blob: 72c0a319dfab26546f6ea55987aa405bbb772ccd [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000430"``cc <n>``" - Numbered convention
431 Any calling convention may be specified by number, allowing
432 target-specific calling conventions to be used. Target specific
433 calling conventions start at 64.
434
435More calling conventions can be added/defined on an as-needed basis, to
436support Pascal conventions or any other well-known target-independent
437convention.
438
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000439.. _visibilitystyles:
440
Sean Silvab084af42012-12-07 10:36:55 +0000441Visibility Styles
442-----------------
443
444All Global Variables and Functions have one of the following visibility
445styles:
446
447"``default``" - Default style
448 On targets that use the ELF object file format, default visibility
449 means that the declaration is visible to other modules and, in
450 shared libraries, means that the declared entity may be overridden.
451 On Darwin, default visibility means that the declaration is visible
452 to other modules. Default visibility corresponds to "external
453 linkage" in the language.
454"``hidden``" - Hidden style
455 Two declarations of an object with hidden visibility refer to the
456 same object if they are in the same shared object. Usually, hidden
457 visibility indicates that the symbol will not be placed into the
458 dynamic symbol table, so no other module (executable or shared
459 library) can reference it directly.
460"``protected``" - Protected style
461 On ELF, protected visibility indicates that the symbol will be
462 placed in the dynamic symbol table, but that references within the
463 defining module will bind to the local symbol. That is, the symbol
464 cannot be overridden by another module.
465
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000466A symbol with ``internal`` or ``private`` linkage must have ``default``
467visibility.
468
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000469.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000470
Nico Rieck7157bb72014-01-14 15:22:47 +0000471DLL Storage Classes
472-------------------
473
474All Global Variables, Functions and Aliases can have one of the following
475DLL storage class:
476
477``dllimport``
478 "``dllimport``" causes the compiler to reference a function or variable via
479 a global pointer to a pointer that is set up by the DLL exporting the
480 symbol. On Microsoft Windows targets, the pointer name is formed by
481 combining ``__imp_`` and the function or variable name.
482``dllexport``
483 "``dllexport``" causes the compiler to provide a global pointer to a pointer
484 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
485 Microsoft Windows targets, the pointer name is formed by combining
486 ``__imp_`` and the function or variable name. Since this storage class
487 exists for defining a dll interface, the compiler, assembler and linker know
488 it is externally referenced and must refrain from deleting the symbol.
489
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000490.. _tls_model:
491
492Thread Local Storage Models
493---------------------------
494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507If no explicit model is given, the "general dynamic" model is used.
508
509The models correspond to the ELF TLS models; see `ELF Handling For
510Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
511more information on under which circumstances the different models may
512be used. The target may choose a different TLS model if the specified
513model is not supported, or if a better choice of model can be made.
514
Sean Silva706fba52015-08-06 22:56:24 +0000515A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000516the alias is accessed. It will not have any effect in the aliasee.
517
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000518For platforms without linker support of ELF TLS model, the -femulated-tls
519flag can be used to generate GCC compatible emulated TLS code.
520
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000521.. _namedtypes:
522
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000523Structure Types
524---------------
Sean Silvab084af42012-12-07 10:36:55 +0000525
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000526LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000527types <t_struct>`. Literal types are uniqued structurally, but identified types
528are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000529to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530
Sean Silva706fba52015-08-06 22:56:24 +0000531An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000532
533.. code-block:: llvm
534
535 %mytype = type { %mytype*, i32 }
536
Sean Silvaa1190322015-08-06 22:56:48 +0000537Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000538literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000539
540.. _globalvars:
541
542Global Variables
543----------------
544
545Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000546instead of run-time.
547
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000548Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000549
550Global variables in other translation units can also be declared, in which
551case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000552
Bob Wilson85b24f22014-06-12 20:40:33 +0000553Either global variable definitions or declarations may have an explicit section
554to be placed in and may have an optional explicit alignment specified.
555
Michael Gottesman006039c2013-01-31 05:48:48 +0000556A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000557the contents of the variable will **never** be modified (enabling better
558optimization, allowing the global data to be placed in the read-only
559section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000560initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000561variable.
562
563LLVM explicitly allows *declarations* of global variables to be marked
564constant, even if the final definition of the global is not. This
565capability can be used to enable slightly better optimization of the
566program, but requires the language definition to guarantee that
567optimizations based on the 'constantness' are valid for the translation
568units that do not include the definition.
569
570As SSA values, global variables define pointer values that are in scope
571(i.e. they dominate) all basic blocks in the program. Global variables
572always define a pointer to their "content" type because they describe a
573region of memory, and all memory objects in LLVM are accessed through
574pointers.
575
576Global variables can be marked with ``unnamed_addr`` which indicates
577that the address is not significant, only the content. Constants marked
578like this can be merged with other constants if they have the same
579initializer. Note that a constant with significant address *can* be
580merged with a ``unnamed_addr`` constant, the result being a constant
581whose address is significant.
582
583A global variable may be declared to reside in a target-specific
584numbered address space. For targets that support them, address spaces
585may affect how optimizations are performed and/or what target
586instructions are used to access the variable. The default address space
587is zero. The address space qualifier must precede any other attributes.
588
589LLVM allows an explicit section to be specified for globals. If the
590target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000591Additionally, the global can placed in a comdat if the target has the necessary
592support.
Sean Silvab084af42012-12-07 10:36:55 +0000593
Michael Gottesmane743a302013-02-04 03:22:00 +0000594By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000595variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000596initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000597true even for variables potentially accessible from outside the
598module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000599``@llvm.used`` or dllexported variables. This assumption may be suppressed
600by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602An explicit alignment may be specified for a global, which must be a
603power of 2. If not present, or if the alignment is set to zero, the
604alignment of the global is set by the target to whatever it feels
605convenient. If an explicit alignment is specified, the global is forced
606to have exactly that alignment. Targets and optimizers are not allowed
607to over-align the global if the global has an assigned section. In this
608case, the extra alignment could be observable: for example, code could
609assume that the globals are densely packed in their section and try to
610iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000611iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000612
Nico Rieck7157bb72014-01-14 15:22:47 +0000613Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
614
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000615Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000616:ref:`Thread Local Storage Model <tls_model>`.
617
Nico Rieck7157bb72014-01-14 15:22:47 +0000618Syntax::
619
620 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000621 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000622 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000623 [, section "name"] [, comdat [($name)]]
624 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000625
Sean Silvab084af42012-12-07 10:36:55 +0000626For example, the following defines a global in a numbered address space
627with an initializer, section, and alignment:
628
629.. code-block:: llvm
630
631 @G = addrspace(5) constant float 1.0, section "foo", align 4
632
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000633The following example just declares a global variable
634
635.. code-block:: llvm
636
637 @G = external global i32
638
Sean Silvab084af42012-12-07 10:36:55 +0000639The following example defines a thread-local global with the
640``initialexec`` TLS model:
641
642.. code-block:: llvm
643
644 @G = thread_local(initialexec) global i32 0, align 4
645
646.. _functionstructure:
647
648Functions
649---------
650
651LLVM function definitions consist of the "``define``" keyword, an
652optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000653style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
654an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000655an optional ``unnamed_addr`` attribute, a return type, an optional
656:ref:`parameter attribute <paramattrs>` for the return type, a function
657name, a (possibly empty) argument list (each with optional :ref:`parameter
658attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000659an optional section, an optional alignment,
660an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000661an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000662an optional :ref:`prologue <prologuedata>`,
663an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000664an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000665an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667LLVM function declarations consist of the "``declare``" keyword, an
668optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000669style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
670an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000671an optional ``unnamed_addr`` attribute, a return type, an optional
672:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000673name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000674:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
675and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000676
Bill Wendling6822ecb2013-10-27 05:09:12 +0000677A function definition contains a list of basic blocks, forming the CFG (Control
678Flow Graph) for the function. Each basic block may optionally start with a label
679(giving the basic block a symbol table entry), contains a list of instructions,
680and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
681function return). If an explicit label is not provided, a block is assigned an
682implicit numbered label, using the next value from the same counter as used for
683unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
684entry block does not have an explicit label, it will be assigned label "%0",
685then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000686
687The first basic block in a function is special in two ways: it is
688immediately executed on entrance to the function, and it is not allowed
689to have predecessor basic blocks (i.e. there can not be any branches to
690the entry block of a function). Because the block can have no
691predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
692
693LLVM allows an explicit section to be specified for functions. If the
694target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000695Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000696
697An explicit alignment may be specified for a function. If not present,
698or if the alignment is set to zero, the alignment of the function is set
699by the target to whatever it feels convenient. If an explicit alignment
700is specified, the function is forced to have at least that much
701alignment. All alignments must be a power of 2.
702
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000703If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000704be significant and two identical functions can be merged.
705
706Syntax::
707
Nico Rieck7157bb72014-01-14 15:22:47 +0000708 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000709 [cconv] [ret attrs]
710 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000711 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000712 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000713 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000714
Sean Silva706fba52015-08-06 22:56:24 +0000715The argument list is a comma separated sequence of arguments where each
716argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000717
718Syntax::
719
720 <type> [parameter Attrs] [name]
721
722
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000723.. _langref_aliases:
724
Sean Silvab084af42012-12-07 10:36:55 +0000725Aliases
726-------
727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Aliases, unlike function or variables, don't create any new data. They
729are just a new symbol and metadata for an existing position.
730
731Aliases have a name and an aliasee that is either a global value or a
732constant expression.
733
Nico Rieck7157bb72014-01-14 15:22:47 +0000734Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000735:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
736<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000737
738Syntax::
739
David Blaikie196582e2015-10-22 01:17:29 +0000740 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000741
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000742The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000743``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000744might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000745
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000746Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000747the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
748to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000749
Rafael Espindola64c1e182014-06-03 02:41:57 +0000750Since aliases are only a second name, some restrictions apply, of which
751some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000752
Rafael Espindola64c1e182014-06-03 02:41:57 +0000753* The expression defining the aliasee must be computable at assembly
754 time. Since it is just a name, no relocations can be used.
755
756* No alias in the expression can be weak as the possibility of the
757 intermediate alias being overridden cannot be represented in an
758 object file.
759
760* No global value in the expression can be a declaration, since that
761 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000762
David Majnemerdad0a642014-06-27 18:19:56 +0000763.. _langref_comdats:
764
765Comdats
766-------
767
768Comdat IR provides access to COFF and ELF object file COMDAT functionality.
769
Sean Silvaa1190322015-08-06 22:56:48 +0000770Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000771specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000772that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000773aliasee computes to, if any.
774
775Comdats have a selection kind to provide input on how the linker should
776choose between keys in two different object files.
777
778Syntax::
779
780 $<Name> = comdat SelectionKind
781
782The selection kind must be one of the following:
783
784``any``
785 The linker may choose any COMDAT key, the choice is arbitrary.
786``exactmatch``
787 The linker may choose any COMDAT key but the sections must contain the
788 same data.
789``largest``
790 The linker will choose the section containing the largest COMDAT key.
791``noduplicates``
792 The linker requires that only section with this COMDAT key exist.
793``samesize``
794 The linker may choose any COMDAT key but the sections must contain the
795 same amount of data.
796
797Note that the Mach-O platform doesn't support COMDATs and ELF only supports
798``any`` as a selection kind.
799
800Here is an example of a COMDAT group where a function will only be selected if
801the COMDAT key's section is the largest:
802
803.. code-block:: llvm
804
805 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000806 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000807
Rafael Espindola83a362c2015-01-06 22:55:16 +0000808 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000809 ret void
810 }
811
Rafael Espindola83a362c2015-01-06 22:55:16 +0000812As a syntactic sugar the ``$name`` can be omitted if the name is the same as
813the global name:
814
815.. code-block:: llvm
816
817 $foo = comdat any
818 @foo = global i32 2, comdat
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821In a COFF object file, this will create a COMDAT section with selection kind
822``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
823and another COMDAT section with selection kind
824``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000825section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000826
827There are some restrictions on the properties of the global object.
828It, or an alias to it, must have the same name as the COMDAT group when
829targeting COFF.
830The contents and size of this object may be used during link-time to determine
831which COMDAT groups get selected depending on the selection kind.
832Because the name of the object must match the name of the COMDAT group, the
833linkage of the global object must not be local; local symbols can get renamed
834if a collision occurs in the symbol table.
835
836The combined use of COMDATS and section attributes may yield surprising results.
837For example:
838
839.. code-block:: llvm
840
841 $foo = comdat any
842 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000843 @g1 = global i32 42, section "sec", comdat($foo)
844 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000845
846From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000847with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000848COMDAT groups and COMDATs, at the object file level, are represented by
849sections.
850
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000851Note that certain IR constructs like global variables and functions may
852create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000853COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000854in individual sections (e.g. when `-data-sections` or `-function-sections`
855is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000856
Sean Silvab084af42012-12-07 10:36:55 +0000857.. _namedmetadatastructure:
858
859Named Metadata
860--------------
861
862Named metadata is a collection of metadata. :ref:`Metadata
863nodes <metadata>` (but not metadata strings) are the only valid
864operands for a named metadata.
865
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000866#. Named metadata are represented as a string of characters with the
867 metadata prefix. The rules for metadata names are the same as for
868 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
869 are still valid, which allows any character to be part of a name.
870
Sean Silvab084af42012-12-07 10:36:55 +0000871Syntax::
872
873 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000874 !0 = !{!"zero"}
875 !1 = !{!"one"}
876 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000877 ; A named metadata.
878 !name = !{!0, !1, !2}
879
880.. _paramattrs:
881
882Parameter Attributes
883--------------------
884
885The return type and each parameter of a function type may have a set of
886*parameter attributes* associated with them. Parameter attributes are
887used to communicate additional information about the result or
888parameters of a function. Parameter attributes are considered to be part
889of the function, not of the function type, so functions with different
890parameter attributes can have the same function type.
891
892Parameter attributes are simple keywords that follow the type specified.
893If multiple parameter attributes are needed, they are space separated.
894For example:
895
896.. code-block:: llvm
897
898 declare i32 @printf(i8* noalias nocapture, ...)
899 declare i32 @atoi(i8 zeroext)
900 declare signext i8 @returns_signed_char()
901
902Note that any attributes for the function result (``nounwind``,
903``readonly``) come immediately after the argument list.
904
905Currently, only the following parameter attributes are defined:
906
907``zeroext``
908 This indicates to the code generator that the parameter or return
909 value should be zero-extended to the extent required by the target's
910 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
911 the caller (for a parameter) or the callee (for a return value).
912``signext``
913 This indicates to the code generator that the parameter or return
914 value should be sign-extended to the extent required by the target's
915 ABI (which is usually 32-bits) by the caller (for a parameter) or
916 the callee (for a return value).
917``inreg``
918 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000919 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000920 a function call or return (usually, by putting it in a register as
921 opposed to memory, though some targets use it to distinguish between
922 two different kinds of registers). Use of this attribute is
923 target-specific.
924``byval``
925 This indicates that the pointer parameter should really be passed by
926 value to the function. The attribute implies that a hidden copy of
927 the pointee is made between the caller and the callee, so the callee
928 is unable to modify the value in the caller. This attribute is only
929 valid on LLVM pointer arguments. It is generally used to pass
930 structs and arrays by value, but is also valid on pointers to
931 scalars. The copy is considered to belong to the caller not the
932 callee (for example, ``readonly`` functions should not write to
933 ``byval`` parameters). This is not a valid attribute for return
934 values.
935
936 The byval attribute also supports specifying an alignment with the
937 align attribute. It indicates the alignment of the stack slot to
938 form and the known alignment of the pointer specified to the call
939 site. If the alignment is not specified, then the code generator
940 makes a target-specific assumption.
941
Reid Klecknera534a382013-12-19 02:14:12 +0000942.. _attr_inalloca:
943
944``inalloca``
945
Reid Kleckner60d3a832014-01-16 22:59:24 +0000946 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000947 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000948 be a pointer to stack memory produced by an ``alloca`` instruction.
949 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000950 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000951 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000952
Reid Kleckner436c42e2014-01-17 23:58:17 +0000953 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000954 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000955 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000956 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000957 ``inalloca`` attribute also disables LLVM's implicit lowering of
958 large aggregate return values, which means that frontend authors
959 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000960
Reid Kleckner60d3a832014-01-16 22:59:24 +0000961 When the call site is reached, the argument allocation must have
962 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000963 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000964 space after an argument allocation and before its call site, but it
965 must be cleared off with :ref:`llvm.stackrestore
966 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000967
968 See :doc:`InAlloca` for more information on how to use this
969 attribute.
970
Sean Silvab084af42012-12-07 10:36:55 +0000971``sret``
972 This indicates that the pointer parameter specifies the address of a
973 structure that is the return value of the function in the source
974 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000975 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000976 not to trap and to be properly aligned. This may only be applied to
977 the first parameter. This is not a valid attribute for return
978 values.
Sean Silva1703e702014-04-08 21:06:22 +0000979
Hal Finkelccc70902014-07-22 16:58:55 +0000980``align <n>``
981 This indicates that the pointer value may be assumed by the optimizer to
982 have the specified alignment.
983
984 Note that this attribute has additional semantics when combined with the
985 ``byval`` attribute.
986
Sean Silva1703e702014-04-08 21:06:22 +0000987.. _noalias:
988
Sean Silvab084af42012-12-07 10:36:55 +0000989``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000990 This indicates that objects accessed via pointer values
991 :ref:`based <pointeraliasing>` on the argument or return value are not also
992 accessed, during the execution of the function, via pointer values not
993 *based* on the argument or return value. The attribute on a return value
994 also has additional semantics described below. The caller shares the
995 responsibility with the callee for ensuring that these requirements are met.
996 For further details, please see the discussion of the NoAlias response in
997 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000998
999 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001000 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001001
1002 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001003 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1004 attribute on return values are stronger than the semantics of the attribute
1005 when used on function arguments. On function return values, the ``noalias``
1006 attribute indicates that the function acts like a system memory allocation
1007 function, returning a pointer to allocated storage disjoint from the
1008 storage for any other object accessible to the caller.
1009
Sean Silvab084af42012-12-07 10:36:55 +00001010``nocapture``
1011 This indicates that the callee does not make any copies of the
1012 pointer that outlive the callee itself. This is not a valid
1013 attribute for return values.
1014
1015.. _nest:
1016
1017``nest``
1018 This indicates that the pointer parameter can be excised using the
1019 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001020 attribute for return values and can only be applied to one parameter.
1021
1022``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001023 This indicates that the function always returns the argument as its return
1024 value. This is an optimization hint to the code generator when generating
1025 the caller, allowing tail call optimization and omission of register saves
1026 and restores in some cases; it is not checked or enforced when generating
1027 the callee. The parameter and the function return type must be valid
1028 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1029 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001030
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001031``nonnull``
1032 This indicates that the parameter or return pointer is not null. This
1033 attribute may only be applied to pointer typed parameters. This is not
1034 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001035 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001036 is non-null.
1037
Hal Finkelb0407ba2014-07-18 15:51:28 +00001038``dereferenceable(<n>)``
1039 This indicates that the parameter or return pointer is dereferenceable. This
1040 attribute may only be applied to pointer typed parameters. A pointer that
1041 is dereferenceable can be loaded from speculatively without a risk of
1042 trapping. The number of bytes known to be dereferenceable must be provided
1043 in parentheses. It is legal for the number of bytes to be less than the
1044 size of the pointee type. The ``nonnull`` attribute does not imply
1045 dereferenceability (consider a pointer to one element past the end of an
1046 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1047 ``addrspace(0)`` (which is the default address space).
1048
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001049``dereferenceable_or_null(<n>)``
1050 This indicates that the parameter or return value isn't both
1051 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001052 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001053 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1054 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1055 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1056 and in other address spaces ``dereferenceable_or_null(<n>)``
1057 implies that a pointer is at least one of ``dereferenceable(<n>)``
1058 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001059 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001060 pointer typed parameters.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062.. _gc:
1063
Philip Reamesf80bbff2015-02-25 23:45:20 +00001064Garbage Collector Strategy Names
1065--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001066
Philip Reamesf80bbff2015-02-25 23:45:20 +00001067Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001068string:
1069
1070.. code-block:: llvm
1071
1072 define void @f() gc "name" { ... }
1073
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001074The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001075<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001076strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001077named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001078garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001079which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001080
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001081.. _prefixdata:
1082
1083Prefix Data
1084-----------
1085
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086Prefix data is data associated with a function which the code
1087generator will emit immediately before the function's entrypoint.
1088The purpose of this feature is to allow frontends to associate
1089language-specific runtime metadata with specific functions and make it
1090available through the function pointer while still allowing the
1091function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001092
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001093To access the data for a given function, a program may bitcast the
1094function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001095index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096the prefix data. For instance, take the example of a function annotated
1097with a single ``i32``,
1098
1099.. code-block:: llvm
1100
1101 define void @f() prefix i32 123 { ... }
1102
1103The prefix data can be referenced as,
1104
1105.. code-block:: llvm
1106
David Blaikie16a97eb2015-03-04 22:02:58 +00001107 %0 = bitcast void* () @f to i32*
1108 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001109 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001110
1111Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001112of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001113beginning of the prefix data is aligned. This means that if the size
1114of the prefix data is not a multiple of the alignment size, the
1115function's entrypoint will not be aligned. If alignment of the
1116function's entrypoint is desired, padding must be added to the prefix
1117data.
1118
Sean Silvaa1190322015-08-06 22:56:48 +00001119A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001120to the ``available_externally`` linkage in that the data may be used by the
1121optimizers but will not be emitted in the object file.
1122
1123.. _prologuedata:
1124
1125Prologue Data
1126-------------
1127
1128The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1129be inserted prior to the function body. This can be used for enabling
1130function hot-patching and instrumentation.
1131
1132To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001133have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134bytes which decode to a sequence of machine instructions, valid for the
1135module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001136the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001138definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001140
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001141A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001142which encodes the ``nop`` instruction:
1143
1144.. code-block:: llvm
1145
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001146 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001147
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001148Generally prologue data can be formed by encoding a relative branch instruction
1149which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001150x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1151
1152.. code-block:: llvm
1153
1154 %0 = type <{ i8, i8, i8* }>
1155
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001157
Sean Silvaa1190322015-08-06 22:56:48 +00001158A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001159to the ``available_externally`` linkage in that the data may be used by the
1160optimizers but will not be emitted in the object file.
1161
David Majnemer7fddecc2015-06-17 20:52:32 +00001162.. _personalityfn:
1163
1164Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001165--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001166
1167The ``personality`` attribute permits functions to specify what function
1168to use for exception handling.
1169
Bill Wendling63b88192013-02-06 06:52:58 +00001170.. _attrgrp:
1171
1172Attribute Groups
1173----------------
1174
1175Attribute groups are groups of attributes that are referenced by objects within
1176the IR. They are important for keeping ``.ll`` files readable, because a lot of
1177functions will use the same set of attributes. In the degenerative case of a
1178``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1179group will capture the important command line flags used to build that file.
1180
1181An attribute group is a module-level object. To use an attribute group, an
1182object references the attribute group's ID (e.g. ``#37``). An object may refer
1183to more than one attribute group. In that situation, the attributes from the
1184different groups are merged.
1185
1186Here is an example of attribute groups for a function that should always be
1187inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1188
1189.. code-block:: llvm
1190
1191 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001192 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001193
1194 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001195 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001196
1197 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1198 define void @f() #0 #1 { ... }
1199
Sean Silvab084af42012-12-07 10:36:55 +00001200.. _fnattrs:
1201
1202Function Attributes
1203-------------------
1204
1205Function attributes are set to communicate additional information about
1206a function. Function attributes are considered to be part of the
1207function, not of the function type, so functions with different function
1208attributes can have the same function type.
1209
1210Function attributes are simple keywords that follow the type specified.
1211If multiple attributes are needed, they are space separated. For
1212example:
1213
1214.. code-block:: llvm
1215
1216 define void @f() noinline { ... }
1217 define void @f() alwaysinline { ... }
1218 define void @f() alwaysinline optsize { ... }
1219 define void @f() optsize { ... }
1220
Sean Silvab084af42012-12-07 10:36:55 +00001221``alignstack(<n>)``
1222 This attribute indicates that, when emitting the prologue and
1223 epilogue, the backend should forcibly align the stack pointer.
1224 Specify the desired alignment, which must be a power of two, in
1225 parentheses.
1226``alwaysinline``
1227 This attribute indicates that the inliner should attempt to inline
1228 this function into callers whenever possible, ignoring any active
1229 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001230``builtin``
1231 This indicates that the callee function at a call site should be
1232 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001233 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001234 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001235 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001236``cold``
1237 This attribute indicates that this function is rarely called. When
1238 computing edge weights, basic blocks post-dominated by a cold
1239 function call are also considered to be cold; and, thus, given low
1240 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001241``convergent``
1242 This attribute indicates that the callee is dependent on a convergent
1243 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001244 Transformations that are execution model agnostic may not make the execution
1245 of a convergent operation control dependent on any additional values.
Sean Silvab084af42012-12-07 10:36:55 +00001246``inlinehint``
1247 This attribute indicates that the source code contained a hint that
1248 inlining this function is desirable (such as the "inline" keyword in
1249 C/C++). It is just a hint; it imposes no requirements on the
1250 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001251``jumptable``
1252 This attribute indicates that the function should be added to a
1253 jump-instruction table at code-generation time, and that all address-taken
1254 references to this function should be replaced with a reference to the
1255 appropriate jump-instruction-table function pointer. Note that this creates
1256 a new pointer for the original function, which means that code that depends
1257 on function-pointer identity can break. So, any function annotated with
1258 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001259``minsize``
1260 This attribute suggests that optimization passes and code generator
1261 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001262 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001263 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001264``naked``
1265 This attribute disables prologue / epilogue emission for the
1266 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001267``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001268 This indicates that the callee function at a call site is not recognized as
1269 a built-in function. LLVM will retain the original call and not replace it
1270 with equivalent code based on the semantics of the built-in function, unless
1271 the call site uses the ``builtin`` attribute. This is valid at call sites
1272 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001273``noduplicate``
1274 This attribute indicates that calls to the function cannot be
1275 duplicated. A call to a ``noduplicate`` function may be moved
1276 within its parent function, but may not be duplicated within
1277 its parent function.
1278
1279 A function containing a ``noduplicate`` call may still
1280 be an inlining candidate, provided that the call is not
1281 duplicated by inlining. That implies that the function has
1282 internal linkage and only has one call site, so the original
1283 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001284``noimplicitfloat``
1285 This attributes disables implicit floating point instructions.
1286``noinline``
1287 This attribute indicates that the inliner should never inline this
1288 function in any situation. This attribute may not be used together
1289 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001290``nonlazybind``
1291 This attribute suppresses lazy symbol binding for the function. This
1292 may make calls to the function faster, at the cost of extra program
1293 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001294``noredzone``
1295 This attribute indicates that the code generator should not use a
1296 red zone, even if the target-specific ABI normally permits it.
1297``noreturn``
1298 This function attribute indicates that the function never returns
1299 normally. This produces undefined behavior at runtime if the
1300 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001301``norecurse``
1302 This function attribute indicates that the function does not call itself
1303 either directly or indirectly down any possible call path. This produces
1304 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001305``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001306 This function attribute indicates that the function never raises an
1307 exception. If the function does raise an exception, its runtime
1308 behavior is undefined. However, functions marked nounwind may still
1309 trap or generate asynchronous exceptions. Exception handling schemes
1310 that are recognized by LLVM to handle asynchronous exceptions, such
1311 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001312``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001313 This function attribute indicates that most optimization passes will skip
1314 this function, with the exception of interprocedural optimization passes.
1315 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001316 This attribute cannot be used together with the ``alwaysinline``
1317 attribute; this attribute is also incompatible
1318 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001319
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001320 This attribute requires the ``noinline`` attribute to be specified on
1321 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001322 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001323 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001324``optsize``
1325 This attribute suggests that optimization passes and code generator
1326 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001327 and otherwise do optimizations specifically to reduce code size as
1328 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001329``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001330 On a function, this attribute indicates that the function computes its
1331 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001332 without dereferencing any pointer arguments or otherwise accessing
1333 any mutable state (e.g. memory, control registers, etc) visible to
1334 caller functions. It does not write through any pointer arguments
1335 (including ``byval`` arguments) and never changes any state visible
1336 to callers. This means that it cannot unwind exceptions by calling
1337 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001338
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001339 On an argument, this attribute indicates that the function does not
1340 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001341 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001342``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001343 On a function, this attribute indicates that the function does not write
1344 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001345 modify any state (e.g. memory, control registers, etc) visible to
1346 caller functions. It may dereference pointer arguments and read
1347 state that may be set in the caller. A readonly function always
1348 returns the same value (or unwinds an exception identically) when
1349 called with the same set of arguments and global state. It cannot
1350 unwind an exception by calling the ``C++`` exception throwing
1351 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001352
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001353 On an argument, this attribute indicates that the function does not write
1354 through this pointer argument, even though it may write to the memory that
1355 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001356``argmemonly``
1357 This attribute indicates that the only memory accesses inside function are
1358 loads and stores from objects pointed to by its pointer-typed arguments,
1359 with arbitrary offsets. Or in other words, all memory operations in the
1360 function can refer to memory only using pointers based on its function
1361 arguments.
1362 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1363 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001364``returns_twice``
1365 This attribute indicates that this function can return twice. The C
1366 ``setjmp`` is an example of such a function. The compiler disables
1367 some optimizations (like tail calls) in the caller of these
1368 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001369``safestack``
1370 This attribute indicates that
1371 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1372 protection is enabled for this function.
1373
1374 If a function that has a ``safestack`` attribute is inlined into a
1375 function that doesn't have a ``safestack`` attribute or which has an
1376 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1377 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001378``sanitize_address``
1379 This attribute indicates that AddressSanitizer checks
1380 (dynamic address safety analysis) are enabled for this function.
1381``sanitize_memory``
1382 This attribute indicates that MemorySanitizer checks (dynamic detection
1383 of accesses to uninitialized memory) are enabled for this function.
1384``sanitize_thread``
1385 This attribute indicates that ThreadSanitizer checks
1386 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001387``ssp``
1388 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001389 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001390 placed on the stack before the local variables that's checked upon
1391 return from the function to see if it has been overwritten. A
1392 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001393 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001394
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001395 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1396 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1397 - Calls to alloca() with variable sizes or constant sizes greater than
1398 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001399
Josh Magee24c7f062014-02-01 01:36:16 +00001400 Variables that are identified as requiring a protector will be arranged
1401 on the stack such that they are adjacent to the stack protector guard.
1402
Sean Silvab084af42012-12-07 10:36:55 +00001403 If a function that has an ``ssp`` attribute is inlined into a
1404 function that doesn't have an ``ssp`` attribute, then the resulting
1405 function will have an ``ssp`` attribute.
1406``sspreq``
1407 This attribute indicates that the function should *always* emit a
1408 stack smashing protector. This overrides the ``ssp`` function
1409 attribute.
1410
Josh Magee24c7f062014-02-01 01:36:16 +00001411 Variables that are identified as requiring a protector will be arranged
1412 on the stack such that they are adjacent to the stack protector guard.
1413 The specific layout rules are:
1414
1415 #. Large arrays and structures containing large arrays
1416 (``>= ssp-buffer-size``) are closest to the stack protector.
1417 #. Small arrays and structures containing small arrays
1418 (``< ssp-buffer-size``) are 2nd closest to the protector.
1419 #. Variables that have had their address taken are 3rd closest to the
1420 protector.
1421
Sean Silvab084af42012-12-07 10:36:55 +00001422 If a function that has an ``sspreq`` attribute is inlined into a
1423 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001424 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1425 an ``sspreq`` attribute.
1426``sspstrong``
1427 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001428 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001429 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001430 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001431
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001432 - Arrays of any size and type
1433 - Aggregates containing an array of any size and type.
1434 - Calls to alloca().
1435 - Local variables that have had their address taken.
1436
Josh Magee24c7f062014-02-01 01:36:16 +00001437 Variables that are identified as requiring a protector will be arranged
1438 on the stack such that they are adjacent to the stack protector guard.
1439 The specific layout rules are:
1440
1441 #. Large arrays and structures containing large arrays
1442 (``>= ssp-buffer-size``) are closest to the stack protector.
1443 #. Small arrays and structures containing small arrays
1444 (``< ssp-buffer-size``) are 2nd closest to the protector.
1445 #. Variables that have had their address taken are 3rd closest to the
1446 protector.
1447
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001448 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001449
1450 If a function that has an ``sspstrong`` attribute is inlined into a
1451 function that doesn't have an ``sspstrong`` attribute, then the
1452 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001453``"thunk"``
1454 This attribute indicates that the function will delegate to some other
1455 function with a tail call. The prototype of a thunk should not be used for
1456 optimization purposes. The caller is expected to cast the thunk prototype to
1457 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001458``uwtable``
1459 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001460 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001461 show that no exceptions passes by it. This is normally the case for
1462 the ELF x86-64 abi, but it can be disabled for some compilation
1463 units.
Sean Silvab084af42012-12-07 10:36:55 +00001464
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001465
1466.. _opbundles:
1467
1468Operand Bundles
1469---------------
1470
1471Note: operand bundles are a work in progress, and they should be
1472considered experimental at this time.
1473
1474Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001475with certain LLVM instructions (currently only ``call`` s and
1476``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001477incorrect and will change program semantics.
1478
1479Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001480
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001481 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001482 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1483 bundle operand ::= SSA value
1484 tag ::= string constant
1485
1486Operand bundles are **not** part of a function's signature, and a
1487given function may be called from multiple places with different kinds
1488of operand bundles. This reflects the fact that the operand bundles
1489are conceptually a part of the ``call`` (or ``invoke``), not the
1490callee being dispatched to.
1491
1492Operand bundles are a generic mechanism intended to support
1493runtime-introspection-like functionality for managed languages. While
1494the exact semantics of an operand bundle depend on the bundle tag,
1495there are certain limitations to how much the presence of an operand
1496bundle can influence the semantics of a program. These restrictions
1497are described as the semantics of an "unknown" operand bundle. As
1498long as the behavior of an operand bundle is describable within these
1499restrictions, LLVM does not need to have special knowledge of the
1500operand bundle to not miscompile programs containing it.
1501
David Majnemer34cacb42015-10-22 01:46:38 +00001502- The bundle operands for an unknown operand bundle escape in unknown
1503 ways before control is transferred to the callee or invokee.
1504- Calls and invokes with operand bundles have unknown read / write
1505 effect on the heap on entry and exit (even if the call target is
Sanjoy Das98a341b2015-10-22 03:12:22 +00001506 ``readnone`` or ``readonly``), unless they're overriden with
1507 callsite specific attributes.
1508- An operand bundle at a call site cannot change the implementation
1509 of the called function. Inter-procedural optimizations work as
1510 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001511
Sanjoy Dascdafd842015-11-11 21:38:02 +00001512More specific types of operand bundles are described below.
1513
1514Deoptimization Operand Bundles
1515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1516
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001517Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001518operand bundle tag. These operand bundles represent an alternate
1519"safe" continuation for the call site they're attached to, and can be
1520used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001521specified call site. There can be at most one ``"deopt"`` operand
1522bundle attached to a call site. Exact details of deoptimization is
1523out of scope for the language reference, but it usually involves
1524rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001525
1526From the compiler's perspective, deoptimization operand bundles make
1527the call sites they're attached to at least ``readonly``. They read
1528through all of their pointer typed operands (even if they're not
1529otherwise escaped) and the entire visible heap. Deoptimization
1530operand bundles do not capture their operands except during
1531deoptimization, in which case control will not be returned to the
1532compiled frame.
1533
Sanjoy Das2d161452015-11-18 06:23:38 +00001534The inliner knows how to inline through calls that have deoptimization
1535operand bundles. Just like inlining through a normal call site
1536involves composing the normal and exceptional continuations, inlining
1537through a call site with a deoptimization operand bundle needs to
1538appropriately compose the "safe" deoptimization continuation. The
1539inliner does this by prepending the parent's deoptimization
1540continuation to every deoptimization continuation in the inlined body.
1541E.g. inlining ``@f`` into ``@g`` in the following example
1542
1543.. code-block:: llvm
1544
1545 define void @f() {
1546 call void @x() ;; no deopt state
1547 call void @y() [ "deopt"(i32 10) ]
1548 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1549 ret void
1550 }
1551
1552 define void @g() {
1553 call void @f() [ "deopt"(i32 20) ]
1554 ret void
1555 }
1556
1557will result in
1558
1559.. code-block:: llvm
1560
1561 define void @g() {
1562 call void @x() ;; still no deopt state
1563 call void @y() [ "deopt"(i32 20, i32 10) ]
1564 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1565 ret void
1566 }
1567
1568It is the frontend's responsibility to structure or encode the
1569deoptimization state in a way that syntactically prepending the
1570caller's deoptimization state to the callee's deoptimization state is
1571semantically equivalent to composing the caller's deoptimization
1572continuation after the callee's deoptimization continuation.
1573
David Majnemer3bb88c02015-12-15 21:27:27 +00001574Funclet Operand Bundles
1575^^^^^^^^^^^^^^^^^^^^^^^
1576
1577Funclet operand bundles are characterized by the ``"funclet"``
1578operand bundle tag. These operand bundles indicate that a call site
1579is within a particular funclet. There can be at most one
1580``"funclet"`` operand bundle attached to a call site and it must have
1581exactly one bundle operand.
1582
Sean Silvab084af42012-12-07 10:36:55 +00001583.. _moduleasm:
1584
1585Module-Level Inline Assembly
1586----------------------------
1587
1588Modules may contain "module-level inline asm" blocks, which corresponds
1589to the GCC "file scope inline asm" blocks. These blocks are internally
1590concatenated by LLVM and treated as a single unit, but may be separated
1591in the ``.ll`` file if desired. The syntax is very simple:
1592
1593.. code-block:: llvm
1594
1595 module asm "inline asm code goes here"
1596 module asm "more can go here"
1597
1598The strings can contain any character by escaping non-printable
1599characters. The escape sequence used is simply "\\xx" where "xx" is the
1600two digit hex code for the number.
1601
James Y Knightbc832ed2015-07-08 18:08:36 +00001602Note that the assembly string *must* be parseable by LLVM's integrated assembler
1603(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001604
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001605.. _langref_datalayout:
1606
Sean Silvab084af42012-12-07 10:36:55 +00001607Data Layout
1608-----------
1609
1610A module may specify a target specific data layout string that specifies
1611how data is to be laid out in memory. The syntax for the data layout is
1612simply:
1613
1614.. code-block:: llvm
1615
1616 target datalayout = "layout specification"
1617
1618The *layout specification* consists of a list of specifications
1619separated by the minus sign character ('-'). Each specification starts
1620with a letter and may include other information after the letter to
1621define some aspect of the data layout. The specifications accepted are
1622as follows:
1623
1624``E``
1625 Specifies that the target lays out data in big-endian form. That is,
1626 the bits with the most significance have the lowest address
1627 location.
1628``e``
1629 Specifies that the target lays out data in little-endian form. That
1630 is, the bits with the least significance have the lowest address
1631 location.
1632``S<size>``
1633 Specifies the natural alignment of the stack in bits. Alignment
1634 promotion of stack variables is limited to the natural stack
1635 alignment to avoid dynamic stack realignment. The stack alignment
1636 must be a multiple of 8-bits. If omitted, the natural stack
1637 alignment defaults to "unspecified", which does not prevent any
1638 alignment promotions.
1639``p[n]:<size>:<abi>:<pref>``
1640 This specifies the *size* of a pointer and its ``<abi>`` and
1641 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001642 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001643 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001644 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001645``i<size>:<abi>:<pref>``
1646 This specifies the alignment for an integer type of a given bit
1647 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1648``v<size>:<abi>:<pref>``
1649 This specifies the alignment for a vector type of a given bit
1650 ``<size>``.
1651``f<size>:<abi>:<pref>``
1652 This specifies the alignment for a floating point type of a given bit
1653 ``<size>``. Only values of ``<size>`` that are supported by the target
1654 will work. 32 (float) and 64 (double) are supported on all targets; 80
1655 or 128 (different flavors of long double) are also supported on some
1656 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001657``a:<abi>:<pref>``
1658 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001659``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001660 If present, specifies that llvm names are mangled in the output. The
1661 options are
1662
1663 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1664 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1665 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1666 symbols get a ``_`` prefix.
1667 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1668 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001669 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1670 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001671``n<size1>:<size2>:<size3>...``
1672 This specifies a set of native integer widths for the target CPU in
1673 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1674 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1675 this set are considered to support most general arithmetic operations
1676 efficiently.
1677
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001678On every specification that takes a ``<abi>:<pref>``, specifying the
1679``<pref>`` alignment is optional. If omitted, the preceding ``:``
1680should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1681
Sean Silvab084af42012-12-07 10:36:55 +00001682When constructing the data layout for a given target, LLVM starts with a
1683default set of specifications which are then (possibly) overridden by
1684the specifications in the ``datalayout`` keyword. The default
1685specifications are given in this list:
1686
1687- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001688- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1689- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1690 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001691- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001692- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1693- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1694- ``i16:16:16`` - i16 is 16-bit aligned
1695- ``i32:32:32`` - i32 is 32-bit aligned
1696- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1697 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001698- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001699- ``f32:32:32`` - float is 32-bit aligned
1700- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001701- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001702- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1703- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001704- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001705
1706When LLVM is determining the alignment for a given type, it uses the
1707following rules:
1708
1709#. If the type sought is an exact match for one of the specifications,
1710 that specification is used.
1711#. If no match is found, and the type sought is an integer type, then
1712 the smallest integer type that is larger than the bitwidth of the
1713 sought type is used. If none of the specifications are larger than
1714 the bitwidth then the largest integer type is used. For example,
1715 given the default specifications above, the i7 type will use the
1716 alignment of i8 (next largest) while both i65 and i256 will use the
1717 alignment of i64 (largest specified).
1718#. If no match is found, and the type sought is a vector type, then the
1719 largest vector type that is smaller than the sought vector type will
1720 be used as a fall back. This happens because <128 x double> can be
1721 implemented in terms of 64 <2 x double>, for example.
1722
1723The function of the data layout string may not be what you expect.
1724Notably, this is not a specification from the frontend of what alignment
1725the code generator should use.
1726
1727Instead, if specified, the target data layout is required to match what
1728the ultimate *code generator* expects. This string is used by the
1729mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001730what the ultimate code generator uses. There is no way to generate IR
1731that does not embed this target-specific detail into the IR. If you
1732don't specify the string, the default specifications will be used to
1733generate a Data Layout and the optimization phases will operate
1734accordingly and introduce target specificity into the IR with respect to
1735these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001736
Bill Wendling5cc90842013-10-18 23:41:25 +00001737.. _langref_triple:
1738
1739Target Triple
1740-------------
1741
1742A module may specify a target triple string that describes the target
1743host. The syntax for the target triple is simply:
1744
1745.. code-block:: llvm
1746
1747 target triple = "x86_64-apple-macosx10.7.0"
1748
1749The *target triple* string consists of a series of identifiers delimited
1750by the minus sign character ('-'). The canonical forms are:
1751
1752::
1753
1754 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1755 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1756
1757This information is passed along to the backend so that it generates
1758code for the proper architecture. It's possible to override this on the
1759command line with the ``-mtriple`` command line option.
1760
Sean Silvab084af42012-12-07 10:36:55 +00001761.. _pointeraliasing:
1762
1763Pointer Aliasing Rules
1764----------------------
1765
1766Any memory access must be done through a pointer value associated with
1767an address range of the memory access, otherwise the behavior is
1768undefined. Pointer values are associated with address ranges according
1769to the following rules:
1770
1771- A pointer value is associated with the addresses associated with any
1772 value it is *based* on.
1773- An address of a global variable is associated with the address range
1774 of the variable's storage.
1775- The result value of an allocation instruction is associated with the
1776 address range of the allocated storage.
1777- A null pointer in the default address-space is associated with no
1778 address.
1779- An integer constant other than zero or a pointer value returned from
1780 a function not defined within LLVM may be associated with address
1781 ranges allocated through mechanisms other than those provided by
1782 LLVM. Such ranges shall not overlap with any ranges of addresses
1783 allocated by mechanisms provided by LLVM.
1784
1785A pointer value is *based* on another pointer value according to the
1786following rules:
1787
1788- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001789 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001790- The result value of a ``bitcast`` is *based* on the operand of the
1791 ``bitcast``.
1792- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1793 values that contribute (directly or indirectly) to the computation of
1794 the pointer's value.
1795- The "*based* on" relationship is transitive.
1796
1797Note that this definition of *"based"* is intentionally similar to the
1798definition of *"based"* in C99, though it is slightly weaker.
1799
1800LLVM IR does not associate types with memory. The result type of a
1801``load`` merely indicates the size and alignment of the memory from
1802which to load, as well as the interpretation of the value. The first
1803operand type of a ``store`` similarly only indicates the size and
1804alignment of the store.
1805
1806Consequently, type-based alias analysis, aka TBAA, aka
1807``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1808:ref:`Metadata <metadata>` may be used to encode additional information
1809which specialized optimization passes may use to implement type-based
1810alias analysis.
1811
1812.. _volatile:
1813
1814Volatile Memory Accesses
1815------------------------
1816
1817Certain memory accesses, such as :ref:`load <i_load>`'s,
1818:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1819marked ``volatile``. The optimizers must not change the number of
1820volatile operations or change their order of execution relative to other
1821volatile operations. The optimizers *may* change the order of volatile
1822operations relative to non-volatile operations. This is not Java's
1823"volatile" and has no cross-thread synchronization behavior.
1824
Andrew Trick89fc5a62013-01-30 21:19:35 +00001825IR-level volatile loads and stores cannot safely be optimized into
1826llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1827flagged volatile. Likewise, the backend should never split or merge
1828target-legal volatile load/store instructions.
1829
Andrew Trick7e6f9282013-01-31 00:49:39 +00001830.. admonition:: Rationale
1831
1832 Platforms may rely on volatile loads and stores of natively supported
1833 data width to be executed as single instruction. For example, in C
1834 this holds for an l-value of volatile primitive type with native
1835 hardware support, but not necessarily for aggregate types. The
1836 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001837 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001838 do not violate the frontend's contract with the language.
1839
Sean Silvab084af42012-12-07 10:36:55 +00001840.. _memmodel:
1841
1842Memory Model for Concurrent Operations
1843--------------------------------------
1844
1845The LLVM IR does not define any way to start parallel threads of
1846execution or to register signal handlers. Nonetheless, there are
1847platform-specific ways to create them, and we define LLVM IR's behavior
1848in their presence. This model is inspired by the C++0x memory model.
1849
1850For a more informal introduction to this model, see the :doc:`Atomics`.
1851
1852We define a *happens-before* partial order as the least partial order
1853that
1854
1855- Is a superset of single-thread program order, and
1856- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1857 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1858 techniques, like pthread locks, thread creation, thread joining,
1859 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1860 Constraints <ordering>`).
1861
1862Note that program order does not introduce *happens-before* edges
1863between a thread and signals executing inside that thread.
1864
1865Every (defined) read operation (load instructions, memcpy, atomic
1866loads/read-modify-writes, etc.) R reads a series of bytes written by
1867(defined) write operations (store instructions, atomic
1868stores/read-modify-writes, memcpy, etc.). For the purposes of this
1869section, initialized globals are considered to have a write of the
1870initializer which is atomic and happens before any other read or write
1871of the memory in question. For each byte of a read R, R\ :sub:`byte`
1872may see any write to the same byte, except:
1873
1874- If write\ :sub:`1` happens before write\ :sub:`2`, and
1875 write\ :sub:`2` happens before R\ :sub:`byte`, then
1876 R\ :sub:`byte` does not see write\ :sub:`1`.
1877- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1878 R\ :sub:`byte` does not see write\ :sub:`3`.
1879
1880Given that definition, R\ :sub:`byte` is defined as follows:
1881
1882- If R is volatile, the result is target-dependent. (Volatile is
1883 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001884 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001885 like normal memory. It does not generally provide cross-thread
1886 synchronization.)
1887- Otherwise, if there is no write to the same byte that happens before
1888 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1889- Otherwise, if R\ :sub:`byte` may see exactly one write,
1890 R\ :sub:`byte` returns the value written by that write.
1891- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1892 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1893 Memory Ordering Constraints <ordering>` section for additional
1894 constraints on how the choice is made.
1895- Otherwise R\ :sub:`byte` returns ``undef``.
1896
1897R returns the value composed of the series of bytes it read. This
1898implies that some bytes within the value may be ``undef`` **without**
1899the entire value being ``undef``. Note that this only defines the
1900semantics of the operation; it doesn't mean that targets will emit more
1901than one instruction to read the series of bytes.
1902
1903Note that in cases where none of the atomic intrinsics are used, this
1904model places only one restriction on IR transformations on top of what
1905is required for single-threaded execution: introducing a store to a byte
1906which might not otherwise be stored is not allowed in general.
1907(Specifically, in the case where another thread might write to and read
1908from an address, introducing a store can change a load that may see
1909exactly one write into a load that may see multiple writes.)
1910
1911.. _ordering:
1912
1913Atomic Memory Ordering Constraints
1914----------------------------------
1915
1916Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1917:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1918:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001919ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001920the same address they *synchronize with*. These semantics are borrowed
1921from Java and C++0x, but are somewhat more colloquial. If these
1922descriptions aren't precise enough, check those specs (see spec
1923references in the :doc:`atomics guide <Atomics>`).
1924:ref:`fence <i_fence>` instructions treat these orderings somewhat
1925differently since they don't take an address. See that instruction's
1926documentation for details.
1927
1928For a simpler introduction to the ordering constraints, see the
1929:doc:`Atomics`.
1930
1931``unordered``
1932 The set of values that can be read is governed by the happens-before
1933 partial order. A value cannot be read unless some operation wrote
1934 it. This is intended to provide a guarantee strong enough to model
1935 Java's non-volatile shared variables. This ordering cannot be
1936 specified for read-modify-write operations; it is not strong enough
1937 to make them atomic in any interesting way.
1938``monotonic``
1939 In addition to the guarantees of ``unordered``, there is a single
1940 total order for modifications by ``monotonic`` operations on each
1941 address. All modification orders must be compatible with the
1942 happens-before order. There is no guarantee that the modification
1943 orders can be combined to a global total order for the whole program
1944 (and this often will not be possible). The read in an atomic
1945 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1946 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1947 order immediately before the value it writes. If one atomic read
1948 happens before another atomic read of the same address, the later
1949 read must see the same value or a later value in the address's
1950 modification order. This disallows reordering of ``monotonic`` (or
1951 stronger) operations on the same address. If an address is written
1952 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1953 read that address repeatedly, the other threads must eventually see
1954 the write. This corresponds to the C++0x/C1x
1955 ``memory_order_relaxed``.
1956``acquire``
1957 In addition to the guarantees of ``monotonic``, a
1958 *synchronizes-with* edge may be formed with a ``release`` operation.
1959 This is intended to model C++'s ``memory_order_acquire``.
1960``release``
1961 In addition to the guarantees of ``monotonic``, if this operation
1962 writes a value which is subsequently read by an ``acquire``
1963 operation, it *synchronizes-with* that operation. (This isn't a
1964 complete description; see the C++0x definition of a release
1965 sequence.) This corresponds to the C++0x/C1x
1966 ``memory_order_release``.
1967``acq_rel`` (acquire+release)
1968 Acts as both an ``acquire`` and ``release`` operation on its
1969 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1970``seq_cst`` (sequentially consistent)
1971 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001972 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001973 writes), there is a global total order on all
1974 sequentially-consistent operations on all addresses, which is
1975 consistent with the *happens-before* partial order and with the
1976 modification orders of all the affected addresses. Each
1977 sequentially-consistent read sees the last preceding write to the
1978 same address in this global order. This corresponds to the C++0x/C1x
1979 ``memory_order_seq_cst`` and Java volatile.
1980
1981.. _singlethread:
1982
1983If an atomic operation is marked ``singlethread``, it only *synchronizes
1984with* or participates in modification and seq\_cst total orderings with
1985other operations running in the same thread (for example, in signal
1986handlers).
1987
1988.. _fastmath:
1989
1990Fast-Math Flags
1991---------------
1992
1993LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1994:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001995:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1996be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001997
1998``nnan``
1999 No NaNs - Allow optimizations to assume the arguments and result are not
2000 NaN. Such optimizations are required to retain defined behavior over
2001 NaNs, but the value of the result is undefined.
2002
2003``ninf``
2004 No Infs - Allow optimizations to assume the arguments and result are not
2005 +/-Inf. Such optimizations are required to retain defined behavior over
2006 +/-Inf, but the value of the result is undefined.
2007
2008``nsz``
2009 No Signed Zeros - Allow optimizations to treat the sign of a zero
2010 argument or result as insignificant.
2011
2012``arcp``
2013 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2014 argument rather than perform division.
2015
2016``fast``
2017 Fast - Allow algebraically equivalent transformations that may
2018 dramatically change results in floating point (e.g. reassociate). This
2019 flag implies all the others.
2020
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002021.. _uselistorder:
2022
2023Use-list Order Directives
2024-------------------------
2025
2026Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002027order to be recreated. ``<order-indexes>`` is a comma-separated list of
2028indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002029value's use-list is immediately sorted by these indexes.
2030
Sean Silvaa1190322015-08-06 22:56:48 +00002031Use-list directives may appear at function scope or global scope. They are not
2032instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002033function scope, they must appear after the terminator of the final basic block.
2034
2035If basic blocks have their address taken via ``blockaddress()`` expressions,
2036``uselistorder_bb`` can be used to reorder their use-lists from outside their
2037function's scope.
2038
2039:Syntax:
2040
2041::
2042
2043 uselistorder <ty> <value>, { <order-indexes> }
2044 uselistorder_bb @function, %block { <order-indexes> }
2045
2046:Examples:
2047
2048::
2049
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002050 define void @foo(i32 %arg1, i32 %arg2) {
2051 entry:
2052 ; ... instructions ...
2053 bb:
2054 ; ... instructions ...
2055
2056 ; At function scope.
2057 uselistorder i32 %arg1, { 1, 0, 2 }
2058 uselistorder label %bb, { 1, 0 }
2059 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002060
2061 ; At global scope.
2062 uselistorder i32* @global, { 1, 2, 0 }
2063 uselistorder i32 7, { 1, 0 }
2064 uselistorder i32 (i32) @bar, { 1, 0 }
2065 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2066
Sean Silvab084af42012-12-07 10:36:55 +00002067.. _typesystem:
2068
2069Type System
2070===========
2071
2072The LLVM type system is one of the most important features of the
2073intermediate representation. Being typed enables a number of
2074optimizations to be performed on the intermediate representation
2075directly, without having to do extra analyses on the side before the
2076transformation. A strong type system makes it easier to read the
2077generated code and enables novel analyses and transformations that are
2078not feasible to perform on normal three address code representations.
2079
Rafael Espindola08013342013-12-07 19:34:20 +00002080.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002081
Rafael Espindola08013342013-12-07 19:34:20 +00002082Void Type
2083---------
Sean Silvab084af42012-12-07 10:36:55 +00002084
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002085:Overview:
2086
Rafael Espindola08013342013-12-07 19:34:20 +00002087
2088The void type does not represent any value and has no size.
2089
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002090:Syntax:
2091
Rafael Espindola08013342013-12-07 19:34:20 +00002092
2093::
2094
2095 void
Sean Silvab084af42012-12-07 10:36:55 +00002096
2097
Rafael Espindola08013342013-12-07 19:34:20 +00002098.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002099
Rafael Espindola08013342013-12-07 19:34:20 +00002100Function Type
2101-------------
Sean Silvab084af42012-12-07 10:36:55 +00002102
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002103:Overview:
2104
Sean Silvab084af42012-12-07 10:36:55 +00002105
Rafael Espindola08013342013-12-07 19:34:20 +00002106The function type can be thought of as a function signature. It consists of a
2107return type and a list of formal parameter types. The return type of a function
2108type is a void type or first class type --- except for :ref:`label <t_label>`
2109and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002110
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002111:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002112
Rafael Espindola08013342013-12-07 19:34:20 +00002113::
Sean Silvab084af42012-12-07 10:36:55 +00002114
Rafael Espindola08013342013-12-07 19:34:20 +00002115 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002116
Rafael Espindola08013342013-12-07 19:34:20 +00002117...where '``<parameter list>``' is a comma-separated list of type
2118specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002119indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002120argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002121handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002122except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002123
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002124:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002125
Rafael Espindola08013342013-12-07 19:34:20 +00002126+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2127| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2128+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2129| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2130+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2131| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2132+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2133| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2134+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2135
2136.. _t_firstclass:
2137
2138First Class Types
2139-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002140
2141The :ref:`first class <t_firstclass>` types are perhaps the most important.
2142Values of these types are the only ones which can be produced by
2143instructions.
2144
Rafael Espindola08013342013-12-07 19:34:20 +00002145.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002146
Rafael Espindola08013342013-12-07 19:34:20 +00002147Single Value Types
2148^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002149
Rafael Espindola08013342013-12-07 19:34:20 +00002150These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002151
2152.. _t_integer:
2153
2154Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002155""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002156
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002157:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002158
2159The integer type is a very simple type that simply specifies an
2160arbitrary bit width for the integer type desired. Any bit width from 1
2161bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2162
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002163:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002164
2165::
2166
2167 iN
2168
2169The number of bits the integer will occupy is specified by the ``N``
2170value.
2171
2172Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002173*********
Sean Silvab084af42012-12-07 10:36:55 +00002174
2175+----------------+------------------------------------------------+
2176| ``i1`` | a single-bit integer. |
2177+----------------+------------------------------------------------+
2178| ``i32`` | a 32-bit integer. |
2179+----------------+------------------------------------------------+
2180| ``i1942652`` | a really big integer of over 1 million bits. |
2181+----------------+------------------------------------------------+
2182
2183.. _t_floating:
2184
2185Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002186""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002187
2188.. list-table::
2189 :header-rows: 1
2190
2191 * - Type
2192 - Description
2193
2194 * - ``half``
2195 - 16-bit floating point value
2196
2197 * - ``float``
2198 - 32-bit floating point value
2199
2200 * - ``double``
2201 - 64-bit floating point value
2202
2203 * - ``fp128``
2204 - 128-bit floating point value (112-bit mantissa)
2205
2206 * - ``x86_fp80``
2207 - 80-bit floating point value (X87)
2208
2209 * - ``ppc_fp128``
2210 - 128-bit floating point value (two 64-bits)
2211
Reid Kleckner9a16d082014-03-05 02:41:37 +00002212X86_mmx Type
2213""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002214
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002215:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002216
Reid Kleckner9a16d082014-03-05 02:41:37 +00002217The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002218machine. The operations allowed on it are quite limited: parameters and
2219return values, load and store, and bitcast. User-specified MMX
2220instructions are represented as intrinsic or asm calls with arguments
2221and/or results of this type. There are no arrays, vectors or constants
2222of this type.
2223
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002224:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002225
2226::
2227
Reid Kleckner9a16d082014-03-05 02:41:37 +00002228 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002229
Sean Silvab084af42012-12-07 10:36:55 +00002230
Rafael Espindola08013342013-12-07 19:34:20 +00002231.. _t_pointer:
2232
2233Pointer Type
2234""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002235
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002236:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002237
Rafael Espindola08013342013-12-07 19:34:20 +00002238The pointer type is used to specify memory locations. Pointers are
2239commonly used to reference objects in memory.
2240
2241Pointer types may have an optional address space attribute defining the
2242numbered address space where the pointed-to object resides. The default
2243address space is number zero. The semantics of non-zero address spaces
2244are target-specific.
2245
2246Note that LLVM does not permit pointers to void (``void*``) nor does it
2247permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002248
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002249:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002250
2251::
2252
Rafael Espindola08013342013-12-07 19:34:20 +00002253 <type> *
2254
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002255:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002256
2257+-------------------------+--------------------------------------------------------------------------------------------------------------+
2258| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2259+-------------------------+--------------------------------------------------------------------------------------------------------------+
2260| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2261+-------------------------+--------------------------------------------------------------------------------------------------------------+
2262| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2263+-------------------------+--------------------------------------------------------------------------------------------------------------+
2264
2265.. _t_vector:
2266
2267Vector Type
2268"""""""""""
2269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002271
2272A vector type is a simple derived type that represents a vector of
2273elements. Vector types are used when multiple primitive data are
2274operated in parallel using a single instruction (SIMD). A vector type
2275requires a size (number of elements) and an underlying primitive data
2276type. Vector types are considered :ref:`first class <t_firstclass>`.
2277
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002278:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002279
2280::
2281
2282 < <# elements> x <elementtype> >
2283
2284The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002285elementtype may be any integer, floating point or pointer type. Vectors
2286of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002287
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002288:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002289
2290+-------------------+--------------------------------------------------+
2291| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2292+-------------------+--------------------------------------------------+
2293| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2294+-------------------+--------------------------------------------------+
2295| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2296+-------------------+--------------------------------------------------+
2297| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2298+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002299
2300.. _t_label:
2301
2302Label Type
2303^^^^^^^^^^
2304
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002305:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002306
2307The label type represents code labels.
2308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311::
2312
2313 label
2314
David Majnemerb611e3f2015-08-14 05:09:07 +00002315.. _t_token:
2316
2317Token Type
2318^^^^^^^^^^
2319
2320:Overview:
2321
2322The token type is used when a value is associated with an instruction
2323but all uses of the value must not attempt to introspect or obscure it.
2324As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2325:ref:`select <i_select>` of type token.
2326
2327:Syntax:
2328
2329::
2330
2331 token
2332
2333
2334
Sean Silvab084af42012-12-07 10:36:55 +00002335.. _t_metadata:
2336
2337Metadata Type
2338^^^^^^^^^^^^^
2339
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002340:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002341
2342The metadata type represents embedded metadata. No derived types may be
2343created from metadata except for :ref:`function <t_function>` arguments.
2344
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002345:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002346
2347::
2348
2349 metadata
2350
Sean Silvab084af42012-12-07 10:36:55 +00002351.. _t_aggregate:
2352
2353Aggregate Types
2354^^^^^^^^^^^^^^^
2355
2356Aggregate Types are a subset of derived types that can contain multiple
2357member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2358aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2359aggregate types.
2360
2361.. _t_array:
2362
2363Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002364""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002365
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002366:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002367
2368The array type is a very simple derived type that arranges elements
2369sequentially in memory. The array type requires a size (number of
2370elements) and an underlying data type.
2371
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002372:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002373
2374::
2375
2376 [<# elements> x <elementtype>]
2377
2378The number of elements is a constant integer value; ``elementtype`` may
2379be any type with a size.
2380
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002381:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002382
2383+------------------+--------------------------------------+
2384| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2385+------------------+--------------------------------------+
2386| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2387+------------------+--------------------------------------+
2388| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2389+------------------+--------------------------------------+
2390
2391Here are some examples of multidimensional arrays:
2392
2393+-----------------------------+----------------------------------------------------------+
2394| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2395+-----------------------------+----------------------------------------------------------+
2396| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2397+-----------------------------+----------------------------------------------------------+
2398| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2399+-----------------------------+----------------------------------------------------------+
2400
2401There is no restriction on indexing beyond the end of the array implied
2402by a static type (though there are restrictions on indexing beyond the
2403bounds of an allocated object in some cases). This means that
2404single-dimension 'variable sized array' addressing can be implemented in
2405LLVM with a zero length array type. An implementation of 'pascal style
2406arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2407example.
2408
Sean Silvab084af42012-12-07 10:36:55 +00002409.. _t_struct:
2410
2411Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002412""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002413
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002414:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002415
2416The structure type is used to represent a collection of data members
2417together in memory. The elements of a structure may be any type that has
2418a size.
2419
2420Structures in memory are accessed using '``load``' and '``store``' by
2421getting a pointer to a field with the '``getelementptr``' instruction.
2422Structures in registers are accessed using the '``extractvalue``' and
2423'``insertvalue``' instructions.
2424
2425Structures may optionally be "packed" structures, which indicate that
2426the alignment of the struct is one byte, and that there is no padding
2427between the elements. In non-packed structs, padding between field types
2428is inserted as defined by the DataLayout string in the module, which is
2429required to match what the underlying code generator expects.
2430
2431Structures can either be "literal" or "identified". A literal structure
2432is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2433identified types are always defined at the top level with a name.
2434Literal types are uniqued by their contents and can never be recursive
2435or opaque since there is no way to write one. Identified types can be
2436recursive, can be opaqued, and are never uniqued.
2437
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002438:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002439
2440::
2441
2442 %T1 = type { <type list> } ; Identified normal struct type
2443 %T2 = type <{ <type list> }> ; Identified packed struct type
2444
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002445:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002446
2447+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2448| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2449+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002450| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002451+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2452| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2453+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2454
2455.. _t_opaque:
2456
2457Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002458""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002459
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002460:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002461
2462Opaque structure types are used to represent named structure types that
2463do not have a body specified. This corresponds (for example) to the C
2464notion of a forward declared structure.
2465
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002466:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002467
2468::
2469
2470 %X = type opaque
2471 %52 = type opaque
2472
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002473:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002474
2475+--------------+-------------------+
2476| ``opaque`` | An opaque type. |
2477+--------------+-------------------+
2478
Sean Silva1703e702014-04-08 21:06:22 +00002479.. _constants:
2480
Sean Silvab084af42012-12-07 10:36:55 +00002481Constants
2482=========
2483
2484LLVM has several different basic types of constants. This section
2485describes them all and their syntax.
2486
2487Simple Constants
2488----------------
2489
2490**Boolean constants**
2491 The two strings '``true``' and '``false``' are both valid constants
2492 of the ``i1`` type.
2493**Integer constants**
2494 Standard integers (such as '4') are constants of the
2495 :ref:`integer <t_integer>` type. Negative numbers may be used with
2496 integer types.
2497**Floating point constants**
2498 Floating point constants use standard decimal notation (e.g.
2499 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2500 hexadecimal notation (see below). The assembler requires the exact
2501 decimal value of a floating-point constant. For example, the
2502 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2503 decimal in binary. Floating point constants must have a :ref:`floating
2504 point <t_floating>` type.
2505**Null pointer constants**
2506 The identifier '``null``' is recognized as a null pointer constant
2507 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002508**Token constants**
2509 The identifier '``none``' is recognized as an empty token constant
2510 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002511
2512The one non-intuitive notation for constants is the hexadecimal form of
2513floating point constants. For example, the form
2514'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2515than) '``double 4.5e+15``'. The only time hexadecimal floating point
2516constants are required (and the only time that they are generated by the
2517disassembler) is when a floating point constant must be emitted but it
2518cannot be represented as a decimal floating point number in a reasonable
2519number of digits. For example, NaN's, infinities, and other special
2520values are represented in their IEEE hexadecimal format so that assembly
2521and disassembly do not cause any bits to change in the constants.
2522
2523When using the hexadecimal form, constants of types half, float, and
2524double are represented using the 16-digit form shown above (which
2525matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002526must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002527precision, respectively. Hexadecimal format is always used for long
2528double, and there are three forms of long double. The 80-bit format used
2529by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2530128-bit format used by PowerPC (two adjacent doubles) is represented by
2531``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002532represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2533will only work if they match the long double format on your target.
2534The IEEE 16-bit format (half precision) is represented by ``0xH``
2535followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2536(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002537
Reid Kleckner9a16d082014-03-05 02:41:37 +00002538There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002539
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002540.. _complexconstants:
2541
Sean Silvab084af42012-12-07 10:36:55 +00002542Complex Constants
2543-----------------
2544
2545Complex constants are a (potentially recursive) combination of simple
2546constants and smaller complex constants.
2547
2548**Structure constants**
2549 Structure constants are represented with notation similar to
2550 structure type definitions (a comma separated list of elements,
2551 surrounded by braces (``{}``)). For example:
2552 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2553 "``@G = external global i32``". Structure constants must have
2554 :ref:`structure type <t_struct>`, and the number and types of elements
2555 must match those specified by the type.
2556**Array constants**
2557 Array constants are represented with notation similar to array type
2558 definitions (a comma separated list of elements, surrounded by
2559 square brackets (``[]``)). For example:
2560 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2561 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002562 match those specified by the type. As a special case, character array
2563 constants may also be represented as a double-quoted string using the ``c``
2564 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002565**Vector constants**
2566 Vector constants are represented with notation similar to vector
2567 type definitions (a comma separated list of elements, surrounded by
2568 less-than/greater-than's (``<>``)). For example:
2569 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2570 must have :ref:`vector type <t_vector>`, and the number and types of
2571 elements must match those specified by the type.
2572**Zero initialization**
2573 The string '``zeroinitializer``' can be used to zero initialize a
2574 value to zero of *any* type, including scalar and
2575 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2576 having to print large zero initializers (e.g. for large arrays) and
2577 is always exactly equivalent to using explicit zero initializers.
2578**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002579 A metadata node is a constant tuple without types. For example:
2580 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002581 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2582 Unlike other typed constants that are meant to be interpreted as part of
2583 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002584 information such as debug info.
2585
2586Global Variable and Function Addresses
2587--------------------------------------
2588
2589The addresses of :ref:`global variables <globalvars>` and
2590:ref:`functions <functionstructure>` are always implicitly valid
2591(link-time) constants. These constants are explicitly referenced when
2592the :ref:`identifier for the global <identifiers>` is used and always have
2593:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2594file:
2595
2596.. code-block:: llvm
2597
2598 @X = global i32 17
2599 @Y = global i32 42
2600 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2601
2602.. _undefvalues:
2603
2604Undefined Values
2605----------------
2606
2607The string '``undef``' can be used anywhere a constant is expected, and
2608indicates that the user of the value may receive an unspecified
2609bit-pattern. Undefined values may be of any type (other than '``label``'
2610or '``void``') and be used anywhere a constant is permitted.
2611
2612Undefined values are useful because they indicate to the compiler that
2613the program is well defined no matter what value is used. This gives the
2614compiler more freedom to optimize. Here are some examples of
2615(potentially surprising) transformations that are valid (in pseudo IR):
2616
2617.. code-block:: llvm
2618
2619 %A = add %X, undef
2620 %B = sub %X, undef
2621 %C = xor %X, undef
2622 Safe:
2623 %A = undef
2624 %B = undef
2625 %C = undef
2626
2627This is safe because all of the output bits are affected by the undef
2628bits. Any output bit can have a zero or one depending on the input bits.
2629
2630.. code-block:: llvm
2631
2632 %A = or %X, undef
2633 %B = and %X, undef
2634 Safe:
2635 %A = -1
2636 %B = 0
2637 Unsafe:
2638 %A = undef
2639 %B = undef
2640
2641These logical operations have bits that are not always affected by the
2642input. For example, if ``%X`` has a zero bit, then the output of the
2643'``and``' operation will always be a zero for that bit, no matter what
2644the corresponding bit from the '``undef``' is. As such, it is unsafe to
2645optimize or assume that the result of the '``and``' is '``undef``'.
2646However, it is safe to assume that all bits of the '``undef``' could be
26470, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2648all the bits of the '``undef``' operand to the '``or``' could be set,
2649allowing the '``or``' to be folded to -1.
2650
2651.. code-block:: llvm
2652
2653 %A = select undef, %X, %Y
2654 %B = select undef, 42, %Y
2655 %C = select %X, %Y, undef
2656 Safe:
2657 %A = %X (or %Y)
2658 %B = 42 (or %Y)
2659 %C = %Y
2660 Unsafe:
2661 %A = undef
2662 %B = undef
2663 %C = undef
2664
2665This set of examples shows that undefined '``select``' (and conditional
2666branch) conditions can go *either way*, but they have to come from one
2667of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2668both known to have a clear low bit, then ``%A`` would have to have a
2669cleared low bit. However, in the ``%C`` example, the optimizer is
2670allowed to assume that the '``undef``' operand could be the same as
2671``%Y``, allowing the whole '``select``' to be eliminated.
2672
2673.. code-block:: llvm
2674
2675 %A = xor undef, undef
2676
2677 %B = undef
2678 %C = xor %B, %B
2679
2680 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002681 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002682 %F = icmp gte %D, 4
2683
2684 Safe:
2685 %A = undef
2686 %B = undef
2687 %C = undef
2688 %D = undef
2689 %E = undef
2690 %F = undef
2691
2692This example points out that two '``undef``' operands are not
2693necessarily the same. This can be surprising to people (and also matches
2694C semantics) where they assume that "``X^X``" is always zero, even if
2695``X`` is undefined. This isn't true for a number of reasons, but the
2696short answer is that an '``undef``' "variable" can arbitrarily change
2697its value over its "live range". This is true because the variable
2698doesn't actually *have a live range*. Instead, the value is logically
2699read from arbitrary registers that happen to be around when needed, so
2700the value is not necessarily consistent over time. In fact, ``%A`` and
2701``%C`` need to have the same semantics or the core LLVM "replace all
2702uses with" concept would not hold.
2703
2704.. code-block:: llvm
2705
2706 %A = fdiv undef, %X
2707 %B = fdiv %X, undef
2708 Safe:
2709 %A = undef
2710 b: unreachable
2711
2712These examples show the crucial difference between an *undefined value*
2713and *undefined behavior*. An undefined value (like '``undef``') is
2714allowed to have an arbitrary bit-pattern. This means that the ``%A``
2715operation can be constant folded to '``undef``', because the '``undef``'
2716could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2717However, in the second example, we can make a more aggressive
2718assumption: because the ``undef`` is allowed to be an arbitrary value,
2719we are allowed to assume that it could be zero. Since a divide by zero
2720has *undefined behavior*, we are allowed to assume that the operation
2721does not execute at all. This allows us to delete the divide and all
2722code after it. Because the undefined operation "can't happen", the
2723optimizer can assume that it occurs in dead code.
2724
2725.. code-block:: llvm
2726
2727 a: store undef -> %X
2728 b: store %X -> undef
2729 Safe:
2730 a: <deleted>
2731 b: unreachable
2732
2733These examples reiterate the ``fdiv`` example: a store *of* an undefined
2734value can be assumed to not have any effect; we can assume that the
2735value is overwritten with bits that happen to match what was already
2736there. However, a store *to* an undefined location could clobber
2737arbitrary memory, therefore, it has undefined behavior.
2738
2739.. _poisonvalues:
2740
2741Poison Values
2742-------------
2743
2744Poison values are similar to :ref:`undef values <undefvalues>`, however
2745they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002746that cannot evoke side effects has nevertheless detected a condition
2747that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002748
2749There is currently no way of representing a poison value in the IR; they
2750only exist when produced by operations such as :ref:`add <i_add>` with
2751the ``nsw`` flag.
2752
2753Poison value behavior is defined in terms of value *dependence*:
2754
2755- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2756- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2757 their dynamic predecessor basic block.
2758- Function arguments depend on the corresponding actual argument values
2759 in the dynamic callers of their functions.
2760- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2761 instructions that dynamically transfer control back to them.
2762- :ref:`Invoke <i_invoke>` instructions depend on the
2763 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2764 call instructions that dynamically transfer control back to them.
2765- Non-volatile loads and stores depend on the most recent stores to all
2766 of the referenced memory addresses, following the order in the IR
2767 (including loads and stores implied by intrinsics such as
2768 :ref:`@llvm.memcpy <int_memcpy>`.)
2769- An instruction with externally visible side effects depends on the
2770 most recent preceding instruction with externally visible side
2771 effects, following the order in the IR. (This includes :ref:`volatile
2772 operations <volatile>`.)
2773- An instruction *control-depends* on a :ref:`terminator
2774 instruction <terminators>` if the terminator instruction has
2775 multiple successors and the instruction is always executed when
2776 control transfers to one of the successors, and may not be executed
2777 when control is transferred to another.
2778- Additionally, an instruction also *control-depends* on a terminator
2779 instruction if the set of instructions it otherwise depends on would
2780 be different if the terminator had transferred control to a different
2781 successor.
2782- Dependence is transitive.
2783
Richard Smith32dbdf62014-07-31 04:25:36 +00002784Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2785with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002786on a poison value has undefined behavior.
2787
2788Here are some examples:
2789
2790.. code-block:: llvm
2791
2792 entry:
2793 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2794 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002795 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002796 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2797
2798 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002799 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002800
2801 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2802
2803 %narrowaddr = bitcast i32* @g to i16*
2804 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002805 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2806 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002807
2808 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2809 br i1 %cmp, label %true, label %end ; Branch to either destination.
2810
2811 true:
2812 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2813 ; it has undefined behavior.
2814 br label %end
2815
2816 end:
2817 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2818 ; Both edges into this PHI are
2819 ; control-dependent on %cmp, so this
2820 ; always results in a poison value.
2821
2822 store volatile i32 0, i32* @g ; This would depend on the store in %true
2823 ; if %cmp is true, or the store in %entry
2824 ; otherwise, so this is undefined behavior.
2825
2826 br i1 %cmp, label %second_true, label %second_end
2827 ; The same branch again, but this time the
2828 ; true block doesn't have side effects.
2829
2830 second_true:
2831 ; No side effects!
2832 ret void
2833
2834 second_end:
2835 store volatile i32 0, i32* @g ; This time, the instruction always depends
2836 ; on the store in %end. Also, it is
2837 ; control-equivalent to %end, so this is
2838 ; well-defined (ignoring earlier undefined
2839 ; behavior in this example).
2840
2841.. _blockaddress:
2842
2843Addresses of Basic Blocks
2844-------------------------
2845
2846``blockaddress(@function, %block)``
2847
2848The '``blockaddress``' constant computes the address of the specified
2849basic block in the specified function, and always has an ``i8*`` type.
2850Taking the address of the entry block is illegal.
2851
2852This value only has defined behavior when used as an operand to the
2853':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2854against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002855undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002856no label is equal to the null pointer. This may be passed around as an
2857opaque pointer sized value as long as the bits are not inspected. This
2858allows ``ptrtoint`` and arithmetic to be performed on these values so
2859long as the original value is reconstituted before the ``indirectbr``
2860instruction.
2861
2862Finally, some targets may provide defined semantics when using the value
2863as the operand to an inline assembly, but that is target specific.
2864
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002865.. _constantexprs:
2866
Sean Silvab084af42012-12-07 10:36:55 +00002867Constant Expressions
2868--------------------
2869
2870Constant expressions are used to allow expressions involving other
2871constants to be used as constants. Constant expressions may be of any
2872:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2873that does not have side effects (e.g. load and call are not supported).
2874The following is the syntax for constant expressions:
2875
2876``trunc (CST to TYPE)``
2877 Truncate a constant to another type. The bit size of CST must be
2878 larger than the bit size of TYPE. Both types must be integers.
2879``zext (CST to TYPE)``
2880 Zero extend a constant to another type. The bit size of CST must be
2881 smaller than the bit size of TYPE. Both types must be integers.
2882``sext (CST to TYPE)``
2883 Sign extend a constant to another type. The bit size of CST must be
2884 smaller than the bit size of TYPE. Both types must be integers.
2885``fptrunc (CST to TYPE)``
2886 Truncate a floating point constant to another floating point type.
2887 The size of CST must be larger than the size of TYPE. Both types
2888 must be floating point.
2889``fpext (CST to TYPE)``
2890 Floating point extend a constant to another type. The size of CST
2891 must be smaller or equal to the size of TYPE. Both types must be
2892 floating point.
2893``fptoui (CST to TYPE)``
2894 Convert a floating point constant to the corresponding unsigned
2895 integer constant. TYPE must be a scalar or vector integer type. CST
2896 must be of scalar or vector floating point type. Both CST and TYPE
2897 must be scalars, or vectors of the same number of elements. If the
2898 value won't fit in the integer type, the results are undefined.
2899``fptosi (CST to TYPE)``
2900 Convert a floating point constant to the corresponding signed
2901 integer constant. TYPE must be a scalar or vector integer type. CST
2902 must be of scalar or vector floating point type. Both CST and TYPE
2903 must be scalars, or vectors of the same number of elements. If the
2904 value won't fit in the integer type, the results are undefined.
2905``uitofp (CST to TYPE)``
2906 Convert an unsigned integer constant to the corresponding floating
2907 point constant. TYPE must be a scalar or vector floating point type.
2908 CST must be of scalar or vector integer type. Both CST and TYPE must
2909 be scalars, or vectors of the same number of elements. If the value
2910 won't fit in the floating point type, the results are undefined.
2911``sitofp (CST to TYPE)``
2912 Convert a signed integer constant to the corresponding floating
2913 point constant. TYPE must be a scalar or vector floating point type.
2914 CST must be of scalar or vector integer type. Both CST and TYPE must
2915 be scalars, or vectors of the same number of elements. If the value
2916 won't fit in the floating point type, the results are undefined.
2917``ptrtoint (CST to TYPE)``
2918 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002919 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002920 pointer type. The ``CST`` value is zero extended, truncated, or
2921 unchanged to make it fit in ``TYPE``.
2922``inttoptr (CST to TYPE)``
2923 Convert an integer constant to a pointer constant. TYPE must be a
2924 pointer type. CST must be of integer type. The CST value is zero
2925 extended, truncated, or unchanged to make it fit in a pointer size.
2926 This one is *really* dangerous!
2927``bitcast (CST to TYPE)``
2928 Convert a constant, CST, to another TYPE. The constraints of the
2929 operands are the same as those for the :ref:`bitcast
2930 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002931``addrspacecast (CST to TYPE)``
2932 Convert a constant pointer or constant vector of pointer, CST, to another
2933 TYPE in a different address space. The constraints of the operands are the
2934 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002935``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002936 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2937 constants. As with the :ref:`getelementptr <i_getelementptr>`
2938 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002939 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002940``select (COND, VAL1, VAL2)``
2941 Perform the :ref:`select operation <i_select>` on constants.
2942``icmp COND (VAL1, VAL2)``
2943 Performs the :ref:`icmp operation <i_icmp>` on constants.
2944``fcmp COND (VAL1, VAL2)``
2945 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2946``extractelement (VAL, IDX)``
2947 Perform the :ref:`extractelement operation <i_extractelement>` on
2948 constants.
2949``insertelement (VAL, ELT, IDX)``
2950 Perform the :ref:`insertelement operation <i_insertelement>` on
2951 constants.
2952``shufflevector (VEC1, VEC2, IDXMASK)``
2953 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2954 constants.
2955``extractvalue (VAL, IDX0, IDX1, ...)``
2956 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2957 constants. The index list is interpreted in a similar manner as
2958 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2959 least one index value must be specified.
2960``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2961 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2962 The index list is interpreted in a similar manner as indices in a
2963 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2964 value must be specified.
2965``OPCODE (LHS, RHS)``
2966 Perform the specified operation of the LHS and RHS constants. OPCODE
2967 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2968 binary <bitwiseops>` operations. The constraints on operands are
2969 the same as those for the corresponding instruction (e.g. no bitwise
2970 operations on floating point values are allowed).
2971
2972Other Values
2973============
2974
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002975.. _inlineasmexprs:
2976
Sean Silvab084af42012-12-07 10:36:55 +00002977Inline Assembler Expressions
2978----------------------------
2979
2980LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002981Inline Assembly <moduleasm>`) through the use of a special value. This value
2982represents the inline assembler as a template string (containing the
2983instructions to emit), a list of operand constraints (stored as a string), a
2984flag that indicates whether or not the inline asm expression has side effects,
2985and a flag indicating whether the function containing the asm needs to align its
2986stack conservatively.
2987
2988The template string supports argument substitution of the operands using "``$``"
2989followed by a number, to indicate substitution of the given register/memory
2990location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2991be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2992operand (See :ref:`inline-asm-modifiers`).
2993
2994A literal "``$``" may be included by using "``$$``" in the template. To include
2995other special characters into the output, the usual "``\XX``" escapes may be
2996used, just as in other strings. Note that after template substitution, the
2997resulting assembly string is parsed by LLVM's integrated assembler unless it is
2998disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2999syntax known to LLVM.
3000
3001LLVM's support for inline asm is modeled closely on the requirements of Clang's
3002GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3003modifier codes listed here are similar or identical to those in GCC's inline asm
3004support. However, to be clear, the syntax of the template and constraint strings
3005described here is *not* the same as the syntax accepted by GCC and Clang, and,
3006while most constraint letters are passed through as-is by Clang, some get
3007translated to other codes when converting from the C source to the LLVM
3008assembly.
3009
3010An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003011
3012.. code-block:: llvm
3013
3014 i32 (i32) asm "bswap $0", "=r,r"
3015
3016Inline assembler expressions may **only** be used as the callee operand
3017of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3018Thus, typically we have:
3019
3020.. code-block:: llvm
3021
3022 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3023
3024Inline asms with side effects not visible in the constraint list must be
3025marked as having side effects. This is done through the use of the
3026'``sideeffect``' keyword, like so:
3027
3028.. code-block:: llvm
3029
3030 call void asm sideeffect "eieio", ""()
3031
3032In some cases inline asms will contain code that will not work unless
3033the stack is aligned in some way, such as calls or SSE instructions on
3034x86, yet will not contain code that does that alignment within the asm.
3035The compiler should make conservative assumptions about what the asm
3036might contain and should generate its usual stack alignment code in the
3037prologue if the '``alignstack``' keyword is present:
3038
3039.. code-block:: llvm
3040
3041 call void asm alignstack "eieio", ""()
3042
3043Inline asms also support using non-standard assembly dialects. The
3044assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3045the inline asm is using the Intel dialect. Currently, ATT and Intel are
3046the only supported dialects. An example is:
3047
3048.. code-block:: llvm
3049
3050 call void asm inteldialect "eieio", ""()
3051
3052If multiple keywords appear the '``sideeffect``' keyword must come
3053first, the '``alignstack``' keyword second and the '``inteldialect``'
3054keyword last.
3055
James Y Knightbc832ed2015-07-08 18:08:36 +00003056Inline Asm Constraint String
3057^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3058
3059The constraint list is a comma-separated string, each element containing one or
3060more constraint codes.
3061
3062For each element in the constraint list an appropriate register or memory
3063operand will be chosen, and it will be made available to assembly template
3064string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3065second, etc.
3066
3067There are three different types of constraints, which are distinguished by a
3068prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3069constraints must always be given in that order: outputs first, then inputs, then
3070clobbers. They cannot be intermingled.
3071
3072There are also three different categories of constraint codes:
3073
3074- Register constraint. This is either a register class, or a fixed physical
3075 register. This kind of constraint will allocate a register, and if necessary,
3076 bitcast the argument or result to the appropriate type.
3077- Memory constraint. This kind of constraint is for use with an instruction
3078 taking a memory operand. Different constraints allow for different addressing
3079 modes used by the target.
3080- Immediate value constraint. This kind of constraint is for an integer or other
3081 immediate value which can be rendered directly into an instruction. The
3082 various target-specific constraints allow the selection of a value in the
3083 proper range for the instruction you wish to use it with.
3084
3085Output constraints
3086""""""""""""""""""
3087
3088Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3089indicates that the assembly will write to this operand, and the operand will
3090then be made available as a return value of the ``asm`` expression. Output
3091constraints do not consume an argument from the call instruction. (Except, see
3092below about indirect outputs).
3093
3094Normally, it is expected that no output locations are written to by the assembly
3095expression until *all* of the inputs have been read. As such, LLVM may assign
3096the same register to an output and an input. If this is not safe (e.g. if the
3097assembly contains two instructions, where the first writes to one output, and
3098the second reads an input and writes to a second output), then the "``&``"
3099modifier must be used (e.g. "``=&r``") to specify that the output is an
3100"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3101will not use the same register for any inputs (other than an input tied to this
3102output).
3103
3104Input constraints
3105"""""""""""""""""
3106
3107Input constraints do not have a prefix -- just the constraint codes. Each input
3108constraint will consume one argument from the call instruction. It is not
3109permitted for the asm to write to any input register or memory location (unless
3110that input is tied to an output). Note also that multiple inputs may all be
3111assigned to the same register, if LLVM can determine that they necessarily all
3112contain the same value.
3113
3114Instead of providing a Constraint Code, input constraints may also "tie"
3115themselves to an output constraint, by providing an integer as the constraint
3116string. Tied inputs still consume an argument from the call instruction, and
3117take up a position in the asm template numbering as is usual -- they will simply
3118be constrained to always use the same register as the output they've been tied
3119to. For example, a constraint string of "``=r,0``" says to assign a register for
3120output, and use that register as an input as well (it being the 0'th
3121constraint).
3122
3123It is permitted to tie an input to an "early-clobber" output. In that case, no
3124*other* input may share the same register as the input tied to the early-clobber
3125(even when the other input has the same value).
3126
3127You may only tie an input to an output which has a register constraint, not a
3128memory constraint. Only a single input may be tied to an output.
3129
3130There is also an "interesting" feature which deserves a bit of explanation: if a
3131register class constraint allocates a register which is too small for the value
3132type operand provided as input, the input value will be split into multiple
3133registers, and all of them passed to the inline asm.
3134
3135However, this feature is often not as useful as you might think.
3136
3137Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3138architectures that have instructions which operate on multiple consecutive
3139instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3140SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3141hardware then loads into both the named register, and the next register. This
3142feature of inline asm would not be useful to support that.)
3143
3144A few of the targets provide a template string modifier allowing explicit access
3145to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3146``D``). On such an architecture, you can actually access the second allocated
3147register (yet, still, not any subsequent ones). But, in that case, you're still
3148probably better off simply splitting the value into two separate operands, for
3149clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3150despite existing only for use with this feature, is not really a good idea to
3151use)
3152
3153Indirect inputs and outputs
3154"""""""""""""""""""""""""""
3155
3156Indirect output or input constraints can be specified by the "``*``" modifier
3157(which goes after the "``=``" in case of an output). This indicates that the asm
3158will write to or read from the contents of an *address* provided as an input
3159argument. (Note that in this way, indirect outputs act more like an *input* than
3160an output: just like an input, they consume an argument of the call expression,
3161rather than producing a return value. An indirect output constraint is an
3162"output" only in that the asm is expected to write to the contents of the input
3163memory location, instead of just read from it).
3164
3165This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3166address of a variable as a value.
3167
3168It is also possible to use an indirect *register* constraint, but only on output
3169(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3170value normally, and then, separately emit a store to the address provided as
3171input, after the provided inline asm. (It's not clear what value this
3172functionality provides, compared to writing the store explicitly after the asm
3173statement, and it can only produce worse code, since it bypasses many
3174optimization passes. I would recommend not using it.)
3175
3176
3177Clobber constraints
3178"""""""""""""""""""
3179
3180A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3181consume an input operand, nor generate an output. Clobbers cannot use any of the
3182general constraint code letters -- they may use only explicit register
3183constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3184"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3185memory locations -- not only the memory pointed to by a declared indirect
3186output.
3187
3188
3189Constraint Codes
3190""""""""""""""""
3191After a potential prefix comes constraint code, or codes.
3192
3193A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3194followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3195(e.g. "``{eax}``").
3196
3197The one and two letter constraint codes are typically chosen to be the same as
3198GCC's constraint codes.
3199
3200A single constraint may include one or more than constraint code in it, leaving
3201it up to LLVM to choose which one to use. This is included mainly for
3202compatibility with the translation of GCC inline asm coming from clang.
3203
3204There are two ways to specify alternatives, and either or both may be used in an
3205inline asm constraint list:
3206
32071) Append the codes to each other, making a constraint code set. E.g. "``im``"
3208 or "``{eax}m``". This means "choose any of the options in the set". The
3209 choice of constraint is made independently for each constraint in the
3210 constraint list.
3211
32122) Use "``|``" between constraint code sets, creating alternatives. Every
3213 constraint in the constraint list must have the same number of alternative
3214 sets. With this syntax, the same alternative in *all* of the items in the
3215 constraint list will be chosen together.
3216
3217Putting those together, you might have a two operand constraint string like
3218``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3219operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3220may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3221
3222However, the use of either of the alternatives features is *NOT* recommended, as
3223LLVM is not able to make an intelligent choice about which one to use. (At the
3224point it currently needs to choose, not enough information is available to do so
3225in a smart way.) Thus, it simply tries to make a choice that's most likely to
3226compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3227always choose to use memory, not registers). And, if given multiple registers,
3228or multiple register classes, it will simply choose the first one. (In fact, it
3229doesn't currently even ensure explicitly specified physical registers are
3230unique, so specifying multiple physical registers as alternatives, like
3231``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3232intended.)
3233
3234Supported Constraint Code List
3235""""""""""""""""""""""""""""""
3236
3237The constraint codes are, in general, expected to behave the same way they do in
3238GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3239inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3240and GCC likely indicates a bug in LLVM.
3241
3242Some constraint codes are typically supported by all targets:
3243
3244- ``r``: A register in the target's general purpose register class.
3245- ``m``: A memory address operand. It is target-specific what addressing modes
3246 are supported, typical examples are register, or register + register offset,
3247 or register + immediate offset (of some target-specific size).
3248- ``i``: An integer constant (of target-specific width). Allows either a simple
3249 immediate, or a relocatable value.
3250- ``n``: An integer constant -- *not* including relocatable values.
3251- ``s``: An integer constant, but allowing *only* relocatable values.
3252- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3253 useful to pass a label for an asm branch or call.
3254
3255 .. FIXME: but that surely isn't actually okay to jump out of an asm
3256 block without telling llvm about the control transfer???)
3257
3258- ``{register-name}``: Requires exactly the named physical register.
3259
3260Other constraints are target-specific:
3261
3262AArch64:
3263
3264- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3265- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3266 i.e. 0 to 4095 with optional shift by 12.
3267- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3268 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3269- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3270 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3271- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3272 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3273- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3274 32-bit register. This is a superset of ``K``: in addition to the bitmask
3275 immediate, also allows immediate integers which can be loaded with a single
3276 ``MOVZ`` or ``MOVL`` instruction.
3277- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3278 64-bit register. This is a superset of ``L``.
3279- ``Q``: Memory address operand must be in a single register (no
3280 offsets). (However, LLVM currently does this for the ``m`` constraint as
3281 well.)
3282- ``r``: A 32 or 64-bit integer register (W* or X*).
3283- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3284- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3285
3286AMDGPU:
3287
3288- ``r``: A 32 or 64-bit integer register.
3289- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3290- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3291
3292
3293All ARM modes:
3294
3295- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3296 operand. Treated the same as operand ``m``, at the moment.
3297
3298ARM and ARM's Thumb2 mode:
3299
3300- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3301- ``I``: An immediate integer valid for a data-processing instruction.
3302- ``J``: An immediate integer between -4095 and 4095.
3303- ``K``: An immediate integer whose bitwise inverse is valid for a
3304 data-processing instruction. (Can be used with template modifier "``B``" to
3305 print the inverted value).
3306- ``L``: An immediate integer whose negation is valid for a data-processing
3307 instruction. (Can be used with template modifier "``n``" to print the negated
3308 value).
3309- ``M``: A power of two or a integer between 0 and 32.
3310- ``N``: Invalid immediate constraint.
3311- ``O``: Invalid immediate constraint.
3312- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3313- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3314 as ``r``.
3315- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3316 invalid.
3317- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3318 ``d0-d31``, or ``q0-q15``.
3319- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3320 ``d0-d7``, or ``q0-q3``.
3321- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3322 ``s0-s31``.
3323
3324ARM's Thumb1 mode:
3325
3326- ``I``: An immediate integer between 0 and 255.
3327- ``J``: An immediate integer between -255 and -1.
3328- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3329 some amount.
3330- ``L``: An immediate integer between -7 and 7.
3331- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3332- ``N``: An immediate integer between 0 and 31.
3333- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3334- ``r``: A low 32-bit GPR register (``r0-r7``).
3335- ``l``: A low 32-bit GPR register (``r0-r7``).
3336- ``h``: A high GPR register (``r0-r7``).
3337- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3338 ``d0-d31``, or ``q0-q15``.
3339- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3340 ``d0-d7``, or ``q0-q3``.
3341- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3342 ``s0-s31``.
3343
3344
3345Hexagon:
3346
3347- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3348 at the moment.
3349- ``r``: A 32 or 64-bit register.
3350
3351MSP430:
3352
3353- ``r``: An 8 or 16-bit register.
3354
3355MIPS:
3356
3357- ``I``: An immediate signed 16-bit integer.
3358- ``J``: An immediate integer zero.
3359- ``K``: An immediate unsigned 16-bit integer.
3360- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3361- ``N``: An immediate integer between -65535 and -1.
3362- ``O``: An immediate signed 15-bit integer.
3363- ``P``: An immediate integer between 1 and 65535.
3364- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3365 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3366- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3367 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3368 ``m``.
3369- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3370 ``sc`` instruction on the given subtarget (details vary).
3371- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3372- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003373 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3374 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003375- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3376 ``25``).
3377- ``l``: The ``lo`` register, 32 or 64-bit.
3378- ``x``: Invalid.
3379
3380NVPTX:
3381
3382- ``b``: A 1-bit integer register.
3383- ``c`` or ``h``: A 16-bit integer register.
3384- ``r``: A 32-bit integer register.
3385- ``l`` or ``N``: A 64-bit integer register.
3386- ``f``: A 32-bit float register.
3387- ``d``: A 64-bit float register.
3388
3389
3390PowerPC:
3391
3392- ``I``: An immediate signed 16-bit integer.
3393- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3394- ``K``: An immediate unsigned 16-bit integer.
3395- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3396- ``M``: An immediate integer greater than 31.
3397- ``N``: An immediate integer that is an exact power of 2.
3398- ``O``: The immediate integer constant 0.
3399- ``P``: An immediate integer constant whose negation is a signed 16-bit
3400 constant.
3401- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3402 treated the same as ``m``.
3403- ``r``: A 32 or 64-bit integer register.
3404- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3405 ``R1-R31``).
3406- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3407 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3408- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3409 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3410 altivec vector register (``V0-V31``).
3411
3412 .. FIXME: is this a bug that v accepts QPX registers? I think this
3413 is supposed to only use the altivec vector registers?
3414
3415- ``y``: Condition register (``CR0-CR7``).
3416- ``wc``: An individual CR bit in a CR register.
3417- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3418 register set (overlapping both the floating-point and vector register files).
3419- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3420 set.
3421
3422Sparc:
3423
3424- ``I``: An immediate 13-bit signed integer.
3425- ``r``: A 32-bit integer register.
3426
3427SystemZ:
3428
3429- ``I``: An immediate unsigned 8-bit integer.
3430- ``J``: An immediate unsigned 12-bit integer.
3431- ``K``: An immediate signed 16-bit integer.
3432- ``L``: An immediate signed 20-bit integer.
3433- ``M``: An immediate integer 0x7fffffff.
3434- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3435 ``m``, at the moment.
3436- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3437- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3438 address context evaluates as zero).
3439- ``h``: A 32-bit value in the high part of a 64bit data register
3440 (LLVM-specific)
3441- ``f``: A 32, 64, or 128-bit floating point register.
3442
3443X86:
3444
3445- ``I``: An immediate integer between 0 and 31.
3446- ``J``: An immediate integer between 0 and 64.
3447- ``K``: An immediate signed 8-bit integer.
3448- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3449 0xffffffff.
3450- ``M``: An immediate integer between 0 and 3.
3451- ``N``: An immediate unsigned 8-bit integer.
3452- ``O``: An immediate integer between 0 and 127.
3453- ``e``: An immediate 32-bit signed integer.
3454- ``Z``: An immediate 32-bit unsigned integer.
3455- ``o``, ``v``: Treated the same as ``m``, at the moment.
3456- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3457 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3458 registers, and on X86-64, it is all of the integer registers.
3459- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3460 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3461- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3462- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3463 existed since i386, and can be accessed without the REX prefix.
3464- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3465- ``y``: A 64-bit MMX register, if MMX is enabled.
3466- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3467 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3468 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3469 512-bit vector operand in an AVX512 register, Otherwise, an error.
3470- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3471- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3472 32-bit mode, a 64-bit integer operand will get split into two registers). It
3473 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3474 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3475 you're better off splitting it yourself, before passing it to the asm
3476 statement.
3477
3478XCore:
3479
3480- ``r``: A 32-bit integer register.
3481
3482
3483.. _inline-asm-modifiers:
3484
3485Asm template argument modifiers
3486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3487
3488In the asm template string, modifiers can be used on the operand reference, like
3489"``${0:n}``".
3490
3491The modifiers are, in general, expected to behave the same way they do in
3492GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3493inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3494and GCC likely indicates a bug in LLVM.
3495
3496Target-independent:
3497
Sean Silvaa1190322015-08-06 22:56:48 +00003498- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003499 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3500- ``n``: Negate and print immediate integer constant unadorned, without the
3501 target-specific immediate punctuation (e.g. no ``$`` prefix).
3502- ``l``: Print as an unadorned label, without the target-specific label
3503 punctuation (e.g. no ``$`` prefix).
3504
3505AArch64:
3506
3507- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3508 instead of ``x30``, print ``w30``.
3509- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3510- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3511 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3512 ``v*``.
3513
3514AMDGPU:
3515
3516- ``r``: No effect.
3517
3518ARM:
3519
3520- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3521 register).
3522- ``P``: No effect.
3523- ``q``: No effect.
3524- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3525 as ``d4[1]`` instead of ``s9``)
3526- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3527 prefix.
3528- ``L``: Print the low 16-bits of an immediate integer constant.
3529- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3530 register operands subsequent to the specified one (!), so use carefully.
3531- ``Q``: Print the low-order register of a register-pair, or the low-order
3532 register of a two-register operand.
3533- ``R``: Print the high-order register of a register-pair, or the high-order
3534 register of a two-register operand.
3535- ``H``: Print the second register of a register-pair. (On a big-endian system,
3536 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3537 to ``R``.)
3538
3539 .. FIXME: H doesn't currently support printing the second register
3540 of a two-register operand.
3541
3542- ``e``: Print the low doubleword register of a NEON quad register.
3543- ``f``: Print the high doubleword register of a NEON quad register.
3544- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3545 adornment.
3546
3547Hexagon:
3548
3549- ``L``: Print the second register of a two-register operand. Requires that it
3550 has been allocated consecutively to the first.
3551
3552 .. FIXME: why is it restricted to consecutive ones? And there's
3553 nothing that ensures that happens, is there?
3554
3555- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3556 nothing. Used to print 'addi' vs 'add' instructions.
3557
3558MSP430:
3559
3560No additional modifiers.
3561
3562MIPS:
3563
3564- ``X``: Print an immediate integer as hexadecimal
3565- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3566- ``d``: Print an immediate integer as decimal.
3567- ``m``: Subtract one and print an immediate integer as decimal.
3568- ``z``: Print $0 if an immediate zero, otherwise print normally.
3569- ``L``: Print the low-order register of a two-register operand, or prints the
3570 address of the low-order word of a double-word memory operand.
3571
3572 .. FIXME: L seems to be missing memory operand support.
3573
3574- ``M``: Print the high-order register of a two-register operand, or prints the
3575 address of the high-order word of a double-word memory operand.
3576
3577 .. FIXME: M seems to be missing memory operand support.
3578
3579- ``D``: Print the second register of a two-register operand, or prints the
3580 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3581 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3582 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003583- ``w``: No effect. Provided for compatibility with GCC which requires this
3584 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3585 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003586
3587NVPTX:
3588
3589- ``r``: No effect.
3590
3591PowerPC:
3592
3593- ``L``: Print the second register of a two-register operand. Requires that it
3594 has been allocated consecutively to the first.
3595
3596 .. FIXME: why is it restricted to consecutive ones? And there's
3597 nothing that ensures that happens, is there?
3598
3599- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3600 nothing. Used to print 'addi' vs 'add' instructions.
3601- ``y``: For a memory operand, prints formatter for a two-register X-form
3602 instruction. (Currently always prints ``r0,OPERAND``).
3603- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3604 otherwise. (NOTE: LLVM does not support update form, so this will currently
3605 always print nothing)
3606- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3607 not support indexed form, so this will currently always print nothing)
3608
3609Sparc:
3610
3611- ``r``: No effect.
3612
3613SystemZ:
3614
3615SystemZ implements only ``n``, and does *not* support any of the other
3616target-independent modifiers.
3617
3618X86:
3619
3620- ``c``: Print an unadorned integer or symbol name. (The latter is
3621 target-specific behavior for this typically target-independent modifier).
3622- ``A``: Print a register name with a '``*``' before it.
3623- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3624 operand.
3625- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3626 memory operand.
3627- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3628 operand.
3629- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3630 operand.
3631- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3632 available, otherwise the 32-bit register name; do nothing on a memory operand.
3633- ``n``: Negate and print an unadorned integer, or, for operands other than an
3634 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3635 the operand. (The behavior for relocatable symbol expressions is a
3636 target-specific behavior for this typically target-independent modifier)
3637- ``H``: Print a memory reference with additional offset +8.
3638- ``P``: Print a memory reference or operand for use as the argument of a call
3639 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3640
3641XCore:
3642
3643No additional modifiers.
3644
3645
Sean Silvab084af42012-12-07 10:36:55 +00003646Inline Asm Metadata
3647^^^^^^^^^^^^^^^^^^^
3648
3649The call instructions that wrap inline asm nodes may have a
3650"``!srcloc``" MDNode attached to it that contains a list of constant
3651integers. If present, the code generator will use the integer as the
3652location cookie value when report errors through the ``LLVMContext``
3653error reporting mechanisms. This allows a front-end to correlate backend
3654errors that occur with inline asm back to the source code that produced
3655it. For example:
3656
3657.. code-block:: llvm
3658
3659 call void asm sideeffect "something bad", ""(), !srcloc !42
3660 ...
3661 !42 = !{ i32 1234567 }
3662
3663It is up to the front-end to make sense of the magic numbers it places
3664in the IR. If the MDNode contains multiple constants, the code generator
3665will use the one that corresponds to the line of the asm that the error
3666occurs on.
3667
3668.. _metadata:
3669
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003670Metadata
3671========
Sean Silvab084af42012-12-07 10:36:55 +00003672
3673LLVM IR allows metadata to be attached to instructions in the program
3674that can convey extra information about the code to the optimizers and
3675code generator. One example application of metadata is source-level
3676debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003677
Sean Silvaa1190322015-08-06 22:56:48 +00003678Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003679``call`` instruction, it uses the ``metadata`` type.
3680
3681All metadata are identified in syntax by a exclamation point ('``!``').
3682
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003683.. _metadata-string:
3684
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003685Metadata Nodes and Metadata Strings
3686-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003687
3688A metadata string is a string surrounded by double quotes. It can
3689contain any character by escaping non-printable characters with
3690"``\xx``" where "``xx``" is the two digit hex code. For example:
3691"``!"test\00"``".
3692
3693Metadata nodes are represented with notation similar to structure
3694constants (a comma separated list of elements, surrounded by braces and
3695preceded by an exclamation point). Metadata nodes can have any values as
3696their operand. For example:
3697
3698.. code-block:: llvm
3699
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003700 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003701
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003702Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3703
3704.. code-block:: llvm
3705
3706 !0 = distinct !{!"test\00", i32 10}
3707
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003708``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003709content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003710when metadata operands change.
3711
Sean Silvab084af42012-12-07 10:36:55 +00003712A :ref:`named metadata <namedmetadatastructure>` is a collection of
3713metadata nodes, which can be looked up in the module symbol table. For
3714example:
3715
3716.. code-block:: llvm
3717
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003718 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003719
3720Metadata can be used as function arguments. Here ``llvm.dbg.value``
3721function is using two metadata arguments:
3722
3723.. code-block:: llvm
3724
3725 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3726
Peter Collingbourne50108682015-11-06 02:41:02 +00003727Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3728to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003729
3730.. code-block:: llvm
3731
3732 %indvar.next = add i64 %indvar, 1, !dbg !21
3733
Peter Collingbourne50108682015-11-06 02:41:02 +00003734Metadata can also be attached to a function definition. Here metadata ``!22``
3735is attached to the ``foo`` function using the ``!dbg`` identifier:
3736
3737.. code-block:: llvm
3738
3739 define void @foo() !dbg !22 {
3740 ret void
3741 }
3742
Sean Silvab084af42012-12-07 10:36:55 +00003743More information about specific metadata nodes recognized by the
3744optimizers and code generator is found below.
3745
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003746.. _specialized-metadata:
3747
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003748Specialized Metadata Nodes
3749^^^^^^^^^^^^^^^^^^^^^^^^^^
3750
3751Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003752to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003753order.
3754
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003755These aren't inherently debug info centric, but currently all the specialized
3756metadata nodes are related to debug info.
3757
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003758.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003759
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003760DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003761"""""""""""""
3762
Sean Silvaa1190322015-08-06 22:56:48 +00003763``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003764``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3765fields are tuples containing the debug info to be emitted along with the compile
3766unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003767references to them from instructions).
3768
3769.. code-block:: llvm
3770
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003771 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003772 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3773 splitDebugFilename: "abc.debug", emissionKind: 1,
3774 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003775 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003776
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003777Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003778specific compilation unit. File descriptors are defined using this scope.
3779These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003780keep track of subprograms, global variables, type information, and imported
3781entities (declarations and namespaces).
3782
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003783.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003784
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003785DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003786""""""
3787
Sean Silvaa1190322015-08-06 22:56:48 +00003788``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789
3790.. code-block:: llvm
3791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003793
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003794Files are sometimes used in ``scope:`` fields, and are the only valid target
3795for ``file:`` fields.
3796
Michael Kuperstein605308a2015-05-14 10:58:59 +00003797.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003798
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003799DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003800"""""""""""
3801
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003802``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003803``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003804
3805.. code-block:: llvm
3806
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003807 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003808 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003809 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003810
Sean Silvaa1190322015-08-06 22:56:48 +00003811The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003812following:
3813
3814.. code-block:: llvm
3815
3816 DW_ATE_address = 1
3817 DW_ATE_boolean = 2
3818 DW_ATE_float = 4
3819 DW_ATE_signed = 5
3820 DW_ATE_signed_char = 6
3821 DW_ATE_unsigned = 7
3822 DW_ATE_unsigned_char = 8
3823
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003824.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003825
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003826DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827""""""""""""""""
3828
Sean Silvaa1190322015-08-06 22:56:48 +00003829``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003830refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003831types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832represents a function with no return value (such as ``void foo() {}`` in C++).
3833
3834.. code-block:: llvm
3835
3836 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3837 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003838 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003841
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003842DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003843"""""""""""""
3844
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003845``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003846qualified types.
3847
3848.. code-block:: llvm
3849
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003850 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003851 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853 align: 32)
3854
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003855The following ``tag:`` values are valid:
3856
3857.. code-block:: llvm
3858
3859 DW_TAG_formal_parameter = 5
3860 DW_TAG_member = 13
3861 DW_TAG_pointer_type = 15
3862 DW_TAG_reference_type = 16
3863 DW_TAG_typedef = 22
3864 DW_TAG_ptr_to_member_type = 31
3865 DW_TAG_const_type = 38
3866 DW_TAG_volatile_type = 53
3867 DW_TAG_restrict_type = 55
3868
3869``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003870<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3871is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003872``DW_TAG_formal_parameter`` is used to define a member which is a formal
3873argument of a subprogram.
3874
3875``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3876
3877``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3878``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3879``baseType:``.
3880
3881Note that the ``void *`` type is expressed as a type derived from NULL.
3882
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003883.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003884
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003885DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003886"""""""""""""""
3887
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003888``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003889structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890
3891If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003892identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003893can refer to composite types indirectly via a :ref:`metadata string
3894<metadata-string>` that matches their identifier.
3895
3896.. code-block:: llvm
3897
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003898 !0 = !DIEnumerator(name: "SixKind", value: 7)
3899 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3900 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3901 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003902 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3903 elements: !{!0, !1, !2})
3904
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003905The following ``tag:`` values are valid:
3906
3907.. code-block:: llvm
3908
3909 DW_TAG_array_type = 1
3910 DW_TAG_class_type = 2
3911 DW_TAG_enumeration_type = 4
3912 DW_TAG_structure_type = 19
3913 DW_TAG_union_type = 23
3914 DW_TAG_subroutine_type = 21
3915 DW_TAG_inheritance = 28
3916
3917
3918For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003919descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003920level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003921array type is a native packed vector.
3922
3923For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003924descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003925value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003926``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003927
3928For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3929``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003930<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003931
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003932.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003933
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003934DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003935""""""""""
3936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003938:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939
3940.. code-block:: llvm
3941
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003942 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3943 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3944 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003945
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003947
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003948DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949""""""""""""
3950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3952variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003953
3954.. code-block:: llvm
3955
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003956 !0 = !DIEnumerator(name: "SixKind", value: 7)
3957 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3958 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003961"""""""""""""""""""""""
3962
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003963``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003964language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003965:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003966
3967.. code-block:: llvm
3968
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003969 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003970
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003971DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003972""""""""""""""""""""""""
3973
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003974``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003975language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003976but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003977``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003978:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
3980.. code-block:: llvm
3981
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003982 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003984DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003985"""""""""""
3986
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003987``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003988
3989.. code-block:: llvm
3990
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003991 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003992
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003993DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003994""""""""""""""""
3995
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003996``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003997
3998.. code-block:: llvm
3999
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004000 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001 file: !2, line: 7, type: !3, isLocal: true,
4002 isDefinition: false, variable: i32* @foo,
4003 declaration: !4)
4004
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004005All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004006:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004007
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004009
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004010DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004011""""""""""""
4012
Peter Collingbourne50108682015-11-06 02:41:02 +00004013``DISubprogram`` nodes represent functions from the source language. A
4014``DISubprogram`` may be attached to a function definition using ``!dbg``
4015metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4016that must be retained, even if their IR counterparts are optimized out of
4017the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004018
4019.. code-block:: llvm
4020
Peter Collingbourne50108682015-11-06 02:41:02 +00004021 define void @_Z3foov() !dbg !0 {
4022 ...
4023 }
4024
4025 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4026 file: !2, line: 7, type: !3, isLocal: true,
4027 isDefinition: false, scopeLine: 8,
4028 containingType: !4,
4029 virtuality: DW_VIRTUALITY_pure_virtual,
4030 virtualIndex: 10, flags: DIFlagPrototyped,
4031 isOptimized: true, templateParams: !5,
4032 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004034.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004035
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004036DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004037""""""""""""""
4038
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004039``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004040<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004041two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004042fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043
4044.. code-block:: llvm
4045
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004046 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004047
4048Usually lexical blocks are ``distinct`` to prevent node merging based on
4049operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004050
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004051.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004053DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004054""""""""""""""""""
4055
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004056``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004057:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004058indicate textual inclusion, or the ``discriminator:`` field can be used to
4059discriminate between control flow within a single block in the source language.
4060
4061.. code-block:: llvm
4062
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004063 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4064 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4065 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004066
Michael Kuperstein605308a2015-05-14 10:58:59 +00004067.. _DILocation:
4068
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004069DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004070""""""""""
4071
Sean Silvaa1190322015-08-06 22:56:48 +00004072``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004073mandatory, and points at an :ref:`DILexicalBlockFile`, an
4074:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004075
4076.. code-block:: llvm
4077
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004078 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004079
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004080.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004081
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004082DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004083"""""""""""""""
4084
Sean Silvaa1190322015-08-06 22:56:48 +00004085``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004086the ``arg:`` field is set to non-zero, then this variable is a subprogram
4087parameter, and it will be included in the ``variables:`` field of its
4088:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004089
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004090.. code-block:: llvm
4091
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004092 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4093 type: !3, flags: DIFlagArtificial)
4094 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4095 type: !3)
4096 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004097
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004098DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004099""""""""""""
4100
Sean Silvaa1190322015-08-06 22:56:48 +00004101``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004102:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4103describe how the referenced LLVM variable relates to the source language
4104variable.
4105
4106The current supported vocabulary is limited:
4107
4108- ``DW_OP_deref`` dereferences the working expression.
4109- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4110- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4111 here, respectively) of the variable piece from the working expression.
4112
4113.. code-block:: llvm
4114
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004115 !0 = !DIExpression(DW_OP_deref)
4116 !1 = !DIExpression(DW_OP_plus, 3)
4117 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4118 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004119
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004121""""""""""""""
4122
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004123``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124
4125.. code-block:: llvm
4126
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004127 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004128 getter: "getFoo", attributes: 7, type: !2)
4129
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004130DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004131""""""""""""""""
4132
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004133``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004134compile unit.
4135
4136.. code-block:: llvm
4137
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004138 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004139 entity: !1, line: 7)
4140
Amjad Abouda9bcf162015-12-10 12:56:35 +00004141DIMacro
4142"""""""
4143
4144``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4145The ``name:`` field is the macro identifier, followed by macro parameters when
4146definining a function-like macro, and the ``value`` field is the token-string
4147used to expand the macro identifier.
4148
4149.. code-block:: llvm
4150
4151 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4152 value: "((x) + 1)")
4153 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4154
4155DIMacroFile
4156"""""""""""
4157
4158``DIMacroFile`` nodes represent inclusion of source files.
4159The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4160appear in the included source file.
4161
4162.. code-block:: llvm
4163
4164 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4165 nodes: !3)
4166
Sean Silvab084af42012-12-07 10:36:55 +00004167'``tbaa``' Metadata
4168^^^^^^^^^^^^^^^^^^^
4169
4170In LLVM IR, memory does not have types, so LLVM's own type system is not
4171suitable for doing TBAA. Instead, metadata is added to the IR to
4172describe a type system of a higher level language. This can be used to
4173implement typical C/C++ TBAA, but it can also be used to implement
4174custom alias analysis behavior for other languages.
4175
4176The current metadata format is very simple. TBAA metadata nodes have up
4177to three fields, e.g.:
4178
4179.. code-block:: llvm
4180
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004181 !0 = !{ !"an example type tree" }
4182 !1 = !{ !"int", !0 }
4183 !2 = !{ !"float", !0 }
4184 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004185
4186The first field is an identity field. It can be any value, usually a
4187metadata string, which uniquely identifies the type. The most important
4188name in the tree is the name of the root node. Two trees with different
4189root node names are entirely disjoint, even if they have leaves with
4190common names.
4191
4192The second field identifies the type's parent node in the tree, or is
4193null or omitted for a root node. A type is considered to alias all of
4194its descendants and all of its ancestors in the tree. Also, a type is
4195considered to alias all types in other trees, so that bitcode produced
4196from multiple front-ends is handled conservatively.
4197
4198If the third field is present, it's an integer which if equal to 1
4199indicates that the type is "constant" (meaning
4200``pointsToConstantMemory`` should return true; see `other useful
4201AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4202
4203'``tbaa.struct``' Metadata
4204^^^^^^^^^^^^^^^^^^^^^^^^^^
4205
4206The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4207aggregate assignment operations in C and similar languages, however it
4208is defined to copy a contiguous region of memory, which is more than
4209strictly necessary for aggregate types which contain holes due to
4210padding. Also, it doesn't contain any TBAA information about the fields
4211of the aggregate.
4212
4213``!tbaa.struct`` metadata can describe which memory subregions in a
4214memcpy are padding and what the TBAA tags of the struct are.
4215
4216The current metadata format is very simple. ``!tbaa.struct`` metadata
4217nodes are a list of operands which are in conceptual groups of three.
4218For each group of three, the first operand gives the byte offset of a
4219field in bytes, the second gives its size in bytes, and the third gives
4220its tbaa tag. e.g.:
4221
4222.. code-block:: llvm
4223
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004224 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004225
4226This describes a struct with two fields. The first is at offset 0 bytes
4227with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4228and has size 4 bytes and has tbaa tag !2.
4229
4230Note that the fields need not be contiguous. In this example, there is a
42314 byte gap between the two fields. This gap represents padding which
4232does not carry useful data and need not be preserved.
4233
Hal Finkel94146652014-07-24 14:25:39 +00004234'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004236
4237``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4238noalias memory-access sets. This means that some collection of memory access
4239instructions (loads, stores, memory-accessing calls, etc.) that carry
4240``noalias`` metadata can specifically be specified not to alias with some other
4241collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004242Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004243a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004244of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004245subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004246instruction's ``noalias`` list, then the two memory accesses are assumed not to
4247alias.
Hal Finkel94146652014-07-24 14:25:39 +00004248
Hal Finkel029cde62014-07-25 15:50:02 +00004249The metadata identifying each domain is itself a list containing one or two
4250entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004251string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004252self-reference can be used to create globally unique domain names. A
4253descriptive string may optionally be provided as a second list entry.
4254
4255The metadata identifying each scope is also itself a list containing two or
4256three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004257is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004258self-reference can be used to create globally unique scope names. A metadata
4259reference to the scope's domain is the second entry. A descriptive string may
4260optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004261
4262For example,
4263
4264.. code-block:: llvm
4265
Hal Finkel029cde62014-07-25 15:50:02 +00004266 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004267 !0 = !{!0}
4268 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004269
Hal Finkel029cde62014-07-25 15:50:02 +00004270 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004271 !2 = !{!2, !0}
4272 !3 = !{!3, !0}
4273 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004274
Hal Finkel029cde62014-07-25 15:50:02 +00004275 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004276 !5 = !{!4} ; A list containing only scope !4
4277 !6 = !{!4, !3, !2}
4278 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004279
4280 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004281 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004282 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004283
Hal Finkel029cde62014-07-25 15:50:02 +00004284 ; These two instructions also don't alias (for domain !1, the set of scopes
4285 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004286 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004287 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004288
Adam Nemet0a8416f2015-05-11 08:30:28 +00004289 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004290 ; the !noalias list is not a superset of, or equal to, the scopes in the
4291 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004292 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004293 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004294
Sean Silvab084af42012-12-07 10:36:55 +00004295'``fpmath``' Metadata
4296^^^^^^^^^^^^^^^^^^^^^
4297
4298``fpmath`` metadata may be attached to any instruction of floating point
4299type. It can be used to express the maximum acceptable error in the
4300result of that instruction, in ULPs, thus potentially allowing the
4301compiler to use a more efficient but less accurate method of computing
4302it. ULP is defined as follows:
4303
4304 If ``x`` is a real number that lies between two finite consecutive
4305 floating-point numbers ``a`` and ``b``, without being equal to one
4306 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4307 distance between the two non-equal finite floating-point numbers
4308 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4309
4310The metadata node shall consist of a single positive floating point
4311number representing the maximum relative error, for example:
4312
4313.. code-block:: llvm
4314
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004315 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004316
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004317.. _range-metadata:
4318
Sean Silvab084af42012-12-07 10:36:55 +00004319'``range``' Metadata
4320^^^^^^^^^^^^^^^^^^^^
4321
Jingyue Wu37fcb592014-06-19 16:50:16 +00004322``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4323integer types. It expresses the possible ranges the loaded value or the value
4324returned by the called function at this call site is in. The ranges are
4325represented with a flattened list of integers. The loaded value or the value
4326returned is known to be in the union of the ranges defined by each consecutive
4327pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004328
4329- The type must match the type loaded by the instruction.
4330- The pair ``a,b`` represents the range ``[a,b)``.
4331- Both ``a`` and ``b`` are constants.
4332- The range is allowed to wrap.
4333- The range should not represent the full or empty set. That is,
4334 ``a!=b``.
4335
4336In addition, the pairs must be in signed order of the lower bound and
4337they must be non-contiguous.
4338
4339Examples:
4340
4341.. code-block:: llvm
4342
David Blaikiec7aabbb2015-03-04 22:06:14 +00004343 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4344 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004345 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4346 %d = invoke i8 @bar() to label %cont
4347 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004348 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004349 !0 = !{ i8 0, i8 2 }
4350 !1 = !{ i8 255, i8 2 }
4351 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4352 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004353
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004354'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004355^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004356
4357``unpredictable`` metadata may be attached to any branch or switch
4358instruction. It can be used to express the unpredictability of control
4359flow. Similar to the llvm.expect intrinsic, it may be used to alter
4360optimizations related to compare and branch instructions. The metadata
4361is treated as a boolean value; if it exists, it signals that the branch
4362or switch that it is attached to is completely unpredictable.
4363
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004364'``llvm.loop``'
4365^^^^^^^^^^^^^^^
4366
4367It is sometimes useful to attach information to loop constructs. Currently,
4368loop metadata is implemented as metadata attached to the branch instruction
4369in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004370guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004371specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004372
4373The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004374itself to avoid merging it with any other identifier metadata, e.g.,
4375during module linkage or function inlining. That is, each loop should refer
4376to their own identification metadata even if they reside in separate functions.
4377The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004378constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004379
4380.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004381
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004382 !0 = !{!0}
4383 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004384
Mark Heffernan893752a2014-07-18 19:24:51 +00004385The loop identifier metadata can be used to specify additional
4386per-loop metadata. Any operands after the first operand can be treated
4387as user-defined metadata. For example the ``llvm.loop.unroll.count``
4388suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004389
Paul Redmond5fdf8362013-05-28 20:00:34 +00004390.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004391
Paul Redmond5fdf8362013-05-28 20:00:34 +00004392 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4393 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004394 !0 = !{!0, !1}
4395 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004396
Mark Heffernan9d20e422014-07-21 23:11:03 +00004397'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004399
Mark Heffernan9d20e422014-07-21 23:11:03 +00004400Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4401used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004402vectorization width and interleave count. These metadata should be used in
4403conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004404``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4405optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004406it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004407which contains information about loop-carried memory dependencies can be helpful
4408in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004409
Mark Heffernan9d20e422014-07-21 23:11:03 +00004410'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4412
Mark Heffernan9d20e422014-07-21 23:11:03 +00004413This metadata suggests an interleave count to the loop interleaver.
4414The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004415second operand is an integer specifying the interleave count. For
4416example:
4417
4418.. code-block:: llvm
4419
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004420 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004421
Mark Heffernan9d20e422014-07-21 23:11:03 +00004422Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004423multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004424then the interleave count will be determined automatically.
4425
4426'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004428
4429This metadata selectively enables or disables vectorization for the loop. The
4430first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004431is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000044320 disables vectorization:
4433
4434.. code-block:: llvm
4435
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004436 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4437 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004438
4439'``llvm.loop.vectorize.width``' Metadata
4440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4441
4442This metadata sets the target width of the vectorizer. The first
4443operand is the string ``llvm.loop.vectorize.width`` and the second
4444operand is an integer specifying the width. For example:
4445
4446.. code-block:: llvm
4447
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004448 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004449
4450Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004451vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000044520 or if the loop does not have this metadata the width will be
4453determined automatically.
4454
4455'``llvm.loop.unroll``'
4456^^^^^^^^^^^^^^^^^^^^^^
4457
4458Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4459optimization hints such as the unroll factor. ``llvm.loop.unroll``
4460metadata should be used in conjunction with ``llvm.loop`` loop
4461identification metadata. The ``llvm.loop.unroll`` metadata are only
4462optimization hints and the unrolling will only be performed if the
4463optimizer believes it is safe to do so.
4464
Mark Heffernan893752a2014-07-18 19:24:51 +00004465'``llvm.loop.unroll.count``' Metadata
4466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4467
4468This metadata suggests an unroll factor to the loop unroller. The
4469first operand is the string ``llvm.loop.unroll.count`` and the second
4470operand is a positive integer specifying the unroll factor. For
4471example:
4472
4473.. code-block:: llvm
4474
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004475 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004476
4477If the trip count of the loop is less than the unroll count the loop
4478will be partially unrolled.
4479
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004480'``llvm.loop.unroll.disable``' Metadata
4481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4482
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004483This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004484which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004485
4486.. code-block:: llvm
4487
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004488 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004489
Kevin Qin715b01e2015-03-09 06:14:18 +00004490'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004492
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004493This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004494operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004495
4496.. code-block:: llvm
4497
4498 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4499
Mark Heffernan89391542015-08-10 17:28:08 +00004500'``llvm.loop.unroll.enable``' Metadata
4501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4502
4503This metadata suggests that the loop should be fully unrolled if the trip count
4504is known at compile time and partially unrolled if the trip count is not known
4505at compile time. The metadata has a single operand which is the string
4506``llvm.loop.unroll.enable``. For example:
4507
4508.. code-block:: llvm
4509
4510 !0 = !{!"llvm.loop.unroll.enable"}
4511
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004512'``llvm.loop.unroll.full``' Metadata
4513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4514
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004515This metadata suggests that the loop should be unrolled fully. The
4516metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004517For example:
4518
4519.. code-block:: llvm
4520
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004521 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004522
4523'``llvm.mem``'
4524^^^^^^^^^^^^^^^
4525
4526Metadata types used to annotate memory accesses with information helpful
4527for optimizations are prefixed with ``llvm.mem``.
4528
4529'``llvm.mem.parallel_loop_access``' Metadata
4530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4531
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004532The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4533or metadata containing a list of loop identifiers for nested loops.
4534The metadata is attached to memory accessing instructions and denotes that
4535no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004536with the same loop identifier.
4537
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004538Precisely, given two instructions ``m1`` and ``m2`` that both have the
4539``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4540set of loops associated with that metadata, respectively, then there is no loop
4541carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004542``L2``.
4543
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004544As a special case, if all memory accessing instructions in a loop have
4545``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4546loop has no loop carried memory dependences and is considered to be a parallel
4547loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004548
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004549Note that if not all memory access instructions have such metadata referring to
4550the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004551memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004552safe mechanism, this causes loops that were originally parallel to be considered
4553sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004554insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004555
4556Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004557both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004558metadata types that refer to the same loop identifier metadata.
4559
4560.. code-block:: llvm
4561
4562 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004563 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004564 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004565 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004566 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004567 ...
4568 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004569
4570 for.end:
4571 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004572 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004573
4574It is also possible to have nested parallel loops. In that case the
4575memory accesses refer to a list of loop identifier metadata nodes instead of
4576the loop identifier metadata node directly:
4577
4578.. code-block:: llvm
4579
4580 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004581 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004582 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004583 ...
4584 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004585
4586 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004587 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004588 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004589 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004590 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004591 ...
4592 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004593
4594 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004595 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004596 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004597 ...
4598 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004599
4600 outer.for.end: ; preds = %for.body
4601 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004602 !0 = !{!1, !2} ; a list of loop identifiers
4603 !1 = !{!1} ; an identifier for the inner loop
4604 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004605
Peter Collingbournee6909c82015-02-20 20:30:47 +00004606'``llvm.bitsets``'
4607^^^^^^^^^^^^^^^^^^
4608
4609The ``llvm.bitsets`` global metadata is used to implement
4610:doc:`bitsets <BitSets>`.
4611
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004612'``invariant.group``' Metadata
4613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4614
4615The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4616The existence of the ``invariant.group`` metadata on the instruction tells
4617the optimizer that every ``load`` and ``store`` to the same pointer operand
4618within the same invariant group can be assumed to load or store the same
4619value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4620when two pointers are considered the same).
4621
4622Examples:
4623
4624.. code-block:: llvm
4625
4626 @unknownPtr = external global i8
4627 ...
4628 %ptr = alloca i8
4629 store i8 42, i8* %ptr, !invariant.group !0
4630 call void @foo(i8* %ptr)
4631
4632 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4633 call void @foo(i8* %ptr)
4634 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4635
4636 %newPtr = call i8* @getPointer(i8* %ptr)
4637 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4638
4639 %unknownValue = load i8, i8* @unknownPtr
4640 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4641
4642 call void @foo(i8* %ptr)
4643 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4644 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4645
4646 ...
4647 declare void @foo(i8*)
4648 declare i8* @getPointer(i8*)
4649 declare i8* @llvm.invariant.group.barrier(i8*)
4650
4651 !0 = !{!"magic ptr"}
4652 !1 = !{!"other ptr"}
4653
4654
4655
Sean Silvab084af42012-12-07 10:36:55 +00004656Module Flags Metadata
4657=====================
4658
4659Information about the module as a whole is difficult to convey to LLVM's
4660subsystems. The LLVM IR isn't sufficient to transmit this information.
4661The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004662this. These flags are in the form of key / value pairs --- much like a
4663dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004664look it up.
4665
4666The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4667Each triplet has the following form:
4668
4669- The first element is a *behavior* flag, which specifies the behavior
4670 when two (or more) modules are merged together, and it encounters two
4671 (or more) metadata with the same ID. The supported behaviors are
4672 described below.
4673- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004674 metadata. Each module may only have one flag entry for each unique ID (not
4675 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004676- The third element is the value of the flag.
4677
4678When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004679``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4680each unique metadata ID string, there will be exactly one entry in the merged
4681modules ``llvm.module.flags`` metadata table, and the value for that entry will
4682be determined by the merge behavior flag, as described below. The only exception
4683is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004684
4685The following behaviors are supported:
4686
4687.. list-table::
4688 :header-rows: 1
4689 :widths: 10 90
4690
4691 * - Value
4692 - Behavior
4693
4694 * - 1
4695 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004696 Emits an error if two values disagree, otherwise the resulting value
4697 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004698
4699 * - 2
4700 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004701 Emits a warning if two values disagree. The result value will be the
4702 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004703
4704 * - 3
4705 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004706 Adds a requirement that another module flag be present and have a
4707 specified value after linking is performed. The value must be a
4708 metadata pair, where the first element of the pair is the ID of the
4709 module flag to be restricted, and the second element of the pair is
4710 the value the module flag should be restricted to. This behavior can
4711 be used to restrict the allowable results (via triggering of an
4712 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004713
4714 * - 4
4715 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004716 Uses the specified value, regardless of the behavior or value of the
4717 other module. If both modules specify **Override**, but the values
4718 differ, an error will be emitted.
4719
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004720 * - 5
4721 - **Append**
4722 Appends the two values, which are required to be metadata nodes.
4723
4724 * - 6
4725 - **AppendUnique**
4726 Appends the two values, which are required to be metadata
4727 nodes. However, duplicate entries in the second list are dropped
4728 during the append operation.
4729
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004730It is an error for a particular unique flag ID to have multiple behaviors,
4731except in the case of **Require** (which adds restrictions on another metadata
4732value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004733
4734An example of module flags:
4735
4736.. code-block:: llvm
4737
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004738 !0 = !{ i32 1, !"foo", i32 1 }
4739 !1 = !{ i32 4, !"bar", i32 37 }
4740 !2 = !{ i32 2, !"qux", i32 42 }
4741 !3 = !{ i32 3, !"qux",
4742 !{
4743 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004744 }
4745 }
4746 !llvm.module.flags = !{ !0, !1, !2, !3 }
4747
4748- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4749 if two or more ``!"foo"`` flags are seen is to emit an error if their
4750 values are not equal.
4751
4752- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4753 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004754 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004755
4756- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4757 behavior if two or more ``!"qux"`` flags are seen is to emit a
4758 warning if their values are not equal.
4759
4760- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4761
4762 ::
4763
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004764 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004765
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004766 The behavior is to emit an error if the ``llvm.module.flags`` does not
4767 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4768 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004769
4770Objective-C Garbage Collection Module Flags Metadata
4771----------------------------------------------------
4772
4773On the Mach-O platform, Objective-C stores metadata about garbage
4774collection in a special section called "image info". The metadata
4775consists of a version number and a bitmask specifying what types of
4776garbage collection are supported (if any) by the file. If two or more
4777modules are linked together their garbage collection metadata needs to
4778be merged rather than appended together.
4779
4780The Objective-C garbage collection module flags metadata consists of the
4781following key-value pairs:
4782
4783.. list-table::
4784 :header-rows: 1
4785 :widths: 30 70
4786
4787 * - Key
4788 - Value
4789
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004790 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004791 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004792
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004793 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004794 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004795 always 0.
4796
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004797 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004798 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004799 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4800 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4801 Objective-C ABI version 2.
4802
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004803 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004804 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004805 not. Valid values are 0, for no garbage collection, and 2, for garbage
4806 collection supported.
4807
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004808 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004809 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004810 If present, its value must be 6. This flag requires that the
4811 ``Objective-C Garbage Collection`` flag have the value 2.
4812
4813Some important flag interactions:
4814
4815- If a module with ``Objective-C Garbage Collection`` set to 0 is
4816 merged with a module with ``Objective-C Garbage Collection`` set to
4817 2, then the resulting module has the
4818 ``Objective-C Garbage Collection`` flag set to 0.
4819- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4820 merged with a module with ``Objective-C GC Only`` set to 6.
4821
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004822Automatic Linker Flags Module Flags Metadata
4823--------------------------------------------
4824
4825Some targets support embedding flags to the linker inside individual object
4826files. Typically this is used in conjunction with language extensions which
4827allow source files to explicitly declare the libraries they depend on, and have
4828these automatically be transmitted to the linker via object files.
4829
4830These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004831using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004832to be ``AppendUnique``, and the value for the key is expected to be a metadata
4833node which should be a list of other metadata nodes, each of which should be a
4834list of metadata strings defining linker options.
4835
4836For example, the following metadata section specifies two separate sets of
4837linker options, presumably to link against ``libz`` and the ``Cocoa``
4838framework::
4839
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004840 !0 = !{ i32 6, !"Linker Options",
4841 !{
4842 !{ !"-lz" },
4843 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004844 !llvm.module.flags = !{ !0 }
4845
4846The metadata encoding as lists of lists of options, as opposed to a collapsed
4847list of options, is chosen so that the IR encoding can use multiple option
4848strings to specify e.g., a single library, while still having that specifier be
4849preserved as an atomic element that can be recognized by a target specific
4850assembly writer or object file emitter.
4851
4852Each individual option is required to be either a valid option for the target's
4853linker, or an option that is reserved by the target specific assembly writer or
4854object file emitter. No other aspect of these options is defined by the IR.
4855
Oliver Stannard5dc29342014-06-20 10:08:11 +00004856C type width Module Flags Metadata
4857----------------------------------
4858
4859The ARM backend emits a section into each generated object file describing the
4860options that it was compiled with (in a compiler-independent way) to prevent
4861linking incompatible objects, and to allow automatic library selection. Some
4862of these options are not visible at the IR level, namely wchar_t width and enum
4863width.
4864
4865To pass this information to the backend, these options are encoded in module
4866flags metadata, using the following key-value pairs:
4867
4868.. list-table::
4869 :header-rows: 1
4870 :widths: 30 70
4871
4872 * - Key
4873 - Value
4874
4875 * - short_wchar
4876 - * 0 --- sizeof(wchar_t) == 4
4877 * 1 --- sizeof(wchar_t) == 2
4878
4879 * - short_enum
4880 - * 0 --- Enums are at least as large as an ``int``.
4881 * 1 --- Enums are stored in the smallest integer type which can
4882 represent all of its values.
4883
4884For example, the following metadata section specifies that the module was
4885compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4886enum is the smallest type which can represent all of its values::
4887
4888 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004889 !0 = !{i32 1, !"short_wchar", i32 1}
4890 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004891
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004892.. _intrinsicglobalvariables:
4893
Sean Silvab084af42012-12-07 10:36:55 +00004894Intrinsic Global Variables
4895==========================
4896
4897LLVM has a number of "magic" global variables that contain data that
4898affect code generation or other IR semantics. These are documented here.
4899All globals of this sort should have a section specified as
4900"``llvm.metadata``". This section and all globals that start with
4901"``llvm.``" are reserved for use by LLVM.
4902
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004903.. _gv_llvmused:
4904
Sean Silvab084af42012-12-07 10:36:55 +00004905The '``llvm.used``' Global Variable
4906-----------------------------------
4907
Rafael Espindola74f2e462013-04-22 14:58:02 +00004908The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004909:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004910pointers to named global variables, functions and aliases which may optionally
4911have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004912use of it is:
4913
4914.. code-block:: llvm
4915
4916 @X = global i8 4
4917 @Y = global i32 123
4918
4919 @llvm.used = appending global [2 x i8*] [
4920 i8* @X,
4921 i8* bitcast (i32* @Y to i8*)
4922 ], section "llvm.metadata"
4923
Rafael Espindola74f2e462013-04-22 14:58:02 +00004924If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4925and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004926symbol that it cannot see (which is why they have to be named). For example, if
4927a variable has internal linkage and no references other than that from the
4928``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4929references from inline asms and other things the compiler cannot "see", and
4930corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004931
4932On some targets, the code generator must emit a directive to the
4933assembler or object file to prevent the assembler and linker from
4934molesting the symbol.
4935
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004936.. _gv_llvmcompilerused:
4937
Sean Silvab084af42012-12-07 10:36:55 +00004938The '``llvm.compiler.used``' Global Variable
4939--------------------------------------------
4940
4941The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4942directive, except that it only prevents the compiler from touching the
4943symbol. On targets that support it, this allows an intelligent linker to
4944optimize references to the symbol without being impeded as it would be
4945by ``@llvm.used``.
4946
4947This is a rare construct that should only be used in rare circumstances,
4948and should not be exposed to source languages.
4949
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004950.. _gv_llvmglobalctors:
4951
Sean Silvab084af42012-12-07 10:36:55 +00004952The '``llvm.global_ctors``' Global Variable
4953-------------------------------------------
4954
4955.. code-block:: llvm
4956
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004957 %0 = type { i32, void ()*, i8* }
4958 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004959
4960The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004961functions, priorities, and an optional associated global or function.
4962The functions referenced by this array will be called in ascending order
4963of priority (i.e. lowest first) when the module is loaded. The order of
4964functions with the same priority is not defined.
4965
4966If the third field is present, non-null, and points to a global variable
4967or function, the initializer function will only run if the associated
4968data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004969
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004970.. _llvmglobaldtors:
4971
Sean Silvab084af42012-12-07 10:36:55 +00004972The '``llvm.global_dtors``' Global Variable
4973-------------------------------------------
4974
4975.. code-block:: llvm
4976
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004977 %0 = type { i32, void ()*, i8* }
4978 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004979
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004980The ``@llvm.global_dtors`` array contains a list of destructor
4981functions, priorities, and an optional associated global or function.
4982The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004983order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004984order of functions with the same priority is not defined.
4985
4986If the third field is present, non-null, and points to a global variable
4987or function, the destructor function will only run if the associated
4988data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004989
4990Instruction Reference
4991=====================
4992
4993The LLVM instruction set consists of several different classifications
4994of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4995instructions <binaryops>`, :ref:`bitwise binary
4996instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4997:ref:`other instructions <otherops>`.
4998
4999.. _terminators:
5000
5001Terminator Instructions
5002-----------------------
5003
5004As mentioned :ref:`previously <functionstructure>`, every basic block in a
5005program ends with a "Terminator" instruction, which indicates which
5006block should be executed after the current block is finished. These
5007terminator instructions typically yield a '``void``' value: they produce
5008control flow, not values (the one exception being the
5009':ref:`invoke <i_invoke>`' instruction).
5010
5011The terminator instructions are: ':ref:`ret <i_ret>`',
5012':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5013':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005014':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005015':ref:`catchret <i_catchret>`',
5016':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005017and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005018
5019.. _i_ret:
5020
5021'``ret``' Instruction
5022^^^^^^^^^^^^^^^^^^^^^
5023
5024Syntax:
5025"""""""
5026
5027::
5028
5029 ret <type> <value> ; Return a value from a non-void function
5030 ret void ; Return from void function
5031
5032Overview:
5033"""""""""
5034
5035The '``ret``' instruction is used to return control flow (and optionally
5036a value) from a function back to the caller.
5037
5038There are two forms of the '``ret``' instruction: one that returns a
5039value and then causes control flow, and one that just causes control
5040flow to occur.
5041
5042Arguments:
5043""""""""""
5044
5045The '``ret``' instruction optionally accepts a single argument, the
5046return value. The type of the return value must be a ':ref:`first
5047class <t_firstclass>`' type.
5048
5049A function is not :ref:`well formed <wellformed>` if it it has a non-void
5050return type and contains a '``ret``' instruction with no return value or
5051a return value with a type that does not match its type, or if it has a
5052void return type and contains a '``ret``' instruction with a return
5053value.
5054
5055Semantics:
5056""""""""""
5057
5058When the '``ret``' instruction is executed, control flow returns back to
5059the calling function's context. If the caller is a
5060":ref:`call <i_call>`" instruction, execution continues at the
5061instruction after the call. If the caller was an
5062":ref:`invoke <i_invoke>`" instruction, execution continues at the
5063beginning of the "normal" destination block. If the instruction returns
5064a value, that value shall set the call or invoke instruction's return
5065value.
5066
5067Example:
5068""""""""
5069
5070.. code-block:: llvm
5071
5072 ret i32 5 ; Return an integer value of 5
5073 ret void ; Return from a void function
5074 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5075
5076.. _i_br:
5077
5078'``br``' Instruction
5079^^^^^^^^^^^^^^^^^^^^
5080
5081Syntax:
5082"""""""
5083
5084::
5085
5086 br i1 <cond>, label <iftrue>, label <iffalse>
5087 br label <dest> ; Unconditional branch
5088
5089Overview:
5090"""""""""
5091
5092The '``br``' instruction is used to cause control flow to transfer to a
5093different basic block in the current function. There are two forms of
5094this instruction, corresponding to a conditional branch and an
5095unconditional branch.
5096
5097Arguments:
5098""""""""""
5099
5100The conditional branch form of the '``br``' instruction takes a single
5101'``i1``' value and two '``label``' values. The unconditional form of the
5102'``br``' instruction takes a single '``label``' value as a target.
5103
5104Semantics:
5105""""""""""
5106
5107Upon execution of a conditional '``br``' instruction, the '``i1``'
5108argument is evaluated. If the value is ``true``, control flows to the
5109'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5110to the '``iffalse``' ``label`` argument.
5111
5112Example:
5113""""""""
5114
5115.. code-block:: llvm
5116
5117 Test:
5118 %cond = icmp eq i32 %a, %b
5119 br i1 %cond, label %IfEqual, label %IfUnequal
5120 IfEqual:
5121 ret i32 1
5122 IfUnequal:
5123 ret i32 0
5124
5125.. _i_switch:
5126
5127'``switch``' Instruction
5128^^^^^^^^^^^^^^^^^^^^^^^^
5129
5130Syntax:
5131"""""""
5132
5133::
5134
5135 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5136
5137Overview:
5138"""""""""
5139
5140The '``switch``' instruction is used to transfer control flow to one of
5141several different places. It is a generalization of the '``br``'
5142instruction, allowing a branch to occur to one of many possible
5143destinations.
5144
5145Arguments:
5146""""""""""
5147
5148The '``switch``' instruction uses three parameters: an integer
5149comparison value '``value``', a default '``label``' destination, and an
5150array of pairs of comparison value constants and '``label``'s. The table
5151is not allowed to contain duplicate constant entries.
5152
5153Semantics:
5154""""""""""
5155
5156The ``switch`` instruction specifies a table of values and destinations.
5157When the '``switch``' instruction is executed, this table is searched
5158for the given value. If the value is found, control flow is transferred
5159to the corresponding destination; otherwise, control flow is transferred
5160to the default destination.
5161
5162Implementation:
5163"""""""""""""""
5164
5165Depending on properties of the target machine and the particular
5166``switch`` instruction, this instruction may be code generated in
5167different ways. For example, it could be generated as a series of
5168chained conditional branches or with a lookup table.
5169
5170Example:
5171""""""""
5172
5173.. code-block:: llvm
5174
5175 ; Emulate a conditional br instruction
5176 %Val = zext i1 %value to i32
5177 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5178
5179 ; Emulate an unconditional br instruction
5180 switch i32 0, label %dest [ ]
5181
5182 ; Implement a jump table:
5183 switch i32 %val, label %otherwise [ i32 0, label %onzero
5184 i32 1, label %onone
5185 i32 2, label %ontwo ]
5186
5187.. _i_indirectbr:
5188
5189'``indirectbr``' Instruction
5190^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5191
5192Syntax:
5193"""""""
5194
5195::
5196
5197 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5198
5199Overview:
5200"""""""""
5201
5202The '``indirectbr``' instruction implements an indirect branch to a
5203label within the current function, whose address is specified by
5204"``address``". Address must be derived from a
5205:ref:`blockaddress <blockaddress>` constant.
5206
5207Arguments:
5208""""""""""
5209
5210The '``address``' argument is the address of the label to jump to. The
5211rest of the arguments indicate the full set of possible destinations
5212that the address may point to. Blocks are allowed to occur multiple
5213times in the destination list, though this isn't particularly useful.
5214
5215This destination list is required so that dataflow analysis has an
5216accurate understanding of the CFG.
5217
5218Semantics:
5219""""""""""
5220
5221Control transfers to the block specified in the address argument. All
5222possible destination blocks must be listed in the label list, otherwise
5223this instruction has undefined behavior. This implies that jumps to
5224labels defined in other functions have undefined behavior as well.
5225
5226Implementation:
5227"""""""""""""""
5228
5229This is typically implemented with a jump through a register.
5230
5231Example:
5232""""""""
5233
5234.. code-block:: llvm
5235
5236 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5237
5238.. _i_invoke:
5239
5240'``invoke``' Instruction
5241^^^^^^^^^^^^^^^^^^^^^^^^
5242
5243Syntax:
5244"""""""
5245
5246::
5247
5248 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005249 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005250
5251Overview:
5252"""""""""
5253
5254The '``invoke``' instruction causes control to transfer to a specified
5255function, with the possibility of control flow transfer to either the
5256'``normal``' label or the '``exception``' label. If the callee function
5257returns with the "``ret``" instruction, control flow will return to the
5258"normal" label. If the callee (or any indirect callees) returns via the
5259":ref:`resume <i_resume>`" instruction or other exception handling
5260mechanism, control is interrupted and continued at the dynamically
5261nearest "exception" label.
5262
5263The '``exception``' label is a `landing
5264pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5265'``exception``' label is required to have the
5266":ref:`landingpad <i_landingpad>`" instruction, which contains the
5267information about the behavior of the program after unwinding happens,
5268as its first non-PHI instruction. The restrictions on the
5269"``landingpad``" instruction's tightly couples it to the "``invoke``"
5270instruction, so that the important information contained within the
5271"``landingpad``" instruction can't be lost through normal code motion.
5272
5273Arguments:
5274""""""""""
5275
5276This instruction requires several arguments:
5277
5278#. The optional "cconv" marker indicates which :ref:`calling
5279 convention <callingconv>` the call should use. If none is
5280 specified, the call defaults to using C calling conventions.
5281#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5282 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5283 are valid here.
5284#. '``ptr to function ty``': shall be the signature of the pointer to
5285 function value being invoked. In most cases, this is a direct
5286 function invocation, but indirect ``invoke``'s are just as possible,
5287 branching off an arbitrary pointer to function value.
5288#. '``function ptr val``': An LLVM value containing a pointer to a
5289 function to be invoked.
5290#. '``function args``': argument list whose types match the function
5291 signature argument types and parameter attributes. All arguments must
5292 be of :ref:`first class <t_firstclass>` type. If the function signature
5293 indicates the function accepts a variable number of arguments, the
5294 extra arguments can be specified.
5295#. '``normal label``': the label reached when the called function
5296 executes a '``ret``' instruction.
5297#. '``exception label``': the label reached when a callee returns via
5298 the :ref:`resume <i_resume>` instruction or other exception handling
5299 mechanism.
5300#. The optional :ref:`function attributes <fnattrs>` list. Only
5301 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5302 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005303#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005304
5305Semantics:
5306""""""""""
5307
5308This instruction is designed to operate as a standard '``call``'
5309instruction in most regards. The primary difference is that it
5310establishes an association with a label, which is used by the runtime
5311library to unwind the stack.
5312
5313This instruction is used in languages with destructors to ensure that
5314proper cleanup is performed in the case of either a ``longjmp`` or a
5315thrown exception. Additionally, this is important for implementation of
5316'``catch``' clauses in high-level languages that support them.
5317
5318For the purposes of the SSA form, the definition of the value returned
5319by the '``invoke``' instruction is deemed to occur on the edge from the
5320current block to the "normal" label. If the callee unwinds then no
5321return value is available.
5322
5323Example:
5324""""""""
5325
5326.. code-block:: llvm
5327
5328 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005329 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005330 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005331 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005332
5333.. _i_resume:
5334
5335'``resume``' Instruction
5336^^^^^^^^^^^^^^^^^^^^^^^^
5337
5338Syntax:
5339"""""""
5340
5341::
5342
5343 resume <type> <value>
5344
5345Overview:
5346"""""""""
5347
5348The '``resume``' instruction is a terminator instruction that has no
5349successors.
5350
5351Arguments:
5352""""""""""
5353
5354The '``resume``' instruction requires one argument, which must have the
5355same type as the result of any '``landingpad``' instruction in the same
5356function.
5357
5358Semantics:
5359""""""""""
5360
5361The '``resume``' instruction resumes propagation of an existing
5362(in-flight) exception whose unwinding was interrupted with a
5363:ref:`landingpad <i_landingpad>` instruction.
5364
5365Example:
5366""""""""
5367
5368.. code-block:: llvm
5369
5370 resume { i8*, i32 } %exn
5371
David Majnemer8a1c45d2015-12-12 05:38:55 +00005372.. _i_catchswitch:
5373
5374'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005376
5377Syntax:
5378"""""""
5379
5380::
5381
5382 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5383 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5384
5385Overview:
5386"""""""""
5387
5388The '``catchswitch``' instruction is used by `LLVM's exception handling system
5389<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5390that may be executed by the :ref:`EH personality routine <personalityfn>`.
5391
5392Arguments:
5393""""""""""
5394
5395The ``parent`` argument is the token of the funclet that contains the
5396``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5397this operand may be the token ``none``.
5398
5399The ``default`` argument is the label of another basic block beginning with a
David Majnemerbbfc7212015-12-14 18:34:23 +00005400"pad" instruction, one of ``cleanuppad`` or ``catchswitch``.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005401
5402The ``handlers`` are a list of successor blocks that each begin with a
5403:ref:`catchpad <i_catchpad>` instruction.
5404
5405Semantics:
5406""""""""""
5407
5408Executing this instruction transfers control to one of the successors in
5409``handlers``, if appropriate, or continues to unwind via the unwind label if
5410present.
5411
5412The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5413it must be both the first non-phi instruction and last instruction in the basic
5414block. Therefore, it must be the only non-phi instruction in the block.
5415
5416Example:
5417""""""""
5418
5419.. code-block:: llvm
5420
5421 dispatch1:
5422 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5423 dispatch2:
5424 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5425
David Majnemer654e1302015-07-31 17:58:14 +00005426.. _i_catchpad:
5427
5428'``catchpad``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005429^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer654e1302015-07-31 17:58:14 +00005430
5431Syntax:
5432"""""""
5433
5434::
5435
David Majnemer8a1c45d2015-12-12 05:38:55 +00005436 <resultval> = catchpad within <catchswitch> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005437
5438Overview:
5439"""""""""
5440
5441The '``catchpad``' instruction is used by `LLVM's exception handling
5442system <ExceptionHandling.html#overview>`_ to specify that a basic block
David Majnemer8a1c45d2015-12-12 05:38:55 +00005443begins a catch handler --- one where a personality routine attempts to transfer
David Majnemer654e1302015-07-31 17:58:14 +00005444control to catch an exception.
David Majnemer654e1302015-07-31 17:58:14 +00005445
5446Arguments:
5447""""""""""
5448
David Majnemer8a1c45d2015-12-12 05:38:55 +00005449The ``catchswitch`` operand must always be a token produced by a
5450:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
5451ensures that each ``catchpad`` has exactly one predecessor block, and it always
5452terminates in a ``catchswitch``.
David Majnemer654e1302015-07-31 17:58:14 +00005453
David Majnemer8a1c45d2015-12-12 05:38:55 +00005454The ``args`` correspond to whatever information the personality routine
5455requires to know if this is an appropriate handler for the exception. Control
5456will transfer to the ``catchpad`` if this is the first appropriate handler for
5457the exception.
5458
5459The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
5460``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
5461pads.
David Majnemer654e1302015-07-31 17:58:14 +00005462
5463Semantics:
5464""""""""""
5465
David Majnemer8a1c45d2015-12-12 05:38:55 +00005466When the call stack is being unwound due to an exception being thrown, the
5467exception is compared against the ``args``. If it doesn't match, control will
5468not reach the ``catchpad`` instruction. The representation of ``args`` is
5469entirely target and personality function-specific.
David Majnemer654e1302015-07-31 17:58:14 +00005470
David Majnemer8a1c45d2015-12-12 05:38:55 +00005471Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
5472instruction must be the first non-phi of its parent basic block.
David Majnemer654e1302015-07-31 17:58:14 +00005473
David Majnemer8a1c45d2015-12-12 05:38:55 +00005474The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
5475instructions is described in the
5476`Windows exception handling documentation <ExceptionHandling.html#wineh>`.
5477
5478Executing a ``catchpad`` instruction constitutes "entering" that pad.
5479The pad may then be "exited" in one of three ways:
Akira Hatanakaa84428e2015-12-15 19:11:48 +00005480
David Majnemer8a1c45d2015-12-12 05:38:55 +000054811) explicitly via a ``catchret`` that consumes it. Executing such a ``catchret``
5482 is undefined behavior if any descendant pads have been entered but not yet
5483 exited.
54842) implicitly via a call (which unwinds all the way to the current function's caller),
David Majnemerbbfc7212015-12-14 18:34:23 +00005485 or via a ``catchswitch`` or a ``cleanupret`` that unwinds to caller.
David Majnemer8a1c45d2015-12-12 05:38:55 +000054863) implicitly via an unwind edge whose destination EH pad isn't a descendant of
5487 the ``catchpad``. When the ``catchpad`` is exited in this manner, it is
5488 undefined behavior if the destination EH pad has a parent which is not an
5489 ancestor of the ``catchpad`` being exited.
David Majnemer654e1302015-07-31 17:58:14 +00005490
5491Example:
5492""""""""
5493
5494.. code-block:: llvm
5495
David Majnemer8a1c45d2015-12-12 05:38:55 +00005496 dispatch:
5497 %cs = catchswitch within none [label %handler0] unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005498 ;; A catch block which can catch an integer.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005499 handler0:
5500 %tok = catchpad within %cs [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005501
5502.. _i_catchret:
5503
5504'``catchret``' Instruction
5505^^^^^^^^^^^^^^^^^^^^^^^^^^
5506
5507Syntax:
5508"""""""
5509
5510::
5511
David Majnemer8a1c45d2015-12-12 05:38:55 +00005512 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005513
5514Overview:
5515"""""""""
5516
5517The '``catchret``' instruction is a terminator instruction that has a
5518single successor.
5519
5520
5521Arguments:
5522""""""""""
5523
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005524The first argument to a '``catchret``' indicates which ``catchpad`` it
5525exits. It must be a :ref:`catchpad <i_catchpad>`.
5526The second argument to a '``catchret``' specifies where control will
5527transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005528
5529Semantics:
5530""""""""""
5531
David Majnemer8a1c45d2015-12-12 05:38:55 +00005532The '``catchret``' instruction ends an existing (in-flight) exception whose
5533unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5534:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5535code to, for example, destroy the active exception. Control then transfers to
5536``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005537
David Majnemer8a1c45d2015-12-12 05:38:55 +00005538The ``token`` argument must be a token produced by a dominating ``catchpad``
5539instruction. The ``catchret`` destroys the physical frame established by
5540``catchpad``, so executing multiple returns on the same token without
5541re-executing the ``catchpad`` will result in undefined behavior.
5542See :ref:`catchpad <i_catchpad>` for more details.
David Majnemer654e1302015-07-31 17:58:14 +00005543
5544Example:
5545""""""""
5546
5547.. code-block:: llvm
5548
David Majnemer8a1c45d2015-12-12 05:38:55 +00005549 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005550
David Majnemer654e1302015-07-31 17:58:14 +00005551.. _i_cleanupret:
5552
5553'``cleanupret``' Instruction
5554^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5555
5556Syntax:
5557"""""""
5558
5559::
5560
David Majnemer8a1c45d2015-12-12 05:38:55 +00005561 cleanupret from <value> unwind label <continue>
5562 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005563
5564Overview:
5565"""""""""
5566
5567The '``cleanupret``' instruction is a terminator instruction that has
5568an optional successor.
5569
5570
5571Arguments:
5572""""""""""
5573
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005574The '``cleanupret``' instruction requires one argument, which indicates
5575which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
5576It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005577
5578Semantics:
5579""""""""""
5580
5581The '``cleanupret``' instruction indicates to the
5582:ref:`personality function <personalityfn>` that one
5583:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5584It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005585
David Majnemer8a1c45d2015-12-12 05:38:55 +00005586The unwind destination ``continue``, if present, must be an EH pad
5587whose parent is either ``none`` or an ancestor of the ``cleanuppad``
5588being returned from. This constitutes an exceptional exit from all
5589ancestors of the completed ``cleanuppad``, up to but not including
5590the parent of ``continue``.
5591See :ref:`cleanuppad <i_cleanuppad>` for more details.
David Majnemer654e1302015-07-31 17:58:14 +00005592
5593Example:
5594""""""""
5595
5596.. code-block:: llvm
5597
David Majnemer8a1c45d2015-12-12 05:38:55 +00005598 cleanupret from %cleanup unwind to caller
5599 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005600
Sean Silvab084af42012-12-07 10:36:55 +00005601.. _i_unreachable:
5602
5603'``unreachable``' Instruction
5604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5605
5606Syntax:
5607"""""""
5608
5609::
5610
5611 unreachable
5612
5613Overview:
5614"""""""""
5615
5616The '``unreachable``' instruction has no defined semantics. This
5617instruction is used to inform the optimizer that a particular portion of
5618the code is not reachable. This can be used to indicate that the code
5619after a no-return function cannot be reached, and other facts.
5620
5621Semantics:
5622""""""""""
5623
5624The '``unreachable``' instruction has no defined semantics.
5625
5626.. _binaryops:
5627
5628Binary Operations
5629-----------------
5630
5631Binary operators are used to do most of the computation in a program.
5632They require two operands of the same type, execute an operation on
5633them, and produce a single value. The operands might represent multiple
5634data, as is the case with the :ref:`vector <t_vector>` data type. The
5635result value has the same type as its operands.
5636
5637There are several different binary operators:
5638
5639.. _i_add:
5640
5641'``add``' Instruction
5642^^^^^^^^^^^^^^^^^^^^^
5643
5644Syntax:
5645"""""""
5646
5647::
5648
Tim Northover675a0962014-06-13 14:24:23 +00005649 <result> = add <ty> <op1>, <op2> ; yields ty:result
5650 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5651 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5652 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005653
5654Overview:
5655"""""""""
5656
5657The '``add``' instruction returns the sum of its two operands.
5658
5659Arguments:
5660""""""""""
5661
5662The two arguments to the '``add``' instruction must be
5663:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5664arguments must have identical types.
5665
5666Semantics:
5667""""""""""
5668
5669The value produced is the integer sum of the two operands.
5670
5671If the sum has unsigned overflow, the result returned is the
5672mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5673the result.
5674
5675Because LLVM integers use a two's complement representation, this
5676instruction is appropriate for both signed and unsigned integers.
5677
5678``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5679respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5680result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5681unsigned and/or signed overflow, respectively, occurs.
5682
5683Example:
5684""""""""
5685
5686.. code-block:: llvm
5687
Tim Northover675a0962014-06-13 14:24:23 +00005688 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005689
5690.. _i_fadd:
5691
5692'``fadd``' Instruction
5693^^^^^^^^^^^^^^^^^^^^^^
5694
5695Syntax:
5696"""""""
5697
5698::
5699
Tim Northover675a0962014-06-13 14:24:23 +00005700 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005701
5702Overview:
5703"""""""""
5704
5705The '``fadd``' instruction returns the sum of its two operands.
5706
5707Arguments:
5708""""""""""
5709
5710The two arguments to the '``fadd``' instruction must be :ref:`floating
5711point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5712Both arguments must have identical types.
5713
5714Semantics:
5715""""""""""
5716
5717The value produced is the floating point sum of the two operands. This
5718instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5719which are optimization hints to enable otherwise unsafe floating point
5720optimizations:
5721
5722Example:
5723""""""""
5724
5725.. code-block:: llvm
5726
Tim Northover675a0962014-06-13 14:24:23 +00005727 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005728
5729'``sub``' Instruction
5730^^^^^^^^^^^^^^^^^^^^^
5731
5732Syntax:
5733"""""""
5734
5735::
5736
Tim Northover675a0962014-06-13 14:24:23 +00005737 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5738 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5739 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5740 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005741
5742Overview:
5743"""""""""
5744
5745The '``sub``' instruction returns the difference of its two operands.
5746
5747Note that the '``sub``' instruction is used to represent the '``neg``'
5748instruction present in most other intermediate representations.
5749
5750Arguments:
5751""""""""""
5752
5753The two arguments to the '``sub``' instruction must be
5754:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5755arguments must have identical types.
5756
5757Semantics:
5758""""""""""
5759
5760The value produced is the integer difference of the two operands.
5761
5762If the difference has unsigned overflow, the result returned is the
5763mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5764the result.
5765
5766Because LLVM integers use a two's complement representation, this
5767instruction is appropriate for both signed and unsigned integers.
5768
5769``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5770respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5771result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5772unsigned and/or signed overflow, respectively, occurs.
5773
5774Example:
5775""""""""
5776
5777.. code-block:: llvm
5778
Tim Northover675a0962014-06-13 14:24:23 +00005779 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5780 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005781
5782.. _i_fsub:
5783
5784'``fsub``' Instruction
5785^^^^^^^^^^^^^^^^^^^^^^
5786
5787Syntax:
5788"""""""
5789
5790::
5791
Tim Northover675a0962014-06-13 14:24:23 +00005792 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005793
5794Overview:
5795"""""""""
5796
5797The '``fsub``' instruction returns the difference of its two operands.
5798
5799Note that the '``fsub``' instruction is used to represent the '``fneg``'
5800instruction present in most other intermediate representations.
5801
5802Arguments:
5803""""""""""
5804
5805The two arguments to the '``fsub``' instruction must be :ref:`floating
5806point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5807Both arguments must have identical types.
5808
5809Semantics:
5810""""""""""
5811
5812The value produced is the floating point difference of the two operands.
5813This instruction can also take any number of :ref:`fast-math
5814flags <fastmath>`, which are optimization hints to enable otherwise
5815unsafe floating point optimizations:
5816
5817Example:
5818""""""""
5819
5820.. code-block:: llvm
5821
Tim Northover675a0962014-06-13 14:24:23 +00005822 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5823 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005824
5825'``mul``' Instruction
5826^^^^^^^^^^^^^^^^^^^^^
5827
5828Syntax:
5829"""""""
5830
5831::
5832
Tim Northover675a0962014-06-13 14:24:23 +00005833 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5834 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5835 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5836 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005837
5838Overview:
5839"""""""""
5840
5841The '``mul``' instruction returns the product of its two operands.
5842
5843Arguments:
5844""""""""""
5845
5846The two arguments to the '``mul``' instruction must be
5847:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5848arguments must have identical types.
5849
5850Semantics:
5851""""""""""
5852
5853The value produced is the integer product of the two operands.
5854
5855If the result of the multiplication has unsigned overflow, the result
5856returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5857bit width of the result.
5858
5859Because LLVM integers use a two's complement representation, and the
5860result is the same width as the operands, this instruction returns the
5861correct result for both signed and unsigned integers. If a full product
5862(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5863sign-extended or zero-extended as appropriate to the width of the full
5864product.
5865
5866``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5867respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5868result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5869unsigned and/or signed overflow, respectively, occurs.
5870
5871Example:
5872""""""""
5873
5874.. code-block:: llvm
5875
Tim Northover675a0962014-06-13 14:24:23 +00005876 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005877
5878.. _i_fmul:
5879
5880'``fmul``' Instruction
5881^^^^^^^^^^^^^^^^^^^^^^
5882
5883Syntax:
5884"""""""
5885
5886::
5887
Tim Northover675a0962014-06-13 14:24:23 +00005888 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005889
5890Overview:
5891"""""""""
5892
5893The '``fmul``' instruction returns the product of its two operands.
5894
5895Arguments:
5896""""""""""
5897
5898The two arguments to the '``fmul``' instruction must be :ref:`floating
5899point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5900Both arguments must have identical types.
5901
5902Semantics:
5903""""""""""
5904
5905The value produced is the floating point product of the two operands.
5906This instruction can also take any number of :ref:`fast-math
5907flags <fastmath>`, which are optimization hints to enable otherwise
5908unsafe floating point optimizations:
5909
5910Example:
5911""""""""
5912
5913.. code-block:: llvm
5914
Tim Northover675a0962014-06-13 14:24:23 +00005915 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005916
5917'``udiv``' Instruction
5918^^^^^^^^^^^^^^^^^^^^^^
5919
5920Syntax:
5921"""""""
5922
5923::
5924
Tim Northover675a0962014-06-13 14:24:23 +00005925 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5926 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005927
5928Overview:
5929"""""""""
5930
5931The '``udiv``' instruction returns the quotient of its two operands.
5932
5933Arguments:
5934""""""""""
5935
5936The two arguments to the '``udiv``' instruction must be
5937:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5938arguments must have identical types.
5939
5940Semantics:
5941""""""""""
5942
5943The value produced is the unsigned integer quotient of the two operands.
5944
5945Note that unsigned integer division and signed integer division are
5946distinct operations; for signed integer division, use '``sdiv``'.
5947
5948Division by zero leads to undefined behavior.
5949
5950If the ``exact`` keyword is present, the result value of the ``udiv`` is
5951a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5952such, "((a udiv exact b) mul b) == a").
5953
5954Example:
5955""""""""
5956
5957.. code-block:: llvm
5958
Tim Northover675a0962014-06-13 14:24:23 +00005959 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005960
5961'``sdiv``' Instruction
5962^^^^^^^^^^^^^^^^^^^^^^
5963
5964Syntax:
5965"""""""
5966
5967::
5968
Tim Northover675a0962014-06-13 14:24:23 +00005969 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5970 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005971
5972Overview:
5973"""""""""
5974
5975The '``sdiv``' instruction returns the quotient of its two operands.
5976
5977Arguments:
5978""""""""""
5979
5980The two arguments to the '``sdiv``' instruction must be
5981:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5982arguments must have identical types.
5983
5984Semantics:
5985""""""""""
5986
5987The value produced is the signed integer quotient of the two operands
5988rounded towards zero.
5989
5990Note that signed integer division and unsigned integer division are
5991distinct operations; for unsigned integer division, use '``udiv``'.
5992
5993Division by zero leads to undefined behavior. Overflow also leads to
5994undefined behavior; this is a rare case, but can occur, for example, by
5995doing a 32-bit division of -2147483648 by -1.
5996
5997If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5998a :ref:`poison value <poisonvalues>` if the result would be rounded.
5999
6000Example:
6001""""""""
6002
6003.. code-block:: llvm
6004
Tim Northover675a0962014-06-13 14:24:23 +00006005 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006006
6007.. _i_fdiv:
6008
6009'``fdiv``' Instruction
6010^^^^^^^^^^^^^^^^^^^^^^
6011
6012Syntax:
6013"""""""
6014
6015::
6016
Tim Northover675a0962014-06-13 14:24:23 +00006017 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006018
6019Overview:
6020"""""""""
6021
6022The '``fdiv``' instruction returns the quotient of its two operands.
6023
6024Arguments:
6025""""""""""
6026
6027The two arguments to the '``fdiv``' instruction must be :ref:`floating
6028point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6029Both arguments must have identical types.
6030
6031Semantics:
6032""""""""""
6033
6034The value produced is the floating point quotient of the two operands.
6035This instruction can also take any number of :ref:`fast-math
6036flags <fastmath>`, which are optimization hints to enable otherwise
6037unsafe floating point optimizations:
6038
6039Example:
6040""""""""
6041
6042.. code-block:: llvm
6043
Tim Northover675a0962014-06-13 14:24:23 +00006044 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006045
6046'``urem``' Instruction
6047^^^^^^^^^^^^^^^^^^^^^^
6048
6049Syntax:
6050"""""""
6051
6052::
6053
Tim Northover675a0962014-06-13 14:24:23 +00006054 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006055
6056Overview:
6057"""""""""
6058
6059The '``urem``' instruction returns the remainder from the unsigned
6060division of its two arguments.
6061
6062Arguments:
6063""""""""""
6064
6065The two arguments to the '``urem``' instruction must be
6066:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6067arguments must have identical types.
6068
6069Semantics:
6070""""""""""
6071
6072This instruction returns the unsigned integer *remainder* of a division.
6073This instruction always performs an unsigned division to get the
6074remainder.
6075
6076Note that unsigned integer remainder and signed integer remainder are
6077distinct operations; for signed integer remainder, use '``srem``'.
6078
6079Taking the remainder of a division by zero leads to undefined behavior.
6080
6081Example:
6082""""""""
6083
6084.. code-block:: llvm
6085
Tim Northover675a0962014-06-13 14:24:23 +00006086 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006087
6088'``srem``' Instruction
6089^^^^^^^^^^^^^^^^^^^^^^
6090
6091Syntax:
6092"""""""
6093
6094::
6095
Tim Northover675a0962014-06-13 14:24:23 +00006096 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006097
6098Overview:
6099"""""""""
6100
6101The '``srem``' instruction returns the remainder from the signed
6102division of its two operands. This instruction can also take
6103:ref:`vector <t_vector>` versions of the values in which case the elements
6104must be integers.
6105
6106Arguments:
6107""""""""""
6108
6109The two arguments to the '``srem``' instruction must be
6110:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6111arguments must have identical types.
6112
6113Semantics:
6114""""""""""
6115
6116This instruction returns the *remainder* of a division (where the result
6117is either zero or has the same sign as the dividend, ``op1``), not the
6118*modulo* operator (where the result is either zero or has the same sign
6119as the divisor, ``op2``) of a value. For more information about the
6120difference, see `The Math
6121Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6122table of how this is implemented in various languages, please see
6123`Wikipedia: modulo
6124operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6125
6126Note that signed integer remainder and unsigned integer remainder are
6127distinct operations; for unsigned integer remainder, use '``urem``'.
6128
6129Taking the remainder of a division by zero leads to undefined behavior.
6130Overflow also leads to undefined behavior; this is a rare case, but can
6131occur, for example, by taking the remainder of a 32-bit division of
6132-2147483648 by -1. (The remainder doesn't actually overflow, but this
6133rule lets srem be implemented using instructions that return both the
6134result of the division and the remainder.)
6135
6136Example:
6137""""""""
6138
6139.. code-block:: llvm
6140
Tim Northover675a0962014-06-13 14:24:23 +00006141 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006142
6143.. _i_frem:
6144
6145'``frem``' Instruction
6146^^^^^^^^^^^^^^^^^^^^^^
6147
6148Syntax:
6149"""""""
6150
6151::
6152
Tim Northover675a0962014-06-13 14:24:23 +00006153 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006154
6155Overview:
6156"""""""""
6157
6158The '``frem``' instruction returns the remainder from the division of
6159its two operands.
6160
6161Arguments:
6162""""""""""
6163
6164The two arguments to the '``frem``' instruction must be :ref:`floating
6165point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6166Both arguments must have identical types.
6167
6168Semantics:
6169""""""""""
6170
6171This instruction returns the *remainder* of a division. The remainder
6172has the same sign as the dividend. This instruction can also take any
6173number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6174to enable otherwise unsafe floating point optimizations:
6175
6176Example:
6177""""""""
6178
6179.. code-block:: llvm
6180
Tim Northover675a0962014-06-13 14:24:23 +00006181 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006182
6183.. _bitwiseops:
6184
6185Bitwise Binary Operations
6186-------------------------
6187
6188Bitwise binary operators are used to do various forms of bit-twiddling
6189in a program. They are generally very efficient instructions and can
6190commonly be strength reduced from other instructions. They require two
6191operands of the same type, execute an operation on them, and produce a
6192single value. The resulting value is the same type as its operands.
6193
6194'``shl``' Instruction
6195^^^^^^^^^^^^^^^^^^^^^
6196
6197Syntax:
6198"""""""
6199
6200::
6201
Tim Northover675a0962014-06-13 14:24:23 +00006202 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6203 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6204 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6205 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006206
6207Overview:
6208"""""""""
6209
6210The '``shl``' instruction returns the first operand shifted to the left
6211a specified number of bits.
6212
6213Arguments:
6214""""""""""
6215
6216Both arguments to the '``shl``' instruction must be the same
6217:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6218'``op2``' is treated as an unsigned value.
6219
6220Semantics:
6221""""""""""
6222
6223The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6224where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006225dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006226``op1``, the result is undefined. If the arguments are vectors, each
6227vector element of ``op1`` is shifted by the corresponding shift amount
6228in ``op2``.
6229
6230If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6231value <poisonvalues>` if it shifts out any non-zero bits. If the
6232``nsw`` keyword is present, then the shift produces a :ref:`poison
6233value <poisonvalues>` if it shifts out any bits that disagree with the
6234resultant sign bit. As such, NUW/NSW have the same semantics as they
6235would if the shift were expressed as a mul instruction with the same
6236nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6237
6238Example:
6239""""""""
6240
6241.. code-block:: llvm
6242
Tim Northover675a0962014-06-13 14:24:23 +00006243 <result> = shl i32 4, %var ; yields i32: 4 << %var
6244 <result> = shl i32 4, 2 ; yields i32: 16
6245 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006246 <result> = shl i32 1, 32 ; undefined
6247 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6248
6249'``lshr``' Instruction
6250^^^^^^^^^^^^^^^^^^^^^^
6251
6252Syntax:
6253"""""""
6254
6255::
6256
Tim Northover675a0962014-06-13 14:24:23 +00006257 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6258 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006259
6260Overview:
6261"""""""""
6262
6263The '``lshr``' instruction (logical shift right) returns the first
6264operand shifted to the right a specified number of bits with zero fill.
6265
6266Arguments:
6267""""""""""
6268
6269Both arguments to the '``lshr``' instruction must be the same
6270:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6271'``op2``' is treated as an unsigned value.
6272
6273Semantics:
6274""""""""""
6275
6276This instruction always performs a logical shift right operation. The
6277most significant bits of the result will be filled with zero bits after
6278the shift. If ``op2`` is (statically or dynamically) equal to or larger
6279than the number of bits in ``op1``, the result is undefined. If the
6280arguments are vectors, each vector element of ``op1`` is shifted by the
6281corresponding shift amount in ``op2``.
6282
6283If the ``exact`` keyword is present, the result value of the ``lshr`` is
6284a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6285non-zero.
6286
6287Example:
6288""""""""
6289
6290.. code-block:: llvm
6291
Tim Northover675a0962014-06-13 14:24:23 +00006292 <result> = lshr i32 4, 1 ; yields i32:result = 2
6293 <result> = lshr i32 4, 2 ; yields i32:result = 1
6294 <result> = lshr i8 4, 3 ; yields i8:result = 0
6295 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006296 <result> = lshr i32 1, 32 ; undefined
6297 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6298
6299'``ashr``' Instruction
6300^^^^^^^^^^^^^^^^^^^^^^
6301
6302Syntax:
6303"""""""
6304
6305::
6306
Tim Northover675a0962014-06-13 14:24:23 +00006307 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6308 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006309
6310Overview:
6311"""""""""
6312
6313The '``ashr``' instruction (arithmetic shift right) returns the first
6314operand shifted to the right a specified number of bits with sign
6315extension.
6316
6317Arguments:
6318""""""""""
6319
6320Both arguments to the '``ashr``' instruction must be the same
6321:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6322'``op2``' is treated as an unsigned value.
6323
6324Semantics:
6325""""""""""
6326
6327This instruction always performs an arithmetic shift right operation,
6328The most significant bits of the result will be filled with the sign bit
6329of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6330than the number of bits in ``op1``, the result is undefined. If the
6331arguments are vectors, each vector element of ``op1`` is shifted by the
6332corresponding shift amount in ``op2``.
6333
6334If the ``exact`` keyword is present, the result value of the ``ashr`` is
6335a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6336non-zero.
6337
6338Example:
6339""""""""
6340
6341.. code-block:: llvm
6342
Tim Northover675a0962014-06-13 14:24:23 +00006343 <result> = ashr i32 4, 1 ; yields i32:result = 2
6344 <result> = ashr i32 4, 2 ; yields i32:result = 1
6345 <result> = ashr i8 4, 3 ; yields i8:result = 0
6346 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006347 <result> = ashr i32 1, 32 ; undefined
6348 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6349
6350'``and``' Instruction
6351^^^^^^^^^^^^^^^^^^^^^
6352
6353Syntax:
6354"""""""
6355
6356::
6357
Tim Northover675a0962014-06-13 14:24:23 +00006358 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006359
6360Overview:
6361"""""""""
6362
6363The '``and``' instruction returns the bitwise logical and of its two
6364operands.
6365
6366Arguments:
6367""""""""""
6368
6369The two arguments to the '``and``' instruction must be
6370:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6371arguments must have identical types.
6372
6373Semantics:
6374""""""""""
6375
6376The truth table used for the '``and``' instruction is:
6377
6378+-----+-----+-----+
6379| In0 | In1 | Out |
6380+-----+-----+-----+
6381| 0 | 0 | 0 |
6382+-----+-----+-----+
6383| 0 | 1 | 0 |
6384+-----+-----+-----+
6385| 1 | 0 | 0 |
6386+-----+-----+-----+
6387| 1 | 1 | 1 |
6388+-----+-----+-----+
6389
6390Example:
6391""""""""
6392
6393.. code-block:: llvm
6394
Tim Northover675a0962014-06-13 14:24:23 +00006395 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6396 <result> = and i32 15, 40 ; yields i32:result = 8
6397 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006398
6399'``or``' Instruction
6400^^^^^^^^^^^^^^^^^^^^
6401
6402Syntax:
6403"""""""
6404
6405::
6406
Tim Northover675a0962014-06-13 14:24:23 +00006407 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006408
6409Overview:
6410"""""""""
6411
6412The '``or``' instruction returns the bitwise logical inclusive or of its
6413two operands.
6414
6415Arguments:
6416""""""""""
6417
6418The two arguments to the '``or``' instruction must be
6419:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6420arguments must have identical types.
6421
6422Semantics:
6423""""""""""
6424
6425The truth table used for the '``or``' instruction is:
6426
6427+-----+-----+-----+
6428| In0 | In1 | Out |
6429+-----+-----+-----+
6430| 0 | 0 | 0 |
6431+-----+-----+-----+
6432| 0 | 1 | 1 |
6433+-----+-----+-----+
6434| 1 | 0 | 1 |
6435+-----+-----+-----+
6436| 1 | 1 | 1 |
6437+-----+-----+-----+
6438
6439Example:
6440""""""""
6441
6442::
6443
Tim Northover675a0962014-06-13 14:24:23 +00006444 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6445 <result> = or i32 15, 40 ; yields i32:result = 47
6446 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006447
6448'``xor``' Instruction
6449^^^^^^^^^^^^^^^^^^^^^
6450
6451Syntax:
6452"""""""
6453
6454::
6455
Tim Northover675a0962014-06-13 14:24:23 +00006456 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006457
6458Overview:
6459"""""""""
6460
6461The '``xor``' instruction returns the bitwise logical exclusive or of
6462its two operands. The ``xor`` is used to implement the "one's
6463complement" operation, which is the "~" operator in C.
6464
6465Arguments:
6466""""""""""
6467
6468The two arguments to the '``xor``' instruction must be
6469:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6470arguments must have identical types.
6471
6472Semantics:
6473""""""""""
6474
6475The truth table used for the '``xor``' instruction is:
6476
6477+-----+-----+-----+
6478| In0 | In1 | Out |
6479+-----+-----+-----+
6480| 0 | 0 | 0 |
6481+-----+-----+-----+
6482| 0 | 1 | 1 |
6483+-----+-----+-----+
6484| 1 | 0 | 1 |
6485+-----+-----+-----+
6486| 1 | 1 | 0 |
6487+-----+-----+-----+
6488
6489Example:
6490""""""""
6491
6492.. code-block:: llvm
6493
Tim Northover675a0962014-06-13 14:24:23 +00006494 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6495 <result> = xor i32 15, 40 ; yields i32:result = 39
6496 <result> = xor i32 4, 8 ; yields i32:result = 12
6497 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006498
6499Vector Operations
6500-----------------
6501
6502LLVM supports several instructions to represent vector operations in a
6503target-independent manner. These instructions cover the element-access
6504and vector-specific operations needed to process vectors effectively.
6505While LLVM does directly support these vector operations, many
6506sophisticated algorithms will want to use target-specific intrinsics to
6507take full advantage of a specific target.
6508
6509.. _i_extractelement:
6510
6511'``extractelement``' Instruction
6512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6513
6514Syntax:
6515"""""""
6516
6517::
6518
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006519 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006520
6521Overview:
6522"""""""""
6523
6524The '``extractelement``' instruction extracts a single scalar element
6525from a vector at a specified index.
6526
6527Arguments:
6528""""""""""
6529
6530The first operand of an '``extractelement``' instruction is a value of
6531:ref:`vector <t_vector>` type. The second operand is an index indicating
6532the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006533variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006534
6535Semantics:
6536""""""""""
6537
6538The result is a scalar of the same type as the element type of ``val``.
6539Its value is the value at position ``idx`` of ``val``. If ``idx``
6540exceeds the length of ``val``, the results are undefined.
6541
6542Example:
6543""""""""
6544
6545.. code-block:: llvm
6546
6547 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6548
6549.. _i_insertelement:
6550
6551'``insertelement``' Instruction
6552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6553
6554Syntax:
6555"""""""
6556
6557::
6558
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006559 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006560
6561Overview:
6562"""""""""
6563
6564The '``insertelement``' instruction inserts a scalar element into a
6565vector at a specified index.
6566
6567Arguments:
6568""""""""""
6569
6570The first operand of an '``insertelement``' instruction is a value of
6571:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6572type must equal the element type of the first operand. The third operand
6573is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006574index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006575
6576Semantics:
6577""""""""""
6578
6579The result is a vector of the same type as ``val``. Its element values
6580are those of ``val`` except at position ``idx``, where it gets the value
6581``elt``. If ``idx`` exceeds the length of ``val``, the results are
6582undefined.
6583
6584Example:
6585""""""""
6586
6587.. code-block:: llvm
6588
6589 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6590
6591.. _i_shufflevector:
6592
6593'``shufflevector``' Instruction
6594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6595
6596Syntax:
6597"""""""
6598
6599::
6600
6601 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6602
6603Overview:
6604"""""""""
6605
6606The '``shufflevector``' instruction constructs a permutation of elements
6607from two input vectors, returning a vector with the same element type as
6608the input and length that is the same as the shuffle mask.
6609
6610Arguments:
6611""""""""""
6612
6613The first two operands of a '``shufflevector``' instruction are vectors
6614with the same type. The third argument is a shuffle mask whose element
6615type is always 'i32'. The result of the instruction is a vector whose
6616length is the same as the shuffle mask and whose element type is the
6617same as the element type of the first two operands.
6618
6619The shuffle mask operand is required to be a constant vector with either
6620constant integer or undef values.
6621
6622Semantics:
6623""""""""""
6624
6625The elements of the two input vectors are numbered from left to right
6626across both of the vectors. The shuffle mask operand specifies, for each
6627element of the result vector, which element of the two input vectors the
6628result element gets. The element selector may be undef (meaning "don't
6629care") and the second operand may be undef if performing a shuffle from
6630only one vector.
6631
6632Example:
6633""""""""
6634
6635.. code-block:: llvm
6636
6637 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6638 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6639 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6640 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6641 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6642 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6643 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6644 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6645
6646Aggregate Operations
6647--------------------
6648
6649LLVM supports several instructions for working with
6650:ref:`aggregate <t_aggregate>` values.
6651
6652.. _i_extractvalue:
6653
6654'``extractvalue``' Instruction
6655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6656
6657Syntax:
6658"""""""
6659
6660::
6661
6662 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6663
6664Overview:
6665"""""""""
6666
6667The '``extractvalue``' instruction extracts the value of a member field
6668from an :ref:`aggregate <t_aggregate>` value.
6669
6670Arguments:
6671""""""""""
6672
6673The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006674:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006675constant indices to specify which value to extract in a similar manner
6676as indices in a '``getelementptr``' instruction.
6677
6678The major differences to ``getelementptr`` indexing are:
6679
6680- Since the value being indexed is not a pointer, the first index is
6681 omitted and assumed to be zero.
6682- At least one index must be specified.
6683- Not only struct indices but also array indices must be in bounds.
6684
6685Semantics:
6686""""""""""
6687
6688The result is the value at the position in the aggregate specified by
6689the index operands.
6690
6691Example:
6692""""""""
6693
6694.. code-block:: llvm
6695
6696 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6697
6698.. _i_insertvalue:
6699
6700'``insertvalue``' Instruction
6701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6702
6703Syntax:
6704"""""""
6705
6706::
6707
6708 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6709
6710Overview:
6711"""""""""
6712
6713The '``insertvalue``' instruction inserts a value into a member field in
6714an :ref:`aggregate <t_aggregate>` value.
6715
6716Arguments:
6717""""""""""
6718
6719The first operand of an '``insertvalue``' instruction is a value of
6720:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6721a first-class value to insert. The following operands are constant
6722indices indicating the position at which to insert the value in a
6723similar manner as indices in a '``extractvalue``' instruction. The value
6724to insert must have the same type as the value identified by the
6725indices.
6726
6727Semantics:
6728""""""""""
6729
6730The result is an aggregate of the same type as ``val``. Its value is
6731that of ``val`` except that the value at the position specified by the
6732indices is that of ``elt``.
6733
6734Example:
6735""""""""
6736
6737.. code-block:: llvm
6738
6739 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6740 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006741 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006742
6743.. _memoryops:
6744
6745Memory Access and Addressing Operations
6746---------------------------------------
6747
6748A key design point of an SSA-based representation is how it represents
6749memory. In LLVM, no memory locations are in SSA form, which makes things
6750very simple. This section describes how to read, write, and allocate
6751memory in LLVM.
6752
6753.. _i_alloca:
6754
6755'``alloca``' Instruction
6756^^^^^^^^^^^^^^^^^^^^^^^^
6757
6758Syntax:
6759"""""""
6760
6761::
6762
Tim Northover675a0962014-06-13 14:24:23 +00006763 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006764
6765Overview:
6766"""""""""
6767
6768The '``alloca``' instruction allocates memory on the stack frame of the
6769currently executing function, to be automatically released when this
6770function returns to its caller. The object is always allocated in the
6771generic address space (address space zero).
6772
6773Arguments:
6774""""""""""
6775
6776The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6777bytes of memory on the runtime stack, returning a pointer of the
6778appropriate type to the program. If "NumElements" is specified, it is
6779the number of elements allocated, otherwise "NumElements" is defaulted
6780to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006781allocation is guaranteed to be aligned to at least that boundary. The
6782alignment may not be greater than ``1 << 29``. If not specified, or if
6783zero, the target can choose to align the allocation on any convenient
6784boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006785
6786'``type``' may be any sized type.
6787
6788Semantics:
6789""""""""""
6790
6791Memory is allocated; a pointer is returned. The operation is undefined
6792if there is insufficient stack space for the allocation. '``alloca``'d
6793memory is automatically released when the function returns. The
6794'``alloca``' instruction is commonly used to represent automatic
6795variables that must have an address available. When the function returns
6796(either with the ``ret`` or ``resume`` instructions), the memory is
6797reclaimed. Allocating zero bytes is legal, but the result is undefined.
6798The order in which memory is allocated (ie., which way the stack grows)
6799is not specified.
6800
6801Example:
6802""""""""
6803
6804.. code-block:: llvm
6805
Tim Northover675a0962014-06-13 14:24:23 +00006806 %ptr = alloca i32 ; yields i32*:ptr
6807 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6808 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6809 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006810
6811.. _i_load:
6812
6813'``load``' Instruction
6814^^^^^^^^^^^^^^^^^^^^^^
6815
6816Syntax:
6817"""""""
6818
6819::
6820
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006821 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006822 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006823 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006824 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006825 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006826
6827Overview:
6828"""""""""
6829
6830The '``load``' instruction is used to read from memory.
6831
6832Arguments:
6833""""""""""
6834
Eli Bendersky239a78b2013-04-17 20:17:08 +00006835The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006836from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006837class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6838then the optimizer is not allowed to modify the number or order of
6839execution of this ``load`` with other :ref:`volatile
6840operations <volatile>`.
6841
6842If the ``load`` is marked as ``atomic``, it takes an extra
6843:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6844``release`` and ``acq_rel`` orderings are not valid on ``load``
6845instructions. Atomic loads produce :ref:`defined <memmodel>` results
6846when they may see multiple atomic stores. The type of the pointee must
6847be an integer type whose bit width is a power of two greater than or
6848equal to eight and less than or equal to a target-specific size limit.
6849``align`` must be explicitly specified on atomic loads, and the load has
6850undefined behavior if the alignment is not set to a value which is at
6851least the size in bytes of the pointee. ``!nontemporal`` does not have
6852any defined semantics for atomic loads.
6853
6854The optional constant ``align`` argument specifies the alignment of the
6855operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006856or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006857alignment for the target. It is the responsibility of the code emitter
6858to ensure that the alignment information is correct. Overestimating the
6859alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006860may produce less efficient code. An alignment of 1 is always safe. The
6861maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006862
6863The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006864metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006865``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006866metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006867that this load is not expected to be reused in the cache. The code
6868generator may select special instructions to save cache bandwidth, such
6869as the ``MOVNT`` instruction on x86.
6870
6871The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006872metadata name ``<index>`` corresponding to a metadata node with no
6873entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006874instruction tells the optimizer and code generator that the address
6875operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006876Being invariant does not imply that a location is dereferenceable,
6877but it does imply that once the location is known dereferenceable
6878its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006879
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006880The optional ``!invariant.group`` metadata must reference a single metadata name
6881 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6882
Philip Reamescdb72f32014-10-20 22:40:55 +00006883The optional ``!nonnull`` metadata must reference a single
6884metadata name ``<index>`` corresponding to a metadata node with no
6885entries. The existence of the ``!nonnull`` metadata on the
6886instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006887never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006888on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006889to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006890
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006891The optional ``!dereferenceable`` metadata must reference a single metadata
6892name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006893entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006894tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006895The number of bytes known to be dereferenceable is specified by the integer
6896value in the metadata node. This is analogous to the ''dereferenceable''
6897attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006898to loads of a pointer type.
6899
6900The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006901metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6902``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006903instruction tells the optimizer that the value loaded is known to be either
6904dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006905The number of bytes known to be dereferenceable is specified by the integer
6906value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6907attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006908to loads of a pointer type.
6909
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006910The optional ``!align`` metadata must reference a single metadata name
6911``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6912The existence of the ``!align`` metadata on the instruction tells the
6913optimizer that the value loaded is known to be aligned to a boundary specified
6914by the integer value in the metadata node. The alignment must be a power of 2.
6915This is analogous to the ''align'' attribute on parameters and return values.
6916This metadata can only be applied to loads of a pointer type.
6917
Sean Silvab084af42012-12-07 10:36:55 +00006918Semantics:
6919""""""""""
6920
6921The location of memory pointed to is loaded. If the value being loaded
6922is of scalar type then the number of bytes read does not exceed the
6923minimum number of bytes needed to hold all bits of the type. For
6924example, loading an ``i24`` reads at most three bytes. When loading a
6925value of a type like ``i20`` with a size that is not an integral number
6926of bytes, the result is undefined if the value was not originally
6927written using a store of the same type.
6928
6929Examples:
6930"""""""""
6931
6932.. code-block:: llvm
6933
Tim Northover675a0962014-06-13 14:24:23 +00006934 %ptr = alloca i32 ; yields i32*:ptr
6935 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006936 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006937
6938.. _i_store:
6939
6940'``store``' Instruction
6941^^^^^^^^^^^^^^^^^^^^^^^
6942
6943Syntax:
6944"""""""
6945
6946::
6947
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006948 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6949 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006950
6951Overview:
6952"""""""""
6953
6954The '``store``' instruction is used to write to memory.
6955
6956Arguments:
6957""""""""""
6958
Eli Benderskyca380842013-04-17 17:17:20 +00006959There are two arguments to the ``store`` instruction: a value to store
6960and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006961operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006962the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006963then the optimizer is not allowed to modify the number or order of
6964execution of this ``store`` with other :ref:`volatile
6965operations <volatile>`.
6966
6967If the ``store`` is marked as ``atomic``, it takes an extra
6968:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6969``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6970instructions. Atomic loads produce :ref:`defined <memmodel>` results
6971when they may see multiple atomic stores. The type of the pointee must
6972be an integer type whose bit width is a power of two greater than or
6973equal to eight and less than or equal to a target-specific size limit.
6974``align`` must be explicitly specified on atomic stores, and the store
6975has undefined behavior if the alignment is not set to a value which is
6976at least the size in bytes of the pointee. ``!nontemporal`` does not
6977have any defined semantics for atomic stores.
6978
Eli Benderskyca380842013-04-17 17:17:20 +00006979The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006980operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006981or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006982alignment for the target. It is the responsibility of the code emitter
6983to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006984alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006985alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006986safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006987
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006988The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006989name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006990value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006991tells the optimizer and code generator that this load is not expected to
6992be reused in the cache. The code generator may select special
6993instructions to save cache bandwidth, such as the MOVNT instruction on
6994x86.
6995
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006996The optional ``!invariant.group`` metadata must reference a
6997single metadata name ``<index>``. See ``invariant.group`` metadata.
6998
Sean Silvab084af42012-12-07 10:36:55 +00006999Semantics:
7000""""""""""
7001
Eli Benderskyca380842013-04-17 17:17:20 +00007002The contents of memory are updated to contain ``<value>`` at the
7003location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007004of scalar type then the number of bytes written does not exceed the
7005minimum number of bytes needed to hold all bits of the type. For
7006example, storing an ``i24`` writes at most three bytes. When writing a
7007value of a type like ``i20`` with a size that is not an integral number
7008of bytes, it is unspecified what happens to the extra bits that do not
7009belong to the type, but they will typically be overwritten.
7010
7011Example:
7012""""""""
7013
7014.. code-block:: llvm
7015
Tim Northover675a0962014-06-13 14:24:23 +00007016 %ptr = alloca i32 ; yields i32*:ptr
7017 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007018 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007019
7020.. _i_fence:
7021
7022'``fence``' Instruction
7023^^^^^^^^^^^^^^^^^^^^^^^
7024
7025Syntax:
7026"""""""
7027
7028::
7029
Tim Northover675a0962014-06-13 14:24:23 +00007030 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007031
7032Overview:
7033"""""""""
7034
7035The '``fence``' instruction is used to introduce happens-before edges
7036between operations.
7037
7038Arguments:
7039""""""""""
7040
7041'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7042defines what *synchronizes-with* edges they add. They can only be given
7043``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7044
7045Semantics:
7046""""""""""
7047
7048A fence A which has (at least) ``release`` ordering semantics
7049*synchronizes with* a fence B with (at least) ``acquire`` ordering
7050semantics if and only if there exist atomic operations X and Y, both
7051operating on some atomic object M, such that A is sequenced before X, X
7052modifies M (either directly or through some side effect of a sequence
7053headed by X), Y is sequenced before B, and Y observes M. This provides a
7054*happens-before* dependency between A and B. Rather than an explicit
7055``fence``, one (but not both) of the atomic operations X or Y might
7056provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7057still *synchronize-with* the explicit ``fence`` and establish the
7058*happens-before* edge.
7059
7060A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7061``acquire`` and ``release`` semantics specified above, participates in
7062the global program order of other ``seq_cst`` operations and/or fences.
7063
7064The optional ":ref:`singlethread <singlethread>`" argument specifies
7065that the fence only synchronizes with other fences in the same thread.
7066(This is useful for interacting with signal handlers.)
7067
7068Example:
7069""""""""
7070
7071.. code-block:: llvm
7072
Tim Northover675a0962014-06-13 14:24:23 +00007073 fence acquire ; yields void
7074 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007075
7076.. _i_cmpxchg:
7077
7078'``cmpxchg``' Instruction
7079^^^^^^^^^^^^^^^^^^^^^^^^^
7080
7081Syntax:
7082"""""""
7083
7084::
7085
Tim Northover675a0962014-06-13 14:24:23 +00007086 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007087
7088Overview:
7089"""""""""
7090
7091The '``cmpxchg``' instruction is used to atomically modify memory. It
7092loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007093equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007094
7095Arguments:
7096""""""""""
7097
7098There are three arguments to the '``cmpxchg``' instruction: an address
7099to operate on, a value to compare to the value currently be at that
7100address, and a new value to place at that address if the compared values
7101are equal. The type of '<cmp>' must be an integer type whose bit width
7102is a power of two greater than or equal to eight and less than or equal
7103to a target-specific size limit. '<cmp>' and '<new>' must have the same
7104type, and the type of '<pointer>' must be a pointer to that type. If the
7105``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7106to modify the number or order of execution of this ``cmpxchg`` with
7107other :ref:`volatile operations <volatile>`.
7108
Tim Northovere94a5182014-03-11 10:48:52 +00007109The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007110``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7111must be at least ``monotonic``, the ordering constraint on failure must be no
7112stronger than that on success, and the failure ordering cannot be either
7113``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007114
7115The optional "``singlethread``" argument declares that the ``cmpxchg``
7116is only atomic with respect to code (usually signal handlers) running in
7117the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7118respect to all other code in the system.
7119
7120The pointer passed into cmpxchg must have alignment greater than or
7121equal to the size in memory of the operand.
7122
7123Semantics:
7124""""""""""
7125
Tim Northover420a2162014-06-13 14:24:07 +00007126The contents of memory at the location specified by the '``<pointer>``' operand
7127is read and compared to '``<cmp>``'; if the read value is the equal, the
7128'``<new>``' is written. The original value at the location is returned, together
7129with a flag indicating success (true) or failure (false).
7130
7131If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7132permitted: the operation may not write ``<new>`` even if the comparison
7133matched.
7134
7135If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7136if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007137
Tim Northovere94a5182014-03-11 10:48:52 +00007138A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7139identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7140load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007141
7142Example:
7143""""""""
7144
7145.. code-block:: llvm
7146
7147 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007148 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007149 br label %loop
7150
7151 loop:
7152 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7153 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007154 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007155 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7156 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007157 br i1 %success, label %done, label %loop
7158
7159 done:
7160 ...
7161
7162.. _i_atomicrmw:
7163
7164'``atomicrmw``' Instruction
7165^^^^^^^^^^^^^^^^^^^^^^^^^^^
7166
7167Syntax:
7168"""""""
7169
7170::
7171
Tim Northover675a0962014-06-13 14:24:23 +00007172 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007173
7174Overview:
7175"""""""""
7176
7177The '``atomicrmw``' instruction is used to atomically modify memory.
7178
7179Arguments:
7180""""""""""
7181
7182There are three arguments to the '``atomicrmw``' instruction: an
7183operation to apply, an address whose value to modify, an argument to the
7184operation. The operation must be one of the following keywords:
7185
7186- xchg
7187- add
7188- sub
7189- and
7190- nand
7191- or
7192- xor
7193- max
7194- min
7195- umax
7196- umin
7197
7198The type of '<value>' must be an integer type whose bit width is a power
7199of two greater than or equal to eight and less than or equal to a
7200target-specific size limit. The type of the '``<pointer>``' operand must
7201be a pointer to that type. If the ``atomicrmw`` is marked as
7202``volatile``, then the optimizer is not allowed to modify the number or
7203order of execution of this ``atomicrmw`` with other :ref:`volatile
7204operations <volatile>`.
7205
7206Semantics:
7207""""""""""
7208
7209The contents of memory at the location specified by the '``<pointer>``'
7210operand are atomically read, modified, and written back. The original
7211value at the location is returned. The modification is specified by the
7212operation argument:
7213
7214- xchg: ``*ptr = val``
7215- add: ``*ptr = *ptr + val``
7216- sub: ``*ptr = *ptr - val``
7217- and: ``*ptr = *ptr & val``
7218- nand: ``*ptr = ~(*ptr & val)``
7219- or: ``*ptr = *ptr | val``
7220- xor: ``*ptr = *ptr ^ val``
7221- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7222- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7223- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7224 comparison)
7225- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7226 comparison)
7227
7228Example:
7229""""""""
7230
7231.. code-block:: llvm
7232
Tim Northover675a0962014-06-13 14:24:23 +00007233 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007234
7235.. _i_getelementptr:
7236
7237'``getelementptr``' Instruction
7238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7239
7240Syntax:
7241"""""""
7242
7243::
7244
David Blaikie16a97eb2015-03-04 22:02:58 +00007245 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7246 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7247 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007248
7249Overview:
7250"""""""""
7251
7252The '``getelementptr``' instruction is used to get the address of a
7253subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007254address calculation only and does not access memory. The instruction can also
7255be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007256
7257Arguments:
7258""""""""""
7259
David Blaikie16a97eb2015-03-04 22:02:58 +00007260The first argument is always a type used as the basis for the calculations.
7261The second argument is always a pointer or a vector of pointers, and is the
7262base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007263that indicate which of the elements of the aggregate object are indexed.
7264The interpretation of each index is dependent on the type being indexed
7265into. The first index always indexes the pointer value given as the
7266first argument, the second index indexes a value of the type pointed to
7267(not necessarily the value directly pointed to, since the first index
7268can be non-zero), etc. The first type indexed into must be a pointer
7269value, subsequent types can be arrays, vectors, and structs. Note that
7270subsequent types being indexed into can never be pointers, since that
7271would require loading the pointer before continuing calculation.
7272
7273The type of each index argument depends on the type it is indexing into.
7274When indexing into a (optionally packed) structure, only ``i32`` integer
7275**constants** are allowed (when using a vector of indices they must all
7276be the **same** ``i32`` integer constant). When indexing into an array,
7277pointer or vector, integers of any width are allowed, and they are not
7278required to be constant. These integers are treated as signed values
7279where relevant.
7280
7281For example, let's consider a C code fragment and how it gets compiled
7282to LLVM:
7283
7284.. code-block:: c
7285
7286 struct RT {
7287 char A;
7288 int B[10][20];
7289 char C;
7290 };
7291 struct ST {
7292 int X;
7293 double Y;
7294 struct RT Z;
7295 };
7296
7297 int *foo(struct ST *s) {
7298 return &s[1].Z.B[5][13];
7299 }
7300
7301The LLVM code generated by Clang is:
7302
7303.. code-block:: llvm
7304
7305 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7306 %struct.ST = type { i32, double, %struct.RT }
7307
7308 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7309 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007310 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007311 ret i32* %arrayidx
7312 }
7313
7314Semantics:
7315""""""""""
7316
7317In the example above, the first index is indexing into the
7318'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7319= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7320indexes into the third element of the structure, yielding a
7321'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7322structure. The third index indexes into the second element of the
7323structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7324dimensions of the array are subscripted into, yielding an '``i32``'
7325type. The '``getelementptr``' instruction returns a pointer to this
7326element, thus computing a value of '``i32*``' type.
7327
7328Note that it is perfectly legal to index partially through a structure,
7329returning a pointer to an inner element. Because of this, the LLVM code
7330for the given testcase is equivalent to:
7331
7332.. code-block:: llvm
7333
7334 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007335 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7336 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7337 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7338 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7339 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007340 ret i32* %t5
7341 }
7342
7343If the ``inbounds`` keyword is present, the result value of the
7344``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7345pointer is not an *in bounds* address of an allocated object, or if any
7346of the addresses that would be formed by successive addition of the
7347offsets implied by the indices to the base address with infinitely
7348precise signed arithmetic are not an *in bounds* address of that
7349allocated object. The *in bounds* addresses for an allocated object are
7350all the addresses that point into the object, plus the address one byte
7351past the end. In cases where the base is a vector of pointers the
7352``inbounds`` keyword applies to each of the computations element-wise.
7353
7354If the ``inbounds`` keyword is not present, the offsets are added to the
7355base address with silently-wrapping two's complement arithmetic. If the
7356offsets have a different width from the pointer, they are sign-extended
7357or truncated to the width of the pointer. The result value of the
7358``getelementptr`` may be outside the object pointed to by the base
7359pointer. The result value may not necessarily be used to access memory
7360though, even if it happens to point into allocated storage. See the
7361:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7362information.
7363
7364The getelementptr instruction is often confusing. For some more insight
7365into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7366
7367Example:
7368""""""""
7369
7370.. code-block:: llvm
7371
7372 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007373 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007374 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007375 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007376 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007377 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007378 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007379 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007380
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007381Vector of pointers:
7382"""""""""""""""""""
7383
7384The ``getelementptr`` returns a vector of pointers, instead of a single address,
7385when one or more of its arguments is a vector. In such cases, all vector
7386arguments should have the same number of elements, and every scalar argument
7387will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007388
7389.. code-block:: llvm
7390
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007391 ; All arguments are vectors:
7392 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7393 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007394
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007395 ; Add the same scalar offset to each pointer of a vector:
7396 ; A[i] = ptrs[i] + offset*sizeof(i8)
7397 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007398
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007399 ; Add distinct offsets to the same pointer:
7400 ; A[i] = ptr + offsets[i]*sizeof(i8)
7401 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007402
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007403 ; In all cases described above the type of the result is <4 x i8*>
7404
7405The two following instructions are equivalent:
7406
7407.. code-block:: llvm
7408
7409 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7410 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7411 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7412 <4 x i32> %ind4,
7413 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007414
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007415 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7416 i32 2, i32 1, <4 x i32> %ind4, i64 13
7417
7418Let's look at the C code, where the vector version of ``getelementptr``
7419makes sense:
7420
7421.. code-block:: c
7422
7423 // Let's assume that we vectorize the following loop:
7424 double *A, B; int *C;
7425 for (int i = 0; i < size; ++i) {
7426 A[i] = B[C[i]];
7427 }
7428
7429.. code-block:: llvm
7430
7431 ; get pointers for 8 elements from array B
7432 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7433 ; load 8 elements from array B into A
7434 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7435 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007436
7437Conversion Operations
7438---------------------
7439
7440The instructions in this category are the conversion instructions
7441(casting) which all take a single operand and a type. They perform
7442various bit conversions on the operand.
7443
7444'``trunc .. to``' Instruction
7445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7446
7447Syntax:
7448"""""""
7449
7450::
7451
7452 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7453
7454Overview:
7455"""""""""
7456
7457The '``trunc``' instruction truncates its operand to the type ``ty2``.
7458
7459Arguments:
7460""""""""""
7461
7462The '``trunc``' instruction takes a value to trunc, and a type to trunc
7463it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7464of the same number of integers. The bit size of the ``value`` must be
7465larger than the bit size of the destination type, ``ty2``. Equal sized
7466types are not allowed.
7467
7468Semantics:
7469""""""""""
7470
7471The '``trunc``' instruction truncates the high order bits in ``value``
7472and converts the remaining bits to ``ty2``. Since the source size must
7473be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7474It will always truncate bits.
7475
7476Example:
7477""""""""
7478
7479.. code-block:: llvm
7480
7481 %X = trunc i32 257 to i8 ; yields i8:1
7482 %Y = trunc i32 123 to i1 ; yields i1:true
7483 %Z = trunc i32 122 to i1 ; yields i1:false
7484 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7485
7486'``zext .. to``' Instruction
7487^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7488
7489Syntax:
7490"""""""
7491
7492::
7493
7494 <result> = zext <ty> <value> to <ty2> ; yields ty2
7495
7496Overview:
7497"""""""""
7498
7499The '``zext``' instruction zero extends its operand to type ``ty2``.
7500
7501Arguments:
7502""""""""""
7503
7504The '``zext``' instruction takes a value to cast, and a type to cast it
7505to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7506the same number of integers. The bit size of the ``value`` must be
7507smaller than the bit size of the destination type, ``ty2``.
7508
7509Semantics:
7510""""""""""
7511
7512The ``zext`` fills the high order bits of the ``value`` with zero bits
7513until it reaches the size of the destination type, ``ty2``.
7514
7515When zero extending from i1, the result will always be either 0 or 1.
7516
7517Example:
7518""""""""
7519
7520.. code-block:: llvm
7521
7522 %X = zext i32 257 to i64 ; yields i64:257
7523 %Y = zext i1 true to i32 ; yields i32:1
7524 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7525
7526'``sext .. to``' Instruction
7527^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7528
7529Syntax:
7530"""""""
7531
7532::
7533
7534 <result> = sext <ty> <value> to <ty2> ; yields ty2
7535
7536Overview:
7537"""""""""
7538
7539The '``sext``' sign extends ``value`` to the type ``ty2``.
7540
7541Arguments:
7542""""""""""
7543
7544The '``sext``' instruction takes a value to cast, and a type to cast it
7545to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7546the same number of integers. The bit size of the ``value`` must be
7547smaller than the bit size of the destination type, ``ty2``.
7548
7549Semantics:
7550""""""""""
7551
7552The '``sext``' instruction performs a sign extension by copying the sign
7553bit (highest order bit) of the ``value`` until it reaches the bit size
7554of the type ``ty2``.
7555
7556When sign extending from i1, the extension always results in -1 or 0.
7557
7558Example:
7559""""""""
7560
7561.. code-block:: llvm
7562
7563 %X = sext i8 -1 to i16 ; yields i16 :65535
7564 %Y = sext i1 true to i32 ; yields i32:-1
7565 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7566
7567'``fptrunc .. to``' Instruction
7568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7569
7570Syntax:
7571"""""""
7572
7573::
7574
7575 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7576
7577Overview:
7578"""""""""
7579
7580The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7581
7582Arguments:
7583""""""""""
7584
7585The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7586value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7587The size of ``value`` must be larger than the size of ``ty2``. This
7588implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7589
7590Semantics:
7591""""""""""
7592
Dan Liew50456fb2015-09-03 18:43:56 +00007593The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007594:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007595point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7596destination type, ``ty2``, then the results are undefined. If the cast produces
7597an inexact result, how rounding is performed (e.g. truncation, also known as
7598round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007599
7600Example:
7601""""""""
7602
7603.. code-block:: llvm
7604
7605 %X = fptrunc double 123.0 to float ; yields float:123.0
7606 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7607
7608'``fpext .. to``' Instruction
7609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7610
7611Syntax:
7612"""""""
7613
7614::
7615
7616 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7617
7618Overview:
7619"""""""""
7620
7621The '``fpext``' extends a floating point ``value`` to a larger floating
7622point value.
7623
7624Arguments:
7625""""""""""
7626
7627The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7628``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7629to. The source type must be smaller than the destination type.
7630
7631Semantics:
7632""""""""""
7633
7634The '``fpext``' instruction extends the ``value`` from a smaller
7635:ref:`floating point <t_floating>` type to a larger :ref:`floating
7636point <t_floating>` type. The ``fpext`` cannot be used to make a
7637*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7638*no-op cast* for a floating point cast.
7639
7640Example:
7641""""""""
7642
7643.. code-block:: llvm
7644
7645 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7646 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7647
7648'``fptoui .. to``' Instruction
7649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7650
7651Syntax:
7652"""""""
7653
7654::
7655
7656 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7657
7658Overview:
7659"""""""""
7660
7661The '``fptoui``' converts a floating point ``value`` to its unsigned
7662integer equivalent of type ``ty2``.
7663
7664Arguments:
7665""""""""""
7666
7667The '``fptoui``' instruction takes a value to cast, which must be a
7668scalar or vector :ref:`floating point <t_floating>` value, and a type to
7669cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7670``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7671type with the same number of elements as ``ty``
7672
7673Semantics:
7674""""""""""
7675
7676The '``fptoui``' instruction converts its :ref:`floating
7677point <t_floating>` operand into the nearest (rounding towards zero)
7678unsigned integer value. If the value cannot fit in ``ty2``, the results
7679are undefined.
7680
7681Example:
7682""""""""
7683
7684.. code-block:: llvm
7685
7686 %X = fptoui double 123.0 to i32 ; yields i32:123
7687 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7688 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7689
7690'``fptosi .. to``' Instruction
7691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7692
7693Syntax:
7694"""""""
7695
7696::
7697
7698 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7699
7700Overview:
7701"""""""""
7702
7703The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7704``value`` to type ``ty2``.
7705
7706Arguments:
7707""""""""""
7708
7709The '``fptosi``' instruction takes a value to cast, which must be a
7710scalar or vector :ref:`floating point <t_floating>` value, and a type to
7711cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7712``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7713type with the same number of elements as ``ty``
7714
7715Semantics:
7716""""""""""
7717
7718The '``fptosi``' instruction converts its :ref:`floating
7719point <t_floating>` operand into the nearest (rounding towards zero)
7720signed integer value. If the value cannot fit in ``ty2``, the results
7721are undefined.
7722
7723Example:
7724""""""""
7725
7726.. code-block:: llvm
7727
7728 %X = fptosi double -123.0 to i32 ; yields i32:-123
7729 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7730 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7731
7732'``uitofp .. to``' Instruction
7733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7734
7735Syntax:
7736"""""""
7737
7738::
7739
7740 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7741
7742Overview:
7743"""""""""
7744
7745The '``uitofp``' instruction regards ``value`` as an unsigned integer
7746and converts that value to the ``ty2`` type.
7747
7748Arguments:
7749""""""""""
7750
7751The '``uitofp``' instruction takes a value to cast, which must be a
7752scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7753``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7754``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7755type with the same number of elements as ``ty``
7756
7757Semantics:
7758""""""""""
7759
7760The '``uitofp``' instruction interprets its operand as an unsigned
7761integer quantity and converts it to the corresponding floating point
7762value. If the value cannot fit in the floating point value, the results
7763are undefined.
7764
7765Example:
7766""""""""
7767
7768.. code-block:: llvm
7769
7770 %X = uitofp i32 257 to float ; yields float:257.0
7771 %Y = uitofp i8 -1 to double ; yields double:255.0
7772
7773'``sitofp .. to``' Instruction
7774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7775
7776Syntax:
7777"""""""
7778
7779::
7780
7781 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7782
7783Overview:
7784"""""""""
7785
7786The '``sitofp``' instruction regards ``value`` as a signed integer and
7787converts that value to the ``ty2`` type.
7788
7789Arguments:
7790""""""""""
7791
7792The '``sitofp``' instruction takes a value to cast, which must be a
7793scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7794``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7795``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7796type with the same number of elements as ``ty``
7797
7798Semantics:
7799""""""""""
7800
7801The '``sitofp``' instruction interprets its operand as a signed integer
7802quantity and converts it to the corresponding floating point value. If
7803the value cannot fit in the floating point value, the results are
7804undefined.
7805
7806Example:
7807""""""""
7808
7809.. code-block:: llvm
7810
7811 %X = sitofp i32 257 to float ; yields float:257.0
7812 %Y = sitofp i8 -1 to double ; yields double:-1.0
7813
7814.. _i_ptrtoint:
7815
7816'``ptrtoint .. to``' Instruction
7817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7818
7819Syntax:
7820"""""""
7821
7822::
7823
7824 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7825
7826Overview:
7827"""""""""
7828
7829The '``ptrtoint``' instruction converts the pointer or a vector of
7830pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7831
7832Arguments:
7833""""""""""
7834
7835The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007836a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007837type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7838a vector of integers type.
7839
7840Semantics:
7841""""""""""
7842
7843The '``ptrtoint``' instruction converts ``value`` to integer type
7844``ty2`` by interpreting the pointer value as an integer and either
7845truncating or zero extending that value to the size of the integer type.
7846If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7847``value`` is larger than ``ty2`` then a truncation is done. If they are
7848the same size, then nothing is done (*no-op cast*) other than a type
7849change.
7850
7851Example:
7852""""""""
7853
7854.. code-block:: llvm
7855
7856 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7857 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7858 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7859
7860.. _i_inttoptr:
7861
7862'``inttoptr .. to``' Instruction
7863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7864
7865Syntax:
7866"""""""
7867
7868::
7869
7870 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7871
7872Overview:
7873"""""""""
7874
7875The '``inttoptr``' instruction converts an integer ``value`` to a
7876pointer type, ``ty2``.
7877
7878Arguments:
7879""""""""""
7880
7881The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7882cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7883type.
7884
7885Semantics:
7886""""""""""
7887
7888The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7889applying either a zero extension or a truncation depending on the size
7890of the integer ``value``. If ``value`` is larger than the size of a
7891pointer then a truncation is done. If ``value`` is smaller than the size
7892of a pointer then a zero extension is done. If they are the same size,
7893nothing is done (*no-op cast*).
7894
7895Example:
7896""""""""
7897
7898.. code-block:: llvm
7899
7900 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7901 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7902 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7903 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7904
7905.. _i_bitcast:
7906
7907'``bitcast .. to``' Instruction
7908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7909
7910Syntax:
7911"""""""
7912
7913::
7914
7915 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7916
7917Overview:
7918"""""""""
7919
7920The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7921changing any bits.
7922
7923Arguments:
7924""""""""""
7925
7926The '``bitcast``' instruction takes a value to cast, which must be a
7927non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007928also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7929bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007930identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007931also be a pointer of the same size. This instruction supports bitwise
7932conversion of vectors to integers and to vectors of other types (as
7933long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007934
7935Semantics:
7936""""""""""
7937
Matt Arsenault24b49c42013-07-31 17:49:08 +00007938The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7939is always a *no-op cast* because no bits change with this
7940conversion. The conversion is done as if the ``value`` had been stored
7941to memory and read back as type ``ty2``. Pointer (or vector of
7942pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007943pointers) types with the same address space through this instruction.
7944To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7945or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007946
7947Example:
7948""""""""
7949
7950.. code-block:: llvm
7951
7952 %X = bitcast i8 255 to i8 ; yields i8 :-1
7953 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7954 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7955 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7956
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007957.. _i_addrspacecast:
7958
7959'``addrspacecast .. to``' Instruction
7960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7961
7962Syntax:
7963"""""""
7964
7965::
7966
7967 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7968
7969Overview:
7970"""""""""
7971
7972The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7973address space ``n`` to type ``pty2`` in address space ``m``.
7974
7975Arguments:
7976""""""""""
7977
7978The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7979to cast and a pointer type to cast it to, which must have a different
7980address space.
7981
7982Semantics:
7983""""""""""
7984
7985The '``addrspacecast``' instruction converts the pointer value
7986``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007987value modification, depending on the target and the address space
7988pair. Pointer conversions within the same address space must be
7989performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007990conversion is legal then both result and operand refer to the same memory
7991location.
7992
7993Example:
7994""""""""
7995
7996.. code-block:: llvm
7997
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007998 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7999 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8000 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008001
Sean Silvab084af42012-12-07 10:36:55 +00008002.. _otherops:
8003
8004Other Operations
8005----------------
8006
8007The instructions in this category are the "miscellaneous" instructions,
8008which defy better classification.
8009
8010.. _i_icmp:
8011
8012'``icmp``' Instruction
8013^^^^^^^^^^^^^^^^^^^^^^
8014
8015Syntax:
8016"""""""
8017
8018::
8019
Tim Northover675a0962014-06-13 14:24:23 +00008020 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008021
8022Overview:
8023"""""""""
8024
8025The '``icmp``' instruction returns a boolean value or a vector of
8026boolean values based on comparison of its two integer, integer vector,
8027pointer, or pointer vector operands.
8028
8029Arguments:
8030""""""""""
8031
8032The '``icmp``' instruction takes three operands. The first operand is
8033the condition code indicating the kind of comparison to perform. It is
8034not a value, just a keyword. The possible condition code are:
8035
8036#. ``eq``: equal
8037#. ``ne``: not equal
8038#. ``ugt``: unsigned greater than
8039#. ``uge``: unsigned greater or equal
8040#. ``ult``: unsigned less than
8041#. ``ule``: unsigned less or equal
8042#. ``sgt``: signed greater than
8043#. ``sge``: signed greater or equal
8044#. ``slt``: signed less than
8045#. ``sle``: signed less or equal
8046
8047The remaining two arguments must be :ref:`integer <t_integer>` or
8048:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8049must also be identical types.
8050
8051Semantics:
8052""""""""""
8053
8054The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8055code given as ``cond``. The comparison performed always yields either an
8056:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8057
8058#. ``eq``: yields ``true`` if the operands are equal, ``false``
8059 otherwise. No sign interpretation is necessary or performed.
8060#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8061 otherwise. No sign interpretation is necessary or performed.
8062#. ``ugt``: interprets the operands as unsigned values and yields
8063 ``true`` if ``op1`` is greater than ``op2``.
8064#. ``uge``: interprets the operands as unsigned values and yields
8065 ``true`` if ``op1`` is greater than or equal to ``op2``.
8066#. ``ult``: interprets the operands as unsigned values and yields
8067 ``true`` if ``op1`` is less than ``op2``.
8068#. ``ule``: interprets the operands as unsigned values and yields
8069 ``true`` if ``op1`` is less than or equal to ``op2``.
8070#. ``sgt``: interprets the operands as signed values and yields ``true``
8071 if ``op1`` is greater than ``op2``.
8072#. ``sge``: interprets the operands as signed values and yields ``true``
8073 if ``op1`` is greater than or equal to ``op2``.
8074#. ``slt``: interprets the operands as signed values and yields ``true``
8075 if ``op1`` is less than ``op2``.
8076#. ``sle``: interprets the operands as signed values and yields ``true``
8077 if ``op1`` is less than or equal to ``op2``.
8078
8079If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8080are compared as if they were integers.
8081
8082If the operands are integer vectors, then they are compared element by
8083element. The result is an ``i1`` vector with the same number of elements
8084as the values being compared. Otherwise, the result is an ``i1``.
8085
8086Example:
8087""""""""
8088
8089.. code-block:: llvm
8090
8091 <result> = icmp eq i32 4, 5 ; yields: result=false
8092 <result> = icmp ne float* %X, %X ; yields: result=false
8093 <result> = icmp ult i16 4, 5 ; yields: result=true
8094 <result> = icmp sgt i16 4, 5 ; yields: result=false
8095 <result> = icmp ule i16 -4, 5 ; yields: result=false
8096 <result> = icmp sge i16 4, 5 ; yields: result=false
8097
8098Note that the code generator does not yet support vector types with the
8099``icmp`` instruction.
8100
8101.. _i_fcmp:
8102
8103'``fcmp``' Instruction
8104^^^^^^^^^^^^^^^^^^^^^^
8105
8106Syntax:
8107"""""""
8108
8109::
8110
James Molloy88eb5352015-07-10 12:52:00 +00008111 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008112
8113Overview:
8114"""""""""
8115
8116The '``fcmp``' instruction returns a boolean value or vector of boolean
8117values based on comparison of its operands.
8118
8119If the operands are floating point scalars, then the result type is a
8120boolean (:ref:`i1 <t_integer>`).
8121
8122If the operands are floating point vectors, then the result type is a
8123vector of boolean with the same number of elements as the operands being
8124compared.
8125
8126Arguments:
8127""""""""""
8128
8129The '``fcmp``' instruction takes three operands. The first operand is
8130the condition code indicating the kind of comparison to perform. It is
8131not a value, just a keyword. The possible condition code are:
8132
8133#. ``false``: no comparison, always returns false
8134#. ``oeq``: ordered and equal
8135#. ``ogt``: ordered and greater than
8136#. ``oge``: ordered and greater than or equal
8137#. ``olt``: ordered and less than
8138#. ``ole``: ordered and less than or equal
8139#. ``one``: ordered and not equal
8140#. ``ord``: ordered (no nans)
8141#. ``ueq``: unordered or equal
8142#. ``ugt``: unordered or greater than
8143#. ``uge``: unordered or greater than or equal
8144#. ``ult``: unordered or less than
8145#. ``ule``: unordered or less than or equal
8146#. ``une``: unordered or not equal
8147#. ``uno``: unordered (either nans)
8148#. ``true``: no comparison, always returns true
8149
8150*Ordered* means that neither operand is a QNAN while *unordered* means
8151that either operand may be a QNAN.
8152
8153Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8154point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8155type. They must have identical types.
8156
8157Semantics:
8158""""""""""
8159
8160The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8161condition code given as ``cond``. If the operands are vectors, then the
8162vectors are compared element by element. Each comparison performed
8163always yields an :ref:`i1 <t_integer>` result, as follows:
8164
8165#. ``false``: always yields ``false``, regardless of operands.
8166#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8167 is equal to ``op2``.
8168#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8169 is greater than ``op2``.
8170#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8171 is greater than or equal to ``op2``.
8172#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8173 is less than ``op2``.
8174#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8175 is less than or equal to ``op2``.
8176#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8177 is not equal to ``op2``.
8178#. ``ord``: yields ``true`` if both operands are not a QNAN.
8179#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8180 equal to ``op2``.
8181#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8182 greater than ``op2``.
8183#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8184 greater than or equal to ``op2``.
8185#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8186 less than ``op2``.
8187#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8188 less than or equal to ``op2``.
8189#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8190 not equal to ``op2``.
8191#. ``uno``: yields ``true`` if either operand is a QNAN.
8192#. ``true``: always yields ``true``, regardless of operands.
8193
James Molloy88eb5352015-07-10 12:52:00 +00008194The ``fcmp`` instruction can also optionally take any number of
8195:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8196otherwise unsafe floating point optimizations.
8197
8198Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8199only flags that have any effect on its semantics are those that allow
8200assumptions to be made about the values of input arguments; namely
8201``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8202
Sean Silvab084af42012-12-07 10:36:55 +00008203Example:
8204""""""""
8205
8206.. code-block:: llvm
8207
8208 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8209 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8210 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8211 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8212
8213Note that the code generator does not yet support vector types with the
8214``fcmp`` instruction.
8215
8216.. _i_phi:
8217
8218'``phi``' Instruction
8219^^^^^^^^^^^^^^^^^^^^^
8220
8221Syntax:
8222"""""""
8223
8224::
8225
8226 <result> = phi <ty> [ <val0>, <label0>], ...
8227
8228Overview:
8229"""""""""
8230
8231The '``phi``' instruction is used to implement the φ node in the SSA
8232graph representing the function.
8233
8234Arguments:
8235""""""""""
8236
8237The type of the incoming values is specified with the first type field.
8238After this, the '``phi``' instruction takes a list of pairs as
8239arguments, with one pair for each predecessor basic block of the current
8240block. Only values of :ref:`first class <t_firstclass>` type may be used as
8241the value arguments to the PHI node. Only labels may be used as the
8242label arguments.
8243
8244There must be no non-phi instructions between the start of a basic block
8245and the PHI instructions: i.e. PHI instructions must be first in a basic
8246block.
8247
8248For the purposes of the SSA form, the use of each incoming value is
8249deemed to occur on the edge from the corresponding predecessor block to
8250the current block (but after any definition of an '``invoke``'
8251instruction's return value on the same edge).
8252
8253Semantics:
8254""""""""""
8255
8256At runtime, the '``phi``' instruction logically takes on the value
8257specified by the pair corresponding to the predecessor basic block that
8258executed just prior to the current block.
8259
8260Example:
8261""""""""
8262
8263.. code-block:: llvm
8264
8265 Loop: ; Infinite loop that counts from 0 on up...
8266 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8267 %nextindvar = add i32 %indvar, 1
8268 br label %Loop
8269
8270.. _i_select:
8271
8272'``select``' Instruction
8273^^^^^^^^^^^^^^^^^^^^^^^^
8274
8275Syntax:
8276"""""""
8277
8278::
8279
8280 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8281
8282 selty is either i1 or {<N x i1>}
8283
8284Overview:
8285"""""""""
8286
8287The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008288condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008289
8290Arguments:
8291""""""""""
8292
8293The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8294values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008295class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008296
8297Semantics:
8298""""""""""
8299
8300If the condition is an i1 and it evaluates to 1, the instruction returns
8301the first value argument; otherwise, it returns the second value
8302argument.
8303
8304If the condition is a vector of i1, then the value arguments must be
8305vectors of the same size, and the selection is done element by element.
8306
David Majnemer40a0b592015-03-03 22:45:47 +00008307If the condition is an i1 and the value arguments are vectors of the
8308same size, then an entire vector is selected.
8309
Sean Silvab084af42012-12-07 10:36:55 +00008310Example:
8311""""""""
8312
8313.. code-block:: llvm
8314
8315 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8316
8317.. _i_call:
8318
8319'``call``' Instruction
8320^^^^^^^^^^^^^^^^^^^^^^
8321
8322Syntax:
8323"""""""
8324
8325::
8326
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008327 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008328 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008329
8330Overview:
8331"""""""""
8332
8333The '``call``' instruction represents a simple function call.
8334
8335Arguments:
8336""""""""""
8337
8338This instruction requires several arguments:
8339
Reid Kleckner5772b772014-04-24 20:14:34 +00008340#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008341 should perform tail call optimization. The ``tail`` marker is a hint that
8342 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008343 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008344 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008345
8346 #. The call will not cause unbounded stack growth if it is part of a
8347 recursive cycle in the call graph.
8348 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8349 forwarded in place.
8350
8351 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008352 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008353 rules:
8354
8355 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8356 or a pointer bitcast followed by a ret instruction.
8357 - The ret instruction must return the (possibly bitcasted) value
8358 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008359 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008360 parameters or return types may differ in pointee type, but not
8361 in address space.
8362 - The calling conventions of the caller and callee must match.
8363 - All ABI-impacting function attributes, such as sret, byval, inreg,
8364 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008365 - The callee must be varargs iff the caller is varargs. Bitcasting a
8366 non-varargs function to the appropriate varargs type is legal so
8367 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008368
8369 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8370 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008371
8372 - Caller and callee both have the calling convention ``fastcc``.
8373 - The call is in tail position (ret immediately follows call and ret
8374 uses value of call or is void).
8375 - Option ``-tailcallopt`` is enabled, or
8376 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008377 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008378 met. <CodeGenerator.html#tailcallopt>`_
8379
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008380#. The optional ``notail`` marker indicates that the optimizers should not add
8381 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8382 call optimization from being performed on the call.
8383
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008384#. The optional ``fast-math flags`` marker indicates that the call has one or more
8385 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8386 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8387 for calls that return a floating-point scalar or vector type.
8388
Sean Silvab084af42012-12-07 10:36:55 +00008389#. The optional "cconv" marker indicates which :ref:`calling
8390 convention <callingconv>` the call should use. If none is
8391 specified, the call defaults to using C calling conventions. The
8392 calling convention of the call must match the calling convention of
8393 the target function, or else the behavior is undefined.
8394#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8395 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8396 are valid here.
8397#. '``ty``': the type of the call instruction itself which is also the
8398 type of the return value. Functions that return no value are marked
8399 ``void``.
8400#. '``fnty``': shall be the signature of the pointer to function value
8401 being invoked. The argument types must match the types implied by
8402 this signature. This type can be omitted if the function is not
8403 varargs and if the function type does not return a pointer to a
8404 function.
8405#. '``fnptrval``': An LLVM value containing a pointer to a function to
8406 be invoked. In most cases, this is a direct function invocation, but
8407 indirect ``call``'s are just as possible, calling an arbitrary pointer
8408 to function value.
8409#. '``function args``': argument list whose types match the function
8410 signature argument types and parameter attributes. All arguments must
8411 be of :ref:`first class <t_firstclass>` type. If the function signature
8412 indicates the function accepts a variable number of arguments, the
8413 extra arguments can be specified.
8414#. The optional :ref:`function attributes <fnattrs>` list. Only
8415 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8416 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008417#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008418
8419Semantics:
8420""""""""""
8421
8422The '``call``' instruction is used to cause control flow to transfer to
8423a specified function, with its incoming arguments bound to the specified
8424values. Upon a '``ret``' instruction in the called function, control
8425flow continues with the instruction after the function call, and the
8426return value of the function is bound to the result argument.
8427
8428Example:
8429""""""""
8430
8431.. code-block:: llvm
8432
8433 %retval = call i32 @test(i32 %argc)
8434 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8435 %X = tail call i32 @foo() ; yields i32
8436 %Y = tail call fastcc i32 @foo() ; yields i32
8437 call void %foo(i8 97 signext)
8438
8439 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008440 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008441 %gr = extractvalue %struct.A %r, 0 ; yields i32
8442 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8443 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8444 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8445
8446llvm treats calls to some functions with names and arguments that match
8447the standard C99 library as being the C99 library functions, and may
8448perform optimizations or generate code for them under that assumption.
8449This is something we'd like to change in the future to provide better
8450support for freestanding environments and non-C-based languages.
8451
8452.. _i_va_arg:
8453
8454'``va_arg``' Instruction
8455^^^^^^^^^^^^^^^^^^^^^^^^
8456
8457Syntax:
8458"""""""
8459
8460::
8461
8462 <resultval> = va_arg <va_list*> <arglist>, <argty>
8463
8464Overview:
8465"""""""""
8466
8467The '``va_arg``' instruction is used to access arguments passed through
8468the "variable argument" area of a function call. It is used to implement
8469the ``va_arg`` macro in C.
8470
8471Arguments:
8472""""""""""
8473
8474This instruction takes a ``va_list*`` value and the type of the
8475argument. It returns a value of the specified argument type and
8476increments the ``va_list`` to point to the next argument. The actual
8477type of ``va_list`` is target specific.
8478
8479Semantics:
8480""""""""""
8481
8482The '``va_arg``' instruction loads an argument of the specified type
8483from the specified ``va_list`` and causes the ``va_list`` to point to
8484the next argument. For more information, see the variable argument
8485handling :ref:`Intrinsic Functions <int_varargs>`.
8486
8487It is legal for this instruction to be called in a function which does
8488not take a variable number of arguments, for example, the ``vfprintf``
8489function.
8490
8491``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8492function <intrinsics>` because it takes a type as an argument.
8493
8494Example:
8495""""""""
8496
8497See the :ref:`variable argument processing <int_varargs>` section.
8498
8499Note that the code generator does not yet fully support va\_arg on many
8500targets. Also, it does not currently support va\_arg with aggregate
8501types on any target.
8502
8503.. _i_landingpad:
8504
8505'``landingpad``' Instruction
8506^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8507
8508Syntax:
8509"""""""
8510
8511::
8512
David Majnemer7fddecc2015-06-17 20:52:32 +00008513 <resultval> = landingpad <resultty> <clause>+
8514 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008515
8516 <clause> := catch <type> <value>
8517 <clause> := filter <array constant type> <array constant>
8518
8519Overview:
8520"""""""""
8521
8522The '``landingpad``' instruction is used by `LLVM's exception handling
8523system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008524is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008525code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008526defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008527re-entry to the function. The ``resultval`` has the type ``resultty``.
8528
8529Arguments:
8530""""""""""
8531
David Majnemer7fddecc2015-06-17 20:52:32 +00008532The optional
Sean Silvab084af42012-12-07 10:36:55 +00008533``cleanup`` flag indicates that the landing pad block is a cleanup.
8534
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008535A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008536contains the global variable representing the "type" that may be caught
8537or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8538clause takes an array constant as its argument. Use
8539"``[0 x i8**] undef``" for a filter which cannot throw. The
8540'``landingpad``' instruction must contain *at least* one ``clause`` or
8541the ``cleanup`` flag.
8542
8543Semantics:
8544""""""""""
8545
8546The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008547:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008548therefore the "result type" of the ``landingpad`` instruction. As with
8549calling conventions, how the personality function results are
8550represented in LLVM IR is target specific.
8551
8552The clauses are applied in order from top to bottom. If two
8553``landingpad`` instructions are merged together through inlining, the
8554clauses from the calling function are appended to the list of clauses.
8555When the call stack is being unwound due to an exception being thrown,
8556the exception is compared against each ``clause`` in turn. If it doesn't
8557match any of the clauses, and the ``cleanup`` flag is not set, then
8558unwinding continues further up the call stack.
8559
8560The ``landingpad`` instruction has several restrictions:
8561
8562- A landing pad block is a basic block which is the unwind destination
8563 of an '``invoke``' instruction.
8564- A landing pad block must have a '``landingpad``' instruction as its
8565 first non-PHI instruction.
8566- There can be only one '``landingpad``' instruction within the landing
8567 pad block.
8568- A basic block that is not a landing pad block may not include a
8569 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008570
8571Example:
8572""""""""
8573
8574.. code-block:: llvm
8575
8576 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008577 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008578 catch i8** @_ZTIi
8579 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008580 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008581 cleanup
8582 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008583 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008584 catch i8** @_ZTIi
8585 filter [1 x i8**] [@_ZTId]
8586
David Majnemer654e1302015-07-31 17:58:14 +00008587.. _i_cleanuppad:
8588
8589'``cleanuppad``' Instruction
8590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8591
8592Syntax:
8593"""""""
8594
8595::
8596
David Majnemer8a1c45d2015-12-12 05:38:55 +00008597 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008598
8599Overview:
8600"""""""""
8601
8602The '``cleanuppad``' instruction is used by `LLVM's exception handling
8603system <ExceptionHandling.html#overview>`_ to specify that a basic block
8604is a cleanup block --- one where a personality routine attempts to
8605transfer control to run cleanup actions.
8606The ``args`` correspond to whatever additional
8607information the :ref:`personality function <personalityfn>` requires to
8608execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008609The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008610match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8611The ``parent`` argument is the token of the funclet that contains the
8612``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8613this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008614
8615Arguments:
8616""""""""""
8617
8618The instruction takes a list of arbitrary values which are interpreted
8619by the :ref:`personality function <personalityfn>`.
8620
8621Semantics:
8622""""""""""
8623
David Majnemer654e1302015-07-31 17:58:14 +00008624When the call stack is being unwound due to an exception being thrown,
8625the :ref:`personality function <personalityfn>` transfers control to the
8626``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008627As with calling conventions, how the personality function results are
8628represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008629
8630The ``cleanuppad`` instruction has several restrictions:
8631
8632- A cleanup block is a basic block which is the unwind destination of
8633 an exceptional instruction.
8634- A cleanup block must have a '``cleanuppad``' instruction as its
8635 first non-PHI instruction.
8636- There can be only one '``cleanuppad``' instruction within the
8637 cleanup block.
8638- A basic block that is not a cleanup block may not include a
8639 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008640
8641Executing a ``cleanuppad`` instruction constitutes "entering" that pad.
8642The pad may then be "exited" in one of three ways:
Akira Hatanakaa84428e2015-12-15 19:11:48 +00008643
David Majnemer8a1c45d2015-12-12 05:38:55 +000086441) explicitly via a ``cleanupret`` that consumes it. Executing such a ``cleanupret``
8645 is undefined behavior if any descendant pads have been entered but not yet
8646 exited.
86472) implicitly via a call (which unwinds all the way to the current function's caller),
David Majnemerbbfc7212015-12-14 18:34:23 +00008648 or via a ``catchswitch`` or a ``cleanupret`` that unwinds to caller.
David Majnemer8a1c45d2015-12-12 05:38:55 +000086493) implicitly via an unwind edge whose destination EH pad isn't a descendant of
8650 the ``cleanuppad``. When the ``cleanuppad`` is exited in this manner, it is
8651 undefined behavior if the destination EH pad has a parent which is not an
8652 ancestor of the ``cleanuppad`` being exited.
8653
8654It is undefined behavior for the ``cleanuppad`` to exit via an unwind edge which
8655does not transitively unwind to the same destination as a constituent
8656``cleanupret``.
David Majnemer654e1302015-07-31 17:58:14 +00008657
8658Example:
8659""""""""
8660
8661.. code-block:: llvm
8662
David Majnemer8a1c45d2015-12-12 05:38:55 +00008663 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008664
Sean Silvab084af42012-12-07 10:36:55 +00008665.. _intrinsics:
8666
8667Intrinsic Functions
8668===================
8669
8670LLVM supports the notion of an "intrinsic function". These functions
8671have well known names and semantics and are required to follow certain
8672restrictions. Overall, these intrinsics represent an extension mechanism
8673for the LLVM language that does not require changing all of the
8674transformations in LLVM when adding to the language (or the bitcode
8675reader/writer, the parser, etc...).
8676
8677Intrinsic function names must all start with an "``llvm.``" prefix. This
8678prefix is reserved in LLVM for intrinsic names; thus, function names may
8679not begin with this prefix. Intrinsic functions must always be external
8680functions: you cannot define the body of intrinsic functions. Intrinsic
8681functions may only be used in call or invoke instructions: it is illegal
8682to take the address of an intrinsic function. Additionally, because
8683intrinsic functions are part of the LLVM language, it is required if any
8684are added that they be documented here.
8685
8686Some intrinsic functions can be overloaded, i.e., the intrinsic
8687represents a family of functions that perform the same operation but on
8688different data types. Because LLVM can represent over 8 million
8689different integer types, overloading is used commonly to allow an
8690intrinsic function to operate on any integer type. One or more of the
8691argument types or the result type can be overloaded to accept any
8692integer type. Argument types may also be defined as exactly matching a
8693previous argument's type or the result type. This allows an intrinsic
8694function which accepts multiple arguments, but needs all of them to be
8695of the same type, to only be overloaded with respect to a single
8696argument or the result.
8697
8698Overloaded intrinsics will have the names of its overloaded argument
8699types encoded into its function name, each preceded by a period. Only
8700those types which are overloaded result in a name suffix. Arguments
8701whose type is matched against another type do not. For example, the
8702``llvm.ctpop`` function can take an integer of any width and returns an
8703integer of exactly the same integer width. This leads to a family of
8704functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8705``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8706overloaded, and only one type suffix is required. Because the argument's
8707type is matched against the return type, it does not require its own
8708name suffix.
8709
8710To learn how to add an intrinsic function, please see the `Extending
8711LLVM Guide <ExtendingLLVM.html>`_.
8712
8713.. _int_varargs:
8714
8715Variable Argument Handling Intrinsics
8716-------------------------------------
8717
8718Variable argument support is defined in LLVM with the
8719:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8720functions. These functions are related to the similarly named macros
8721defined in the ``<stdarg.h>`` header file.
8722
8723All of these functions operate on arguments that use a target-specific
8724value type "``va_list``". The LLVM assembly language reference manual
8725does not define what this type is, so all transformations should be
8726prepared to handle these functions regardless of the type used.
8727
8728This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8729variable argument handling intrinsic functions are used.
8730
8731.. code-block:: llvm
8732
Tim Northoverab60bb92014-11-02 01:21:51 +00008733 ; This struct is different for every platform. For most platforms,
8734 ; it is merely an i8*.
8735 %struct.va_list = type { i8* }
8736
8737 ; For Unix x86_64 platforms, va_list is the following struct:
8738 ; %struct.va_list = type { i32, i32, i8*, i8* }
8739
Sean Silvab084af42012-12-07 10:36:55 +00008740 define i32 @test(i32 %X, ...) {
8741 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008742 %ap = alloca %struct.va_list
8743 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008744 call void @llvm.va_start(i8* %ap2)
8745
8746 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008747 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008748
8749 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8750 %aq = alloca i8*
8751 %aq2 = bitcast i8** %aq to i8*
8752 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8753 call void @llvm.va_end(i8* %aq2)
8754
8755 ; Stop processing of arguments.
8756 call void @llvm.va_end(i8* %ap2)
8757 ret i32 %tmp
8758 }
8759
8760 declare void @llvm.va_start(i8*)
8761 declare void @llvm.va_copy(i8*, i8*)
8762 declare void @llvm.va_end(i8*)
8763
8764.. _int_va_start:
8765
8766'``llvm.va_start``' Intrinsic
8767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8768
8769Syntax:
8770"""""""
8771
8772::
8773
Nick Lewycky04f6de02013-09-11 22:04:52 +00008774 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008775
8776Overview:
8777"""""""""
8778
8779The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8780subsequent use by ``va_arg``.
8781
8782Arguments:
8783""""""""""
8784
8785The argument is a pointer to a ``va_list`` element to initialize.
8786
8787Semantics:
8788""""""""""
8789
8790The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8791available in C. In a target-dependent way, it initializes the
8792``va_list`` element to which the argument points, so that the next call
8793to ``va_arg`` will produce the first variable argument passed to the
8794function. Unlike the C ``va_start`` macro, this intrinsic does not need
8795to know the last argument of the function as the compiler can figure
8796that out.
8797
8798'``llvm.va_end``' Intrinsic
8799^^^^^^^^^^^^^^^^^^^^^^^^^^^
8800
8801Syntax:
8802"""""""
8803
8804::
8805
8806 declare void @llvm.va_end(i8* <arglist>)
8807
8808Overview:
8809"""""""""
8810
8811The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8812initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8813
8814Arguments:
8815""""""""""
8816
8817The argument is a pointer to a ``va_list`` to destroy.
8818
8819Semantics:
8820""""""""""
8821
8822The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8823available in C. In a target-dependent way, it destroys the ``va_list``
8824element to which the argument points. Calls to
8825:ref:`llvm.va_start <int_va_start>` and
8826:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8827``llvm.va_end``.
8828
8829.. _int_va_copy:
8830
8831'``llvm.va_copy``' Intrinsic
8832^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8833
8834Syntax:
8835"""""""
8836
8837::
8838
8839 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8840
8841Overview:
8842"""""""""
8843
8844The '``llvm.va_copy``' intrinsic copies the current argument position
8845from the source argument list to the destination argument list.
8846
8847Arguments:
8848""""""""""
8849
8850The first argument is a pointer to a ``va_list`` element to initialize.
8851The second argument is a pointer to a ``va_list`` element to copy from.
8852
8853Semantics:
8854""""""""""
8855
8856The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8857available in C. In a target-dependent way, it copies the source
8858``va_list`` element into the destination ``va_list`` element. This
8859intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8860arbitrarily complex and require, for example, memory allocation.
8861
8862Accurate Garbage Collection Intrinsics
8863--------------------------------------
8864
Philip Reamesc5b0f562015-02-25 23:52:06 +00008865LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008866(GC) requires the frontend to generate code containing appropriate intrinsic
8867calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008868intrinsics in a manner which is appropriate for the target collector.
8869
Sean Silvab084af42012-12-07 10:36:55 +00008870These intrinsics allow identification of :ref:`GC roots on the
8871stack <int_gcroot>`, as well as garbage collector implementations that
8872require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008873Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008874these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008875details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008876
Philip Reamesf80bbff2015-02-25 23:45:20 +00008877Experimental Statepoint Intrinsics
8878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8879
8880LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008881collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008882to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008883:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008884differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008885<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008886described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008887
8888.. _int_gcroot:
8889
8890'``llvm.gcroot``' Intrinsic
8891^^^^^^^^^^^^^^^^^^^^^^^^^^^
8892
8893Syntax:
8894"""""""
8895
8896::
8897
8898 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8899
8900Overview:
8901"""""""""
8902
8903The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8904the code generator, and allows some metadata to be associated with it.
8905
8906Arguments:
8907""""""""""
8908
8909The first argument specifies the address of a stack object that contains
8910the root pointer. The second pointer (which must be either a constant or
8911a global value address) contains the meta-data to be associated with the
8912root.
8913
8914Semantics:
8915""""""""""
8916
8917At runtime, a call to this intrinsic stores a null pointer into the
8918"ptrloc" location. At compile-time, the code generator generates
8919information to allow the runtime to find the pointer at GC safe points.
8920The '``llvm.gcroot``' intrinsic may only be used in a function which
8921:ref:`specifies a GC algorithm <gc>`.
8922
8923.. _int_gcread:
8924
8925'``llvm.gcread``' Intrinsic
8926^^^^^^^^^^^^^^^^^^^^^^^^^^^
8927
8928Syntax:
8929"""""""
8930
8931::
8932
8933 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8934
8935Overview:
8936"""""""""
8937
8938The '``llvm.gcread``' intrinsic identifies reads of references from heap
8939locations, allowing garbage collector implementations that require read
8940barriers.
8941
8942Arguments:
8943""""""""""
8944
8945The second argument is the address to read from, which should be an
8946address allocated from the garbage collector. The first object is a
8947pointer to the start of the referenced object, if needed by the language
8948runtime (otherwise null).
8949
8950Semantics:
8951""""""""""
8952
8953The '``llvm.gcread``' intrinsic has the same semantics as a load
8954instruction, but may be replaced with substantially more complex code by
8955the garbage collector runtime, as needed. The '``llvm.gcread``'
8956intrinsic may only be used in a function which :ref:`specifies a GC
8957algorithm <gc>`.
8958
8959.. _int_gcwrite:
8960
8961'``llvm.gcwrite``' Intrinsic
8962^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8963
8964Syntax:
8965"""""""
8966
8967::
8968
8969 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8970
8971Overview:
8972"""""""""
8973
8974The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8975locations, allowing garbage collector implementations that require write
8976barriers (such as generational or reference counting collectors).
8977
8978Arguments:
8979""""""""""
8980
8981The first argument is the reference to store, the second is the start of
8982the object to store it to, and the third is the address of the field of
8983Obj to store to. If the runtime does not require a pointer to the
8984object, Obj may be null.
8985
8986Semantics:
8987""""""""""
8988
8989The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8990instruction, but may be replaced with substantially more complex code by
8991the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8992intrinsic may only be used in a function which :ref:`specifies a GC
8993algorithm <gc>`.
8994
8995Code Generator Intrinsics
8996-------------------------
8997
8998These intrinsics are provided by LLVM to expose special features that
8999may only be implemented with code generator support.
9000
9001'``llvm.returnaddress``' Intrinsic
9002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9003
9004Syntax:
9005"""""""
9006
9007::
9008
9009 declare i8 *@llvm.returnaddress(i32 <level>)
9010
9011Overview:
9012"""""""""
9013
9014The '``llvm.returnaddress``' intrinsic attempts to compute a
9015target-specific value indicating the return address of the current
9016function or one of its callers.
9017
9018Arguments:
9019""""""""""
9020
9021The argument to this intrinsic indicates which function to return the
9022address for. Zero indicates the calling function, one indicates its
9023caller, etc. The argument is **required** to be a constant integer
9024value.
9025
9026Semantics:
9027""""""""""
9028
9029The '``llvm.returnaddress``' intrinsic either returns a pointer
9030indicating the return address of the specified call frame, or zero if it
9031cannot be identified. The value returned by this intrinsic is likely to
9032be incorrect or 0 for arguments other than zero, so it should only be
9033used for debugging purposes.
9034
9035Note that calling this intrinsic does not prevent function inlining or
9036other aggressive transformations, so the value returned may not be that
9037of the obvious source-language caller.
9038
9039'``llvm.frameaddress``' Intrinsic
9040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9041
9042Syntax:
9043"""""""
9044
9045::
9046
9047 declare i8* @llvm.frameaddress(i32 <level>)
9048
9049Overview:
9050"""""""""
9051
9052The '``llvm.frameaddress``' intrinsic attempts to return the
9053target-specific frame pointer value for the specified stack frame.
9054
9055Arguments:
9056""""""""""
9057
9058The argument to this intrinsic indicates which function to return the
9059frame pointer for. Zero indicates the calling function, one indicates
9060its caller, etc. The argument is **required** to be a constant integer
9061value.
9062
9063Semantics:
9064""""""""""
9065
9066The '``llvm.frameaddress``' intrinsic either returns a pointer
9067indicating the frame address of the specified call frame, or zero if it
9068cannot be identified. The value returned by this intrinsic is likely to
9069be incorrect or 0 for arguments other than zero, so it should only be
9070used for debugging purposes.
9071
9072Note that calling this intrinsic does not prevent function inlining or
9073other aggressive transformations, so the value returned may not be that
9074of the obvious source-language caller.
9075
Reid Kleckner60381792015-07-07 22:25:32 +00009076'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9078
9079Syntax:
9080"""""""
9081
9082::
9083
Reid Kleckner60381792015-07-07 22:25:32 +00009084 declare void @llvm.localescape(...)
9085 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009086
9087Overview:
9088"""""""""
9089
Reid Kleckner60381792015-07-07 22:25:32 +00009090The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9091allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009092live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009093computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009094
9095Arguments:
9096""""""""""
9097
Reid Kleckner60381792015-07-07 22:25:32 +00009098All arguments to '``llvm.localescape``' must be pointers to static allocas or
9099casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009100once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009101
Reid Kleckner60381792015-07-07 22:25:32 +00009102The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009103bitcasted pointer to a function defined in the current module. The code
9104generator cannot determine the frame allocation offset of functions defined in
9105other modules.
9106
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009107The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9108call frame that is currently live. The return value of '``llvm.localaddress``'
9109is one way to produce such a value, but various runtimes also expose a suitable
9110pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009111
Reid Kleckner60381792015-07-07 22:25:32 +00009112The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9113'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009114
Reid Klecknere9b89312015-01-13 00:48:10 +00009115Semantics:
9116""""""""""
9117
Reid Kleckner60381792015-07-07 22:25:32 +00009118These intrinsics allow a group of functions to share access to a set of local
9119stack allocations of a one parent function. The parent function may call the
9120'``llvm.localescape``' intrinsic once from the function entry block, and the
9121child functions can use '``llvm.localrecover``' to access the escaped allocas.
9122The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9123the escaped allocas are allocated, which would break attempts to use
9124'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009125
Renato Golinc7aea402014-05-06 16:51:25 +00009126.. _int_read_register:
9127.. _int_write_register:
9128
9129'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9131
9132Syntax:
9133"""""""
9134
9135::
9136
9137 declare i32 @llvm.read_register.i32(metadata)
9138 declare i64 @llvm.read_register.i64(metadata)
9139 declare void @llvm.write_register.i32(metadata, i32 @value)
9140 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009141 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009142
9143Overview:
9144"""""""""
9145
9146The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9147provides access to the named register. The register must be valid on
9148the architecture being compiled to. The type needs to be compatible
9149with the register being read.
9150
9151Semantics:
9152""""""""""
9153
9154The '``llvm.read_register``' intrinsic returns the current value of the
9155register, where possible. The '``llvm.write_register``' intrinsic sets
9156the current value of the register, where possible.
9157
9158This is useful to implement named register global variables that need
9159to always be mapped to a specific register, as is common practice on
9160bare-metal programs including OS kernels.
9161
9162The compiler doesn't check for register availability or use of the used
9163register in surrounding code, including inline assembly. Because of that,
9164allocatable registers are not supported.
9165
9166Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009167architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009168work is needed to support other registers and even more so, allocatable
9169registers.
9170
Sean Silvab084af42012-12-07 10:36:55 +00009171.. _int_stacksave:
9172
9173'``llvm.stacksave``' Intrinsic
9174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9175
9176Syntax:
9177"""""""
9178
9179::
9180
9181 declare i8* @llvm.stacksave()
9182
9183Overview:
9184"""""""""
9185
9186The '``llvm.stacksave``' intrinsic is used to remember the current state
9187of the function stack, for use with
9188:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9189implementing language features like scoped automatic variable sized
9190arrays in C99.
9191
9192Semantics:
9193""""""""""
9194
9195This intrinsic returns a opaque pointer value that can be passed to
9196:ref:`llvm.stackrestore <int_stackrestore>`. When an
9197``llvm.stackrestore`` intrinsic is executed with a value saved from
9198``llvm.stacksave``, it effectively restores the state of the stack to
9199the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9200practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9201were allocated after the ``llvm.stacksave`` was executed.
9202
9203.. _int_stackrestore:
9204
9205'``llvm.stackrestore``' Intrinsic
9206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9207
9208Syntax:
9209"""""""
9210
9211::
9212
9213 declare void @llvm.stackrestore(i8* %ptr)
9214
9215Overview:
9216"""""""""
9217
9218The '``llvm.stackrestore``' intrinsic is used to restore the state of
9219the function stack to the state it was in when the corresponding
9220:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9221useful for implementing language features like scoped automatic variable
9222sized arrays in C99.
9223
9224Semantics:
9225""""""""""
9226
9227See the description for :ref:`llvm.stacksave <int_stacksave>`.
9228
Yury Gribovd7dbb662015-12-01 11:40:55 +00009229.. _int_get_dynamic_area_offset:
9230
9231'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009233
9234Syntax:
9235"""""""
9236
9237::
9238
9239 declare i32 @llvm.get.dynamic.area.offset.i32()
9240 declare i64 @llvm.get.dynamic.area.offset.i64()
9241
9242 Overview:
9243 """""""""
9244
9245 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9246 get the offset from native stack pointer to the address of the most
9247 recent dynamic alloca on the caller's stack. These intrinsics are
9248 intendend for use in combination with
9249 :ref:`llvm.stacksave <int_stacksave>` to get a
9250 pointer to the most recent dynamic alloca. This is useful, for example,
9251 for AddressSanitizer's stack unpoisoning routines.
9252
9253Semantics:
9254""""""""""
9255
9256 These intrinsics return a non-negative integer value that can be used to
9257 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9258 on the caller's stack. In particular, for targets where stack grows downwards,
9259 adding this offset to the native stack pointer would get the address of the most
9260 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9261 complicated, because substracting this value from stack pointer would get the address
9262 one past the end of the most recent dynamic alloca.
9263
9264 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9265 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9266 compile-time-known constant value.
9267
9268 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9269 must match the target's generic address space's (address space 0) pointer type.
9270
Sean Silvab084af42012-12-07 10:36:55 +00009271'``llvm.prefetch``' Intrinsic
9272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9273
9274Syntax:
9275"""""""
9276
9277::
9278
9279 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9280
9281Overview:
9282"""""""""
9283
9284The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9285insert a prefetch instruction if supported; otherwise, it is a noop.
9286Prefetches have no effect on the behavior of the program but can change
9287its performance characteristics.
9288
9289Arguments:
9290""""""""""
9291
9292``address`` is the address to be prefetched, ``rw`` is the specifier
9293determining if the fetch should be for a read (0) or write (1), and
9294``locality`` is a temporal locality specifier ranging from (0) - no
9295locality, to (3) - extremely local keep in cache. The ``cache type``
9296specifies whether the prefetch is performed on the data (1) or
9297instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9298arguments must be constant integers.
9299
9300Semantics:
9301""""""""""
9302
9303This intrinsic does not modify the behavior of the program. In
9304particular, prefetches cannot trap and do not produce a value. On
9305targets that support this intrinsic, the prefetch can provide hints to
9306the processor cache for better performance.
9307
9308'``llvm.pcmarker``' Intrinsic
9309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9310
9311Syntax:
9312"""""""
9313
9314::
9315
9316 declare void @llvm.pcmarker(i32 <id>)
9317
9318Overview:
9319"""""""""
9320
9321The '``llvm.pcmarker``' intrinsic is a method to export a Program
9322Counter (PC) in a region of code to simulators and other tools. The
9323method is target specific, but it is expected that the marker will use
9324exported symbols to transmit the PC of the marker. The marker makes no
9325guarantees that it will remain with any specific instruction after
9326optimizations. It is possible that the presence of a marker will inhibit
9327optimizations. The intended use is to be inserted after optimizations to
9328allow correlations of simulation runs.
9329
9330Arguments:
9331""""""""""
9332
9333``id`` is a numerical id identifying the marker.
9334
9335Semantics:
9336""""""""""
9337
9338This intrinsic does not modify the behavior of the program. Backends
9339that do not support this intrinsic may ignore it.
9340
9341'``llvm.readcyclecounter``' Intrinsic
9342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9343
9344Syntax:
9345"""""""
9346
9347::
9348
9349 declare i64 @llvm.readcyclecounter()
9350
9351Overview:
9352"""""""""
9353
9354The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9355counter register (or similar low latency, high accuracy clocks) on those
9356targets that support it. On X86, it should map to RDTSC. On Alpha, it
9357should map to RPCC. As the backing counters overflow quickly (on the
9358order of 9 seconds on alpha), this should only be used for small
9359timings.
9360
9361Semantics:
9362""""""""""
9363
9364When directly supported, reading the cycle counter should not modify any
9365memory. Implementations are allowed to either return a application
9366specific value or a system wide value. On backends without support, this
9367is lowered to a constant 0.
9368
Tim Northoverbc933082013-05-23 19:11:20 +00009369Note that runtime support may be conditional on the privilege-level code is
9370running at and the host platform.
9371
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009372'``llvm.clear_cache``' Intrinsic
9373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9374
9375Syntax:
9376"""""""
9377
9378::
9379
9380 declare void @llvm.clear_cache(i8*, i8*)
9381
9382Overview:
9383"""""""""
9384
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009385The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9386in the specified range to the execution unit of the processor. On
9387targets with non-unified instruction and data cache, the implementation
9388flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009389
9390Semantics:
9391""""""""""
9392
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009393On platforms with coherent instruction and data caches (e.g. x86), this
9394intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009395cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009396instructions or a system call, if cache flushing requires special
9397privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009398
Sean Silvad02bf3e2014-04-07 22:29:53 +00009399The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009400time library.
Renato Golin93010e62014-03-26 14:01:32 +00009401
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009402This instrinsic does *not* empty the instruction pipeline. Modifications
9403of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009404
Justin Bogner61ba2e32014-12-08 18:02:35 +00009405'``llvm.instrprof_increment``' Intrinsic
9406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9407
9408Syntax:
9409"""""""
9410
9411::
9412
9413 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9414 i32 <num-counters>, i32 <index>)
9415
9416Overview:
9417"""""""""
9418
9419The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9420frontend for use with instrumentation based profiling. These will be
9421lowered by the ``-instrprof`` pass to generate execution counts of a
9422program at runtime.
9423
9424Arguments:
9425""""""""""
9426
9427The first argument is a pointer to a global variable containing the
9428name of the entity being instrumented. This should generally be the
9429(mangled) function name for a set of counters.
9430
9431The second argument is a hash value that can be used by the consumer
9432of the profile data to detect changes to the instrumented source, and
9433the third is the number of counters associated with ``name``. It is an
9434error if ``hash`` or ``num-counters`` differ between two instances of
9435``instrprof_increment`` that refer to the same name.
9436
9437The last argument refers to which of the counters for ``name`` should
9438be incremented. It should be a value between 0 and ``num-counters``.
9439
9440Semantics:
9441""""""""""
9442
9443This intrinsic represents an increment of a profiling counter. It will
9444cause the ``-instrprof`` pass to generate the appropriate data
9445structures and the code to increment the appropriate value, in a
9446format that can be written out by a compiler runtime and consumed via
9447the ``llvm-profdata`` tool.
9448
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009449'``llvm.instrprof_value_profile``' Intrinsic
9450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9451
9452Syntax:
9453"""""""
9454
9455::
9456
9457 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9458 i64 <value>, i32 <value_kind>,
9459 i32 <index>)
9460
9461Overview:
9462"""""""""
9463
9464The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9465frontend for use with instrumentation based profiling. This will be
9466lowered by the ``-instrprof`` pass to find out the target values,
9467instrumented expressions take in a program at runtime.
9468
9469Arguments:
9470""""""""""
9471
9472The first argument is a pointer to a global variable containing the
9473name of the entity being instrumented. ``name`` should generally be the
9474(mangled) function name for a set of counters.
9475
9476The second argument is a hash value that can be used by the consumer
9477of the profile data to detect changes to the instrumented source. It
9478is an error if ``hash`` differs between two instances of
9479``llvm.instrprof_*`` that refer to the same name.
9480
9481The third argument is the value of the expression being profiled. The profiled
9482expression's value should be representable as an unsigned 64-bit value. The
9483fourth argument represents the kind of value profiling that is being done. The
9484supported value profiling kinds are enumerated through the
9485``InstrProfValueKind`` type declared in the
9486``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9487index of the instrumented expression within ``name``. It should be >= 0.
9488
9489Semantics:
9490""""""""""
9491
9492This intrinsic represents the point where a call to a runtime routine
9493should be inserted for value profiling of target expressions. ``-instrprof``
9494pass will generate the appropriate data structures and replace the
9495``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9496runtime library with proper arguments.
9497
Sean Silvab084af42012-12-07 10:36:55 +00009498Standard C Library Intrinsics
9499-----------------------------
9500
9501LLVM provides intrinsics for a few important standard C library
9502functions. These intrinsics allow source-language front-ends to pass
9503information about the alignment of the pointer arguments to the code
9504generator, providing opportunity for more efficient code generation.
9505
9506.. _int_memcpy:
9507
9508'``llvm.memcpy``' Intrinsic
9509^^^^^^^^^^^^^^^^^^^^^^^^^^^
9510
9511Syntax:
9512"""""""
9513
9514This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9515integer bit width and for different address spaces. Not all targets
9516support all bit widths however.
9517
9518::
9519
9520 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9521 i32 <len>, i32 <align>, i1 <isvolatile>)
9522 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9523 i64 <len>, i32 <align>, i1 <isvolatile>)
9524
9525Overview:
9526"""""""""
9527
9528The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9529source location to the destination location.
9530
9531Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9532intrinsics do not return a value, takes extra alignment/isvolatile
9533arguments and the pointers can be in specified address spaces.
9534
9535Arguments:
9536""""""""""
9537
9538The first argument is a pointer to the destination, the second is a
9539pointer to the source. The third argument is an integer argument
9540specifying the number of bytes to copy, the fourth argument is the
9541alignment of the source and destination locations, and the fifth is a
9542boolean indicating a volatile access.
9543
9544If the call to this intrinsic has an alignment value that is not 0 or 1,
9545then the caller guarantees that both the source and destination pointers
9546are aligned to that boundary.
9547
9548If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9549a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9550very cleanly specified and it is unwise to depend on it.
9551
9552Semantics:
9553""""""""""
9554
9555The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9556source location to the destination location, which are not allowed to
9557overlap. It copies "len" bytes of memory over. If the argument is known
9558to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009559argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009560
9561'``llvm.memmove``' Intrinsic
9562^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9563
9564Syntax:
9565"""""""
9566
9567This is an overloaded intrinsic. You can use llvm.memmove on any integer
9568bit width and for different address space. Not all targets support all
9569bit widths however.
9570
9571::
9572
9573 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9574 i32 <len>, i32 <align>, i1 <isvolatile>)
9575 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9576 i64 <len>, i32 <align>, i1 <isvolatile>)
9577
9578Overview:
9579"""""""""
9580
9581The '``llvm.memmove.*``' intrinsics move a block of memory from the
9582source location to the destination location. It is similar to the
9583'``llvm.memcpy``' intrinsic but allows the two memory locations to
9584overlap.
9585
9586Note that, unlike the standard libc function, the ``llvm.memmove.*``
9587intrinsics do not return a value, takes extra alignment/isvolatile
9588arguments and the pointers can be in specified address spaces.
9589
9590Arguments:
9591""""""""""
9592
9593The first argument is a pointer to the destination, the second is a
9594pointer to the source. The third argument is an integer argument
9595specifying the number of bytes to copy, the fourth argument is the
9596alignment of the source and destination locations, and the fifth is a
9597boolean indicating a volatile access.
9598
9599If the call to this intrinsic has an alignment value that is not 0 or 1,
9600then the caller guarantees that the source and destination pointers are
9601aligned to that boundary.
9602
9603If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9604is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9605not very cleanly specified and it is unwise to depend on it.
9606
9607Semantics:
9608""""""""""
9609
9610The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9611source location to the destination location, which may overlap. It
9612copies "len" bytes of memory over. If the argument is known to be
9613aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009614otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009615
9616'``llvm.memset.*``' Intrinsics
9617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9618
9619Syntax:
9620"""""""
9621
9622This is an overloaded intrinsic. You can use llvm.memset on any integer
9623bit width and for different address spaces. However, not all targets
9624support all bit widths.
9625
9626::
9627
9628 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9629 i32 <len>, i32 <align>, i1 <isvolatile>)
9630 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9631 i64 <len>, i32 <align>, i1 <isvolatile>)
9632
9633Overview:
9634"""""""""
9635
9636The '``llvm.memset.*``' intrinsics fill a block of memory with a
9637particular byte value.
9638
9639Note that, unlike the standard libc function, the ``llvm.memset``
9640intrinsic does not return a value and takes extra alignment/volatile
9641arguments. Also, the destination can be in an arbitrary address space.
9642
9643Arguments:
9644""""""""""
9645
9646The first argument is a pointer to the destination to fill, the second
9647is the byte value with which to fill it, the third argument is an
9648integer argument specifying the number of bytes to fill, and the fourth
9649argument is the known alignment of the destination location.
9650
9651If the call to this intrinsic has an alignment value that is not 0 or 1,
9652then the caller guarantees that the destination pointer is aligned to
9653that boundary.
9654
9655If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9656a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9657very cleanly specified and it is unwise to depend on it.
9658
9659Semantics:
9660""""""""""
9661
9662The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9663at the destination location. If the argument is known to be aligned to
9664some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009665it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009666
9667'``llvm.sqrt.*``' Intrinsic
9668^^^^^^^^^^^^^^^^^^^^^^^^^^^
9669
9670Syntax:
9671"""""""
9672
9673This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9674floating point or vector of floating point type. Not all targets support
9675all types however.
9676
9677::
9678
9679 declare float @llvm.sqrt.f32(float %Val)
9680 declare double @llvm.sqrt.f64(double %Val)
9681 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9682 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9683 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9684
9685Overview:
9686"""""""""
9687
9688The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9689returning the same value as the libm '``sqrt``' functions would. Unlike
9690``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9691negative numbers other than -0.0 (which allows for better optimization,
9692because there is no need to worry about errno being set).
9693``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9694
9695Arguments:
9696""""""""""
9697
9698The argument and return value are floating point numbers of the same
9699type.
9700
9701Semantics:
9702""""""""""
9703
9704This function returns the sqrt of the specified operand if it is a
9705nonnegative floating point number.
9706
9707'``llvm.powi.*``' Intrinsic
9708^^^^^^^^^^^^^^^^^^^^^^^^^^^
9709
9710Syntax:
9711"""""""
9712
9713This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9714floating point or vector of floating point type. Not all targets support
9715all types however.
9716
9717::
9718
9719 declare float @llvm.powi.f32(float %Val, i32 %power)
9720 declare double @llvm.powi.f64(double %Val, i32 %power)
9721 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9722 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9723 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9724
9725Overview:
9726"""""""""
9727
9728The '``llvm.powi.*``' intrinsics return the first operand raised to the
9729specified (positive or negative) power. The order of evaluation of
9730multiplications is not defined. When a vector of floating point type is
9731used, the second argument remains a scalar integer value.
9732
9733Arguments:
9734""""""""""
9735
9736The second argument is an integer power, and the first is a value to
9737raise to that power.
9738
9739Semantics:
9740""""""""""
9741
9742This function returns the first value raised to the second power with an
9743unspecified sequence of rounding operations.
9744
9745'``llvm.sin.*``' Intrinsic
9746^^^^^^^^^^^^^^^^^^^^^^^^^^
9747
9748Syntax:
9749"""""""
9750
9751This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9752floating point or vector of floating point type. Not all targets support
9753all types however.
9754
9755::
9756
9757 declare float @llvm.sin.f32(float %Val)
9758 declare double @llvm.sin.f64(double %Val)
9759 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9760 declare fp128 @llvm.sin.f128(fp128 %Val)
9761 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9762
9763Overview:
9764"""""""""
9765
9766The '``llvm.sin.*``' intrinsics return the sine of the operand.
9767
9768Arguments:
9769""""""""""
9770
9771The argument and return value are floating point numbers of the same
9772type.
9773
9774Semantics:
9775""""""""""
9776
9777This function returns the sine of the specified operand, returning the
9778same values as the libm ``sin`` functions would, and handles error
9779conditions in the same way.
9780
9781'``llvm.cos.*``' Intrinsic
9782^^^^^^^^^^^^^^^^^^^^^^^^^^
9783
9784Syntax:
9785"""""""
9786
9787This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9788floating point or vector of floating point type. Not all targets support
9789all types however.
9790
9791::
9792
9793 declare float @llvm.cos.f32(float %Val)
9794 declare double @llvm.cos.f64(double %Val)
9795 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9796 declare fp128 @llvm.cos.f128(fp128 %Val)
9797 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9798
9799Overview:
9800"""""""""
9801
9802The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9803
9804Arguments:
9805""""""""""
9806
9807The argument and return value are floating point numbers of the same
9808type.
9809
9810Semantics:
9811""""""""""
9812
9813This function returns the cosine of the specified operand, returning the
9814same values as the libm ``cos`` functions would, and handles error
9815conditions in the same way.
9816
9817'``llvm.pow.*``' Intrinsic
9818^^^^^^^^^^^^^^^^^^^^^^^^^^
9819
9820Syntax:
9821"""""""
9822
9823This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9824floating point or vector of floating point type. Not all targets support
9825all types however.
9826
9827::
9828
9829 declare float @llvm.pow.f32(float %Val, float %Power)
9830 declare double @llvm.pow.f64(double %Val, double %Power)
9831 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9832 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9833 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9834
9835Overview:
9836"""""""""
9837
9838The '``llvm.pow.*``' intrinsics return the first operand raised to the
9839specified (positive or negative) power.
9840
9841Arguments:
9842""""""""""
9843
9844The second argument is a floating point power, and the first is a value
9845to raise to that power.
9846
9847Semantics:
9848""""""""""
9849
9850This function returns the first value raised to the second power,
9851returning the same values as the libm ``pow`` functions would, and
9852handles error conditions in the same way.
9853
9854'``llvm.exp.*``' Intrinsic
9855^^^^^^^^^^^^^^^^^^^^^^^^^^
9856
9857Syntax:
9858"""""""
9859
9860This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9861floating point or vector of floating point type. Not all targets support
9862all types however.
9863
9864::
9865
9866 declare float @llvm.exp.f32(float %Val)
9867 declare double @llvm.exp.f64(double %Val)
9868 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9869 declare fp128 @llvm.exp.f128(fp128 %Val)
9870 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9871
9872Overview:
9873"""""""""
9874
9875The '``llvm.exp.*``' intrinsics perform the exp function.
9876
9877Arguments:
9878""""""""""
9879
9880The argument and return value are floating point numbers of the same
9881type.
9882
9883Semantics:
9884""""""""""
9885
9886This function returns the same values as the libm ``exp`` functions
9887would, and handles error conditions in the same way.
9888
9889'``llvm.exp2.*``' Intrinsic
9890^^^^^^^^^^^^^^^^^^^^^^^^^^^
9891
9892Syntax:
9893"""""""
9894
9895This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9896floating point or vector of floating point type. Not all targets support
9897all types however.
9898
9899::
9900
9901 declare float @llvm.exp2.f32(float %Val)
9902 declare double @llvm.exp2.f64(double %Val)
9903 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9904 declare fp128 @llvm.exp2.f128(fp128 %Val)
9905 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9906
9907Overview:
9908"""""""""
9909
9910The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9911
9912Arguments:
9913""""""""""
9914
9915The argument and return value are floating point numbers of the same
9916type.
9917
9918Semantics:
9919""""""""""
9920
9921This function returns the same values as the libm ``exp2`` functions
9922would, and handles error conditions in the same way.
9923
9924'``llvm.log.*``' Intrinsic
9925^^^^^^^^^^^^^^^^^^^^^^^^^^
9926
9927Syntax:
9928"""""""
9929
9930This is an overloaded intrinsic. You can use ``llvm.log`` on any
9931floating point or vector of floating point type. Not all targets support
9932all types however.
9933
9934::
9935
9936 declare float @llvm.log.f32(float %Val)
9937 declare double @llvm.log.f64(double %Val)
9938 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9939 declare fp128 @llvm.log.f128(fp128 %Val)
9940 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9941
9942Overview:
9943"""""""""
9944
9945The '``llvm.log.*``' intrinsics perform the log function.
9946
9947Arguments:
9948""""""""""
9949
9950The argument and return value are floating point numbers of the same
9951type.
9952
9953Semantics:
9954""""""""""
9955
9956This function returns the same values as the libm ``log`` functions
9957would, and handles error conditions in the same way.
9958
9959'``llvm.log10.*``' Intrinsic
9960^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9961
9962Syntax:
9963"""""""
9964
9965This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9966floating point or vector of floating point type. Not all targets support
9967all types however.
9968
9969::
9970
9971 declare float @llvm.log10.f32(float %Val)
9972 declare double @llvm.log10.f64(double %Val)
9973 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9974 declare fp128 @llvm.log10.f128(fp128 %Val)
9975 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9976
9977Overview:
9978"""""""""
9979
9980The '``llvm.log10.*``' intrinsics perform the log10 function.
9981
9982Arguments:
9983""""""""""
9984
9985The argument and return value are floating point numbers of the same
9986type.
9987
9988Semantics:
9989""""""""""
9990
9991This function returns the same values as the libm ``log10`` functions
9992would, and handles error conditions in the same way.
9993
9994'``llvm.log2.*``' Intrinsic
9995^^^^^^^^^^^^^^^^^^^^^^^^^^^
9996
9997Syntax:
9998"""""""
9999
10000This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10001floating point or vector of floating point type. Not all targets support
10002all types however.
10003
10004::
10005
10006 declare float @llvm.log2.f32(float %Val)
10007 declare double @llvm.log2.f64(double %Val)
10008 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10009 declare fp128 @llvm.log2.f128(fp128 %Val)
10010 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10011
10012Overview:
10013"""""""""
10014
10015The '``llvm.log2.*``' intrinsics perform the log2 function.
10016
10017Arguments:
10018""""""""""
10019
10020The argument and return value are floating point numbers of the same
10021type.
10022
10023Semantics:
10024""""""""""
10025
10026This function returns the same values as the libm ``log2`` functions
10027would, and handles error conditions in the same way.
10028
10029'``llvm.fma.*``' Intrinsic
10030^^^^^^^^^^^^^^^^^^^^^^^^^^
10031
10032Syntax:
10033"""""""
10034
10035This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10036floating point or vector of floating point type. Not all targets support
10037all types however.
10038
10039::
10040
10041 declare float @llvm.fma.f32(float %a, float %b, float %c)
10042 declare double @llvm.fma.f64(double %a, double %b, double %c)
10043 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10044 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10045 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10046
10047Overview:
10048"""""""""
10049
10050The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10051operation.
10052
10053Arguments:
10054""""""""""
10055
10056The argument and return value are floating point numbers of the same
10057type.
10058
10059Semantics:
10060""""""""""
10061
10062This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010063would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010064
10065'``llvm.fabs.*``' Intrinsic
10066^^^^^^^^^^^^^^^^^^^^^^^^^^^
10067
10068Syntax:
10069"""""""
10070
10071This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10072floating point or vector of floating point type. Not all targets support
10073all types however.
10074
10075::
10076
10077 declare float @llvm.fabs.f32(float %Val)
10078 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010079 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010080 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010081 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010082
10083Overview:
10084"""""""""
10085
10086The '``llvm.fabs.*``' intrinsics return the absolute value of the
10087operand.
10088
10089Arguments:
10090""""""""""
10091
10092The argument and return value are floating point numbers of the same
10093type.
10094
10095Semantics:
10096""""""""""
10097
10098This function returns the same values as the libm ``fabs`` functions
10099would, and handles error conditions in the same way.
10100
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010101'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010102^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010103
10104Syntax:
10105"""""""
10106
10107This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10108floating point or vector of floating point type. Not all targets support
10109all types however.
10110
10111::
10112
Matt Arsenault64313c92014-10-22 18:25:02 +000010113 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10114 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10115 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10116 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10117 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010118
10119Overview:
10120"""""""""
10121
10122The '``llvm.minnum.*``' intrinsics return the minimum of the two
10123arguments.
10124
10125
10126Arguments:
10127""""""""""
10128
10129The arguments and return value are floating point numbers of the same
10130type.
10131
10132Semantics:
10133""""""""""
10134
10135Follows the IEEE-754 semantics for minNum, which also match for libm's
10136fmin.
10137
10138If either operand is a NaN, returns the other non-NaN operand. Returns
10139NaN only if both operands are NaN. If the operands compare equal,
10140returns a value that compares equal to both operands. This means that
10141fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10142
10143'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010145
10146Syntax:
10147"""""""
10148
10149This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10150floating point or vector of floating point type. Not all targets support
10151all types however.
10152
10153::
10154
Matt Arsenault64313c92014-10-22 18:25:02 +000010155 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10156 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10157 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10158 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10159 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010160
10161Overview:
10162"""""""""
10163
10164The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10165arguments.
10166
10167
10168Arguments:
10169""""""""""
10170
10171The arguments and return value are floating point numbers of the same
10172type.
10173
10174Semantics:
10175""""""""""
10176Follows the IEEE-754 semantics for maxNum, which also match for libm's
10177fmax.
10178
10179If either operand is a NaN, returns the other non-NaN operand. Returns
10180NaN only if both operands are NaN. If the operands compare equal,
10181returns a value that compares equal to both operands. This means that
10182fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10183
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010184'``llvm.copysign.*``' Intrinsic
10185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10186
10187Syntax:
10188"""""""
10189
10190This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10191floating point or vector of floating point type. Not all targets support
10192all types however.
10193
10194::
10195
10196 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10197 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10198 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10199 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10200 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10201
10202Overview:
10203"""""""""
10204
10205The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10206first operand and the sign of the second operand.
10207
10208Arguments:
10209""""""""""
10210
10211The arguments and return value are floating point numbers of the same
10212type.
10213
10214Semantics:
10215""""""""""
10216
10217This function returns the same values as the libm ``copysign``
10218functions would, and handles error conditions in the same way.
10219
Sean Silvab084af42012-12-07 10:36:55 +000010220'``llvm.floor.*``' Intrinsic
10221^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10222
10223Syntax:
10224"""""""
10225
10226This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10227floating point or vector of floating point type. Not all targets support
10228all types however.
10229
10230::
10231
10232 declare float @llvm.floor.f32(float %Val)
10233 declare double @llvm.floor.f64(double %Val)
10234 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10235 declare fp128 @llvm.floor.f128(fp128 %Val)
10236 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10237
10238Overview:
10239"""""""""
10240
10241The '``llvm.floor.*``' intrinsics return the floor of the operand.
10242
10243Arguments:
10244""""""""""
10245
10246The argument and return value are floating point numbers of the same
10247type.
10248
10249Semantics:
10250""""""""""
10251
10252This function returns the same values as the libm ``floor`` functions
10253would, and handles error conditions in the same way.
10254
10255'``llvm.ceil.*``' Intrinsic
10256^^^^^^^^^^^^^^^^^^^^^^^^^^^
10257
10258Syntax:
10259"""""""
10260
10261This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10262floating point or vector of floating point type. Not all targets support
10263all types however.
10264
10265::
10266
10267 declare float @llvm.ceil.f32(float %Val)
10268 declare double @llvm.ceil.f64(double %Val)
10269 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10270 declare fp128 @llvm.ceil.f128(fp128 %Val)
10271 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10272
10273Overview:
10274"""""""""
10275
10276The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10277
10278Arguments:
10279""""""""""
10280
10281The argument and return value are floating point numbers of the same
10282type.
10283
10284Semantics:
10285""""""""""
10286
10287This function returns the same values as the libm ``ceil`` functions
10288would, and handles error conditions in the same way.
10289
10290'``llvm.trunc.*``' Intrinsic
10291^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10292
10293Syntax:
10294"""""""
10295
10296This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10297floating point or vector of floating point type. Not all targets support
10298all types however.
10299
10300::
10301
10302 declare float @llvm.trunc.f32(float %Val)
10303 declare double @llvm.trunc.f64(double %Val)
10304 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10305 declare fp128 @llvm.trunc.f128(fp128 %Val)
10306 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10307
10308Overview:
10309"""""""""
10310
10311The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10312nearest integer not larger in magnitude than the operand.
10313
10314Arguments:
10315""""""""""
10316
10317The argument and return value are floating point numbers of the same
10318type.
10319
10320Semantics:
10321""""""""""
10322
10323This function returns the same values as the libm ``trunc`` functions
10324would, and handles error conditions in the same way.
10325
10326'``llvm.rint.*``' Intrinsic
10327^^^^^^^^^^^^^^^^^^^^^^^^^^^
10328
10329Syntax:
10330"""""""
10331
10332This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10333floating point or vector of floating point type. Not all targets support
10334all types however.
10335
10336::
10337
10338 declare float @llvm.rint.f32(float %Val)
10339 declare double @llvm.rint.f64(double %Val)
10340 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10341 declare fp128 @llvm.rint.f128(fp128 %Val)
10342 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10343
10344Overview:
10345"""""""""
10346
10347The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10348nearest integer. It may raise an inexact floating-point exception if the
10349operand isn't an integer.
10350
10351Arguments:
10352""""""""""
10353
10354The argument and return value are floating point numbers of the same
10355type.
10356
10357Semantics:
10358""""""""""
10359
10360This function returns the same values as the libm ``rint`` functions
10361would, and handles error conditions in the same way.
10362
10363'``llvm.nearbyint.*``' Intrinsic
10364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10365
10366Syntax:
10367"""""""
10368
10369This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10370floating point or vector of floating point type. Not all targets support
10371all types however.
10372
10373::
10374
10375 declare float @llvm.nearbyint.f32(float %Val)
10376 declare double @llvm.nearbyint.f64(double %Val)
10377 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10378 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10379 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10380
10381Overview:
10382"""""""""
10383
10384The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10385nearest integer.
10386
10387Arguments:
10388""""""""""
10389
10390The argument and return value are floating point numbers of the same
10391type.
10392
10393Semantics:
10394""""""""""
10395
10396This function returns the same values as the libm ``nearbyint``
10397functions would, and handles error conditions in the same way.
10398
Hal Finkel171817e2013-08-07 22:49:12 +000010399'``llvm.round.*``' Intrinsic
10400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10401
10402Syntax:
10403"""""""
10404
10405This is an overloaded intrinsic. You can use ``llvm.round`` on any
10406floating point or vector of floating point type. Not all targets support
10407all types however.
10408
10409::
10410
10411 declare float @llvm.round.f32(float %Val)
10412 declare double @llvm.round.f64(double %Val)
10413 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10414 declare fp128 @llvm.round.f128(fp128 %Val)
10415 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10416
10417Overview:
10418"""""""""
10419
10420The '``llvm.round.*``' intrinsics returns the operand rounded to the
10421nearest integer.
10422
10423Arguments:
10424""""""""""
10425
10426The argument and return value are floating point numbers of the same
10427type.
10428
10429Semantics:
10430""""""""""
10431
10432This function returns the same values as the libm ``round``
10433functions would, and handles error conditions in the same way.
10434
Sean Silvab084af42012-12-07 10:36:55 +000010435Bit Manipulation Intrinsics
10436---------------------------
10437
10438LLVM provides intrinsics for a few important bit manipulation
10439operations. These allow efficient code generation for some algorithms.
10440
James Molloy90111f72015-11-12 12:29:09 +000010441'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010443
10444Syntax:
10445"""""""
10446
10447This is an overloaded intrinsic function. You can use bitreverse on any
10448integer type.
10449
10450::
10451
10452 declare i16 @llvm.bitreverse.i16(i16 <id>)
10453 declare i32 @llvm.bitreverse.i32(i32 <id>)
10454 declare i64 @llvm.bitreverse.i64(i64 <id>)
10455
10456Overview:
10457"""""""""
10458
10459The '``llvm.bitreverse``' family of intrinsics is used to reverse the
10460bitpattern of an integer value; for example ``0b1234567`` becomes
10461``0b7654321``.
10462
10463Semantics:
10464""""""""""
10465
10466The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10467``M`` in the input moved to bit ``N-M`` in the output.
10468
Sean Silvab084af42012-12-07 10:36:55 +000010469'``llvm.bswap.*``' Intrinsics
10470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10471
10472Syntax:
10473"""""""
10474
10475This is an overloaded intrinsic function. You can use bswap on any
10476integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10477
10478::
10479
10480 declare i16 @llvm.bswap.i16(i16 <id>)
10481 declare i32 @llvm.bswap.i32(i32 <id>)
10482 declare i64 @llvm.bswap.i64(i64 <id>)
10483
10484Overview:
10485"""""""""
10486
10487The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10488values with an even number of bytes (positive multiple of 16 bits).
10489These are useful for performing operations on data that is not in the
10490target's native byte order.
10491
10492Semantics:
10493""""""""""
10494
10495The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10496and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10497intrinsic returns an i32 value that has the four bytes of the input i32
10498swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10499returned i32 will have its bytes in 3, 2, 1, 0 order. The
10500``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10501concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10502respectively).
10503
10504'``llvm.ctpop.*``' Intrinsic
10505^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10506
10507Syntax:
10508"""""""
10509
10510This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10511bit width, or on any vector with integer elements. Not all targets
10512support all bit widths or vector types, however.
10513
10514::
10515
10516 declare i8 @llvm.ctpop.i8(i8 <src>)
10517 declare i16 @llvm.ctpop.i16(i16 <src>)
10518 declare i32 @llvm.ctpop.i32(i32 <src>)
10519 declare i64 @llvm.ctpop.i64(i64 <src>)
10520 declare i256 @llvm.ctpop.i256(i256 <src>)
10521 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10522
10523Overview:
10524"""""""""
10525
10526The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10527in a value.
10528
10529Arguments:
10530""""""""""
10531
10532The only argument is the value to be counted. The argument may be of any
10533integer type, or a vector with integer elements. The return type must
10534match the argument type.
10535
10536Semantics:
10537""""""""""
10538
10539The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10540each element of a vector.
10541
10542'``llvm.ctlz.*``' Intrinsic
10543^^^^^^^^^^^^^^^^^^^^^^^^^^^
10544
10545Syntax:
10546"""""""
10547
10548This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10549integer bit width, or any vector whose elements are integers. Not all
10550targets support all bit widths or vector types, however.
10551
10552::
10553
10554 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10555 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10556 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10557 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10558 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10559 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10560
10561Overview:
10562"""""""""
10563
10564The '``llvm.ctlz``' family of intrinsic functions counts the number of
10565leading zeros in a variable.
10566
10567Arguments:
10568""""""""""
10569
10570The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010571any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010572type must match the first argument type.
10573
10574The second argument must be a constant and is a flag to indicate whether
10575the intrinsic should ensure that a zero as the first argument produces a
10576defined result. Historically some architectures did not provide a
10577defined result for zero values as efficiently, and many algorithms are
10578now predicated on avoiding zero-value inputs.
10579
10580Semantics:
10581""""""""""
10582
10583The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10584zeros in a variable, or within each element of the vector. If
10585``src == 0`` then the result is the size in bits of the type of ``src``
10586if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10587``llvm.ctlz(i32 2) = 30``.
10588
10589'``llvm.cttz.*``' Intrinsic
10590^^^^^^^^^^^^^^^^^^^^^^^^^^^
10591
10592Syntax:
10593"""""""
10594
10595This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10596integer bit width, or any vector of integer elements. Not all targets
10597support all bit widths or vector types, however.
10598
10599::
10600
10601 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10602 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10603 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10604 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10605 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10606 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10607
10608Overview:
10609"""""""""
10610
10611The '``llvm.cttz``' family of intrinsic functions counts the number of
10612trailing zeros.
10613
10614Arguments:
10615""""""""""
10616
10617The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010618any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010619type must match the first argument type.
10620
10621The second argument must be a constant and is a flag to indicate whether
10622the intrinsic should ensure that a zero as the first argument produces a
10623defined result. Historically some architectures did not provide a
10624defined result for zero values as efficiently, and many algorithms are
10625now predicated on avoiding zero-value inputs.
10626
10627Semantics:
10628""""""""""
10629
10630The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10631zeros in a variable, or within each element of a vector. If ``src == 0``
10632then the result is the size in bits of the type of ``src`` if
10633``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10634``llvm.cttz(2) = 1``.
10635
Philip Reames34843ae2015-03-05 05:55:55 +000010636.. _int_overflow:
10637
Sean Silvab084af42012-12-07 10:36:55 +000010638Arithmetic with Overflow Intrinsics
10639-----------------------------------
10640
10641LLVM provides intrinsics for some arithmetic with overflow operations.
10642
10643'``llvm.sadd.with.overflow.*``' Intrinsics
10644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10645
10646Syntax:
10647"""""""
10648
10649This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10650on any integer bit width.
10651
10652::
10653
10654 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10655 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10656 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10657
10658Overview:
10659"""""""""
10660
10661The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10662a signed addition of the two arguments, and indicate whether an overflow
10663occurred during the signed summation.
10664
10665Arguments:
10666""""""""""
10667
10668The arguments (%a and %b) and the first element of the result structure
10669may be of integer types of any bit width, but they must have the same
10670bit width. The second element of the result structure must be of type
10671``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10672addition.
10673
10674Semantics:
10675""""""""""
10676
10677The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010678a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010679first element of which is the signed summation, and the second element
10680of which is a bit specifying if the signed summation resulted in an
10681overflow.
10682
10683Examples:
10684"""""""""
10685
10686.. code-block:: llvm
10687
10688 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10689 %sum = extractvalue {i32, i1} %res, 0
10690 %obit = extractvalue {i32, i1} %res, 1
10691 br i1 %obit, label %overflow, label %normal
10692
10693'``llvm.uadd.with.overflow.*``' Intrinsics
10694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10695
10696Syntax:
10697"""""""
10698
10699This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10700on any integer bit width.
10701
10702::
10703
10704 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10705 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10706 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10707
10708Overview:
10709"""""""""
10710
10711The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10712an unsigned addition of the two arguments, and indicate whether a carry
10713occurred during the unsigned summation.
10714
10715Arguments:
10716""""""""""
10717
10718The arguments (%a and %b) and the first element of the result structure
10719may be of integer types of any bit width, but they must have the same
10720bit width. The second element of the result structure must be of type
10721``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10722addition.
10723
10724Semantics:
10725""""""""""
10726
10727The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010728an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010729first element of which is the sum, and the second element of which is a
10730bit specifying if the unsigned summation resulted in a carry.
10731
10732Examples:
10733"""""""""
10734
10735.. code-block:: llvm
10736
10737 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10738 %sum = extractvalue {i32, i1} %res, 0
10739 %obit = extractvalue {i32, i1} %res, 1
10740 br i1 %obit, label %carry, label %normal
10741
10742'``llvm.ssub.with.overflow.*``' Intrinsics
10743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10744
10745Syntax:
10746"""""""
10747
10748This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10749on any integer bit width.
10750
10751::
10752
10753 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10754 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10755 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10756
10757Overview:
10758"""""""""
10759
10760The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10761a signed subtraction of the two arguments, and indicate whether an
10762overflow occurred during the signed subtraction.
10763
10764Arguments:
10765""""""""""
10766
10767The arguments (%a and %b) and the first element of the result structure
10768may be of integer types of any bit width, but they must have the same
10769bit width. The second element of the result structure must be of type
10770``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10771subtraction.
10772
10773Semantics:
10774""""""""""
10775
10776The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010777a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010778first element of which is the subtraction, and the second element of
10779which is a bit specifying if the signed subtraction resulted in an
10780overflow.
10781
10782Examples:
10783"""""""""
10784
10785.. code-block:: llvm
10786
10787 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10788 %sum = extractvalue {i32, i1} %res, 0
10789 %obit = extractvalue {i32, i1} %res, 1
10790 br i1 %obit, label %overflow, label %normal
10791
10792'``llvm.usub.with.overflow.*``' Intrinsics
10793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10794
10795Syntax:
10796"""""""
10797
10798This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10799on any integer bit width.
10800
10801::
10802
10803 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10804 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10805 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10806
10807Overview:
10808"""""""""
10809
10810The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10811an unsigned subtraction of the two arguments, and indicate whether an
10812overflow occurred during the unsigned subtraction.
10813
10814Arguments:
10815""""""""""
10816
10817The arguments (%a and %b) and the first element of the result structure
10818may be of integer types of any bit width, but they must have the same
10819bit width. The second element of the result structure must be of type
10820``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10821subtraction.
10822
10823Semantics:
10824""""""""""
10825
10826The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010827an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010828the first element of which is the subtraction, and the second element of
10829which is a bit specifying if the unsigned subtraction resulted in an
10830overflow.
10831
10832Examples:
10833"""""""""
10834
10835.. code-block:: llvm
10836
10837 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10838 %sum = extractvalue {i32, i1} %res, 0
10839 %obit = extractvalue {i32, i1} %res, 1
10840 br i1 %obit, label %overflow, label %normal
10841
10842'``llvm.smul.with.overflow.*``' Intrinsics
10843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10844
10845Syntax:
10846"""""""
10847
10848This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10849on any integer bit width.
10850
10851::
10852
10853 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10854 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10855 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10856
10857Overview:
10858"""""""""
10859
10860The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10861a signed multiplication of the two arguments, and indicate whether an
10862overflow occurred during the signed multiplication.
10863
10864Arguments:
10865""""""""""
10866
10867The arguments (%a and %b) and the first element of the result structure
10868may be of integer types of any bit width, but they must have the same
10869bit width. The second element of the result structure must be of type
10870``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10871multiplication.
10872
10873Semantics:
10874""""""""""
10875
10876The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010877a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010878the first element of which is the multiplication, and the second element
10879of which is a bit specifying if the signed multiplication resulted in an
10880overflow.
10881
10882Examples:
10883"""""""""
10884
10885.. code-block:: llvm
10886
10887 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10888 %sum = extractvalue {i32, i1} %res, 0
10889 %obit = extractvalue {i32, i1} %res, 1
10890 br i1 %obit, label %overflow, label %normal
10891
10892'``llvm.umul.with.overflow.*``' Intrinsics
10893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10894
10895Syntax:
10896"""""""
10897
10898This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10899on any integer bit width.
10900
10901::
10902
10903 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10904 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10905 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10906
10907Overview:
10908"""""""""
10909
10910The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10911a unsigned multiplication of the two arguments, and indicate whether an
10912overflow occurred during the unsigned multiplication.
10913
10914Arguments:
10915""""""""""
10916
10917The arguments (%a and %b) and the first element of the result structure
10918may be of integer types of any bit width, but they must have the same
10919bit width. The second element of the result structure must be of type
10920``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10921multiplication.
10922
10923Semantics:
10924""""""""""
10925
10926The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010927an unsigned multiplication of the two arguments. They return a structure ---
10928the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010929element of which is a bit specifying if the unsigned multiplication
10930resulted in an overflow.
10931
10932Examples:
10933"""""""""
10934
10935.. code-block:: llvm
10936
10937 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10938 %sum = extractvalue {i32, i1} %res, 0
10939 %obit = extractvalue {i32, i1} %res, 1
10940 br i1 %obit, label %overflow, label %normal
10941
10942Specialised Arithmetic Intrinsics
10943---------------------------------
10944
Owen Anderson1056a922015-07-11 07:01:27 +000010945'``llvm.canonicalize.*``' Intrinsic
10946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10947
10948Syntax:
10949"""""""
10950
10951::
10952
10953 declare float @llvm.canonicalize.f32(float %a)
10954 declare double @llvm.canonicalize.f64(double %b)
10955
10956Overview:
10957"""""""""
10958
10959The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010960encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010961implementing certain numeric primitives such as frexp. The canonical encoding is
10962defined by IEEE-754-2008 to be:
10963
10964::
10965
10966 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010967 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010968 numbers, infinities, and NaNs, especially in decimal formats.
10969
10970This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010971conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010972according to section 6.2.
10973
10974Examples of non-canonical encodings:
10975
Sean Silvaa1190322015-08-06 22:56:48 +000010976- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010977 converted to a canonical representation per hardware-specific protocol.
10978- Many normal decimal floating point numbers have non-canonical alternative
10979 encodings.
10980- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10981 These are treated as non-canonical encodings of zero and with be flushed to
10982 a zero of the same sign by this operation.
10983
10984Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10985default exception handling must signal an invalid exception, and produce a
10986quiet NaN result.
10987
10988This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010989that the compiler does not constant fold the operation. Likewise, division by
109901.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010991-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10992
Sean Silvaa1190322015-08-06 22:56:48 +000010993``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010994
10995- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10996- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10997 to ``(x == y)``
10998
10999Additionally, the sign of zero must be conserved:
11000``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11001
11002The payload bits of a NaN must be conserved, with two exceptions.
11003First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011004must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011005usual methods.
11006
11007The canonicalization operation may be optimized away if:
11008
Sean Silvaa1190322015-08-06 22:56:48 +000011009- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011010 floating-point operation that is required by the standard to be canonical.
11011- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011012 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011013
Sean Silvab084af42012-12-07 10:36:55 +000011014'``llvm.fmuladd.*``' Intrinsic
11015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11016
11017Syntax:
11018"""""""
11019
11020::
11021
11022 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11023 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11024
11025Overview:
11026"""""""""
11027
11028The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011029expressions that can be fused if the code generator determines that (a) the
11030target instruction set has support for a fused operation, and (b) that the
11031fused operation is more efficient than the equivalent, separate pair of mul
11032and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011033
11034Arguments:
11035""""""""""
11036
11037The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11038multiplicands, a and b, and an addend c.
11039
11040Semantics:
11041""""""""""
11042
11043The expression:
11044
11045::
11046
11047 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11048
11049is equivalent to the expression a \* b + c, except that rounding will
11050not be performed between the multiplication and addition steps if the
11051code generator fuses the operations. Fusion is not guaranteed, even if
11052the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011053corresponding llvm.fma.\* intrinsic function should be used
11054instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011055
11056Examples:
11057"""""""""
11058
11059.. code-block:: llvm
11060
Tim Northover675a0962014-06-13 14:24:23 +000011061 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011062
11063Half Precision Floating Point Intrinsics
11064----------------------------------------
11065
11066For most target platforms, half precision floating point is a
11067storage-only format. This means that it is a dense encoding (in memory)
11068but does not support computation in the format.
11069
11070This means that code must first load the half-precision floating point
11071value as an i16, then convert it to float with
11072:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11073then be performed on the float value (including extending to double
11074etc). To store the value back to memory, it is first converted to float
11075if needed, then converted to i16 with
11076:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11077i16 value.
11078
11079.. _int_convert_to_fp16:
11080
11081'``llvm.convert.to.fp16``' Intrinsic
11082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11083
11084Syntax:
11085"""""""
11086
11087::
11088
Tim Northoverfd7e4242014-07-17 10:51:23 +000011089 declare i16 @llvm.convert.to.fp16.f32(float %a)
11090 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011091
11092Overview:
11093"""""""""
11094
Tim Northoverfd7e4242014-07-17 10:51:23 +000011095The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11096conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011097
11098Arguments:
11099""""""""""
11100
11101The intrinsic function contains single argument - the value to be
11102converted.
11103
11104Semantics:
11105""""""""""
11106
Tim Northoverfd7e4242014-07-17 10:51:23 +000011107The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11108conventional floating point format to half precision floating point format. The
11109return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011110
11111Examples:
11112"""""""""
11113
11114.. code-block:: llvm
11115
Tim Northoverfd7e4242014-07-17 10:51:23 +000011116 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011117 store i16 %res, i16* @x, align 2
11118
11119.. _int_convert_from_fp16:
11120
11121'``llvm.convert.from.fp16``' Intrinsic
11122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11123
11124Syntax:
11125"""""""
11126
11127::
11128
Tim Northoverfd7e4242014-07-17 10:51:23 +000011129 declare float @llvm.convert.from.fp16.f32(i16 %a)
11130 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011131
11132Overview:
11133"""""""""
11134
11135The '``llvm.convert.from.fp16``' intrinsic function performs a
11136conversion from half precision floating point format to single precision
11137floating point format.
11138
11139Arguments:
11140""""""""""
11141
11142The intrinsic function contains single argument - the value to be
11143converted.
11144
11145Semantics:
11146""""""""""
11147
11148The '``llvm.convert.from.fp16``' intrinsic function performs a
11149conversion from half single precision floating point format to single
11150precision floating point format. The input half-float value is
11151represented by an ``i16`` value.
11152
11153Examples:
11154"""""""""
11155
11156.. code-block:: llvm
11157
David Blaikiec7aabbb2015-03-04 22:06:14 +000011158 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011159 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011160
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011161.. _dbg_intrinsics:
11162
Sean Silvab084af42012-12-07 10:36:55 +000011163Debugger Intrinsics
11164-------------------
11165
11166The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11167prefix), are described in the `LLVM Source Level
11168Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11169document.
11170
11171Exception Handling Intrinsics
11172-----------------------------
11173
11174The LLVM exception handling intrinsics (which all start with
11175``llvm.eh.`` prefix), are described in the `LLVM Exception
11176Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11177
11178.. _int_trampoline:
11179
11180Trampoline Intrinsics
11181---------------------
11182
11183These intrinsics make it possible to excise one parameter, marked with
11184the :ref:`nest <nest>` attribute, from a function. The result is a
11185callable function pointer lacking the nest parameter - the caller does
11186not need to provide a value for it. Instead, the value to use is stored
11187in advance in a "trampoline", a block of memory usually allocated on the
11188stack, which also contains code to splice the nest value into the
11189argument list. This is used to implement the GCC nested function address
11190extension.
11191
11192For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11193then the resulting function pointer has signature ``i32 (i32, i32)*``.
11194It can be created as follows:
11195
11196.. code-block:: llvm
11197
11198 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011199 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011200 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11201 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11202 %fp = bitcast i8* %p to i32 (i32, i32)*
11203
11204The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11205``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11206
11207.. _int_it:
11208
11209'``llvm.init.trampoline``' Intrinsic
11210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11211
11212Syntax:
11213"""""""
11214
11215::
11216
11217 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11218
11219Overview:
11220"""""""""
11221
11222This fills the memory pointed to by ``tramp`` with executable code,
11223turning it into a trampoline.
11224
11225Arguments:
11226""""""""""
11227
11228The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11229pointers. The ``tramp`` argument must point to a sufficiently large and
11230sufficiently aligned block of memory; this memory is written to by the
11231intrinsic. Note that the size and the alignment are target-specific -
11232LLVM currently provides no portable way of determining them, so a
11233front-end that generates this intrinsic needs to have some
11234target-specific knowledge. The ``func`` argument must hold a function
11235bitcast to an ``i8*``.
11236
11237Semantics:
11238""""""""""
11239
11240The block of memory pointed to by ``tramp`` is filled with target
11241dependent code, turning it into a function. Then ``tramp`` needs to be
11242passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11243be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11244function's signature is the same as that of ``func`` with any arguments
11245marked with the ``nest`` attribute removed. At most one such ``nest``
11246argument is allowed, and it must be of pointer type. Calling the new
11247function is equivalent to calling ``func`` with the same argument list,
11248but with ``nval`` used for the missing ``nest`` argument. If, after
11249calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11250modified, then the effect of any later call to the returned function
11251pointer is undefined.
11252
11253.. _int_at:
11254
11255'``llvm.adjust.trampoline``' Intrinsic
11256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11257
11258Syntax:
11259"""""""
11260
11261::
11262
11263 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11264
11265Overview:
11266"""""""""
11267
11268This performs any required machine-specific adjustment to the address of
11269a trampoline (passed as ``tramp``).
11270
11271Arguments:
11272""""""""""
11273
11274``tramp`` must point to a block of memory which already has trampoline
11275code filled in by a previous call to
11276:ref:`llvm.init.trampoline <int_it>`.
11277
11278Semantics:
11279""""""""""
11280
11281On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011282different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011283intrinsic returns the executable address corresponding to ``tramp``
11284after performing the required machine specific adjustments. The pointer
11285returned can then be :ref:`bitcast and executed <int_trampoline>`.
11286
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011287.. _int_mload_mstore:
11288
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011289Masked Vector Load and Store Intrinsics
11290---------------------------------------
11291
11292LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11293
11294.. _int_mload:
11295
11296'``llvm.masked.load.*``' Intrinsics
11297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11298
11299Syntax:
11300"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011301This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011302
11303::
11304
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011305 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11306 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11307 ;; The data is a vector of pointers to double
11308 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
11309 ;; The data is a vector of function pointers
11310 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011311
11312Overview:
11313"""""""""
11314
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011315Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011316
11317
11318Arguments:
11319""""""""""
11320
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011321The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011322
11323
11324Semantics:
11325""""""""""
11326
11327The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11328The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11329
11330
11331::
11332
11333 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011334
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011335 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011336 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011337 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011338
11339.. _int_mstore:
11340
11341'``llvm.masked.store.*``' Intrinsics
11342^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11343
11344Syntax:
11345"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011346This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011347
11348::
11349
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011350 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11351 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11352 ;; The data is a vector of pointers to double
11353 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11354 ;; The data is a vector of function pointers
11355 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011356
11357Overview:
11358"""""""""
11359
11360Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11361
11362Arguments:
11363""""""""""
11364
11365The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11366
11367
11368Semantics:
11369""""""""""
11370
11371The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11372The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11373
11374::
11375
11376 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011377
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011378 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011379 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011380 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11381 store <16 x float> %res, <16 x float>* %ptr, align 4
11382
11383
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011384Masked Vector Gather and Scatter Intrinsics
11385-------------------------------------------
11386
11387LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11388
11389.. _int_mgather:
11390
11391'``llvm.masked.gather.*``' Intrinsics
11392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11393
11394Syntax:
11395"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011396This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011397
11398::
11399
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011400 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11401 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11402 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011403
11404Overview:
11405"""""""""
11406
11407Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11408
11409
11410Arguments:
11411""""""""""
11412
11413The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11414
11415
11416Semantics:
11417""""""""""
11418
11419The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11420The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11421
11422
11423::
11424
11425 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11426
11427 ;; The gather with all-true mask is equivalent to the following instruction sequence
11428 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11429 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11430 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11431 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11432
11433 %val0 = load double, double* %ptr0, align 8
11434 %val1 = load double, double* %ptr1, align 8
11435 %val2 = load double, double* %ptr2, align 8
11436 %val3 = load double, double* %ptr3, align 8
11437
11438 %vec0 = insertelement <4 x double>undef, %val0, 0
11439 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11440 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11441 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11442
11443.. _int_mscatter:
11444
11445'``llvm.masked.scatter.*``' Intrinsics
11446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11447
11448Syntax:
11449"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011450This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011451
11452::
11453
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011454 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11455 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11456 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011457
11458Overview:
11459"""""""""
11460
11461Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11462
11463Arguments:
11464""""""""""
11465
11466The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11467
11468
11469Semantics:
11470""""""""""
11471
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011472The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011473
11474::
11475
11476 ;; This instruction unconditionaly stores data vector in multiple addresses
11477 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11478
11479 ;; It is equivalent to a list of scalar stores
11480 %val0 = extractelement <8 x i32> %value, i32 0
11481 %val1 = extractelement <8 x i32> %value, i32 1
11482 ..
11483 %val7 = extractelement <8 x i32> %value, i32 7
11484 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11485 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11486 ..
11487 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11488 ;; Note: the order of the following stores is important when they overlap:
11489 store i32 %val0, i32* %ptr0, align 4
11490 store i32 %val1, i32* %ptr1, align 4
11491 ..
11492 store i32 %val7, i32* %ptr7, align 4
11493
11494
Sean Silvab084af42012-12-07 10:36:55 +000011495Memory Use Markers
11496------------------
11497
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011498This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011499memory objects and ranges where variables are immutable.
11500
Reid Klecknera534a382013-12-19 02:14:12 +000011501.. _int_lifestart:
11502
Sean Silvab084af42012-12-07 10:36:55 +000011503'``llvm.lifetime.start``' Intrinsic
11504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11505
11506Syntax:
11507"""""""
11508
11509::
11510
11511 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11512
11513Overview:
11514"""""""""
11515
11516The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11517object's lifetime.
11518
11519Arguments:
11520""""""""""
11521
11522The first argument is a constant integer representing the size of the
11523object, or -1 if it is variable sized. The second argument is a pointer
11524to the object.
11525
11526Semantics:
11527""""""""""
11528
11529This intrinsic indicates that before this point in the code, the value
11530of the memory pointed to by ``ptr`` is dead. This means that it is known
11531to never be used and has an undefined value. A load from the pointer
11532that precedes this intrinsic can be replaced with ``'undef'``.
11533
Reid Klecknera534a382013-12-19 02:14:12 +000011534.. _int_lifeend:
11535
Sean Silvab084af42012-12-07 10:36:55 +000011536'``llvm.lifetime.end``' Intrinsic
11537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11538
11539Syntax:
11540"""""""
11541
11542::
11543
11544 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11545
11546Overview:
11547"""""""""
11548
11549The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11550object's lifetime.
11551
11552Arguments:
11553""""""""""
11554
11555The first argument is a constant integer representing the size of the
11556object, or -1 if it is variable sized. The second argument is a pointer
11557to the object.
11558
11559Semantics:
11560""""""""""
11561
11562This intrinsic indicates that after this point in the code, the value of
11563the memory pointed to by ``ptr`` is dead. This means that it is known to
11564never be used and has an undefined value. Any stores into the memory
11565object following this intrinsic may be removed as dead.
11566
11567'``llvm.invariant.start``' Intrinsic
11568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11569
11570Syntax:
11571"""""""
11572
11573::
11574
11575 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11576
11577Overview:
11578"""""""""
11579
11580The '``llvm.invariant.start``' intrinsic specifies that the contents of
11581a memory object will not change.
11582
11583Arguments:
11584""""""""""
11585
11586The first argument is a constant integer representing the size of the
11587object, or -1 if it is variable sized. The second argument is a pointer
11588to the object.
11589
11590Semantics:
11591""""""""""
11592
11593This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11594the return value, the referenced memory location is constant and
11595unchanging.
11596
11597'``llvm.invariant.end``' Intrinsic
11598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11599
11600Syntax:
11601"""""""
11602
11603::
11604
11605 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11606
11607Overview:
11608"""""""""
11609
11610The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11611memory object are mutable.
11612
11613Arguments:
11614""""""""""
11615
11616The first argument is the matching ``llvm.invariant.start`` intrinsic.
11617The second argument is a constant integer representing the size of the
11618object, or -1 if it is variable sized and the third argument is a
11619pointer to the object.
11620
11621Semantics:
11622""""""""""
11623
11624This intrinsic indicates that the memory is mutable again.
11625
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011626'``llvm.invariant.group.barrier``' Intrinsic
11627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11628
11629Syntax:
11630"""""""
11631
11632::
11633
11634 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11635
11636Overview:
11637"""""""""
11638
11639The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11640established by invariant.group metadata no longer holds, to obtain a new pointer
11641value that does not carry the invariant information.
11642
11643
11644Arguments:
11645""""""""""
11646
11647The ``llvm.invariant.group.barrier`` takes only one argument, which is
11648the pointer to the memory for which the ``invariant.group`` no longer holds.
11649
11650Semantics:
11651""""""""""
11652
11653Returns another pointer that aliases its argument but which is considered different
11654for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11655
Sean Silvab084af42012-12-07 10:36:55 +000011656General Intrinsics
11657------------------
11658
11659This class of intrinsics is designed to be generic and has no specific
11660purpose.
11661
11662'``llvm.var.annotation``' Intrinsic
11663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11664
11665Syntax:
11666"""""""
11667
11668::
11669
11670 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11671
11672Overview:
11673"""""""""
11674
11675The '``llvm.var.annotation``' intrinsic.
11676
11677Arguments:
11678""""""""""
11679
11680The first argument is a pointer to a value, the second is a pointer to a
11681global string, the third is a pointer to a global string which is the
11682source file name, and the last argument is the line number.
11683
11684Semantics:
11685""""""""""
11686
11687This intrinsic allows annotation of local variables with arbitrary
11688strings. This can be useful for special purpose optimizations that want
11689to look for these annotations. These have no other defined use; they are
11690ignored by code generation and optimization.
11691
Michael Gottesman88d18832013-03-26 00:34:27 +000011692'``llvm.ptr.annotation.*``' Intrinsic
11693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11694
11695Syntax:
11696"""""""
11697
11698This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11699pointer to an integer of any width. *NOTE* you must specify an address space for
11700the pointer. The identifier for the default address space is the integer
11701'``0``'.
11702
11703::
11704
11705 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11706 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11707 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11708 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11709 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11710
11711Overview:
11712"""""""""
11713
11714The '``llvm.ptr.annotation``' intrinsic.
11715
11716Arguments:
11717""""""""""
11718
11719The first argument is a pointer to an integer value of arbitrary bitwidth
11720(result of some expression), the second is a pointer to a global string, the
11721third is a pointer to a global string which is the source file name, and the
11722last argument is the line number. It returns the value of the first argument.
11723
11724Semantics:
11725""""""""""
11726
11727This intrinsic allows annotation of a pointer to an integer with arbitrary
11728strings. This can be useful for special purpose optimizations that want to look
11729for these annotations. These have no other defined use; they are ignored by code
11730generation and optimization.
11731
Sean Silvab084af42012-12-07 10:36:55 +000011732'``llvm.annotation.*``' Intrinsic
11733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11734
11735Syntax:
11736"""""""
11737
11738This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11739any integer bit width.
11740
11741::
11742
11743 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11744 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11745 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11746 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11747 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11748
11749Overview:
11750"""""""""
11751
11752The '``llvm.annotation``' intrinsic.
11753
11754Arguments:
11755""""""""""
11756
11757The first argument is an integer value (result of some expression), the
11758second is a pointer to a global string, the third is a pointer to a
11759global string which is the source file name, and the last argument is
11760the line number. It returns the value of the first argument.
11761
11762Semantics:
11763""""""""""
11764
11765This intrinsic allows annotations to be put on arbitrary expressions
11766with arbitrary strings. This can be useful for special purpose
11767optimizations that want to look for these annotations. These have no
11768other defined use; they are ignored by code generation and optimization.
11769
11770'``llvm.trap``' Intrinsic
11771^^^^^^^^^^^^^^^^^^^^^^^^^
11772
11773Syntax:
11774"""""""
11775
11776::
11777
11778 declare void @llvm.trap() noreturn nounwind
11779
11780Overview:
11781"""""""""
11782
11783The '``llvm.trap``' intrinsic.
11784
11785Arguments:
11786""""""""""
11787
11788None.
11789
11790Semantics:
11791""""""""""
11792
11793This intrinsic is lowered to the target dependent trap instruction. If
11794the target does not have a trap instruction, this intrinsic will be
11795lowered to a call of the ``abort()`` function.
11796
11797'``llvm.debugtrap``' Intrinsic
11798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11799
11800Syntax:
11801"""""""
11802
11803::
11804
11805 declare void @llvm.debugtrap() nounwind
11806
11807Overview:
11808"""""""""
11809
11810The '``llvm.debugtrap``' intrinsic.
11811
11812Arguments:
11813""""""""""
11814
11815None.
11816
11817Semantics:
11818""""""""""
11819
11820This intrinsic is lowered to code which is intended to cause an
11821execution trap with the intention of requesting the attention of a
11822debugger.
11823
11824'``llvm.stackprotector``' Intrinsic
11825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11826
11827Syntax:
11828"""""""
11829
11830::
11831
11832 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11833
11834Overview:
11835"""""""""
11836
11837The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11838onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11839is placed on the stack before local variables.
11840
11841Arguments:
11842""""""""""
11843
11844The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11845The first argument is the value loaded from the stack guard
11846``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11847enough space to hold the value of the guard.
11848
11849Semantics:
11850""""""""""
11851
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011852This intrinsic causes the prologue/epilogue inserter to force the position of
11853the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11854to ensure that if a local variable on the stack is overwritten, it will destroy
11855the value of the guard. When the function exits, the guard on the stack is
11856checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11857different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11858calling the ``__stack_chk_fail()`` function.
11859
11860'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011862
11863Syntax:
11864"""""""
11865
11866::
11867
11868 declare void @llvm.stackprotectorcheck(i8** <guard>)
11869
11870Overview:
11871"""""""""
11872
11873The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011874created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011875``__stack_chk_fail()`` function.
11876
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011877Arguments:
11878""""""""""
11879
11880The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11881the variable ``@__stack_chk_guard``.
11882
11883Semantics:
11884""""""""""
11885
11886This intrinsic is provided to perform the stack protector check by comparing
11887``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11888values do not match call the ``__stack_chk_fail()`` function.
11889
11890The reason to provide this as an IR level intrinsic instead of implementing it
11891via other IR operations is that in order to perform this operation at the IR
11892level without an intrinsic, one would need to create additional basic blocks to
11893handle the success/failure cases. This makes it difficult to stop the stack
11894protector check from disrupting sibling tail calls in Codegen. With this
11895intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011896codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011897
Sean Silvab084af42012-12-07 10:36:55 +000011898'``llvm.objectsize``' Intrinsic
11899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11900
11901Syntax:
11902"""""""
11903
11904::
11905
11906 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11907 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11908
11909Overview:
11910"""""""""
11911
11912The ``llvm.objectsize`` intrinsic is designed to provide information to
11913the optimizers to determine at compile time whether a) an operation
11914(like memcpy) will overflow a buffer that corresponds to an object, or
11915b) that a runtime check for overflow isn't necessary. An object in this
11916context means an allocation of a specific class, structure, array, or
11917other object.
11918
11919Arguments:
11920""""""""""
11921
11922The ``llvm.objectsize`` intrinsic takes two arguments. The first
11923argument is a pointer to or into the ``object``. The second argument is
11924a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11925or -1 (if false) when the object size is unknown. The second argument
11926only accepts constants.
11927
11928Semantics:
11929""""""""""
11930
11931The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11932the size of the object concerned. If the size cannot be determined at
11933compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11934on the ``min`` argument).
11935
11936'``llvm.expect``' Intrinsic
11937^^^^^^^^^^^^^^^^^^^^^^^^^^^
11938
11939Syntax:
11940"""""""
11941
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011942This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11943integer bit width.
11944
Sean Silvab084af42012-12-07 10:36:55 +000011945::
11946
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011947 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011948 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11949 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11950
11951Overview:
11952"""""""""
11953
11954The ``llvm.expect`` intrinsic provides information about expected (the
11955most probable) value of ``val``, which can be used by optimizers.
11956
11957Arguments:
11958""""""""""
11959
11960The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11961a value. The second argument is an expected value, this needs to be a
11962constant value, variables are not allowed.
11963
11964Semantics:
11965""""""""""
11966
11967This intrinsic is lowered to the ``val``.
11968
Philip Reamese0e90832015-04-26 22:23:12 +000011969.. _int_assume:
11970
Hal Finkel93046912014-07-25 21:13:35 +000011971'``llvm.assume``' Intrinsic
11972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11973
11974Syntax:
11975"""""""
11976
11977::
11978
11979 declare void @llvm.assume(i1 %cond)
11980
11981Overview:
11982"""""""""
11983
11984The ``llvm.assume`` allows the optimizer to assume that the provided
11985condition is true. This information can then be used in simplifying other parts
11986of the code.
11987
11988Arguments:
11989""""""""""
11990
11991The condition which the optimizer may assume is always true.
11992
11993Semantics:
11994""""""""""
11995
11996The intrinsic allows the optimizer to assume that the provided condition is
11997always true whenever the control flow reaches the intrinsic call. No code is
11998generated for this intrinsic, and instructions that contribute only to the
11999provided condition are not used for code generation. If the condition is
12000violated during execution, the behavior is undefined.
12001
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012002Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012003used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12004only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012005if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012006sufficient overall improvement in code quality. For this reason,
12007``llvm.assume`` should not be used to document basic mathematical invariants
12008that the optimizer can otherwise deduce or facts that are of little use to the
12009optimizer.
12010
Peter Collingbournee6909c82015-02-20 20:30:47 +000012011.. _bitset.test:
12012
12013'``llvm.bitset.test``' Intrinsic
12014^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12015
12016Syntax:
12017"""""""
12018
12019::
12020
12021 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12022
12023
12024Arguments:
12025""""""""""
12026
12027The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012028metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012029
12030Overview:
12031"""""""""
12032
12033The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12034member of the given bitset.
12035
Sean Silvab084af42012-12-07 10:36:55 +000012036'``llvm.donothing``' Intrinsic
12037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12038
12039Syntax:
12040"""""""
12041
12042::
12043
12044 declare void @llvm.donothing() nounwind readnone
12045
12046Overview:
12047"""""""""
12048
Juergen Ributzkac9161192014-10-23 22:36:13 +000012049The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12050two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12051with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012052
12053Arguments:
12054""""""""""
12055
12056None.
12057
12058Semantics:
12059""""""""""
12060
12061This intrinsic does nothing, and it's removed by optimizers and ignored
12062by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012063
12064Stack Map Intrinsics
12065--------------------
12066
12067LLVM provides experimental intrinsics to support runtime patching
12068mechanisms commonly desired in dynamic language JITs. These intrinsics
12069are described in :doc:`StackMaps`.