other special
2510values are represented in their IEEE hexadecimal format so that assembly
2511and disassembly do not cause any bits to change in the constants.
2512
2513When using the hexadecimal form, constants of types half, float, and
2514double are represented using the 16-digit form shown above (which
2515matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002516must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002517precision, respectively. Hexadecimal format is always used for long
2518double, and there are three forms of long double. The 80-bit format used
2519by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2520128-bit format used by PowerPC (two adjacent doubles) is represented by
2521``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002522represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2523will only work if they match the long double format on your target.
2524The IEEE 16-bit format (half precision) is represented by ``0xH``
2525followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2526(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002527
Reid Kleckner9a16d082014-03-05 02:41:37 +00002528There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002529
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002530.. _complexconstants:
2531
Sean Silvab084af42012-12-07 10:36:55 +00002532Complex Constants
2533-----------------
2534
2535Complex constants are a (potentially recursive) combination of simple
2536constants and smaller complex constants.
2537
2538**Structure constants**
2539 Structure constants are represented with notation similar to
2540 structure type definitions (a comma separated list of elements,
2541 surrounded by braces (``{}``)). For example:
2542 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2543 "``@G = external global i32``". Structure constants must have
2544 :ref:`structure type <t_struct>`, and the number and types of elements
2545 must match those specified by the type.
2546**Array constants**
2547 Array constants are represented with notation similar to array type
2548 definitions (a comma separated list of elements, surrounded by
2549 square brackets (``[]``)). For example:
2550 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2551 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002552 match those specified by the type. As a special case, character array
2553 constants may also be represented as a double-quoted string using the ``c``
2554 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002555**Vector constants**
2556 Vector constants are represented with notation similar to vector
2557 type definitions (a comma separated list of elements, surrounded by
2558 less-than/greater-than's (``<>``)). For example:
2559 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2560 must have :ref:`vector type <t_vector>`, and the number and types of
2561 elements must match those specified by the type.
2562**Zero initialization**
2563 The string '``zeroinitializer``' can be used to zero initialize a
2564 value to zero of *any* type, including scalar and
2565 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2566 having to print large zero initializers (e.g. for large arrays) and
2567 is always exactly equivalent to using explicit zero initializers.
2568**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002569 A metadata node is a constant tuple without types. For example:
2570 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002571 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2572 Unlike other typed constants that are meant to be interpreted as part of
2573 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002574 information such as debug info.
2575
2576Global Variable and Function Addresses
2577--------------------------------------
2578
2579The addresses of :ref:`global variables <globalvars>` and
2580:ref:`functions <functionstructure>` are always implicitly valid
2581(link-time) constants. These constants are explicitly referenced when
2582the :ref:`identifier for the global <identifiers>` is used and always have
2583:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2584file:
2585
2586.. code-block:: llvm
2587
2588 @X = global i32 17
2589 @Y = global i32 42
2590 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2591
2592.. _undefvalues:
2593
2594Undefined Values
2595----------------
2596
2597The string '``undef``' can be used anywhere a constant is expected, and
2598indicates that the user of the value may receive an unspecified
2599bit-pattern. Undefined values may be of any type (other than '``label``'
2600or '``void``') and be used anywhere a constant is permitted.
2601
2602Undefined values are useful because they indicate to the compiler that
2603the program is well defined no matter what value is used. This gives the
2604compiler more freedom to optimize. Here are some examples of
2605(potentially surprising) transformations that are valid (in pseudo IR):
2606
2607.. code-block:: llvm
2608
2609 %A = add %X, undef
2610 %B = sub %X, undef
2611 %C = xor %X, undef
2612 Safe:
2613 %A = undef
2614 %B = undef
2615 %C = undef
2616
2617This is safe because all of the output bits are affected by the undef
2618bits. Any output bit can have a zero or one depending on the input bits.
2619
2620.. code-block:: llvm
2621
2622 %A = or %X, undef
2623 %B = and %X, undef
2624 Safe:
2625 %A = -1
2626 %B = 0
2627 Unsafe:
2628 %A = undef
2629 %B = undef
2630
2631These logical operations have bits that are not always affected by the
2632input. For example, if ``%X`` has a zero bit, then the output of the
2633'``and``' operation will always be a zero for that bit, no matter what
2634the corresponding bit from the '``undef``' is. As such, it is unsafe to
2635optimize or assume that the result of the '``and``' is '``undef``'.
2636However, it is safe to assume that all bits of the '``undef``' could be
26370, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2638all the bits of the '``undef``' operand to the '``or``' could be set,
2639allowing the '``or``' to be folded to -1.
2640
2641.. code-block:: llvm
2642
2643 %A = select undef, %X, %Y
2644 %B = select undef, 42, %Y
2645 %C = select %X, %Y, undef
2646 Safe:
2647 %A = %X (or %Y)
2648 %B = 42 (or %Y)
2649 %C = %Y
2650 Unsafe:
2651 %A = undef
2652 %B = undef
2653 %C = undef
2654
2655This set of examples shows that undefined '``select``' (and conditional
2656branch) conditions can go *either way*, but they have to come from one
2657of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2658both known to have a clear low bit, then ``%A`` would have to have a
2659cleared low bit. However, in the ``%C`` example, the optimizer is
2660allowed to assume that the '``undef``' operand could be the same as
2661``%Y``, allowing the whole '``select``' to be eliminated.
2662
2663.. code-block:: llvm
2664
2665 %A = xor undef, undef
2666
2667 %B = undef
2668 %C = xor %B, %B
2669
2670 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002671 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002672 %F = icmp gte %D, 4
2673
2674 Safe:
2675 %A = undef
2676 %B = undef
2677 %C = undef
2678 %D = undef
2679 %E = undef
2680 %F = undef
2681
2682This example points out that two '``undef``' operands are not
2683necessarily the same. This can be surprising to people (and also matches
2684C semantics) where they assume that "``X^X``" is always zero, even if
2685``X`` is undefined. This isn't true for a number of reasons, but the
2686short answer is that an '``undef``' "variable" can arbitrarily change
2687its value over its "live range". This is true because the variable
2688doesn't actually *have a live range*. Instead, the value is logically
2689read from arbitrary registers that happen to be around when needed, so
2690the value is not necessarily consistent over time. In fact, ``%A`` and
2691``%C`` need to have the same semantics or the core LLVM "replace all
2692uses with" concept would not hold.
2693
2694.. code-block:: llvm
2695
2696 %A = fdiv undef, %X
2697 %B = fdiv %X, undef
2698 Safe:
2699 %A = undef
2700 b: unreachable
2701
2702These examples show the crucial difference between an *undefined value*
2703and *undefined behavior*. An undefined value (like '``undef``') is
2704allowed to have an arbitrary bit-pattern. This means that the ``%A``
2705operation can be constant folded to '``undef``', because the '``undef``'
2706could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2707However, in the second example, we can make a more aggressive
2708assumption: because the ``undef`` is allowed to be an arbitrary value,
2709we are allowed to assume that it could be zero. Since a divide by zero
2710has *undefined behavior*, we are allowed to assume that the operation
2711does not execute at all. This allows us to delete the divide and all
2712code after it. Because the undefined operation "can't happen", the
2713optimizer can assume that it occurs in dead code.
2714
2715.. code-block:: llvm
2716
2717 a: store undef -> %X
2718 b: store %X -> undef
2719 Safe:
2720 a: <deleted>
2721 b: unreachable
2722
2723These examples reiterate the ``fdiv`` example: a store *of* an undefined
2724value can be assumed to not have any effect; we can assume that the
2725value is overwritten with bits that happen to match what was already
2726there. However, a store *to* an undefined location could clobber
2727arbitrary memory, therefore, it has undefined behavior.
2728
2729.. _poisonvalues:
2730
2731Poison Values
2732-------------
2733
2734Poison values are similar to :ref:`undef values <undefvalues>`, however
2735they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002736that cannot evoke side effects has nevertheless detected a condition
2737that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002738
2739There is currently no way of representing a poison value in the IR; they
2740only exist when produced by operations such as :ref:`add <i_add>` with
2741the ``nsw`` flag.
2742
2743Poison value behavior is defined in terms of value *dependence*:
2744
2745- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2746- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2747 their dynamic predecessor basic block.
2748- Function arguments depend on the corresponding actual argument values
2749 in the dynamic callers of their functions.
2750- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2751 instructions that dynamically transfer control back to them.
2752- :ref:`Invoke <i_invoke>` instructions depend on the
2753 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2754 call instructions that dynamically transfer control back to them.
2755- Non-volatile loads and stores depend on the most recent stores to all
2756 of the referenced memory addresses, following the order in the IR
2757 (including loads and stores implied by intrinsics such as
2758 :ref:`@llvm.memcpy <int_memcpy>`.)
2759- An instruction with externally visible side effects depends on the
2760 most recent preceding instruction with externally visible side
2761 effects, following the order in the IR. (This includes :ref:`volatile
2762 operations <volatile>`.)
2763- An instruction *control-depends* on a :ref:`terminator
2764 instruction <terminators>` if the terminator instruction has
2765 multiple successors and the instruction is always executed when
2766 control transfers to one of the successors, and may not be executed
2767 when control is transferred to another.
2768- Additionally, an instruction also *control-depends* on a terminator
2769 instruction if the set of instructions it otherwise depends on would
2770 be different if the terminator had transferred control to a different
2771 successor.
2772- Dependence is transitive.
2773
Richard Smith32dbdf62014-07-31 04:25:36 +00002774Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2775with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002776on a poison value has undefined behavior.
2777
2778Here are some examples:
2779
2780.. code-block:: llvm
2781
2782 entry:
2783 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2784 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002785 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002786 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2787
2788 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002789 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002790
2791 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2792
2793 %narrowaddr = bitcast i32* @g to i16*
2794 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002795 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2796 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002797
2798 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2799 br i1 %cmp, label %true, label %end ; Branch to either destination.
2800
2801 true:
2802 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2803 ; it has undefined behavior.
2804 br label %end
2805
2806 end:
2807 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2808 ; Both edges into this PHI are
2809 ; control-dependent on %cmp, so this
2810 ; always results in a poison value.
2811
2812 store volatile i32 0, i32* @g ; This would depend on the store in %true
2813 ; if %cmp is true, or the store in %entry
2814 ; otherwise, so this is undefined behavior.
2815
2816 br i1 %cmp, label %second_true, label %second_end
2817 ; The same branch again, but this time the
2818 ; true block doesn't have side effects.
2819
2820 second_true:
2821 ; No side effects!
2822 ret void
2823
2824 second_end:
2825 store volatile i32 0, i32* @g ; This time, the instruction always depends
2826 ; on the store in %end. Also, it is
2827 ; control-equivalent to %end, so this is
2828 ; well-defined (ignoring earlier undefined
2829 ; behavior in this example).
2830
2831.. _blockaddress:
2832
2833Addresses of Basic Blocks
2834-------------------------
2835
2836``blockaddress(@function, %block)``
2837
2838The '``blockaddress``' constant computes the address of the specified
2839basic block in the specified function, and always has an ``i8*`` type.
2840Taking the address of the entry block is illegal.
2841
2842This value only has defined behavior when used as an operand to the
2843':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2844against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002845undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002846no label is equal to the null pointer. This may be passed around as an
2847opaque pointer sized value as long as the bits are not inspected. This
2848allows ``ptrtoint`` and arithmetic to be performed on these values so
2849long as the original value is reconstituted before the ``indirectbr``
2850instruction.
2851
2852Finally, some targets may provide defined semantics when using the value
2853as the operand to an inline assembly, but that is target specific.
2854
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002855.. _constantexprs:
2856
Sean Silvab084af42012-12-07 10:36:55 +00002857Constant Expressions
2858--------------------
2859
2860Constant expressions are used to allow expressions involving other
2861constants to be used as constants. Constant expressions may be of any
2862:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2863that does not have side effects (e.g. load and call are not supported).
2864The following is the syntax for constant expressions:
2865
2866``trunc (CST to TYPE)``
2867 Truncate a constant to another type. The bit size of CST must be
2868 larger than the bit size of TYPE. Both types must be integers.
2869``zext (CST to TYPE)``
2870 Zero extend a constant to another type. The bit size of CST must be
2871 smaller than the bit size of TYPE. Both types must be integers.
2872``sext (CST to TYPE)``
2873 Sign extend a constant to another type. The bit size of CST must be
2874 smaller than the bit size of TYPE. Both types must be integers.
2875``fptrunc (CST to TYPE)``
2876 Truncate a floating point constant to another floating point type.
2877 The size of CST must be larger than the size of TYPE. Both types
2878 must be floating point.
2879``fpext (CST to TYPE)``
2880 Floating point extend a constant to another type. The size of CST
2881 must be smaller or equal to the size of TYPE. Both types must be
2882 floating point.
2883``fptoui (CST to TYPE)``
2884 Convert a floating point constant to the corresponding unsigned
2885 integer constant. TYPE must be a scalar or vector integer type. CST
2886 must be of scalar or vector floating point type. Both CST and TYPE
2887 must be scalars, or vectors of the same number of elements. If the
2888 value won't fit in the integer type, the results are undefined.
2889``fptosi (CST to TYPE)``
2890 Convert a floating point constant to the corresponding signed
2891 integer constant. TYPE must be a scalar or vector integer type. CST
2892 must be of scalar or vector floating point type. Both CST and TYPE
2893 must be scalars, or vectors of the same number of elements. If the
2894 value won't fit in the integer type, the results are undefined.
2895``uitofp (CST to TYPE)``
2896 Convert an unsigned integer constant to the corresponding floating
2897 point constant. TYPE must be a scalar or vector floating point type.
2898 CST must be of scalar or vector integer type. Both CST and TYPE must
2899 be scalars, or vectors of the same number of elements. If the value
2900 won't fit in the floating point type, the results are undefined.
2901``sitofp (CST to TYPE)``
2902 Convert a signed integer constant to the corresponding floating
2903 point constant. TYPE must be a scalar or vector floating point type.
2904 CST must be of scalar or vector integer type. Both CST and TYPE must
2905 be scalars, or vectors of the same number of elements. If the value
2906 won't fit in the floating point type, the results are undefined.
2907``ptrtoint (CST to TYPE)``
2908 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002909 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002910 pointer type. The ``CST`` value is zero extended, truncated, or
2911 unchanged to make it fit in ``TYPE``.
2912``inttoptr (CST to TYPE)``
2913 Convert an integer constant to a pointer constant. TYPE must be a
2914 pointer type. CST must be of integer type. The CST value is zero
2915 extended, truncated, or unchanged to make it fit in a pointer size.
2916 This one is *really* dangerous!
2917``bitcast (CST to TYPE)``
2918 Convert a constant, CST, to another TYPE. The constraints of the
2919 operands are the same as those for the :ref:`bitcast
2920 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002921``addrspacecast (CST to TYPE)``
2922 Convert a constant pointer or constant vector of pointer, CST, to another
2923 TYPE in a different address space. The constraints of the operands are the
2924 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002925``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002926 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2927 constants. As with the :ref:`getelementptr <i_getelementptr>`
2928 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002929 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002930``select (COND, VAL1, VAL2)``
2931 Perform the :ref:`select operation <i_select>` on constants.
2932``icmp COND (VAL1, VAL2)``
2933 Performs the :ref:`icmp operation <i_icmp>` on constants.
2934``fcmp COND (VAL1, VAL2)``
2935 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2936``extractelement (VAL, IDX)``
2937 Perform the :ref:`extractelement operation <i_extractelement>` on
2938 constants.
2939``insertelement (VAL, ELT, IDX)``
2940 Perform the :ref:`insertelement operation <i_insertelement>` on
2941 constants.
2942``shufflevector (VEC1, VEC2, IDXMASK)``
2943 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2944 constants.
2945``extractvalue (VAL, IDX0, IDX1, ...)``
2946 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2947 constants. The index list is interpreted in a similar manner as
2948 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2949 least one index value must be specified.
2950``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2951 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2952 The index list is interpreted in a similar manner as indices in a
2953 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2954 value must be specified.
2955``OPCODE (LHS, RHS)``
2956 Perform the specified operation of the LHS and RHS constants. OPCODE
2957 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2958 binary <bitwiseops>` operations. The constraints on operands are
2959 the same as those for the corresponding instruction (e.g. no bitwise
2960 operations on floating point values are allowed).
2961
2962Other Values
2963============
2964
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002965.. _inlineasmexprs:
2966
Sean Silvab084af42012-12-07 10:36:55 +00002967Inline Assembler Expressions
2968----------------------------
2969
2970LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002971Inline Assembly <moduleasm>`) through the use of a special value. This value
2972represents the inline assembler as a template string (containing the
2973instructions to emit), a list of operand constraints (stored as a string), a
2974flag that indicates whether or not the inline asm expression has side effects,
2975and a flag indicating whether the function containing the asm needs to align its
2976stack conservatively.
2977
2978The template string supports argument substitution of the operands using "``$``"
2979followed by a number, to indicate substitution of the given register/memory
2980location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2981be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2982operand (See :ref:`inline-asm-modifiers`).
2983
2984A literal "``$``" may be included by using "``$$``" in the template. To include
2985other special characters into the output, the usual "``\XX``" escapes may be
2986used, just as in other strings. Note that after template substitution, the
2987resulting assembly string is parsed by LLVM's integrated assembler unless it is
2988disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2989syntax known to LLVM.
2990
2991LLVM's support for inline asm is modeled closely on the requirements of Clang's
2992GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2993modifier codes listed here are similar or identical to those in GCC's inline asm
2994support. However, to be clear, the syntax of the template and constraint strings
2995described here is *not* the same as the syntax accepted by GCC and Clang, and,
2996while most constraint letters are passed through as-is by Clang, some get
2997translated to other codes when converting from the C source to the LLVM
2998assembly.
2999
3000An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003001
3002.. code-block:: llvm
3003
3004 i32 (i32) asm "bswap $0", "=r,r"
3005
3006Inline assembler expressions may **only** be used as the callee operand
3007of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3008Thus, typically we have:
3009
3010.. code-block:: llvm
3011
3012 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3013
3014Inline asms with side effects not visible in the constraint list must be
3015marked as having side effects. This is done through the use of the
3016'``sideeffect``' keyword, like so:
3017
3018.. code-block:: llvm
3019
3020 call void asm sideeffect "eieio", ""()
3021
3022In some cases inline asms will contain code that will not work unless
3023the stack is aligned in some way, such as calls or SSE instructions on
3024x86, yet will not contain code that does that alignment within the asm.
3025The compiler should make conservative assumptions about what the asm
3026might contain and should generate its usual stack alignment code in the
3027prologue if the '``alignstack``' keyword is present:
3028
3029.. code-block:: llvm
3030
3031 call void asm alignstack "eieio", ""()
3032
3033Inline asms also support using non-standard assembly dialects. The
3034assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3035the inline asm is using the Intel dialect. Currently, ATT and Intel are
3036the only supported dialects. An example is:
3037
3038.. code-block:: llvm
3039
3040 call void asm inteldialect "eieio", ""()
3041
3042If multiple keywords appear the '``sideeffect``' keyword must come
3043first, the '``alignstack``' keyword second and the '``inteldialect``'
3044keyword last.
3045
James Y Knightbc832ed2015-07-08 18:08:36 +00003046Inline Asm Constraint String
3047^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3048
3049The constraint list is a comma-separated string, each element containing one or
3050more constraint codes.
3051
3052For each element in the constraint list an appropriate register or memory
3053operand will be chosen, and it will be made available to assembly template
3054string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3055second, etc.
3056
3057There are three different types of constraints, which are distinguished by a
3058prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3059constraints must always be given in that order: outputs first, then inputs, then
3060clobbers. They cannot be intermingled.
3061
3062There are also three different categories of constraint codes:
3063
3064- Register constraint. This is either a register class, or a fixed physical
3065 register. This kind of constraint will allocate a register, and if necessary,
3066 bitcast the argument or result to the appropriate type.
3067- Memory constraint. This kind of constraint is for use with an instruction
3068 taking a memory operand. Different constraints allow for different addressing
3069 modes used by the target.
3070- Immediate value constraint. This kind of constraint is for an integer or other
3071 immediate value which can be rendered directly into an instruction. The
3072 various target-specific constraints allow the selection of a value in the
3073 proper range for the instruction you wish to use it with.
3074
3075Output constraints
3076""""""""""""""""""
3077
3078Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3079indicates that the assembly will write to this operand, and the operand will
3080then be made available as a return value of the ``asm`` expression. Output
3081constraints do not consume an argument from the call instruction. (Except, see
3082below about indirect outputs).
3083
3084Normally, it is expected that no output locations are written to by the assembly
3085expression until *all* of the inputs have been read. As such, LLVM may assign
3086the same register to an output and an input. If this is not safe (e.g. if the
3087assembly contains two instructions, where the first writes to one output, and
3088the second reads an input and writes to a second output), then the "``&``"
3089modifier must be used (e.g. "``=&r``") to specify that the output is an
3090"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3091will not use the same register for any inputs (other than an input tied to this
3092output).
3093
3094Input constraints
3095"""""""""""""""""
3096
3097Input constraints do not have a prefix -- just the constraint codes. Each input
3098constraint will consume one argument from the call instruction. It is not
3099permitted for the asm to write to any input register or memory location (unless
3100that input is tied to an output). Note also that multiple inputs may all be
3101assigned to the same register, if LLVM can determine that they necessarily all
3102contain the same value.
3103
3104Instead of providing a Constraint Code, input constraints may also "tie"
3105themselves to an output constraint, by providing an integer as the constraint
3106string. Tied inputs still consume an argument from the call instruction, and
3107take up a position in the asm template numbering as is usual -- they will simply
3108be constrained to always use the same register as the output they've been tied
3109to. For example, a constraint string of "``=r,0``" says to assign a register for
3110output, and use that register as an input as well (it being the 0'th
3111constraint).
3112
3113It is permitted to tie an input to an "early-clobber" output. In that case, no
3114*other* input may share the same register as the input tied to the early-clobber
3115(even when the other input has the same value).
3116
3117You may only tie an input to an output which has a register constraint, not a
3118memory constraint. Only a single input may be tied to an output.
3119
3120There is also an "interesting" feature which deserves a bit of explanation: if a
3121register class constraint allocates a register which is too small for the value
3122type operand provided as input, the input value will be split into multiple
3123registers, and all of them passed to the inline asm.
3124
3125However, this feature is often not as useful as you might think.
3126
3127Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3128architectures that have instructions which operate on multiple consecutive
3129instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3130SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3131hardware then loads into both the named register, and the next register. This
3132feature of inline asm would not be useful to support that.)
3133
3134A few of the targets provide a template string modifier allowing explicit access
3135to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3136``D``). On such an architecture, you can actually access the second allocated
3137register (yet, still, not any subsequent ones). But, in that case, you're still
3138probably better off simply splitting the value into two separate operands, for
3139clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3140despite existing only for use with this feature, is not really a good idea to
3141use)
3142
3143Indirect inputs and outputs
3144"""""""""""""""""""""""""""
3145
3146Indirect output or input constraints can be specified by the "``*``" modifier
3147(which goes after the "``=``" in case of an output). This indicates that the asm
3148will write to or read from the contents of an *address* provided as an input
3149argument. (Note that in this way, indirect outputs act more like an *input* than
3150an output: just like an input, they consume an argument of the call expression,
3151rather than producing a return value. An indirect output constraint is an
3152"output" only in that the asm is expected to write to the contents of the input
3153memory location, instead of just read from it).
3154
3155This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3156address of a variable as a value.
3157
3158It is also possible to use an indirect *register* constraint, but only on output
3159(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3160value normally, and then, separately emit a store to the address provided as
3161input, after the provided inline asm. (It's not clear what value this
3162functionality provides, compared to writing the store explicitly after the asm
3163statement, and it can only produce worse code, since it bypasses many
3164optimization passes. I would recommend not using it.)
3165
3166
3167Clobber constraints
3168"""""""""""""""""""
3169
3170A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3171consume an input operand, nor generate an output. Clobbers cannot use any of the
3172general constraint code letters -- they may use only explicit register
3173constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3174"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3175memory locations -- not only the memory pointed to by a declared indirect
3176output.
3177
3178
3179Constraint Codes
3180""""""""""""""""
3181After a potential prefix comes constraint code, or codes.
3182
3183A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3184followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3185(e.g. "``{eax}``").
3186
3187The one and two letter constraint codes are typically chosen to be the same as
3188GCC's constraint codes.
3189
3190A single constraint may include one or more than constraint code in it, leaving
3191it up to LLVM to choose which one to use. This is included mainly for
3192compatibility with the translation of GCC inline asm coming from clang.
3193
3194There are two ways to specify alternatives, and either or both may be used in an
3195inline asm constraint list:
3196
31971) Append the codes to each other, making a constraint code set. E.g. "``im``"
3198 or "``{eax}m``". This means "choose any of the options in the set". The
3199 choice of constraint is made independently for each constraint in the
3200 constraint list.
3201
32022) Use "``|``" between constraint code sets, creating alternatives. Every
3203 constraint in the constraint list must have the same number of alternative
3204 sets. With this syntax, the same alternative in *all* of the items in the
3205 constraint list will be chosen together.
3206
3207Putting those together, you might have a two operand constraint string like
3208``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3209operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3210may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3211
3212However, the use of either of the alternatives features is *NOT* recommended, as
3213LLVM is not able to make an intelligent choice about which one to use. (At the
3214point it currently needs to choose, not enough information is available to do so
3215in a smart way.) Thus, it simply tries to make a choice that's most likely to
3216compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3217always choose to use memory, not registers). And, if given multiple registers,
3218or multiple register classes, it will simply choose the first one. (In fact, it
3219doesn't currently even ensure explicitly specified physical registers are
3220unique, so specifying multiple physical registers as alternatives, like
3221``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3222intended.)
3223
3224Supported Constraint Code List
3225""""""""""""""""""""""""""""""
3226
3227The constraint codes are, in general, expected to behave the same way they do in
3228GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3229inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3230and GCC likely indicates a bug in LLVM.
3231
3232Some constraint codes are typically supported by all targets:
3233
3234- ``r``: A register in the target's general purpose register class.
3235- ``m``: A memory address operand. It is target-specific what addressing modes
3236 are supported, typical examples are register, or register + register offset,
3237 or register + immediate offset (of some target-specific size).
3238- ``i``: An integer constant (of target-specific width). Allows either a simple
3239 immediate, or a relocatable value.
3240- ``n``: An integer constant -- *not* including relocatable values.
3241- ``s``: An integer constant, but allowing *only* relocatable values.
3242- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3243 useful to pass a label for an asm branch or call.
3244
3245 .. FIXME: but that surely isn't actually okay to jump out of an asm
3246 block without telling llvm about the control transfer???)
3247
3248- ``{register-name}``: Requires exactly the named physical register.
3249
3250Other constraints are target-specific:
3251
3252AArch64:
3253
3254- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3255- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3256 i.e. 0 to 4095 with optional shift by 12.
3257- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3258 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3259- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3260 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3261- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3262 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3263- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3264 32-bit register. This is a superset of ``K``: in addition to the bitmask
3265 immediate, also allows immediate integers which can be loaded with a single
3266 ``MOVZ`` or ``MOVL`` instruction.
3267- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3268 64-bit register. This is a superset of ``L``.
3269- ``Q``: Memory address operand must be in a single register (no
3270 offsets). (However, LLVM currently does this for the ``m`` constraint as
3271 well.)
3272- ``r``: A 32 or 64-bit integer register (W* or X*).
3273- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3274- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3275
3276AMDGPU:
3277
3278- ``r``: A 32 or 64-bit integer register.
3279- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3280- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3281
3282
3283All ARM modes:
3284
3285- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3286 operand. Treated the same as operand ``m``, at the moment.
3287
3288ARM and ARM's Thumb2 mode:
3289
3290- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3291- ``I``: An immediate integer valid for a data-processing instruction.
3292- ``J``: An immediate integer between -4095 and 4095.
3293- ``K``: An immediate integer whose bitwise inverse is valid for a
3294 data-processing instruction. (Can be used with template modifier "``B``" to
3295 print the inverted value).
3296- ``L``: An immediate integer whose negation is valid for a data-processing
3297 instruction. (Can be used with template modifier "``n``" to print the negated
3298 value).
3299- ``M``: A power of two or a integer between 0 and 32.
3300- ``N``: Invalid immediate constraint.
3301- ``O``: Invalid immediate constraint.
3302- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3303- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3304 as ``r``.
3305- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3306 invalid.
3307- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3308 ``d0-d31``, or ``q0-q15``.
3309- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3310 ``d0-d7``, or ``q0-q3``.
3311- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3312 ``s0-s31``.
3313
3314ARM's Thumb1 mode:
3315
3316- ``I``: An immediate integer between 0 and 255.
3317- ``J``: An immediate integer between -255 and -1.
3318- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3319 some amount.
3320- ``L``: An immediate integer between -7 and 7.
3321- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3322- ``N``: An immediate integer between 0 and 31.
3323- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3324- ``r``: A low 32-bit GPR register (``r0-r7``).
3325- ``l``: A low 32-bit GPR register (``r0-r7``).
3326- ``h``: A high GPR register (``r0-r7``).
3327- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3328 ``d0-d31``, or ``q0-q15``.
3329- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3330 ``d0-d7``, or ``q0-q3``.
3331- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3332 ``s0-s31``.
3333
3334
3335Hexagon:
3336
3337- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3338 at the moment.
3339- ``r``: A 32 or 64-bit register.
3340
3341MSP430:
3342
3343- ``r``: An 8 or 16-bit register.
3344
3345MIPS:
3346
3347- ``I``: An immediate signed 16-bit integer.
3348- ``J``: An immediate integer zero.
3349- ``K``: An immediate unsigned 16-bit integer.
3350- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3351- ``N``: An immediate integer between -65535 and -1.
3352- ``O``: An immediate signed 15-bit integer.
3353- ``P``: An immediate integer between 1 and 65535.
3354- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3355 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3356- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3357 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3358 ``m``.
3359- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3360 ``sc`` instruction on the given subtarget (details vary).
3361- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3362- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003363 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3364 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003365- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3366 ``25``).
3367- ``l``: The ``lo`` register, 32 or 64-bit.
3368- ``x``: Invalid.
3369
3370NVPTX:
3371
3372- ``b``: A 1-bit integer register.
3373- ``c`` or ``h``: A 16-bit integer register.
3374- ``r``: A 32-bit integer register.
3375- ``l`` or ``N``: A 64-bit integer register.
3376- ``f``: A 32-bit float register.
3377- ``d``: A 64-bit float register.
3378
3379
3380PowerPC:
3381
3382- ``I``: An immediate signed 16-bit integer.
3383- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3384- ``K``: An immediate unsigned 16-bit integer.
3385- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3386- ``M``: An immediate integer greater than 31.
3387- ``N``: An immediate integer that is an exact power of 2.
3388- ``O``: The immediate integer constant 0.
3389- ``P``: An immediate integer constant whose negation is a signed 16-bit
3390 constant.
3391- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3392 treated the same as ``m``.
3393- ``r``: A 32 or 64-bit integer register.
3394- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3395 ``R1-R31``).
3396- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3397 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3398- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3399 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3400 altivec vector register (``V0-V31``).
3401
3402 .. FIXME: is this a bug that v accepts QPX registers? I think this
3403 is supposed to only use the altivec vector registers?
3404
3405- ``y``: Condition register (``CR0-CR7``).
3406- ``wc``: An individual CR bit in a CR register.
3407- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3408 register set (overlapping both the floating-point and vector register files).
3409- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3410 set.
3411
3412Sparc:
3413
3414- ``I``: An immediate 13-bit signed integer.
3415- ``r``: A 32-bit integer register.
3416
3417SystemZ:
3418
3419- ``I``: An immediate unsigned 8-bit integer.
3420- ``J``: An immediate unsigned 12-bit integer.
3421- ``K``: An immediate signed 16-bit integer.
3422- ``L``: An immediate signed 20-bit integer.
3423- ``M``: An immediate integer 0x7fffffff.
3424- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3425 ``m``, at the moment.
3426- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3427- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3428 address context evaluates as zero).
3429- ``h``: A 32-bit value in the high part of a 64bit data register
3430 (LLVM-specific)
3431- ``f``: A 32, 64, or 128-bit floating point register.
3432
3433X86:
3434
3435- ``I``: An immediate integer between 0 and 31.
3436- ``J``: An immediate integer between 0 and 64.
3437- ``K``: An immediate signed 8-bit integer.
3438- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3439 0xffffffff.
3440- ``M``: An immediate integer between 0 and 3.
3441- ``N``: An immediate unsigned 8-bit integer.
3442- ``O``: An immediate integer between 0 and 127.
3443- ``e``: An immediate 32-bit signed integer.
3444- ``Z``: An immediate 32-bit unsigned integer.
3445- ``o``, ``v``: Treated the same as ``m``, at the moment.
3446- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3447 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3448 registers, and on X86-64, it is all of the integer registers.
3449- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3450 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3451- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3452- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3453 existed since i386, and can be accessed without the REX prefix.
3454- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3455- ``y``: A 64-bit MMX register, if MMX is enabled.
3456- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3457 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3458 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3459 512-bit vector operand in an AVX512 register, Otherwise, an error.
3460- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3461- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3462 32-bit mode, a 64-bit integer operand will get split into two registers). It
3463 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3464 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3465 you're better off splitting it yourself, before passing it to the asm
3466 statement.
3467
3468XCore:
3469
3470- ``r``: A 32-bit integer register.
3471
3472
3473.. _inline-asm-modifiers:
3474
3475Asm template argument modifiers
3476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3477
3478In the asm template string, modifiers can be used on the operand reference, like
3479"``${0:n}``".
3480
3481The modifiers are, in general, expected to behave the same way they do in
3482GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3483inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3484and GCC likely indicates a bug in LLVM.
3485
3486Target-independent:
3487
Sean Silvaa1190322015-08-06 22:56:48 +00003488- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003489 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3490- ``n``: Negate and print immediate integer constant unadorned, without the
3491 target-specific immediate punctuation (e.g. no ``$`` prefix).
3492- ``l``: Print as an unadorned label, without the target-specific label
3493 punctuation (e.g. no ``$`` prefix).
3494
3495AArch64:
3496
3497- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3498 instead of ``x30``, print ``w30``.
3499- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3500- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3501 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3502 ``v*``.
3503
3504AMDGPU:
3505
3506- ``r``: No effect.
3507
3508ARM:
3509
3510- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3511 register).
3512- ``P``: No effect.
3513- ``q``: No effect.
3514- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3515 as ``d4[1]`` instead of ``s9``)
3516- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3517 prefix.
3518- ``L``: Print the low 16-bits of an immediate integer constant.
3519- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3520 register operands subsequent to the specified one (!), so use carefully.
3521- ``Q``: Print the low-order register of a register-pair, or the low-order
3522 register of a two-register operand.
3523- ``R``: Print the high-order register of a register-pair, or the high-order
3524 register of a two-register operand.
3525- ``H``: Print the second register of a register-pair. (On a big-endian system,
3526 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3527 to ``R``.)
3528
3529 .. FIXME: H doesn't currently support printing the second register
3530 of a two-register operand.
3531
3532- ``e``: Print the low doubleword register of a NEON quad register.
3533- ``f``: Print the high doubleword register of a NEON quad register.
3534- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3535 adornment.
3536
3537Hexagon:
3538
3539- ``L``: Print the second register of a two-register operand. Requires that it
3540 has been allocated consecutively to the first.
3541
3542 .. FIXME: why is it restricted to consecutive ones? And there's
3543 nothing that ensures that happens, is there?
3544
3545- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3546 nothing. Used to print 'addi' vs 'add' instructions.
3547
3548MSP430:
3549
3550No additional modifiers.
3551
3552MIPS:
3553
3554- ``X``: Print an immediate integer as hexadecimal
3555- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3556- ``d``: Print an immediate integer as decimal.
3557- ``m``: Subtract one and print an immediate integer as decimal.
3558- ``z``: Print $0 if an immediate zero, otherwise print normally.
3559- ``L``: Print the low-order register of a two-register operand, or prints the
3560 address of the low-order word of a double-word memory operand.
3561
3562 .. FIXME: L seems to be missing memory operand support.
3563
3564- ``M``: Print the high-order register of a two-register operand, or prints the
3565 address of the high-order word of a double-word memory operand.
3566
3567 .. FIXME: M seems to be missing memory operand support.
3568
3569- ``D``: Print the second register of a two-register operand, or prints the
3570 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3571 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3572 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003573- ``w``: No effect. Provided for compatibility with GCC which requires this
3574 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3575 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003576
3577NVPTX:
3578
3579- ``r``: No effect.
3580
3581PowerPC:
3582
3583- ``L``: Print the second register of a two-register operand. Requires that it
3584 has been allocated consecutively to the first.
3585
3586 .. FIXME: why is it restricted to consecutive ones? And there's
3587 nothing that ensures that happens, is there?
3588
3589- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3590 nothing. Used to print 'addi' vs 'add' instructions.
3591- ``y``: For a memory operand, prints formatter for a two-register X-form
3592 instruction. (Currently always prints ``r0,OPERAND``).
3593- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3594 otherwise. (NOTE: LLVM does not support update form, so this will currently
3595 always print nothing)
3596- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3597 not support indexed form, so this will currently always print nothing)
3598
3599Sparc:
3600
3601- ``r``: No effect.
3602
3603SystemZ:
3604
3605SystemZ implements only ``n``, and does *not* support any of the other
3606target-independent modifiers.
3607
3608X86:
3609
3610- ``c``: Print an unadorned integer or symbol name. (The latter is
3611 target-specific behavior for this typically target-independent modifier).
3612- ``A``: Print a register name with a '``*``' before it.
3613- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3614 operand.
3615- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3616 memory operand.
3617- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3618 operand.
3619- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3620 operand.
3621- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3622 available, otherwise the 32-bit register name; do nothing on a memory operand.
3623- ``n``: Negate and print an unadorned integer, or, for operands other than an
3624 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3625 the operand. (The behavior for relocatable symbol expressions is a
3626 target-specific behavior for this typically target-independent modifier)
3627- ``H``: Print a memory reference with additional offset +8.
3628- ``P``: Print a memory reference or operand for use as the argument of a call
3629 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3630
3631XCore:
3632
3633No additional modifiers.
3634
3635
Sean Silvab084af42012-12-07 10:36:55 +00003636Inline Asm Metadata
3637^^^^^^^^^^^^^^^^^^^
3638
3639The call instructions that wrap inline asm nodes may have a
3640"``!srcloc``" MDNode attached to it that contains a list of constant
3641integers. If present, the code generator will use the integer as the
3642location cookie value when report errors through the ``LLVMContext``
3643error reporting mechanisms. This allows a front-end to correlate backend
3644errors that occur with inline asm back to the source code that produced
3645it. For example:
3646
3647.. code-block:: llvm
3648
3649 call void asm sideeffect "something bad", ""(), !srcloc !42
3650 ...
3651 !42 = !{ i32 1234567 }
3652
3653It is up to the front-end to make sense of the magic numbers it places
3654in the IR. If the MDNode contains multiple constants, the code generator
3655will use the one that corresponds to the line of the asm that the error
3656occurs on.
3657
3658.. _metadata:
3659
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003660Metadata
3661========
Sean Silvab084af42012-12-07 10:36:55 +00003662
3663LLVM IR allows metadata to be attached to instructions in the program
3664that can convey extra information about the code to the optimizers and
3665code generator. One example application of metadata is source-level
3666debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003667
Sean Silvaa1190322015-08-06 22:56:48 +00003668Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003669``call`` instruction, it uses the ``metadata`` type.
3670
3671All metadata are identified in syntax by a exclamation point ('``!``').
3672
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003673.. _metadata-string:
3674
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003675Metadata Nodes and Metadata Strings
3676-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003677
3678A metadata string is a string surrounded by double quotes. It can
3679contain any character by escaping non-printable characters with
3680"``\xx``" where "``xx``" is the two digit hex code. For example:
3681"``!"test\00"``".
3682
3683Metadata nodes are represented with notation similar to structure
3684constants (a comma separated list of elements, surrounded by braces and
3685preceded by an exclamation point). Metadata nodes can have any values as
3686their operand. For example:
3687
3688.. code-block:: llvm
3689
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003690 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003691
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003692Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3693
3694.. code-block:: llvm
3695
3696 !0 = distinct !{!"test\00", i32 10}
3697
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003698``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003699content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003700when metadata operands change.
3701
Sean Silvab084af42012-12-07 10:36:55 +00003702A :ref:`named metadata <namedmetadatastructure>` is a collection of
3703metadata nodes, which can be looked up in the module symbol table. For
3704example:
3705
3706.. code-block:: llvm
3707
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003708 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003709
3710Metadata can be used as function arguments. Here ``llvm.dbg.value``
3711function is using two metadata arguments:
3712
3713.. code-block:: llvm
3714
3715 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3716
Peter Collingbourne50108682015-11-06 02:41:02 +00003717Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3718to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003719
3720.. code-block:: llvm
3721
3722 %indvar.next = add i64 %indvar, 1, !dbg !21
3723
Peter Collingbourne50108682015-11-06 02:41:02 +00003724Metadata can also be attached to a function definition. Here metadata ``!22``
3725is attached to the ``foo`` function using the ``!dbg`` identifier:
3726
3727.. code-block:: llvm
3728
3729 define void @foo() !dbg !22 {
3730 ret void
3731 }
3732
Sean Silvab084af42012-12-07 10:36:55 +00003733More information about specific metadata nodes recognized by the
3734optimizers and code generator is found below.
3735
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003736.. _specialized-metadata:
3737
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003738Specialized Metadata Nodes
3739^^^^^^^^^^^^^^^^^^^^^^^^^^
3740
3741Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003742to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003743order.
3744
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003745These aren't inherently debug info centric, but currently all the specialized
3746metadata nodes are related to debug info.
3747
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003748.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003749
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003750DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003751"""""""""""""
3752
Sean Silvaa1190322015-08-06 22:56:48 +00003753``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003754``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3755fields are tuples containing the debug info to be emitted along with the compile
3756unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003757references to them from instructions).
3758
3759.. code-block:: llvm
3760
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003761 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003762 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3763 splitDebugFilename: "abc.debug", emissionKind: 1,
3764 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003765 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003766
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003767Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003768specific compilation unit. File descriptors are defined using this scope.
3769These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003770keep track of subprograms, global variables, type information, and imported
3771entities (declarations and namespaces).
3772
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003773.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003774
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003775DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003776""""""
3777
Sean Silvaa1190322015-08-06 22:56:48 +00003778``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003779
3780.. code-block:: llvm
3781
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003782 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003784Files are sometimes used in ``scope:`` fields, and are the only valid target
3785for ``file:`` fields.
3786
Michael Kuperstein605308a2015-05-14 10:58:59 +00003787.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003788
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003789DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790"""""""""""
3791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003793``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003794
3795.. code-block:: llvm
3796
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003797 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003798 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003799 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003800
Sean Silvaa1190322015-08-06 22:56:48 +00003801The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003802following:
3803
3804.. code-block:: llvm
3805
3806 DW_ATE_address = 1
3807 DW_ATE_boolean = 2
3808 DW_ATE_float = 4
3809 DW_ATE_signed = 5
3810 DW_ATE_signed_char = 6
3811 DW_ATE_unsigned = 7
3812 DW_ATE_unsigned_char = 8
3813
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003814.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003815
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003816DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003817""""""""""""""""
3818
Sean Silvaa1190322015-08-06 22:56:48 +00003819``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003820refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003821types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003822represents a function with no return value (such as ``void foo() {}`` in C++).
3823
3824.. code-block:: llvm
3825
3826 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3827 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003828 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003829
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003830.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003831
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003832DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003833"""""""""""""
3834
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003835``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003836qualified types.
3837
3838.. code-block:: llvm
3839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003842 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003843 align: 32)
3844
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003845The following ``tag:`` values are valid:
3846
3847.. code-block:: llvm
3848
3849 DW_TAG_formal_parameter = 5
3850 DW_TAG_member = 13
3851 DW_TAG_pointer_type = 15
3852 DW_TAG_reference_type = 16
3853 DW_TAG_typedef = 22
3854 DW_TAG_ptr_to_member_type = 31
3855 DW_TAG_const_type = 38
3856 DW_TAG_volatile_type = 53
3857 DW_TAG_restrict_type = 55
3858
3859``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003860<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3861is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003862``DW_TAG_formal_parameter`` is used to define a member which is a formal
3863argument of a subprogram.
3864
3865``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3866
3867``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3868``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3869``baseType:``.
3870
3871Note that the ``void *`` type is expressed as a type derived from NULL.
3872
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003873.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003874
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003875DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876"""""""""""""""
3877
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003878``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003879structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003880
3881If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003882identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003883can refer to composite types indirectly via a :ref:`metadata string
3884<metadata-string>` that matches their identifier.
3885
3886.. code-block:: llvm
3887
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003888 !0 = !DIEnumerator(name: "SixKind", value: 7)
3889 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3890 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3891 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003892 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3893 elements: !{!0, !1, !2})
3894
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003895The following ``tag:`` values are valid:
3896
3897.. code-block:: llvm
3898
3899 DW_TAG_array_type = 1
3900 DW_TAG_class_type = 2
3901 DW_TAG_enumeration_type = 4
3902 DW_TAG_structure_type = 19
3903 DW_TAG_union_type = 23
3904 DW_TAG_subroutine_type = 21
3905 DW_TAG_inheritance = 28
3906
3907
3908For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003909descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003910level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003911array type is a native packed vector.
3912
3913For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003914descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003915value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003917
3918For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3919``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003921
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003922.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003923
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003924DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003925""""""""""
3926
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003927``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003928:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003929
3930.. code-block:: llvm
3931
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003932 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3933 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3934 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003936.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003937
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003938DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939""""""""""""
3940
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003941``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3942variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003943
3944.. code-block:: llvm
3945
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946 !0 = !DIEnumerator(name: "SixKind", value: 7)
3947 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3948 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003950DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003951"""""""""""""""""""""""
3952
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003954language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003955:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003956
3957.. code-block:: llvm
3958
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003959 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003961DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003962""""""""""""""""""""""""
3963
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003964``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003965language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003967``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969
3970.. code-block:: llvm
3971
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003972 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003973
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003974DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003975"""""""""""
3976
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003977``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003978
3979.. code-block:: llvm
3980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003981 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003983DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003984""""""""""""""""
3985
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003986``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003987
3988.. code-block:: llvm
3989
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003990 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003991 file: !2, line: 7, type: !3, isLocal: true,
3992 isDefinition: false, variable: i32* @foo,
3993 declaration: !4)
3994
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003995All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003996:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003997
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003998.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003999
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004000DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001""""""""""""
4002
Peter Collingbourne50108682015-11-06 02:41:02 +00004003``DISubprogram`` nodes represent functions from the source language. A
4004``DISubprogram`` may be attached to a function definition using ``!dbg``
4005metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4006that must be retained, even if their IR counterparts are optimized out of
4007the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004008
4009.. code-block:: llvm
4010
Peter Collingbourne50108682015-11-06 02:41:02 +00004011 define void @_Z3foov() !dbg !0 {
4012 ...
4013 }
4014
4015 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4016 file: !2, line: 7, type: !3, isLocal: true,
4017 isDefinition: false, scopeLine: 8,
4018 containingType: !4,
4019 virtuality: DW_VIRTUALITY_pure_virtual,
4020 virtualIndex: 10, flags: DIFlagPrototyped,
4021 isOptimized: true, templateParams: !5,
4022 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004024.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004025
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004026DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004027""""""""""""""
4028
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004029``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004030<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004031two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004032fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033
4034.. code-block:: llvm
4035
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004037
4038Usually lexical blocks are ``distinct`` to prevent node merging based on
4039operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004040
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004041.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004042
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004043DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004044""""""""""""""""""
4045
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004047:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004048indicate textual inclusion, or the ``discriminator:`` field can be used to
4049discriminate between control flow within a single block in the source language.
4050
4051.. code-block:: llvm
4052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4054 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4055 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004056
Michael Kuperstein605308a2015-05-14 10:58:59 +00004057.. _DILocation:
4058
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004059DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004060""""""""""
4061
Sean Silvaa1190322015-08-06 22:56:48 +00004062``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063mandatory, and points at an :ref:`DILexicalBlockFile`, an
4064:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004065
4066.. code-block:: llvm
4067
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004068 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004069
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004070.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004071
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004072DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004073"""""""""""""""
4074
Sean Silvaa1190322015-08-06 22:56:48 +00004075``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004076the ``arg:`` field is set to non-zero, then this variable is a subprogram
4077parameter, and it will be included in the ``variables:`` field of its
4078:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004079
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004080.. code-block:: llvm
4081
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004082 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4083 type: !3, flags: DIFlagArtificial)
4084 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4085 type: !3)
4086 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004087
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004088DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004089""""""""""""
4090
Sean Silvaa1190322015-08-06 22:56:48 +00004091``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004092:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4093describe how the referenced LLVM variable relates to the source language
4094variable.
4095
4096The current supported vocabulary is limited:
4097
4098- ``DW_OP_deref`` dereferences the working expression.
4099- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4100- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4101 here, respectively) of the variable piece from the working expression.
4102
4103.. code-block:: llvm
4104
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004105 !0 = !DIExpression(DW_OP_deref)
4106 !1 = !DIExpression(DW_OP_plus, 3)
4107 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4108 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004109
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004110DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111""""""""""""""
4112
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004113``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004114
4115.. code-block:: llvm
4116
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004117 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004118 getter: "getFoo", attributes: 7, type: !2)
4119
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004121""""""""""""""""
4122
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004123``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124compile unit.
4125
4126.. code-block:: llvm
4127
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004128 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004129 entity: !1, line: 7)
4130
Amjad Abouda9bcf162015-12-10 12:56:35 +00004131DIMacro
4132"""""""
4133
4134``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4135The ``name:`` field is the macro identifier, followed by macro parameters when
4136definining a function-like macro, and the ``value`` field is the token-string
4137used to expand the macro identifier.
4138
4139.. code-block:: llvm
4140
4141 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4142 value: "((x) + 1)")
4143 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4144
4145DIMacroFile
4146"""""""""""
4147
4148``DIMacroFile`` nodes represent inclusion of source files.
4149The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4150appear in the included source file.
4151
4152.. code-block:: llvm
4153
4154 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4155 nodes: !3)
4156
Sean Silvab084af42012-12-07 10:36:55 +00004157'``tbaa``' Metadata
4158^^^^^^^^^^^^^^^^^^^
4159
4160In LLVM IR, memory does not have types, so LLVM's own type system is not
4161suitable for doing TBAA. Instead, metadata is added to the IR to
4162describe a type system of a higher level language. This can be used to
4163implement typical C/C++ TBAA, but it can also be used to implement
4164custom alias analysis behavior for other languages.
4165
4166The current metadata format is very simple. TBAA metadata nodes have up
4167to three fields, e.g.:
4168
4169.. code-block:: llvm
4170
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004171 !0 = !{ !"an example type tree" }
4172 !1 = !{ !"int", !0 }
4173 !2 = !{ !"float", !0 }
4174 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004175
4176The first field is an identity field. It can be any value, usually a
4177metadata string, which uniquely identifies the type. The most important
4178name in the tree is the name of the root node. Two trees with different
4179root node names are entirely disjoint, even if they have leaves with
4180common names.
4181
4182The second field identifies the type's parent node in the tree, or is
4183null or omitted for a root node. A type is considered to alias all of
4184its descendants and all of its ancestors in the tree. Also, a type is
4185considered to alias all types in other trees, so that bitcode produced
4186from multiple front-ends is handled conservatively.
4187
4188If the third field is present, it's an integer which if equal to 1
4189indicates that the type is "constant" (meaning
4190``pointsToConstantMemory`` should return true; see `other useful
4191AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4192
4193'``tbaa.struct``' Metadata
4194^^^^^^^^^^^^^^^^^^^^^^^^^^
4195
4196The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4197aggregate assignment operations in C and similar languages, however it
4198is defined to copy a contiguous region of memory, which is more than
4199strictly necessary for aggregate types which contain holes due to
4200padding. Also, it doesn't contain any TBAA information about the fields
4201of the aggregate.
4202
4203``!tbaa.struct`` metadata can describe which memory subregions in a
4204memcpy are padding and what the TBAA tags of the struct are.
4205
4206The current metadata format is very simple. ``!tbaa.struct`` metadata
4207nodes are a list of operands which are in conceptual groups of three.
4208For each group of three, the first operand gives the byte offset of a
4209field in bytes, the second gives its size in bytes, and the third gives
4210its tbaa tag. e.g.:
4211
4212.. code-block:: llvm
4213
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004214 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004215
4216This describes a struct with two fields. The first is at offset 0 bytes
4217with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4218and has size 4 bytes and has tbaa tag !2.
4219
4220Note that the fields need not be contiguous. In this example, there is a
42214 byte gap between the two fields. This gap represents padding which
4222does not carry useful data and need not be preserved.
4223
Hal Finkel94146652014-07-24 14:25:39 +00004224'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004226
4227``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4228noalias memory-access sets. This means that some collection of memory access
4229instructions (loads, stores, memory-accessing calls, etc.) that carry
4230``noalias`` metadata can specifically be specified not to alias with some other
4231collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004232Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004233a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004234of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004235subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004236instruction's ``noalias`` list, then the two memory accesses are assumed not to
4237alias.
Hal Finkel94146652014-07-24 14:25:39 +00004238
Hal Finkel029cde62014-07-25 15:50:02 +00004239The metadata identifying each domain is itself a list containing one or two
4240entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004241string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004242self-reference can be used to create globally unique domain names. A
4243descriptive string may optionally be provided as a second list entry.
4244
4245The metadata identifying each scope is also itself a list containing two or
4246three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004247is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004248self-reference can be used to create globally unique scope names. A metadata
4249reference to the scope's domain is the second entry. A descriptive string may
4250optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004251
4252For example,
4253
4254.. code-block:: llvm
4255
Hal Finkel029cde62014-07-25 15:50:02 +00004256 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004257 !0 = !{!0}
4258 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004259
Hal Finkel029cde62014-07-25 15:50:02 +00004260 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004261 !2 = !{!2, !0}
4262 !3 = !{!3, !0}
4263 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004264
Hal Finkel029cde62014-07-25 15:50:02 +00004265 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004266 !5 = !{!4} ; A list containing only scope !4
4267 !6 = !{!4, !3, !2}
4268 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004269
4270 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004271 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004272 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004273
Hal Finkel029cde62014-07-25 15:50:02 +00004274 ; These two instructions also don't alias (for domain !1, the set of scopes
4275 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004276 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004277 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004278
Adam Nemet0a8416f2015-05-11 08:30:28 +00004279 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004280 ; the !noalias list is not a superset of, or equal to, the scopes in the
4281 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004282 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004283 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004284
Sean Silvab084af42012-12-07 10:36:55 +00004285'``fpmath``' Metadata
4286^^^^^^^^^^^^^^^^^^^^^
4287
4288``fpmath`` metadata may be attached to any instruction of floating point
4289type. It can be used to express the maximum acceptable error in the
4290result of that instruction, in ULPs, thus potentially allowing the
4291compiler to use a more efficient but less accurate method of computing
4292it. ULP is defined as follows:
4293
4294 If ``x`` is a real number that lies between two finite consecutive
4295 floating-point numbers ``a`` and ``b``, without being equal to one
4296 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4297 distance between the two non-equal finite floating-point numbers
4298 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4299
4300The metadata node shall consist of a single positive floating point
4301number representing the maximum relative error, for example:
4302
4303.. code-block:: llvm
4304
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004305 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004306
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004307.. _range-metadata:
4308
Sean Silvab084af42012-12-07 10:36:55 +00004309'``range``' Metadata
4310^^^^^^^^^^^^^^^^^^^^
4311
Jingyue Wu37fcb592014-06-19 16:50:16 +00004312``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4313integer types. It expresses the possible ranges the loaded value or the value
4314returned by the called function at this call site is in. The ranges are
4315represented with a flattened list of integers. The loaded value or the value
4316returned is known to be in the union of the ranges defined by each consecutive
4317pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004318
4319- The type must match the type loaded by the instruction.
4320- The pair ``a,b`` represents the range ``[a,b)``.
4321- Both ``a`` and ``b`` are constants.
4322- The range is allowed to wrap.
4323- The range should not represent the full or empty set. That is,
4324 ``a!=b``.
4325
4326In addition, the pairs must be in signed order of the lower bound and
4327they must be non-contiguous.
4328
4329Examples:
4330
4331.. code-block:: llvm
4332
David Blaikiec7aabbb2015-03-04 22:06:14 +00004333 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4334 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004335 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4336 %d = invoke i8 @bar() to label %cont
4337 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004338 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004339 !0 = !{ i8 0, i8 2 }
4340 !1 = !{ i8 255, i8 2 }
4341 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4342 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004343
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004344'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004345^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004346
4347``unpredictable`` metadata may be attached to any branch or switch
4348instruction. It can be used to express the unpredictability of control
4349flow. Similar to the llvm.expect intrinsic, it may be used to alter
4350optimizations related to compare and branch instructions. The metadata
4351is treated as a boolean value; if it exists, it signals that the branch
4352or switch that it is attached to is completely unpredictable.
4353
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004354'``llvm.loop``'
4355^^^^^^^^^^^^^^^
4356
4357It is sometimes useful to attach information to loop constructs. Currently,
4358loop metadata is implemented as metadata attached to the branch instruction
4359in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004360guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004361specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004362
4363The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004364itself to avoid merging it with any other identifier metadata, e.g.,
4365during module linkage or function inlining. That is, each loop should refer
4366to their own identification metadata even if they reside in separate functions.
4367The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004368constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004369
4370.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004371
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004372 !0 = !{!0}
4373 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004374
Mark Heffernan893752a2014-07-18 19:24:51 +00004375The loop identifier metadata can be used to specify additional
4376per-loop metadata. Any operands after the first operand can be treated
4377as user-defined metadata. For example the ``llvm.loop.unroll.count``
4378suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004379
Paul Redmond5fdf8362013-05-28 20:00:34 +00004380.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004381
Paul Redmond5fdf8362013-05-28 20:00:34 +00004382 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4383 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004384 !0 = !{!0, !1}
4385 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004386
Mark Heffernan9d20e422014-07-21 23:11:03 +00004387'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004389
Mark Heffernan9d20e422014-07-21 23:11:03 +00004390Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4391used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004392vectorization width and interleave count. These metadata should be used in
4393conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004394``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4395optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004396it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004397which contains information about loop-carried memory dependencies can be helpful
4398in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004399
Mark Heffernan9d20e422014-07-21 23:11:03 +00004400'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4402
Mark Heffernan9d20e422014-07-21 23:11:03 +00004403This metadata suggests an interleave count to the loop interleaver.
4404The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004405second operand is an integer specifying the interleave count. For
4406example:
4407
4408.. code-block:: llvm
4409
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004410 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004411
Mark Heffernan9d20e422014-07-21 23:11:03 +00004412Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004413multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004414then the interleave count will be determined automatically.
4415
4416'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004417^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004418
4419This metadata selectively enables or disables vectorization for the loop. The
4420first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004421is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000044220 disables vectorization:
4423
4424.. code-block:: llvm
4425
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004426 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4427 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004428
4429'``llvm.loop.vectorize.width``' Metadata
4430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4431
4432This metadata sets the target width of the vectorizer. The first
4433operand is the string ``llvm.loop.vectorize.width`` and the second
4434operand is an integer specifying the width. For example:
4435
4436.. code-block:: llvm
4437
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004438 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004439
4440Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004441vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000044420 or if the loop does not have this metadata the width will be
4443determined automatically.
4444
4445'``llvm.loop.unroll``'
4446^^^^^^^^^^^^^^^^^^^^^^
4447
4448Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4449optimization hints such as the unroll factor. ``llvm.loop.unroll``
4450metadata should be used in conjunction with ``llvm.loop`` loop
4451identification metadata. The ``llvm.loop.unroll`` metadata are only
4452optimization hints and the unrolling will only be performed if the
4453optimizer believes it is safe to do so.
4454
Mark Heffernan893752a2014-07-18 19:24:51 +00004455'``llvm.loop.unroll.count``' Metadata
4456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4457
4458This metadata suggests an unroll factor to the loop unroller. The
4459first operand is the string ``llvm.loop.unroll.count`` and the second
4460operand is a positive integer specifying the unroll factor. For
4461example:
4462
4463.. code-block:: llvm
4464
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004465 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004466
4467If the trip count of the loop is less than the unroll count the loop
4468will be partially unrolled.
4469
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004470'``llvm.loop.unroll.disable``' Metadata
4471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4472
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004473This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004474which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004475
4476.. code-block:: llvm
4477
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004478 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004479
Kevin Qin715b01e2015-03-09 06:14:18 +00004480'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004482
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004483This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004484operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004485
4486.. code-block:: llvm
4487
4488 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4489
Mark Heffernan89391542015-08-10 17:28:08 +00004490'``llvm.loop.unroll.enable``' Metadata
4491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4492
4493This metadata suggests that the loop should be fully unrolled if the trip count
4494is known at compile time and partially unrolled if the trip count is not known
4495at compile time. The metadata has a single operand which is the string
4496``llvm.loop.unroll.enable``. For example:
4497
4498.. code-block:: llvm
4499
4500 !0 = !{!"llvm.loop.unroll.enable"}
4501
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004502'``llvm.loop.unroll.full``' Metadata
4503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4504
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004505This metadata suggests that the loop should be unrolled fully. The
4506metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004507For example:
4508
4509.. code-block:: llvm
4510
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004511 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004512
4513'``llvm.mem``'
4514^^^^^^^^^^^^^^^
4515
4516Metadata types used to annotate memory accesses with information helpful
4517for optimizations are prefixed with ``llvm.mem``.
4518
4519'``llvm.mem.parallel_loop_access``' Metadata
4520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4521
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004522The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4523or metadata containing a list of loop identifiers for nested loops.
4524The metadata is attached to memory accessing instructions and denotes that
4525no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004526with the same loop identifier.
4527
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004528Precisely, given two instructions ``m1`` and ``m2`` that both have the
4529``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4530set of loops associated with that metadata, respectively, then there is no loop
4531carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004532``L2``.
4533
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004534As a special case, if all memory accessing instructions in a loop have
4535``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4536loop has no loop carried memory dependences and is considered to be a parallel
4537loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004538
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004539Note that if not all memory access instructions have such metadata referring to
4540the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004541memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004542safe mechanism, this causes loops that were originally parallel to be considered
4543sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004544insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004545
4546Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004547both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004548metadata types that refer to the same loop identifier metadata.
4549
4550.. code-block:: llvm
4551
4552 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004553 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004554 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004555 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004556 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004557 ...
4558 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004559
4560 for.end:
4561 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004562 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004563
4564It is also possible to have nested parallel loops. In that case the
4565memory accesses refer to a list of loop identifier metadata nodes instead of
4566the loop identifier metadata node directly:
4567
4568.. code-block:: llvm
4569
4570 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004571 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004572 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004573 ...
4574 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004575
4576 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004577 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004578 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004579 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004580 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004581 ...
4582 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004583
4584 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004585 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004586 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004587 ...
4588 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004589
4590 outer.for.end: ; preds = %for.body
4591 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004592 !0 = !{!1, !2} ; a list of loop identifiers
4593 !1 = !{!1} ; an identifier for the inner loop
4594 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004595
Peter Collingbournee6909c82015-02-20 20:30:47 +00004596'``llvm.bitsets``'
4597^^^^^^^^^^^^^^^^^^
4598
4599The ``llvm.bitsets`` global metadata is used to implement
4600:doc:`bitsets <BitSets>`.
4601
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004602'``invariant.group``' Metadata
4603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4604
4605The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4606The existence of the ``invariant.group`` metadata on the instruction tells
4607the optimizer that every ``load`` and ``store`` to the same pointer operand
4608within the same invariant group can be assumed to load or store the same
4609value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4610when two pointers are considered the same).
4611
4612Examples:
4613
4614.. code-block:: llvm
4615
4616 @unknownPtr = external global i8
4617 ...
4618 %ptr = alloca i8
4619 store i8 42, i8* %ptr, !invariant.group !0
4620 call void @foo(i8* %ptr)
4621
4622 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4623 call void @foo(i8* %ptr)
4624 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4625
4626 %newPtr = call i8* @getPointer(i8* %ptr)
4627 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4628
4629 %unknownValue = load i8, i8* @unknownPtr
4630 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4631
4632 call void @foo(i8* %ptr)
4633 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4634 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4635
4636 ...
4637 declare void @foo(i8*)
4638 declare i8* @getPointer(i8*)
4639 declare i8* @llvm.invariant.group.barrier(i8*)
4640
4641 !0 = !{!"magic ptr"}
4642 !1 = !{!"other ptr"}
4643
4644
4645
Sean Silvab084af42012-12-07 10:36:55 +00004646Module Flags Metadata
4647=====================
4648
4649Information about the module as a whole is difficult to convey to LLVM's
4650subsystems. The LLVM IR isn't sufficient to transmit this information.
4651The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004652this. These flags are in the form of key / value pairs --- much like a
4653dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004654look it up.
4655
4656The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4657Each triplet has the following form:
4658
4659- The first element is a *behavior* flag, which specifies the behavior
4660 when two (or more) modules are merged together, and it encounters two
4661 (or more) metadata with the same ID. The supported behaviors are
4662 described below.
4663- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004664 metadata. Each module may only have one flag entry for each unique ID (not
4665 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004666- The third element is the value of the flag.
4667
4668When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004669``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4670each unique metadata ID string, there will be exactly one entry in the merged
4671modules ``llvm.module.flags`` metadata table, and the value for that entry will
4672be determined by the merge behavior flag, as described below. The only exception
4673is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004674
4675The following behaviors are supported:
4676
4677.. list-table::
4678 :header-rows: 1
4679 :widths: 10 90
4680
4681 * - Value
4682 - Behavior
4683
4684 * - 1
4685 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004686 Emits an error if two values disagree, otherwise the resulting value
4687 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004688
4689 * - 2
4690 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004691 Emits a warning if two values disagree. The result value will be the
4692 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004693
4694 * - 3
4695 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004696 Adds a requirement that another module flag be present and have a
4697 specified value after linking is performed. The value must be a
4698 metadata pair, where the first element of the pair is the ID of the
4699 module flag to be restricted, and the second element of the pair is
4700 the value the module flag should be restricted to. This behavior can
4701 be used to restrict the allowable results (via triggering of an
4702 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004703
4704 * - 4
4705 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004706 Uses the specified value, regardless of the behavior or value of the
4707 other module. If both modules specify **Override**, but the values
4708 differ, an error will be emitted.
4709
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004710 * - 5
4711 - **Append**
4712 Appends the two values, which are required to be metadata nodes.
4713
4714 * - 6
4715 - **AppendUnique**
4716 Appends the two values, which are required to be metadata
4717 nodes. However, duplicate entries in the second list are dropped
4718 during the append operation.
4719
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004720It is an error for a particular unique flag ID to have multiple behaviors,
4721except in the case of **Require** (which adds restrictions on another metadata
4722value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004723
4724An example of module flags:
4725
4726.. code-block:: llvm
4727
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004728 !0 = !{ i32 1, !"foo", i32 1 }
4729 !1 = !{ i32 4, !"bar", i32 37 }
4730 !2 = !{ i32 2, !"qux", i32 42 }
4731 !3 = !{ i32 3, !"qux",
4732 !{
4733 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004734 }
4735 }
4736 !llvm.module.flags = !{ !0, !1, !2, !3 }
4737
4738- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4739 if two or more ``!"foo"`` flags are seen is to emit an error if their
4740 values are not equal.
4741
4742- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4743 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004744 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004745
4746- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4747 behavior if two or more ``!"qux"`` flags are seen is to emit a
4748 warning if their values are not equal.
4749
4750- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4751
4752 ::
4753
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004754 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004755
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004756 The behavior is to emit an error if the ``llvm.module.flags`` does not
4757 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4758 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004759
4760Objective-C Garbage Collection Module Flags Metadata
4761----------------------------------------------------
4762
4763On the Mach-O platform, Objective-C stores metadata about garbage
4764collection in a special section called "image info". The metadata
4765consists of a version number and a bitmask specifying what types of
4766garbage collection are supported (if any) by the file. If two or more
4767modules are linked together their garbage collection metadata needs to
4768be merged rather than appended together.
4769
4770The Objective-C garbage collection module flags metadata consists of the
4771following key-value pairs:
4772
4773.. list-table::
4774 :header-rows: 1
4775 :widths: 30 70
4776
4777 * - Key
4778 - Value
4779
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004780 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004781 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004782
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004783 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004784 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004785 always 0.
4786
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004787 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004788 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004789 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4790 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4791 Objective-C ABI version 2.
4792
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004793 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004794 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004795 not. Valid values are 0, for no garbage collection, and 2, for garbage
4796 collection supported.
4797
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004798 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004799 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004800 If present, its value must be 6. This flag requires that the
4801 ``Objective-C Garbage Collection`` flag have the value 2.
4802
4803Some important flag interactions:
4804
4805- If a module with ``Objective-C Garbage Collection`` set to 0 is
4806 merged with a module with ``Objective-C Garbage Collection`` set to
4807 2, then the resulting module has the
4808 ``Objective-C Garbage Collection`` flag set to 0.
4809- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4810 merged with a module with ``Objective-C GC Only`` set to 6.
4811
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004812Automatic Linker Flags Module Flags Metadata
4813--------------------------------------------
4814
4815Some targets support embedding flags to the linker inside individual object
4816files. Typically this is used in conjunction with language extensions which
4817allow source files to explicitly declare the libraries they depend on, and have
4818these automatically be transmitted to the linker via object files.
4819
4820These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004821using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004822to be ``AppendUnique``, and the value for the key is expected to be a metadata
4823node which should be a list of other metadata nodes, each of which should be a
4824list of metadata strings defining linker options.
4825
4826For example, the following metadata section specifies two separate sets of
4827linker options, presumably to link against ``libz`` and the ``Cocoa``
4828framework::
4829
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004830 !0 = !{ i32 6, !"Linker Options",
4831 !{
4832 !{ !"-lz" },
4833 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004834 !llvm.module.flags = !{ !0 }
4835
4836The metadata encoding as lists of lists of options, as opposed to a collapsed
4837list of options, is chosen so that the IR encoding can use multiple option
4838strings to specify e.g., a single library, while still having that specifier be
4839preserved as an atomic element that can be recognized by a target specific
4840assembly writer or object file emitter.
4841
4842Each individual option is required to be either a valid option for the target's
4843linker, or an option that is reserved by the target specific assembly writer or
4844object file emitter. No other aspect of these options is defined by the IR.
4845
Oliver Stannard5dc29342014-06-20 10:08:11 +00004846C type width Module Flags Metadata
4847----------------------------------
4848
4849The ARM backend emits a section into each generated object file describing the
4850options that it was compiled with (in a compiler-independent way) to prevent
4851linking incompatible objects, and to allow automatic library selection. Some
4852of these options are not visible at the IR level, namely wchar_t width and enum
4853width.
4854
4855To pass this information to the backend, these options are encoded in module
4856flags metadata, using the following key-value pairs:
4857
4858.. list-table::
4859 :header-rows: 1
4860 :widths: 30 70
4861
4862 * - Key
4863 - Value
4864
4865 * - short_wchar
4866 - * 0 --- sizeof(wchar_t) == 4
4867 * 1 --- sizeof(wchar_t) == 2
4868
4869 * - short_enum
4870 - * 0 --- Enums are at least as large as an ``int``.
4871 * 1 --- Enums are stored in the smallest integer type which can
4872 represent all of its values.
4873
4874For example, the following metadata section specifies that the module was
4875compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4876enum is the smallest type which can represent all of its values::
4877
4878 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004879 !0 = !{i32 1, !"short_wchar", i32 1}
4880 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004881
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004882.. _intrinsicglobalvariables:
4883
Sean Silvab084af42012-12-07 10:36:55 +00004884Intrinsic Global Variables
4885==========================
4886
4887LLVM has a number of "magic" global variables that contain data that
4888affect code generation or other IR semantics. These are documented here.
4889All globals of this sort should have a section specified as
4890"``llvm.metadata``". This section and all globals that start with
4891"``llvm.``" are reserved for use by LLVM.
4892
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004893.. _gv_llvmused:
4894
Sean Silvab084af42012-12-07 10:36:55 +00004895The '``llvm.used``' Global Variable
4896-----------------------------------
4897
Rafael Espindola74f2e462013-04-22 14:58:02 +00004898The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004899:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004900pointers to named global variables, functions and aliases which may optionally
4901have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004902use of it is:
4903
4904.. code-block:: llvm
4905
4906 @X = global i8 4
4907 @Y = global i32 123
4908
4909 @llvm.used = appending global [2 x i8*] [
4910 i8* @X,
4911 i8* bitcast (i32* @Y to i8*)
4912 ], section "llvm.metadata"
4913
Rafael Espindola74f2e462013-04-22 14:58:02 +00004914If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4915and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004916symbol that it cannot see (which is why they have to be named). For example, if
4917a variable has internal linkage and no references other than that from the
4918``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4919references from inline asms and other things the compiler cannot "see", and
4920corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004921
4922On some targets, the code generator must emit a directive to the
4923assembler or object file to prevent the assembler and linker from
4924molesting the symbol.
4925
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004926.. _gv_llvmcompilerused:
4927
Sean Silvab084af42012-12-07 10:36:55 +00004928The '``llvm.compiler.used``' Global Variable
4929--------------------------------------------
4930
4931The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4932directive, except that it only prevents the compiler from touching the
4933symbol. On targets that support it, this allows an intelligent linker to
4934optimize references to the symbol without being impeded as it would be
4935by ``@llvm.used``.
4936
4937This is a rare construct that should only be used in rare circumstances,
4938and should not be exposed to source languages.
4939
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004940.. _gv_llvmglobalctors:
4941
Sean Silvab084af42012-12-07 10:36:55 +00004942The '``llvm.global_ctors``' Global Variable
4943-------------------------------------------
4944
4945.. code-block:: llvm
4946
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004947 %0 = type { i32, void ()*, i8* }
4948 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004949
4950The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004951functions, priorities, and an optional associated global or function.
4952The functions referenced by this array will be called in ascending order
4953of priority (i.e. lowest first) when the module is loaded. The order of
4954functions with the same priority is not defined.
4955
4956If the third field is present, non-null, and points to a global variable
4957or function, the initializer function will only run if the associated
4958data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004959
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004960.. _llvmglobaldtors:
4961
Sean Silvab084af42012-12-07 10:36:55 +00004962The '``llvm.global_dtors``' Global Variable
4963-------------------------------------------
4964
4965.. code-block:: llvm
4966
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004967 %0 = type { i32, void ()*, i8* }
4968 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004969
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004970The ``@llvm.global_dtors`` array contains a list of destructor
4971functions, priorities, and an optional associated global or function.
4972The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004973order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004974order of functions with the same priority is not defined.
4975
4976If the third field is present, non-null, and points to a global variable
4977or function, the destructor function will only run if the associated
4978data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004979
4980Instruction Reference
4981=====================
4982
4983The LLVM instruction set consists of several different classifications
4984of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4985instructions <binaryops>`, :ref:`bitwise binary
4986instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4987:ref:`other instructions <otherops>`.
4988
4989.. _terminators:
4990
4991Terminator Instructions
4992-----------------------
4993
4994As mentioned :ref:`previously <functionstructure>`, every basic block in a
4995program ends with a "Terminator" instruction, which indicates which
4996block should be executed after the current block is finished. These
4997terminator instructions typically yield a '``void``' value: they produce
4998control flow, not values (the one exception being the
4999':ref:`invoke <i_invoke>`' instruction).
5000
5001The terminator instructions are: ':ref:`ret <i_ret>`',
5002':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5003':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00005004':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
5005':ref:`catchendpad <i_catchendpad>`',
5006':ref:`catchret <i_catchret>`',
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005007':ref:`cleanupendpad <i_cleanupendpad>`',
David Majnemer654e1302015-07-31 17:58:14 +00005008':ref:`cleanupret <i_cleanupret>`',
5009':ref:`terminatepad <i_terminatepad>`',
5010and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005011
5012.. _i_ret:
5013
5014'``ret``' Instruction
5015^^^^^^^^^^^^^^^^^^^^^
5016
5017Syntax:
5018"""""""
5019
5020::
5021
5022 ret <type> <value> ; Return a value from a non-void function
5023 ret void ; Return from void function
5024
5025Overview:
5026"""""""""
5027
5028The '``ret``' instruction is used to return control flow (and optionally
5029a value) from a function back to the caller.
5030
5031There are two forms of the '``ret``' instruction: one that returns a
5032value and then causes control flow, and one that just causes control
5033flow to occur.
5034
5035Arguments:
5036""""""""""
5037
5038The '``ret``' instruction optionally accepts a single argument, the
5039return value. The type of the return value must be a ':ref:`first
5040class <t_firstclass>`' type.
5041
5042A function is not :ref:`well formed <wellformed>` if it it has a non-void
5043return type and contains a '``ret``' instruction with no return value or
5044a return value with a type that does not match its type, or if it has a
5045void return type and contains a '``ret``' instruction with a return
5046value.
5047
5048Semantics:
5049""""""""""
5050
5051When the '``ret``' instruction is executed, control flow returns back to
5052the calling function's context. If the caller is a
5053":ref:`call <i_call>`" instruction, execution continues at the
5054instruction after the call. If the caller was an
5055":ref:`invoke <i_invoke>`" instruction, execution continues at the
5056beginning of the "normal" destination block. If the instruction returns
5057a value, that value shall set the call or invoke instruction's return
5058value.
5059
5060Example:
5061""""""""
5062
5063.. code-block:: llvm
5064
5065 ret i32 5 ; Return an integer value of 5
5066 ret void ; Return from a void function
5067 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5068
5069.. _i_br:
5070
5071'``br``' Instruction
5072^^^^^^^^^^^^^^^^^^^^
5073
5074Syntax:
5075"""""""
5076
5077::
5078
5079 br i1 <cond>, label <iftrue>, label <iffalse>
5080 br label <dest> ; Unconditional branch
5081
5082Overview:
5083"""""""""
5084
5085The '``br``' instruction is used to cause control flow to transfer to a
5086different basic block in the current function. There are two forms of
5087this instruction, corresponding to a conditional branch and an
5088unconditional branch.
5089
5090Arguments:
5091""""""""""
5092
5093The conditional branch form of the '``br``' instruction takes a single
5094'``i1``' value and two '``label``' values. The unconditional form of the
5095'``br``' instruction takes a single '``label``' value as a target.
5096
5097Semantics:
5098""""""""""
5099
5100Upon execution of a conditional '``br``' instruction, the '``i1``'
5101argument is evaluated. If the value is ``true``, control flows to the
5102'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5103to the '``iffalse``' ``label`` argument.
5104
5105Example:
5106""""""""
5107
5108.. code-block:: llvm
5109
5110 Test:
5111 %cond = icmp eq i32 %a, %b
5112 br i1 %cond, label %IfEqual, label %IfUnequal
5113 IfEqual:
5114 ret i32 1
5115 IfUnequal:
5116 ret i32 0
5117
5118.. _i_switch:
5119
5120'``switch``' Instruction
5121^^^^^^^^^^^^^^^^^^^^^^^^
5122
5123Syntax:
5124"""""""
5125
5126::
5127
5128 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5129
5130Overview:
5131"""""""""
5132
5133The '``switch``' instruction is used to transfer control flow to one of
5134several different places. It is a generalization of the '``br``'
5135instruction, allowing a branch to occur to one of many possible
5136destinations.
5137
5138Arguments:
5139""""""""""
5140
5141The '``switch``' instruction uses three parameters: an integer
5142comparison value '``value``', a default '``label``' destination, and an
5143array of pairs of comparison value constants and '``label``'s. The table
5144is not allowed to contain duplicate constant entries.
5145
5146Semantics:
5147""""""""""
5148
5149The ``switch`` instruction specifies a table of values and destinations.
5150When the '``switch``' instruction is executed, this table is searched
5151for the given value. If the value is found, control flow is transferred
5152to the corresponding destination; otherwise, control flow is transferred
5153to the default destination.
5154
5155Implementation:
5156"""""""""""""""
5157
5158Depending on properties of the target machine and the particular
5159``switch`` instruction, this instruction may be code generated in
5160different ways. For example, it could be generated as a series of
5161chained conditional branches or with a lookup table.
5162
5163Example:
5164""""""""
5165
5166.. code-block:: llvm
5167
5168 ; Emulate a conditional br instruction
5169 %Val = zext i1 %value to i32
5170 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5171
5172 ; Emulate an unconditional br instruction
5173 switch i32 0, label %dest [ ]
5174
5175 ; Implement a jump table:
5176 switch i32 %val, label %otherwise [ i32 0, label %onzero
5177 i32 1, label %onone
5178 i32 2, label %ontwo ]
5179
5180.. _i_indirectbr:
5181
5182'``indirectbr``' Instruction
5183^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5184
5185Syntax:
5186"""""""
5187
5188::
5189
5190 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5191
5192Overview:
5193"""""""""
5194
5195The '``indirectbr``' instruction implements an indirect branch to a
5196label within the current function, whose address is specified by
5197"``address``". Address must be derived from a
5198:ref:`blockaddress <blockaddress>` constant.
5199
5200Arguments:
5201""""""""""
5202
5203The '``address``' argument is the address of the label to jump to. The
5204rest of the arguments indicate the full set of possible destinations
5205that the address may point to. Blocks are allowed to occur multiple
5206times in the destination list, though this isn't particularly useful.
5207
5208This destination list is required so that dataflow analysis has an
5209accurate understanding of the CFG.
5210
5211Semantics:
5212""""""""""
5213
5214Control transfers to the block specified in the address argument. All
5215possible destination blocks must be listed in the label list, otherwise
5216this instruction has undefined behavior. This implies that jumps to
5217labels defined in other functions have undefined behavior as well.
5218
5219Implementation:
5220"""""""""""""""
5221
5222This is typically implemented with a jump through a register.
5223
5224Example:
5225""""""""
5226
5227.. code-block:: llvm
5228
5229 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5230
5231.. _i_invoke:
5232
5233'``invoke``' Instruction
5234^^^^^^^^^^^^^^^^^^^^^^^^
5235
5236Syntax:
5237"""""""
5238
5239::
5240
5241 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005242 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005243
5244Overview:
5245"""""""""
5246
5247The '``invoke``' instruction causes control to transfer to a specified
5248function, with the possibility of control flow transfer to either the
5249'``normal``' label or the '``exception``' label. If the callee function
5250returns with the "``ret``" instruction, control flow will return to the
5251"normal" label. If the callee (or any indirect callees) returns via the
5252":ref:`resume <i_resume>`" instruction or other exception handling
5253mechanism, control is interrupted and continued at the dynamically
5254nearest "exception" label.
5255
5256The '``exception``' label is a `landing
5257pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5258'``exception``' label is required to have the
5259":ref:`landingpad <i_landingpad>`" instruction, which contains the
5260information about the behavior of the program after unwinding happens,
5261as its first non-PHI instruction. The restrictions on the
5262"``landingpad``" instruction's tightly couples it to the "``invoke``"
5263instruction, so that the important information contained within the
5264"``landingpad``" instruction can't be lost through normal code motion.
5265
5266Arguments:
5267""""""""""
5268
5269This instruction requires several arguments:
5270
5271#. The optional "cconv" marker indicates which :ref:`calling
5272 convention <callingconv>` the call should use. If none is
5273 specified, the call defaults to using C calling conventions.
5274#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5275 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5276 are valid here.
5277#. '``ptr to function ty``': shall be the signature of the pointer to
5278 function value being invoked. In most cases, this is a direct
5279 function invocation, but indirect ``invoke``'s are just as possible,
5280 branching off an arbitrary pointer to function value.
5281#. '``function ptr val``': An LLVM value containing a pointer to a
5282 function to be invoked.
5283#. '``function args``': argument list whose types match the function
5284 signature argument types and parameter attributes. All arguments must
5285 be of :ref:`first class <t_firstclass>` type. If the function signature
5286 indicates the function accepts a variable number of arguments, the
5287 extra arguments can be specified.
5288#. '``normal label``': the label reached when the called function
5289 executes a '``ret``' instruction.
5290#. '``exception label``': the label reached when a callee returns via
5291 the :ref:`resume <i_resume>` instruction or other exception handling
5292 mechanism.
5293#. The optional :ref:`function attributes <fnattrs>` list. Only
5294 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5295 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005296#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005297
5298Semantics:
5299""""""""""
5300
5301This instruction is designed to operate as a standard '``call``'
5302instruction in most regards. The primary difference is that it
5303establishes an association with a label, which is used by the runtime
5304library to unwind the stack.
5305
5306This instruction is used in languages with destructors to ensure that
5307proper cleanup is performed in the case of either a ``longjmp`` or a
5308thrown exception. Additionally, this is important for implementation of
5309'``catch``' clauses in high-level languages that support them.
5310
5311For the purposes of the SSA form, the definition of the value returned
5312by the '``invoke``' instruction is deemed to occur on the edge from the
5313current block to the "normal" label. If the callee unwinds then no
5314return value is available.
5315
5316Example:
5317""""""""
5318
5319.. code-block:: llvm
5320
5321 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005322 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005323 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005324 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005325
5326.. _i_resume:
5327
5328'``resume``' Instruction
5329^^^^^^^^^^^^^^^^^^^^^^^^
5330
5331Syntax:
5332"""""""
5333
5334::
5335
5336 resume <type> <value>
5337
5338Overview:
5339"""""""""
5340
5341The '``resume``' instruction is a terminator instruction that has no
5342successors.
5343
5344Arguments:
5345""""""""""
5346
5347The '``resume``' instruction requires one argument, which must have the
5348same type as the result of any '``landingpad``' instruction in the same
5349function.
5350
5351Semantics:
5352""""""""""
5353
5354The '``resume``' instruction resumes propagation of an existing
5355(in-flight) exception whose unwinding was interrupted with a
5356:ref:`landingpad <i_landingpad>` instruction.
5357
5358Example:
5359""""""""
5360
5361.. code-block:: llvm
5362
5363 resume { i8*, i32 } %exn
5364
David Majnemer654e1302015-07-31 17:58:14 +00005365.. _i_catchpad:
5366
5367'``catchpad``' Instruction
5368^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5369
5370Syntax:
5371"""""""
5372
5373::
5374
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005375 <resultval> = catchpad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005376 to label <normal label> unwind label <exception label>
5377
5378Overview:
5379"""""""""
5380
5381The '``catchpad``' instruction is used by `LLVM's exception handling
5382system <ExceptionHandling.html#overview>`_ to specify that a basic block
5383is a catch block --- one where a personality routine attempts to transfer
5384control to catch an exception.
5385The ``args`` correspond to whatever information the personality
5386routine requires to know if this is an appropriate place to catch the
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00005387exception. Control is transfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005388``catchpad`` is not an appropriate handler for the in-flight exception.
5389The ``normal`` label should contain the code found in the ``catch``
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005390portion of a ``try``/``catch`` sequence. The ``resultval`` has the type
5391:ref:`token <t_token>` and is used to match the ``catchpad`` to
5392corresponding :ref:`catchrets <i_catchret>`.
David Majnemer654e1302015-07-31 17:58:14 +00005393
5394Arguments:
5395""""""""""
5396
5397The instruction takes a list of arbitrary values which are interpreted
5398by the :ref:`personality function <personalityfn>`.
5399
5400The ``catchpad`` must be provided a ``normal`` label to transfer control
5401to if the ``catchpad`` matches the exception and an ``exception``
5402label to transfer control to if it doesn't.
5403
5404Semantics:
5405""""""""""
5406
David Majnemer654e1302015-07-31 17:58:14 +00005407When the call stack is being unwound due to an exception being thrown,
5408the exception is compared against the ``args``. If it doesn't match,
5409then control is transfered to the ``exception`` basic block.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005410As with calling conventions, how the personality function results are
5411represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00005412
5413The ``catchpad`` instruction has several restrictions:
5414
5415- A catch block is a basic block which is the unwind destination of
5416 an exceptional instruction.
5417- A catch block must have a '``catchpad``' instruction as its
5418 first non-PHI instruction.
5419- A catch block's ``exception`` edge must refer to a catch block or a
5420 catch-end block.
5421- There can be only one '``catchpad``' instruction within the
5422 catch block.
5423- A basic block that is not a catch block may not include a
5424 '``catchpad``' instruction.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005425- A catch block which has another catch block as a predecessor may not have
5426 any other predecessors.
David Majnemer654e1302015-07-31 17:58:14 +00005427- It is undefined behavior for control to transfer from a ``catchpad`` to a
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005428 ``ret`` without first executing a ``catchret`` that consumes the
5429 ``catchpad`` or unwinding through its ``catchendpad``.
5430- It is undefined behavior for control to transfer from a ``catchpad`` to
5431 itself without first executing a ``catchret`` that consumes the
5432 ``catchpad`` or unwinding through its ``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005433
5434Example:
5435""""""""
5436
5437.. code-block:: llvm
5438
5439 ;; A catch block which can catch an integer.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005440 %tok = catchpad [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005441 to label %int.handler unwind label %terminate
5442
5443.. _i_catchendpad:
5444
5445'``catchendpad``' Instruction
5446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5447
5448Syntax:
5449"""""""
5450
5451::
5452
5453 catchendpad unwind label <nextaction>
5454 catchendpad unwind to caller
5455
5456Overview:
5457"""""""""
5458
5459The '``catchendpad``' instruction is used by `LLVM's exception handling
5460system <ExceptionHandling.html#overview>`_ to communicate to the
5461:ref:`personality function <personalityfn>` which invokes are associated
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005462with a chain of :ref:`catchpad <i_catchpad>` instructions; propagating an
5463exception out of a catch handler is represented by unwinding through its
5464``catchendpad``. Unwinding to the outer scope when a chain of catch handlers
5465do not handle an exception is also represented by unwinding through their
5466``catchendpad``.
David Majnemer654e1302015-07-31 17:58:14 +00005467
5468The ``nextaction`` label indicates where control should transfer to if
5469none of the ``catchpad`` instructions are suitable for catching the
5470in-flight exception.
5471
5472If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005473its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005474:ref:`personality function <personalityfn>` will continue processing
5475exception handling actions in the caller.
5476
5477Arguments:
5478""""""""""
5479
5480The instruction optionally takes a label, ``nextaction``, indicating
5481where control should transfer to if none of the preceding
5482``catchpad`` instructions are suitable for the in-flight exception.
5483
5484Semantics:
5485""""""""""
5486
5487When the call stack is being unwound due to an exception being thrown
5488and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005489control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005490present, control is transfered to the caller.
5491
5492The ``catchendpad`` instruction has several restrictions:
5493
5494- A catch-end block is a basic block which is the unwind destination of
5495 an exceptional instruction.
5496- A catch-end block must have a '``catchendpad``' instruction as its
5497 first non-PHI instruction.
5498- There can be only one '``catchendpad``' instruction within the
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005499 catch-end block.
David Majnemer654e1302015-07-31 17:58:14 +00005500- A basic block that is not a catch-end block may not include a
5501 '``catchendpad``' instruction.
5502- Exactly one catch block may unwind to a ``catchendpad``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005503- It is undefined behavior to execute a ``catchendpad`` if none of the
5504 '``catchpad``'s chained to it have been executed.
5505- It is undefined behavior to execute a ``catchendpad`` twice without an
5506 intervening execution of one or more of the '``catchpad``'s chained to it.
5507- It is undefined behavior to execute a ``catchendpad`` if, after the most
5508 recent execution of the normal successor edge of any ``catchpad`` chained
5509 to it, some ``catchret`` consuming that ``catchpad`` has already been
5510 executed.
5511- It is undefined behavior to execute a ``catchendpad`` if, after the most
5512 recent execution of the normal successor edge of any ``catchpad`` chained
5513 to it, any other ``catchpad`` or ``cleanuppad`` has been executed but has
5514 not had a corresponding
5515 ``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005516
5517Example:
5518""""""""
5519
5520.. code-block:: llvm
5521
5522 catchendpad unwind label %terminate
5523 catchendpad unwind to caller
5524
5525.. _i_catchret:
5526
5527'``catchret``' Instruction
5528^^^^^^^^^^^^^^^^^^^^^^^^^^
5529
5530Syntax:
5531"""""""
5532
5533::
5534
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005535 catchret <value> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005536
5537Overview:
5538"""""""""
5539
5540The '``catchret``' instruction is a terminator instruction that has a
5541single successor.
5542
5543
5544Arguments:
5545""""""""""
5546
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005547The first argument to a '``catchret``' indicates which ``catchpad`` it
5548exits. It must be a :ref:`catchpad <i_catchpad>`.
5549The second argument to a '``catchret``' specifies where control will
5550transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005551
5552Semantics:
5553""""""""""
5554
5555The '``catchret``' instruction ends the existing (in-flight) exception
5556whose unwinding was interrupted with a
5557:ref:`catchpad <i_catchpad>` instruction.
5558The :ref:`personality function <personalityfn>` gets a chance to execute
5559arbitrary code to, for example, run a C++ destructor.
5560Control then transfers to ``normal``.
David Majnemer0bc0eef2015-08-15 02:46:08 +00005561It may be passed an optional, personality specific, value.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005562
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005563It is undefined behavior to execute a ``catchret`` whose ``catchpad`` has
5564not been executed.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005565
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005566It is undefined behavior to execute a ``catchret`` if, after the most recent
5567execution of its ``catchpad``, some ``catchret`` or ``catchendpad`` linked
5568to the same ``catchpad`` has already been executed.
5569
5570It is undefined behavior to execute a ``catchret`` if, after the most recent
5571execution of its ``catchpad``, any other ``catchpad`` or ``cleanuppad`` has
5572been executed but has not had a corresponding
5573``catchret``/``cleanupret``/``catchendpad``/``cleanupendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005574
5575Example:
5576""""""""
5577
5578.. code-block:: llvm
5579
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005580 catchret %catch label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005581
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005582.. _i_cleanupendpad:
5583
5584'``cleanupendpad``' Instruction
5585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5586
5587Syntax:
5588"""""""
5589
5590::
5591
5592 cleanupendpad <value> unwind label <nextaction>
5593 cleanupendpad <value> unwind to caller
5594
5595Overview:
5596"""""""""
5597
5598The '``cleanupendpad``' instruction is used by `LLVM's exception handling
5599system <ExceptionHandling.html#overview>`_ to communicate to the
5600:ref:`personality function <personalityfn>` which invokes are associated
5601with a :ref:`cleanuppad <i_cleanuppad>` instructions; propagating an exception
5602out of a cleanup is represented by unwinding through its ``cleanupendpad``.
5603
5604The ``nextaction`` label indicates where control should unwind to next, in the
5605event that a cleanup is exited by means of an(other) exception being raised.
5606
5607If a ``nextaction`` label is not present, the instruction unwinds out of
5608its parent function. The
5609:ref:`personality function <personalityfn>` will continue processing
5610exception handling actions in the caller.
5611
5612Arguments:
5613""""""""""
5614
5615The '``cleanupendpad``' instruction requires one argument, which indicates
5616which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5617It also has an optional successor, ``nextaction``, indicating where control
5618should transfer to.
5619
5620Semantics:
5621""""""""""
5622
5623When and exception propagates to a ``cleanupendpad``, control is transfered to
5624``nextaction`` if it is present. If it is not present, control is transfered to
5625the caller.
5626
5627The ``cleanupendpad`` instruction has several restrictions:
5628
5629- A cleanup-end block is a basic block which is the unwind destination of
5630 an exceptional instruction.
5631- A cleanup-end block must have a '``cleanupendpad``' instruction as its
5632 first non-PHI instruction.
5633- There can be only one '``cleanupendpad``' instruction within the
5634 cleanup-end block.
5635- A basic block that is not a cleanup-end block may not include a
5636 '``cleanupendpad``' instruction.
5637- It is undefined behavior to execute a ``cleanupendpad`` whose ``cleanuppad``
5638 has not been executed.
5639- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5640 recent execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5641 consuming the same ``cleanuppad`` has already been executed.
5642- It is undefined behavior to execute a ``cleanupendpad`` if, after the most
5643 recent execution of its ``cleanuppad``, any other ``cleanuppad`` or
5644 ``catchpad`` has been executed but has not had a corresponding
5645 ``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
5646
5647Example:
5648""""""""
5649
5650.. code-block:: llvm
5651
5652 cleanupendpad %cleanup unwind label %terminate
5653 cleanupendpad %cleanup unwind to caller
5654
David Majnemer654e1302015-07-31 17:58:14 +00005655.. _i_cleanupret:
5656
5657'``cleanupret``' Instruction
5658^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5659
5660Syntax:
5661"""""""
5662
5663::
5664
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005665 cleanupret <value> unwind label <continue>
5666 cleanupret <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005667
5668Overview:
5669"""""""""
5670
5671The '``cleanupret``' instruction is a terminator instruction that has
5672an optional successor.
5673
5674
5675Arguments:
5676""""""""""
5677
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005678The '``cleanupret``' instruction requires one argument, which indicates
5679which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5680It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005681
5682Semantics:
5683""""""""""
5684
5685The '``cleanupret``' instruction indicates to the
5686:ref:`personality function <personalityfn>` that one
5687:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5688It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005689
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005690It is undefined behavior to execute a ``cleanupret`` whose ``cleanuppad`` has
5691not been executed.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005692
5693It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5694execution of its ``cleanuppad``, some ``cleanupret`` or ``cleanupendpad``
5695consuming the same ``cleanuppad`` has already been executed.
5696
5697It is undefined behavior to execute a ``cleanupret`` if, after the most recent
5698execution of its ``cleanuppad``, any other ``cleanuppad`` or ``catchpad`` has
5699been executed but has not had a corresponding
5700``cleanupret``/``catchret``/``cleanupendpad``/``catchendpad`` executed.
David Majnemer654e1302015-07-31 17:58:14 +00005701
5702Example:
5703""""""""
5704
5705.. code-block:: llvm
5706
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005707 cleanupret %cleanup unwind to caller
5708 cleanupret %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005709
5710.. _i_terminatepad:
5711
5712'``terminatepad``' Instruction
5713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5714
5715Syntax:
5716"""""""
5717
5718::
5719
5720 terminatepad [<args>*] unwind label <exception label>
5721 terminatepad [<args>*] unwind to caller
5722
5723Overview:
5724"""""""""
5725
5726The '``terminatepad``' instruction is used by `LLVM's exception handling
5727system <ExceptionHandling.html#overview>`_ to specify that a basic block
5728is a terminate block --- one where a personality routine may decide to
5729terminate the program.
5730The ``args`` correspond to whatever information the personality
5731routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005732program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005733personality routine decides not to terminate the program for the
5734in-flight exception.
5735
5736Arguments:
5737""""""""""
5738
5739The instruction takes a list of arbitrary values which are interpreted
5740by the :ref:`personality function <personalityfn>`.
5741
5742The ``terminatepad`` may be given an ``exception`` label to
5743transfer control to if the in-flight exception matches the ``args``.
5744
5745Semantics:
5746""""""""""
5747
5748When the call stack is being unwound due to an exception being thrown,
5749the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005750then control is transfered to the ``exception`` basic block. Otherwise,
5751the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005752the first argument to ``terminatepad`` specifies what function the
5753personality should defer to in order to terminate the program.
5754
5755The ``terminatepad`` instruction has several restrictions:
5756
5757- A terminate block is a basic block which is the unwind destination of
5758 an exceptional instruction.
5759- A terminate block must have a '``terminatepad``' instruction as its
5760 first non-PHI instruction.
5761- There can be only one '``terminatepad``' instruction within the
5762 terminate block.
5763- A basic block that is not a terminate block may not include a
5764 '``terminatepad``' instruction.
5765
5766Example:
5767""""""""
5768
5769.. code-block:: llvm
5770
5771 ;; A terminate block which only permits integers.
5772 terminatepad [i8** @_ZTIi] unwind label %continue
5773
Sean Silvab084af42012-12-07 10:36:55 +00005774.. _i_unreachable:
5775
5776'``unreachable``' Instruction
5777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5778
5779Syntax:
5780"""""""
5781
5782::
5783
5784 unreachable
5785
5786Overview:
5787"""""""""
5788
5789The '``unreachable``' instruction has no defined semantics. This
5790instruction is used to inform the optimizer that a particular portion of
5791the code is not reachable. This can be used to indicate that the code
5792after a no-return function cannot be reached, and other facts.
5793
5794Semantics:
5795""""""""""
5796
5797The '``unreachable``' instruction has no defined semantics.
5798
5799.. _binaryops:
5800
5801Binary Operations
5802-----------------
5803
5804Binary operators are used to do most of the computation in a program.
5805They require two operands of the same type, execute an operation on
5806them, and produce a single value. The operands might represent multiple
5807data, as is the case with the :ref:`vector <t_vector>` data type. The
5808result value has the same type as its operands.
5809
5810There are several different binary operators:
5811
5812.. _i_add:
5813
5814'``add``' Instruction
5815^^^^^^^^^^^^^^^^^^^^^
5816
5817Syntax:
5818"""""""
5819
5820::
5821
Tim Northover675a0962014-06-13 14:24:23 +00005822 <result> = add <ty> <op1>, <op2> ; yields ty:result
5823 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5824 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5825 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005826
5827Overview:
5828"""""""""
5829
5830The '``add``' instruction returns the sum of its two operands.
5831
5832Arguments:
5833""""""""""
5834
5835The two arguments to the '``add``' instruction must be
5836:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5837arguments must have identical types.
5838
5839Semantics:
5840""""""""""
5841
5842The value produced is the integer sum of the two operands.
5843
5844If the sum has unsigned overflow, the result returned is the
5845mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5846the result.
5847
5848Because LLVM integers use a two's complement representation, this
5849instruction is appropriate for both signed and unsigned integers.
5850
5851``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5852respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5853result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5854unsigned and/or signed overflow, respectively, occurs.
5855
5856Example:
5857""""""""
5858
5859.. code-block:: llvm
5860
Tim Northover675a0962014-06-13 14:24:23 +00005861 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005862
5863.. _i_fadd:
5864
5865'``fadd``' Instruction
5866^^^^^^^^^^^^^^^^^^^^^^
5867
5868Syntax:
5869"""""""
5870
5871::
5872
Tim Northover675a0962014-06-13 14:24:23 +00005873 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005874
5875Overview:
5876"""""""""
5877
5878The '``fadd``' instruction returns the sum of its two operands.
5879
5880Arguments:
5881""""""""""
5882
5883The two arguments to the '``fadd``' instruction must be :ref:`floating
5884point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5885Both arguments must have identical types.
5886
5887Semantics:
5888""""""""""
5889
5890The value produced is the floating point sum of the two operands. This
5891instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5892which are optimization hints to enable otherwise unsafe floating point
5893optimizations:
5894
5895Example:
5896""""""""
5897
5898.. code-block:: llvm
5899
Tim Northover675a0962014-06-13 14:24:23 +00005900 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005901
5902'``sub``' Instruction
5903^^^^^^^^^^^^^^^^^^^^^
5904
5905Syntax:
5906"""""""
5907
5908::
5909
Tim Northover675a0962014-06-13 14:24:23 +00005910 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5911 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5912 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5913 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005914
5915Overview:
5916"""""""""
5917
5918The '``sub``' instruction returns the difference of its two operands.
5919
5920Note that the '``sub``' instruction is used to represent the '``neg``'
5921instruction present in most other intermediate representations.
5922
5923Arguments:
5924""""""""""
5925
5926The two arguments to the '``sub``' instruction must be
5927:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5928arguments must have identical types.
5929
5930Semantics:
5931""""""""""
5932
5933The value produced is the integer difference of the two operands.
5934
5935If the difference has unsigned overflow, the result returned is the
5936mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5937the result.
5938
5939Because LLVM integers use a two's complement representation, this
5940instruction is appropriate for both signed and unsigned integers.
5941
5942``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5943respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5944result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5945unsigned and/or signed overflow, respectively, occurs.
5946
5947Example:
5948""""""""
5949
5950.. code-block:: llvm
5951
Tim Northover675a0962014-06-13 14:24:23 +00005952 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5953 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005954
5955.. _i_fsub:
5956
5957'``fsub``' Instruction
5958^^^^^^^^^^^^^^^^^^^^^^
5959
5960Syntax:
5961"""""""
5962
5963::
5964
Tim Northover675a0962014-06-13 14:24:23 +00005965 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005966
5967Overview:
5968"""""""""
5969
5970The '``fsub``' instruction returns the difference of its two operands.
5971
5972Note that the '``fsub``' instruction is used to represent the '``fneg``'
5973instruction present in most other intermediate representations.
5974
5975Arguments:
5976""""""""""
5977
5978The two arguments to the '``fsub``' instruction must be :ref:`floating
5979point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5980Both arguments must have identical types.
5981
5982Semantics:
5983""""""""""
5984
5985The value produced is the floating point difference of the two operands.
5986This instruction can also take any number of :ref:`fast-math
5987flags <fastmath>`, which are optimization hints to enable otherwise
5988unsafe floating point optimizations:
5989
5990Example:
5991""""""""
5992
5993.. code-block:: llvm
5994
Tim Northover675a0962014-06-13 14:24:23 +00005995 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5996 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005997
5998'``mul``' Instruction
5999^^^^^^^^^^^^^^^^^^^^^
6000
6001Syntax:
6002"""""""
6003
6004::
6005
Tim Northover675a0962014-06-13 14:24:23 +00006006 <result> = mul <ty> <op1>, <op2> ; yields ty:result
6007 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
6008 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
6009 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006010
6011Overview:
6012"""""""""
6013
6014The '``mul``' instruction returns the product of its two operands.
6015
6016Arguments:
6017""""""""""
6018
6019The two arguments to the '``mul``' instruction must be
6020:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6021arguments must have identical types.
6022
6023Semantics:
6024""""""""""
6025
6026The value produced is the integer product of the two operands.
6027
6028If the result of the multiplication has unsigned overflow, the result
6029returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
6030bit width of the result.
6031
6032Because LLVM integers use a two's complement representation, and the
6033result is the same width as the operands, this instruction returns the
6034correct result for both signed and unsigned integers. If a full product
6035(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
6036sign-extended or zero-extended as appropriate to the width of the full
6037product.
6038
6039``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
6040respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
6041result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
6042unsigned and/or signed overflow, respectively, occurs.
6043
6044Example:
6045""""""""
6046
6047.. code-block:: llvm
6048
Tim Northover675a0962014-06-13 14:24:23 +00006049 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006050
6051.. _i_fmul:
6052
6053'``fmul``' Instruction
6054^^^^^^^^^^^^^^^^^^^^^^
6055
6056Syntax:
6057"""""""
6058
6059::
6060
Tim Northover675a0962014-06-13 14:24:23 +00006061 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006062
6063Overview:
6064"""""""""
6065
6066The '``fmul``' instruction returns the product of its two operands.
6067
6068Arguments:
6069""""""""""
6070
6071The two arguments to the '``fmul``' instruction must be :ref:`floating
6072point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6073Both arguments must have identical types.
6074
6075Semantics:
6076""""""""""
6077
6078The value produced is the floating point product of the two operands.
6079This instruction can also take any number of :ref:`fast-math
6080flags <fastmath>`, which are optimization hints to enable otherwise
6081unsafe floating point optimizations:
6082
6083Example:
6084""""""""
6085
6086.. code-block:: llvm
6087
Tim Northover675a0962014-06-13 14:24:23 +00006088 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00006089
6090'``udiv``' Instruction
6091^^^^^^^^^^^^^^^^^^^^^^
6092
6093Syntax:
6094"""""""
6095
6096::
6097
Tim Northover675a0962014-06-13 14:24:23 +00006098 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
6099 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006100
6101Overview:
6102"""""""""
6103
6104The '``udiv``' instruction returns the quotient of its two operands.
6105
6106Arguments:
6107""""""""""
6108
6109The two arguments to the '``udiv``' instruction must be
6110:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6111arguments must have identical types.
6112
6113Semantics:
6114""""""""""
6115
6116The value produced is the unsigned integer quotient of the two operands.
6117
6118Note that unsigned integer division and signed integer division are
6119distinct operations; for signed integer division, use '``sdiv``'.
6120
6121Division by zero leads to undefined behavior.
6122
6123If the ``exact`` keyword is present, the result value of the ``udiv`` is
6124a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
6125such, "((a udiv exact b) mul b) == a").
6126
6127Example:
6128""""""""
6129
6130.. code-block:: llvm
6131
Tim Northover675a0962014-06-13 14:24:23 +00006132 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006133
6134'``sdiv``' Instruction
6135^^^^^^^^^^^^^^^^^^^^^^
6136
6137Syntax:
6138"""""""
6139
6140::
6141
Tim Northover675a0962014-06-13 14:24:23 +00006142 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
6143 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006144
6145Overview:
6146"""""""""
6147
6148The '``sdiv``' instruction returns the quotient of its two operands.
6149
6150Arguments:
6151""""""""""
6152
6153The two arguments to the '``sdiv``' instruction must be
6154:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6155arguments must have identical types.
6156
6157Semantics:
6158""""""""""
6159
6160The value produced is the signed integer quotient of the two operands
6161rounded towards zero.
6162
6163Note that signed integer division and unsigned integer division are
6164distinct operations; for unsigned integer division, use '``udiv``'.
6165
6166Division by zero leads to undefined behavior. Overflow also leads to
6167undefined behavior; this is a rare case, but can occur, for example, by
6168doing a 32-bit division of -2147483648 by -1.
6169
6170If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6171a :ref:`poison value <poisonvalues>` if the result would be rounded.
6172
6173Example:
6174""""""""
6175
6176.. code-block:: llvm
6177
Tim Northover675a0962014-06-13 14:24:23 +00006178 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006179
6180.. _i_fdiv:
6181
6182'``fdiv``' Instruction
6183^^^^^^^^^^^^^^^^^^^^^^
6184
6185Syntax:
6186"""""""
6187
6188::
6189
Tim Northover675a0962014-06-13 14:24:23 +00006190 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006191
6192Overview:
6193"""""""""
6194
6195The '``fdiv``' instruction returns the quotient of its two operands.
6196
6197Arguments:
6198""""""""""
6199
6200The two arguments to the '``fdiv``' instruction must be :ref:`floating
6201point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6202Both arguments must have identical types.
6203
6204Semantics:
6205""""""""""
6206
6207The value produced is the floating point quotient of the two operands.
6208This instruction can also take any number of :ref:`fast-math
6209flags <fastmath>`, which are optimization hints to enable otherwise
6210unsafe floating point optimizations:
6211
6212Example:
6213""""""""
6214
6215.. code-block:: llvm
6216
Tim Northover675a0962014-06-13 14:24:23 +00006217 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006218
6219'``urem``' Instruction
6220^^^^^^^^^^^^^^^^^^^^^^
6221
6222Syntax:
6223"""""""
6224
6225::
6226
Tim Northover675a0962014-06-13 14:24:23 +00006227 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006228
6229Overview:
6230"""""""""
6231
6232The '``urem``' instruction returns the remainder from the unsigned
6233division of its two arguments.
6234
6235Arguments:
6236""""""""""
6237
6238The two arguments to the '``urem``' instruction must be
6239:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6240arguments must have identical types.
6241
6242Semantics:
6243""""""""""
6244
6245This instruction returns the unsigned integer *remainder* of a division.
6246This instruction always performs an unsigned division to get the
6247remainder.
6248
6249Note that unsigned integer remainder and signed integer remainder are
6250distinct operations; for signed integer remainder, use '``srem``'.
6251
6252Taking the remainder of a division by zero leads to undefined behavior.
6253
6254Example:
6255""""""""
6256
6257.. code-block:: llvm
6258
Tim Northover675a0962014-06-13 14:24:23 +00006259 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006260
6261'``srem``' Instruction
6262^^^^^^^^^^^^^^^^^^^^^^
6263
6264Syntax:
6265"""""""
6266
6267::
6268
Tim Northover675a0962014-06-13 14:24:23 +00006269 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006270
6271Overview:
6272"""""""""
6273
6274The '``srem``' instruction returns the remainder from the signed
6275division of its two operands. This instruction can also take
6276:ref:`vector <t_vector>` versions of the values in which case the elements
6277must be integers.
6278
6279Arguments:
6280""""""""""
6281
6282The two arguments to the '``srem``' instruction must be
6283:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6284arguments must have identical types.
6285
6286Semantics:
6287""""""""""
6288
6289This instruction returns the *remainder* of a division (where the result
6290is either zero or has the same sign as the dividend, ``op1``), not the
6291*modulo* operator (where the result is either zero or has the same sign
6292as the divisor, ``op2``) of a value. For more information about the
6293difference, see `The Math
6294Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6295table of how this is implemented in various languages, please see
6296`Wikipedia: modulo
6297operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6298
6299Note that signed integer remainder and unsigned integer remainder are
6300distinct operations; for unsigned integer remainder, use '``urem``'.
6301
6302Taking the remainder of a division by zero leads to undefined behavior.
6303Overflow also leads to undefined behavior; this is a rare case, but can
6304occur, for example, by taking the remainder of a 32-bit division of
6305-2147483648 by -1. (The remainder doesn't actually overflow, but this
6306rule lets srem be implemented using instructions that return both the
6307result of the division and the remainder.)
6308
6309Example:
6310""""""""
6311
6312.. code-block:: llvm
6313
Tim Northover675a0962014-06-13 14:24:23 +00006314 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006315
6316.. _i_frem:
6317
6318'``frem``' Instruction
6319^^^^^^^^^^^^^^^^^^^^^^
6320
6321Syntax:
6322"""""""
6323
6324::
6325
Tim Northover675a0962014-06-13 14:24:23 +00006326 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006327
6328Overview:
6329"""""""""
6330
6331The '``frem``' instruction returns the remainder from the division of
6332its two operands.
6333
6334Arguments:
6335""""""""""
6336
6337The two arguments to the '``frem``' instruction must be :ref:`floating
6338point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6339Both arguments must have identical types.
6340
6341Semantics:
6342""""""""""
6343
6344This instruction returns the *remainder* of a division. The remainder
6345has the same sign as the dividend. This instruction can also take any
6346number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6347to enable otherwise unsafe floating point optimizations:
6348
6349Example:
6350""""""""
6351
6352.. code-block:: llvm
6353
Tim Northover675a0962014-06-13 14:24:23 +00006354 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006355
6356.. _bitwiseops:
6357
6358Bitwise Binary Operations
6359-------------------------
6360
6361Bitwise binary operators are used to do various forms of bit-twiddling
6362in a program. They are generally very efficient instructions and can
6363commonly be strength reduced from other instructions. They require two
6364operands of the same type, execute an operation on them, and produce a
6365single value. The resulting value is the same type as its operands.
6366
6367'``shl``' Instruction
6368^^^^^^^^^^^^^^^^^^^^^
6369
6370Syntax:
6371"""""""
6372
6373::
6374
Tim Northover675a0962014-06-13 14:24:23 +00006375 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6376 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6377 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6378 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006379
6380Overview:
6381"""""""""
6382
6383The '``shl``' instruction returns the first operand shifted to the left
6384a specified number of bits.
6385
6386Arguments:
6387""""""""""
6388
6389Both arguments to the '``shl``' instruction must be the same
6390:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6391'``op2``' is treated as an unsigned value.
6392
6393Semantics:
6394""""""""""
6395
6396The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6397where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006398dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006399``op1``, the result is undefined. If the arguments are vectors, each
6400vector element of ``op1`` is shifted by the corresponding shift amount
6401in ``op2``.
6402
6403If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6404value <poisonvalues>` if it shifts out any non-zero bits. If the
6405``nsw`` keyword is present, then the shift produces a :ref:`poison
6406value <poisonvalues>` if it shifts out any bits that disagree with the
6407resultant sign bit. As such, NUW/NSW have the same semantics as they
6408would if the shift were expressed as a mul instruction with the same
6409nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6410
6411Example:
6412""""""""
6413
6414.. code-block:: llvm
6415
Tim Northover675a0962014-06-13 14:24:23 +00006416 <result> = shl i32 4, %var ; yields i32: 4 << %var
6417 <result> = shl i32 4, 2 ; yields i32: 16
6418 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006419 <result> = shl i32 1, 32 ; undefined
6420 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6421
6422'``lshr``' Instruction
6423^^^^^^^^^^^^^^^^^^^^^^
6424
6425Syntax:
6426"""""""
6427
6428::
6429
Tim Northover675a0962014-06-13 14:24:23 +00006430 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6431 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006432
6433Overview:
6434"""""""""
6435
6436The '``lshr``' instruction (logical shift right) returns the first
6437operand shifted to the right a specified number of bits with zero fill.
6438
6439Arguments:
6440""""""""""
6441
6442Both arguments to the '``lshr``' instruction must be the same
6443:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6444'``op2``' is treated as an unsigned value.
6445
6446Semantics:
6447""""""""""
6448
6449This instruction always performs a logical shift right operation. The
6450most significant bits of the result will be filled with zero bits after
6451the shift. If ``op2`` is (statically or dynamically) equal to or larger
6452than the number of bits in ``op1``, the result is undefined. If the
6453arguments are vectors, each vector element of ``op1`` is shifted by the
6454corresponding shift amount in ``op2``.
6455
6456If the ``exact`` keyword is present, the result value of the ``lshr`` is
6457a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6458non-zero.
6459
6460Example:
6461""""""""
6462
6463.. code-block:: llvm
6464
Tim Northover675a0962014-06-13 14:24:23 +00006465 <result> = lshr i32 4, 1 ; yields i32:result = 2
6466 <result> = lshr i32 4, 2 ; yields i32:result = 1
6467 <result> = lshr i8 4, 3 ; yields i8:result = 0
6468 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006469 <result> = lshr i32 1, 32 ; undefined
6470 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6471
6472'``ashr``' Instruction
6473^^^^^^^^^^^^^^^^^^^^^^
6474
6475Syntax:
6476"""""""
6477
6478::
6479
Tim Northover675a0962014-06-13 14:24:23 +00006480 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6481 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006482
6483Overview:
6484"""""""""
6485
6486The '``ashr``' instruction (arithmetic shift right) returns the first
6487operand shifted to the right a specified number of bits with sign
6488extension.
6489
6490Arguments:
6491""""""""""
6492
6493Both arguments to the '``ashr``' instruction must be the same
6494:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6495'``op2``' is treated as an unsigned value.
6496
6497Semantics:
6498""""""""""
6499
6500This instruction always performs an arithmetic shift right operation,
6501The most significant bits of the result will be filled with the sign bit
6502of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6503than the number of bits in ``op1``, the result is undefined. If the
6504arguments are vectors, each vector element of ``op1`` is shifted by the
6505corresponding shift amount in ``op2``.
6506
6507If the ``exact`` keyword is present, the result value of the ``ashr`` is
6508a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6509non-zero.
6510
6511Example:
6512""""""""
6513
6514.. code-block:: llvm
6515
Tim Northover675a0962014-06-13 14:24:23 +00006516 <result> = ashr i32 4, 1 ; yields i32:result = 2
6517 <result> = ashr i32 4, 2 ; yields i32:result = 1
6518 <result> = ashr i8 4, 3 ; yields i8:result = 0
6519 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006520 <result> = ashr i32 1, 32 ; undefined
6521 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6522
6523'``and``' Instruction
6524^^^^^^^^^^^^^^^^^^^^^
6525
6526Syntax:
6527"""""""
6528
6529::
6530
Tim Northover675a0962014-06-13 14:24:23 +00006531 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006532
6533Overview:
6534"""""""""
6535
6536The '``and``' instruction returns the bitwise logical and of its two
6537operands.
6538
6539Arguments:
6540""""""""""
6541
6542The two arguments to the '``and``' instruction must be
6543:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6544arguments must have identical types.
6545
6546Semantics:
6547""""""""""
6548
6549The truth table used for the '``and``' instruction is:
6550
6551+-----+-----+-----+
6552| In0 | In1 | Out |
6553+-----+-----+-----+
6554| 0 | 0 | 0 |
6555+-----+-----+-----+
6556| 0 | 1 | 0 |
6557+-----+-----+-----+
6558| 1 | 0 | 0 |
6559+-----+-----+-----+
6560| 1 | 1 | 1 |
6561+-----+-----+-----+
6562
6563Example:
6564""""""""
6565
6566.. code-block:: llvm
6567
Tim Northover675a0962014-06-13 14:24:23 +00006568 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6569 <result> = and i32 15, 40 ; yields i32:result = 8
6570 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006571
6572'``or``' Instruction
6573^^^^^^^^^^^^^^^^^^^^
6574
6575Syntax:
6576"""""""
6577
6578::
6579
Tim Northover675a0962014-06-13 14:24:23 +00006580 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006581
6582Overview:
6583"""""""""
6584
6585The '``or``' instruction returns the bitwise logical inclusive or of its
6586two operands.
6587
6588Arguments:
6589""""""""""
6590
6591The two arguments to the '``or``' instruction must be
6592:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6593arguments must have identical types.
6594
6595Semantics:
6596""""""""""
6597
6598The truth table used for the '``or``' instruction is:
6599
6600+-----+-----+-----+
6601| In0 | In1 | Out |
6602+-----+-----+-----+
6603| 0 | 0 | 0 |
6604+-----+-----+-----+
6605| 0 | 1 | 1 |
6606+-----+-----+-----+
6607| 1 | 0 | 1 |
6608+-----+-----+-----+
6609| 1 | 1 | 1 |
6610+-----+-----+-----+
6611
6612Example:
6613""""""""
6614
6615::
6616
Tim Northover675a0962014-06-13 14:24:23 +00006617 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6618 <result> = or i32 15, 40 ; yields i32:result = 47
6619 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006620
6621'``xor``' Instruction
6622^^^^^^^^^^^^^^^^^^^^^
6623
6624Syntax:
6625"""""""
6626
6627::
6628
Tim Northover675a0962014-06-13 14:24:23 +00006629 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006630
6631Overview:
6632"""""""""
6633
6634The '``xor``' instruction returns the bitwise logical exclusive or of
6635its two operands. The ``xor`` is used to implement the "one's
6636complement" operation, which is the "~" operator in C.
6637
6638Arguments:
6639""""""""""
6640
6641The two arguments to the '``xor``' instruction must be
6642:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6643arguments must have identical types.
6644
6645Semantics:
6646""""""""""
6647
6648The truth table used for the '``xor``' instruction is:
6649
6650+-----+-----+-----+
6651| In0 | In1 | Out |
6652+-----+-----+-----+
6653| 0 | 0 | 0 |
6654+-----+-----+-----+
6655| 0 | 1 | 1 |
6656+-----+-----+-----+
6657| 1 | 0 | 1 |
6658+-----+-----+-----+
6659| 1 | 1 | 0 |
6660+-----+-----+-----+
6661
6662Example:
6663""""""""
6664
6665.. code-block:: llvm
6666
Tim Northover675a0962014-06-13 14:24:23 +00006667 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6668 <result> = xor i32 15, 40 ; yields i32:result = 39
6669 <result> = xor i32 4, 8 ; yields i32:result = 12
6670 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006671
6672Vector Operations
6673-----------------
6674
6675LLVM supports several instructions to represent vector operations in a
6676target-independent manner. These instructions cover the element-access
6677and vector-specific operations needed to process vectors effectively.
6678While LLVM does directly support these vector operations, many
6679sophisticated algorithms will want to use target-specific intrinsics to
6680take full advantage of a specific target.
6681
6682.. _i_extractelement:
6683
6684'``extractelement``' Instruction
6685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6686
6687Syntax:
6688"""""""
6689
6690::
6691
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006692 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006693
6694Overview:
6695"""""""""
6696
6697The '``extractelement``' instruction extracts a single scalar element
6698from a vector at a specified index.
6699
6700Arguments:
6701""""""""""
6702
6703The first operand of an '``extractelement``' instruction is a value of
6704:ref:`vector <t_vector>` type. The second operand is an index indicating
6705the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006706variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006707
6708Semantics:
6709""""""""""
6710
6711The result is a scalar of the same type as the element type of ``val``.
6712Its value is the value at position ``idx`` of ``val``. If ``idx``
6713exceeds the length of ``val``, the results are undefined.
6714
6715Example:
6716""""""""
6717
6718.. code-block:: llvm
6719
6720 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6721
6722.. _i_insertelement:
6723
6724'``insertelement``' Instruction
6725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6726
6727Syntax:
6728"""""""
6729
6730::
6731
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006732 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006733
6734Overview:
6735"""""""""
6736
6737The '``insertelement``' instruction inserts a scalar element into a
6738vector at a specified index.
6739
6740Arguments:
6741""""""""""
6742
6743The first operand of an '``insertelement``' instruction is a value of
6744:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6745type must equal the element type of the first operand. The third operand
6746is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006747index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006748
6749Semantics:
6750""""""""""
6751
6752The result is a vector of the same type as ``val``. Its element values
6753are those of ``val`` except at position ``idx``, where it gets the value
6754``elt``. If ``idx`` exceeds the length of ``val``, the results are
6755undefined.
6756
6757Example:
6758""""""""
6759
6760.. code-block:: llvm
6761
6762 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6763
6764.. _i_shufflevector:
6765
6766'``shufflevector``' Instruction
6767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6768
6769Syntax:
6770"""""""
6771
6772::
6773
6774 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6775
6776Overview:
6777"""""""""
6778
6779The '``shufflevector``' instruction constructs a permutation of elements
6780from two input vectors, returning a vector with the same element type as
6781the input and length that is the same as the shuffle mask.
6782
6783Arguments:
6784""""""""""
6785
6786The first two operands of a '``shufflevector``' instruction are vectors
6787with the same type. The third argument is a shuffle mask whose element
6788type is always 'i32'. The result of the instruction is a vector whose
6789length is the same as the shuffle mask and whose element type is the
6790same as the element type of the first two operands.
6791
6792The shuffle mask operand is required to be a constant vector with either
6793constant integer or undef values.
6794
6795Semantics:
6796""""""""""
6797
6798The elements of the two input vectors are numbered from left to right
6799across both of the vectors. The shuffle mask operand specifies, for each
6800element of the result vector, which element of the two input vectors the
6801result element gets. The element selector may be undef (meaning "don't
6802care") and the second operand may be undef if performing a shuffle from
6803only one vector.
6804
6805Example:
6806""""""""
6807
6808.. code-block:: llvm
6809
6810 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6811 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6812 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6813 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6814 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6815 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6816 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6817 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6818
6819Aggregate Operations
6820--------------------
6821
6822LLVM supports several instructions for working with
6823:ref:`aggregate <t_aggregate>` values.
6824
6825.. _i_extractvalue:
6826
6827'``extractvalue``' Instruction
6828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6829
6830Syntax:
6831"""""""
6832
6833::
6834
6835 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6836
6837Overview:
6838"""""""""
6839
6840The '``extractvalue``' instruction extracts the value of a member field
6841from an :ref:`aggregate <t_aggregate>` value.
6842
6843Arguments:
6844""""""""""
6845
6846The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006847:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006848constant indices to specify which value to extract in a similar manner
6849as indices in a '``getelementptr``' instruction.
6850
6851The major differences to ``getelementptr`` indexing are:
6852
6853- Since the value being indexed is not a pointer, the first index is
6854 omitted and assumed to be zero.
6855- At least one index must be specified.
6856- Not only struct indices but also array indices must be in bounds.
6857
6858Semantics:
6859""""""""""
6860
6861The result is the value at the position in the aggregate specified by
6862the index operands.
6863
6864Example:
6865""""""""
6866
6867.. code-block:: llvm
6868
6869 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6870
6871.. _i_insertvalue:
6872
6873'``insertvalue``' Instruction
6874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6875
6876Syntax:
6877"""""""
6878
6879::
6880
6881 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6882
6883Overview:
6884"""""""""
6885
6886The '``insertvalue``' instruction inserts a value into a member field in
6887an :ref:`aggregate <t_aggregate>` value.
6888
6889Arguments:
6890""""""""""
6891
6892The first operand of an '``insertvalue``' instruction is a value of
6893:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6894a first-class value to insert. The following operands are constant
6895indices indicating the position at which to insert the value in a
6896similar manner as indices in a '``extractvalue``' instruction. The value
6897to insert must have the same type as the value identified by the
6898indices.
6899
6900Semantics:
6901""""""""""
6902
6903The result is an aggregate of the same type as ``val``. Its value is
6904that of ``val`` except that the value at the position specified by the
6905indices is that of ``elt``.
6906
6907Example:
6908""""""""
6909
6910.. code-block:: llvm
6911
6912 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6913 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006914 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006915
6916.. _memoryops:
6917
6918Memory Access and Addressing Operations
6919---------------------------------------
6920
6921A key design point of an SSA-based representation is how it represents
6922memory. In LLVM, no memory locations are in SSA form, which makes things
6923very simple. This section describes how to read, write, and allocate
6924memory in LLVM.
6925
6926.. _i_alloca:
6927
6928'``alloca``' Instruction
6929^^^^^^^^^^^^^^^^^^^^^^^^
6930
6931Syntax:
6932"""""""
6933
6934::
6935
Tim Northover675a0962014-06-13 14:24:23 +00006936 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006937
6938Overview:
6939"""""""""
6940
6941The '``alloca``' instruction allocates memory on the stack frame of the
6942currently executing function, to be automatically released when this
6943function returns to its caller. The object is always allocated in the
6944generic address space (address space zero).
6945
6946Arguments:
6947""""""""""
6948
6949The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6950bytes of memory on the runtime stack, returning a pointer of the
6951appropriate type to the program. If "NumElements" is specified, it is
6952the number of elements allocated, otherwise "NumElements" is defaulted
6953to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006954allocation is guaranteed to be aligned to at least that boundary. The
6955alignment may not be greater than ``1 << 29``. If not specified, or if
6956zero, the target can choose to align the allocation on any convenient
6957boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006958
6959'``type``' may be any sized type.
6960
6961Semantics:
6962""""""""""
6963
6964Memory is allocated; a pointer is returned. The operation is undefined
6965if there is insufficient stack space for the allocation. '``alloca``'d
6966memory is automatically released when the function returns. The
6967'``alloca``' instruction is commonly used to represent automatic
6968variables that must have an address available. When the function returns
6969(either with the ``ret`` or ``resume`` instructions), the memory is
6970reclaimed. Allocating zero bytes is legal, but the result is undefined.
6971The order in which memory is allocated (ie., which way the stack grows)
6972is not specified.
6973
6974Example:
6975""""""""
6976
6977.. code-block:: llvm
6978
Tim Northover675a0962014-06-13 14:24:23 +00006979 %ptr = alloca i32 ; yields i32*:ptr
6980 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6981 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6982 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006983
6984.. _i_load:
6985
6986'``load``' Instruction
6987^^^^^^^^^^^^^^^^^^^^^^
6988
6989Syntax:
6990"""""""
6991
6992::
6993
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006994 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006995 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006996 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006997 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006998 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006999
7000Overview:
7001"""""""""
7002
7003The '``load``' instruction is used to read from memory.
7004
7005Arguments:
7006""""""""""
7007
Eli Bendersky239a78b2013-04-17 20:17:08 +00007008The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00007009from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00007010class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
7011then the optimizer is not allowed to modify the number or order of
7012execution of this ``load`` with other :ref:`volatile
7013operations <volatile>`.
7014
7015If the ``load`` is marked as ``atomic``, it takes an extra
7016:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7017``release`` and ``acq_rel`` orderings are not valid on ``load``
7018instructions. Atomic loads produce :ref:`defined <memmodel>` results
7019when they may see multiple atomic stores. The type of the pointee must
7020be an integer type whose bit width is a power of two greater than or
7021equal to eight and less than or equal to a target-specific size limit.
7022``align`` must be explicitly specified on atomic loads, and the load has
7023undefined behavior if the alignment is not set to a value which is at
7024least the size in bytes of the pointee. ``!nontemporal`` does not have
7025any defined semantics for atomic loads.
7026
7027The optional constant ``align`` argument specifies the alignment of the
7028operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00007029or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007030alignment for the target. It is the responsibility of the code emitter
7031to ensure that the alignment information is correct. Overestimating the
7032alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007033may produce less efficient code. An alignment of 1 is always safe. The
7034maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007035
7036The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007037metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00007038``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007039metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00007040that this load is not expected to be reused in the cache. The code
7041generator may select special instructions to save cache bandwidth, such
7042as the ``MOVNT`` instruction on x86.
7043
7044The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007045metadata name ``<index>`` corresponding to a metadata node with no
7046entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00007047instruction tells the optimizer and code generator that the address
7048operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007049Being invariant does not imply that a location is dereferenceable,
7050but it does imply that once the location is known dereferenceable
7051its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00007052
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007053The optional ``!invariant.group`` metadata must reference a single metadata name
7054 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
7055
Philip Reamescdb72f32014-10-20 22:40:55 +00007056The optional ``!nonnull`` metadata must reference a single
7057metadata name ``<index>`` corresponding to a metadata node with no
7058entries. The existence of the ``!nonnull`` metadata on the
7059instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00007060never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00007061on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007062to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00007063
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007064The optional ``!dereferenceable`` metadata must reference a single metadata
7065name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00007066entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00007067tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00007068The number of bytes known to be dereferenceable is specified by the integer
7069value in the metadata node. This is analogous to the ''dereferenceable''
7070attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007071to loads of a pointer type.
7072
7073The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00007074metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
7075``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00007076instruction tells the optimizer that the value loaded is known to be either
7077dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00007078The number of bytes known to be dereferenceable is specified by the integer
7079value in the metadata node. This is analogous to the ''dereferenceable_or_null''
7080attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00007081to loads of a pointer type.
7082
Artur Pilipenkob4d00902015-09-28 17:41:08 +00007083The optional ``!align`` metadata must reference a single metadata name
7084``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
7085The existence of the ``!align`` metadata on the instruction tells the
7086optimizer that the value loaded is known to be aligned to a boundary specified
7087by the integer value in the metadata node. The alignment must be a power of 2.
7088This is analogous to the ''align'' attribute on parameters and return values.
7089This metadata can only be applied to loads of a pointer type.
7090
Sean Silvab084af42012-12-07 10:36:55 +00007091Semantics:
7092""""""""""
7093
7094The location of memory pointed to is loaded. If the value being loaded
7095is of scalar type then the number of bytes read does not exceed the
7096minimum number of bytes needed to hold all bits of the type. For
7097example, loading an ``i24`` reads at most three bytes. When loading a
7098value of a type like ``i20`` with a size that is not an integral number
7099of bytes, the result is undefined if the value was not originally
7100written using a store of the same type.
7101
7102Examples:
7103"""""""""
7104
7105.. code-block:: llvm
7106
Tim Northover675a0962014-06-13 14:24:23 +00007107 %ptr = alloca i32 ; yields i32*:ptr
7108 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00007109 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007110
7111.. _i_store:
7112
7113'``store``' Instruction
7114^^^^^^^^^^^^^^^^^^^^^^^
7115
7116Syntax:
7117"""""""
7118
7119::
7120
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007121 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
7122 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007123
7124Overview:
7125"""""""""
7126
7127The '``store``' instruction is used to write to memory.
7128
7129Arguments:
7130""""""""""
7131
Eli Benderskyca380842013-04-17 17:17:20 +00007132There are two arguments to the ``store`` instruction: a value to store
7133and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00007134operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00007135the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00007136then the optimizer is not allowed to modify the number or order of
7137execution of this ``store`` with other :ref:`volatile
7138operations <volatile>`.
7139
7140If the ``store`` is marked as ``atomic``, it takes an extra
7141:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
7142``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
7143instructions. Atomic loads produce :ref:`defined <memmodel>` results
7144when they may see multiple atomic stores. The type of the pointee must
7145be an integer type whose bit width is a power of two greater than or
7146equal to eight and less than or equal to a target-specific size limit.
7147``align`` must be explicitly specified on atomic stores, and the store
7148has undefined behavior if the alignment is not set to a value which is
7149at least the size in bytes of the pointee. ``!nontemporal`` does not
7150have any defined semantics for atomic stores.
7151
Eli Benderskyca380842013-04-17 17:17:20 +00007152The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00007153operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00007154or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00007155alignment for the target. It is the responsibility of the code emitter
7156to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00007157alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00007158alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007159safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007160
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007161The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007162name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007163value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007164tells the optimizer and code generator that this load is not expected to
7165be reused in the cache. The code generator may select special
7166instructions to save cache bandwidth, such as the MOVNT instruction on
7167x86.
7168
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007169The optional ``!invariant.group`` metadata must reference a
7170single metadata name ``<index>``. See ``invariant.group`` metadata.
7171
Sean Silvab084af42012-12-07 10:36:55 +00007172Semantics:
7173""""""""""
7174
Eli Benderskyca380842013-04-17 17:17:20 +00007175The contents of memory are updated to contain ``<value>`` at the
7176location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007177of scalar type then the number of bytes written does not exceed the
7178minimum number of bytes needed to hold all bits of the type. For
7179example, storing an ``i24`` writes at most three bytes. When writing a
7180value of a type like ``i20`` with a size that is not an integral number
7181of bytes, it is unspecified what happens to the extra bits that do not
7182belong to the type, but they will typically be overwritten.
7183
7184Example:
7185""""""""
7186
7187.. code-block:: llvm
7188
Tim Northover675a0962014-06-13 14:24:23 +00007189 %ptr = alloca i32 ; yields i32*:ptr
7190 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007191 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007192
7193.. _i_fence:
7194
7195'``fence``' Instruction
7196^^^^^^^^^^^^^^^^^^^^^^^
7197
7198Syntax:
7199"""""""
7200
7201::
7202
Tim Northover675a0962014-06-13 14:24:23 +00007203 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007204
7205Overview:
7206"""""""""
7207
7208The '``fence``' instruction is used to introduce happens-before edges
7209between operations.
7210
7211Arguments:
7212""""""""""
7213
7214'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7215defines what *synchronizes-with* edges they add. They can only be given
7216``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7217
7218Semantics:
7219""""""""""
7220
7221A fence A which has (at least) ``release`` ordering semantics
7222*synchronizes with* a fence B with (at least) ``acquire`` ordering
7223semantics if and only if there exist atomic operations X and Y, both
7224operating on some atomic object M, such that A is sequenced before X, X
7225modifies M (either directly or through some side effect of a sequence
7226headed by X), Y is sequenced before B, and Y observes M. This provides a
7227*happens-before* dependency between A and B. Rather than an explicit
7228``fence``, one (but not both) of the atomic operations X or Y might
7229provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7230still *synchronize-with* the explicit ``fence`` and establish the
7231*happens-before* edge.
7232
7233A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7234``acquire`` and ``release`` semantics specified above, participates in
7235the global program order of other ``seq_cst`` operations and/or fences.
7236
7237The optional ":ref:`singlethread <singlethread>`" argument specifies
7238that the fence only synchronizes with other fences in the same thread.
7239(This is useful for interacting with signal handlers.)
7240
7241Example:
7242""""""""
7243
7244.. code-block:: llvm
7245
Tim Northover675a0962014-06-13 14:24:23 +00007246 fence acquire ; yields void
7247 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007248
7249.. _i_cmpxchg:
7250
7251'``cmpxchg``' Instruction
7252^^^^^^^^^^^^^^^^^^^^^^^^^
7253
7254Syntax:
7255"""""""
7256
7257::
7258
Tim Northover675a0962014-06-13 14:24:23 +00007259 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007260
7261Overview:
7262"""""""""
7263
7264The '``cmpxchg``' instruction is used to atomically modify memory. It
7265loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007266equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007267
7268Arguments:
7269""""""""""
7270
7271There are three arguments to the '``cmpxchg``' instruction: an address
7272to operate on, a value to compare to the value currently be at that
7273address, and a new value to place at that address if the compared values
7274are equal. The type of '<cmp>' must be an integer type whose bit width
7275is a power of two greater than or equal to eight and less than or equal
7276to a target-specific size limit. '<cmp>' and '<new>' must have the same
7277type, and the type of '<pointer>' must be a pointer to that type. If the
7278``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7279to modify the number or order of execution of this ``cmpxchg`` with
7280other :ref:`volatile operations <volatile>`.
7281
Tim Northovere94a5182014-03-11 10:48:52 +00007282The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007283``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7284must be at least ``monotonic``, the ordering constraint on failure must be no
7285stronger than that on success, and the failure ordering cannot be either
7286``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007287
7288The optional "``singlethread``" argument declares that the ``cmpxchg``
7289is only atomic with respect to code (usually signal handlers) running in
7290the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7291respect to all other code in the system.
7292
7293The pointer passed into cmpxchg must have alignment greater than or
7294equal to the size in memory of the operand.
7295
7296Semantics:
7297""""""""""
7298
Tim Northover420a2162014-06-13 14:24:07 +00007299The contents of memory at the location specified by the '``<pointer>``' operand
7300is read and compared to '``<cmp>``'; if the read value is the equal, the
7301'``<new>``' is written. The original value at the location is returned, together
7302with a flag indicating success (true) or failure (false).
7303
7304If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7305permitted: the operation may not write ``<new>`` even if the comparison
7306matched.
7307
7308If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7309if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007310
Tim Northovere94a5182014-03-11 10:48:52 +00007311A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7312identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7313load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007314
7315Example:
7316""""""""
7317
7318.. code-block:: llvm
7319
7320 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007321 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007322 br label %loop
7323
7324 loop:
7325 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7326 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007327 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007328 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7329 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007330 br i1 %success, label %done, label %loop
7331
7332 done:
7333 ...
7334
7335.. _i_atomicrmw:
7336
7337'``atomicrmw``' Instruction
7338^^^^^^^^^^^^^^^^^^^^^^^^^^^
7339
7340Syntax:
7341"""""""
7342
7343::
7344
Tim Northover675a0962014-06-13 14:24:23 +00007345 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007346
7347Overview:
7348"""""""""
7349
7350The '``atomicrmw``' instruction is used to atomically modify memory.
7351
7352Arguments:
7353""""""""""
7354
7355There are three arguments to the '``atomicrmw``' instruction: an
7356operation to apply, an address whose value to modify, an argument to the
7357operation. The operation must be one of the following keywords:
7358
7359- xchg
7360- add
7361- sub
7362- and
7363- nand
7364- or
7365- xor
7366- max
7367- min
7368- umax
7369- umin
7370
7371The type of '<value>' must be an integer type whose bit width is a power
7372of two greater than or equal to eight and less than or equal to a
7373target-specific size limit. The type of the '``<pointer>``' operand must
7374be a pointer to that type. If the ``atomicrmw`` is marked as
7375``volatile``, then the optimizer is not allowed to modify the number or
7376order of execution of this ``atomicrmw`` with other :ref:`volatile
7377operations <volatile>`.
7378
7379Semantics:
7380""""""""""
7381
7382The contents of memory at the location specified by the '``<pointer>``'
7383operand are atomically read, modified, and written back. The original
7384value at the location is returned. The modification is specified by the
7385operation argument:
7386
7387- xchg: ``*ptr = val``
7388- add: ``*ptr = *ptr + val``
7389- sub: ``*ptr = *ptr - val``
7390- and: ``*ptr = *ptr & val``
7391- nand: ``*ptr = ~(*ptr & val)``
7392- or: ``*ptr = *ptr | val``
7393- xor: ``*ptr = *ptr ^ val``
7394- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7395- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7396- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7397 comparison)
7398- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7399 comparison)
7400
7401Example:
7402""""""""
7403
7404.. code-block:: llvm
7405
Tim Northover675a0962014-06-13 14:24:23 +00007406 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007407
7408.. _i_getelementptr:
7409
7410'``getelementptr``' Instruction
7411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7412
7413Syntax:
7414"""""""
7415
7416::
7417
David Blaikie16a97eb2015-03-04 22:02:58 +00007418 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7419 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7420 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007421
7422Overview:
7423"""""""""
7424
7425The '``getelementptr``' instruction is used to get the address of a
7426subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007427address calculation only and does not access memory. The instruction can also
7428be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007429
7430Arguments:
7431""""""""""
7432
David Blaikie16a97eb2015-03-04 22:02:58 +00007433The first argument is always a type used as the basis for the calculations.
7434The second argument is always a pointer or a vector of pointers, and is the
7435base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007436that indicate which of the elements of the aggregate object are indexed.
7437The interpretation of each index is dependent on the type being indexed
7438into. The first index always indexes the pointer value given as the
7439first argument, the second index indexes a value of the type pointed to
7440(not necessarily the value directly pointed to, since the first index
7441can be non-zero), etc. The first type indexed into must be a pointer
7442value, subsequent types can be arrays, vectors, and structs. Note that
7443subsequent types being indexed into can never be pointers, since that
7444would require loading the pointer before continuing calculation.
7445
7446The type of each index argument depends on the type it is indexing into.
7447When indexing into a (optionally packed) structure, only ``i32`` integer
7448**constants** are allowed (when using a vector of indices they must all
7449be the **same** ``i32`` integer constant). When indexing into an array,
7450pointer or vector, integers of any width are allowed, and they are not
7451required to be constant. These integers are treated as signed values
7452where relevant.
7453
7454For example, let's consider a C code fragment and how it gets compiled
7455to LLVM:
7456
7457.. code-block:: c
7458
7459 struct RT {
7460 char A;
7461 int B[10][20];
7462 char C;
7463 };
7464 struct ST {
7465 int X;
7466 double Y;
7467 struct RT Z;
7468 };
7469
7470 int *foo(struct ST *s) {
7471 return &s[1].Z.B[5][13];
7472 }
7473
7474The LLVM code generated by Clang is:
7475
7476.. code-block:: llvm
7477
7478 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7479 %struct.ST = type { i32, double, %struct.RT }
7480
7481 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7482 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007483 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007484 ret i32* %arrayidx
7485 }
7486
7487Semantics:
7488""""""""""
7489
7490In the example above, the first index is indexing into the
7491'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7492= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7493indexes into the third element of the structure, yielding a
7494'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7495structure. The third index indexes into the second element of the
7496structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7497dimensions of the array are subscripted into, yielding an '``i32``'
7498type. The '``getelementptr``' instruction returns a pointer to this
7499element, thus computing a value of '``i32*``' type.
7500
7501Note that it is perfectly legal to index partially through a structure,
7502returning a pointer to an inner element. Because of this, the LLVM code
7503for the given testcase is equivalent to:
7504
7505.. code-block:: llvm
7506
7507 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007508 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7509 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7510 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7511 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7512 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007513 ret i32* %t5
7514 }
7515
7516If the ``inbounds`` keyword is present, the result value of the
7517``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7518pointer is not an *in bounds* address of an allocated object, or if any
7519of the addresses that would be formed by successive addition of the
7520offsets implied by the indices to the base address with infinitely
7521precise signed arithmetic are not an *in bounds* address of that
7522allocated object. The *in bounds* addresses for an allocated object are
7523all the addresses that point into the object, plus the address one byte
7524past the end. In cases where the base is a vector of pointers the
7525``inbounds`` keyword applies to each of the computations element-wise.
7526
7527If the ``inbounds`` keyword is not present, the offsets are added to the
7528base address with silently-wrapping two's complement arithmetic. If the
7529offsets have a different width from the pointer, they are sign-extended
7530or truncated to the width of the pointer. The result value of the
7531``getelementptr`` may be outside the object pointed to by the base
7532pointer. The result value may not necessarily be used to access memory
7533though, even if it happens to point into allocated storage. See the
7534:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7535information.
7536
7537The getelementptr instruction is often confusing. For some more insight
7538into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7539
7540Example:
7541""""""""
7542
7543.. code-block:: llvm
7544
7545 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007546 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007547 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007548 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007549 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007550 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007551 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007552 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007553
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007554Vector of pointers:
7555"""""""""""""""""""
7556
7557The ``getelementptr`` returns a vector of pointers, instead of a single address,
7558when one or more of its arguments is a vector. In such cases, all vector
7559arguments should have the same number of elements, and every scalar argument
7560will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007561
7562.. code-block:: llvm
7563
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007564 ; All arguments are vectors:
7565 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7566 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007567
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007568 ; Add the same scalar offset to each pointer of a vector:
7569 ; A[i] = ptrs[i] + offset*sizeof(i8)
7570 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007571
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007572 ; Add distinct offsets to the same pointer:
7573 ; A[i] = ptr + offsets[i]*sizeof(i8)
7574 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007575
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007576 ; In all cases described above the type of the result is <4 x i8*>
7577
7578The two following instructions are equivalent:
7579
7580.. code-block:: llvm
7581
7582 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7583 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7584 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7585 <4 x i32> %ind4,
7586 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007587
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007588 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7589 i32 2, i32 1, <4 x i32> %ind4, i64 13
7590
7591Let's look at the C code, where the vector version of ``getelementptr``
7592makes sense:
7593
7594.. code-block:: c
7595
7596 // Let's assume that we vectorize the following loop:
7597 double *A, B; int *C;
7598 for (int i = 0; i < size; ++i) {
7599 A[i] = B[C[i]];
7600 }
7601
7602.. code-block:: llvm
7603
7604 ; get pointers for 8 elements from array B
7605 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7606 ; load 8 elements from array B into A
7607 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7608 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007609
7610Conversion Operations
7611---------------------
7612
7613The instructions in this category are the conversion instructions
7614(casting) which all take a single operand and a type. They perform
7615various bit conversions on the operand.
7616
7617'``trunc .. to``' Instruction
7618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7619
7620Syntax:
7621"""""""
7622
7623::
7624
7625 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7626
7627Overview:
7628"""""""""
7629
7630The '``trunc``' instruction truncates its operand to the type ``ty2``.
7631
7632Arguments:
7633""""""""""
7634
7635The '``trunc``' instruction takes a value to trunc, and a type to trunc
7636it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7637of the same number of integers. The bit size of the ``value`` must be
7638larger than the bit size of the destination type, ``ty2``. Equal sized
7639types are not allowed.
7640
7641Semantics:
7642""""""""""
7643
7644The '``trunc``' instruction truncates the high order bits in ``value``
7645and converts the remaining bits to ``ty2``. Since the source size must
7646be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7647It will always truncate bits.
7648
7649Example:
7650""""""""
7651
7652.. code-block:: llvm
7653
7654 %X = trunc i32 257 to i8 ; yields i8:1
7655 %Y = trunc i32 123 to i1 ; yields i1:true
7656 %Z = trunc i32 122 to i1 ; yields i1:false
7657 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7658
7659'``zext .. to``' Instruction
7660^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7661
7662Syntax:
7663"""""""
7664
7665::
7666
7667 <result> = zext <ty> <value> to <ty2> ; yields ty2
7668
7669Overview:
7670"""""""""
7671
7672The '``zext``' instruction zero extends its operand to type ``ty2``.
7673
7674Arguments:
7675""""""""""
7676
7677The '``zext``' instruction takes a value to cast, and a type to cast it
7678to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7679the same number of integers. The bit size of the ``value`` must be
7680smaller than the bit size of the destination type, ``ty2``.
7681
7682Semantics:
7683""""""""""
7684
7685The ``zext`` fills the high order bits of the ``value`` with zero bits
7686until it reaches the size of the destination type, ``ty2``.
7687
7688When zero extending from i1, the result will always be either 0 or 1.
7689
7690Example:
7691""""""""
7692
7693.. code-block:: llvm
7694
7695 %X = zext i32 257 to i64 ; yields i64:257
7696 %Y = zext i1 true to i32 ; yields i32:1
7697 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7698
7699'``sext .. to``' Instruction
7700^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7701
7702Syntax:
7703"""""""
7704
7705::
7706
7707 <result> = sext <ty> <value> to <ty2> ; yields ty2
7708
7709Overview:
7710"""""""""
7711
7712The '``sext``' sign extends ``value`` to the type ``ty2``.
7713
7714Arguments:
7715""""""""""
7716
7717The '``sext``' instruction takes a value to cast, and a type to cast it
7718to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7719the same number of integers. The bit size of the ``value`` must be
7720smaller than the bit size of the destination type, ``ty2``.
7721
7722Semantics:
7723""""""""""
7724
7725The '``sext``' instruction performs a sign extension by copying the sign
7726bit (highest order bit) of the ``value`` until it reaches the bit size
7727of the type ``ty2``.
7728
7729When sign extending from i1, the extension always results in -1 or 0.
7730
7731Example:
7732""""""""
7733
7734.. code-block:: llvm
7735
7736 %X = sext i8 -1 to i16 ; yields i16 :65535
7737 %Y = sext i1 true to i32 ; yields i32:-1
7738 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7739
7740'``fptrunc .. to``' Instruction
7741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7742
7743Syntax:
7744"""""""
7745
7746::
7747
7748 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7749
7750Overview:
7751"""""""""
7752
7753The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7754
7755Arguments:
7756""""""""""
7757
7758The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7759value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7760The size of ``value`` must be larger than the size of ``ty2``. This
7761implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7762
7763Semantics:
7764""""""""""
7765
Dan Liew50456fb2015-09-03 18:43:56 +00007766The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007767:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007768point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7769destination type, ``ty2``, then the results are undefined. If the cast produces
7770an inexact result, how rounding is performed (e.g. truncation, also known as
7771round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007772
7773Example:
7774""""""""
7775
7776.. code-block:: llvm
7777
7778 %X = fptrunc double 123.0 to float ; yields float:123.0
7779 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7780
7781'``fpext .. to``' Instruction
7782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7783
7784Syntax:
7785"""""""
7786
7787::
7788
7789 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7790
7791Overview:
7792"""""""""
7793
7794The '``fpext``' extends a floating point ``value`` to a larger floating
7795point value.
7796
7797Arguments:
7798""""""""""
7799
7800The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7801``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7802to. The source type must be smaller than the destination type.
7803
7804Semantics:
7805""""""""""
7806
7807The '``fpext``' instruction extends the ``value`` from a smaller
7808:ref:`floating point <t_floating>` type to a larger :ref:`floating
7809point <t_floating>` type. The ``fpext`` cannot be used to make a
7810*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7811*no-op cast* for a floating point cast.
7812
7813Example:
7814""""""""
7815
7816.. code-block:: llvm
7817
7818 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7819 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7820
7821'``fptoui .. to``' Instruction
7822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7823
7824Syntax:
7825"""""""
7826
7827::
7828
7829 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7830
7831Overview:
7832"""""""""
7833
7834The '``fptoui``' converts a floating point ``value`` to its unsigned
7835integer equivalent of type ``ty2``.
7836
7837Arguments:
7838""""""""""
7839
7840The '``fptoui``' instruction takes a value to cast, which must be a
7841scalar or vector :ref:`floating point <t_floating>` value, and a type to
7842cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7843``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7844type with the same number of elements as ``ty``
7845
7846Semantics:
7847""""""""""
7848
7849The '``fptoui``' instruction converts its :ref:`floating
7850point <t_floating>` operand into the nearest (rounding towards zero)
7851unsigned integer value. If the value cannot fit in ``ty2``, the results
7852are undefined.
7853
7854Example:
7855""""""""
7856
7857.. code-block:: llvm
7858
7859 %X = fptoui double 123.0 to i32 ; yields i32:123
7860 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7861 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7862
7863'``fptosi .. to``' Instruction
7864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7865
7866Syntax:
7867"""""""
7868
7869::
7870
7871 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7872
7873Overview:
7874"""""""""
7875
7876The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7877``value`` to type ``ty2``.
7878
7879Arguments:
7880""""""""""
7881
7882The '``fptosi``' instruction takes a value to cast, which must be a
7883scalar or vector :ref:`floating point <t_floating>` value, and a type to
7884cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7885``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7886type with the same number of elements as ``ty``
7887
7888Semantics:
7889""""""""""
7890
7891The '``fptosi``' instruction converts its :ref:`floating
7892point <t_floating>` operand into the nearest (rounding towards zero)
7893signed integer value. If the value cannot fit in ``ty2``, the results
7894are undefined.
7895
7896Example:
7897""""""""
7898
7899.. code-block:: llvm
7900
7901 %X = fptosi double -123.0 to i32 ; yields i32:-123
7902 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7903 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7904
7905'``uitofp .. to``' Instruction
7906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7907
7908Syntax:
7909"""""""
7910
7911::
7912
7913 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7914
7915Overview:
7916"""""""""
7917
7918The '``uitofp``' instruction regards ``value`` as an unsigned integer
7919and converts that value to the ``ty2`` type.
7920
7921Arguments:
7922""""""""""
7923
7924The '``uitofp``' instruction takes a value to cast, which must be a
7925scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7926``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7927``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7928type with the same number of elements as ``ty``
7929
7930Semantics:
7931""""""""""
7932
7933The '``uitofp``' instruction interprets its operand as an unsigned
7934integer quantity and converts it to the corresponding floating point
7935value. If the value cannot fit in the floating point value, the results
7936are undefined.
7937
7938Example:
7939""""""""
7940
7941.. code-block:: llvm
7942
7943 %X = uitofp i32 257 to float ; yields float:257.0
7944 %Y = uitofp i8 -1 to double ; yields double:255.0
7945
7946'``sitofp .. to``' Instruction
7947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7948
7949Syntax:
7950"""""""
7951
7952::
7953
7954 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7955
7956Overview:
7957"""""""""
7958
7959The '``sitofp``' instruction regards ``value`` as a signed integer and
7960converts that value to the ``ty2`` type.
7961
7962Arguments:
7963""""""""""
7964
7965The '``sitofp``' instruction takes a value to cast, which must be a
7966scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7967``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7968``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7969type with the same number of elements as ``ty``
7970
7971Semantics:
7972""""""""""
7973
7974The '``sitofp``' instruction interprets its operand as a signed integer
7975quantity and converts it to the corresponding floating point value. If
7976the value cannot fit in the floating point value, the results are
7977undefined.
7978
7979Example:
7980""""""""
7981
7982.. code-block:: llvm
7983
7984 %X = sitofp i32 257 to float ; yields float:257.0
7985 %Y = sitofp i8 -1 to double ; yields double:-1.0
7986
7987.. _i_ptrtoint:
7988
7989'``ptrtoint .. to``' Instruction
7990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7991
7992Syntax:
7993"""""""
7994
7995::
7996
7997 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7998
7999Overview:
8000"""""""""
8001
8002The '``ptrtoint``' instruction converts the pointer or a vector of
8003pointers ``value`` to the integer (or vector of integers) type ``ty2``.
8004
8005Arguments:
8006""""""""""
8007
8008The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00008009a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00008010type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
8011a vector of integers type.
8012
8013Semantics:
8014""""""""""
8015
8016The '``ptrtoint``' instruction converts ``value`` to integer type
8017``ty2`` by interpreting the pointer value as an integer and either
8018truncating or zero extending that value to the size of the integer type.
8019If ``value`` is smaller than ``ty2`` then a zero extension is done. If
8020``value`` is larger than ``ty2`` then a truncation is done. If they are
8021the same size, then nothing is done (*no-op cast*) other than a type
8022change.
8023
8024Example:
8025""""""""
8026
8027.. code-block:: llvm
8028
8029 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
8030 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
8031 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
8032
8033.. _i_inttoptr:
8034
8035'``inttoptr .. to``' Instruction
8036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8037
8038Syntax:
8039"""""""
8040
8041::
8042
8043 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
8044
8045Overview:
8046"""""""""
8047
8048The '``inttoptr``' instruction converts an integer ``value`` to a
8049pointer type, ``ty2``.
8050
8051Arguments:
8052""""""""""
8053
8054The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
8055cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
8056type.
8057
8058Semantics:
8059""""""""""
8060
8061The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
8062applying either a zero extension or a truncation depending on the size
8063of the integer ``value``. If ``value`` is larger than the size of a
8064pointer then a truncation is done. If ``value`` is smaller than the size
8065of a pointer then a zero extension is done. If they are the same size,
8066nothing is done (*no-op cast*).
8067
8068Example:
8069""""""""
8070
8071.. code-block:: llvm
8072
8073 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
8074 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
8075 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
8076 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
8077
8078.. _i_bitcast:
8079
8080'``bitcast .. to``' Instruction
8081^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8082
8083Syntax:
8084"""""""
8085
8086::
8087
8088 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
8089
8090Overview:
8091"""""""""
8092
8093The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
8094changing any bits.
8095
8096Arguments:
8097""""""""""
8098
8099The '``bitcast``' instruction takes a value to cast, which must be a
8100non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008101also be a non-aggregate :ref:`first class <t_firstclass>` type. The
8102bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00008103identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00008104also be a pointer of the same size. This instruction supports bitwise
8105conversion of vectors to integers and to vectors of other types (as
8106long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00008107
8108Semantics:
8109""""""""""
8110
Matt Arsenault24b49c42013-07-31 17:49:08 +00008111The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
8112is always a *no-op cast* because no bits change with this
8113conversion. The conversion is done as if the ``value`` had been stored
8114to memory and read back as type ``ty2``. Pointer (or vector of
8115pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008116pointers) types with the same address space through this instruction.
8117To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
8118or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00008119
8120Example:
8121""""""""
8122
8123.. code-block:: llvm
8124
8125 %X = bitcast i8 255 to i8 ; yields i8 :-1
8126 %Y = bitcast i32* %x to sint* ; yields sint*:%x
8127 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
8128 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
8129
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008130.. _i_addrspacecast:
8131
8132'``addrspacecast .. to``' Instruction
8133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8134
8135Syntax:
8136"""""""
8137
8138::
8139
8140 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
8141
8142Overview:
8143"""""""""
8144
8145The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
8146address space ``n`` to type ``pty2`` in address space ``m``.
8147
8148Arguments:
8149""""""""""
8150
8151The '``addrspacecast``' instruction takes a pointer or vector of pointer value
8152to cast and a pointer type to cast it to, which must have a different
8153address space.
8154
8155Semantics:
8156""""""""""
8157
8158The '``addrspacecast``' instruction converts the pointer value
8159``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008160value modification, depending on the target and the address space
8161pair. Pointer conversions within the same address space must be
8162performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008163conversion is legal then both result and operand refer to the same memory
8164location.
8165
8166Example:
8167""""""""
8168
8169.. code-block:: llvm
8170
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008171 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8172 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8173 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008174
Sean Silvab084af42012-12-07 10:36:55 +00008175.. _otherops:
8176
8177Other Operations
8178----------------
8179
8180The instructions in this category are the "miscellaneous" instructions,
8181which defy better classification.
8182
8183.. _i_icmp:
8184
8185'``icmp``' Instruction
8186^^^^^^^^^^^^^^^^^^^^^^
8187
8188Syntax:
8189"""""""
8190
8191::
8192
Tim Northover675a0962014-06-13 14:24:23 +00008193 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008194
8195Overview:
8196"""""""""
8197
8198The '``icmp``' instruction returns a boolean value or a vector of
8199boolean values based on comparison of its two integer, integer vector,
8200pointer, or pointer vector operands.
8201
8202Arguments:
8203""""""""""
8204
8205The '``icmp``' instruction takes three operands. The first operand is
8206the condition code indicating the kind of comparison to perform. It is
8207not a value, just a keyword. The possible condition code are:
8208
8209#. ``eq``: equal
8210#. ``ne``: not equal
8211#. ``ugt``: unsigned greater than
8212#. ``uge``: unsigned greater or equal
8213#. ``ult``: unsigned less than
8214#. ``ule``: unsigned less or equal
8215#. ``sgt``: signed greater than
8216#. ``sge``: signed greater or equal
8217#. ``slt``: signed less than
8218#. ``sle``: signed less or equal
8219
8220The remaining two arguments must be :ref:`integer <t_integer>` or
8221:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8222must also be identical types.
8223
8224Semantics:
8225""""""""""
8226
8227The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8228code given as ``cond``. The comparison performed always yields either an
8229:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8230
8231#. ``eq``: yields ``true`` if the operands are equal, ``false``
8232 otherwise. No sign interpretation is necessary or performed.
8233#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8234 otherwise. No sign interpretation is necessary or performed.
8235#. ``ugt``: interprets the operands as unsigned values and yields
8236 ``true`` if ``op1`` is greater than ``op2``.
8237#. ``uge``: interprets the operands as unsigned values and yields
8238 ``true`` if ``op1`` is greater than or equal to ``op2``.
8239#. ``ult``: interprets the operands as unsigned values and yields
8240 ``true`` if ``op1`` is less than ``op2``.
8241#. ``ule``: interprets the operands as unsigned values and yields
8242 ``true`` if ``op1`` is less than or equal to ``op2``.
8243#. ``sgt``: interprets the operands as signed values and yields ``true``
8244 if ``op1`` is greater than ``op2``.
8245#. ``sge``: interprets the operands as signed values and yields ``true``
8246 if ``op1`` is greater than or equal to ``op2``.
8247#. ``slt``: interprets the operands as signed values and yields ``true``
8248 if ``op1`` is less than ``op2``.
8249#. ``sle``: interprets the operands as signed values and yields ``true``
8250 if ``op1`` is less than or equal to ``op2``.
8251
8252If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8253are compared as if they were integers.
8254
8255If the operands are integer vectors, then they are compared element by
8256element. The result is an ``i1`` vector with the same number of elements
8257as the values being compared. Otherwise, the result is an ``i1``.
8258
8259Example:
8260""""""""
8261
8262.. code-block:: llvm
8263
8264 <result> = icmp eq i32 4, 5 ; yields: result=false
8265 <result> = icmp ne float* %X, %X ; yields: result=false
8266 <result> = icmp ult i16 4, 5 ; yields: result=true
8267 <result> = icmp sgt i16 4, 5 ; yields: result=false
8268 <result> = icmp ule i16 -4, 5 ; yields: result=false
8269 <result> = icmp sge i16 4, 5 ; yields: result=false
8270
8271Note that the code generator does not yet support vector types with the
8272``icmp`` instruction.
8273
8274.. _i_fcmp:
8275
8276'``fcmp``' Instruction
8277^^^^^^^^^^^^^^^^^^^^^^
8278
8279Syntax:
8280"""""""
8281
8282::
8283
James Molloy88eb5352015-07-10 12:52:00 +00008284 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008285
8286Overview:
8287"""""""""
8288
8289The '``fcmp``' instruction returns a boolean value or vector of boolean
8290values based on comparison of its operands.
8291
8292If the operands are floating point scalars, then the result type is a
8293boolean (:ref:`i1 <t_integer>`).
8294
8295If the operands are floating point vectors, then the result type is a
8296vector of boolean with the same number of elements as the operands being
8297compared.
8298
8299Arguments:
8300""""""""""
8301
8302The '``fcmp``' instruction takes three operands. The first operand is
8303the condition code indicating the kind of comparison to perform. It is
8304not a value, just a keyword. The possible condition code are:
8305
8306#. ``false``: no comparison, always returns false
8307#. ``oeq``: ordered and equal
8308#. ``ogt``: ordered and greater than
8309#. ``oge``: ordered and greater than or equal
8310#. ``olt``: ordered and less than
8311#. ``ole``: ordered and less than or equal
8312#. ``one``: ordered and not equal
8313#. ``ord``: ordered (no nans)
8314#. ``ueq``: unordered or equal
8315#. ``ugt``: unordered or greater than
8316#. ``uge``: unordered or greater than or equal
8317#. ``ult``: unordered or less than
8318#. ``ule``: unordered or less than or equal
8319#. ``une``: unordered or not equal
8320#. ``uno``: unordered (either nans)
8321#. ``true``: no comparison, always returns true
8322
8323*Ordered* means that neither operand is a QNAN while *unordered* means
8324that either operand may be a QNAN.
8325
8326Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8327point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8328type. They must have identical types.
8329
8330Semantics:
8331""""""""""
8332
8333The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8334condition code given as ``cond``. If the operands are vectors, then the
8335vectors are compared element by element. Each comparison performed
8336always yields an :ref:`i1 <t_integer>` result, as follows:
8337
8338#. ``false``: always yields ``false``, regardless of operands.
8339#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8340 is equal to ``op2``.
8341#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8342 is greater than ``op2``.
8343#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8344 is greater than or equal to ``op2``.
8345#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8346 is less than ``op2``.
8347#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8348 is less than or equal to ``op2``.
8349#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8350 is not equal to ``op2``.
8351#. ``ord``: yields ``true`` if both operands are not a QNAN.
8352#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8353 equal to ``op2``.
8354#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8355 greater than ``op2``.
8356#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8357 greater than or equal to ``op2``.
8358#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8359 less than ``op2``.
8360#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8361 less than or equal to ``op2``.
8362#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8363 not equal to ``op2``.
8364#. ``uno``: yields ``true`` if either operand is a QNAN.
8365#. ``true``: always yields ``true``, regardless of operands.
8366
James Molloy88eb5352015-07-10 12:52:00 +00008367The ``fcmp`` instruction can also optionally take any number of
8368:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8369otherwise unsafe floating point optimizations.
8370
8371Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8372only flags that have any effect on its semantics are those that allow
8373assumptions to be made about the values of input arguments; namely
8374``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8375
Sean Silvab084af42012-12-07 10:36:55 +00008376Example:
8377""""""""
8378
8379.. code-block:: llvm
8380
8381 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8382 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8383 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8384 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8385
8386Note that the code generator does not yet support vector types with the
8387``fcmp`` instruction.
8388
8389.. _i_phi:
8390
8391'``phi``' Instruction
8392^^^^^^^^^^^^^^^^^^^^^
8393
8394Syntax:
8395"""""""
8396
8397::
8398
8399 <result> = phi <ty> [ <val0>, <label0>], ...
8400
8401Overview:
8402"""""""""
8403
8404The '``phi``' instruction is used to implement the φ node in the SSA
8405graph representing the function.
8406
8407Arguments:
8408""""""""""
8409
8410The type of the incoming values is specified with the first type field.
8411After this, the '``phi``' instruction takes a list of pairs as
8412arguments, with one pair for each predecessor basic block of the current
8413block. Only values of :ref:`first class <t_firstclass>` type may be used as
8414the value arguments to the PHI node. Only labels may be used as the
8415label arguments.
8416
8417There must be no non-phi instructions between the start of a basic block
8418and the PHI instructions: i.e. PHI instructions must be first in a basic
8419block.
8420
8421For the purposes of the SSA form, the use of each incoming value is
8422deemed to occur on the edge from the corresponding predecessor block to
8423the current block (but after any definition of an '``invoke``'
8424instruction's return value on the same edge).
8425
8426Semantics:
8427""""""""""
8428
8429At runtime, the '``phi``' instruction logically takes on the value
8430specified by the pair corresponding to the predecessor basic block that
8431executed just prior to the current block.
8432
8433Example:
8434""""""""
8435
8436.. code-block:: llvm
8437
8438 Loop: ; Infinite loop that counts from 0 on up...
8439 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8440 %nextindvar = add i32 %indvar, 1
8441 br label %Loop
8442
8443.. _i_select:
8444
8445'``select``' Instruction
8446^^^^^^^^^^^^^^^^^^^^^^^^
8447
8448Syntax:
8449"""""""
8450
8451::
8452
8453 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8454
8455 selty is either i1 or {<N x i1>}
8456
8457Overview:
8458"""""""""
8459
8460The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008461condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008462
8463Arguments:
8464""""""""""
8465
8466The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8467values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008468class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008469
8470Semantics:
8471""""""""""
8472
8473If the condition is an i1 and it evaluates to 1, the instruction returns
8474the first value argument; otherwise, it returns the second value
8475argument.
8476
8477If the condition is a vector of i1, then the value arguments must be
8478vectors of the same size, and the selection is done element by element.
8479
David Majnemer40a0b592015-03-03 22:45:47 +00008480If the condition is an i1 and the value arguments are vectors of the
8481same size, then an entire vector is selected.
8482
Sean Silvab084af42012-12-07 10:36:55 +00008483Example:
8484""""""""
8485
8486.. code-block:: llvm
8487
8488 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8489
8490.. _i_call:
8491
8492'``call``' Instruction
8493^^^^^^^^^^^^^^^^^^^^^^
8494
8495Syntax:
8496"""""""
8497
8498::
8499
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008500 <result> = [tail | musttail | notail ] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008501 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008502
8503Overview:
8504"""""""""
8505
8506The '``call``' instruction represents a simple function call.
8507
8508Arguments:
8509""""""""""
8510
8511This instruction requires several arguments:
8512
Reid Kleckner5772b772014-04-24 20:14:34 +00008513#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008514 should perform tail call optimization. The ``tail`` marker is a hint that
8515 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008516 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008517 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008518
8519 #. The call will not cause unbounded stack growth if it is part of a
8520 recursive cycle in the call graph.
8521 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8522 forwarded in place.
8523
8524 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008525 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008526 rules:
8527
8528 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8529 or a pointer bitcast followed by a ret instruction.
8530 - The ret instruction must return the (possibly bitcasted) value
8531 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008532 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008533 parameters or return types may differ in pointee type, but not
8534 in address space.
8535 - The calling conventions of the caller and callee must match.
8536 - All ABI-impacting function attributes, such as sret, byval, inreg,
8537 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008538 - The callee must be varargs iff the caller is varargs. Bitcasting a
8539 non-varargs function to the appropriate varargs type is legal so
8540 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008541
8542 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8543 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008544
8545 - Caller and callee both have the calling convention ``fastcc``.
8546 - The call is in tail position (ret immediately follows call and ret
8547 uses value of call or is void).
8548 - Option ``-tailcallopt`` is enabled, or
8549 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008550 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008551 met. <CodeGenerator.html#tailcallopt>`_
8552
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008553#. The optional ``notail`` marker indicates that the optimizers should not add
8554 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8555 call optimization from being performed on the call.
8556
Sean Silvab084af42012-12-07 10:36:55 +00008557#. The optional "cconv" marker indicates which :ref:`calling
8558 convention <callingconv>` the call should use. If none is
8559 specified, the call defaults to using C calling conventions. The
8560 calling convention of the call must match the calling convention of
8561 the target function, or else the behavior is undefined.
8562#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8563 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8564 are valid here.
8565#. '``ty``': the type of the call instruction itself which is also the
8566 type of the return value. Functions that return no value are marked
8567 ``void``.
8568#. '``fnty``': shall be the signature of the pointer to function value
8569 being invoked. The argument types must match the types implied by
8570 this signature. This type can be omitted if the function is not
8571 varargs and if the function type does not return a pointer to a
8572 function.
8573#. '``fnptrval``': An LLVM value containing a pointer to a function to
8574 be invoked. In most cases, this is a direct function invocation, but
8575 indirect ``call``'s are just as possible, calling an arbitrary pointer
8576 to function value.
8577#. '``function args``': argument list whose types match the function
8578 signature argument types and parameter attributes. All arguments must
8579 be of :ref:`first class <t_firstclass>` type. If the function signature
8580 indicates the function accepts a variable number of arguments, the
8581 extra arguments can be specified.
8582#. The optional :ref:`function attributes <fnattrs>` list. Only
8583 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8584 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008585#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008586
8587Semantics:
8588""""""""""
8589
8590The '``call``' instruction is used to cause control flow to transfer to
8591a specified function, with its incoming arguments bound to the specified
8592values. Upon a '``ret``' instruction in the called function, control
8593flow continues with the instruction after the function call, and the
8594return value of the function is bound to the result argument.
8595
8596Example:
8597""""""""
8598
8599.. code-block:: llvm
8600
8601 %retval = call i32 @test(i32 %argc)
8602 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8603 %X = tail call i32 @foo() ; yields i32
8604 %Y = tail call fastcc i32 @foo() ; yields i32
8605 call void %foo(i8 97 signext)
8606
8607 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008608 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008609 %gr = extractvalue %struct.A %r, 0 ; yields i32
8610 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8611 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8612 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8613
8614llvm treats calls to some functions with names and arguments that match
8615the standard C99 library as being the C99 library functions, and may
8616perform optimizations or generate code for them under that assumption.
8617This is something we'd like to change in the future to provide better
8618support for freestanding environments and non-C-based languages.
8619
8620.. _i_va_arg:
8621
8622'``va_arg``' Instruction
8623^^^^^^^^^^^^^^^^^^^^^^^^
8624
8625Syntax:
8626"""""""
8627
8628::
8629
8630 <resultval> = va_arg <va_list*> <arglist>, <argty>
8631
8632Overview:
8633"""""""""
8634
8635The '``va_arg``' instruction is used to access arguments passed through
8636the "variable argument" area of a function call. It is used to implement
8637the ``va_arg`` macro in C.
8638
8639Arguments:
8640""""""""""
8641
8642This instruction takes a ``va_list*`` value and the type of the
8643argument. It returns a value of the specified argument type and
8644increments the ``va_list`` to point to the next argument. The actual
8645type of ``va_list`` is target specific.
8646
8647Semantics:
8648""""""""""
8649
8650The '``va_arg``' instruction loads an argument of the specified type
8651from the specified ``va_list`` and causes the ``va_list`` to point to
8652the next argument. For more information, see the variable argument
8653handling :ref:`Intrinsic Functions <int_varargs>`.
8654
8655It is legal for this instruction to be called in a function which does
8656not take a variable number of arguments, for example, the ``vfprintf``
8657function.
8658
8659``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8660function <intrinsics>` because it takes a type as an argument.
8661
8662Example:
8663""""""""
8664
8665See the :ref:`variable argument processing <int_varargs>` section.
8666
8667Note that the code generator does not yet fully support va\_arg on many
8668targets. Also, it does not currently support va\_arg with aggregate
8669types on any target.
8670
8671.. _i_landingpad:
8672
8673'``landingpad``' Instruction
8674^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8675
8676Syntax:
8677"""""""
8678
8679::
8680
David Majnemer7fddecc2015-06-17 20:52:32 +00008681 <resultval> = landingpad <resultty> <clause>+
8682 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008683
8684 <clause> := catch <type> <value>
8685 <clause> := filter <array constant type> <array constant>
8686
8687Overview:
8688"""""""""
8689
8690The '``landingpad``' instruction is used by `LLVM's exception handling
8691system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008692is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008693code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008694defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008695re-entry to the function. The ``resultval`` has the type ``resultty``.
8696
8697Arguments:
8698""""""""""
8699
David Majnemer7fddecc2015-06-17 20:52:32 +00008700The optional
Sean Silvab084af42012-12-07 10:36:55 +00008701``cleanup`` flag indicates that the landing pad block is a cleanup.
8702
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008703A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008704contains the global variable representing the "type" that may be caught
8705or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8706clause takes an array constant as its argument. Use
8707"``[0 x i8**] undef``" for a filter which cannot throw. The
8708'``landingpad``' instruction must contain *at least* one ``clause`` or
8709the ``cleanup`` flag.
8710
8711Semantics:
8712""""""""""
8713
8714The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008715:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008716therefore the "result type" of the ``landingpad`` instruction. As with
8717calling conventions, how the personality function results are
8718represented in LLVM IR is target specific.
8719
8720The clauses are applied in order from top to bottom. If two
8721``landingpad`` instructions are merged together through inlining, the
8722clauses from the calling function are appended to the list of clauses.
8723When the call stack is being unwound due to an exception being thrown,
8724the exception is compared against each ``clause`` in turn. If it doesn't
8725match any of the clauses, and the ``cleanup`` flag is not set, then
8726unwinding continues further up the call stack.
8727
8728The ``landingpad`` instruction has several restrictions:
8729
8730- A landing pad block is a basic block which is the unwind destination
8731 of an '``invoke``' instruction.
8732- A landing pad block must have a '``landingpad``' instruction as its
8733 first non-PHI instruction.
8734- There can be only one '``landingpad``' instruction within the landing
8735 pad block.
8736- A basic block that is not a landing pad block may not include a
8737 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008738
8739Example:
8740""""""""
8741
8742.. code-block:: llvm
8743
8744 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008745 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008746 catch i8** @_ZTIi
8747 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008748 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008749 cleanup
8750 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008751 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008752 catch i8** @_ZTIi
8753 filter [1 x i8**] [@_ZTId]
8754
David Majnemer654e1302015-07-31 17:58:14 +00008755.. _i_cleanuppad:
8756
8757'``cleanuppad``' Instruction
8758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8759
8760Syntax:
8761"""""""
8762
8763::
8764
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008765 <resultval> = cleanuppad [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008766
8767Overview:
8768"""""""""
8769
8770The '``cleanuppad``' instruction is used by `LLVM's exception handling
8771system <ExceptionHandling.html#overview>`_ to specify that a basic block
8772is a cleanup block --- one where a personality routine attempts to
8773transfer control to run cleanup actions.
8774The ``args`` correspond to whatever additional
8775information the :ref:`personality function <personalityfn>` requires to
8776execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008777The ``resultval`` has the type :ref:`token <t_token>` and is used to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008778match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`
8779and :ref:`cleanupendpads <i_cleanupendpad>`.
David Majnemer654e1302015-07-31 17:58:14 +00008780
8781Arguments:
8782""""""""""
8783
8784The instruction takes a list of arbitrary values which are interpreted
8785by the :ref:`personality function <personalityfn>`.
8786
8787Semantics:
8788""""""""""
8789
David Majnemer654e1302015-07-31 17:58:14 +00008790When the call stack is being unwound due to an exception being thrown,
8791the :ref:`personality function <personalityfn>` transfers control to the
8792``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008793As with calling conventions, how the personality function results are
8794represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008795
8796The ``cleanuppad`` instruction has several restrictions:
8797
8798- A cleanup block is a basic block which is the unwind destination of
8799 an exceptional instruction.
8800- A cleanup block must have a '``cleanuppad``' instruction as its
8801 first non-PHI instruction.
8802- There can be only one '``cleanuppad``' instruction within the
8803 cleanup block.
8804- A basic block that is not a cleanup block may not include a
8805 '``cleanuppad``' instruction.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008806- All '``cleanupret``'s and '``cleanupendpad``'s which consume a ``cleanuppad``
8807 must have the same exceptional successor.
David Majnemer654e1302015-07-31 17:58:14 +00008808- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008809 ``ret`` without first executing a ``cleanupret`` or ``cleanupendpad`` that
8810 consumes the ``cleanuppad``.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008811- It is undefined behavior for control to transfer from a ``cleanuppad`` to
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008812 itself without first executing a ``cleanupret`` or ``cleanupendpad`` that
8813 consumes the ``cleanuppad``.
David Majnemer654e1302015-07-31 17:58:14 +00008814
8815Example:
8816""""""""
8817
8818.. code-block:: llvm
8819
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008820 %tok = cleanuppad []
David Majnemer654e1302015-07-31 17:58:14 +00008821
Sean Silvab084af42012-12-07 10:36:55 +00008822.. _intrinsics:
8823
8824Intrinsic Functions
8825===================
8826
8827LLVM supports the notion of an "intrinsic function". These functions
8828have well known names and semantics and are required to follow certain
8829restrictions. Overall, these intrinsics represent an extension mechanism
8830for the LLVM language that does not require changing all of the
8831transformations in LLVM when adding to the language (or the bitcode
8832reader/writer, the parser, etc...).
8833
8834Intrinsic function names must all start with an "``llvm.``" prefix. This
8835prefix is reserved in LLVM for intrinsic names; thus, function names may
8836not begin with this prefix. Intrinsic functions must always be external
8837functions: you cannot define the body of intrinsic functions. Intrinsic
8838functions may only be used in call or invoke instructions: it is illegal
8839to take the address of an intrinsic function. Additionally, because
8840intrinsic functions are part of the LLVM language, it is required if any
8841are added that they be documented here.
8842
8843Some intrinsic functions can be overloaded, i.e., the intrinsic
8844represents a family of functions that perform the same operation but on
8845different data types. Because LLVM can represent over 8 million
8846different integer types, overloading is used commonly to allow an
8847intrinsic function to operate on any integer type. One or more of the
8848argument types or the result type can be overloaded to accept any
8849integer type. Argument types may also be defined as exactly matching a
8850previous argument's type or the result type. This allows an intrinsic
8851function which accepts multiple arguments, but needs all of them to be
8852of the same type, to only be overloaded with respect to a single
8853argument or the result.
8854
8855Overloaded intrinsics will have the names of its overloaded argument
8856types encoded into its function name, each preceded by a period. Only
8857those types which are overloaded result in a name suffix. Arguments
8858whose type is matched against another type do not. For example, the
8859``llvm.ctpop`` function can take an integer of any width and returns an
8860integer of exactly the same integer width. This leads to a family of
8861functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8862``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8863overloaded, and only one type suffix is required. Because the argument's
8864type is matched against the return type, it does not require its own
8865name suffix.
8866
8867To learn how to add an intrinsic function, please see the `Extending
8868LLVM Guide <ExtendingLLVM.html>`_.
8869
8870.. _int_varargs:
8871
8872Variable Argument Handling Intrinsics
8873-------------------------------------
8874
8875Variable argument support is defined in LLVM with the
8876:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8877functions. These functions are related to the similarly named macros
8878defined in the ``<stdarg.h>`` header file.
8879
8880All of these functions operate on arguments that use a target-specific
8881value type "``va_list``". The LLVM assembly language reference manual
8882does not define what this type is, so all transformations should be
8883prepared to handle these functions regardless of the type used.
8884
8885This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8886variable argument handling intrinsic functions are used.
8887
8888.. code-block:: llvm
8889
Tim Northoverab60bb92014-11-02 01:21:51 +00008890 ; This struct is different for every platform. For most platforms,
8891 ; it is merely an i8*.
8892 %struct.va_list = type { i8* }
8893
8894 ; For Unix x86_64 platforms, va_list is the following struct:
8895 ; %struct.va_list = type { i32, i32, i8*, i8* }
8896
Sean Silvab084af42012-12-07 10:36:55 +00008897 define i32 @test(i32 %X, ...) {
8898 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008899 %ap = alloca %struct.va_list
8900 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008901 call void @llvm.va_start(i8* %ap2)
8902
8903 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008904 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008905
8906 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8907 %aq = alloca i8*
8908 %aq2 = bitcast i8** %aq to i8*
8909 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8910 call void @llvm.va_end(i8* %aq2)
8911
8912 ; Stop processing of arguments.
8913 call void @llvm.va_end(i8* %ap2)
8914 ret i32 %tmp
8915 }
8916
8917 declare void @llvm.va_start(i8*)
8918 declare void @llvm.va_copy(i8*, i8*)
8919 declare void @llvm.va_end(i8*)
8920
8921.. _int_va_start:
8922
8923'``llvm.va_start``' Intrinsic
8924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8925
8926Syntax:
8927"""""""
8928
8929::
8930
Nick Lewycky04f6de02013-09-11 22:04:52 +00008931 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008932
8933Overview:
8934"""""""""
8935
8936The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8937subsequent use by ``va_arg``.
8938
8939Arguments:
8940""""""""""
8941
8942The argument is a pointer to a ``va_list`` element to initialize.
8943
8944Semantics:
8945""""""""""
8946
8947The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8948available in C. In a target-dependent way, it initializes the
8949``va_list`` element to which the argument points, so that the next call
8950to ``va_arg`` will produce the first variable argument passed to the
8951function. Unlike the C ``va_start`` macro, this intrinsic does not need
8952to know the last argument of the function as the compiler can figure
8953that out.
8954
8955'``llvm.va_end``' Intrinsic
8956^^^^^^^^^^^^^^^^^^^^^^^^^^^
8957
8958Syntax:
8959"""""""
8960
8961::
8962
8963 declare void @llvm.va_end(i8* <arglist>)
8964
8965Overview:
8966"""""""""
8967
8968The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8969initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8970
8971Arguments:
8972""""""""""
8973
8974The argument is a pointer to a ``va_list`` to destroy.
8975
8976Semantics:
8977""""""""""
8978
8979The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8980available in C. In a target-dependent way, it destroys the ``va_list``
8981element to which the argument points. Calls to
8982:ref:`llvm.va_start <int_va_start>` and
8983:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8984``llvm.va_end``.
8985
8986.. _int_va_copy:
8987
8988'``llvm.va_copy``' Intrinsic
8989^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8990
8991Syntax:
8992"""""""
8993
8994::
8995
8996 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8997
8998Overview:
8999"""""""""
9000
9001The '``llvm.va_copy``' intrinsic copies the current argument position
9002from the source argument list to the destination argument list.
9003
9004Arguments:
9005""""""""""
9006
9007The first argument is a pointer to a ``va_list`` element to initialize.
9008The second argument is a pointer to a ``va_list`` element to copy from.
9009
9010Semantics:
9011""""""""""
9012
9013The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
9014available in C. In a target-dependent way, it copies the source
9015``va_list`` element into the destination ``va_list`` element. This
9016intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
9017arbitrarily complex and require, for example, memory allocation.
9018
9019Accurate Garbage Collection Intrinsics
9020--------------------------------------
9021
Philip Reamesc5b0f562015-02-25 23:52:06 +00009022LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009023(GC) requires the frontend to generate code containing appropriate intrinsic
9024calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00009025intrinsics in a manner which is appropriate for the target collector.
9026
Sean Silvab084af42012-12-07 10:36:55 +00009027These intrinsics allow identification of :ref:`GC roots on the
9028stack <int_gcroot>`, as well as garbage collector implementations that
9029require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00009030Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00009031these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00009032details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00009033
Philip Reamesf80bbff2015-02-25 23:45:20 +00009034Experimental Statepoint Intrinsics
9035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9036
9037LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00009038collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009039to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00009040:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009041differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00009042<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00009043described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00009044
9045.. _int_gcroot:
9046
9047'``llvm.gcroot``' Intrinsic
9048^^^^^^^^^^^^^^^^^^^^^^^^^^^
9049
9050Syntax:
9051"""""""
9052
9053::
9054
9055 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
9056
9057Overview:
9058"""""""""
9059
9060The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
9061the code generator, and allows some metadata to be associated with it.
9062
9063Arguments:
9064""""""""""
9065
9066The first argument specifies the address of a stack object that contains
9067the root pointer. The second pointer (which must be either a constant or
9068a global value address) contains the meta-data to be associated with the
9069root.
9070
9071Semantics:
9072""""""""""
9073
9074At runtime, a call to this intrinsic stores a null pointer into the
9075"ptrloc" location. At compile-time, the code generator generates
9076information to allow the runtime to find the pointer at GC safe points.
9077The '``llvm.gcroot``' intrinsic may only be used in a function which
9078:ref:`specifies a GC algorithm <gc>`.
9079
9080.. _int_gcread:
9081
9082'``llvm.gcread``' Intrinsic
9083^^^^^^^^^^^^^^^^^^^^^^^^^^^
9084
9085Syntax:
9086"""""""
9087
9088::
9089
9090 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
9091
9092Overview:
9093"""""""""
9094
9095The '``llvm.gcread``' intrinsic identifies reads of references from heap
9096locations, allowing garbage collector implementations that require read
9097barriers.
9098
9099Arguments:
9100""""""""""
9101
9102The second argument is the address to read from, which should be an
9103address allocated from the garbage collector. The first object is a
9104pointer to the start of the referenced object, if needed by the language
9105runtime (otherwise null).
9106
9107Semantics:
9108""""""""""
9109
9110The '``llvm.gcread``' intrinsic has the same semantics as a load
9111instruction, but may be replaced with substantially more complex code by
9112the garbage collector runtime, as needed. The '``llvm.gcread``'
9113intrinsic may only be used in a function which :ref:`specifies a GC
9114algorithm <gc>`.
9115
9116.. _int_gcwrite:
9117
9118'``llvm.gcwrite``' Intrinsic
9119^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9120
9121Syntax:
9122"""""""
9123
9124::
9125
9126 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
9127
9128Overview:
9129"""""""""
9130
9131The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9132locations, allowing garbage collector implementations that require write
9133barriers (such as generational or reference counting collectors).
9134
9135Arguments:
9136""""""""""
9137
9138The first argument is the reference to store, the second is the start of
9139the object to store it to, and the third is the address of the field of
9140Obj to store to. If the runtime does not require a pointer to the
9141object, Obj may be null.
9142
9143Semantics:
9144""""""""""
9145
9146The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9147instruction, but may be replaced with substantially more complex code by
9148the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9149intrinsic may only be used in a function which :ref:`specifies a GC
9150algorithm <gc>`.
9151
9152Code Generator Intrinsics
9153-------------------------
9154
9155These intrinsics are provided by LLVM to expose special features that
9156may only be implemented with code generator support.
9157
9158'``llvm.returnaddress``' Intrinsic
9159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9160
9161Syntax:
9162"""""""
9163
9164::
9165
9166 declare i8 *@llvm.returnaddress(i32 <level>)
9167
9168Overview:
9169"""""""""
9170
9171The '``llvm.returnaddress``' intrinsic attempts to compute a
9172target-specific value indicating the return address of the current
9173function or one of its callers.
9174
9175Arguments:
9176""""""""""
9177
9178The argument to this intrinsic indicates which function to return the
9179address for. Zero indicates the calling function, one indicates its
9180caller, etc. The argument is **required** to be a constant integer
9181value.
9182
9183Semantics:
9184""""""""""
9185
9186The '``llvm.returnaddress``' intrinsic either returns a pointer
9187indicating the return address of the specified call frame, or zero if it
9188cannot be identified. The value returned by this intrinsic is likely to
9189be incorrect or 0 for arguments other than zero, so it should only be
9190used for debugging purposes.
9191
9192Note that calling this intrinsic does not prevent function inlining or
9193other aggressive transformations, so the value returned may not be that
9194of the obvious source-language caller.
9195
9196'``llvm.frameaddress``' Intrinsic
9197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9198
9199Syntax:
9200"""""""
9201
9202::
9203
9204 declare i8* @llvm.frameaddress(i32 <level>)
9205
9206Overview:
9207"""""""""
9208
9209The '``llvm.frameaddress``' intrinsic attempts to return the
9210target-specific frame pointer value for the specified stack frame.
9211
9212Arguments:
9213""""""""""
9214
9215The argument to this intrinsic indicates which function to return the
9216frame pointer for. Zero indicates the calling function, one indicates
9217its caller, etc. The argument is **required** to be a constant integer
9218value.
9219
9220Semantics:
9221""""""""""
9222
9223The '``llvm.frameaddress``' intrinsic either returns a pointer
9224indicating the frame address of the specified call frame, or zero if it
9225cannot be identified. The value returned by this intrinsic is likely to
9226be incorrect or 0 for arguments other than zero, so it should only be
9227used for debugging purposes.
9228
9229Note that calling this intrinsic does not prevent function inlining or
9230other aggressive transformations, so the value returned may not be that
9231of the obvious source-language caller.
9232
Reid Kleckner60381792015-07-07 22:25:32 +00009233'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9235
9236Syntax:
9237"""""""
9238
9239::
9240
Reid Kleckner60381792015-07-07 22:25:32 +00009241 declare void @llvm.localescape(...)
9242 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009243
9244Overview:
9245"""""""""
9246
Reid Kleckner60381792015-07-07 22:25:32 +00009247The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9248allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009249live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009250computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009251
9252Arguments:
9253""""""""""
9254
Reid Kleckner60381792015-07-07 22:25:32 +00009255All arguments to '``llvm.localescape``' must be pointers to static allocas or
9256casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009257once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009258
Reid Kleckner60381792015-07-07 22:25:32 +00009259The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009260bitcasted pointer to a function defined in the current module. The code
9261generator cannot determine the frame allocation offset of functions defined in
9262other modules.
9263
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009264The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9265call frame that is currently live. The return value of '``llvm.localaddress``'
9266is one way to produce such a value, but various runtimes also expose a suitable
9267pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009268
Reid Kleckner60381792015-07-07 22:25:32 +00009269The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9270'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009271
Reid Klecknere9b89312015-01-13 00:48:10 +00009272Semantics:
9273""""""""""
9274
Reid Kleckner60381792015-07-07 22:25:32 +00009275These intrinsics allow a group of functions to share access to a set of local
9276stack allocations of a one parent function. The parent function may call the
9277'``llvm.localescape``' intrinsic once from the function entry block, and the
9278child functions can use '``llvm.localrecover``' to access the escaped allocas.
9279The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9280the escaped allocas are allocated, which would break attempts to use
9281'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009282
Renato Golinc7aea402014-05-06 16:51:25 +00009283.. _int_read_register:
9284.. _int_write_register:
9285
9286'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9288
9289Syntax:
9290"""""""
9291
9292::
9293
9294 declare i32 @llvm.read_register.i32(metadata)
9295 declare i64 @llvm.read_register.i64(metadata)
9296 declare void @llvm.write_register.i32(metadata, i32 @value)
9297 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009298 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009299
9300Overview:
9301"""""""""
9302
9303The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9304provides access to the named register. The register must be valid on
9305the architecture being compiled to. The type needs to be compatible
9306with the register being read.
9307
9308Semantics:
9309""""""""""
9310
9311The '``llvm.read_register``' intrinsic returns the current value of the
9312register, where possible. The '``llvm.write_register``' intrinsic sets
9313the current value of the register, where possible.
9314
9315This is useful to implement named register global variables that need
9316to always be mapped to a specific register, as is common practice on
9317bare-metal programs including OS kernels.
9318
9319The compiler doesn't check for register availability or use of the used
9320register in surrounding code, including inline assembly. Because of that,
9321allocatable registers are not supported.
9322
9323Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009324architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009325work is needed to support other registers and even more so, allocatable
9326registers.
9327
Sean Silvab084af42012-12-07 10:36:55 +00009328.. _int_stacksave:
9329
9330'``llvm.stacksave``' Intrinsic
9331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9332
9333Syntax:
9334"""""""
9335
9336::
9337
9338 declare i8* @llvm.stacksave()
9339
9340Overview:
9341"""""""""
9342
9343The '``llvm.stacksave``' intrinsic is used to remember the current state
9344of the function stack, for use with
9345:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9346implementing language features like scoped automatic variable sized
9347arrays in C99.
9348
9349Semantics:
9350""""""""""
9351
9352This intrinsic returns a opaque pointer value that can be passed to
9353:ref:`llvm.stackrestore <int_stackrestore>`. When an
9354``llvm.stackrestore`` intrinsic is executed with a value saved from
9355``llvm.stacksave``, it effectively restores the state of the stack to
9356the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9357practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9358were allocated after the ``llvm.stacksave`` was executed.
9359
9360.. _int_stackrestore:
9361
9362'``llvm.stackrestore``' Intrinsic
9363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9364
9365Syntax:
9366"""""""
9367
9368::
9369
9370 declare void @llvm.stackrestore(i8* %ptr)
9371
9372Overview:
9373"""""""""
9374
9375The '``llvm.stackrestore``' intrinsic is used to restore the state of
9376the function stack to the state it was in when the corresponding
9377:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9378useful for implementing language features like scoped automatic variable
9379sized arrays in C99.
9380
9381Semantics:
9382""""""""""
9383
9384See the description for :ref:`llvm.stacksave <int_stacksave>`.
9385
Yury Gribovd7dbb662015-12-01 11:40:55 +00009386.. _int_get_dynamic_area_offset:
9387
9388'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009390
9391Syntax:
9392"""""""
9393
9394::
9395
9396 declare i32 @llvm.get.dynamic.area.offset.i32()
9397 declare i64 @llvm.get.dynamic.area.offset.i64()
9398
9399 Overview:
9400 """""""""
9401
9402 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9403 get the offset from native stack pointer to the address of the most
9404 recent dynamic alloca on the caller's stack. These intrinsics are
9405 intendend for use in combination with
9406 :ref:`llvm.stacksave <int_stacksave>` to get a
9407 pointer to the most recent dynamic alloca. This is useful, for example,
9408 for AddressSanitizer's stack unpoisoning routines.
9409
9410Semantics:
9411""""""""""
9412
9413 These intrinsics return a non-negative integer value that can be used to
9414 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9415 on the caller's stack. In particular, for targets where stack grows downwards,
9416 adding this offset to the native stack pointer would get the address of the most
9417 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9418 complicated, because substracting this value from stack pointer would get the address
9419 one past the end of the most recent dynamic alloca.
9420
9421 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9422 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9423 compile-time-known constant value.
9424
9425 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9426 must match the target's generic address space's (address space 0) pointer type.
9427
Sean Silvab084af42012-12-07 10:36:55 +00009428'``llvm.prefetch``' Intrinsic
9429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9430
9431Syntax:
9432"""""""
9433
9434::
9435
9436 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9437
9438Overview:
9439"""""""""
9440
9441The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9442insert a prefetch instruction if supported; otherwise, it is a noop.
9443Prefetches have no effect on the behavior of the program but can change
9444its performance characteristics.
9445
9446Arguments:
9447""""""""""
9448
9449``address`` is the address to be prefetched, ``rw`` is the specifier
9450determining if the fetch should be for a read (0) or write (1), and
9451``locality`` is a temporal locality specifier ranging from (0) - no
9452locality, to (3) - extremely local keep in cache. The ``cache type``
9453specifies whether the prefetch is performed on the data (1) or
9454instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9455arguments must be constant integers.
9456
9457Semantics:
9458""""""""""
9459
9460This intrinsic does not modify the behavior of the program. In
9461particular, prefetches cannot trap and do not produce a value. On
9462targets that support this intrinsic, the prefetch can provide hints to
9463the processor cache for better performance.
9464
9465'``llvm.pcmarker``' Intrinsic
9466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9467
9468Syntax:
9469"""""""
9470
9471::
9472
9473 declare void @llvm.pcmarker(i32 <id>)
9474
9475Overview:
9476"""""""""
9477
9478The '``llvm.pcmarker``' intrinsic is a method to export a Program
9479Counter (PC) in a region of code to simulators and other tools. The
9480method is target specific, but it is expected that the marker will use
9481exported symbols to transmit the PC of the marker. The marker makes no
9482guarantees that it will remain with any specific instruction after
9483optimizations. It is possible that the presence of a marker will inhibit
9484optimizations. The intended use is to be inserted after optimizations to
9485allow correlations of simulation runs.
9486
9487Arguments:
9488""""""""""
9489
9490``id`` is a numerical id identifying the marker.
9491
9492Semantics:
9493""""""""""
9494
9495This intrinsic does not modify the behavior of the program. Backends
9496that do not support this intrinsic may ignore it.
9497
9498'``llvm.readcyclecounter``' Intrinsic
9499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9500
9501Syntax:
9502"""""""
9503
9504::
9505
9506 declare i64 @llvm.readcyclecounter()
9507
9508Overview:
9509"""""""""
9510
9511The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9512counter register (or similar low latency, high accuracy clocks) on those
9513targets that support it. On X86, it should map to RDTSC. On Alpha, it
9514should map to RPCC. As the backing counters overflow quickly (on the
9515order of 9 seconds on alpha), this should only be used for small
9516timings.
9517
9518Semantics:
9519""""""""""
9520
9521When directly supported, reading the cycle counter should not modify any
9522memory. Implementations are allowed to either return a application
9523specific value or a system wide value. On backends without support, this
9524is lowered to a constant 0.
9525
Tim Northoverbc933082013-05-23 19:11:20 +00009526Note that runtime support may be conditional on the privilege-level code is
9527running at and the host platform.
9528
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009529'``llvm.clear_cache``' Intrinsic
9530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9531
9532Syntax:
9533"""""""
9534
9535::
9536
9537 declare void @llvm.clear_cache(i8*, i8*)
9538
9539Overview:
9540"""""""""
9541
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009542The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9543in the specified range to the execution unit of the processor. On
9544targets with non-unified instruction and data cache, the implementation
9545flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009546
9547Semantics:
9548""""""""""
9549
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009550On platforms with coherent instruction and data caches (e.g. x86), this
9551intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009552cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009553instructions or a system call, if cache flushing requires special
9554privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009555
Sean Silvad02bf3e2014-04-07 22:29:53 +00009556The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009557time library.
Renato Golin93010e62014-03-26 14:01:32 +00009558
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009559This instrinsic does *not* empty the instruction pipeline. Modifications
9560of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009561
Justin Bogner61ba2e32014-12-08 18:02:35 +00009562'``llvm.instrprof_increment``' Intrinsic
9563^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9564
9565Syntax:
9566"""""""
9567
9568::
9569
9570 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9571 i32 <num-counters>, i32 <index>)
9572
9573Overview:
9574"""""""""
9575
9576The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9577frontend for use with instrumentation based profiling. These will be
9578lowered by the ``-instrprof`` pass to generate execution counts of a
9579program at runtime.
9580
9581Arguments:
9582""""""""""
9583
9584The first argument is a pointer to a global variable containing the
9585name of the entity being instrumented. This should generally be the
9586(mangled) function name for a set of counters.
9587
9588The second argument is a hash value that can be used by the consumer
9589of the profile data to detect changes to the instrumented source, and
9590the third is the number of counters associated with ``name``. It is an
9591error if ``hash`` or ``num-counters`` differ between two instances of
9592``instrprof_increment`` that refer to the same name.
9593
9594The last argument refers to which of the counters for ``name`` should
9595be incremented. It should be a value between 0 and ``num-counters``.
9596
9597Semantics:
9598""""""""""
9599
9600This intrinsic represents an increment of a profiling counter. It will
9601cause the ``-instrprof`` pass to generate the appropriate data
9602structures and the code to increment the appropriate value, in a
9603format that can be written out by a compiler runtime and consumed via
9604the ``llvm-profdata`` tool.
9605
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009606'``llvm.instrprof_value_profile``' Intrinsic
9607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9608
9609Syntax:
9610"""""""
9611
9612::
9613
9614 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9615 i64 <value>, i32 <value_kind>,
9616 i32 <index>)
9617
9618Overview:
9619"""""""""
9620
9621The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9622frontend for use with instrumentation based profiling. This will be
9623lowered by the ``-instrprof`` pass to find out the target values,
9624instrumented expressions take in a program at runtime.
9625
9626Arguments:
9627""""""""""
9628
9629The first argument is a pointer to a global variable containing the
9630name of the entity being instrumented. ``name`` should generally be the
9631(mangled) function name for a set of counters.
9632
9633The second argument is a hash value that can be used by the consumer
9634of the profile data to detect changes to the instrumented source. It
9635is an error if ``hash`` differs between two instances of
9636``llvm.instrprof_*`` that refer to the same name.
9637
9638The third argument is the value of the expression being profiled. The profiled
9639expression's value should be representable as an unsigned 64-bit value. The
9640fourth argument represents the kind of value profiling that is being done. The
9641supported value profiling kinds are enumerated through the
9642``InstrProfValueKind`` type declared in the
9643``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9644index of the instrumented expression within ``name``. It should be >= 0.
9645
9646Semantics:
9647""""""""""
9648
9649This intrinsic represents the point where a call to a runtime routine
9650should be inserted for value profiling of target expressions. ``-instrprof``
9651pass will generate the appropriate data structures and replace the
9652``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9653runtime library with proper arguments.
9654
Sean Silvab084af42012-12-07 10:36:55 +00009655Standard C Library Intrinsics
9656-----------------------------
9657
9658LLVM provides intrinsics for a few important standard C library
9659functions. These intrinsics allow source-language front-ends to pass
9660information about the alignment of the pointer arguments to the code
9661generator, providing opportunity for more efficient code generation.
9662
9663.. _int_memcpy:
9664
9665'``llvm.memcpy``' Intrinsic
9666^^^^^^^^^^^^^^^^^^^^^^^^^^^
9667
9668Syntax:
9669"""""""
9670
9671This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9672integer bit width and for different address spaces. Not all targets
9673support all bit widths however.
9674
9675::
9676
9677 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9678 i32 <len>, i32 <align>, i1 <isvolatile>)
9679 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9680 i64 <len>, i32 <align>, i1 <isvolatile>)
9681
9682Overview:
9683"""""""""
9684
9685The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9686source location to the destination location.
9687
9688Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9689intrinsics do not return a value, takes extra alignment/isvolatile
9690arguments and the pointers can be in specified address spaces.
9691
9692Arguments:
9693""""""""""
9694
9695The first argument is a pointer to the destination, the second is a
9696pointer to the source. The third argument is an integer argument
9697specifying the number of bytes to copy, the fourth argument is the
9698alignment of the source and destination locations, and the fifth is a
9699boolean indicating a volatile access.
9700
9701If the call to this intrinsic has an alignment value that is not 0 or 1,
9702then the caller guarantees that both the source and destination pointers
9703are aligned to that boundary.
9704
9705If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9706a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9707very cleanly specified and it is unwise to depend on it.
9708
9709Semantics:
9710""""""""""
9711
9712The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9713source location to the destination location, which are not allowed to
9714overlap. It copies "len" bytes of memory over. If the argument is known
9715to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009716argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009717
9718'``llvm.memmove``' Intrinsic
9719^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9720
9721Syntax:
9722"""""""
9723
9724This is an overloaded intrinsic. You can use llvm.memmove on any integer
9725bit width and for different address space. Not all targets support all
9726bit widths however.
9727
9728::
9729
9730 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9731 i32 <len>, i32 <align>, i1 <isvolatile>)
9732 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9733 i64 <len>, i32 <align>, i1 <isvolatile>)
9734
9735Overview:
9736"""""""""
9737
9738The '``llvm.memmove.*``' intrinsics move a block of memory from the
9739source location to the destination location. It is similar to the
9740'``llvm.memcpy``' intrinsic but allows the two memory locations to
9741overlap.
9742
9743Note that, unlike the standard libc function, the ``llvm.memmove.*``
9744intrinsics do not return a value, takes extra alignment/isvolatile
9745arguments and the pointers can be in specified address spaces.
9746
9747Arguments:
9748""""""""""
9749
9750The first argument is a pointer to the destination, the second is a
9751pointer to the source. The third argument is an integer argument
9752specifying the number of bytes to copy, the fourth argument is the
9753alignment of the source and destination locations, and the fifth is a
9754boolean indicating a volatile access.
9755
9756If the call to this intrinsic has an alignment value that is not 0 or 1,
9757then the caller guarantees that the source and destination pointers are
9758aligned to that boundary.
9759
9760If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9761is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9762not very cleanly specified and it is unwise to depend on it.
9763
9764Semantics:
9765""""""""""
9766
9767The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9768source location to the destination location, which may overlap. It
9769copies "len" bytes of memory over. If the argument is known to be
9770aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009771otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009772
9773'``llvm.memset.*``' Intrinsics
9774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9775
9776Syntax:
9777"""""""
9778
9779This is an overloaded intrinsic. You can use llvm.memset on any integer
9780bit width and for different address spaces. However, not all targets
9781support all bit widths.
9782
9783::
9784
9785 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9786 i32 <len>, i32 <align>, i1 <isvolatile>)
9787 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9788 i64 <len>, i32 <align>, i1 <isvolatile>)
9789
9790Overview:
9791"""""""""
9792
9793The '``llvm.memset.*``' intrinsics fill a block of memory with a
9794particular byte value.
9795
9796Note that, unlike the standard libc function, the ``llvm.memset``
9797intrinsic does not return a value and takes extra alignment/volatile
9798arguments. Also, the destination can be in an arbitrary address space.
9799
9800Arguments:
9801""""""""""
9802
9803The first argument is a pointer to the destination to fill, the second
9804is the byte value with which to fill it, the third argument is an
9805integer argument specifying the number of bytes to fill, and the fourth
9806argument is the known alignment of the destination location.
9807
9808If the call to this intrinsic has an alignment value that is not 0 or 1,
9809then the caller guarantees that the destination pointer is aligned to
9810that boundary.
9811
9812If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9813a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9814very cleanly specified and it is unwise to depend on it.
9815
9816Semantics:
9817""""""""""
9818
9819The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9820at the destination location. If the argument is known to be aligned to
9821some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009822it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009823
9824'``llvm.sqrt.*``' Intrinsic
9825^^^^^^^^^^^^^^^^^^^^^^^^^^^
9826
9827Syntax:
9828"""""""
9829
9830This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9831floating point or vector of floating point type. Not all targets support
9832all types however.
9833
9834::
9835
9836 declare float @llvm.sqrt.f32(float %Val)
9837 declare double @llvm.sqrt.f64(double %Val)
9838 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9839 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9840 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9841
9842Overview:
9843"""""""""
9844
9845The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9846returning the same value as the libm '``sqrt``' functions would. Unlike
9847``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9848negative numbers other than -0.0 (which allows for better optimization,
9849because there is no need to worry about errno being set).
9850``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9851
9852Arguments:
9853""""""""""
9854
9855The argument and return value are floating point numbers of the same
9856type.
9857
9858Semantics:
9859""""""""""
9860
9861This function returns the sqrt of the specified operand if it is a
9862nonnegative floating point number.
9863
9864'``llvm.powi.*``' Intrinsic
9865^^^^^^^^^^^^^^^^^^^^^^^^^^^
9866
9867Syntax:
9868"""""""
9869
9870This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9871floating point or vector of floating point type. Not all targets support
9872all types however.
9873
9874::
9875
9876 declare float @llvm.powi.f32(float %Val, i32 %power)
9877 declare double @llvm.powi.f64(double %Val, i32 %power)
9878 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9879 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9880 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9881
9882Overview:
9883"""""""""
9884
9885The '``llvm.powi.*``' intrinsics return the first operand raised to the
9886specified (positive or negative) power. The order of evaluation of
9887multiplications is not defined. When a vector of floating point type is
9888used, the second argument remains a scalar integer value.
9889
9890Arguments:
9891""""""""""
9892
9893The second argument is an integer power, and the first is a value to
9894raise to that power.
9895
9896Semantics:
9897""""""""""
9898
9899This function returns the first value raised to the second power with an
9900unspecified sequence of rounding operations.
9901
9902'``llvm.sin.*``' Intrinsic
9903^^^^^^^^^^^^^^^^^^^^^^^^^^
9904
9905Syntax:
9906"""""""
9907
9908This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9909floating point or vector of floating point type. Not all targets support
9910all types however.
9911
9912::
9913
9914 declare float @llvm.sin.f32(float %Val)
9915 declare double @llvm.sin.f64(double %Val)
9916 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9917 declare fp128 @llvm.sin.f128(fp128 %Val)
9918 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9919
9920Overview:
9921"""""""""
9922
9923The '``llvm.sin.*``' intrinsics return the sine of the operand.
9924
9925Arguments:
9926""""""""""
9927
9928The argument and return value are floating point numbers of the same
9929type.
9930
9931Semantics:
9932""""""""""
9933
9934This function returns the sine of the specified operand, returning the
9935same values as the libm ``sin`` functions would, and handles error
9936conditions in the same way.
9937
9938'``llvm.cos.*``' Intrinsic
9939^^^^^^^^^^^^^^^^^^^^^^^^^^
9940
9941Syntax:
9942"""""""
9943
9944This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9945floating point or vector of floating point type. Not all targets support
9946all types however.
9947
9948::
9949
9950 declare float @llvm.cos.f32(float %Val)
9951 declare double @llvm.cos.f64(double %Val)
9952 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9953 declare fp128 @llvm.cos.f128(fp128 %Val)
9954 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9955
9956Overview:
9957"""""""""
9958
9959The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9960
9961Arguments:
9962""""""""""
9963
9964The argument and return value are floating point numbers of the same
9965type.
9966
9967Semantics:
9968""""""""""
9969
9970This function returns the cosine of the specified operand, returning the
9971same values as the libm ``cos`` functions would, and handles error
9972conditions in the same way.
9973
9974'``llvm.pow.*``' Intrinsic
9975^^^^^^^^^^^^^^^^^^^^^^^^^^
9976
9977Syntax:
9978"""""""
9979
9980This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9981floating point or vector of floating point type. Not all targets support
9982all types however.
9983
9984::
9985
9986 declare float @llvm.pow.f32(float %Val, float %Power)
9987 declare double @llvm.pow.f64(double %Val, double %Power)
9988 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9989 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9990 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9991
9992Overview:
9993"""""""""
9994
9995The '``llvm.pow.*``' intrinsics return the first operand raised to the
9996specified (positive or negative) power.
9997
9998Arguments:
9999""""""""""
10000
10001The second argument is a floating point power, and the first is a value
10002to raise to that power.
10003
10004Semantics:
10005""""""""""
10006
10007This function returns the first value raised to the second power,
10008returning the same values as the libm ``pow`` functions would, and
10009handles error conditions in the same way.
10010
10011'``llvm.exp.*``' Intrinsic
10012^^^^^^^^^^^^^^^^^^^^^^^^^^
10013
10014Syntax:
10015"""""""
10016
10017This is an overloaded intrinsic. You can use ``llvm.exp`` on any
10018floating point or vector of floating point type. Not all targets support
10019all types however.
10020
10021::
10022
10023 declare float @llvm.exp.f32(float %Val)
10024 declare double @llvm.exp.f64(double %Val)
10025 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
10026 declare fp128 @llvm.exp.f128(fp128 %Val)
10027 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
10028
10029Overview:
10030"""""""""
10031
10032The '``llvm.exp.*``' intrinsics perform the exp function.
10033
10034Arguments:
10035""""""""""
10036
10037The argument and return value are floating point numbers of the same
10038type.
10039
10040Semantics:
10041""""""""""
10042
10043This function returns the same values as the libm ``exp`` functions
10044would, and handles error conditions in the same way.
10045
10046'``llvm.exp2.*``' Intrinsic
10047^^^^^^^^^^^^^^^^^^^^^^^^^^^
10048
10049Syntax:
10050"""""""
10051
10052This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
10053floating point or vector of floating point type. Not all targets support
10054all types however.
10055
10056::
10057
10058 declare float @llvm.exp2.f32(float %Val)
10059 declare double @llvm.exp2.f64(double %Val)
10060 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
10061 declare fp128 @llvm.exp2.f128(fp128 %Val)
10062 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
10063
10064Overview:
10065"""""""""
10066
10067The '``llvm.exp2.*``' intrinsics perform the exp2 function.
10068
10069Arguments:
10070""""""""""
10071
10072The argument and return value are floating point numbers of the same
10073type.
10074
10075Semantics:
10076""""""""""
10077
10078This function returns the same values as the libm ``exp2`` functions
10079would, and handles error conditions in the same way.
10080
10081'``llvm.log.*``' Intrinsic
10082^^^^^^^^^^^^^^^^^^^^^^^^^^
10083
10084Syntax:
10085"""""""
10086
10087This is an overloaded intrinsic. You can use ``llvm.log`` on any
10088floating point or vector of floating point type. Not all targets support
10089all types however.
10090
10091::
10092
10093 declare float @llvm.log.f32(float %Val)
10094 declare double @llvm.log.f64(double %Val)
10095 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
10096 declare fp128 @llvm.log.f128(fp128 %Val)
10097 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
10098
10099Overview:
10100"""""""""
10101
10102The '``llvm.log.*``' intrinsics perform the log function.
10103
10104Arguments:
10105""""""""""
10106
10107The argument and return value are floating point numbers of the same
10108type.
10109
10110Semantics:
10111""""""""""
10112
10113This function returns the same values as the libm ``log`` functions
10114would, and handles error conditions in the same way.
10115
10116'``llvm.log10.*``' Intrinsic
10117^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10118
10119Syntax:
10120"""""""
10121
10122This is an overloaded intrinsic. You can use ``llvm.log10`` on any
10123floating point or vector of floating point type. Not all targets support
10124all types however.
10125
10126::
10127
10128 declare float @llvm.log10.f32(float %Val)
10129 declare double @llvm.log10.f64(double %Val)
10130 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
10131 declare fp128 @llvm.log10.f128(fp128 %Val)
10132 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10133
10134Overview:
10135"""""""""
10136
10137The '``llvm.log10.*``' intrinsics perform the log10 function.
10138
10139Arguments:
10140""""""""""
10141
10142The argument and return value are floating point numbers of the same
10143type.
10144
10145Semantics:
10146""""""""""
10147
10148This function returns the same values as the libm ``log10`` functions
10149would, and handles error conditions in the same way.
10150
10151'``llvm.log2.*``' Intrinsic
10152^^^^^^^^^^^^^^^^^^^^^^^^^^^
10153
10154Syntax:
10155"""""""
10156
10157This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10158floating point or vector of floating point type. Not all targets support
10159all types however.
10160
10161::
10162
10163 declare float @llvm.log2.f32(float %Val)
10164 declare double @llvm.log2.f64(double %Val)
10165 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10166 declare fp128 @llvm.log2.f128(fp128 %Val)
10167 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10168
10169Overview:
10170"""""""""
10171
10172The '``llvm.log2.*``' intrinsics perform the log2 function.
10173
10174Arguments:
10175""""""""""
10176
10177The argument and return value are floating point numbers of the same
10178type.
10179
10180Semantics:
10181""""""""""
10182
10183This function returns the same values as the libm ``log2`` functions
10184would, and handles error conditions in the same way.
10185
10186'``llvm.fma.*``' Intrinsic
10187^^^^^^^^^^^^^^^^^^^^^^^^^^
10188
10189Syntax:
10190"""""""
10191
10192This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10193floating point or vector of floating point type. Not all targets support
10194all types however.
10195
10196::
10197
10198 declare float @llvm.fma.f32(float %a, float %b, float %c)
10199 declare double @llvm.fma.f64(double %a, double %b, double %c)
10200 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10201 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10202 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10203
10204Overview:
10205"""""""""
10206
10207The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10208operation.
10209
10210Arguments:
10211""""""""""
10212
10213The argument and return value are floating point numbers of the same
10214type.
10215
10216Semantics:
10217""""""""""
10218
10219This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010220would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010221
10222'``llvm.fabs.*``' Intrinsic
10223^^^^^^^^^^^^^^^^^^^^^^^^^^^
10224
10225Syntax:
10226"""""""
10227
10228This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10229floating point or vector of floating point type. Not all targets support
10230all types however.
10231
10232::
10233
10234 declare float @llvm.fabs.f32(float %Val)
10235 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010236 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010237 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010238 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010239
10240Overview:
10241"""""""""
10242
10243The '``llvm.fabs.*``' intrinsics return the absolute value of the
10244operand.
10245
10246Arguments:
10247""""""""""
10248
10249The argument and return value are floating point numbers of the same
10250type.
10251
10252Semantics:
10253""""""""""
10254
10255This function returns the same values as the libm ``fabs`` functions
10256would, and handles error conditions in the same way.
10257
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010258'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010260
10261Syntax:
10262"""""""
10263
10264This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10265floating point or vector of floating point type. Not all targets support
10266all types however.
10267
10268::
10269
Matt Arsenault64313c92014-10-22 18:25:02 +000010270 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10271 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10272 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10273 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10274 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010275
10276Overview:
10277"""""""""
10278
10279The '``llvm.minnum.*``' intrinsics return the minimum of the two
10280arguments.
10281
10282
10283Arguments:
10284""""""""""
10285
10286The arguments and return value are floating point numbers of the same
10287type.
10288
10289Semantics:
10290""""""""""
10291
10292Follows the IEEE-754 semantics for minNum, which also match for libm's
10293fmin.
10294
10295If either operand is a NaN, returns the other non-NaN operand. Returns
10296NaN only if both operands are NaN. If the operands compare equal,
10297returns a value that compares equal to both operands. This means that
10298fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10299
10300'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010302
10303Syntax:
10304"""""""
10305
10306This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10307floating point or vector of floating point type. Not all targets support
10308all types however.
10309
10310::
10311
Matt Arsenault64313c92014-10-22 18:25:02 +000010312 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10313 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10314 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10315 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10316 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010317
10318Overview:
10319"""""""""
10320
10321The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10322arguments.
10323
10324
10325Arguments:
10326""""""""""
10327
10328The arguments and return value are floating point numbers of the same
10329type.
10330
10331Semantics:
10332""""""""""
10333Follows the IEEE-754 semantics for maxNum, which also match for libm's
10334fmax.
10335
10336If either operand is a NaN, returns the other non-NaN operand. Returns
10337NaN only if both operands are NaN. If the operands compare equal,
10338returns a value that compares equal to both operands. This means that
10339fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10340
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010341'``llvm.copysign.*``' Intrinsic
10342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10343
10344Syntax:
10345"""""""
10346
10347This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10348floating point or vector of floating point type. Not all targets support
10349all types however.
10350
10351::
10352
10353 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10354 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10355 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10356 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10357 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10358
10359Overview:
10360"""""""""
10361
10362The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10363first operand and the sign of the second operand.
10364
10365Arguments:
10366""""""""""
10367
10368The arguments and return value are floating point numbers of the same
10369type.
10370
10371Semantics:
10372""""""""""
10373
10374This function returns the same values as the libm ``copysign``
10375functions would, and handles error conditions in the same way.
10376
Sean Silvab084af42012-12-07 10:36:55 +000010377'``llvm.floor.*``' Intrinsic
10378^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10379
10380Syntax:
10381"""""""
10382
10383This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10384floating point or vector of floating point type. Not all targets support
10385all types however.
10386
10387::
10388
10389 declare float @llvm.floor.f32(float %Val)
10390 declare double @llvm.floor.f64(double %Val)
10391 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10392 declare fp128 @llvm.floor.f128(fp128 %Val)
10393 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10394
10395Overview:
10396"""""""""
10397
10398The '``llvm.floor.*``' intrinsics return the floor of the operand.
10399
10400Arguments:
10401""""""""""
10402
10403The argument and return value are floating point numbers of the same
10404type.
10405
10406Semantics:
10407""""""""""
10408
10409This function returns the same values as the libm ``floor`` functions
10410would, and handles error conditions in the same way.
10411
10412'``llvm.ceil.*``' Intrinsic
10413^^^^^^^^^^^^^^^^^^^^^^^^^^^
10414
10415Syntax:
10416"""""""
10417
10418This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10419floating point or vector of floating point type. Not all targets support
10420all types however.
10421
10422::
10423
10424 declare float @llvm.ceil.f32(float %Val)
10425 declare double @llvm.ceil.f64(double %Val)
10426 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10427 declare fp128 @llvm.ceil.f128(fp128 %Val)
10428 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10429
10430Overview:
10431"""""""""
10432
10433The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10434
10435Arguments:
10436""""""""""
10437
10438The argument and return value are floating point numbers of the same
10439type.
10440
10441Semantics:
10442""""""""""
10443
10444This function returns the same values as the libm ``ceil`` functions
10445would, and handles error conditions in the same way.
10446
10447'``llvm.trunc.*``' Intrinsic
10448^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10449
10450Syntax:
10451"""""""
10452
10453This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10454floating point or vector of floating point type. Not all targets support
10455all types however.
10456
10457::
10458
10459 declare float @llvm.trunc.f32(float %Val)
10460 declare double @llvm.trunc.f64(double %Val)
10461 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10462 declare fp128 @llvm.trunc.f128(fp128 %Val)
10463 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10464
10465Overview:
10466"""""""""
10467
10468The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10469nearest integer not larger in magnitude than the operand.
10470
10471Arguments:
10472""""""""""
10473
10474The argument and return value are floating point numbers of the same
10475type.
10476
10477Semantics:
10478""""""""""
10479
10480This function returns the same values as the libm ``trunc`` functions
10481would, and handles error conditions in the same way.
10482
10483'``llvm.rint.*``' Intrinsic
10484^^^^^^^^^^^^^^^^^^^^^^^^^^^
10485
10486Syntax:
10487"""""""
10488
10489This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10490floating point or vector of floating point type. Not all targets support
10491all types however.
10492
10493::
10494
10495 declare float @llvm.rint.f32(float %Val)
10496 declare double @llvm.rint.f64(double %Val)
10497 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10498 declare fp128 @llvm.rint.f128(fp128 %Val)
10499 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10500
10501Overview:
10502"""""""""
10503
10504The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10505nearest integer. It may raise an inexact floating-point exception if the
10506operand isn't an integer.
10507
10508Arguments:
10509""""""""""
10510
10511The argument and return value are floating point numbers of the same
10512type.
10513
10514Semantics:
10515""""""""""
10516
10517This function returns the same values as the libm ``rint`` functions
10518would, and handles error conditions in the same way.
10519
10520'``llvm.nearbyint.*``' Intrinsic
10521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10522
10523Syntax:
10524"""""""
10525
10526This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10527floating point or vector of floating point type. Not all targets support
10528all types however.
10529
10530::
10531
10532 declare float @llvm.nearbyint.f32(float %Val)
10533 declare double @llvm.nearbyint.f64(double %Val)
10534 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10535 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10536 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10537
10538Overview:
10539"""""""""
10540
10541The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10542nearest integer.
10543
10544Arguments:
10545""""""""""
10546
10547The argument and return value are floating point numbers of the same
10548type.
10549
10550Semantics:
10551""""""""""
10552
10553This function returns the same values as the libm ``nearbyint``
10554functions would, and handles error conditions in the same way.
10555
Hal Finkel171817e2013-08-07 22:49:12 +000010556'``llvm.round.*``' Intrinsic
10557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10558
10559Syntax:
10560"""""""
10561
10562This is an overloaded intrinsic. You can use ``llvm.round`` on any
10563floating point or vector of floating point type. Not all targets support
10564all types however.
10565
10566::
10567
10568 declare float @llvm.round.f32(float %Val)
10569 declare double @llvm.round.f64(double %Val)
10570 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10571 declare fp128 @llvm.round.f128(fp128 %Val)
10572 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10573
10574Overview:
10575"""""""""
10576
10577The '``llvm.round.*``' intrinsics returns the operand rounded to the
10578nearest integer.
10579
10580Arguments:
10581""""""""""
10582
10583The argument and return value are floating point numbers of the same
10584type.
10585
10586Semantics:
10587""""""""""
10588
10589This function returns the same values as the libm ``round``
10590functions would, and handles error conditions in the same way.
10591
Sean Silvab084af42012-12-07 10:36:55 +000010592Bit Manipulation Intrinsics
10593---------------------------
10594
10595LLVM provides intrinsics for a few important bit manipulation
10596operations. These allow efficient code generation for some algorithms.
10597
James Molloy90111f72015-11-12 12:29:09 +000010598'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010600
10601Syntax:
10602"""""""
10603
10604This is an overloaded intrinsic function. You can use bitreverse on any
10605integer type.
10606
10607::
10608
10609 declare i16 @llvm.bitreverse.i16(i16 <id>)
10610 declare i32 @llvm.bitreverse.i32(i32 <id>)
10611 declare i64 @llvm.bitreverse.i64(i64 <id>)
10612
10613Overview:
10614"""""""""
10615
10616The '``llvm.bitreverse``' family of intrinsics is used to reverse the
10617bitpattern of an integer value; for example ``0b1234567`` becomes
10618``0b7654321``.
10619
10620Semantics:
10621""""""""""
10622
10623The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10624``M`` in the input moved to bit ``N-M`` in the output.
10625
Sean Silvab084af42012-12-07 10:36:55 +000010626'``llvm.bswap.*``' Intrinsics
10627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10628
10629Syntax:
10630"""""""
10631
10632This is an overloaded intrinsic function. You can use bswap on any
10633integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10634
10635::
10636
10637 declare i16 @llvm.bswap.i16(i16 <id>)
10638 declare i32 @llvm.bswap.i32(i32 <id>)
10639 declare i64 @llvm.bswap.i64(i64 <id>)
10640
10641Overview:
10642"""""""""
10643
10644The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10645values with an even number of bytes (positive multiple of 16 bits).
10646These are useful for performing operations on data that is not in the
10647target's native byte order.
10648
10649Semantics:
10650""""""""""
10651
10652The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10653and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10654intrinsic returns an i32 value that has the four bytes of the input i32
10655swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10656returned i32 will have its bytes in 3, 2, 1, 0 order. The
10657``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10658concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10659respectively).
10660
10661'``llvm.ctpop.*``' Intrinsic
10662^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10663
10664Syntax:
10665"""""""
10666
10667This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10668bit width, or on any vector with integer elements. Not all targets
10669support all bit widths or vector types, however.
10670
10671::
10672
10673 declare i8 @llvm.ctpop.i8(i8 <src>)
10674 declare i16 @llvm.ctpop.i16(i16 <src>)
10675 declare i32 @llvm.ctpop.i32(i32 <src>)
10676 declare i64 @llvm.ctpop.i64(i64 <src>)
10677 declare i256 @llvm.ctpop.i256(i256 <src>)
10678 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10679
10680Overview:
10681"""""""""
10682
10683The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10684in a value.
10685
10686Arguments:
10687""""""""""
10688
10689The only argument is the value to be counted. The argument may be of any
10690integer type, or a vector with integer elements. The return type must
10691match the argument type.
10692
10693Semantics:
10694""""""""""
10695
10696The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10697each element of a vector.
10698
10699'``llvm.ctlz.*``' Intrinsic
10700^^^^^^^^^^^^^^^^^^^^^^^^^^^
10701
10702Syntax:
10703"""""""
10704
10705This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10706integer bit width, or any vector whose elements are integers. Not all
10707targets support all bit widths or vector types, however.
10708
10709::
10710
10711 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10712 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10713 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10714 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10715 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10716 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10717
10718Overview:
10719"""""""""
10720
10721The '``llvm.ctlz``' family of intrinsic functions counts the number of
10722leading zeros in a variable.
10723
10724Arguments:
10725""""""""""
10726
10727The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010728any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010729type must match the first argument type.
10730
10731The second argument must be a constant and is a flag to indicate whether
10732the intrinsic should ensure that a zero as the first argument produces a
10733defined result. Historically some architectures did not provide a
10734defined result for zero values as efficiently, and many algorithms are
10735now predicated on avoiding zero-value inputs.
10736
10737Semantics:
10738""""""""""
10739
10740The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10741zeros in a variable, or within each element of the vector. If
10742``src == 0`` then the result is the size in bits of the type of ``src``
10743if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10744``llvm.ctlz(i32 2) = 30``.
10745
10746'``llvm.cttz.*``' Intrinsic
10747^^^^^^^^^^^^^^^^^^^^^^^^^^^
10748
10749Syntax:
10750"""""""
10751
10752This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10753integer bit width, or any vector of integer elements. Not all targets
10754support all bit widths or vector types, however.
10755
10756::
10757
10758 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10759 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10760 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10761 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10762 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10763 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10764
10765Overview:
10766"""""""""
10767
10768The '``llvm.cttz``' family of intrinsic functions counts the number of
10769trailing zeros.
10770
10771Arguments:
10772""""""""""
10773
10774The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010775any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010776type must match the first argument type.
10777
10778The second argument must be a constant and is a flag to indicate whether
10779the intrinsic should ensure that a zero as the first argument produces a
10780defined result. Historically some architectures did not provide a
10781defined result for zero values as efficiently, and many algorithms are
10782now predicated on avoiding zero-value inputs.
10783
10784Semantics:
10785""""""""""
10786
10787The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10788zeros in a variable, or within each element of a vector. If ``src == 0``
10789then the result is the size in bits of the type of ``src`` if
10790``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10791``llvm.cttz(2) = 1``.
10792
Philip Reames34843ae2015-03-05 05:55:55 +000010793.. _int_overflow:
10794
Sean Silvab084af42012-12-07 10:36:55 +000010795Arithmetic with Overflow Intrinsics
10796-----------------------------------
10797
10798LLVM provides intrinsics for some arithmetic with overflow operations.
10799
10800'``llvm.sadd.with.overflow.*``' Intrinsics
10801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10802
10803Syntax:
10804"""""""
10805
10806This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10807on any integer bit width.
10808
10809::
10810
10811 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10812 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10813 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10814
10815Overview:
10816"""""""""
10817
10818The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10819a signed addition of the two arguments, and indicate whether an overflow
10820occurred during the signed summation.
10821
10822Arguments:
10823""""""""""
10824
10825The arguments (%a and %b) and the first element of the result structure
10826may be of integer types of any bit width, but they must have the same
10827bit width. The second element of the result structure must be of type
10828``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10829addition.
10830
10831Semantics:
10832""""""""""
10833
10834The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010835a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010836first element of which is the signed summation, and the second element
10837of which is a bit specifying if the signed summation resulted in an
10838overflow.
10839
10840Examples:
10841"""""""""
10842
10843.. code-block:: llvm
10844
10845 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10846 %sum = extractvalue {i32, i1} %res, 0
10847 %obit = extractvalue {i32, i1} %res, 1
10848 br i1 %obit, label %overflow, label %normal
10849
10850'``llvm.uadd.with.overflow.*``' Intrinsics
10851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10852
10853Syntax:
10854"""""""
10855
10856This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10857on any integer bit width.
10858
10859::
10860
10861 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10862 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10863 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10864
10865Overview:
10866"""""""""
10867
10868The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10869an unsigned addition of the two arguments, and indicate whether a carry
10870occurred during the unsigned summation.
10871
10872Arguments:
10873""""""""""
10874
10875The arguments (%a and %b) and the first element of the result structure
10876may be of integer types of any bit width, but they must have the same
10877bit width. The second element of the result structure must be of type
10878``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10879addition.
10880
10881Semantics:
10882""""""""""
10883
10884The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010885an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010886first element of which is the sum, and the second element of which is a
10887bit specifying if the unsigned summation resulted in a carry.
10888
10889Examples:
10890"""""""""
10891
10892.. code-block:: llvm
10893
10894 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10895 %sum = extractvalue {i32, i1} %res, 0
10896 %obit = extractvalue {i32, i1} %res, 1
10897 br i1 %obit, label %carry, label %normal
10898
10899'``llvm.ssub.with.overflow.*``' Intrinsics
10900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10901
10902Syntax:
10903"""""""
10904
10905This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10906on any integer bit width.
10907
10908::
10909
10910 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10911 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10912 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10913
10914Overview:
10915"""""""""
10916
10917The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10918a signed subtraction of the two arguments, and indicate whether an
10919overflow occurred during the signed subtraction.
10920
10921Arguments:
10922""""""""""
10923
10924The arguments (%a and %b) and the first element of the result structure
10925may be of integer types of any bit width, but they must have the same
10926bit width. The second element of the result structure must be of type
10927``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10928subtraction.
10929
10930Semantics:
10931""""""""""
10932
10933The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010934a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010935first element of which is the subtraction, and the second element of
10936which is a bit specifying if the signed subtraction resulted in an
10937overflow.
10938
10939Examples:
10940"""""""""
10941
10942.. code-block:: llvm
10943
10944 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10945 %sum = extractvalue {i32, i1} %res, 0
10946 %obit = extractvalue {i32, i1} %res, 1
10947 br i1 %obit, label %overflow, label %normal
10948
10949'``llvm.usub.with.overflow.*``' Intrinsics
10950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10951
10952Syntax:
10953"""""""
10954
10955This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10956on any integer bit width.
10957
10958::
10959
10960 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10961 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10962 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10963
10964Overview:
10965"""""""""
10966
10967The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10968an unsigned subtraction of the two arguments, and indicate whether an
10969overflow occurred during the unsigned subtraction.
10970
10971Arguments:
10972""""""""""
10973
10974The arguments (%a and %b) and the first element of the result structure
10975may be of integer types of any bit width, but they must have the same
10976bit width. The second element of the result structure must be of type
10977``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10978subtraction.
10979
10980Semantics:
10981""""""""""
10982
10983The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010984an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010985the first element of which is the subtraction, and the second element of
10986which is a bit specifying if the unsigned subtraction resulted in an
10987overflow.
10988
10989Examples:
10990"""""""""
10991
10992.. code-block:: llvm
10993
10994 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10995 %sum = extractvalue {i32, i1} %res, 0
10996 %obit = extractvalue {i32, i1} %res, 1
10997 br i1 %obit, label %overflow, label %normal
10998
10999'``llvm.smul.with.overflow.*``' Intrinsics
11000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11001
11002Syntax:
11003"""""""
11004
11005This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
11006on any integer bit width.
11007
11008::
11009
11010 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
11011 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11012 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
11013
11014Overview:
11015"""""""""
11016
11017The '``llvm.smul.with.overflow``' family of intrinsic functions perform
11018a signed multiplication of the two arguments, and indicate whether an
11019overflow occurred during the signed multiplication.
11020
11021Arguments:
11022""""""""""
11023
11024The arguments (%a and %b) and the first element of the result structure
11025may be of integer types of any bit width, but they must have the same
11026bit width. The second element of the result structure must be of type
11027``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
11028multiplication.
11029
11030Semantics:
11031""""""""""
11032
11033The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011034a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000011035the first element of which is the multiplication, and the second element
11036of which is a bit specifying if the signed multiplication resulted in an
11037overflow.
11038
11039Examples:
11040"""""""""
11041
11042.. code-block:: llvm
11043
11044 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
11045 %sum = extractvalue {i32, i1} %res, 0
11046 %obit = extractvalue {i32, i1} %res, 1
11047 br i1 %obit, label %overflow, label %normal
11048
11049'``llvm.umul.with.overflow.*``' Intrinsics
11050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11051
11052Syntax:
11053"""""""
11054
11055This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
11056on any integer bit width.
11057
11058::
11059
11060 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
11061 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11062 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
11063
11064Overview:
11065"""""""""
11066
11067The '``llvm.umul.with.overflow``' family of intrinsic functions perform
11068a unsigned multiplication of the two arguments, and indicate whether an
11069overflow occurred during the unsigned multiplication.
11070
11071Arguments:
11072""""""""""
11073
11074The arguments (%a and %b) and the first element of the result structure
11075may be of integer types of any bit width, but they must have the same
11076bit width. The second element of the result structure must be of type
11077``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
11078multiplication.
11079
11080Semantics:
11081""""""""""
11082
11083The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000011084an unsigned multiplication of the two arguments. They return a structure ---
11085the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000011086element of which is a bit specifying if the unsigned multiplication
11087resulted in an overflow.
11088
11089Examples:
11090"""""""""
11091
11092.. code-block:: llvm
11093
11094 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
11095 %sum = extractvalue {i32, i1} %res, 0
11096 %obit = extractvalue {i32, i1} %res, 1
11097 br i1 %obit, label %overflow, label %normal
11098
11099Specialised Arithmetic Intrinsics
11100---------------------------------
11101
Owen Anderson1056a922015-07-11 07:01:27 +000011102'``llvm.canonicalize.*``' Intrinsic
11103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11104
11105Syntax:
11106"""""""
11107
11108::
11109
11110 declare float @llvm.canonicalize.f32(float %a)
11111 declare double @llvm.canonicalize.f64(double %b)
11112
11113Overview:
11114"""""""""
11115
11116The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000011117encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000011118implementing certain numeric primitives such as frexp. The canonical encoding is
11119defined by IEEE-754-2008 to be:
11120
11121::
11122
11123 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011124 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000011125 numbers, infinities, and NaNs, especially in decimal formats.
11126
11127This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000011128conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000011129according to section 6.2.
11130
11131Examples of non-canonical encodings:
11132
Sean Silvaa1190322015-08-06 22:56:48 +000011133- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011134 converted to a canonical representation per hardware-specific protocol.
11135- Many normal decimal floating point numbers have non-canonical alternative
11136 encodings.
11137- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
11138 These are treated as non-canonical encodings of zero and with be flushed to
11139 a zero of the same sign by this operation.
11140
11141Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11142default exception handling must signal an invalid exception, and produce a
11143quiet NaN result.
11144
11145This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011146that the compiler does not constant fold the operation. Likewise, division by
111471.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011148-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11149
Sean Silvaa1190322015-08-06 22:56:48 +000011150``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011151
11152- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11153- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11154 to ``(x == y)``
11155
11156Additionally, the sign of zero must be conserved:
11157``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11158
11159The payload bits of a NaN must be conserved, with two exceptions.
11160First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011161must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011162usual methods.
11163
11164The canonicalization operation may be optimized away if:
11165
Sean Silvaa1190322015-08-06 22:56:48 +000011166- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011167 floating-point operation that is required by the standard to be canonical.
11168- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011169 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011170
Sean Silvab084af42012-12-07 10:36:55 +000011171'``llvm.fmuladd.*``' Intrinsic
11172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11173
11174Syntax:
11175"""""""
11176
11177::
11178
11179 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11180 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11181
11182Overview:
11183"""""""""
11184
11185The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011186expressions that can be fused if the code generator determines that (a) the
11187target instruction set has support for a fused operation, and (b) that the
11188fused operation is more efficient than the equivalent, separate pair of mul
11189and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011190
11191Arguments:
11192""""""""""
11193
11194The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11195multiplicands, a and b, and an addend c.
11196
11197Semantics:
11198""""""""""
11199
11200The expression:
11201
11202::
11203
11204 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11205
11206is equivalent to the expression a \* b + c, except that rounding will
11207not be performed between the multiplication and addition steps if the
11208code generator fuses the operations. Fusion is not guaranteed, even if
11209the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011210corresponding llvm.fma.\* intrinsic function should be used
11211instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011212
11213Examples:
11214"""""""""
11215
11216.. code-block:: llvm
11217
Tim Northover675a0962014-06-13 14:24:23 +000011218 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011219
James Molloy7395a812015-07-16 15:22:46 +000011220
11221'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
11222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11223
11224Syntax:
11225"""""""
11226This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
11227
11228.. code-block:: llvm
11229
11230 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
11231
11232
11233Overview:
11234"""""""""
11235
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011236The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference
11237of the two operands, treating them both as unsigned integers. The intermediate
11238calculations are computed using infinitely precise unsigned arithmetic. The final
11239result will be truncated to the given type.
James Molloy7395a812015-07-16 15:22:46 +000011240
Mohammad Shahid18715532015-08-21 05:31:07 +000011241The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011242the two operands, treating them both as signed integers. If the result overflows, the
11243behavior is undefined.
James Molloy7395a812015-07-16 15:22:46 +000011244
11245.. note::
11246
11247 These intrinsics are primarily used during the code generation stage of compilation.
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011248 They are generated by compiler passes such as the Loop and SLP vectorizers. It is not
James Molloy7395a812015-07-16 15:22:46 +000011249 recommended for users to create them manually.
11250
11251Arguments:
11252""""""""""
11253
11254Both intrinsics take two integer of the same bitwidth.
11255
11256Semantics:
11257""""""""""
11258
11259The expression::
11260
11261 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11262
11263is equivalent to::
11264
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011265 %1 = zext <4 x i32> %a to <4 x i64>
11266 %2 = zext <4 x i32> %b to <4 x i64>
11267 %sub = sub <4 x i64> %1, %2
11268 %trunc = trunc <4 x i64> to <4 x i32>
James Molloy7395a812015-07-16 15:22:46 +000011269
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011270and the expression::
James Molloy7395a812015-07-16 15:22:46 +000011271
11272 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
11273
11274is equivalent to::
11275
11276 %sub = sub nsw <4 x i32> %a, %b
Mohammad Shahid13f1dfd2015-09-24 10:35:03 +000011277 %ispos = icmp sge <4 x i32> %sub, zeroinitializer
James Molloy7395a812015-07-16 15:22:46 +000011278 %neg = sub nsw <4 x i32> zeroinitializer, %sub
11279 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
11280
11281
Sean Silvab084af42012-12-07 10:36:55 +000011282Half Precision Floating Point Intrinsics
11283----------------------------------------
11284
11285For most target platforms, half precision floating point is a
11286storage-only format. This means that it is a dense encoding (in memory)
11287but does not support computation in the format.
11288
11289This means that code must first load the half-precision floating point
11290value as an i16, then convert it to float with
11291:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11292then be performed on the float value (including extending to double
11293etc). To store the value back to memory, it is first converted to float
11294if needed, then converted to i16 with
11295:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11296i16 value.
11297
11298.. _int_convert_to_fp16:
11299
11300'``llvm.convert.to.fp16``' Intrinsic
11301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11302
11303Syntax:
11304"""""""
11305
11306::
11307
Tim Northoverfd7e4242014-07-17 10:51:23 +000011308 declare i16 @llvm.convert.to.fp16.f32(float %a)
11309 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011310
11311Overview:
11312"""""""""
11313
Tim Northoverfd7e4242014-07-17 10:51:23 +000011314The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11315conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011316
11317Arguments:
11318""""""""""
11319
11320The intrinsic function contains single argument - the value to be
11321converted.
11322
11323Semantics:
11324""""""""""
11325
Tim Northoverfd7e4242014-07-17 10:51:23 +000011326The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11327conventional floating point format to half precision floating point format. The
11328return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011329
11330Examples:
11331"""""""""
11332
11333.. code-block:: llvm
11334
Tim Northoverfd7e4242014-07-17 10:51:23 +000011335 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011336 store i16 %res, i16* @x, align 2
11337
11338.. _int_convert_from_fp16:
11339
11340'``llvm.convert.from.fp16``' Intrinsic
11341^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11342
11343Syntax:
11344"""""""
11345
11346::
11347
Tim Northoverfd7e4242014-07-17 10:51:23 +000011348 declare float @llvm.convert.from.fp16.f32(i16 %a)
11349 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011350
11351Overview:
11352"""""""""
11353
11354The '``llvm.convert.from.fp16``' intrinsic function performs a
11355conversion from half precision floating point format to single precision
11356floating point format.
11357
11358Arguments:
11359""""""""""
11360
11361The intrinsic function contains single argument - the value to be
11362converted.
11363
11364Semantics:
11365""""""""""
11366
11367The '``llvm.convert.from.fp16``' intrinsic function performs a
11368conversion from half single precision floating point format to single
11369precision floating point format. The input half-float value is
11370represented by an ``i16`` value.
11371
11372Examples:
11373"""""""""
11374
11375.. code-block:: llvm
11376
David Blaikiec7aabbb2015-03-04 22:06:14 +000011377 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011378 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011379
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011380.. _dbg_intrinsics:
11381
Sean Silvab084af42012-12-07 10:36:55 +000011382Debugger Intrinsics
11383-------------------
11384
11385The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11386prefix), are described in the `LLVM Source Level
11387Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11388document.
11389
11390Exception Handling Intrinsics
11391-----------------------------
11392
11393The LLVM exception handling intrinsics (which all start with
11394``llvm.eh.`` prefix), are described in the `LLVM Exception
11395Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11396
11397.. _int_trampoline:
11398
11399Trampoline Intrinsics
11400---------------------
11401
11402These intrinsics make it possible to excise one parameter, marked with
11403the :ref:`nest <nest>` attribute, from a function. The result is a
11404callable function pointer lacking the nest parameter - the caller does
11405not need to provide a value for it. Instead, the value to use is stored
11406in advance in a "trampoline", a block of memory usually allocated on the
11407stack, which also contains code to splice the nest value into the
11408argument list. This is used to implement the GCC nested function address
11409extension.
11410
11411For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11412then the resulting function pointer has signature ``i32 (i32, i32)*``.
11413It can be created as follows:
11414
11415.. code-block:: llvm
11416
11417 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011418 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011419 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11420 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11421 %fp = bitcast i8* %p to i32 (i32, i32)*
11422
11423The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11424``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11425
11426.. _int_it:
11427
11428'``llvm.init.trampoline``' Intrinsic
11429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11430
11431Syntax:
11432"""""""
11433
11434::
11435
11436 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11437
11438Overview:
11439"""""""""
11440
11441This fills the memory pointed to by ``tramp`` with executable code,
11442turning it into a trampoline.
11443
11444Arguments:
11445""""""""""
11446
11447The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11448pointers. The ``tramp`` argument must point to a sufficiently large and
11449sufficiently aligned block of memory; this memory is written to by the
11450intrinsic. Note that the size and the alignment are target-specific -
11451LLVM currently provides no portable way of determining them, so a
11452front-end that generates this intrinsic needs to have some
11453target-specific knowledge. The ``func`` argument must hold a function
11454bitcast to an ``i8*``.
11455
11456Semantics:
11457""""""""""
11458
11459The block of memory pointed to by ``tramp`` is filled with target
11460dependent code, turning it into a function. Then ``tramp`` needs to be
11461passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11462be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11463function's signature is the same as that of ``func`` with any arguments
11464marked with the ``nest`` attribute removed. At most one such ``nest``
11465argument is allowed, and it must be of pointer type. Calling the new
11466function is equivalent to calling ``func`` with the same argument list,
11467but with ``nval`` used for the missing ``nest`` argument. If, after
11468calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11469modified, then the effect of any later call to the returned function
11470pointer is undefined.
11471
11472.. _int_at:
11473
11474'``llvm.adjust.trampoline``' Intrinsic
11475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11476
11477Syntax:
11478"""""""
11479
11480::
11481
11482 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11483
11484Overview:
11485"""""""""
11486
11487This performs any required machine-specific adjustment to the address of
11488a trampoline (passed as ``tramp``).
11489
11490Arguments:
11491""""""""""
11492
11493``tramp`` must point to a block of memory which already has trampoline
11494code filled in by a previous call to
11495:ref:`llvm.init.trampoline <int_it>`.
11496
11497Semantics:
11498""""""""""
11499
11500On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011501different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011502intrinsic returns the executable address corresponding to ``tramp``
11503after performing the required machine specific adjustments. The pointer
11504returned can then be :ref:`bitcast and executed <int_trampoline>`.
11505
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011506.. _int_mload_mstore:
11507
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011508Masked Vector Load and Store Intrinsics
11509---------------------------------------
11510
11511LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11512
11513.. _int_mload:
11514
11515'``llvm.masked.load.*``' Intrinsics
11516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11517
11518Syntax:
11519"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011520This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011521
11522::
11523
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011524 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11525 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11526 ;; The data is a vector of pointers to double
11527 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
11528 ;; The data is a vector of function pointers
11529 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011530
11531Overview:
11532"""""""""
11533
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011534Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011535
11536
11537Arguments:
11538""""""""""
11539
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011540The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011541
11542
11543Semantics:
11544""""""""""
11545
11546The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11547The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11548
11549
11550::
11551
11552 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011553
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011554 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011555 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011556 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011557
11558.. _int_mstore:
11559
11560'``llvm.masked.store.*``' Intrinsics
11561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11562
11563Syntax:
11564"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011565This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011566
11567::
11568
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011569 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11570 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11571 ;; The data is a vector of pointers to double
11572 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11573 ;; The data is a vector of function pointers
11574 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011575
11576Overview:
11577"""""""""
11578
11579Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11580
11581Arguments:
11582""""""""""
11583
11584The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11585
11586
11587Semantics:
11588""""""""""
11589
11590The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11591The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11592
11593::
11594
11595 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011596
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011597 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011598 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011599 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11600 store <16 x float> %res, <16 x float>* %ptr, align 4
11601
11602
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011603Masked Vector Gather and Scatter Intrinsics
11604-------------------------------------------
11605
11606LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11607
11608.. _int_mgather:
11609
11610'``llvm.masked.gather.*``' Intrinsics
11611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11612
11613Syntax:
11614"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011615This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011616
11617::
11618
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011619 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11620 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11621 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011622
11623Overview:
11624"""""""""
11625
11626Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11627
11628
11629Arguments:
11630""""""""""
11631
11632The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11633
11634
11635Semantics:
11636""""""""""
11637
11638The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11639The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11640
11641
11642::
11643
11644 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11645
11646 ;; The gather with all-true mask is equivalent to the following instruction sequence
11647 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11648 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11649 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11650 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11651
11652 %val0 = load double, double* %ptr0, align 8
11653 %val1 = load double, double* %ptr1, align 8
11654 %val2 = load double, double* %ptr2, align 8
11655 %val3 = load double, double* %ptr3, align 8
11656
11657 %vec0 = insertelement <4 x double>undef, %val0, 0
11658 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11659 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11660 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11661
11662.. _int_mscatter:
11663
11664'``llvm.masked.scatter.*``' Intrinsics
11665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11666
11667Syntax:
11668"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011669This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011670
11671::
11672
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011673 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11674 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11675 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011676
11677Overview:
11678"""""""""
11679
11680Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11681
11682Arguments:
11683""""""""""
11684
11685The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11686
11687
11688Semantics:
11689""""""""""
11690
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011691The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011692
11693::
11694
11695 ;; This instruction unconditionaly stores data vector in multiple addresses
11696 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11697
11698 ;; It is equivalent to a list of scalar stores
11699 %val0 = extractelement <8 x i32> %value, i32 0
11700 %val1 = extractelement <8 x i32> %value, i32 1
11701 ..
11702 %val7 = extractelement <8 x i32> %value, i32 7
11703 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11704 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11705 ..
11706 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11707 ;; Note: the order of the following stores is important when they overlap:
11708 store i32 %val0, i32* %ptr0, align 4
11709 store i32 %val1, i32* %ptr1, align 4
11710 ..
11711 store i32 %val7, i32* %ptr7, align 4
11712
11713
Sean Silvab084af42012-12-07 10:36:55 +000011714Memory Use Markers
11715------------------
11716
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011717This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011718memory objects and ranges where variables are immutable.
11719
Reid Klecknera534a382013-12-19 02:14:12 +000011720.. _int_lifestart:
11721
Sean Silvab084af42012-12-07 10:36:55 +000011722'``llvm.lifetime.start``' Intrinsic
11723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11724
11725Syntax:
11726"""""""
11727
11728::
11729
11730 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11731
11732Overview:
11733"""""""""
11734
11735The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11736object's lifetime.
11737
11738Arguments:
11739""""""""""
11740
11741The first argument is a constant integer representing the size of the
11742object, or -1 if it is variable sized. The second argument is a pointer
11743to the object.
11744
11745Semantics:
11746""""""""""
11747
11748This intrinsic indicates that before this point in the code, the value
11749of the memory pointed to by ``ptr`` is dead. This means that it is known
11750to never be used and has an undefined value. A load from the pointer
11751that precedes this intrinsic can be replaced with ``'undef'``.
11752
Reid Klecknera534a382013-12-19 02:14:12 +000011753.. _int_lifeend:
11754
Sean Silvab084af42012-12-07 10:36:55 +000011755'``llvm.lifetime.end``' Intrinsic
11756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11757
11758Syntax:
11759"""""""
11760
11761::
11762
11763 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11764
11765Overview:
11766"""""""""
11767
11768The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11769object's lifetime.
11770
11771Arguments:
11772""""""""""
11773
11774The first argument is a constant integer representing the size of the
11775object, or -1 if it is variable sized. The second argument is a pointer
11776to the object.
11777
11778Semantics:
11779""""""""""
11780
11781This intrinsic indicates that after this point in the code, the value of
11782the memory pointed to by ``ptr`` is dead. This means that it is known to
11783never be used and has an undefined value. Any stores into the memory
11784object following this intrinsic may be removed as dead.
11785
11786'``llvm.invariant.start``' Intrinsic
11787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11788
11789Syntax:
11790"""""""
11791
11792::
11793
11794 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11795
11796Overview:
11797"""""""""
11798
11799The '``llvm.invariant.start``' intrinsic specifies that the contents of
11800a memory object will not change.
11801
11802Arguments:
11803""""""""""
11804
11805The first argument is a constant integer representing the size of the
11806object, or -1 if it is variable sized. The second argument is a pointer
11807to the object.
11808
11809Semantics:
11810""""""""""
11811
11812This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11813the return value, the referenced memory location is constant and
11814unchanging.
11815
11816'``llvm.invariant.end``' Intrinsic
11817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11818
11819Syntax:
11820"""""""
11821
11822::
11823
11824 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11825
11826Overview:
11827"""""""""
11828
11829The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11830memory object are mutable.
11831
11832Arguments:
11833""""""""""
11834
11835The first argument is the matching ``llvm.invariant.start`` intrinsic.
11836The second argument is a constant integer representing the size of the
11837object, or -1 if it is variable sized and the third argument is a
11838pointer to the object.
11839
11840Semantics:
11841""""""""""
11842
11843This intrinsic indicates that the memory is mutable again.
11844
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011845'``llvm.invariant.group.barrier``' Intrinsic
11846^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11847
11848Syntax:
11849"""""""
11850
11851::
11852
11853 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11854
11855Overview:
11856"""""""""
11857
11858The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11859established by invariant.group metadata no longer holds, to obtain a new pointer
11860value that does not carry the invariant information.
11861
11862
11863Arguments:
11864""""""""""
11865
11866The ``llvm.invariant.group.barrier`` takes only one argument, which is
11867the pointer to the memory for which the ``invariant.group`` no longer holds.
11868
11869Semantics:
11870""""""""""
11871
11872Returns another pointer that aliases its argument but which is considered different
11873for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11874
Sean Silvab084af42012-12-07 10:36:55 +000011875General Intrinsics
11876------------------
11877
11878This class of intrinsics is designed to be generic and has no specific
11879purpose.
11880
11881'``llvm.var.annotation``' Intrinsic
11882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11883
11884Syntax:
11885"""""""
11886
11887::
11888
11889 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11890
11891Overview:
11892"""""""""
11893
11894The '``llvm.var.annotation``' intrinsic.
11895
11896Arguments:
11897""""""""""
11898
11899The first argument is a pointer to a value, the second is a pointer to a
11900global string, the third is a pointer to a global string which is the
11901source file name, and the last argument is the line number.
11902
11903Semantics:
11904""""""""""
11905
11906This intrinsic allows annotation of local variables with arbitrary
11907strings. This can be useful for special purpose optimizations that want
11908to look for these annotations. These have no other defined use; they are
11909ignored by code generation and optimization.
11910
Michael Gottesman88d18832013-03-26 00:34:27 +000011911'``llvm.ptr.annotation.*``' Intrinsic
11912^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11913
11914Syntax:
11915"""""""
11916
11917This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11918pointer to an integer of any width. *NOTE* you must specify an address space for
11919the pointer. The identifier for the default address space is the integer
11920'``0``'.
11921
11922::
11923
11924 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11925 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11926 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11927 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11928 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11929
11930Overview:
11931"""""""""
11932
11933The '``llvm.ptr.annotation``' intrinsic.
11934
11935Arguments:
11936""""""""""
11937
11938The first argument is a pointer to an integer value of arbitrary bitwidth
11939(result of some expression), the second is a pointer to a global string, the
11940third is a pointer to a global string which is the source file name, and the
11941last argument is the line number. It returns the value of the first argument.
11942
11943Semantics:
11944""""""""""
11945
11946This intrinsic allows annotation of a pointer to an integer with arbitrary
11947strings. This can be useful for special purpose optimizations that want to look
11948for these annotations. These have no other defined use; they are ignored by code
11949generation and optimization.
11950
Sean Silvab084af42012-12-07 10:36:55 +000011951'``llvm.annotation.*``' Intrinsic
11952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11953
11954Syntax:
11955"""""""
11956
11957This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11958any integer bit width.
11959
11960::
11961
11962 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11963 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11964 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11965 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11966 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11967
11968Overview:
11969"""""""""
11970
11971The '``llvm.annotation``' intrinsic.
11972
11973Arguments:
11974""""""""""
11975
11976The first argument is an integer value (result of some expression), the
11977second is a pointer to a global string, the third is a pointer to a
11978global string which is the source file name, and the last argument is
11979the line number. It returns the value of the first argument.
11980
11981Semantics:
11982""""""""""
11983
11984This intrinsic allows annotations to be put on arbitrary expressions
11985with arbitrary strings. This can be useful for special purpose
11986optimizations that want to look for these annotations. These have no
11987other defined use; they are ignored by code generation and optimization.
11988
11989'``llvm.trap``' Intrinsic
11990^^^^^^^^^^^^^^^^^^^^^^^^^
11991
11992Syntax:
11993"""""""
11994
11995::
11996
11997 declare void @llvm.trap() noreturn nounwind
11998
11999Overview:
12000"""""""""
12001
12002The '``llvm.trap``' intrinsic.
12003
12004Arguments:
12005""""""""""
12006
12007None.
12008
12009Semantics:
12010""""""""""
12011
12012This intrinsic is lowered to the target dependent trap instruction. If
12013the target does not have a trap instruction, this intrinsic will be
12014lowered to a call of the ``abort()`` function.
12015
12016'``llvm.debugtrap``' Intrinsic
12017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12018
12019Syntax:
12020"""""""
12021
12022::
12023
12024 declare void @llvm.debugtrap() nounwind
12025
12026Overview:
12027"""""""""
12028
12029The '``llvm.debugtrap``' intrinsic.
12030
12031Arguments:
12032""""""""""
12033
12034None.
12035
12036Semantics:
12037""""""""""
12038
12039This intrinsic is lowered to code which is intended to cause an
12040execution trap with the intention of requesting the attention of a
12041debugger.
12042
12043'``llvm.stackprotector``' Intrinsic
12044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12045
12046Syntax:
12047"""""""
12048
12049::
12050
12051 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
12052
12053Overview:
12054"""""""""
12055
12056The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
12057onto the stack at ``slot``. The stack slot is adjusted to ensure that it
12058is placed on the stack before local variables.
12059
12060Arguments:
12061""""""""""
12062
12063The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
12064The first argument is the value loaded from the stack guard
12065``@__stack_chk_guard``. The second variable is an ``alloca`` that has
12066enough space to hold the value of the guard.
12067
12068Semantics:
12069""""""""""
12070
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012071This intrinsic causes the prologue/epilogue inserter to force the position of
12072the ``AllocaInst`` stack slot to be before local variables on the stack. This is
12073to ensure that if a local variable on the stack is overwritten, it will destroy
12074the value of the guard. When the function exits, the guard on the stack is
12075checked against the original guard by ``llvm.stackprotectorcheck``. If they are
12076different, then ``llvm.stackprotectorcheck`` causes the program to abort by
12077calling the ``__stack_chk_fail()`` function.
12078
12079'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000012080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012081
12082Syntax:
12083"""""""
12084
12085::
12086
12087 declare void @llvm.stackprotectorcheck(i8** <guard>)
12088
12089Overview:
12090"""""""""
12091
12092The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000012093created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000012094``__stack_chk_fail()`` function.
12095
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012096Arguments:
12097""""""""""
12098
12099The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
12100the variable ``@__stack_chk_guard``.
12101
12102Semantics:
12103""""""""""
12104
12105This intrinsic is provided to perform the stack protector check by comparing
12106``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
12107values do not match call the ``__stack_chk_fail()`` function.
12108
12109The reason to provide this as an IR level intrinsic instead of implementing it
12110via other IR operations is that in order to perform this operation at the IR
12111level without an intrinsic, one would need to create additional basic blocks to
12112handle the success/failure cases. This makes it difficult to stop the stack
12113protector check from disrupting sibling tail calls in Codegen. With this
12114intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000012115codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000012116
Sean Silvab084af42012-12-07 10:36:55 +000012117'``llvm.objectsize``' Intrinsic
12118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12119
12120Syntax:
12121"""""""
12122
12123::
12124
12125 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
12126 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
12127
12128Overview:
12129"""""""""
12130
12131The ``llvm.objectsize`` intrinsic is designed to provide information to
12132the optimizers to determine at compile time whether a) an operation
12133(like memcpy) will overflow a buffer that corresponds to an object, or
12134b) that a runtime check for overflow isn't necessary. An object in this
12135context means an allocation of a specific class, structure, array, or
12136other object.
12137
12138Arguments:
12139""""""""""
12140
12141The ``llvm.objectsize`` intrinsic takes two arguments. The first
12142argument is a pointer to or into the ``object``. The second argument is
12143a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
12144or -1 (if false) when the object size is unknown. The second argument
12145only accepts constants.
12146
12147Semantics:
12148""""""""""
12149
12150The ``llvm.objectsize`` intrinsic is lowered to a constant representing
12151the size of the object concerned. If the size cannot be determined at
12152compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
12153on the ``min`` argument).
12154
12155'``llvm.expect``' Intrinsic
12156^^^^^^^^^^^^^^^^^^^^^^^^^^^
12157
12158Syntax:
12159"""""""
12160
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012161This is an overloaded intrinsic. You can use ``llvm.expect`` on any
12162integer bit width.
12163
Sean Silvab084af42012-12-07 10:36:55 +000012164::
12165
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000012166 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000012167 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
12168 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
12169
12170Overview:
12171"""""""""
12172
12173The ``llvm.expect`` intrinsic provides information about expected (the
12174most probable) value of ``val``, which can be used by optimizers.
12175
12176Arguments:
12177""""""""""
12178
12179The ``llvm.expect`` intrinsic takes two arguments. The first argument is
12180a value. The second argument is an expected value, this needs to be a
12181constant value, variables are not allowed.
12182
12183Semantics:
12184""""""""""
12185
12186This intrinsic is lowered to the ``val``.
12187
Philip Reamese0e90832015-04-26 22:23:12 +000012188.. _int_assume:
12189
Hal Finkel93046912014-07-25 21:13:35 +000012190'``llvm.assume``' Intrinsic
12191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12192
12193Syntax:
12194"""""""
12195
12196::
12197
12198 declare void @llvm.assume(i1 %cond)
12199
12200Overview:
12201"""""""""
12202
12203The ``llvm.assume`` allows the optimizer to assume that the provided
12204condition is true. This information can then be used in simplifying other parts
12205of the code.
12206
12207Arguments:
12208""""""""""
12209
12210The condition which the optimizer may assume is always true.
12211
12212Semantics:
12213""""""""""
12214
12215The intrinsic allows the optimizer to assume that the provided condition is
12216always true whenever the control flow reaches the intrinsic call. No code is
12217generated for this intrinsic, and instructions that contribute only to the
12218provided condition are not used for code generation. If the condition is
12219violated during execution, the behavior is undefined.
12220
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012221Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012222used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12223only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012224if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012225sufficient overall improvement in code quality. For this reason,
12226``llvm.assume`` should not be used to document basic mathematical invariants
12227that the optimizer can otherwise deduce or facts that are of little use to the
12228optimizer.
12229
Peter Collingbournee6909c82015-02-20 20:30:47 +000012230.. _bitset.test:
12231
12232'``llvm.bitset.test``' Intrinsic
12233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12234
12235Syntax:
12236"""""""
12237
12238::
12239
12240 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12241
12242
12243Arguments:
12244""""""""""
12245
12246The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012247metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012248
12249Overview:
12250"""""""""
12251
12252The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12253member of the given bitset.
12254
Sean Silvab084af42012-12-07 10:36:55 +000012255'``llvm.donothing``' Intrinsic
12256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12257
12258Syntax:
12259"""""""
12260
12261::
12262
12263 declare void @llvm.donothing() nounwind readnone
12264
12265Overview:
12266"""""""""
12267
Juergen Ributzkac9161192014-10-23 22:36:13 +000012268The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12269two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12270with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012271
12272Arguments:
12273""""""""""
12274
12275None.
12276
12277Semantics:
12278""""""""""
12279
12280This intrinsic does nothing, and it's removed by optimizers and ignored
12281by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012282
12283Stack Map Intrinsics
12284--------------------
12285
12286LLVM provides experimental intrinsics to support runtime patching
12287mechanisms commonly desired in dynamic language JITs. These intrinsics
12288are described in :doc:`StackMaps`.