blob: 650d18b9ba464e5866e13d36cc2124c84f774d94 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000430"``cc <n>``" - Numbered convention
431 Any calling convention may be specified by number, allowing
432 target-specific calling conventions to be used. Target specific
433 calling conventions start at 64.
434
435More calling conventions can be added/defined on an as-needed basis, to
436support Pascal conventions or any other well-known target-independent
437convention.
438
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000439.. _visibilitystyles:
440
Sean Silvab084af42012-12-07 10:36:55 +0000441Visibility Styles
442-----------------
443
444All Global Variables and Functions have one of the following visibility
445styles:
446
447"``default``" - Default style
448 On targets that use the ELF object file format, default visibility
449 means that the declaration is visible to other modules and, in
450 shared libraries, means that the declared entity may be overridden.
451 On Darwin, default visibility means that the declaration is visible
452 to other modules. Default visibility corresponds to "external
453 linkage" in the language.
454"``hidden``" - Hidden style
455 Two declarations of an object with hidden visibility refer to the
456 same object if they are in the same shared object. Usually, hidden
457 visibility indicates that the symbol will not be placed into the
458 dynamic symbol table, so no other module (executable or shared
459 library) can reference it directly.
460"``protected``" - Protected style
461 On ELF, protected visibility indicates that the symbol will be
462 placed in the dynamic symbol table, but that references within the
463 defining module will bind to the local symbol. That is, the symbol
464 cannot be overridden by another module.
465
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000466A symbol with ``internal`` or ``private`` linkage must have ``default``
467visibility.
468
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000469.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000470
Nico Rieck7157bb72014-01-14 15:22:47 +0000471DLL Storage Classes
472-------------------
473
474All Global Variables, Functions and Aliases can have one of the following
475DLL storage class:
476
477``dllimport``
478 "``dllimport``" causes the compiler to reference a function or variable via
479 a global pointer to a pointer that is set up by the DLL exporting the
480 symbol. On Microsoft Windows targets, the pointer name is formed by
481 combining ``__imp_`` and the function or variable name.
482``dllexport``
483 "``dllexport``" causes the compiler to provide a global pointer to a pointer
484 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
485 Microsoft Windows targets, the pointer name is formed by combining
486 ``__imp_`` and the function or variable name. Since this storage class
487 exists for defining a dll interface, the compiler, assembler and linker know
488 it is externally referenced and must refrain from deleting the symbol.
489
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000490.. _tls_model:
491
492Thread Local Storage Models
493---------------------------
494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507If no explicit model is given, the "general dynamic" model is used.
508
509The models correspond to the ELF TLS models; see `ELF Handling For
510Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
511more information on under which circumstances the different models may
512be used. The target may choose a different TLS model if the specified
513model is not supported, or if a better choice of model can be made.
514
Sean Silva706fba52015-08-06 22:56:24 +0000515A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000516the alias is accessed. It will not have any effect in the aliasee.
517
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000518For platforms without linker support of ELF TLS model, the -femulated-tls
519flag can be used to generate GCC compatible emulated TLS code.
520
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000521.. _namedtypes:
522
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000523Structure Types
524---------------
Sean Silvab084af42012-12-07 10:36:55 +0000525
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000526LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000527types <t_struct>`. Literal types are uniqued structurally, but identified types
528are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000529to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530
Sean Silva706fba52015-08-06 22:56:24 +0000531An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000532
533.. code-block:: llvm
534
535 %mytype = type { %mytype*, i32 }
536
Sean Silvaa1190322015-08-06 22:56:48 +0000537Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000538literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000539
540.. _globalvars:
541
542Global Variables
543----------------
544
545Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000546instead of run-time.
547
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000548Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000549
550Global variables in other translation units can also be declared, in which
551case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000552
Bob Wilson85b24f22014-06-12 20:40:33 +0000553Either global variable definitions or declarations may have an explicit section
554to be placed in and may have an optional explicit alignment specified.
555
Michael Gottesman006039c2013-01-31 05:48:48 +0000556A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000557the contents of the variable will **never** be modified (enabling better
558optimization, allowing the global data to be placed in the read-only
559section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000560initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000561variable.
562
563LLVM explicitly allows *declarations* of global variables to be marked
564constant, even if the final definition of the global is not. This
565capability can be used to enable slightly better optimization of the
566program, but requires the language definition to guarantee that
567optimizations based on the 'constantness' are valid for the translation
568units that do not include the definition.
569
570As SSA values, global variables define pointer values that are in scope
571(i.e. they dominate) all basic blocks in the program. Global variables
572always define a pointer to their "content" type because they describe a
573region of memory, and all memory objects in LLVM are accessed through
574pointers.
575
576Global variables can be marked with ``unnamed_addr`` which indicates
577that the address is not significant, only the content. Constants marked
578like this can be merged with other constants if they have the same
579initializer. Note that a constant with significant address *can* be
580merged with a ``unnamed_addr`` constant, the result being a constant
581whose address is significant.
582
583A global variable may be declared to reside in a target-specific
584numbered address space. For targets that support them, address spaces
585may affect how optimizations are performed and/or what target
586instructions are used to access the variable. The default address space
587is zero. The address space qualifier must precede any other attributes.
588
589LLVM allows an explicit section to be specified for globals. If the
590target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000591Additionally, the global can placed in a comdat if the target has the necessary
592support.
Sean Silvab084af42012-12-07 10:36:55 +0000593
Michael Gottesmane743a302013-02-04 03:22:00 +0000594By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000595variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000596initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000597true even for variables potentially accessible from outside the
598module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000599``@llvm.used`` or dllexported variables. This assumption may be suppressed
600by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602An explicit alignment may be specified for a global, which must be a
603power of 2. If not present, or if the alignment is set to zero, the
604alignment of the global is set by the target to whatever it feels
605convenient. If an explicit alignment is specified, the global is forced
606to have exactly that alignment. Targets and optimizers are not allowed
607to over-align the global if the global has an assigned section. In this
608case, the extra alignment could be observable: for example, code could
609assume that the globals are densely packed in their section and try to
610iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000611iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000612
Nico Rieck7157bb72014-01-14 15:22:47 +0000613Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
614
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000615Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000616:ref:`Thread Local Storage Model <tls_model>`.
617
Nico Rieck7157bb72014-01-14 15:22:47 +0000618Syntax::
619
620 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000621 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000622 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000623 [, section "name"] [, comdat [($name)]]
624 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000625
Sean Silvab084af42012-12-07 10:36:55 +0000626For example, the following defines a global in a numbered address space
627with an initializer, section, and alignment:
628
629.. code-block:: llvm
630
631 @G = addrspace(5) constant float 1.0, section "foo", align 4
632
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000633The following example just declares a global variable
634
635.. code-block:: llvm
636
637 @G = external global i32
638
Sean Silvab084af42012-12-07 10:36:55 +0000639The following example defines a thread-local global with the
640``initialexec`` TLS model:
641
642.. code-block:: llvm
643
644 @G = thread_local(initialexec) global i32 0, align 4
645
646.. _functionstructure:
647
648Functions
649---------
650
651LLVM function definitions consist of the "``define``" keyword, an
652optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000653style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
654an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000655an optional ``unnamed_addr`` attribute, a return type, an optional
656:ref:`parameter attribute <paramattrs>` for the return type, a function
657name, a (possibly empty) argument list (each with optional :ref:`parameter
658attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000659an optional section, an optional alignment,
660an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000661an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000662an optional :ref:`prologue <prologuedata>`,
663an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000664an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000665an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667LLVM function declarations consist of the "``declare``" keyword, an
668optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000669style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
670an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000671an optional ``unnamed_addr`` attribute, a return type, an optional
672:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000673name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000674:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
675and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000676
Bill Wendling6822ecb2013-10-27 05:09:12 +0000677A function definition contains a list of basic blocks, forming the CFG (Control
678Flow Graph) for the function. Each basic block may optionally start with a label
679(giving the basic block a symbol table entry), contains a list of instructions,
680and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
681function return). If an explicit label is not provided, a block is assigned an
682implicit numbered label, using the next value from the same counter as used for
683unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
684entry block does not have an explicit label, it will be assigned label "%0",
685then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000686
687The first basic block in a function is special in two ways: it is
688immediately executed on entrance to the function, and it is not allowed
689to have predecessor basic blocks (i.e. there can not be any branches to
690the entry block of a function). Because the block can have no
691predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
692
693LLVM allows an explicit section to be specified for functions. If the
694target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000695Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000696
697An explicit alignment may be specified for a function. If not present,
698or if the alignment is set to zero, the alignment of the function is set
699by the target to whatever it feels convenient. If an explicit alignment
700is specified, the function is forced to have at least that much
701alignment. All alignments must be a power of 2.
702
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000703If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000704be significant and two identical functions can be merged.
705
706Syntax::
707
Nico Rieck7157bb72014-01-14 15:22:47 +0000708 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000709 [cconv] [ret attrs]
710 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000711 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000712 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000713 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000714
Sean Silva706fba52015-08-06 22:56:24 +0000715The argument list is a comma separated sequence of arguments where each
716argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000717
718Syntax::
719
720 <type> [parameter Attrs] [name]
721
722
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000723.. _langref_aliases:
724
Sean Silvab084af42012-12-07 10:36:55 +0000725Aliases
726-------
727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Aliases, unlike function or variables, don't create any new data. They
729are just a new symbol and metadata for an existing position.
730
731Aliases have a name and an aliasee that is either a global value or a
732constant expression.
733
Nico Rieck7157bb72014-01-14 15:22:47 +0000734Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000735:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
736<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000737
738Syntax::
739
David Blaikie196582e2015-10-22 01:17:29 +0000740 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000741
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000742The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000743``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000744might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000745
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000746Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000747the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
748to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000749
Rafael Espindola64c1e182014-06-03 02:41:57 +0000750Since aliases are only a second name, some restrictions apply, of which
751some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000752
Rafael Espindola64c1e182014-06-03 02:41:57 +0000753* The expression defining the aliasee must be computable at assembly
754 time. Since it is just a name, no relocations can be used.
755
756* No alias in the expression can be weak as the possibility of the
757 intermediate alias being overridden cannot be represented in an
758 object file.
759
760* No global value in the expression can be a declaration, since that
761 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000762
David Majnemerdad0a642014-06-27 18:19:56 +0000763.. _langref_comdats:
764
765Comdats
766-------
767
768Comdat IR provides access to COFF and ELF object file COMDAT functionality.
769
Sean Silvaa1190322015-08-06 22:56:48 +0000770Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000771specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000772that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000773aliasee computes to, if any.
774
775Comdats have a selection kind to provide input on how the linker should
776choose between keys in two different object files.
777
778Syntax::
779
780 $<Name> = comdat SelectionKind
781
782The selection kind must be one of the following:
783
784``any``
785 The linker may choose any COMDAT key, the choice is arbitrary.
786``exactmatch``
787 The linker may choose any COMDAT key but the sections must contain the
788 same data.
789``largest``
790 The linker will choose the section containing the largest COMDAT key.
791``noduplicates``
792 The linker requires that only section with this COMDAT key exist.
793``samesize``
794 The linker may choose any COMDAT key but the sections must contain the
795 same amount of data.
796
797Note that the Mach-O platform doesn't support COMDATs and ELF only supports
798``any`` as a selection kind.
799
800Here is an example of a COMDAT group where a function will only be selected if
801the COMDAT key's section is the largest:
802
803.. code-block:: llvm
804
805 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000806 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000807
Rafael Espindola83a362c2015-01-06 22:55:16 +0000808 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000809 ret void
810 }
811
Rafael Espindola83a362c2015-01-06 22:55:16 +0000812As a syntactic sugar the ``$name`` can be omitted if the name is the same as
813the global name:
814
815.. code-block:: llvm
816
817 $foo = comdat any
818 @foo = global i32 2, comdat
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821In a COFF object file, this will create a COMDAT section with selection kind
822``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
823and another COMDAT section with selection kind
824``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000825section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000826
827There are some restrictions on the properties of the global object.
828It, or an alias to it, must have the same name as the COMDAT group when
829targeting COFF.
830The contents and size of this object may be used during link-time to determine
831which COMDAT groups get selected depending on the selection kind.
832Because the name of the object must match the name of the COMDAT group, the
833linkage of the global object must not be local; local symbols can get renamed
834if a collision occurs in the symbol table.
835
836The combined use of COMDATS and section attributes may yield surprising results.
837For example:
838
839.. code-block:: llvm
840
841 $foo = comdat any
842 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000843 @g1 = global i32 42, section "sec", comdat($foo)
844 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000845
846From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000847with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000848COMDAT groups and COMDATs, at the object file level, are represented by
849sections.
850
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000851Note that certain IR constructs like global variables and functions may
852create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000853COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000854in individual sections (e.g. when `-data-sections` or `-function-sections`
855is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000856
Sean Silvab084af42012-12-07 10:36:55 +0000857.. _namedmetadatastructure:
858
859Named Metadata
860--------------
861
862Named metadata is a collection of metadata. :ref:`Metadata
863nodes <metadata>` (but not metadata strings) are the only valid
864operands for a named metadata.
865
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000866#. Named metadata are represented as a string of characters with the
867 metadata prefix. The rules for metadata names are the same as for
868 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
869 are still valid, which allows any character to be part of a name.
870
Sean Silvab084af42012-12-07 10:36:55 +0000871Syntax::
872
873 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000874 !0 = !{!"zero"}
875 !1 = !{!"one"}
876 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000877 ; A named metadata.
878 !name = !{!0, !1, !2}
879
880.. _paramattrs:
881
882Parameter Attributes
883--------------------
884
885The return type and each parameter of a function type may have a set of
886*parameter attributes* associated with them. Parameter attributes are
887used to communicate additional information about the result or
888parameters of a function. Parameter attributes are considered to be part
889of the function, not of the function type, so functions with different
890parameter attributes can have the same function type.
891
892Parameter attributes are simple keywords that follow the type specified.
893If multiple parameter attributes are needed, they are space separated.
894For example:
895
896.. code-block:: llvm
897
898 declare i32 @printf(i8* noalias nocapture, ...)
899 declare i32 @atoi(i8 zeroext)
900 declare signext i8 @returns_signed_char()
901
902Note that any attributes for the function result (``nounwind``,
903``readonly``) come immediately after the argument list.
904
905Currently, only the following parameter attributes are defined:
906
907``zeroext``
908 This indicates to the code generator that the parameter or return
909 value should be zero-extended to the extent required by the target's
910 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
911 the caller (for a parameter) or the callee (for a return value).
912``signext``
913 This indicates to the code generator that the parameter or return
914 value should be sign-extended to the extent required by the target's
915 ABI (which is usually 32-bits) by the caller (for a parameter) or
916 the callee (for a return value).
917``inreg``
918 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000919 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000920 a function call or return (usually, by putting it in a register as
921 opposed to memory, though some targets use it to distinguish between
922 two different kinds of registers). Use of this attribute is
923 target-specific.
924``byval``
925 This indicates that the pointer parameter should really be passed by
926 value to the function. The attribute implies that a hidden copy of
927 the pointee is made between the caller and the callee, so the callee
928 is unable to modify the value in the caller. This attribute is only
929 valid on LLVM pointer arguments. It is generally used to pass
930 structs and arrays by value, but is also valid on pointers to
931 scalars. The copy is considered to belong to the caller not the
932 callee (for example, ``readonly`` functions should not write to
933 ``byval`` parameters). This is not a valid attribute for return
934 values.
935
936 The byval attribute also supports specifying an alignment with the
937 align attribute. It indicates the alignment of the stack slot to
938 form and the known alignment of the pointer specified to the call
939 site. If the alignment is not specified, then the code generator
940 makes a target-specific assumption.
941
Reid Klecknera534a382013-12-19 02:14:12 +0000942.. _attr_inalloca:
943
944``inalloca``
945
Reid Kleckner60d3a832014-01-16 22:59:24 +0000946 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000947 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000948 be a pointer to stack memory produced by an ``alloca`` instruction.
949 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000950 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000951 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000952
Reid Kleckner436c42e2014-01-17 23:58:17 +0000953 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000954 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000955 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000956 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000957 ``inalloca`` attribute also disables LLVM's implicit lowering of
958 large aggregate return values, which means that frontend authors
959 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000960
Reid Kleckner60d3a832014-01-16 22:59:24 +0000961 When the call site is reached, the argument allocation must have
962 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000963 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000964 space after an argument allocation and before its call site, but it
965 must be cleared off with :ref:`llvm.stackrestore
966 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000967
968 See :doc:`InAlloca` for more information on how to use this
969 attribute.
970
Sean Silvab084af42012-12-07 10:36:55 +0000971``sret``
972 This indicates that the pointer parameter specifies the address of a
973 structure that is the return value of the function in the source
974 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000975 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000976 not to trap and to be properly aligned. This may only be applied to
977 the first parameter. This is not a valid attribute for return
978 values.
Sean Silva1703e702014-04-08 21:06:22 +0000979
Hal Finkelccc70902014-07-22 16:58:55 +0000980``align <n>``
981 This indicates that the pointer value may be assumed by the optimizer to
982 have the specified alignment.
983
984 Note that this attribute has additional semantics when combined with the
985 ``byval`` attribute.
986
Sean Silva1703e702014-04-08 21:06:22 +0000987.. _noalias:
988
Sean Silvab084af42012-12-07 10:36:55 +0000989``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000990 This indicates that objects accessed via pointer values
991 :ref:`based <pointeraliasing>` on the argument or return value are not also
992 accessed, during the execution of the function, via pointer values not
993 *based* on the argument or return value. The attribute on a return value
994 also has additional semantics described below. The caller shares the
995 responsibility with the callee for ensuring that these requirements are met.
996 For further details, please see the discussion of the NoAlias response in
997 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000998
999 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001000 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001001
1002 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001003 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1004 attribute on return values are stronger than the semantics of the attribute
1005 when used on function arguments. On function return values, the ``noalias``
1006 attribute indicates that the function acts like a system memory allocation
1007 function, returning a pointer to allocated storage disjoint from the
1008 storage for any other object accessible to the caller.
1009
Sean Silvab084af42012-12-07 10:36:55 +00001010``nocapture``
1011 This indicates that the callee does not make any copies of the
1012 pointer that outlive the callee itself. This is not a valid
1013 attribute for return values.
1014
1015.. _nest:
1016
1017``nest``
1018 This indicates that the pointer parameter can be excised using the
1019 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001020 attribute for return values and can only be applied to one parameter.
1021
1022``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001023 This indicates that the function always returns the argument as its return
1024 value. This is an optimization hint to the code generator when generating
1025 the caller, allowing tail call optimization and omission of register saves
1026 and restores in some cases; it is not checked or enforced when generating
1027 the callee. The parameter and the function return type must be valid
1028 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1029 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001030
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001031``nonnull``
1032 This indicates that the parameter or return pointer is not null. This
1033 attribute may only be applied to pointer typed parameters. This is not
1034 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001035 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001036 is non-null.
1037
Hal Finkelb0407ba2014-07-18 15:51:28 +00001038``dereferenceable(<n>)``
1039 This indicates that the parameter or return pointer is dereferenceable. This
1040 attribute may only be applied to pointer typed parameters. A pointer that
1041 is dereferenceable can be loaded from speculatively without a risk of
1042 trapping. The number of bytes known to be dereferenceable must be provided
1043 in parentheses. It is legal for the number of bytes to be less than the
1044 size of the pointee type. The ``nonnull`` attribute does not imply
1045 dereferenceability (consider a pointer to one element past the end of an
1046 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1047 ``addrspace(0)`` (which is the default address space).
1048
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001049``dereferenceable_or_null(<n>)``
1050 This indicates that the parameter or return value isn't both
1051 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001052 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001053 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1054 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1055 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1056 and in other address spaces ``dereferenceable_or_null(<n>)``
1057 implies that a pointer is at least one of ``dereferenceable(<n>)``
1058 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001059 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001060 pointer typed parameters.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062.. _gc:
1063
Philip Reamesf80bbff2015-02-25 23:45:20 +00001064Garbage Collector Strategy Names
1065--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001066
Philip Reamesf80bbff2015-02-25 23:45:20 +00001067Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001068string:
1069
1070.. code-block:: llvm
1071
1072 define void @f() gc "name" { ... }
1073
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001074The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001075<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001076strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001077named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001078garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001079which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001080
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001081.. _prefixdata:
1082
1083Prefix Data
1084-----------
1085
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086Prefix data is data associated with a function which the code
1087generator will emit immediately before the function's entrypoint.
1088The purpose of this feature is to allow frontends to associate
1089language-specific runtime metadata with specific functions and make it
1090available through the function pointer while still allowing the
1091function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001092
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001093To access the data for a given function, a program may bitcast the
1094function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001095index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096the prefix data. For instance, take the example of a function annotated
1097with a single ``i32``,
1098
1099.. code-block:: llvm
1100
1101 define void @f() prefix i32 123 { ... }
1102
1103The prefix data can be referenced as,
1104
1105.. code-block:: llvm
1106
David Blaikie16a97eb2015-03-04 22:02:58 +00001107 %0 = bitcast void* () @f to i32*
1108 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001109 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001110
1111Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001112of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001113beginning of the prefix data is aligned. This means that if the size
1114of the prefix data is not a multiple of the alignment size, the
1115function's entrypoint will not be aligned. If alignment of the
1116function's entrypoint is desired, padding must be added to the prefix
1117data.
1118
Sean Silvaa1190322015-08-06 22:56:48 +00001119A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001120to the ``available_externally`` linkage in that the data may be used by the
1121optimizers but will not be emitted in the object file.
1122
1123.. _prologuedata:
1124
1125Prologue Data
1126-------------
1127
1128The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1129be inserted prior to the function body. This can be used for enabling
1130function hot-patching and instrumentation.
1131
1132To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001133have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134bytes which decode to a sequence of machine instructions, valid for the
1135module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001136the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001138definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001140
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001141A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001142which encodes the ``nop`` instruction:
1143
1144.. code-block:: llvm
1145
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001146 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001147
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001148Generally prologue data can be formed by encoding a relative branch instruction
1149which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001150x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1151
1152.. code-block:: llvm
1153
1154 %0 = type <{ i8, i8, i8* }>
1155
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001157
Sean Silvaa1190322015-08-06 22:56:48 +00001158A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001159to the ``available_externally`` linkage in that the data may be used by the
1160optimizers but will not be emitted in the object file.
1161
David Majnemer7fddecc2015-06-17 20:52:32 +00001162.. _personalityfn:
1163
1164Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001165--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001166
1167The ``personality`` attribute permits functions to specify what function
1168to use for exception handling.
1169
Bill Wendling63b88192013-02-06 06:52:58 +00001170.. _attrgrp:
1171
1172Attribute Groups
1173----------------
1174
1175Attribute groups are groups of attributes that are referenced by objects within
1176the IR. They are important for keeping ``.ll`` files readable, because a lot of
1177functions will use the same set of attributes. In the degenerative case of a
1178``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1179group will capture the important command line flags used to build that file.
1180
1181An attribute group is a module-level object. To use an attribute group, an
1182object references the attribute group's ID (e.g. ``#37``). An object may refer
1183to more than one attribute group. In that situation, the attributes from the
1184different groups are merged.
1185
1186Here is an example of attribute groups for a function that should always be
1187inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1188
1189.. code-block:: llvm
1190
1191 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001192 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001193
1194 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001195 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001196
1197 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1198 define void @f() #0 #1 { ... }
1199
Sean Silvab084af42012-12-07 10:36:55 +00001200.. _fnattrs:
1201
1202Function Attributes
1203-------------------
1204
1205Function attributes are set to communicate additional information about
1206a function. Function attributes are considered to be part of the
1207function, not of the function type, so functions with different function
1208attributes can have the same function type.
1209
1210Function attributes are simple keywords that follow the type specified.
1211If multiple attributes are needed, they are space separated. For
1212example:
1213
1214.. code-block:: llvm
1215
1216 define void @f() noinline { ... }
1217 define void @f() alwaysinline { ... }
1218 define void @f() alwaysinline optsize { ... }
1219 define void @f() optsize { ... }
1220
Sean Silvab084af42012-12-07 10:36:55 +00001221``alignstack(<n>)``
1222 This attribute indicates that, when emitting the prologue and
1223 epilogue, the backend should forcibly align the stack pointer.
1224 Specify the desired alignment, which must be a power of two, in
1225 parentheses.
1226``alwaysinline``
1227 This attribute indicates that the inliner should attempt to inline
1228 this function into callers whenever possible, ignoring any active
1229 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001230``builtin``
1231 This indicates that the callee function at a call site should be
1232 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001233 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001234 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001235 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001236``cold``
1237 This attribute indicates that this function is rarely called. When
1238 computing edge weights, basic blocks post-dominated by a cold
1239 function call are also considered to be cold; and, thus, given low
1240 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001241``convergent``
1242 This attribute indicates that the callee is dependent on a convergent
1243 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001244 Transformations that are execution model agnostic may not make the execution
1245 of a convergent operation control dependent on any additional values.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001246``inaccessiblememonly``
1247 This attribute indicates that the function may only access memory that
1248 is not accessible by the module being compiled. This is a weaker form
1249 of ``readnone``.
1250``inaccessiblemem_or_argmemonly``
1251 This attribute indicates that the function may only access memory that is
1252 either not accessible by the module being compiled, or is pointed to
1253 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001254``inlinehint``
1255 This attribute indicates that the source code contained a hint that
1256 inlining this function is desirable (such as the "inline" keyword in
1257 C/C++). It is just a hint; it imposes no requirements on the
1258 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001259``jumptable``
1260 This attribute indicates that the function should be added to a
1261 jump-instruction table at code-generation time, and that all address-taken
1262 references to this function should be replaced with a reference to the
1263 appropriate jump-instruction-table function pointer. Note that this creates
1264 a new pointer for the original function, which means that code that depends
1265 on function-pointer identity can break. So, any function annotated with
1266 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001267``minsize``
1268 This attribute suggests that optimization passes and code generator
1269 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001270 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001271 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001272``naked``
1273 This attribute disables prologue / epilogue emission for the
1274 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001276 This indicates that the callee function at a call site is not recognized as
1277 a built-in function. LLVM will retain the original call and not replace it
1278 with equivalent code based on the semantics of the built-in function, unless
1279 the call site uses the ``builtin`` attribute. This is valid at call sites
1280 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001281``noduplicate``
1282 This attribute indicates that calls to the function cannot be
1283 duplicated. A call to a ``noduplicate`` function may be moved
1284 within its parent function, but may not be duplicated within
1285 its parent function.
1286
1287 A function containing a ``noduplicate`` call may still
1288 be an inlining candidate, provided that the call is not
1289 duplicated by inlining. That implies that the function has
1290 internal linkage and only has one call site, so the original
1291 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001292``noimplicitfloat``
1293 This attributes disables implicit floating point instructions.
1294``noinline``
1295 This attribute indicates that the inliner should never inline this
1296 function in any situation. This attribute may not be used together
1297 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001298``nonlazybind``
1299 This attribute suppresses lazy symbol binding for the function. This
1300 may make calls to the function faster, at the cost of extra program
1301 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001302``noredzone``
1303 This attribute indicates that the code generator should not use a
1304 red zone, even if the target-specific ABI normally permits it.
1305``noreturn``
1306 This function attribute indicates that the function never returns
1307 normally. This produces undefined behavior at runtime if the
1308 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001309``norecurse``
1310 This function attribute indicates that the function does not call itself
1311 either directly or indirectly down any possible call path. This produces
1312 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001313``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001314 This function attribute indicates that the function never raises an
1315 exception. If the function does raise an exception, its runtime
1316 behavior is undefined. However, functions marked nounwind may still
1317 trap or generate asynchronous exceptions. Exception handling schemes
1318 that are recognized by LLVM to handle asynchronous exceptions, such
1319 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001320``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001321 This function attribute indicates that most optimization passes will skip
1322 this function, with the exception of interprocedural optimization passes.
1323 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001324 This attribute cannot be used together with the ``alwaysinline``
1325 attribute; this attribute is also incompatible
1326 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001327
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001328 This attribute requires the ``noinline`` attribute to be specified on
1329 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001330 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001331 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001332``optsize``
1333 This attribute suggests that optimization passes and code generator
1334 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001335 and otherwise do optimizations specifically to reduce code size as
1336 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001337``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001338 On a function, this attribute indicates that the function computes its
1339 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001340 without dereferencing any pointer arguments or otherwise accessing
1341 any mutable state (e.g. memory, control registers, etc) visible to
1342 caller functions. It does not write through any pointer arguments
1343 (including ``byval`` arguments) and never changes any state visible
1344 to callers. This means that it cannot unwind exceptions by calling
1345 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001346
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001347 On an argument, this attribute indicates that the function does not
1348 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001349 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001350``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001351 On a function, this attribute indicates that the function does not write
1352 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001353 modify any state (e.g. memory, control registers, etc) visible to
1354 caller functions. It may dereference pointer arguments and read
1355 state that may be set in the caller. A readonly function always
1356 returns the same value (or unwinds an exception identically) when
1357 called with the same set of arguments and global state. It cannot
1358 unwind an exception by calling the ``C++`` exception throwing
1359 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001360
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001361 On an argument, this attribute indicates that the function does not write
1362 through this pointer argument, even though it may write to the memory that
1363 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001364``argmemonly``
1365 This attribute indicates that the only memory accesses inside function are
1366 loads and stores from objects pointed to by its pointer-typed arguments,
1367 with arbitrary offsets. Or in other words, all memory operations in the
1368 function can refer to memory only using pointers based on its function
1369 arguments.
1370 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1371 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001372``returns_twice``
1373 This attribute indicates that this function can return twice. The C
1374 ``setjmp`` is an example of such a function. The compiler disables
1375 some optimizations (like tail calls) in the caller of these
1376 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001377``safestack``
1378 This attribute indicates that
1379 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1380 protection is enabled for this function.
1381
1382 If a function that has a ``safestack`` attribute is inlined into a
1383 function that doesn't have a ``safestack`` attribute or which has an
1384 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1385 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001386``sanitize_address``
1387 This attribute indicates that AddressSanitizer checks
1388 (dynamic address safety analysis) are enabled for this function.
1389``sanitize_memory``
1390 This attribute indicates that MemorySanitizer checks (dynamic detection
1391 of accesses to uninitialized memory) are enabled for this function.
1392``sanitize_thread``
1393 This attribute indicates that ThreadSanitizer checks
1394 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001395``ssp``
1396 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001397 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001398 placed on the stack before the local variables that's checked upon
1399 return from the function to see if it has been overwritten. A
1400 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001401 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001402
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001403 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1404 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1405 - Calls to alloca() with variable sizes or constant sizes greater than
1406 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001407
Josh Magee24c7f062014-02-01 01:36:16 +00001408 Variables that are identified as requiring a protector will be arranged
1409 on the stack such that they are adjacent to the stack protector guard.
1410
Sean Silvab084af42012-12-07 10:36:55 +00001411 If a function that has an ``ssp`` attribute is inlined into a
1412 function that doesn't have an ``ssp`` attribute, then the resulting
1413 function will have an ``ssp`` attribute.
1414``sspreq``
1415 This attribute indicates that the function should *always* emit a
1416 stack smashing protector. This overrides the ``ssp`` function
1417 attribute.
1418
Josh Magee24c7f062014-02-01 01:36:16 +00001419 Variables that are identified as requiring a protector will be arranged
1420 on the stack such that they are adjacent to the stack protector guard.
1421 The specific layout rules are:
1422
1423 #. Large arrays and structures containing large arrays
1424 (``>= ssp-buffer-size``) are closest to the stack protector.
1425 #. Small arrays and structures containing small arrays
1426 (``< ssp-buffer-size``) are 2nd closest to the protector.
1427 #. Variables that have had their address taken are 3rd closest to the
1428 protector.
1429
Sean Silvab084af42012-12-07 10:36:55 +00001430 If a function that has an ``sspreq`` attribute is inlined into a
1431 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001432 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1433 an ``sspreq`` attribute.
1434``sspstrong``
1435 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001436 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001437 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001438 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001439
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001440 - Arrays of any size and type
1441 - Aggregates containing an array of any size and type.
1442 - Calls to alloca().
1443 - Local variables that have had their address taken.
1444
Josh Magee24c7f062014-02-01 01:36:16 +00001445 Variables that are identified as requiring a protector will be arranged
1446 on the stack such that they are adjacent to the stack protector guard.
1447 The specific layout rules are:
1448
1449 #. Large arrays and structures containing large arrays
1450 (``>= ssp-buffer-size``) are closest to the stack protector.
1451 #. Small arrays and structures containing small arrays
1452 (``< ssp-buffer-size``) are 2nd closest to the protector.
1453 #. Variables that have had their address taken are 3rd closest to the
1454 protector.
1455
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001456 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001457
1458 If a function that has an ``sspstrong`` attribute is inlined into a
1459 function that doesn't have an ``sspstrong`` attribute, then the
1460 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001461``"thunk"``
1462 This attribute indicates that the function will delegate to some other
1463 function with a tail call. The prototype of a thunk should not be used for
1464 optimization purposes. The caller is expected to cast the thunk prototype to
1465 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001466``uwtable``
1467 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001468 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001469 show that no exceptions passes by it. This is normally the case for
1470 the ELF x86-64 abi, but it can be disabled for some compilation
1471 units.
Sean Silvab084af42012-12-07 10:36:55 +00001472
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001473
1474.. _opbundles:
1475
1476Operand Bundles
1477---------------
1478
1479Note: operand bundles are a work in progress, and they should be
1480considered experimental at this time.
1481
1482Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001483with certain LLVM instructions (currently only ``call`` s and
1484``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001485incorrect and will change program semantics.
1486
1487Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001488
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001489 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001490 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1491 bundle operand ::= SSA value
1492 tag ::= string constant
1493
1494Operand bundles are **not** part of a function's signature, and a
1495given function may be called from multiple places with different kinds
1496of operand bundles. This reflects the fact that the operand bundles
1497are conceptually a part of the ``call`` (or ``invoke``), not the
1498callee being dispatched to.
1499
1500Operand bundles are a generic mechanism intended to support
1501runtime-introspection-like functionality for managed languages. While
1502the exact semantics of an operand bundle depend on the bundle tag,
1503there are certain limitations to how much the presence of an operand
1504bundle can influence the semantics of a program. These restrictions
1505are described as the semantics of an "unknown" operand bundle. As
1506long as the behavior of an operand bundle is describable within these
1507restrictions, LLVM does not need to have special knowledge of the
1508operand bundle to not miscompile programs containing it.
1509
David Majnemer34cacb42015-10-22 01:46:38 +00001510- The bundle operands for an unknown operand bundle escape in unknown
1511 ways before control is transferred to the callee or invokee.
1512- Calls and invokes with operand bundles have unknown read / write
1513 effect on the heap on entry and exit (even if the call target is
Sanjoy Das98a341b2015-10-22 03:12:22 +00001514 ``readnone`` or ``readonly``), unless they're overriden with
1515 callsite specific attributes.
1516- An operand bundle at a call site cannot change the implementation
1517 of the called function. Inter-procedural optimizations work as
1518 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001519
Sanjoy Dascdafd842015-11-11 21:38:02 +00001520More specific types of operand bundles are described below.
1521
1522Deoptimization Operand Bundles
1523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1524
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001525Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001526operand bundle tag. These operand bundles represent an alternate
1527"safe" continuation for the call site they're attached to, and can be
1528used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001529specified call site. There can be at most one ``"deopt"`` operand
1530bundle attached to a call site. Exact details of deoptimization is
1531out of scope for the language reference, but it usually involves
1532rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001533
1534From the compiler's perspective, deoptimization operand bundles make
1535the call sites they're attached to at least ``readonly``. They read
1536through all of their pointer typed operands (even if they're not
1537otherwise escaped) and the entire visible heap. Deoptimization
1538operand bundles do not capture their operands except during
1539deoptimization, in which case control will not be returned to the
1540compiled frame.
1541
Sanjoy Das2d161452015-11-18 06:23:38 +00001542The inliner knows how to inline through calls that have deoptimization
1543operand bundles. Just like inlining through a normal call site
1544involves composing the normal and exceptional continuations, inlining
1545through a call site with a deoptimization operand bundle needs to
1546appropriately compose the "safe" deoptimization continuation. The
1547inliner does this by prepending the parent's deoptimization
1548continuation to every deoptimization continuation in the inlined body.
1549E.g. inlining ``@f`` into ``@g`` in the following example
1550
1551.. code-block:: llvm
1552
1553 define void @f() {
1554 call void @x() ;; no deopt state
1555 call void @y() [ "deopt"(i32 10) ]
1556 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1557 ret void
1558 }
1559
1560 define void @g() {
1561 call void @f() [ "deopt"(i32 20) ]
1562 ret void
1563 }
1564
1565will result in
1566
1567.. code-block:: llvm
1568
1569 define void @g() {
1570 call void @x() ;; still no deopt state
1571 call void @y() [ "deopt"(i32 20, i32 10) ]
1572 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1573 ret void
1574 }
1575
1576It is the frontend's responsibility to structure or encode the
1577deoptimization state in a way that syntactically prepending the
1578caller's deoptimization state to the callee's deoptimization state is
1579semantically equivalent to composing the caller's deoptimization
1580continuation after the callee's deoptimization continuation.
1581
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001582.. _ob_funclet:
1583
David Majnemer3bb88c02015-12-15 21:27:27 +00001584Funclet Operand Bundles
1585^^^^^^^^^^^^^^^^^^^^^^^
1586
1587Funclet operand bundles are characterized by the ``"funclet"``
1588operand bundle tag. These operand bundles indicate that a call site
1589is within a particular funclet. There can be at most one
1590``"funclet"`` operand bundle attached to a call site and it must have
1591exactly one bundle operand.
1592
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001593If any funclet EH pads have been "entered" but not "exited" (per the
1594`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1595it is undefined behavior to execute a ``call`` or ``invoke`` which:
1596
1597* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1598 intrinsic, or
1599* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1600 not-yet-exited funclet EH pad.
1601
1602Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1603executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1604
Sean Silvab084af42012-12-07 10:36:55 +00001605.. _moduleasm:
1606
1607Module-Level Inline Assembly
1608----------------------------
1609
1610Modules may contain "module-level inline asm" blocks, which corresponds
1611to the GCC "file scope inline asm" blocks. These blocks are internally
1612concatenated by LLVM and treated as a single unit, but may be separated
1613in the ``.ll`` file if desired. The syntax is very simple:
1614
1615.. code-block:: llvm
1616
1617 module asm "inline asm code goes here"
1618 module asm "more can go here"
1619
1620The strings can contain any character by escaping non-printable
1621characters. The escape sequence used is simply "\\xx" where "xx" is the
1622two digit hex code for the number.
1623
James Y Knightbc832ed2015-07-08 18:08:36 +00001624Note that the assembly string *must* be parseable by LLVM's integrated assembler
1625(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001626
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001627.. _langref_datalayout:
1628
Sean Silvab084af42012-12-07 10:36:55 +00001629Data Layout
1630-----------
1631
1632A module may specify a target specific data layout string that specifies
1633how data is to be laid out in memory. The syntax for the data layout is
1634simply:
1635
1636.. code-block:: llvm
1637
1638 target datalayout = "layout specification"
1639
1640The *layout specification* consists of a list of specifications
1641separated by the minus sign character ('-'). Each specification starts
1642with a letter and may include other information after the letter to
1643define some aspect of the data layout. The specifications accepted are
1644as follows:
1645
1646``E``
1647 Specifies that the target lays out data in big-endian form. That is,
1648 the bits with the most significance have the lowest address
1649 location.
1650``e``
1651 Specifies that the target lays out data in little-endian form. That
1652 is, the bits with the least significance have the lowest address
1653 location.
1654``S<size>``
1655 Specifies the natural alignment of the stack in bits. Alignment
1656 promotion of stack variables is limited to the natural stack
1657 alignment to avoid dynamic stack realignment. The stack alignment
1658 must be a multiple of 8-bits. If omitted, the natural stack
1659 alignment defaults to "unspecified", which does not prevent any
1660 alignment promotions.
1661``p[n]:<size>:<abi>:<pref>``
1662 This specifies the *size* of a pointer and its ``<abi>`` and
1663 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001664 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001665 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001666 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001667``i<size>:<abi>:<pref>``
1668 This specifies the alignment for an integer type of a given bit
1669 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1670``v<size>:<abi>:<pref>``
1671 This specifies the alignment for a vector type of a given bit
1672 ``<size>``.
1673``f<size>:<abi>:<pref>``
1674 This specifies the alignment for a floating point type of a given bit
1675 ``<size>``. Only values of ``<size>`` that are supported by the target
1676 will work. 32 (float) and 64 (double) are supported on all targets; 80
1677 or 128 (different flavors of long double) are also supported on some
1678 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001679``a:<abi>:<pref>``
1680 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001681``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001682 If present, specifies that llvm names are mangled in the output. The
1683 options are
1684
1685 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1686 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1687 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1688 symbols get a ``_`` prefix.
1689 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1690 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001691 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1692 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001693``n<size1>:<size2>:<size3>...``
1694 This specifies a set of native integer widths for the target CPU in
1695 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1696 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1697 this set are considered to support most general arithmetic operations
1698 efficiently.
1699
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001700On every specification that takes a ``<abi>:<pref>``, specifying the
1701``<pref>`` alignment is optional. If omitted, the preceding ``:``
1702should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1703
Sean Silvab084af42012-12-07 10:36:55 +00001704When constructing the data layout for a given target, LLVM starts with a
1705default set of specifications which are then (possibly) overridden by
1706the specifications in the ``datalayout`` keyword. The default
1707specifications are given in this list:
1708
1709- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001710- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1711- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1712 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001713- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001714- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1715- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1716- ``i16:16:16`` - i16 is 16-bit aligned
1717- ``i32:32:32`` - i32 is 32-bit aligned
1718- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1719 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001720- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001721- ``f32:32:32`` - float is 32-bit aligned
1722- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001723- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001724- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1725- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001726- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001727
1728When LLVM is determining the alignment for a given type, it uses the
1729following rules:
1730
1731#. If the type sought is an exact match for one of the specifications,
1732 that specification is used.
1733#. If no match is found, and the type sought is an integer type, then
1734 the smallest integer type that is larger than the bitwidth of the
1735 sought type is used. If none of the specifications are larger than
1736 the bitwidth then the largest integer type is used. For example,
1737 given the default specifications above, the i7 type will use the
1738 alignment of i8 (next largest) while both i65 and i256 will use the
1739 alignment of i64 (largest specified).
1740#. If no match is found, and the type sought is a vector type, then the
1741 largest vector type that is smaller than the sought vector type will
1742 be used as a fall back. This happens because <128 x double> can be
1743 implemented in terms of 64 <2 x double>, for example.
1744
1745The function of the data layout string may not be what you expect.
1746Notably, this is not a specification from the frontend of what alignment
1747the code generator should use.
1748
1749Instead, if specified, the target data layout is required to match what
1750the ultimate *code generator* expects. This string is used by the
1751mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001752what the ultimate code generator uses. There is no way to generate IR
1753that does not embed this target-specific detail into the IR. If you
1754don't specify the string, the default specifications will be used to
1755generate a Data Layout and the optimization phases will operate
1756accordingly and introduce target specificity into the IR with respect to
1757these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001758
Bill Wendling5cc90842013-10-18 23:41:25 +00001759.. _langref_triple:
1760
1761Target Triple
1762-------------
1763
1764A module may specify a target triple string that describes the target
1765host. The syntax for the target triple is simply:
1766
1767.. code-block:: llvm
1768
1769 target triple = "x86_64-apple-macosx10.7.0"
1770
1771The *target triple* string consists of a series of identifiers delimited
1772by the minus sign character ('-'). The canonical forms are:
1773
1774::
1775
1776 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1777 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1778
1779This information is passed along to the backend so that it generates
1780code for the proper architecture. It's possible to override this on the
1781command line with the ``-mtriple`` command line option.
1782
Sean Silvab084af42012-12-07 10:36:55 +00001783.. _pointeraliasing:
1784
1785Pointer Aliasing Rules
1786----------------------
1787
1788Any memory access must be done through a pointer value associated with
1789an address range of the memory access, otherwise the behavior is
1790undefined. Pointer values are associated with address ranges according
1791to the following rules:
1792
1793- A pointer value is associated with the addresses associated with any
1794 value it is *based* on.
1795- An address of a global variable is associated with the address range
1796 of the variable's storage.
1797- The result value of an allocation instruction is associated with the
1798 address range of the allocated storage.
1799- A null pointer in the default address-space is associated with no
1800 address.
1801- An integer constant other than zero or a pointer value returned from
1802 a function not defined within LLVM may be associated with address
1803 ranges allocated through mechanisms other than those provided by
1804 LLVM. Such ranges shall not overlap with any ranges of addresses
1805 allocated by mechanisms provided by LLVM.
1806
1807A pointer value is *based* on another pointer value according to the
1808following rules:
1809
1810- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001811 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001812- The result value of a ``bitcast`` is *based* on the operand of the
1813 ``bitcast``.
1814- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1815 values that contribute (directly or indirectly) to the computation of
1816 the pointer's value.
1817- The "*based* on" relationship is transitive.
1818
1819Note that this definition of *"based"* is intentionally similar to the
1820definition of *"based"* in C99, though it is slightly weaker.
1821
1822LLVM IR does not associate types with memory. The result type of a
1823``load`` merely indicates the size and alignment of the memory from
1824which to load, as well as the interpretation of the value. The first
1825operand type of a ``store`` similarly only indicates the size and
1826alignment of the store.
1827
1828Consequently, type-based alias analysis, aka TBAA, aka
1829``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1830:ref:`Metadata <metadata>` may be used to encode additional information
1831which specialized optimization passes may use to implement type-based
1832alias analysis.
1833
1834.. _volatile:
1835
1836Volatile Memory Accesses
1837------------------------
1838
1839Certain memory accesses, such as :ref:`load <i_load>`'s,
1840:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1841marked ``volatile``. The optimizers must not change the number of
1842volatile operations or change their order of execution relative to other
1843volatile operations. The optimizers *may* change the order of volatile
1844operations relative to non-volatile operations. This is not Java's
1845"volatile" and has no cross-thread synchronization behavior.
1846
Andrew Trick89fc5a62013-01-30 21:19:35 +00001847IR-level volatile loads and stores cannot safely be optimized into
1848llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1849flagged volatile. Likewise, the backend should never split or merge
1850target-legal volatile load/store instructions.
1851
Andrew Trick7e6f9282013-01-31 00:49:39 +00001852.. admonition:: Rationale
1853
1854 Platforms may rely on volatile loads and stores of natively supported
1855 data width to be executed as single instruction. For example, in C
1856 this holds for an l-value of volatile primitive type with native
1857 hardware support, but not necessarily for aggregate types. The
1858 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001859 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001860 do not violate the frontend's contract with the language.
1861
Sean Silvab084af42012-12-07 10:36:55 +00001862.. _memmodel:
1863
1864Memory Model for Concurrent Operations
1865--------------------------------------
1866
1867The LLVM IR does not define any way to start parallel threads of
1868execution or to register signal handlers. Nonetheless, there are
1869platform-specific ways to create them, and we define LLVM IR's behavior
1870in their presence. This model is inspired by the C++0x memory model.
1871
1872For a more informal introduction to this model, see the :doc:`Atomics`.
1873
1874We define a *happens-before* partial order as the least partial order
1875that
1876
1877- Is a superset of single-thread program order, and
1878- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1879 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1880 techniques, like pthread locks, thread creation, thread joining,
1881 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1882 Constraints <ordering>`).
1883
1884Note that program order does not introduce *happens-before* edges
1885between a thread and signals executing inside that thread.
1886
1887Every (defined) read operation (load instructions, memcpy, atomic
1888loads/read-modify-writes, etc.) R reads a series of bytes written by
1889(defined) write operations (store instructions, atomic
1890stores/read-modify-writes, memcpy, etc.). For the purposes of this
1891section, initialized globals are considered to have a write of the
1892initializer which is atomic and happens before any other read or write
1893of the memory in question. For each byte of a read R, R\ :sub:`byte`
1894may see any write to the same byte, except:
1895
1896- If write\ :sub:`1` happens before write\ :sub:`2`, and
1897 write\ :sub:`2` happens before R\ :sub:`byte`, then
1898 R\ :sub:`byte` does not see write\ :sub:`1`.
1899- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1900 R\ :sub:`byte` does not see write\ :sub:`3`.
1901
1902Given that definition, R\ :sub:`byte` is defined as follows:
1903
1904- If R is volatile, the result is target-dependent. (Volatile is
1905 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001906 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001907 like normal memory. It does not generally provide cross-thread
1908 synchronization.)
1909- Otherwise, if there is no write to the same byte that happens before
1910 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1911- Otherwise, if R\ :sub:`byte` may see exactly one write,
1912 R\ :sub:`byte` returns the value written by that write.
1913- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1914 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1915 Memory Ordering Constraints <ordering>` section for additional
1916 constraints on how the choice is made.
1917- Otherwise R\ :sub:`byte` returns ``undef``.
1918
1919R returns the value composed of the series of bytes it read. This
1920implies that some bytes within the value may be ``undef`` **without**
1921the entire value being ``undef``. Note that this only defines the
1922semantics of the operation; it doesn't mean that targets will emit more
1923than one instruction to read the series of bytes.
1924
1925Note that in cases where none of the atomic intrinsics are used, this
1926model places only one restriction on IR transformations on top of what
1927is required for single-threaded execution: introducing a store to a byte
1928which might not otherwise be stored is not allowed in general.
1929(Specifically, in the case where another thread might write to and read
1930from an address, introducing a store can change a load that may see
1931exactly one write into a load that may see multiple writes.)
1932
1933.. _ordering:
1934
1935Atomic Memory Ordering Constraints
1936----------------------------------
1937
1938Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1939:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1940:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001941ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001942the same address they *synchronize with*. These semantics are borrowed
1943from Java and C++0x, but are somewhat more colloquial. If these
1944descriptions aren't precise enough, check those specs (see spec
1945references in the :doc:`atomics guide <Atomics>`).
1946:ref:`fence <i_fence>` instructions treat these orderings somewhat
1947differently since they don't take an address. See that instruction's
1948documentation for details.
1949
1950For a simpler introduction to the ordering constraints, see the
1951:doc:`Atomics`.
1952
1953``unordered``
1954 The set of values that can be read is governed by the happens-before
1955 partial order. A value cannot be read unless some operation wrote
1956 it. This is intended to provide a guarantee strong enough to model
1957 Java's non-volatile shared variables. This ordering cannot be
1958 specified for read-modify-write operations; it is not strong enough
1959 to make them atomic in any interesting way.
1960``monotonic``
1961 In addition to the guarantees of ``unordered``, there is a single
1962 total order for modifications by ``monotonic`` operations on each
1963 address. All modification orders must be compatible with the
1964 happens-before order. There is no guarantee that the modification
1965 orders can be combined to a global total order for the whole program
1966 (and this often will not be possible). The read in an atomic
1967 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1968 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1969 order immediately before the value it writes. If one atomic read
1970 happens before another atomic read of the same address, the later
1971 read must see the same value or a later value in the address's
1972 modification order. This disallows reordering of ``monotonic`` (or
1973 stronger) operations on the same address. If an address is written
1974 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1975 read that address repeatedly, the other threads must eventually see
1976 the write. This corresponds to the C++0x/C1x
1977 ``memory_order_relaxed``.
1978``acquire``
1979 In addition to the guarantees of ``monotonic``, a
1980 *synchronizes-with* edge may be formed with a ``release`` operation.
1981 This is intended to model C++'s ``memory_order_acquire``.
1982``release``
1983 In addition to the guarantees of ``monotonic``, if this operation
1984 writes a value which is subsequently read by an ``acquire``
1985 operation, it *synchronizes-with* that operation. (This isn't a
1986 complete description; see the C++0x definition of a release
1987 sequence.) This corresponds to the C++0x/C1x
1988 ``memory_order_release``.
1989``acq_rel`` (acquire+release)
1990 Acts as both an ``acquire`` and ``release`` operation on its
1991 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1992``seq_cst`` (sequentially consistent)
1993 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001994 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001995 writes), there is a global total order on all
1996 sequentially-consistent operations on all addresses, which is
1997 consistent with the *happens-before* partial order and with the
1998 modification orders of all the affected addresses. Each
1999 sequentially-consistent read sees the last preceding write to the
2000 same address in this global order. This corresponds to the C++0x/C1x
2001 ``memory_order_seq_cst`` and Java volatile.
2002
2003.. _singlethread:
2004
2005If an atomic operation is marked ``singlethread``, it only *synchronizes
2006with* or participates in modification and seq\_cst total orderings with
2007other operations running in the same thread (for example, in signal
2008handlers).
2009
2010.. _fastmath:
2011
2012Fast-Math Flags
2013---------------
2014
2015LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2016:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002017:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2018be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002019
2020``nnan``
2021 No NaNs - Allow optimizations to assume the arguments and result are not
2022 NaN. Such optimizations are required to retain defined behavior over
2023 NaNs, but the value of the result is undefined.
2024
2025``ninf``
2026 No Infs - Allow optimizations to assume the arguments and result are not
2027 +/-Inf. Such optimizations are required to retain defined behavior over
2028 +/-Inf, but the value of the result is undefined.
2029
2030``nsz``
2031 No Signed Zeros - Allow optimizations to treat the sign of a zero
2032 argument or result as insignificant.
2033
2034``arcp``
2035 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2036 argument rather than perform division.
2037
2038``fast``
2039 Fast - Allow algebraically equivalent transformations that may
2040 dramatically change results in floating point (e.g. reassociate). This
2041 flag implies all the others.
2042
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002043.. _uselistorder:
2044
2045Use-list Order Directives
2046-------------------------
2047
2048Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002049order to be recreated. ``<order-indexes>`` is a comma-separated list of
2050indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002051value's use-list is immediately sorted by these indexes.
2052
Sean Silvaa1190322015-08-06 22:56:48 +00002053Use-list directives may appear at function scope or global scope. They are not
2054instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002055function scope, they must appear after the terminator of the final basic block.
2056
2057If basic blocks have their address taken via ``blockaddress()`` expressions,
2058``uselistorder_bb`` can be used to reorder their use-lists from outside their
2059function's scope.
2060
2061:Syntax:
2062
2063::
2064
2065 uselistorder <ty> <value>, { <order-indexes> }
2066 uselistorder_bb @function, %block { <order-indexes> }
2067
2068:Examples:
2069
2070::
2071
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002072 define void @foo(i32 %arg1, i32 %arg2) {
2073 entry:
2074 ; ... instructions ...
2075 bb:
2076 ; ... instructions ...
2077
2078 ; At function scope.
2079 uselistorder i32 %arg1, { 1, 0, 2 }
2080 uselistorder label %bb, { 1, 0 }
2081 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002082
2083 ; At global scope.
2084 uselistorder i32* @global, { 1, 2, 0 }
2085 uselistorder i32 7, { 1, 0 }
2086 uselistorder i32 (i32) @bar, { 1, 0 }
2087 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2088
Sean Silvab084af42012-12-07 10:36:55 +00002089.. _typesystem:
2090
2091Type System
2092===========
2093
2094The LLVM type system is one of the most important features of the
2095intermediate representation. Being typed enables a number of
2096optimizations to be performed on the intermediate representation
2097directly, without having to do extra analyses on the side before the
2098transformation. A strong type system makes it easier to read the
2099generated code and enables novel analyses and transformations that are
2100not feasible to perform on normal three address code representations.
2101
Rafael Espindola08013342013-12-07 19:34:20 +00002102.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002103
Rafael Espindola08013342013-12-07 19:34:20 +00002104Void Type
2105---------
Sean Silvab084af42012-12-07 10:36:55 +00002106
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002107:Overview:
2108
Rafael Espindola08013342013-12-07 19:34:20 +00002109
2110The void type does not represent any value and has no size.
2111
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002112:Syntax:
2113
Rafael Espindola08013342013-12-07 19:34:20 +00002114
2115::
2116
2117 void
Sean Silvab084af42012-12-07 10:36:55 +00002118
2119
Rafael Espindola08013342013-12-07 19:34:20 +00002120.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002121
Rafael Espindola08013342013-12-07 19:34:20 +00002122Function Type
2123-------------
Sean Silvab084af42012-12-07 10:36:55 +00002124
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002125:Overview:
2126
Sean Silvab084af42012-12-07 10:36:55 +00002127
Rafael Espindola08013342013-12-07 19:34:20 +00002128The function type can be thought of as a function signature. It consists of a
2129return type and a list of formal parameter types. The return type of a function
2130type is a void type or first class type --- except for :ref:`label <t_label>`
2131and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002132
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002133:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002134
Rafael Espindola08013342013-12-07 19:34:20 +00002135::
Sean Silvab084af42012-12-07 10:36:55 +00002136
Rafael Espindola08013342013-12-07 19:34:20 +00002137 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002138
Rafael Espindola08013342013-12-07 19:34:20 +00002139...where '``<parameter list>``' is a comma-separated list of type
2140specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002141indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002142argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002143handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002144except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002145
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002146:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002147
Rafael Espindola08013342013-12-07 19:34:20 +00002148+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2149| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2150+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2151| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2152+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2153| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2154+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2155| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2156+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2157
2158.. _t_firstclass:
2159
2160First Class Types
2161-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163The :ref:`first class <t_firstclass>` types are perhaps the most important.
2164Values of these types are the only ones which can be produced by
2165instructions.
2166
Rafael Espindola08013342013-12-07 19:34:20 +00002167.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002168
Rafael Espindola08013342013-12-07 19:34:20 +00002169Single Value Types
2170^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002171
Rafael Espindola08013342013-12-07 19:34:20 +00002172These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002173
2174.. _t_integer:
2175
2176Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002177""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002178
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002179:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002180
2181The integer type is a very simple type that simply specifies an
2182arbitrary bit width for the integer type desired. Any bit width from 1
2183bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2184
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002185:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002186
2187::
2188
2189 iN
2190
2191The number of bits the integer will occupy is specified by the ``N``
2192value.
2193
2194Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002195*********
Sean Silvab084af42012-12-07 10:36:55 +00002196
2197+----------------+------------------------------------------------+
2198| ``i1`` | a single-bit integer. |
2199+----------------+------------------------------------------------+
2200| ``i32`` | a 32-bit integer. |
2201+----------------+------------------------------------------------+
2202| ``i1942652`` | a really big integer of over 1 million bits. |
2203+----------------+------------------------------------------------+
2204
2205.. _t_floating:
2206
2207Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002208""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002209
2210.. list-table::
2211 :header-rows: 1
2212
2213 * - Type
2214 - Description
2215
2216 * - ``half``
2217 - 16-bit floating point value
2218
2219 * - ``float``
2220 - 32-bit floating point value
2221
2222 * - ``double``
2223 - 64-bit floating point value
2224
2225 * - ``fp128``
2226 - 128-bit floating point value (112-bit mantissa)
2227
2228 * - ``x86_fp80``
2229 - 80-bit floating point value (X87)
2230
2231 * - ``ppc_fp128``
2232 - 128-bit floating point value (two 64-bits)
2233
Reid Kleckner9a16d082014-03-05 02:41:37 +00002234X86_mmx Type
2235""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002236
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002237:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002238
Reid Kleckner9a16d082014-03-05 02:41:37 +00002239The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002240machine. The operations allowed on it are quite limited: parameters and
2241return values, load and store, and bitcast. User-specified MMX
2242instructions are represented as intrinsic or asm calls with arguments
2243and/or results of this type. There are no arrays, vectors or constants
2244of this type.
2245
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002246:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002247
2248::
2249
Reid Kleckner9a16d082014-03-05 02:41:37 +00002250 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002251
Sean Silvab084af42012-12-07 10:36:55 +00002252
Rafael Espindola08013342013-12-07 19:34:20 +00002253.. _t_pointer:
2254
2255Pointer Type
2256""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002257
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002258:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002259
Rafael Espindola08013342013-12-07 19:34:20 +00002260The pointer type is used to specify memory locations. Pointers are
2261commonly used to reference objects in memory.
2262
2263Pointer types may have an optional address space attribute defining the
2264numbered address space where the pointed-to object resides. The default
2265address space is number zero. The semantics of non-zero address spaces
2266are target-specific.
2267
2268Note that LLVM does not permit pointers to void (``void*``) nor does it
2269permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002270
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002271:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002272
2273::
2274
Rafael Espindola08013342013-12-07 19:34:20 +00002275 <type> *
2276
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002277:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002278
2279+-------------------------+--------------------------------------------------------------------------------------------------------------+
2280| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2281+-------------------------+--------------------------------------------------------------------------------------------------------------+
2282| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2283+-------------------------+--------------------------------------------------------------------------------------------------------------+
2284| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2285+-------------------------+--------------------------------------------------------------------------------------------------------------+
2286
2287.. _t_vector:
2288
2289Vector Type
2290"""""""""""
2291
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002292:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002293
2294A vector type is a simple derived type that represents a vector of
2295elements. Vector types are used when multiple primitive data are
2296operated in parallel using a single instruction (SIMD). A vector type
2297requires a size (number of elements) and an underlying primitive data
2298type. Vector types are considered :ref:`first class <t_firstclass>`.
2299
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002300:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002301
2302::
2303
2304 < <# elements> x <elementtype> >
2305
2306The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002307elementtype may be any integer, floating point or pointer type. Vectors
2308of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002309
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002310:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002311
2312+-------------------+--------------------------------------------------+
2313| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2314+-------------------+--------------------------------------------------+
2315| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2316+-------------------+--------------------------------------------------+
2317| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2318+-------------------+--------------------------------------------------+
2319| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2320+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002321
2322.. _t_label:
2323
2324Label Type
2325^^^^^^^^^^
2326
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002327:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002328
2329The label type represents code labels.
2330
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002331:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002332
2333::
2334
2335 label
2336
David Majnemerb611e3f2015-08-14 05:09:07 +00002337.. _t_token:
2338
2339Token Type
2340^^^^^^^^^^
2341
2342:Overview:
2343
2344The token type is used when a value is associated with an instruction
2345but all uses of the value must not attempt to introspect or obscure it.
2346As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2347:ref:`select <i_select>` of type token.
2348
2349:Syntax:
2350
2351::
2352
2353 token
2354
2355
2356
Sean Silvab084af42012-12-07 10:36:55 +00002357.. _t_metadata:
2358
2359Metadata Type
2360^^^^^^^^^^^^^
2361
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002362:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002363
2364The metadata type represents embedded metadata. No derived types may be
2365created from metadata except for :ref:`function <t_function>` arguments.
2366
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002367:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002368
2369::
2370
2371 metadata
2372
Sean Silvab084af42012-12-07 10:36:55 +00002373.. _t_aggregate:
2374
2375Aggregate Types
2376^^^^^^^^^^^^^^^
2377
2378Aggregate Types are a subset of derived types that can contain multiple
2379member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2380aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2381aggregate types.
2382
2383.. _t_array:
2384
2385Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002386""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002387
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002388:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002389
2390The array type is a very simple derived type that arranges elements
2391sequentially in memory. The array type requires a size (number of
2392elements) and an underlying data type.
2393
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002394:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002395
2396::
2397
2398 [<# elements> x <elementtype>]
2399
2400The number of elements is a constant integer value; ``elementtype`` may
2401be any type with a size.
2402
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002403:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002404
2405+------------------+--------------------------------------+
2406| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2407+------------------+--------------------------------------+
2408| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2409+------------------+--------------------------------------+
2410| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2411+------------------+--------------------------------------+
2412
2413Here are some examples of multidimensional arrays:
2414
2415+-----------------------------+----------------------------------------------------------+
2416| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2417+-----------------------------+----------------------------------------------------------+
2418| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2419+-----------------------------+----------------------------------------------------------+
2420| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2421+-----------------------------+----------------------------------------------------------+
2422
2423There is no restriction on indexing beyond the end of the array implied
2424by a static type (though there are restrictions on indexing beyond the
2425bounds of an allocated object in some cases). This means that
2426single-dimension 'variable sized array' addressing can be implemented in
2427LLVM with a zero length array type. An implementation of 'pascal style
2428arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2429example.
2430
Sean Silvab084af42012-12-07 10:36:55 +00002431.. _t_struct:
2432
2433Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002434""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002435
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002436:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002437
2438The structure type is used to represent a collection of data members
2439together in memory. The elements of a structure may be any type that has
2440a size.
2441
2442Structures in memory are accessed using '``load``' and '``store``' by
2443getting a pointer to a field with the '``getelementptr``' instruction.
2444Structures in registers are accessed using the '``extractvalue``' and
2445'``insertvalue``' instructions.
2446
2447Structures may optionally be "packed" structures, which indicate that
2448the alignment of the struct is one byte, and that there is no padding
2449between the elements. In non-packed structs, padding between field types
2450is inserted as defined by the DataLayout string in the module, which is
2451required to match what the underlying code generator expects.
2452
2453Structures can either be "literal" or "identified". A literal structure
2454is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2455identified types are always defined at the top level with a name.
2456Literal types are uniqued by their contents and can never be recursive
2457or opaque since there is no way to write one. Identified types can be
2458recursive, can be opaqued, and are never uniqued.
2459
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002460:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002461
2462::
2463
2464 %T1 = type { <type list> } ; Identified normal struct type
2465 %T2 = type <{ <type list> }> ; Identified packed struct type
2466
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002467:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002468
2469+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2470| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2471+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002472| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002473+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2474| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2475+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2476
2477.. _t_opaque:
2478
2479Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002480""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002481
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002482:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002483
2484Opaque structure types are used to represent named structure types that
2485do not have a body specified. This corresponds (for example) to the C
2486notion of a forward declared structure.
2487
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002488:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002489
2490::
2491
2492 %X = type opaque
2493 %52 = type opaque
2494
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002495:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002496
2497+--------------+-------------------+
2498| ``opaque`` | An opaque type. |
2499+--------------+-------------------+
2500
Sean Silva1703e702014-04-08 21:06:22 +00002501.. _constants:
2502
Sean Silvab084af42012-12-07 10:36:55 +00002503Constants
2504=========
2505
2506LLVM has several different basic types of constants. This section
2507describes them all and their syntax.
2508
2509Simple Constants
2510----------------
2511
2512**Boolean constants**
2513 The two strings '``true``' and '``false``' are both valid constants
2514 of the ``i1`` type.
2515**Integer constants**
2516 Standard integers (such as '4') are constants of the
2517 :ref:`integer <t_integer>` type. Negative numbers may be used with
2518 integer types.
2519**Floating point constants**
2520 Floating point constants use standard decimal notation (e.g.
2521 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2522 hexadecimal notation (see below). The assembler requires the exact
2523 decimal value of a floating-point constant. For example, the
2524 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2525 decimal in binary. Floating point constants must have a :ref:`floating
2526 point <t_floating>` type.
2527**Null pointer constants**
2528 The identifier '``null``' is recognized as a null pointer constant
2529 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002530**Token constants**
2531 The identifier '``none``' is recognized as an empty token constant
2532 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002533
2534The one non-intuitive notation for constants is the hexadecimal form of
2535floating point constants. For example, the form
2536'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2537than) '``double 4.5e+15``'. The only time hexadecimal floating point
2538constants are required (and the only time that they are generated by the
2539disassembler) is when a floating point constant must be emitted but it
2540cannot be represented as a decimal floating point number in a reasonable
2541number of digits. For example, NaN's, infinities, and other special
2542values are represented in their IEEE hexadecimal format so that assembly
2543and disassembly do not cause any bits to change in the constants.
2544
2545When using the hexadecimal form, constants of types half, float, and
2546double are represented using the 16-digit form shown above (which
2547matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002548must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002549precision, respectively. Hexadecimal format is always used for long
2550double, and there are three forms of long double. The 80-bit format used
2551by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2552128-bit format used by PowerPC (two adjacent doubles) is represented by
2553``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002554represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2555will only work if they match the long double format on your target.
2556The IEEE 16-bit format (half precision) is represented by ``0xH``
2557followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2558(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002559
Reid Kleckner9a16d082014-03-05 02:41:37 +00002560There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002561
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002562.. _complexconstants:
2563
Sean Silvab084af42012-12-07 10:36:55 +00002564Complex Constants
2565-----------------
2566
2567Complex constants are a (potentially recursive) combination of simple
2568constants and smaller complex constants.
2569
2570**Structure constants**
2571 Structure constants are represented with notation similar to
2572 structure type definitions (a comma separated list of elements,
2573 surrounded by braces (``{}``)). For example:
2574 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2575 "``@G = external global i32``". Structure constants must have
2576 :ref:`structure type <t_struct>`, and the number and types of elements
2577 must match those specified by the type.
2578**Array constants**
2579 Array constants are represented with notation similar to array type
2580 definitions (a comma separated list of elements, surrounded by
2581 square brackets (``[]``)). For example:
2582 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2583 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002584 match those specified by the type. As a special case, character array
2585 constants may also be represented as a double-quoted string using the ``c``
2586 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002587**Vector constants**
2588 Vector constants are represented with notation similar to vector
2589 type definitions (a comma separated list of elements, surrounded by
2590 less-than/greater-than's (``<>``)). For example:
2591 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2592 must have :ref:`vector type <t_vector>`, and the number and types of
2593 elements must match those specified by the type.
2594**Zero initialization**
2595 The string '``zeroinitializer``' can be used to zero initialize a
2596 value to zero of *any* type, including scalar and
2597 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2598 having to print large zero initializers (e.g. for large arrays) and
2599 is always exactly equivalent to using explicit zero initializers.
2600**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002601 A metadata node is a constant tuple without types. For example:
2602 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002603 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2604 Unlike other typed constants that are meant to be interpreted as part of
2605 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002606 information such as debug info.
2607
2608Global Variable and Function Addresses
2609--------------------------------------
2610
2611The addresses of :ref:`global variables <globalvars>` and
2612:ref:`functions <functionstructure>` are always implicitly valid
2613(link-time) constants. These constants are explicitly referenced when
2614the :ref:`identifier for the global <identifiers>` is used and always have
2615:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2616file:
2617
2618.. code-block:: llvm
2619
2620 @X = global i32 17
2621 @Y = global i32 42
2622 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2623
2624.. _undefvalues:
2625
2626Undefined Values
2627----------------
2628
2629The string '``undef``' can be used anywhere a constant is expected, and
2630indicates that the user of the value may receive an unspecified
2631bit-pattern. Undefined values may be of any type (other than '``label``'
2632or '``void``') and be used anywhere a constant is permitted.
2633
2634Undefined values are useful because they indicate to the compiler that
2635the program is well defined no matter what value is used. This gives the
2636compiler more freedom to optimize. Here are some examples of
2637(potentially surprising) transformations that are valid (in pseudo IR):
2638
2639.. code-block:: llvm
2640
2641 %A = add %X, undef
2642 %B = sub %X, undef
2643 %C = xor %X, undef
2644 Safe:
2645 %A = undef
2646 %B = undef
2647 %C = undef
2648
2649This is safe because all of the output bits are affected by the undef
2650bits. Any output bit can have a zero or one depending on the input bits.
2651
2652.. code-block:: llvm
2653
2654 %A = or %X, undef
2655 %B = and %X, undef
2656 Safe:
2657 %A = -1
2658 %B = 0
2659 Unsafe:
2660 %A = undef
2661 %B = undef
2662
2663These logical operations have bits that are not always affected by the
2664input. For example, if ``%X`` has a zero bit, then the output of the
2665'``and``' operation will always be a zero for that bit, no matter what
2666the corresponding bit from the '``undef``' is. As such, it is unsafe to
2667optimize or assume that the result of the '``and``' is '``undef``'.
2668However, it is safe to assume that all bits of the '``undef``' could be
26690, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2670all the bits of the '``undef``' operand to the '``or``' could be set,
2671allowing the '``or``' to be folded to -1.
2672
2673.. code-block:: llvm
2674
2675 %A = select undef, %X, %Y
2676 %B = select undef, 42, %Y
2677 %C = select %X, %Y, undef
2678 Safe:
2679 %A = %X (or %Y)
2680 %B = 42 (or %Y)
2681 %C = %Y
2682 Unsafe:
2683 %A = undef
2684 %B = undef
2685 %C = undef
2686
2687This set of examples shows that undefined '``select``' (and conditional
2688branch) conditions can go *either way*, but they have to come from one
2689of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2690both known to have a clear low bit, then ``%A`` would have to have a
2691cleared low bit. However, in the ``%C`` example, the optimizer is
2692allowed to assume that the '``undef``' operand could be the same as
2693``%Y``, allowing the whole '``select``' to be eliminated.
2694
2695.. code-block:: llvm
2696
2697 %A = xor undef, undef
2698
2699 %B = undef
2700 %C = xor %B, %B
2701
2702 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002703 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002704 %F = icmp gte %D, 4
2705
2706 Safe:
2707 %A = undef
2708 %B = undef
2709 %C = undef
2710 %D = undef
2711 %E = undef
2712 %F = undef
2713
2714This example points out that two '``undef``' operands are not
2715necessarily the same. This can be surprising to people (and also matches
2716C semantics) where they assume that "``X^X``" is always zero, even if
2717``X`` is undefined. This isn't true for a number of reasons, but the
2718short answer is that an '``undef``' "variable" can arbitrarily change
2719its value over its "live range". This is true because the variable
2720doesn't actually *have a live range*. Instead, the value is logically
2721read from arbitrary registers that happen to be around when needed, so
2722the value is not necessarily consistent over time. In fact, ``%A`` and
2723``%C`` need to have the same semantics or the core LLVM "replace all
2724uses with" concept would not hold.
2725
2726.. code-block:: llvm
2727
2728 %A = fdiv undef, %X
2729 %B = fdiv %X, undef
2730 Safe:
2731 %A = undef
2732 b: unreachable
2733
2734These examples show the crucial difference between an *undefined value*
2735and *undefined behavior*. An undefined value (like '``undef``') is
2736allowed to have an arbitrary bit-pattern. This means that the ``%A``
2737operation can be constant folded to '``undef``', because the '``undef``'
2738could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2739However, in the second example, we can make a more aggressive
2740assumption: because the ``undef`` is allowed to be an arbitrary value,
2741we are allowed to assume that it could be zero. Since a divide by zero
2742has *undefined behavior*, we are allowed to assume that the operation
2743does not execute at all. This allows us to delete the divide and all
2744code after it. Because the undefined operation "can't happen", the
2745optimizer can assume that it occurs in dead code.
2746
2747.. code-block:: llvm
2748
2749 a: store undef -> %X
2750 b: store %X -> undef
2751 Safe:
2752 a: <deleted>
2753 b: unreachable
2754
2755These examples reiterate the ``fdiv`` example: a store *of* an undefined
2756value can be assumed to not have any effect; we can assume that the
2757value is overwritten with bits that happen to match what was already
2758there. However, a store *to* an undefined location could clobber
2759arbitrary memory, therefore, it has undefined behavior.
2760
2761.. _poisonvalues:
2762
2763Poison Values
2764-------------
2765
2766Poison values are similar to :ref:`undef values <undefvalues>`, however
2767they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002768that cannot evoke side effects has nevertheless detected a condition
2769that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002770
2771There is currently no way of representing a poison value in the IR; they
2772only exist when produced by operations such as :ref:`add <i_add>` with
2773the ``nsw`` flag.
2774
2775Poison value behavior is defined in terms of value *dependence*:
2776
2777- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2778- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2779 their dynamic predecessor basic block.
2780- Function arguments depend on the corresponding actual argument values
2781 in the dynamic callers of their functions.
2782- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2783 instructions that dynamically transfer control back to them.
2784- :ref:`Invoke <i_invoke>` instructions depend on the
2785 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2786 call instructions that dynamically transfer control back to them.
2787- Non-volatile loads and stores depend on the most recent stores to all
2788 of the referenced memory addresses, following the order in the IR
2789 (including loads and stores implied by intrinsics such as
2790 :ref:`@llvm.memcpy <int_memcpy>`.)
2791- An instruction with externally visible side effects depends on the
2792 most recent preceding instruction with externally visible side
2793 effects, following the order in the IR. (This includes :ref:`volatile
2794 operations <volatile>`.)
2795- An instruction *control-depends* on a :ref:`terminator
2796 instruction <terminators>` if the terminator instruction has
2797 multiple successors and the instruction is always executed when
2798 control transfers to one of the successors, and may not be executed
2799 when control is transferred to another.
2800- Additionally, an instruction also *control-depends* on a terminator
2801 instruction if the set of instructions it otherwise depends on would
2802 be different if the terminator had transferred control to a different
2803 successor.
2804- Dependence is transitive.
2805
Richard Smith32dbdf62014-07-31 04:25:36 +00002806Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2807with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002808on a poison value has undefined behavior.
2809
2810Here are some examples:
2811
2812.. code-block:: llvm
2813
2814 entry:
2815 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2816 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002817 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002818 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2819
2820 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002821 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002822
2823 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2824
2825 %narrowaddr = bitcast i32* @g to i16*
2826 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002827 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2828 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002829
2830 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2831 br i1 %cmp, label %true, label %end ; Branch to either destination.
2832
2833 true:
2834 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2835 ; it has undefined behavior.
2836 br label %end
2837
2838 end:
2839 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2840 ; Both edges into this PHI are
2841 ; control-dependent on %cmp, so this
2842 ; always results in a poison value.
2843
2844 store volatile i32 0, i32* @g ; This would depend on the store in %true
2845 ; if %cmp is true, or the store in %entry
2846 ; otherwise, so this is undefined behavior.
2847
2848 br i1 %cmp, label %second_true, label %second_end
2849 ; The same branch again, but this time the
2850 ; true block doesn't have side effects.
2851
2852 second_true:
2853 ; No side effects!
2854 ret void
2855
2856 second_end:
2857 store volatile i32 0, i32* @g ; This time, the instruction always depends
2858 ; on the store in %end. Also, it is
2859 ; control-equivalent to %end, so this is
2860 ; well-defined (ignoring earlier undefined
2861 ; behavior in this example).
2862
2863.. _blockaddress:
2864
2865Addresses of Basic Blocks
2866-------------------------
2867
2868``blockaddress(@function, %block)``
2869
2870The '``blockaddress``' constant computes the address of the specified
2871basic block in the specified function, and always has an ``i8*`` type.
2872Taking the address of the entry block is illegal.
2873
2874This value only has defined behavior when used as an operand to the
2875':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2876against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002877undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002878no label is equal to the null pointer. This may be passed around as an
2879opaque pointer sized value as long as the bits are not inspected. This
2880allows ``ptrtoint`` and arithmetic to be performed on these values so
2881long as the original value is reconstituted before the ``indirectbr``
2882instruction.
2883
2884Finally, some targets may provide defined semantics when using the value
2885as the operand to an inline assembly, but that is target specific.
2886
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002887.. _constantexprs:
2888
Sean Silvab084af42012-12-07 10:36:55 +00002889Constant Expressions
2890--------------------
2891
2892Constant expressions are used to allow expressions involving other
2893constants to be used as constants. Constant expressions may be of any
2894:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2895that does not have side effects (e.g. load and call are not supported).
2896The following is the syntax for constant expressions:
2897
2898``trunc (CST to TYPE)``
2899 Truncate a constant to another type. The bit size of CST must be
2900 larger than the bit size of TYPE. Both types must be integers.
2901``zext (CST to TYPE)``
2902 Zero extend a constant to another type. The bit size of CST must be
2903 smaller than the bit size of TYPE. Both types must be integers.
2904``sext (CST to TYPE)``
2905 Sign extend a constant to another type. The bit size of CST must be
2906 smaller than the bit size of TYPE. Both types must be integers.
2907``fptrunc (CST to TYPE)``
2908 Truncate a floating point constant to another floating point type.
2909 The size of CST must be larger than the size of TYPE. Both types
2910 must be floating point.
2911``fpext (CST to TYPE)``
2912 Floating point extend a constant to another type. The size of CST
2913 must be smaller or equal to the size of TYPE. Both types must be
2914 floating point.
2915``fptoui (CST to TYPE)``
2916 Convert a floating point constant to the corresponding unsigned
2917 integer constant. TYPE must be a scalar or vector integer type. CST
2918 must be of scalar or vector floating point type. Both CST and TYPE
2919 must be scalars, or vectors of the same number of elements. If the
2920 value won't fit in the integer type, the results are undefined.
2921``fptosi (CST to TYPE)``
2922 Convert a floating point constant to the corresponding signed
2923 integer constant. TYPE must be a scalar or vector integer type. CST
2924 must be of scalar or vector floating point type. Both CST and TYPE
2925 must be scalars, or vectors of the same number of elements. If the
2926 value won't fit in the integer type, the results are undefined.
2927``uitofp (CST to TYPE)``
2928 Convert an unsigned integer constant to the corresponding floating
2929 point constant. TYPE must be a scalar or vector floating point type.
2930 CST must be of scalar or vector integer type. Both CST and TYPE must
2931 be scalars, or vectors of the same number of elements. If the value
2932 won't fit in the floating point type, the results are undefined.
2933``sitofp (CST to TYPE)``
2934 Convert a signed integer constant to the corresponding floating
2935 point constant. TYPE must be a scalar or vector floating point type.
2936 CST must be of scalar or vector integer type. Both CST and TYPE must
2937 be scalars, or vectors of the same number of elements. If the value
2938 won't fit in the floating point type, the results are undefined.
2939``ptrtoint (CST to TYPE)``
2940 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002941 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002942 pointer type. The ``CST`` value is zero extended, truncated, or
2943 unchanged to make it fit in ``TYPE``.
2944``inttoptr (CST to TYPE)``
2945 Convert an integer constant to a pointer constant. TYPE must be a
2946 pointer type. CST must be of integer type. The CST value is zero
2947 extended, truncated, or unchanged to make it fit in a pointer size.
2948 This one is *really* dangerous!
2949``bitcast (CST to TYPE)``
2950 Convert a constant, CST, to another TYPE. The constraints of the
2951 operands are the same as those for the :ref:`bitcast
2952 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002953``addrspacecast (CST to TYPE)``
2954 Convert a constant pointer or constant vector of pointer, CST, to another
2955 TYPE in a different address space. The constraints of the operands are the
2956 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002957``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002958 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2959 constants. As with the :ref:`getelementptr <i_getelementptr>`
2960 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002961 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002962``select (COND, VAL1, VAL2)``
2963 Perform the :ref:`select operation <i_select>` on constants.
2964``icmp COND (VAL1, VAL2)``
2965 Performs the :ref:`icmp operation <i_icmp>` on constants.
2966``fcmp COND (VAL1, VAL2)``
2967 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2968``extractelement (VAL, IDX)``
2969 Perform the :ref:`extractelement operation <i_extractelement>` on
2970 constants.
2971``insertelement (VAL, ELT, IDX)``
2972 Perform the :ref:`insertelement operation <i_insertelement>` on
2973 constants.
2974``shufflevector (VEC1, VEC2, IDXMASK)``
2975 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2976 constants.
2977``extractvalue (VAL, IDX0, IDX1, ...)``
2978 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2979 constants. The index list is interpreted in a similar manner as
2980 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2981 least one index value must be specified.
2982``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2983 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2984 The index list is interpreted in a similar manner as indices in a
2985 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2986 value must be specified.
2987``OPCODE (LHS, RHS)``
2988 Perform the specified operation of the LHS and RHS constants. OPCODE
2989 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2990 binary <bitwiseops>` operations. The constraints on operands are
2991 the same as those for the corresponding instruction (e.g. no bitwise
2992 operations on floating point values are allowed).
2993
2994Other Values
2995============
2996
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002997.. _inlineasmexprs:
2998
Sean Silvab084af42012-12-07 10:36:55 +00002999Inline Assembler Expressions
3000----------------------------
3001
3002LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003003Inline Assembly <moduleasm>`) through the use of a special value. This value
3004represents the inline assembler as a template string (containing the
3005instructions to emit), a list of operand constraints (stored as a string), a
3006flag that indicates whether or not the inline asm expression has side effects,
3007and a flag indicating whether the function containing the asm needs to align its
3008stack conservatively.
3009
3010The template string supports argument substitution of the operands using "``$``"
3011followed by a number, to indicate substitution of the given register/memory
3012location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3013be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3014operand (See :ref:`inline-asm-modifiers`).
3015
3016A literal "``$``" may be included by using "``$$``" in the template. To include
3017other special characters into the output, the usual "``\XX``" escapes may be
3018used, just as in other strings. Note that after template substitution, the
3019resulting assembly string is parsed by LLVM's integrated assembler unless it is
3020disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3021syntax known to LLVM.
3022
3023LLVM's support for inline asm is modeled closely on the requirements of Clang's
3024GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3025modifier codes listed here are similar or identical to those in GCC's inline asm
3026support. However, to be clear, the syntax of the template and constraint strings
3027described here is *not* the same as the syntax accepted by GCC and Clang, and,
3028while most constraint letters are passed through as-is by Clang, some get
3029translated to other codes when converting from the C source to the LLVM
3030assembly.
3031
3032An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003033
3034.. code-block:: llvm
3035
3036 i32 (i32) asm "bswap $0", "=r,r"
3037
3038Inline assembler expressions may **only** be used as the callee operand
3039of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3040Thus, typically we have:
3041
3042.. code-block:: llvm
3043
3044 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3045
3046Inline asms with side effects not visible in the constraint list must be
3047marked as having side effects. This is done through the use of the
3048'``sideeffect``' keyword, like so:
3049
3050.. code-block:: llvm
3051
3052 call void asm sideeffect "eieio", ""()
3053
3054In some cases inline asms will contain code that will not work unless
3055the stack is aligned in some way, such as calls or SSE instructions on
3056x86, yet will not contain code that does that alignment within the asm.
3057The compiler should make conservative assumptions about what the asm
3058might contain and should generate its usual stack alignment code in the
3059prologue if the '``alignstack``' keyword is present:
3060
3061.. code-block:: llvm
3062
3063 call void asm alignstack "eieio", ""()
3064
3065Inline asms also support using non-standard assembly dialects. The
3066assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3067the inline asm is using the Intel dialect. Currently, ATT and Intel are
3068the only supported dialects. An example is:
3069
3070.. code-block:: llvm
3071
3072 call void asm inteldialect "eieio", ""()
3073
3074If multiple keywords appear the '``sideeffect``' keyword must come
3075first, the '``alignstack``' keyword second and the '``inteldialect``'
3076keyword last.
3077
James Y Knightbc832ed2015-07-08 18:08:36 +00003078Inline Asm Constraint String
3079^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3080
3081The constraint list is a comma-separated string, each element containing one or
3082more constraint codes.
3083
3084For each element in the constraint list an appropriate register or memory
3085operand will be chosen, and it will be made available to assembly template
3086string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3087second, etc.
3088
3089There are three different types of constraints, which are distinguished by a
3090prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3091constraints must always be given in that order: outputs first, then inputs, then
3092clobbers. They cannot be intermingled.
3093
3094There are also three different categories of constraint codes:
3095
3096- Register constraint. This is either a register class, or a fixed physical
3097 register. This kind of constraint will allocate a register, and if necessary,
3098 bitcast the argument or result to the appropriate type.
3099- Memory constraint. This kind of constraint is for use with an instruction
3100 taking a memory operand. Different constraints allow for different addressing
3101 modes used by the target.
3102- Immediate value constraint. This kind of constraint is for an integer or other
3103 immediate value which can be rendered directly into an instruction. The
3104 various target-specific constraints allow the selection of a value in the
3105 proper range for the instruction you wish to use it with.
3106
3107Output constraints
3108""""""""""""""""""
3109
3110Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3111indicates that the assembly will write to this operand, and the operand will
3112then be made available as a return value of the ``asm`` expression. Output
3113constraints do not consume an argument from the call instruction. (Except, see
3114below about indirect outputs).
3115
3116Normally, it is expected that no output locations are written to by the assembly
3117expression until *all* of the inputs have been read. As such, LLVM may assign
3118the same register to an output and an input. If this is not safe (e.g. if the
3119assembly contains two instructions, where the first writes to one output, and
3120the second reads an input and writes to a second output), then the "``&``"
3121modifier must be used (e.g. "``=&r``") to specify that the output is an
3122"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3123will not use the same register for any inputs (other than an input tied to this
3124output).
3125
3126Input constraints
3127"""""""""""""""""
3128
3129Input constraints do not have a prefix -- just the constraint codes. Each input
3130constraint will consume one argument from the call instruction. It is not
3131permitted for the asm to write to any input register or memory location (unless
3132that input is tied to an output). Note also that multiple inputs may all be
3133assigned to the same register, if LLVM can determine that they necessarily all
3134contain the same value.
3135
3136Instead of providing a Constraint Code, input constraints may also "tie"
3137themselves to an output constraint, by providing an integer as the constraint
3138string. Tied inputs still consume an argument from the call instruction, and
3139take up a position in the asm template numbering as is usual -- they will simply
3140be constrained to always use the same register as the output they've been tied
3141to. For example, a constraint string of "``=r,0``" says to assign a register for
3142output, and use that register as an input as well (it being the 0'th
3143constraint).
3144
3145It is permitted to tie an input to an "early-clobber" output. In that case, no
3146*other* input may share the same register as the input tied to the early-clobber
3147(even when the other input has the same value).
3148
3149You may only tie an input to an output which has a register constraint, not a
3150memory constraint. Only a single input may be tied to an output.
3151
3152There is also an "interesting" feature which deserves a bit of explanation: if a
3153register class constraint allocates a register which is too small for the value
3154type operand provided as input, the input value will be split into multiple
3155registers, and all of them passed to the inline asm.
3156
3157However, this feature is often not as useful as you might think.
3158
3159Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3160architectures that have instructions which operate on multiple consecutive
3161instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3162SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3163hardware then loads into both the named register, and the next register. This
3164feature of inline asm would not be useful to support that.)
3165
3166A few of the targets provide a template string modifier allowing explicit access
3167to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3168``D``). On such an architecture, you can actually access the second allocated
3169register (yet, still, not any subsequent ones). But, in that case, you're still
3170probably better off simply splitting the value into two separate operands, for
3171clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3172despite existing only for use with this feature, is not really a good idea to
3173use)
3174
3175Indirect inputs and outputs
3176"""""""""""""""""""""""""""
3177
3178Indirect output or input constraints can be specified by the "``*``" modifier
3179(which goes after the "``=``" in case of an output). This indicates that the asm
3180will write to or read from the contents of an *address* provided as an input
3181argument. (Note that in this way, indirect outputs act more like an *input* than
3182an output: just like an input, they consume an argument of the call expression,
3183rather than producing a return value. An indirect output constraint is an
3184"output" only in that the asm is expected to write to the contents of the input
3185memory location, instead of just read from it).
3186
3187This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3188address of a variable as a value.
3189
3190It is also possible to use an indirect *register* constraint, but only on output
3191(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3192value normally, and then, separately emit a store to the address provided as
3193input, after the provided inline asm. (It's not clear what value this
3194functionality provides, compared to writing the store explicitly after the asm
3195statement, and it can only produce worse code, since it bypasses many
3196optimization passes. I would recommend not using it.)
3197
3198
3199Clobber constraints
3200"""""""""""""""""""
3201
3202A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3203consume an input operand, nor generate an output. Clobbers cannot use any of the
3204general constraint code letters -- they may use only explicit register
3205constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3206"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3207memory locations -- not only the memory pointed to by a declared indirect
3208output.
3209
3210
3211Constraint Codes
3212""""""""""""""""
3213After a potential prefix comes constraint code, or codes.
3214
3215A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3216followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3217(e.g. "``{eax}``").
3218
3219The one and two letter constraint codes are typically chosen to be the same as
3220GCC's constraint codes.
3221
3222A single constraint may include one or more than constraint code in it, leaving
3223it up to LLVM to choose which one to use. This is included mainly for
3224compatibility with the translation of GCC inline asm coming from clang.
3225
3226There are two ways to specify alternatives, and either or both may be used in an
3227inline asm constraint list:
3228
32291) Append the codes to each other, making a constraint code set. E.g. "``im``"
3230 or "``{eax}m``". This means "choose any of the options in the set". The
3231 choice of constraint is made independently for each constraint in the
3232 constraint list.
3233
32342) Use "``|``" between constraint code sets, creating alternatives. Every
3235 constraint in the constraint list must have the same number of alternative
3236 sets. With this syntax, the same alternative in *all* of the items in the
3237 constraint list will be chosen together.
3238
3239Putting those together, you might have a two operand constraint string like
3240``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3241operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3242may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3243
3244However, the use of either of the alternatives features is *NOT* recommended, as
3245LLVM is not able to make an intelligent choice about which one to use. (At the
3246point it currently needs to choose, not enough information is available to do so
3247in a smart way.) Thus, it simply tries to make a choice that's most likely to
3248compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3249always choose to use memory, not registers). And, if given multiple registers,
3250or multiple register classes, it will simply choose the first one. (In fact, it
3251doesn't currently even ensure explicitly specified physical registers are
3252unique, so specifying multiple physical registers as alternatives, like
3253``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3254intended.)
3255
3256Supported Constraint Code List
3257""""""""""""""""""""""""""""""
3258
3259The constraint codes are, in general, expected to behave the same way they do in
3260GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3261inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3262and GCC likely indicates a bug in LLVM.
3263
3264Some constraint codes are typically supported by all targets:
3265
3266- ``r``: A register in the target's general purpose register class.
3267- ``m``: A memory address operand. It is target-specific what addressing modes
3268 are supported, typical examples are register, or register + register offset,
3269 or register + immediate offset (of some target-specific size).
3270- ``i``: An integer constant (of target-specific width). Allows either a simple
3271 immediate, or a relocatable value.
3272- ``n``: An integer constant -- *not* including relocatable values.
3273- ``s``: An integer constant, but allowing *only* relocatable values.
3274- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3275 useful to pass a label for an asm branch or call.
3276
3277 .. FIXME: but that surely isn't actually okay to jump out of an asm
3278 block without telling llvm about the control transfer???)
3279
3280- ``{register-name}``: Requires exactly the named physical register.
3281
3282Other constraints are target-specific:
3283
3284AArch64:
3285
3286- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3287- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3288 i.e. 0 to 4095 with optional shift by 12.
3289- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3290 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3291- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3292 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3293- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3294 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3295- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3296 32-bit register. This is a superset of ``K``: in addition to the bitmask
3297 immediate, also allows immediate integers which can be loaded with a single
3298 ``MOVZ`` or ``MOVL`` instruction.
3299- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3300 64-bit register. This is a superset of ``L``.
3301- ``Q``: Memory address operand must be in a single register (no
3302 offsets). (However, LLVM currently does this for the ``m`` constraint as
3303 well.)
3304- ``r``: A 32 or 64-bit integer register (W* or X*).
3305- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3306- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3307
3308AMDGPU:
3309
3310- ``r``: A 32 or 64-bit integer register.
3311- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3312- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3313
3314
3315All ARM modes:
3316
3317- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3318 operand. Treated the same as operand ``m``, at the moment.
3319
3320ARM and ARM's Thumb2 mode:
3321
3322- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3323- ``I``: An immediate integer valid for a data-processing instruction.
3324- ``J``: An immediate integer between -4095 and 4095.
3325- ``K``: An immediate integer whose bitwise inverse is valid for a
3326 data-processing instruction. (Can be used with template modifier "``B``" to
3327 print the inverted value).
3328- ``L``: An immediate integer whose negation is valid for a data-processing
3329 instruction. (Can be used with template modifier "``n``" to print the negated
3330 value).
3331- ``M``: A power of two or a integer between 0 and 32.
3332- ``N``: Invalid immediate constraint.
3333- ``O``: Invalid immediate constraint.
3334- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3335- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3336 as ``r``.
3337- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3338 invalid.
3339- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3340 ``d0-d31``, or ``q0-q15``.
3341- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3342 ``d0-d7``, or ``q0-q3``.
3343- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3344 ``s0-s31``.
3345
3346ARM's Thumb1 mode:
3347
3348- ``I``: An immediate integer between 0 and 255.
3349- ``J``: An immediate integer between -255 and -1.
3350- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3351 some amount.
3352- ``L``: An immediate integer between -7 and 7.
3353- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3354- ``N``: An immediate integer between 0 and 31.
3355- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3356- ``r``: A low 32-bit GPR register (``r0-r7``).
3357- ``l``: A low 32-bit GPR register (``r0-r7``).
3358- ``h``: A high GPR register (``r0-r7``).
3359- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3360 ``d0-d31``, or ``q0-q15``.
3361- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3362 ``d0-d7``, or ``q0-q3``.
3363- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3364 ``s0-s31``.
3365
3366
3367Hexagon:
3368
3369- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3370 at the moment.
3371- ``r``: A 32 or 64-bit register.
3372
3373MSP430:
3374
3375- ``r``: An 8 or 16-bit register.
3376
3377MIPS:
3378
3379- ``I``: An immediate signed 16-bit integer.
3380- ``J``: An immediate integer zero.
3381- ``K``: An immediate unsigned 16-bit integer.
3382- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3383- ``N``: An immediate integer between -65535 and -1.
3384- ``O``: An immediate signed 15-bit integer.
3385- ``P``: An immediate integer between 1 and 65535.
3386- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3387 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3388- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3389 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3390 ``m``.
3391- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3392 ``sc`` instruction on the given subtarget (details vary).
3393- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3394- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003395 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3396 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003397- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3398 ``25``).
3399- ``l``: The ``lo`` register, 32 or 64-bit.
3400- ``x``: Invalid.
3401
3402NVPTX:
3403
3404- ``b``: A 1-bit integer register.
3405- ``c`` or ``h``: A 16-bit integer register.
3406- ``r``: A 32-bit integer register.
3407- ``l`` or ``N``: A 64-bit integer register.
3408- ``f``: A 32-bit float register.
3409- ``d``: A 64-bit float register.
3410
3411
3412PowerPC:
3413
3414- ``I``: An immediate signed 16-bit integer.
3415- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3416- ``K``: An immediate unsigned 16-bit integer.
3417- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3418- ``M``: An immediate integer greater than 31.
3419- ``N``: An immediate integer that is an exact power of 2.
3420- ``O``: The immediate integer constant 0.
3421- ``P``: An immediate integer constant whose negation is a signed 16-bit
3422 constant.
3423- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3424 treated the same as ``m``.
3425- ``r``: A 32 or 64-bit integer register.
3426- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3427 ``R1-R31``).
3428- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3429 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3430- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3431 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3432 altivec vector register (``V0-V31``).
3433
3434 .. FIXME: is this a bug that v accepts QPX registers? I think this
3435 is supposed to only use the altivec vector registers?
3436
3437- ``y``: Condition register (``CR0-CR7``).
3438- ``wc``: An individual CR bit in a CR register.
3439- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3440 register set (overlapping both the floating-point and vector register files).
3441- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3442 set.
3443
3444Sparc:
3445
3446- ``I``: An immediate 13-bit signed integer.
3447- ``r``: A 32-bit integer register.
3448
3449SystemZ:
3450
3451- ``I``: An immediate unsigned 8-bit integer.
3452- ``J``: An immediate unsigned 12-bit integer.
3453- ``K``: An immediate signed 16-bit integer.
3454- ``L``: An immediate signed 20-bit integer.
3455- ``M``: An immediate integer 0x7fffffff.
3456- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3457 ``m``, at the moment.
3458- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3459- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3460 address context evaluates as zero).
3461- ``h``: A 32-bit value in the high part of a 64bit data register
3462 (LLVM-specific)
3463- ``f``: A 32, 64, or 128-bit floating point register.
3464
3465X86:
3466
3467- ``I``: An immediate integer between 0 and 31.
3468- ``J``: An immediate integer between 0 and 64.
3469- ``K``: An immediate signed 8-bit integer.
3470- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3471 0xffffffff.
3472- ``M``: An immediate integer between 0 and 3.
3473- ``N``: An immediate unsigned 8-bit integer.
3474- ``O``: An immediate integer between 0 and 127.
3475- ``e``: An immediate 32-bit signed integer.
3476- ``Z``: An immediate 32-bit unsigned integer.
3477- ``o``, ``v``: Treated the same as ``m``, at the moment.
3478- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3479 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3480 registers, and on X86-64, it is all of the integer registers.
3481- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3482 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3483- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3484- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3485 existed since i386, and can be accessed without the REX prefix.
3486- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3487- ``y``: A 64-bit MMX register, if MMX is enabled.
3488- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3489 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3490 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3491 512-bit vector operand in an AVX512 register, Otherwise, an error.
3492- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3493- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3494 32-bit mode, a 64-bit integer operand will get split into two registers). It
3495 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3496 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3497 you're better off splitting it yourself, before passing it to the asm
3498 statement.
3499
3500XCore:
3501
3502- ``r``: A 32-bit integer register.
3503
3504
3505.. _inline-asm-modifiers:
3506
3507Asm template argument modifiers
3508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3509
3510In the asm template string, modifiers can be used on the operand reference, like
3511"``${0:n}``".
3512
3513The modifiers are, in general, expected to behave the same way they do in
3514GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3515inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3516and GCC likely indicates a bug in LLVM.
3517
3518Target-independent:
3519
Sean Silvaa1190322015-08-06 22:56:48 +00003520- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003521 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3522- ``n``: Negate and print immediate integer constant unadorned, without the
3523 target-specific immediate punctuation (e.g. no ``$`` prefix).
3524- ``l``: Print as an unadorned label, without the target-specific label
3525 punctuation (e.g. no ``$`` prefix).
3526
3527AArch64:
3528
3529- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3530 instead of ``x30``, print ``w30``.
3531- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3532- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3533 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3534 ``v*``.
3535
3536AMDGPU:
3537
3538- ``r``: No effect.
3539
3540ARM:
3541
3542- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3543 register).
3544- ``P``: No effect.
3545- ``q``: No effect.
3546- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3547 as ``d4[1]`` instead of ``s9``)
3548- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3549 prefix.
3550- ``L``: Print the low 16-bits of an immediate integer constant.
3551- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3552 register operands subsequent to the specified one (!), so use carefully.
3553- ``Q``: Print the low-order register of a register-pair, or the low-order
3554 register of a two-register operand.
3555- ``R``: Print the high-order register of a register-pair, or the high-order
3556 register of a two-register operand.
3557- ``H``: Print the second register of a register-pair. (On a big-endian system,
3558 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3559 to ``R``.)
3560
3561 .. FIXME: H doesn't currently support printing the second register
3562 of a two-register operand.
3563
3564- ``e``: Print the low doubleword register of a NEON quad register.
3565- ``f``: Print the high doubleword register of a NEON quad register.
3566- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3567 adornment.
3568
3569Hexagon:
3570
3571- ``L``: Print the second register of a two-register operand. Requires that it
3572 has been allocated consecutively to the first.
3573
3574 .. FIXME: why is it restricted to consecutive ones? And there's
3575 nothing that ensures that happens, is there?
3576
3577- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3578 nothing. Used to print 'addi' vs 'add' instructions.
3579
3580MSP430:
3581
3582No additional modifiers.
3583
3584MIPS:
3585
3586- ``X``: Print an immediate integer as hexadecimal
3587- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3588- ``d``: Print an immediate integer as decimal.
3589- ``m``: Subtract one and print an immediate integer as decimal.
3590- ``z``: Print $0 if an immediate zero, otherwise print normally.
3591- ``L``: Print the low-order register of a two-register operand, or prints the
3592 address of the low-order word of a double-word memory operand.
3593
3594 .. FIXME: L seems to be missing memory operand support.
3595
3596- ``M``: Print the high-order register of a two-register operand, or prints the
3597 address of the high-order word of a double-word memory operand.
3598
3599 .. FIXME: M seems to be missing memory operand support.
3600
3601- ``D``: Print the second register of a two-register operand, or prints the
3602 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3603 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3604 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003605- ``w``: No effect. Provided for compatibility with GCC which requires this
3606 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3607 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003608
3609NVPTX:
3610
3611- ``r``: No effect.
3612
3613PowerPC:
3614
3615- ``L``: Print the second register of a two-register operand. Requires that it
3616 has been allocated consecutively to the first.
3617
3618 .. FIXME: why is it restricted to consecutive ones? And there's
3619 nothing that ensures that happens, is there?
3620
3621- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3622 nothing. Used to print 'addi' vs 'add' instructions.
3623- ``y``: For a memory operand, prints formatter for a two-register X-form
3624 instruction. (Currently always prints ``r0,OPERAND``).
3625- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3626 otherwise. (NOTE: LLVM does not support update form, so this will currently
3627 always print nothing)
3628- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3629 not support indexed form, so this will currently always print nothing)
3630
3631Sparc:
3632
3633- ``r``: No effect.
3634
3635SystemZ:
3636
3637SystemZ implements only ``n``, and does *not* support any of the other
3638target-independent modifiers.
3639
3640X86:
3641
3642- ``c``: Print an unadorned integer or symbol name. (The latter is
3643 target-specific behavior for this typically target-independent modifier).
3644- ``A``: Print a register name with a '``*``' before it.
3645- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3646 operand.
3647- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3648 memory operand.
3649- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3650 operand.
3651- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3652 operand.
3653- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3654 available, otherwise the 32-bit register name; do nothing on a memory operand.
3655- ``n``: Negate and print an unadorned integer, or, for operands other than an
3656 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3657 the operand. (The behavior for relocatable symbol expressions is a
3658 target-specific behavior for this typically target-independent modifier)
3659- ``H``: Print a memory reference with additional offset +8.
3660- ``P``: Print a memory reference or operand for use as the argument of a call
3661 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3662
3663XCore:
3664
3665No additional modifiers.
3666
3667
Sean Silvab084af42012-12-07 10:36:55 +00003668Inline Asm Metadata
3669^^^^^^^^^^^^^^^^^^^
3670
3671The call instructions that wrap inline asm nodes may have a
3672"``!srcloc``" MDNode attached to it that contains a list of constant
3673integers. If present, the code generator will use the integer as the
3674location cookie value when report errors through the ``LLVMContext``
3675error reporting mechanisms. This allows a front-end to correlate backend
3676errors that occur with inline asm back to the source code that produced
3677it. For example:
3678
3679.. code-block:: llvm
3680
3681 call void asm sideeffect "something bad", ""(), !srcloc !42
3682 ...
3683 !42 = !{ i32 1234567 }
3684
3685It is up to the front-end to make sense of the magic numbers it places
3686in the IR. If the MDNode contains multiple constants, the code generator
3687will use the one that corresponds to the line of the asm that the error
3688occurs on.
3689
3690.. _metadata:
3691
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003692Metadata
3693========
Sean Silvab084af42012-12-07 10:36:55 +00003694
3695LLVM IR allows metadata to be attached to instructions in the program
3696that can convey extra information about the code to the optimizers and
3697code generator. One example application of metadata is source-level
3698debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003699
Sean Silvaa1190322015-08-06 22:56:48 +00003700Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003701``call`` instruction, it uses the ``metadata`` type.
3702
3703All metadata are identified in syntax by a exclamation point ('``!``').
3704
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003705.. _metadata-string:
3706
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003707Metadata Nodes and Metadata Strings
3708-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003709
3710A metadata string is a string surrounded by double quotes. It can
3711contain any character by escaping non-printable characters with
3712"``\xx``" where "``xx``" is the two digit hex code. For example:
3713"``!"test\00"``".
3714
3715Metadata nodes are represented with notation similar to structure
3716constants (a comma separated list of elements, surrounded by braces and
3717preceded by an exclamation point). Metadata nodes can have any values as
3718their operand. For example:
3719
3720.. code-block:: llvm
3721
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003722 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003723
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003724Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3725
3726.. code-block:: llvm
3727
3728 !0 = distinct !{!"test\00", i32 10}
3729
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003730``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003731content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003732when metadata operands change.
3733
Sean Silvab084af42012-12-07 10:36:55 +00003734A :ref:`named metadata <namedmetadatastructure>` is a collection of
3735metadata nodes, which can be looked up in the module symbol table. For
3736example:
3737
3738.. code-block:: llvm
3739
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003740 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003741
3742Metadata can be used as function arguments. Here ``llvm.dbg.value``
3743function is using two metadata arguments:
3744
3745.. code-block:: llvm
3746
3747 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3748
Peter Collingbourne50108682015-11-06 02:41:02 +00003749Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3750to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003751
3752.. code-block:: llvm
3753
3754 %indvar.next = add i64 %indvar, 1, !dbg !21
3755
Peter Collingbourne50108682015-11-06 02:41:02 +00003756Metadata can also be attached to a function definition. Here metadata ``!22``
3757is attached to the ``foo`` function using the ``!dbg`` identifier:
3758
3759.. code-block:: llvm
3760
3761 define void @foo() !dbg !22 {
3762 ret void
3763 }
3764
Sean Silvab084af42012-12-07 10:36:55 +00003765More information about specific metadata nodes recognized by the
3766optimizers and code generator is found below.
3767
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003768.. _specialized-metadata:
3769
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003770Specialized Metadata Nodes
3771^^^^^^^^^^^^^^^^^^^^^^^^^^
3772
3773Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003774to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003775order.
3776
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003777These aren't inherently debug info centric, but currently all the specialized
3778metadata nodes are related to debug info.
3779
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003780.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003781
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003782DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783"""""""""""""
3784
Sean Silvaa1190322015-08-06 22:56:48 +00003785``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003786``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3787fields are tuples containing the debug info to be emitted along with the compile
3788unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789references to them from instructions).
3790
3791.. code-block:: llvm
3792
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003793 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003794 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3795 splitDebugFilename: "abc.debug", emissionKind: 1,
3796 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003797 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003798
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003799Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003800specific compilation unit. File descriptors are defined using this scope.
3801These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003802keep track of subprograms, global variables, type information, and imported
3803entities (declarations and namespaces).
3804
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003805.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003806
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003807DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003808""""""
3809
Sean Silvaa1190322015-08-06 22:56:48 +00003810``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003811
3812.. code-block:: llvm
3813
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003814 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003815
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003816Files are sometimes used in ``scope:`` fields, and are the only valid target
3817for ``file:`` fields.
3818
Michael Kuperstein605308a2015-05-14 10:58:59 +00003819.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003820
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003821DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003822"""""""""""
3823
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003824``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003825``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003826
3827.. code-block:: llvm
3828
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003829 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003830 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003831 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832
Sean Silvaa1190322015-08-06 22:56:48 +00003833The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003834following:
3835
3836.. code-block:: llvm
3837
3838 DW_ATE_address = 1
3839 DW_ATE_boolean = 2
3840 DW_ATE_float = 4
3841 DW_ATE_signed = 5
3842 DW_ATE_signed_char = 6
3843 DW_ATE_unsigned = 7
3844 DW_ATE_unsigned_char = 8
3845
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003846.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003847
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003848DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003849""""""""""""""""
3850
Sean Silvaa1190322015-08-06 22:56:48 +00003851``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003852refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003853types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003854represents a function with no return value (such as ``void foo() {}`` in C++).
3855
3856.. code-block:: llvm
3857
3858 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3859 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003862.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003863
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003864DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865"""""""""""""
3866
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003867``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003868qualified types.
3869
3870.. code-block:: llvm
3871
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003872 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003875 align: 32)
3876
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003877The following ``tag:`` values are valid:
3878
3879.. code-block:: llvm
3880
3881 DW_TAG_formal_parameter = 5
3882 DW_TAG_member = 13
3883 DW_TAG_pointer_type = 15
3884 DW_TAG_reference_type = 16
3885 DW_TAG_typedef = 22
3886 DW_TAG_ptr_to_member_type = 31
3887 DW_TAG_const_type = 38
3888 DW_TAG_volatile_type = 53
3889 DW_TAG_restrict_type = 55
3890
3891``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003892<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3893is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003894``DW_TAG_formal_parameter`` is used to define a member which is a formal
3895argument of a subprogram.
3896
3897``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3898
3899``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3900``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3901``baseType:``.
3902
3903Note that the ``void *`` type is expressed as a type derived from NULL.
3904
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003905.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003906
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003907DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003908"""""""""""""""
3909
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003910``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003911structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003912
3913If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003914identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003915can refer to composite types indirectly via a :ref:`metadata string
3916<metadata-string>` that matches their identifier.
3917
3918.. code-block:: llvm
3919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920 !0 = !DIEnumerator(name: "SixKind", value: 7)
3921 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3922 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3923 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003924 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3925 elements: !{!0, !1, !2})
3926
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003927The following ``tag:`` values are valid:
3928
3929.. code-block:: llvm
3930
3931 DW_TAG_array_type = 1
3932 DW_TAG_class_type = 2
3933 DW_TAG_enumeration_type = 4
3934 DW_TAG_structure_type = 19
3935 DW_TAG_union_type = 23
3936 DW_TAG_subroutine_type = 21
3937 DW_TAG_inheritance = 28
3938
3939
3940For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003941descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003942level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003943array type is a native packed vector.
3944
3945For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003947value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003948``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003949
3950For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3951``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003952<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003953
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003954.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003955
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003956DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957""""""""""
3958
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003959``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003960:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003961
3962.. code-block:: llvm
3963
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003964 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3965 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3966 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003969
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003970DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003971""""""""""""
3972
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003973``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3974variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003975
3976.. code-block:: llvm
3977
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003978 !0 = !DIEnumerator(name: "SixKind", value: 7)
3979 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3980 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003981
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003982DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983"""""""""""""""""""""""
3984
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003985``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003986language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003987:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003988
3989.. code-block:: llvm
3990
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003991 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003992
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003993DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003994""""""""""""""""""""""""
3995
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003996``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003997language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003998but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003999``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004000:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004001
4002.. code-block:: llvm
4003
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004004 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004005
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004006DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004007"""""""""""
4008
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004009``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010
4011.. code-block:: llvm
4012
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004013 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004014
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004015DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004016""""""""""""""""
4017
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004018``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019
4020.. code-block:: llvm
4021
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004022 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004023 file: !2, line: 7, type: !3, isLocal: true,
4024 isDefinition: false, variable: i32* @foo,
4025 declaration: !4)
4026
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004027All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004028:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004031
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004032DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004033""""""""""""
4034
Peter Collingbourne50108682015-11-06 02:41:02 +00004035``DISubprogram`` nodes represent functions from the source language. A
4036``DISubprogram`` may be attached to a function definition using ``!dbg``
4037metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4038that must be retained, even if their IR counterparts are optimized out of
4039the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004040
4041.. code-block:: llvm
4042
Peter Collingbourne50108682015-11-06 02:41:02 +00004043 define void @_Z3foov() !dbg !0 {
4044 ...
4045 }
4046
4047 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4048 file: !2, line: 7, type: !3, isLocal: true,
4049 isDefinition: false, scopeLine: 8,
4050 containingType: !4,
4051 virtuality: DW_VIRTUALITY_pure_virtual,
4052 virtualIndex: 10, flags: DIFlagPrototyped,
4053 isOptimized: true, templateParams: !5,
4054 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004055
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004056.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004057
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004058DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004059""""""""""""""
4060
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004061``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004062<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004063two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004064fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004065
4066.. code-block:: llvm
4067
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004068 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004069
4070Usually lexical blocks are ``distinct`` to prevent node merging based on
4071operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004072
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004073.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004074
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004075DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004076""""""""""""""""""
4077
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004078``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004079:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004080indicate textual inclusion, or the ``discriminator:`` field can be used to
4081discriminate between control flow within a single block in the source language.
4082
4083.. code-block:: llvm
4084
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004085 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4086 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4087 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004088
Michael Kuperstein605308a2015-05-14 10:58:59 +00004089.. _DILocation:
4090
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004091DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004092""""""""""
4093
Sean Silvaa1190322015-08-06 22:56:48 +00004094``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004095mandatory, and points at an :ref:`DILexicalBlockFile`, an
4096:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004097
4098.. code-block:: llvm
4099
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004100 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004101
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004102.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004103
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004104DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004105"""""""""""""""
4106
Sean Silvaa1190322015-08-06 22:56:48 +00004107``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004108the ``arg:`` field is set to non-zero, then this variable is a subprogram
4109parameter, and it will be included in the ``variables:`` field of its
4110:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004111
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004112.. code-block:: llvm
4113
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004114 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4115 type: !3, flags: DIFlagArtificial)
4116 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4117 type: !3)
4118 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004119
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004120DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004121""""""""""""
4122
Sean Silvaa1190322015-08-06 22:56:48 +00004123``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4125describe how the referenced LLVM variable relates to the source language
4126variable.
4127
4128The current supported vocabulary is limited:
4129
4130- ``DW_OP_deref`` dereferences the working expression.
4131- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4132- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4133 here, respectively) of the variable piece from the working expression.
4134
4135.. code-block:: llvm
4136
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004137 !0 = !DIExpression(DW_OP_deref)
4138 !1 = !DIExpression(DW_OP_plus, 3)
4139 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4140 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004141
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004142DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004143""""""""""""""
4144
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004145``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004146
4147.. code-block:: llvm
4148
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004149 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004150 getter: "getFoo", attributes: 7, type: !2)
4151
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004152DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153""""""""""""""""
4154
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004155``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004156compile unit.
4157
4158.. code-block:: llvm
4159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004160 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004161 entity: !1, line: 7)
4162
Amjad Abouda9bcf162015-12-10 12:56:35 +00004163DIMacro
4164"""""""
4165
4166``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4167The ``name:`` field is the macro identifier, followed by macro parameters when
4168definining a function-like macro, and the ``value`` field is the token-string
4169used to expand the macro identifier.
4170
4171.. code-block:: llvm
4172
4173 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4174 value: "((x) + 1)")
4175 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4176
4177DIMacroFile
4178"""""""""""
4179
4180``DIMacroFile`` nodes represent inclusion of source files.
4181The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4182appear in the included source file.
4183
4184.. code-block:: llvm
4185
4186 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4187 nodes: !3)
4188
Sean Silvab084af42012-12-07 10:36:55 +00004189'``tbaa``' Metadata
4190^^^^^^^^^^^^^^^^^^^
4191
4192In LLVM IR, memory does not have types, so LLVM's own type system is not
4193suitable for doing TBAA. Instead, metadata is added to the IR to
4194describe a type system of a higher level language. This can be used to
4195implement typical C/C++ TBAA, but it can also be used to implement
4196custom alias analysis behavior for other languages.
4197
4198The current metadata format is very simple. TBAA metadata nodes have up
4199to three fields, e.g.:
4200
4201.. code-block:: llvm
4202
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004203 !0 = !{ !"an example type tree" }
4204 !1 = !{ !"int", !0 }
4205 !2 = !{ !"float", !0 }
4206 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004207
4208The first field is an identity field. It can be any value, usually a
4209metadata string, which uniquely identifies the type. The most important
4210name in the tree is the name of the root node. Two trees with different
4211root node names are entirely disjoint, even if they have leaves with
4212common names.
4213
4214The second field identifies the type's parent node in the tree, or is
4215null or omitted for a root node. A type is considered to alias all of
4216its descendants and all of its ancestors in the tree. Also, a type is
4217considered to alias all types in other trees, so that bitcode produced
4218from multiple front-ends is handled conservatively.
4219
4220If the third field is present, it's an integer which if equal to 1
4221indicates that the type is "constant" (meaning
4222``pointsToConstantMemory`` should return true; see `other useful
4223AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4224
4225'``tbaa.struct``' Metadata
4226^^^^^^^^^^^^^^^^^^^^^^^^^^
4227
4228The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4229aggregate assignment operations in C and similar languages, however it
4230is defined to copy a contiguous region of memory, which is more than
4231strictly necessary for aggregate types which contain holes due to
4232padding. Also, it doesn't contain any TBAA information about the fields
4233of the aggregate.
4234
4235``!tbaa.struct`` metadata can describe which memory subregions in a
4236memcpy are padding and what the TBAA tags of the struct are.
4237
4238The current metadata format is very simple. ``!tbaa.struct`` metadata
4239nodes are a list of operands which are in conceptual groups of three.
4240For each group of three, the first operand gives the byte offset of a
4241field in bytes, the second gives its size in bytes, and the third gives
4242its tbaa tag. e.g.:
4243
4244.. code-block:: llvm
4245
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004246 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004247
4248This describes a struct with two fields. The first is at offset 0 bytes
4249with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4250and has size 4 bytes and has tbaa tag !2.
4251
4252Note that the fields need not be contiguous. In this example, there is a
42534 byte gap between the two fields. This gap represents padding which
4254does not carry useful data and need not be preserved.
4255
Hal Finkel94146652014-07-24 14:25:39 +00004256'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004258
4259``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4260noalias memory-access sets. This means that some collection of memory access
4261instructions (loads, stores, memory-accessing calls, etc.) that carry
4262``noalias`` metadata can specifically be specified not to alias with some other
4263collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004264Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004265a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004266of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004267subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004268instruction's ``noalias`` list, then the two memory accesses are assumed not to
4269alias.
Hal Finkel94146652014-07-24 14:25:39 +00004270
Hal Finkel029cde62014-07-25 15:50:02 +00004271The metadata identifying each domain is itself a list containing one or two
4272entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004273string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004274self-reference can be used to create globally unique domain names. A
4275descriptive string may optionally be provided as a second list entry.
4276
4277The metadata identifying each scope is also itself a list containing two or
4278three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004279is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004280self-reference can be used to create globally unique scope names. A metadata
4281reference to the scope's domain is the second entry. A descriptive string may
4282optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004283
4284For example,
4285
4286.. code-block:: llvm
4287
Hal Finkel029cde62014-07-25 15:50:02 +00004288 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004289 !0 = !{!0}
4290 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004291
Hal Finkel029cde62014-07-25 15:50:02 +00004292 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004293 !2 = !{!2, !0}
4294 !3 = !{!3, !0}
4295 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004296
Hal Finkel029cde62014-07-25 15:50:02 +00004297 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004298 !5 = !{!4} ; A list containing only scope !4
4299 !6 = !{!4, !3, !2}
4300 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004301
4302 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004303 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004304 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004305
Hal Finkel029cde62014-07-25 15:50:02 +00004306 ; These two instructions also don't alias (for domain !1, the set of scopes
4307 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004308 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004309 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004310
Adam Nemet0a8416f2015-05-11 08:30:28 +00004311 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004312 ; the !noalias list is not a superset of, or equal to, the scopes in the
4313 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004314 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004315 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004316
Sean Silvab084af42012-12-07 10:36:55 +00004317'``fpmath``' Metadata
4318^^^^^^^^^^^^^^^^^^^^^
4319
4320``fpmath`` metadata may be attached to any instruction of floating point
4321type. It can be used to express the maximum acceptable error in the
4322result of that instruction, in ULPs, thus potentially allowing the
4323compiler to use a more efficient but less accurate method of computing
4324it. ULP is defined as follows:
4325
4326 If ``x`` is a real number that lies between two finite consecutive
4327 floating-point numbers ``a`` and ``b``, without being equal to one
4328 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4329 distance between the two non-equal finite floating-point numbers
4330 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4331
4332The metadata node shall consist of a single positive floating point
4333number representing the maximum relative error, for example:
4334
4335.. code-block:: llvm
4336
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004337 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004338
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004339.. _range-metadata:
4340
Sean Silvab084af42012-12-07 10:36:55 +00004341'``range``' Metadata
4342^^^^^^^^^^^^^^^^^^^^
4343
Jingyue Wu37fcb592014-06-19 16:50:16 +00004344``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4345integer types. It expresses the possible ranges the loaded value or the value
4346returned by the called function at this call site is in. The ranges are
4347represented with a flattened list of integers. The loaded value or the value
4348returned is known to be in the union of the ranges defined by each consecutive
4349pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004350
4351- The type must match the type loaded by the instruction.
4352- The pair ``a,b`` represents the range ``[a,b)``.
4353- Both ``a`` and ``b`` are constants.
4354- The range is allowed to wrap.
4355- The range should not represent the full or empty set. That is,
4356 ``a!=b``.
4357
4358In addition, the pairs must be in signed order of the lower bound and
4359they must be non-contiguous.
4360
4361Examples:
4362
4363.. code-block:: llvm
4364
David Blaikiec7aabbb2015-03-04 22:06:14 +00004365 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4366 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004367 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4368 %d = invoke i8 @bar() to label %cont
4369 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004370 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004371 !0 = !{ i8 0, i8 2 }
4372 !1 = !{ i8 255, i8 2 }
4373 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4374 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004375
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004376'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004377^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004378
4379``unpredictable`` metadata may be attached to any branch or switch
4380instruction. It can be used to express the unpredictability of control
4381flow. Similar to the llvm.expect intrinsic, it may be used to alter
4382optimizations related to compare and branch instructions. The metadata
4383is treated as a boolean value; if it exists, it signals that the branch
4384or switch that it is attached to is completely unpredictable.
4385
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004386'``llvm.loop``'
4387^^^^^^^^^^^^^^^
4388
4389It is sometimes useful to attach information to loop constructs. Currently,
4390loop metadata is implemented as metadata attached to the branch instruction
4391in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004392guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004393specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004394
4395The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004396itself to avoid merging it with any other identifier metadata, e.g.,
4397during module linkage or function inlining. That is, each loop should refer
4398to their own identification metadata even if they reside in separate functions.
4399The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004400constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004401
4402.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004403
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004404 !0 = !{!0}
4405 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004406
Mark Heffernan893752a2014-07-18 19:24:51 +00004407The loop identifier metadata can be used to specify additional
4408per-loop metadata. Any operands after the first operand can be treated
4409as user-defined metadata. For example the ``llvm.loop.unroll.count``
4410suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004411
Paul Redmond5fdf8362013-05-28 20:00:34 +00004412.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004413
Paul Redmond5fdf8362013-05-28 20:00:34 +00004414 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4415 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004416 !0 = !{!0, !1}
4417 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004418
Mark Heffernan9d20e422014-07-21 23:11:03 +00004419'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004421
Mark Heffernan9d20e422014-07-21 23:11:03 +00004422Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4423used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004424vectorization width and interleave count. These metadata should be used in
4425conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004426``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4427optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004428it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004429which contains information about loop-carried memory dependencies can be helpful
4430in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004431
Mark Heffernan9d20e422014-07-21 23:11:03 +00004432'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4434
Mark Heffernan9d20e422014-07-21 23:11:03 +00004435This metadata suggests an interleave count to the loop interleaver.
4436The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004437second operand is an integer specifying the interleave count. For
4438example:
4439
4440.. code-block:: llvm
4441
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004442 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004443
Mark Heffernan9d20e422014-07-21 23:11:03 +00004444Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004445multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004446then the interleave count will be determined automatically.
4447
4448'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004450
4451This metadata selectively enables or disables vectorization for the loop. The
4452first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004453is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000044540 disables vectorization:
4455
4456.. code-block:: llvm
4457
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004458 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4459 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004460
4461'``llvm.loop.vectorize.width``' Metadata
4462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4463
4464This metadata sets the target width of the vectorizer. The first
4465operand is the string ``llvm.loop.vectorize.width`` and the second
4466operand is an integer specifying the width. For example:
4467
4468.. code-block:: llvm
4469
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004470 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004471
4472Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004473vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000044740 or if the loop does not have this metadata the width will be
4475determined automatically.
4476
4477'``llvm.loop.unroll``'
4478^^^^^^^^^^^^^^^^^^^^^^
4479
4480Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4481optimization hints such as the unroll factor. ``llvm.loop.unroll``
4482metadata should be used in conjunction with ``llvm.loop`` loop
4483identification metadata. The ``llvm.loop.unroll`` metadata are only
4484optimization hints and the unrolling will only be performed if the
4485optimizer believes it is safe to do so.
4486
Mark Heffernan893752a2014-07-18 19:24:51 +00004487'``llvm.loop.unroll.count``' Metadata
4488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4489
4490This metadata suggests an unroll factor to the loop unroller. The
4491first operand is the string ``llvm.loop.unroll.count`` and the second
4492operand is a positive integer specifying the unroll factor. For
4493example:
4494
4495.. code-block:: llvm
4496
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004497 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004498
4499If the trip count of the loop is less than the unroll count the loop
4500will be partially unrolled.
4501
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004502'``llvm.loop.unroll.disable``' Metadata
4503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4504
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004505This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004506which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004507
4508.. code-block:: llvm
4509
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004510 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004511
Kevin Qin715b01e2015-03-09 06:14:18 +00004512'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004514
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004515This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004516operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004517
4518.. code-block:: llvm
4519
4520 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4521
Mark Heffernan89391542015-08-10 17:28:08 +00004522'``llvm.loop.unroll.enable``' Metadata
4523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4524
4525This metadata suggests that the loop should be fully unrolled if the trip count
4526is known at compile time and partially unrolled if the trip count is not known
4527at compile time. The metadata has a single operand which is the string
4528``llvm.loop.unroll.enable``. For example:
4529
4530.. code-block:: llvm
4531
4532 !0 = !{!"llvm.loop.unroll.enable"}
4533
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004534'``llvm.loop.unroll.full``' Metadata
4535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4536
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004537This metadata suggests that the loop should be unrolled fully. The
4538metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004539For example:
4540
4541.. code-block:: llvm
4542
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004543 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004544
4545'``llvm.mem``'
4546^^^^^^^^^^^^^^^
4547
4548Metadata types used to annotate memory accesses with information helpful
4549for optimizations are prefixed with ``llvm.mem``.
4550
4551'``llvm.mem.parallel_loop_access``' Metadata
4552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4553
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004554The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4555or metadata containing a list of loop identifiers for nested loops.
4556The metadata is attached to memory accessing instructions and denotes that
4557no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004558with the same loop identifier.
4559
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004560Precisely, given two instructions ``m1`` and ``m2`` that both have the
4561``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4562set of loops associated with that metadata, respectively, then there is no loop
4563carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004564``L2``.
4565
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004566As a special case, if all memory accessing instructions in a loop have
4567``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4568loop has no loop carried memory dependences and is considered to be a parallel
4569loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004570
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004571Note that if not all memory access instructions have such metadata referring to
4572the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004573memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004574safe mechanism, this causes loops that were originally parallel to be considered
4575sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004576insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004577
4578Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004579both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004580metadata types that refer to the same loop identifier metadata.
4581
4582.. code-block:: llvm
4583
4584 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004585 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004586 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004587 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004588 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004589 ...
4590 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004591
4592 for.end:
4593 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004594 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004595
4596It is also possible to have nested parallel loops. In that case the
4597memory accesses refer to a list of loop identifier metadata nodes instead of
4598the loop identifier metadata node directly:
4599
4600.. code-block:: llvm
4601
4602 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004603 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004604 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004605 ...
4606 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004607
4608 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004609 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004610 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004611 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004612 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004613 ...
4614 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004615
4616 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004617 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004618 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004619 ...
4620 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004621
4622 outer.for.end: ; preds = %for.body
4623 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004624 !0 = !{!1, !2} ; a list of loop identifiers
4625 !1 = !{!1} ; an identifier for the inner loop
4626 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004627
Peter Collingbournee6909c82015-02-20 20:30:47 +00004628'``llvm.bitsets``'
4629^^^^^^^^^^^^^^^^^^
4630
4631The ``llvm.bitsets`` global metadata is used to implement
4632:doc:`bitsets <BitSets>`.
4633
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004634'``invariant.group``' Metadata
4635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4636
4637The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4638The existence of the ``invariant.group`` metadata on the instruction tells
4639the optimizer that every ``load`` and ``store`` to the same pointer operand
4640within the same invariant group can be assumed to load or store the same
4641value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4642when two pointers are considered the same).
4643
4644Examples:
4645
4646.. code-block:: llvm
4647
4648 @unknownPtr = external global i8
4649 ...
4650 %ptr = alloca i8
4651 store i8 42, i8* %ptr, !invariant.group !0
4652 call void @foo(i8* %ptr)
4653
4654 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4655 call void @foo(i8* %ptr)
4656 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4657
4658 %newPtr = call i8* @getPointer(i8* %ptr)
4659 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4660
4661 %unknownValue = load i8, i8* @unknownPtr
4662 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4663
4664 call void @foo(i8* %ptr)
4665 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4666 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4667
4668 ...
4669 declare void @foo(i8*)
4670 declare i8* @getPointer(i8*)
4671 declare i8* @llvm.invariant.group.barrier(i8*)
4672
4673 !0 = !{!"magic ptr"}
4674 !1 = !{!"other ptr"}
4675
4676
4677
Sean Silvab084af42012-12-07 10:36:55 +00004678Module Flags Metadata
4679=====================
4680
4681Information about the module as a whole is difficult to convey to LLVM's
4682subsystems. The LLVM IR isn't sufficient to transmit this information.
4683The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004684this. These flags are in the form of key / value pairs --- much like a
4685dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004686look it up.
4687
4688The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4689Each triplet has the following form:
4690
4691- The first element is a *behavior* flag, which specifies the behavior
4692 when two (or more) modules are merged together, and it encounters two
4693 (or more) metadata with the same ID. The supported behaviors are
4694 described below.
4695- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004696 metadata. Each module may only have one flag entry for each unique ID (not
4697 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004698- The third element is the value of the flag.
4699
4700When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004701``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4702each unique metadata ID string, there will be exactly one entry in the merged
4703modules ``llvm.module.flags`` metadata table, and the value for that entry will
4704be determined by the merge behavior flag, as described below. The only exception
4705is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004706
4707The following behaviors are supported:
4708
4709.. list-table::
4710 :header-rows: 1
4711 :widths: 10 90
4712
4713 * - Value
4714 - Behavior
4715
4716 * - 1
4717 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004718 Emits an error if two values disagree, otherwise the resulting value
4719 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004720
4721 * - 2
4722 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004723 Emits a warning if two values disagree. The result value will be the
4724 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004725
4726 * - 3
4727 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004728 Adds a requirement that another module flag be present and have a
4729 specified value after linking is performed. The value must be a
4730 metadata pair, where the first element of the pair is the ID of the
4731 module flag to be restricted, and the second element of the pair is
4732 the value the module flag should be restricted to. This behavior can
4733 be used to restrict the allowable results (via triggering of an
4734 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004735
4736 * - 4
4737 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004738 Uses the specified value, regardless of the behavior or value of the
4739 other module. If both modules specify **Override**, but the values
4740 differ, an error will be emitted.
4741
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004742 * - 5
4743 - **Append**
4744 Appends the two values, which are required to be metadata nodes.
4745
4746 * - 6
4747 - **AppendUnique**
4748 Appends the two values, which are required to be metadata
4749 nodes. However, duplicate entries in the second list are dropped
4750 during the append operation.
4751
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004752It is an error for a particular unique flag ID to have multiple behaviors,
4753except in the case of **Require** (which adds restrictions on another metadata
4754value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004755
4756An example of module flags:
4757
4758.. code-block:: llvm
4759
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004760 !0 = !{ i32 1, !"foo", i32 1 }
4761 !1 = !{ i32 4, !"bar", i32 37 }
4762 !2 = !{ i32 2, !"qux", i32 42 }
4763 !3 = !{ i32 3, !"qux",
4764 !{
4765 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004766 }
4767 }
4768 !llvm.module.flags = !{ !0, !1, !2, !3 }
4769
4770- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4771 if two or more ``!"foo"`` flags are seen is to emit an error if their
4772 values are not equal.
4773
4774- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4775 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004776 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004777
4778- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4779 behavior if two or more ``!"qux"`` flags are seen is to emit a
4780 warning if their values are not equal.
4781
4782- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4783
4784 ::
4785
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004786 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004787
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004788 The behavior is to emit an error if the ``llvm.module.flags`` does not
4789 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4790 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004791
4792Objective-C Garbage Collection Module Flags Metadata
4793----------------------------------------------------
4794
4795On the Mach-O platform, Objective-C stores metadata about garbage
4796collection in a special section called "image info". The metadata
4797consists of a version number and a bitmask specifying what types of
4798garbage collection are supported (if any) by the file. If two or more
4799modules are linked together their garbage collection metadata needs to
4800be merged rather than appended together.
4801
4802The Objective-C garbage collection module flags metadata consists of the
4803following key-value pairs:
4804
4805.. list-table::
4806 :header-rows: 1
4807 :widths: 30 70
4808
4809 * - Key
4810 - Value
4811
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004812 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004813 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004814
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004815 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004816 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004817 always 0.
4818
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004819 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004820 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004821 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4822 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4823 Objective-C ABI version 2.
4824
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004825 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004826 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004827 not. Valid values are 0, for no garbage collection, and 2, for garbage
4828 collection supported.
4829
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004830 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004831 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004832 If present, its value must be 6. This flag requires that the
4833 ``Objective-C Garbage Collection`` flag have the value 2.
4834
4835Some important flag interactions:
4836
4837- If a module with ``Objective-C Garbage Collection`` set to 0 is
4838 merged with a module with ``Objective-C Garbage Collection`` set to
4839 2, then the resulting module has the
4840 ``Objective-C Garbage Collection`` flag set to 0.
4841- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4842 merged with a module with ``Objective-C GC Only`` set to 6.
4843
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004844Automatic Linker Flags Module Flags Metadata
4845--------------------------------------------
4846
4847Some targets support embedding flags to the linker inside individual object
4848files. Typically this is used in conjunction with language extensions which
4849allow source files to explicitly declare the libraries they depend on, and have
4850these automatically be transmitted to the linker via object files.
4851
4852These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004853using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004854to be ``AppendUnique``, and the value for the key is expected to be a metadata
4855node which should be a list of other metadata nodes, each of which should be a
4856list of metadata strings defining linker options.
4857
4858For example, the following metadata section specifies two separate sets of
4859linker options, presumably to link against ``libz`` and the ``Cocoa``
4860framework::
4861
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004862 !0 = !{ i32 6, !"Linker Options",
4863 !{
4864 !{ !"-lz" },
4865 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004866 !llvm.module.flags = !{ !0 }
4867
4868The metadata encoding as lists of lists of options, as opposed to a collapsed
4869list of options, is chosen so that the IR encoding can use multiple option
4870strings to specify e.g., a single library, while still having that specifier be
4871preserved as an atomic element that can be recognized by a target specific
4872assembly writer or object file emitter.
4873
4874Each individual option is required to be either a valid option for the target's
4875linker, or an option that is reserved by the target specific assembly writer or
4876object file emitter. No other aspect of these options is defined by the IR.
4877
Oliver Stannard5dc29342014-06-20 10:08:11 +00004878C type width Module Flags Metadata
4879----------------------------------
4880
4881The ARM backend emits a section into each generated object file describing the
4882options that it was compiled with (in a compiler-independent way) to prevent
4883linking incompatible objects, and to allow automatic library selection. Some
4884of these options are not visible at the IR level, namely wchar_t width and enum
4885width.
4886
4887To pass this information to the backend, these options are encoded in module
4888flags metadata, using the following key-value pairs:
4889
4890.. list-table::
4891 :header-rows: 1
4892 :widths: 30 70
4893
4894 * - Key
4895 - Value
4896
4897 * - short_wchar
4898 - * 0 --- sizeof(wchar_t) == 4
4899 * 1 --- sizeof(wchar_t) == 2
4900
4901 * - short_enum
4902 - * 0 --- Enums are at least as large as an ``int``.
4903 * 1 --- Enums are stored in the smallest integer type which can
4904 represent all of its values.
4905
4906For example, the following metadata section specifies that the module was
4907compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4908enum is the smallest type which can represent all of its values::
4909
4910 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004911 !0 = !{i32 1, !"short_wchar", i32 1}
4912 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004913
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004914.. _intrinsicglobalvariables:
4915
Sean Silvab084af42012-12-07 10:36:55 +00004916Intrinsic Global Variables
4917==========================
4918
4919LLVM has a number of "magic" global variables that contain data that
4920affect code generation or other IR semantics. These are documented here.
4921All globals of this sort should have a section specified as
4922"``llvm.metadata``". This section and all globals that start with
4923"``llvm.``" are reserved for use by LLVM.
4924
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004925.. _gv_llvmused:
4926
Sean Silvab084af42012-12-07 10:36:55 +00004927The '``llvm.used``' Global Variable
4928-----------------------------------
4929
Rafael Espindola74f2e462013-04-22 14:58:02 +00004930The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004931:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004932pointers to named global variables, functions and aliases which may optionally
4933have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004934use of it is:
4935
4936.. code-block:: llvm
4937
4938 @X = global i8 4
4939 @Y = global i32 123
4940
4941 @llvm.used = appending global [2 x i8*] [
4942 i8* @X,
4943 i8* bitcast (i32* @Y to i8*)
4944 ], section "llvm.metadata"
4945
Rafael Espindola74f2e462013-04-22 14:58:02 +00004946If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4947and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004948symbol that it cannot see (which is why they have to be named). For example, if
4949a variable has internal linkage and no references other than that from the
4950``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4951references from inline asms and other things the compiler cannot "see", and
4952corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004953
4954On some targets, the code generator must emit a directive to the
4955assembler or object file to prevent the assembler and linker from
4956molesting the symbol.
4957
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004958.. _gv_llvmcompilerused:
4959
Sean Silvab084af42012-12-07 10:36:55 +00004960The '``llvm.compiler.used``' Global Variable
4961--------------------------------------------
4962
4963The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4964directive, except that it only prevents the compiler from touching the
4965symbol. On targets that support it, this allows an intelligent linker to
4966optimize references to the symbol without being impeded as it would be
4967by ``@llvm.used``.
4968
4969This is a rare construct that should only be used in rare circumstances,
4970and should not be exposed to source languages.
4971
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004972.. _gv_llvmglobalctors:
4973
Sean Silvab084af42012-12-07 10:36:55 +00004974The '``llvm.global_ctors``' Global Variable
4975-------------------------------------------
4976
4977.. code-block:: llvm
4978
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004979 %0 = type { i32, void ()*, i8* }
4980 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004981
4982The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004983functions, priorities, and an optional associated global or function.
4984The functions referenced by this array will be called in ascending order
4985of priority (i.e. lowest first) when the module is loaded. The order of
4986functions with the same priority is not defined.
4987
4988If the third field is present, non-null, and points to a global variable
4989or function, the initializer function will only run if the associated
4990data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004991
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004992.. _llvmglobaldtors:
4993
Sean Silvab084af42012-12-07 10:36:55 +00004994The '``llvm.global_dtors``' Global Variable
4995-------------------------------------------
4996
4997.. code-block:: llvm
4998
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004999 %0 = type { i32, void ()*, i8* }
5000 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005001
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005002The ``@llvm.global_dtors`` array contains a list of destructor
5003functions, priorities, and an optional associated global or function.
5004The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005005order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005006order of functions with the same priority is not defined.
5007
5008If the third field is present, non-null, and points to a global variable
5009or function, the destructor function will only run if the associated
5010data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005011
5012Instruction Reference
5013=====================
5014
5015The LLVM instruction set consists of several different classifications
5016of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5017instructions <binaryops>`, :ref:`bitwise binary
5018instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5019:ref:`other instructions <otherops>`.
5020
5021.. _terminators:
5022
5023Terminator Instructions
5024-----------------------
5025
5026As mentioned :ref:`previously <functionstructure>`, every basic block in a
5027program ends with a "Terminator" instruction, which indicates which
5028block should be executed after the current block is finished. These
5029terminator instructions typically yield a '``void``' value: they produce
5030control flow, not values (the one exception being the
5031':ref:`invoke <i_invoke>`' instruction).
5032
5033The terminator instructions are: ':ref:`ret <i_ret>`',
5034':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5035':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005036':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005037':ref:`catchret <i_catchret>`',
5038':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005039and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005040
5041.. _i_ret:
5042
5043'``ret``' Instruction
5044^^^^^^^^^^^^^^^^^^^^^
5045
5046Syntax:
5047"""""""
5048
5049::
5050
5051 ret <type> <value> ; Return a value from a non-void function
5052 ret void ; Return from void function
5053
5054Overview:
5055"""""""""
5056
5057The '``ret``' instruction is used to return control flow (and optionally
5058a value) from a function back to the caller.
5059
5060There are two forms of the '``ret``' instruction: one that returns a
5061value and then causes control flow, and one that just causes control
5062flow to occur.
5063
5064Arguments:
5065""""""""""
5066
5067The '``ret``' instruction optionally accepts a single argument, the
5068return value. The type of the return value must be a ':ref:`first
5069class <t_firstclass>`' type.
5070
5071A function is not :ref:`well formed <wellformed>` if it it has a non-void
5072return type and contains a '``ret``' instruction with no return value or
5073a return value with a type that does not match its type, or if it has a
5074void return type and contains a '``ret``' instruction with a return
5075value.
5076
5077Semantics:
5078""""""""""
5079
5080When the '``ret``' instruction is executed, control flow returns back to
5081the calling function's context. If the caller is a
5082":ref:`call <i_call>`" instruction, execution continues at the
5083instruction after the call. If the caller was an
5084":ref:`invoke <i_invoke>`" instruction, execution continues at the
5085beginning of the "normal" destination block. If the instruction returns
5086a value, that value shall set the call or invoke instruction's return
5087value.
5088
5089Example:
5090""""""""
5091
5092.. code-block:: llvm
5093
5094 ret i32 5 ; Return an integer value of 5
5095 ret void ; Return from a void function
5096 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5097
5098.. _i_br:
5099
5100'``br``' Instruction
5101^^^^^^^^^^^^^^^^^^^^
5102
5103Syntax:
5104"""""""
5105
5106::
5107
5108 br i1 <cond>, label <iftrue>, label <iffalse>
5109 br label <dest> ; Unconditional branch
5110
5111Overview:
5112"""""""""
5113
5114The '``br``' instruction is used to cause control flow to transfer to a
5115different basic block in the current function. There are two forms of
5116this instruction, corresponding to a conditional branch and an
5117unconditional branch.
5118
5119Arguments:
5120""""""""""
5121
5122The conditional branch form of the '``br``' instruction takes a single
5123'``i1``' value and two '``label``' values. The unconditional form of the
5124'``br``' instruction takes a single '``label``' value as a target.
5125
5126Semantics:
5127""""""""""
5128
5129Upon execution of a conditional '``br``' instruction, the '``i1``'
5130argument is evaluated. If the value is ``true``, control flows to the
5131'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5132to the '``iffalse``' ``label`` argument.
5133
5134Example:
5135""""""""
5136
5137.. code-block:: llvm
5138
5139 Test:
5140 %cond = icmp eq i32 %a, %b
5141 br i1 %cond, label %IfEqual, label %IfUnequal
5142 IfEqual:
5143 ret i32 1
5144 IfUnequal:
5145 ret i32 0
5146
5147.. _i_switch:
5148
5149'``switch``' Instruction
5150^^^^^^^^^^^^^^^^^^^^^^^^
5151
5152Syntax:
5153"""""""
5154
5155::
5156
5157 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5158
5159Overview:
5160"""""""""
5161
5162The '``switch``' instruction is used to transfer control flow to one of
5163several different places. It is a generalization of the '``br``'
5164instruction, allowing a branch to occur to one of many possible
5165destinations.
5166
5167Arguments:
5168""""""""""
5169
5170The '``switch``' instruction uses three parameters: an integer
5171comparison value '``value``', a default '``label``' destination, and an
5172array of pairs of comparison value constants and '``label``'s. The table
5173is not allowed to contain duplicate constant entries.
5174
5175Semantics:
5176""""""""""
5177
5178The ``switch`` instruction specifies a table of values and destinations.
5179When the '``switch``' instruction is executed, this table is searched
5180for the given value. If the value is found, control flow is transferred
5181to the corresponding destination; otherwise, control flow is transferred
5182to the default destination.
5183
5184Implementation:
5185"""""""""""""""
5186
5187Depending on properties of the target machine and the particular
5188``switch`` instruction, this instruction may be code generated in
5189different ways. For example, it could be generated as a series of
5190chained conditional branches or with a lookup table.
5191
5192Example:
5193""""""""
5194
5195.. code-block:: llvm
5196
5197 ; Emulate a conditional br instruction
5198 %Val = zext i1 %value to i32
5199 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5200
5201 ; Emulate an unconditional br instruction
5202 switch i32 0, label %dest [ ]
5203
5204 ; Implement a jump table:
5205 switch i32 %val, label %otherwise [ i32 0, label %onzero
5206 i32 1, label %onone
5207 i32 2, label %ontwo ]
5208
5209.. _i_indirectbr:
5210
5211'``indirectbr``' Instruction
5212^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5213
5214Syntax:
5215"""""""
5216
5217::
5218
5219 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5220
5221Overview:
5222"""""""""
5223
5224The '``indirectbr``' instruction implements an indirect branch to a
5225label within the current function, whose address is specified by
5226"``address``". Address must be derived from a
5227:ref:`blockaddress <blockaddress>` constant.
5228
5229Arguments:
5230""""""""""
5231
5232The '``address``' argument is the address of the label to jump to. The
5233rest of the arguments indicate the full set of possible destinations
5234that the address may point to. Blocks are allowed to occur multiple
5235times in the destination list, though this isn't particularly useful.
5236
5237This destination list is required so that dataflow analysis has an
5238accurate understanding of the CFG.
5239
5240Semantics:
5241""""""""""
5242
5243Control transfers to the block specified in the address argument. All
5244possible destination blocks must be listed in the label list, otherwise
5245this instruction has undefined behavior. This implies that jumps to
5246labels defined in other functions have undefined behavior as well.
5247
5248Implementation:
5249"""""""""""""""
5250
5251This is typically implemented with a jump through a register.
5252
5253Example:
5254""""""""
5255
5256.. code-block:: llvm
5257
5258 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5259
5260.. _i_invoke:
5261
5262'``invoke``' Instruction
5263^^^^^^^^^^^^^^^^^^^^^^^^
5264
5265Syntax:
5266"""""""
5267
5268::
5269
5270 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005271 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005272
5273Overview:
5274"""""""""
5275
5276The '``invoke``' instruction causes control to transfer to a specified
5277function, with the possibility of control flow transfer to either the
5278'``normal``' label or the '``exception``' label. If the callee function
5279returns with the "``ret``" instruction, control flow will return to the
5280"normal" label. If the callee (or any indirect callees) returns via the
5281":ref:`resume <i_resume>`" instruction or other exception handling
5282mechanism, control is interrupted and continued at the dynamically
5283nearest "exception" label.
5284
5285The '``exception``' label is a `landing
5286pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5287'``exception``' label is required to have the
5288":ref:`landingpad <i_landingpad>`" instruction, which contains the
5289information about the behavior of the program after unwinding happens,
5290as its first non-PHI instruction. The restrictions on the
5291"``landingpad``" instruction's tightly couples it to the "``invoke``"
5292instruction, so that the important information contained within the
5293"``landingpad``" instruction can't be lost through normal code motion.
5294
5295Arguments:
5296""""""""""
5297
5298This instruction requires several arguments:
5299
5300#. The optional "cconv" marker indicates which :ref:`calling
5301 convention <callingconv>` the call should use. If none is
5302 specified, the call defaults to using C calling conventions.
5303#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5304 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5305 are valid here.
5306#. '``ptr to function ty``': shall be the signature of the pointer to
5307 function value being invoked. In most cases, this is a direct
5308 function invocation, but indirect ``invoke``'s are just as possible,
5309 branching off an arbitrary pointer to function value.
5310#. '``function ptr val``': An LLVM value containing a pointer to a
5311 function to be invoked.
5312#. '``function args``': argument list whose types match the function
5313 signature argument types and parameter attributes. All arguments must
5314 be of :ref:`first class <t_firstclass>` type. If the function signature
5315 indicates the function accepts a variable number of arguments, the
5316 extra arguments can be specified.
5317#. '``normal label``': the label reached when the called function
5318 executes a '``ret``' instruction.
5319#. '``exception label``': the label reached when a callee returns via
5320 the :ref:`resume <i_resume>` instruction or other exception handling
5321 mechanism.
5322#. The optional :ref:`function attributes <fnattrs>` list. Only
5323 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5324 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005325#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005326
5327Semantics:
5328""""""""""
5329
5330This instruction is designed to operate as a standard '``call``'
5331instruction in most regards. The primary difference is that it
5332establishes an association with a label, which is used by the runtime
5333library to unwind the stack.
5334
5335This instruction is used in languages with destructors to ensure that
5336proper cleanup is performed in the case of either a ``longjmp`` or a
5337thrown exception. Additionally, this is important for implementation of
5338'``catch``' clauses in high-level languages that support them.
5339
5340For the purposes of the SSA form, the definition of the value returned
5341by the '``invoke``' instruction is deemed to occur on the edge from the
5342current block to the "normal" label. If the callee unwinds then no
5343return value is available.
5344
5345Example:
5346""""""""
5347
5348.. code-block:: llvm
5349
5350 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005351 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005352 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005353 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005354
5355.. _i_resume:
5356
5357'``resume``' Instruction
5358^^^^^^^^^^^^^^^^^^^^^^^^
5359
5360Syntax:
5361"""""""
5362
5363::
5364
5365 resume <type> <value>
5366
5367Overview:
5368"""""""""
5369
5370The '``resume``' instruction is a terminator instruction that has no
5371successors.
5372
5373Arguments:
5374""""""""""
5375
5376The '``resume``' instruction requires one argument, which must have the
5377same type as the result of any '``landingpad``' instruction in the same
5378function.
5379
5380Semantics:
5381""""""""""
5382
5383The '``resume``' instruction resumes propagation of an existing
5384(in-flight) exception whose unwinding was interrupted with a
5385:ref:`landingpad <i_landingpad>` instruction.
5386
5387Example:
5388""""""""
5389
5390.. code-block:: llvm
5391
5392 resume { i8*, i32 } %exn
5393
David Majnemer8a1c45d2015-12-12 05:38:55 +00005394.. _i_catchswitch:
5395
5396'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005398
5399Syntax:
5400"""""""
5401
5402::
5403
5404 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5405 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5406
5407Overview:
5408"""""""""
5409
5410The '``catchswitch``' instruction is used by `LLVM's exception handling system
5411<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5412that may be executed by the :ref:`EH personality routine <personalityfn>`.
5413
5414Arguments:
5415""""""""""
5416
5417The ``parent`` argument is the token of the funclet that contains the
5418``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5419this operand may be the token ``none``.
5420
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005421The ``default`` argument is the label of another basic block beginning with
5422either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5423must be a legal target with respect to the ``parent`` links, as described in
5424the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005425
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005426The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005427:ref:`catchpad <i_catchpad>` instruction.
5428
5429Semantics:
5430""""""""""
5431
5432Executing this instruction transfers control to one of the successors in
5433``handlers``, if appropriate, or continues to unwind via the unwind label if
5434present.
5435
5436The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5437it must be both the first non-phi instruction and last instruction in the basic
5438block. Therefore, it must be the only non-phi instruction in the block.
5439
5440Example:
5441""""""""
5442
5443.. code-block:: llvm
5444
5445 dispatch1:
5446 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5447 dispatch2:
5448 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5449
David Majnemer654e1302015-07-31 17:58:14 +00005450.. _i_catchpad:
5451
5452'``catchpad``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005453^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer654e1302015-07-31 17:58:14 +00005454
5455Syntax:
5456"""""""
5457
5458::
5459
David Majnemer8a1c45d2015-12-12 05:38:55 +00005460 <resultval> = catchpad within <catchswitch> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00005461
5462Overview:
5463"""""""""
5464
5465The '``catchpad``' instruction is used by `LLVM's exception handling
5466system <ExceptionHandling.html#overview>`_ to specify that a basic block
David Majnemer8a1c45d2015-12-12 05:38:55 +00005467begins a catch handler --- one where a personality routine attempts to transfer
David Majnemer654e1302015-07-31 17:58:14 +00005468control to catch an exception.
David Majnemer654e1302015-07-31 17:58:14 +00005469
5470Arguments:
5471""""""""""
5472
David Majnemer8a1c45d2015-12-12 05:38:55 +00005473The ``catchswitch`` operand must always be a token produced by a
5474:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
5475ensures that each ``catchpad`` has exactly one predecessor block, and it always
5476terminates in a ``catchswitch``.
David Majnemer654e1302015-07-31 17:58:14 +00005477
David Majnemer8a1c45d2015-12-12 05:38:55 +00005478The ``args`` correspond to whatever information the personality routine
5479requires to know if this is an appropriate handler for the exception. Control
5480will transfer to the ``catchpad`` if this is the first appropriate handler for
5481the exception.
5482
5483The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
5484``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
5485pads.
David Majnemer654e1302015-07-31 17:58:14 +00005486
5487Semantics:
5488""""""""""
5489
David Majnemer8a1c45d2015-12-12 05:38:55 +00005490When the call stack is being unwound due to an exception being thrown, the
5491exception is compared against the ``args``. If it doesn't match, control will
5492not reach the ``catchpad`` instruction. The representation of ``args`` is
5493entirely target and personality function-specific.
David Majnemer654e1302015-07-31 17:58:14 +00005494
David Majnemer8a1c45d2015-12-12 05:38:55 +00005495Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
5496instruction must be the first non-phi of its parent basic block.
David Majnemer654e1302015-07-31 17:58:14 +00005497
David Majnemer8a1c45d2015-12-12 05:38:55 +00005498The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
5499instructions is described in the
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005500`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005501
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005502When a ``catchpad`` has been "entered" but not yet "exited" (as
5503described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5504it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
5505that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer654e1302015-07-31 17:58:14 +00005506
5507Example:
5508""""""""
5509
5510.. code-block:: llvm
5511
David Majnemer8a1c45d2015-12-12 05:38:55 +00005512 dispatch:
5513 %cs = catchswitch within none [label %handler0] unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005514 ;; A catch block which can catch an integer.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005515 handler0:
5516 %tok = catchpad within %cs [i8** @_ZTIi]
David Majnemer654e1302015-07-31 17:58:14 +00005517
5518.. _i_catchret:
5519
5520'``catchret``' Instruction
5521^^^^^^^^^^^^^^^^^^^^^^^^^^
5522
5523Syntax:
5524"""""""
5525
5526::
5527
David Majnemer8a1c45d2015-12-12 05:38:55 +00005528 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005529
5530Overview:
5531"""""""""
5532
5533The '``catchret``' instruction is a terminator instruction that has a
5534single successor.
5535
5536
5537Arguments:
5538""""""""""
5539
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005540The first argument to a '``catchret``' indicates which ``catchpad`` it
5541exits. It must be a :ref:`catchpad <i_catchpad>`.
5542The second argument to a '``catchret``' specifies where control will
5543transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005544
5545Semantics:
5546""""""""""
5547
David Majnemer8a1c45d2015-12-12 05:38:55 +00005548The '``catchret``' instruction ends an existing (in-flight) exception whose
5549unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5550:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5551code to, for example, destroy the active exception. Control then transfers to
5552``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005553
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005554The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5555If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5556funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5557the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005558
5559Example:
5560""""""""
5561
5562.. code-block:: llvm
5563
David Majnemer8a1c45d2015-12-12 05:38:55 +00005564 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005565
David Majnemer654e1302015-07-31 17:58:14 +00005566.. _i_cleanupret:
5567
5568'``cleanupret``' Instruction
5569^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5570
5571Syntax:
5572"""""""
5573
5574::
5575
David Majnemer8a1c45d2015-12-12 05:38:55 +00005576 cleanupret from <value> unwind label <continue>
5577 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005578
5579Overview:
5580"""""""""
5581
5582The '``cleanupret``' instruction is a terminator instruction that has
5583an optional successor.
5584
5585
5586Arguments:
5587""""""""""
5588
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005589The '``cleanupret``' instruction requires one argument, which indicates
5590which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005591If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5592funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5593the ``cleanupret``'s behavior is undefined.
5594
5595The '``cleanupret``' instruction also has an optional successor, ``continue``,
5596which must be the label of another basic block beginning with either a
5597``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5598be a legal target with respect to the ``parent`` links, as described in the
5599`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005600
5601Semantics:
5602""""""""""
5603
5604The '``cleanupret``' instruction indicates to the
5605:ref:`personality function <personalityfn>` that one
5606:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5607It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005608
David Majnemer654e1302015-07-31 17:58:14 +00005609Example:
5610""""""""
5611
5612.. code-block:: llvm
5613
David Majnemer8a1c45d2015-12-12 05:38:55 +00005614 cleanupret from %cleanup unwind to caller
5615 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005616
Sean Silvab084af42012-12-07 10:36:55 +00005617.. _i_unreachable:
5618
5619'``unreachable``' Instruction
5620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5621
5622Syntax:
5623"""""""
5624
5625::
5626
5627 unreachable
5628
5629Overview:
5630"""""""""
5631
5632The '``unreachable``' instruction has no defined semantics. This
5633instruction is used to inform the optimizer that a particular portion of
5634the code is not reachable. This can be used to indicate that the code
5635after a no-return function cannot be reached, and other facts.
5636
5637Semantics:
5638""""""""""
5639
5640The '``unreachable``' instruction has no defined semantics.
5641
5642.. _binaryops:
5643
5644Binary Operations
5645-----------------
5646
5647Binary operators are used to do most of the computation in a program.
5648They require two operands of the same type, execute an operation on
5649them, and produce a single value. The operands might represent multiple
5650data, as is the case with the :ref:`vector <t_vector>` data type. The
5651result value has the same type as its operands.
5652
5653There are several different binary operators:
5654
5655.. _i_add:
5656
5657'``add``' Instruction
5658^^^^^^^^^^^^^^^^^^^^^
5659
5660Syntax:
5661"""""""
5662
5663::
5664
Tim Northover675a0962014-06-13 14:24:23 +00005665 <result> = add <ty> <op1>, <op2> ; yields ty:result
5666 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5667 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5668 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005669
5670Overview:
5671"""""""""
5672
5673The '``add``' instruction returns the sum of its two operands.
5674
5675Arguments:
5676""""""""""
5677
5678The two arguments to the '``add``' instruction must be
5679:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5680arguments must have identical types.
5681
5682Semantics:
5683""""""""""
5684
5685The value produced is the integer sum of the two operands.
5686
5687If the sum has unsigned overflow, the result returned is the
5688mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5689the result.
5690
5691Because LLVM integers use a two's complement representation, this
5692instruction is appropriate for both signed and unsigned integers.
5693
5694``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5695respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5696result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5697unsigned and/or signed overflow, respectively, occurs.
5698
5699Example:
5700""""""""
5701
5702.. code-block:: llvm
5703
Tim Northover675a0962014-06-13 14:24:23 +00005704 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005705
5706.. _i_fadd:
5707
5708'``fadd``' Instruction
5709^^^^^^^^^^^^^^^^^^^^^^
5710
5711Syntax:
5712"""""""
5713
5714::
5715
Tim Northover675a0962014-06-13 14:24:23 +00005716 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005717
5718Overview:
5719"""""""""
5720
5721The '``fadd``' instruction returns the sum of its two operands.
5722
5723Arguments:
5724""""""""""
5725
5726The two arguments to the '``fadd``' instruction must be :ref:`floating
5727point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5728Both arguments must have identical types.
5729
5730Semantics:
5731""""""""""
5732
5733The value produced is the floating point sum of the two operands. This
5734instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5735which are optimization hints to enable otherwise unsafe floating point
5736optimizations:
5737
5738Example:
5739""""""""
5740
5741.. code-block:: llvm
5742
Tim Northover675a0962014-06-13 14:24:23 +00005743 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005744
5745'``sub``' Instruction
5746^^^^^^^^^^^^^^^^^^^^^
5747
5748Syntax:
5749"""""""
5750
5751::
5752
Tim Northover675a0962014-06-13 14:24:23 +00005753 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5754 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5755 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5756 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005757
5758Overview:
5759"""""""""
5760
5761The '``sub``' instruction returns the difference of its two operands.
5762
5763Note that the '``sub``' instruction is used to represent the '``neg``'
5764instruction present in most other intermediate representations.
5765
5766Arguments:
5767""""""""""
5768
5769The two arguments to the '``sub``' instruction must be
5770:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5771arguments must have identical types.
5772
5773Semantics:
5774""""""""""
5775
5776The value produced is the integer difference of the two operands.
5777
5778If the difference has unsigned overflow, the result returned is the
5779mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5780the result.
5781
5782Because LLVM integers use a two's complement representation, this
5783instruction is appropriate for both signed and unsigned integers.
5784
5785``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5786respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5787result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5788unsigned and/or signed overflow, respectively, occurs.
5789
5790Example:
5791""""""""
5792
5793.. code-block:: llvm
5794
Tim Northover675a0962014-06-13 14:24:23 +00005795 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5796 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005797
5798.. _i_fsub:
5799
5800'``fsub``' Instruction
5801^^^^^^^^^^^^^^^^^^^^^^
5802
5803Syntax:
5804"""""""
5805
5806::
5807
Tim Northover675a0962014-06-13 14:24:23 +00005808 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005809
5810Overview:
5811"""""""""
5812
5813The '``fsub``' instruction returns the difference of its two operands.
5814
5815Note that the '``fsub``' instruction is used to represent the '``fneg``'
5816instruction present in most other intermediate representations.
5817
5818Arguments:
5819""""""""""
5820
5821The two arguments to the '``fsub``' instruction must be :ref:`floating
5822point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5823Both arguments must have identical types.
5824
5825Semantics:
5826""""""""""
5827
5828The value produced is the floating point difference of the two operands.
5829This instruction can also take any number of :ref:`fast-math
5830flags <fastmath>`, which are optimization hints to enable otherwise
5831unsafe floating point optimizations:
5832
5833Example:
5834""""""""
5835
5836.. code-block:: llvm
5837
Tim Northover675a0962014-06-13 14:24:23 +00005838 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5839 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005840
5841'``mul``' Instruction
5842^^^^^^^^^^^^^^^^^^^^^
5843
5844Syntax:
5845"""""""
5846
5847::
5848
Tim Northover675a0962014-06-13 14:24:23 +00005849 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5850 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5851 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5852 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005853
5854Overview:
5855"""""""""
5856
5857The '``mul``' instruction returns the product of its two operands.
5858
5859Arguments:
5860""""""""""
5861
5862The two arguments to the '``mul``' instruction must be
5863:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5864arguments must have identical types.
5865
5866Semantics:
5867""""""""""
5868
5869The value produced is the integer product of the two operands.
5870
5871If the result of the multiplication has unsigned overflow, the result
5872returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5873bit width of the result.
5874
5875Because LLVM integers use a two's complement representation, and the
5876result is the same width as the operands, this instruction returns the
5877correct result for both signed and unsigned integers. If a full product
5878(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5879sign-extended or zero-extended as appropriate to the width of the full
5880product.
5881
5882``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5883respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5884result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5885unsigned and/or signed overflow, respectively, occurs.
5886
5887Example:
5888""""""""
5889
5890.. code-block:: llvm
5891
Tim Northover675a0962014-06-13 14:24:23 +00005892 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005893
5894.. _i_fmul:
5895
5896'``fmul``' Instruction
5897^^^^^^^^^^^^^^^^^^^^^^
5898
5899Syntax:
5900"""""""
5901
5902::
5903
Tim Northover675a0962014-06-13 14:24:23 +00005904 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005905
5906Overview:
5907"""""""""
5908
5909The '``fmul``' instruction returns the product of its two operands.
5910
5911Arguments:
5912""""""""""
5913
5914The two arguments to the '``fmul``' instruction must be :ref:`floating
5915point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5916Both arguments must have identical types.
5917
5918Semantics:
5919""""""""""
5920
5921The value produced is the floating point product of the two operands.
5922This instruction can also take any number of :ref:`fast-math
5923flags <fastmath>`, which are optimization hints to enable otherwise
5924unsafe floating point optimizations:
5925
5926Example:
5927""""""""
5928
5929.. code-block:: llvm
5930
Tim Northover675a0962014-06-13 14:24:23 +00005931 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005932
5933'``udiv``' Instruction
5934^^^^^^^^^^^^^^^^^^^^^^
5935
5936Syntax:
5937"""""""
5938
5939::
5940
Tim Northover675a0962014-06-13 14:24:23 +00005941 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5942 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005943
5944Overview:
5945"""""""""
5946
5947The '``udiv``' instruction returns the quotient of its two operands.
5948
5949Arguments:
5950""""""""""
5951
5952The two arguments to the '``udiv``' instruction must be
5953:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5954arguments must have identical types.
5955
5956Semantics:
5957""""""""""
5958
5959The value produced is the unsigned integer quotient of the two operands.
5960
5961Note that unsigned integer division and signed integer division are
5962distinct operations; for signed integer division, use '``sdiv``'.
5963
5964Division by zero leads to undefined behavior.
5965
5966If the ``exact`` keyword is present, the result value of the ``udiv`` is
5967a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5968such, "((a udiv exact b) mul b) == a").
5969
5970Example:
5971""""""""
5972
5973.. code-block:: llvm
5974
Tim Northover675a0962014-06-13 14:24:23 +00005975 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005976
5977'``sdiv``' Instruction
5978^^^^^^^^^^^^^^^^^^^^^^
5979
5980Syntax:
5981"""""""
5982
5983::
5984
Tim Northover675a0962014-06-13 14:24:23 +00005985 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5986 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005987
5988Overview:
5989"""""""""
5990
5991The '``sdiv``' instruction returns the quotient of its two operands.
5992
5993Arguments:
5994""""""""""
5995
5996The two arguments to the '``sdiv``' instruction must be
5997:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5998arguments must have identical types.
5999
6000Semantics:
6001""""""""""
6002
6003The value produced is the signed integer quotient of the two operands
6004rounded towards zero.
6005
6006Note that signed integer division and unsigned integer division are
6007distinct operations; for unsigned integer division, use '``udiv``'.
6008
6009Division by zero leads to undefined behavior. Overflow also leads to
6010undefined behavior; this is a rare case, but can occur, for example, by
6011doing a 32-bit division of -2147483648 by -1.
6012
6013If the ``exact`` keyword is present, the result value of the ``sdiv`` is
6014a :ref:`poison value <poisonvalues>` if the result would be rounded.
6015
6016Example:
6017""""""""
6018
6019.. code-block:: llvm
6020
Tim Northover675a0962014-06-13 14:24:23 +00006021 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006022
6023.. _i_fdiv:
6024
6025'``fdiv``' Instruction
6026^^^^^^^^^^^^^^^^^^^^^^
6027
6028Syntax:
6029"""""""
6030
6031::
6032
Tim Northover675a0962014-06-13 14:24:23 +00006033 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006034
6035Overview:
6036"""""""""
6037
6038The '``fdiv``' instruction returns the quotient of its two operands.
6039
6040Arguments:
6041""""""""""
6042
6043The two arguments to the '``fdiv``' instruction must be :ref:`floating
6044point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6045Both arguments must have identical types.
6046
6047Semantics:
6048""""""""""
6049
6050The value produced is the floating point quotient of the two operands.
6051This instruction can also take any number of :ref:`fast-math
6052flags <fastmath>`, which are optimization hints to enable otherwise
6053unsafe floating point optimizations:
6054
6055Example:
6056""""""""
6057
6058.. code-block:: llvm
6059
Tim Northover675a0962014-06-13 14:24:23 +00006060 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006061
6062'``urem``' Instruction
6063^^^^^^^^^^^^^^^^^^^^^^
6064
6065Syntax:
6066"""""""
6067
6068::
6069
Tim Northover675a0962014-06-13 14:24:23 +00006070 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006071
6072Overview:
6073"""""""""
6074
6075The '``urem``' instruction returns the remainder from the unsigned
6076division of its two arguments.
6077
6078Arguments:
6079""""""""""
6080
6081The two arguments to the '``urem``' instruction must be
6082:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6083arguments must have identical types.
6084
6085Semantics:
6086""""""""""
6087
6088This instruction returns the unsigned integer *remainder* of a division.
6089This instruction always performs an unsigned division to get the
6090remainder.
6091
6092Note that unsigned integer remainder and signed integer remainder are
6093distinct operations; for signed integer remainder, use '``srem``'.
6094
6095Taking the remainder of a division by zero leads to undefined behavior.
6096
6097Example:
6098""""""""
6099
6100.. code-block:: llvm
6101
Tim Northover675a0962014-06-13 14:24:23 +00006102 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006103
6104'``srem``' Instruction
6105^^^^^^^^^^^^^^^^^^^^^^
6106
6107Syntax:
6108"""""""
6109
6110::
6111
Tim Northover675a0962014-06-13 14:24:23 +00006112 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006113
6114Overview:
6115"""""""""
6116
6117The '``srem``' instruction returns the remainder from the signed
6118division of its two operands. This instruction can also take
6119:ref:`vector <t_vector>` versions of the values in which case the elements
6120must be integers.
6121
6122Arguments:
6123""""""""""
6124
6125The two arguments to the '``srem``' instruction must be
6126:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6127arguments must have identical types.
6128
6129Semantics:
6130""""""""""
6131
6132This instruction returns the *remainder* of a division (where the result
6133is either zero or has the same sign as the dividend, ``op1``), not the
6134*modulo* operator (where the result is either zero or has the same sign
6135as the divisor, ``op2``) of a value. For more information about the
6136difference, see `The Math
6137Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6138table of how this is implemented in various languages, please see
6139`Wikipedia: modulo
6140operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6141
6142Note that signed integer remainder and unsigned integer remainder are
6143distinct operations; for unsigned integer remainder, use '``urem``'.
6144
6145Taking the remainder of a division by zero leads to undefined behavior.
6146Overflow also leads to undefined behavior; this is a rare case, but can
6147occur, for example, by taking the remainder of a 32-bit division of
6148-2147483648 by -1. (The remainder doesn't actually overflow, but this
6149rule lets srem be implemented using instructions that return both the
6150result of the division and the remainder.)
6151
6152Example:
6153""""""""
6154
6155.. code-block:: llvm
6156
Tim Northover675a0962014-06-13 14:24:23 +00006157 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006158
6159.. _i_frem:
6160
6161'``frem``' Instruction
6162^^^^^^^^^^^^^^^^^^^^^^
6163
6164Syntax:
6165"""""""
6166
6167::
6168
Tim Northover675a0962014-06-13 14:24:23 +00006169 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006170
6171Overview:
6172"""""""""
6173
6174The '``frem``' instruction returns the remainder from the division of
6175its two operands.
6176
6177Arguments:
6178""""""""""
6179
6180The two arguments to the '``frem``' instruction must be :ref:`floating
6181point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6182Both arguments must have identical types.
6183
6184Semantics:
6185""""""""""
6186
6187This instruction returns the *remainder* of a division. The remainder
6188has the same sign as the dividend. This instruction can also take any
6189number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6190to enable otherwise unsafe floating point optimizations:
6191
6192Example:
6193""""""""
6194
6195.. code-block:: llvm
6196
Tim Northover675a0962014-06-13 14:24:23 +00006197 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006198
6199.. _bitwiseops:
6200
6201Bitwise Binary Operations
6202-------------------------
6203
6204Bitwise binary operators are used to do various forms of bit-twiddling
6205in a program. They are generally very efficient instructions and can
6206commonly be strength reduced from other instructions. They require two
6207operands of the same type, execute an operation on them, and produce a
6208single value. The resulting value is the same type as its operands.
6209
6210'``shl``' Instruction
6211^^^^^^^^^^^^^^^^^^^^^
6212
6213Syntax:
6214"""""""
6215
6216::
6217
Tim Northover675a0962014-06-13 14:24:23 +00006218 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6219 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6220 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6221 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006222
6223Overview:
6224"""""""""
6225
6226The '``shl``' instruction returns the first operand shifted to the left
6227a specified number of bits.
6228
6229Arguments:
6230""""""""""
6231
6232Both arguments to the '``shl``' instruction must be the same
6233:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6234'``op2``' is treated as an unsigned value.
6235
6236Semantics:
6237""""""""""
6238
6239The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6240where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006241dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006242``op1``, the result is undefined. If the arguments are vectors, each
6243vector element of ``op1`` is shifted by the corresponding shift amount
6244in ``op2``.
6245
6246If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6247value <poisonvalues>` if it shifts out any non-zero bits. If the
6248``nsw`` keyword is present, then the shift produces a :ref:`poison
6249value <poisonvalues>` if it shifts out any bits that disagree with the
6250resultant sign bit. As such, NUW/NSW have the same semantics as they
6251would if the shift were expressed as a mul instruction with the same
6252nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6253
6254Example:
6255""""""""
6256
6257.. code-block:: llvm
6258
Tim Northover675a0962014-06-13 14:24:23 +00006259 <result> = shl i32 4, %var ; yields i32: 4 << %var
6260 <result> = shl i32 4, 2 ; yields i32: 16
6261 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006262 <result> = shl i32 1, 32 ; undefined
6263 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6264
6265'``lshr``' Instruction
6266^^^^^^^^^^^^^^^^^^^^^^
6267
6268Syntax:
6269"""""""
6270
6271::
6272
Tim Northover675a0962014-06-13 14:24:23 +00006273 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6274 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006275
6276Overview:
6277"""""""""
6278
6279The '``lshr``' instruction (logical shift right) returns the first
6280operand shifted to the right a specified number of bits with zero fill.
6281
6282Arguments:
6283""""""""""
6284
6285Both arguments to the '``lshr``' instruction must be the same
6286:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6287'``op2``' is treated as an unsigned value.
6288
6289Semantics:
6290""""""""""
6291
6292This instruction always performs a logical shift right operation. The
6293most significant bits of the result will be filled with zero bits after
6294the shift. If ``op2`` is (statically or dynamically) equal to or larger
6295than the number of bits in ``op1``, the result is undefined. If the
6296arguments are vectors, each vector element of ``op1`` is shifted by the
6297corresponding shift amount in ``op2``.
6298
6299If the ``exact`` keyword is present, the result value of the ``lshr`` is
6300a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6301non-zero.
6302
6303Example:
6304""""""""
6305
6306.. code-block:: llvm
6307
Tim Northover675a0962014-06-13 14:24:23 +00006308 <result> = lshr i32 4, 1 ; yields i32:result = 2
6309 <result> = lshr i32 4, 2 ; yields i32:result = 1
6310 <result> = lshr i8 4, 3 ; yields i8:result = 0
6311 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006312 <result> = lshr i32 1, 32 ; undefined
6313 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6314
6315'``ashr``' Instruction
6316^^^^^^^^^^^^^^^^^^^^^^
6317
6318Syntax:
6319"""""""
6320
6321::
6322
Tim Northover675a0962014-06-13 14:24:23 +00006323 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6324 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006325
6326Overview:
6327"""""""""
6328
6329The '``ashr``' instruction (arithmetic shift right) returns the first
6330operand shifted to the right a specified number of bits with sign
6331extension.
6332
6333Arguments:
6334""""""""""
6335
6336Both arguments to the '``ashr``' instruction must be the same
6337:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6338'``op2``' is treated as an unsigned value.
6339
6340Semantics:
6341""""""""""
6342
6343This instruction always performs an arithmetic shift right operation,
6344The most significant bits of the result will be filled with the sign bit
6345of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6346than the number of bits in ``op1``, the result is undefined. If the
6347arguments are vectors, each vector element of ``op1`` is shifted by the
6348corresponding shift amount in ``op2``.
6349
6350If the ``exact`` keyword is present, the result value of the ``ashr`` is
6351a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6352non-zero.
6353
6354Example:
6355""""""""
6356
6357.. code-block:: llvm
6358
Tim Northover675a0962014-06-13 14:24:23 +00006359 <result> = ashr i32 4, 1 ; yields i32:result = 2
6360 <result> = ashr i32 4, 2 ; yields i32:result = 1
6361 <result> = ashr i8 4, 3 ; yields i8:result = 0
6362 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006363 <result> = ashr i32 1, 32 ; undefined
6364 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6365
6366'``and``' Instruction
6367^^^^^^^^^^^^^^^^^^^^^
6368
6369Syntax:
6370"""""""
6371
6372::
6373
Tim Northover675a0962014-06-13 14:24:23 +00006374 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006375
6376Overview:
6377"""""""""
6378
6379The '``and``' instruction returns the bitwise logical and of its two
6380operands.
6381
6382Arguments:
6383""""""""""
6384
6385The two arguments to the '``and``' instruction must be
6386:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6387arguments must have identical types.
6388
6389Semantics:
6390""""""""""
6391
6392The truth table used for the '``and``' instruction is:
6393
6394+-----+-----+-----+
6395| In0 | In1 | Out |
6396+-----+-----+-----+
6397| 0 | 0 | 0 |
6398+-----+-----+-----+
6399| 0 | 1 | 0 |
6400+-----+-----+-----+
6401| 1 | 0 | 0 |
6402+-----+-----+-----+
6403| 1 | 1 | 1 |
6404+-----+-----+-----+
6405
6406Example:
6407""""""""
6408
6409.. code-block:: llvm
6410
Tim Northover675a0962014-06-13 14:24:23 +00006411 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6412 <result> = and i32 15, 40 ; yields i32:result = 8
6413 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006414
6415'``or``' Instruction
6416^^^^^^^^^^^^^^^^^^^^
6417
6418Syntax:
6419"""""""
6420
6421::
6422
Tim Northover675a0962014-06-13 14:24:23 +00006423 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006424
6425Overview:
6426"""""""""
6427
6428The '``or``' instruction returns the bitwise logical inclusive or of its
6429two operands.
6430
6431Arguments:
6432""""""""""
6433
6434The two arguments to the '``or``' instruction must be
6435:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6436arguments must have identical types.
6437
6438Semantics:
6439""""""""""
6440
6441The truth table used for the '``or``' instruction is:
6442
6443+-----+-----+-----+
6444| In0 | In1 | Out |
6445+-----+-----+-----+
6446| 0 | 0 | 0 |
6447+-----+-----+-----+
6448| 0 | 1 | 1 |
6449+-----+-----+-----+
6450| 1 | 0 | 1 |
6451+-----+-----+-----+
6452| 1 | 1 | 1 |
6453+-----+-----+-----+
6454
6455Example:
6456""""""""
6457
6458::
6459
Tim Northover675a0962014-06-13 14:24:23 +00006460 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6461 <result> = or i32 15, 40 ; yields i32:result = 47
6462 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006463
6464'``xor``' Instruction
6465^^^^^^^^^^^^^^^^^^^^^
6466
6467Syntax:
6468"""""""
6469
6470::
6471
Tim Northover675a0962014-06-13 14:24:23 +00006472 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006473
6474Overview:
6475"""""""""
6476
6477The '``xor``' instruction returns the bitwise logical exclusive or of
6478its two operands. The ``xor`` is used to implement the "one's
6479complement" operation, which is the "~" operator in C.
6480
6481Arguments:
6482""""""""""
6483
6484The two arguments to the '``xor``' instruction must be
6485:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6486arguments must have identical types.
6487
6488Semantics:
6489""""""""""
6490
6491The truth table used for the '``xor``' instruction is:
6492
6493+-----+-----+-----+
6494| In0 | In1 | Out |
6495+-----+-----+-----+
6496| 0 | 0 | 0 |
6497+-----+-----+-----+
6498| 0 | 1 | 1 |
6499+-----+-----+-----+
6500| 1 | 0 | 1 |
6501+-----+-----+-----+
6502| 1 | 1 | 0 |
6503+-----+-----+-----+
6504
6505Example:
6506""""""""
6507
6508.. code-block:: llvm
6509
Tim Northover675a0962014-06-13 14:24:23 +00006510 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6511 <result> = xor i32 15, 40 ; yields i32:result = 39
6512 <result> = xor i32 4, 8 ; yields i32:result = 12
6513 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006514
6515Vector Operations
6516-----------------
6517
6518LLVM supports several instructions to represent vector operations in a
6519target-independent manner. These instructions cover the element-access
6520and vector-specific operations needed to process vectors effectively.
6521While LLVM does directly support these vector operations, many
6522sophisticated algorithms will want to use target-specific intrinsics to
6523take full advantage of a specific target.
6524
6525.. _i_extractelement:
6526
6527'``extractelement``' Instruction
6528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6529
6530Syntax:
6531"""""""
6532
6533::
6534
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006535 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006536
6537Overview:
6538"""""""""
6539
6540The '``extractelement``' instruction extracts a single scalar element
6541from a vector at a specified index.
6542
6543Arguments:
6544""""""""""
6545
6546The first operand of an '``extractelement``' instruction is a value of
6547:ref:`vector <t_vector>` type. The second operand is an index indicating
6548the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006549variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006550
6551Semantics:
6552""""""""""
6553
6554The result is a scalar of the same type as the element type of ``val``.
6555Its value is the value at position ``idx`` of ``val``. If ``idx``
6556exceeds the length of ``val``, the results are undefined.
6557
6558Example:
6559""""""""
6560
6561.. code-block:: llvm
6562
6563 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6564
6565.. _i_insertelement:
6566
6567'``insertelement``' Instruction
6568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6569
6570Syntax:
6571"""""""
6572
6573::
6574
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006575 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006576
6577Overview:
6578"""""""""
6579
6580The '``insertelement``' instruction inserts a scalar element into a
6581vector at a specified index.
6582
6583Arguments:
6584""""""""""
6585
6586The first operand of an '``insertelement``' instruction is a value of
6587:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6588type must equal the element type of the first operand. The third operand
6589is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006590index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006591
6592Semantics:
6593""""""""""
6594
6595The result is a vector of the same type as ``val``. Its element values
6596are those of ``val`` except at position ``idx``, where it gets the value
6597``elt``. If ``idx`` exceeds the length of ``val``, the results are
6598undefined.
6599
6600Example:
6601""""""""
6602
6603.. code-block:: llvm
6604
6605 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6606
6607.. _i_shufflevector:
6608
6609'``shufflevector``' Instruction
6610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6611
6612Syntax:
6613"""""""
6614
6615::
6616
6617 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6618
6619Overview:
6620"""""""""
6621
6622The '``shufflevector``' instruction constructs a permutation of elements
6623from two input vectors, returning a vector with the same element type as
6624the input and length that is the same as the shuffle mask.
6625
6626Arguments:
6627""""""""""
6628
6629The first two operands of a '``shufflevector``' instruction are vectors
6630with the same type. The third argument is a shuffle mask whose element
6631type is always 'i32'. The result of the instruction is a vector whose
6632length is the same as the shuffle mask and whose element type is the
6633same as the element type of the first two operands.
6634
6635The shuffle mask operand is required to be a constant vector with either
6636constant integer or undef values.
6637
6638Semantics:
6639""""""""""
6640
6641The elements of the two input vectors are numbered from left to right
6642across both of the vectors. The shuffle mask operand specifies, for each
6643element of the result vector, which element of the two input vectors the
6644result element gets. The element selector may be undef (meaning "don't
6645care") and the second operand may be undef if performing a shuffle from
6646only one vector.
6647
6648Example:
6649""""""""
6650
6651.. code-block:: llvm
6652
6653 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6654 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6655 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6656 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6657 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6658 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6659 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6660 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6661
6662Aggregate Operations
6663--------------------
6664
6665LLVM supports several instructions for working with
6666:ref:`aggregate <t_aggregate>` values.
6667
6668.. _i_extractvalue:
6669
6670'``extractvalue``' Instruction
6671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6672
6673Syntax:
6674"""""""
6675
6676::
6677
6678 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6679
6680Overview:
6681"""""""""
6682
6683The '``extractvalue``' instruction extracts the value of a member field
6684from an :ref:`aggregate <t_aggregate>` value.
6685
6686Arguments:
6687""""""""""
6688
6689The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006690:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006691constant indices to specify which value to extract in a similar manner
6692as indices in a '``getelementptr``' instruction.
6693
6694The major differences to ``getelementptr`` indexing are:
6695
6696- Since the value being indexed is not a pointer, the first index is
6697 omitted and assumed to be zero.
6698- At least one index must be specified.
6699- Not only struct indices but also array indices must be in bounds.
6700
6701Semantics:
6702""""""""""
6703
6704The result is the value at the position in the aggregate specified by
6705the index operands.
6706
6707Example:
6708""""""""
6709
6710.. code-block:: llvm
6711
6712 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6713
6714.. _i_insertvalue:
6715
6716'``insertvalue``' Instruction
6717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6718
6719Syntax:
6720"""""""
6721
6722::
6723
6724 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6725
6726Overview:
6727"""""""""
6728
6729The '``insertvalue``' instruction inserts a value into a member field in
6730an :ref:`aggregate <t_aggregate>` value.
6731
6732Arguments:
6733""""""""""
6734
6735The first operand of an '``insertvalue``' instruction is a value of
6736:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6737a first-class value to insert. The following operands are constant
6738indices indicating the position at which to insert the value in a
6739similar manner as indices in a '``extractvalue``' instruction. The value
6740to insert must have the same type as the value identified by the
6741indices.
6742
6743Semantics:
6744""""""""""
6745
6746The result is an aggregate of the same type as ``val``. Its value is
6747that of ``val`` except that the value at the position specified by the
6748indices is that of ``elt``.
6749
6750Example:
6751""""""""
6752
6753.. code-block:: llvm
6754
6755 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6756 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006757 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006758
6759.. _memoryops:
6760
6761Memory Access and Addressing Operations
6762---------------------------------------
6763
6764A key design point of an SSA-based representation is how it represents
6765memory. In LLVM, no memory locations are in SSA form, which makes things
6766very simple. This section describes how to read, write, and allocate
6767memory in LLVM.
6768
6769.. _i_alloca:
6770
6771'``alloca``' Instruction
6772^^^^^^^^^^^^^^^^^^^^^^^^
6773
6774Syntax:
6775"""""""
6776
6777::
6778
Tim Northover675a0962014-06-13 14:24:23 +00006779 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006780
6781Overview:
6782"""""""""
6783
6784The '``alloca``' instruction allocates memory on the stack frame of the
6785currently executing function, to be automatically released when this
6786function returns to its caller. The object is always allocated in the
6787generic address space (address space zero).
6788
6789Arguments:
6790""""""""""
6791
6792The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6793bytes of memory on the runtime stack, returning a pointer of the
6794appropriate type to the program. If "NumElements" is specified, it is
6795the number of elements allocated, otherwise "NumElements" is defaulted
6796to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006797allocation is guaranteed to be aligned to at least that boundary. The
6798alignment may not be greater than ``1 << 29``. If not specified, or if
6799zero, the target can choose to align the allocation on any convenient
6800boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006801
6802'``type``' may be any sized type.
6803
6804Semantics:
6805""""""""""
6806
6807Memory is allocated; a pointer is returned. The operation is undefined
6808if there is insufficient stack space for the allocation. '``alloca``'d
6809memory is automatically released when the function returns. The
6810'``alloca``' instruction is commonly used to represent automatic
6811variables that must have an address available. When the function returns
6812(either with the ``ret`` or ``resume`` instructions), the memory is
6813reclaimed. Allocating zero bytes is legal, but the result is undefined.
6814The order in which memory is allocated (ie., which way the stack grows)
6815is not specified.
6816
6817Example:
6818""""""""
6819
6820.. code-block:: llvm
6821
Tim Northover675a0962014-06-13 14:24:23 +00006822 %ptr = alloca i32 ; yields i32*:ptr
6823 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6824 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6825 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006826
6827.. _i_load:
6828
6829'``load``' Instruction
6830^^^^^^^^^^^^^^^^^^^^^^
6831
6832Syntax:
6833"""""""
6834
6835::
6836
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006837 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006838 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006839 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006840 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006841 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006842
6843Overview:
6844"""""""""
6845
6846The '``load``' instruction is used to read from memory.
6847
6848Arguments:
6849""""""""""
6850
Eli Bendersky239a78b2013-04-17 20:17:08 +00006851The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006852from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006853class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6854then the optimizer is not allowed to modify the number or order of
6855execution of this ``load`` with other :ref:`volatile
6856operations <volatile>`.
6857
JF Bastiend1fb5852015-12-17 22:09:19 +00006858If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6859<ordering>` and optional ``singlethread`` argument. The ``release`` and
6860``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6861produce :ref:`defined <memmodel>` results when they may see multiple atomic
6862stores. The type of the pointee must be an integer, pointer, or floating-point
6863type whose bit width is a power of two greater than or equal to eight and less
6864than or equal to a target-specific size limit. ``align`` must be explicitly
6865specified on atomic loads, and the load has undefined behavior if the alignment
6866is not set to a value which is at least the size in bytes of the
6867pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006868
6869The optional constant ``align`` argument specifies the alignment of the
6870operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006871or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006872alignment for the target. It is the responsibility of the code emitter
6873to ensure that the alignment information is correct. Overestimating the
6874alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006875may produce less efficient code. An alignment of 1 is always safe. The
6876maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006877
6878The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006879metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006880``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006881metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006882that this load is not expected to be reused in the cache. The code
6883generator may select special instructions to save cache bandwidth, such
6884as the ``MOVNT`` instruction on x86.
6885
6886The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006887metadata name ``<index>`` corresponding to a metadata node with no
6888entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006889instruction tells the optimizer and code generator that the address
6890operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006891Being invariant does not imply that a location is dereferenceable,
6892but it does imply that once the location is known dereferenceable
6893its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006894
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006895The optional ``!invariant.group`` metadata must reference a single metadata name
6896 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6897
Philip Reamescdb72f32014-10-20 22:40:55 +00006898The optional ``!nonnull`` metadata must reference a single
6899metadata name ``<index>`` corresponding to a metadata node with no
6900entries. The existence of the ``!nonnull`` metadata on the
6901instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006902never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006903on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006904to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006905
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006906The optional ``!dereferenceable`` metadata must reference a single metadata
6907name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006908entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006909tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006910The number of bytes known to be dereferenceable is specified by the integer
6911value in the metadata node. This is analogous to the ''dereferenceable''
6912attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006913to loads of a pointer type.
6914
6915The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006916metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6917``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006918instruction tells the optimizer that the value loaded is known to be either
6919dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006920The number of bytes known to be dereferenceable is specified by the integer
6921value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6922attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006923to loads of a pointer type.
6924
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006925The optional ``!align`` metadata must reference a single metadata name
6926``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6927The existence of the ``!align`` metadata on the instruction tells the
6928optimizer that the value loaded is known to be aligned to a boundary specified
6929by the integer value in the metadata node. The alignment must be a power of 2.
6930This is analogous to the ''align'' attribute on parameters and return values.
6931This metadata can only be applied to loads of a pointer type.
6932
Sean Silvab084af42012-12-07 10:36:55 +00006933Semantics:
6934""""""""""
6935
6936The location of memory pointed to is loaded. If the value being loaded
6937is of scalar type then the number of bytes read does not exceed the
6938minimum number of bytes needed to hold all bits of the type. For
6939example, loading an ``i24`` reads at most three bytes. When loading a
6940value of a type like ``i20`` with a size that is not an integral number
6941of bytes, the result is undefined if the value was not originally
6942written using a store of the same type.
6943
6944Examples:
6945"""""""""
6946
6947.. code-block:: llvm
6948
Tim Northover675a0962014-06-13 14:24:23 +00006949 %ptr = alloca i32 ; yields i32*:ptr
6950 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006951 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006952
6953.. _i_store:
6954
6955'``store``' Instruction
6956^^^^^^^^^^^^^^^^^^^^^^^
6957
6958Syntax:
6959"""""""
6960
6961::
6962
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006963 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6964 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006965
6966Overview:
6967"""""""""
6968
6969The '``store``' instruction is used to write to memory.
6970
6971Arguments:
6972""""""""""
6973
Eli Benderskyca380842013-04-17 17:17:20 +00006974There are two arguments to the ``store`` instruction: a value to store
6975and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006976operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006977the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006978then the optimizer is not allowed to modify the number or order of
6979execution of this ``store`` with other :ref:`volatile
6980operations <volatile>`.
6981
JF Bastiend1fb5852015-12-17 22:09:19 +00006982If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
6983<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
6984``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
6985produce :ref:`defined <memmodel>` results when they may see multiple atomic
6986stores. The type of the pointee must be an integer, pointer, or floating-point
6987type whose bit width is a power of two greater than or equal to eight and less
6988than or equal to a target-specific size limit. ``align`` must be explicitly
6989specified on atomic stores, and the store has undefined behavior if the
6990alignment is not set to a value which is at least the size in bytes of the
6991pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00006992
Eli Benderskyca380842013-04-17 17:17:20 +00006993The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006994operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006995or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006996alignment for the target. It is the responsibility of the code emitter
6997to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006998alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006999alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00007000safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00007001
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007002The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00007003name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00007004value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00007005tells the optimizer and code generator that this load is not expected to
7006be reused in the cache. The code generator may select special
7007instructions to save cache bandwidth, such as the MOVNT instruction on
7008x86.
7009
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00007010The optional ``!invariant.group`` metadata must reference a
7011single metadata name ``<index>``. See ``invariant.group`` metadata.
7012
Sean Silvab084af42012-12-07 10:36:55 +00007013Semantics:
7014""""""""""
7015
Eli Benderskyca380842013-04-17 17:17:20 +00007016The contents of memory are updated to contain ``<value>`` at the
7017location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00007018of scalar type then the number of bytes written does not exceed the
7019minimum number of bytes needed to hold all bits of the type. For
7020example, storing an ``i24`` writes at most three bytes. When writing a
7021value of a type like ``i20`` with a size that is not an integral number
7022of bytes, it is unspecified what happens to the extra bits that do not
7023belong to the type, but they will typically be overwritten.
7024
7025Example:
7026""""""""
7027
7028.. code-block:: llvm
7029
Tim Northover675a0962014-06-13 14:24:23 +00007030 %ptr = alloca i32 ; yields i32*:ptr
7031 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00007032 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00007033
7034.. _i_fence:
7035
7036'``fence``' Instruction
7037^^^^^^^^^^^^^^^^^^^^^^^
7038
7039Syntax:
7040"""""""
7041
7042::
7043
Tim Northover675a0962014-06-13 14:24:23 +00007044 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007045
7046Overview:
7047"""""""""
7048
7049The '``fence``' instruction is used to introduce happens-before edges
7050between operations.
7051
7052Arguments:
7053""""""""""
7054
7055'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7056defines what *synchronizes-with* edges they add. They can only be given
7057``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7058
7059Semantics:
7060""""""""""
7061
7062A fence A which has (at least) ``release`` ordering semantics
7063*synchronizes with* a fence B with (at least) ``acquire`` ordering
7064semantics if and only if there exist atomic operations X and Y, both
7065operating on some atomic object M, such that A is sequenced before X, X
7066modifies M (either directly or through some side effect of a sequence
7067headed by X), Y is sequenced before B, and Y observes M. This provides a
7068*happens-before* dependency between A and B. Rather than an explicit
7069``fence``, one (but not both) of the atomic operations X or Y might
7070provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7071still *synchronize-with* the explicit ``fence`` and establish the
7072*happens-before* edge.
7073
7074A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7075``acquire`` and ``release`` semantics specified above, participates in
7076the global program order of other ``seq_cst`` operations and/or fences.
7077
7078The optional ":ref:`singlethread <singlethread>`" argument specifies
7079that the fence only synchronizes with other fences in the same thread.
7080(This is useful for interacting with signal handlers.)
7081
7082Example:
7083""""""""
7084
7085.. code-block:: llvm
7086
Tim Northover675a0962014-06-13 14:24:23 +00007087 fence acquire ; yields void
7088 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007089
7090.. _i_cmpxchg:
7091
7092'``cmpxchg``' Instruction
7093^^^^^^^^^^^^^^^^^^^^^^^^^
7094
7095Syntax:
7096"""""""
7097
7098::
7099
Tim Northover675a0962014-06-13 14:24:23 +00007100 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007101
7102Overview:
7103"""""""""
7104
7105The '``cmpxchg``' instruction is used to atomically modify memory. It
7106loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007107equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007108
7109Arguments:
7110""""""""""
7111
7112There are three arguments to the '``cmpxchg``' instruction: an address
7113to operate on, a value to compare to the value currently be at that
7114address, and a new value to place at that address if the compared values
7115are equal. The type of '<cmp>' must be an integer type whose bit width
7116is a power of two greater than or equal to eight and less than or equal
7117to a target-specific size limit. '<cmp>' and '<new>' must have the same
7118type, and the type of '<pointer>' must be a pointer to that type. If the
7119``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7120to modify the number or order of execution of this ``cmpxchg`` with
7121other :ref:`volatile operations <volatile>`.
7122
Tim Northovere94a5182014-03-11 10:48:52 +00007123The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007124``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7125must be at least ``monotonic``, the ordering constraint on failure must be no
7126stronger than that on success, and the failure ordering cannot be either
7127``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007128
7129The optional "``singlethread``" argument declares that the ``cmpxchg``
7130is only atomic with respect to code (usually signal handlers) running in
7131the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7132respect to all other code in the system.
7133
7134The pointer passed into cmpxchg must have alignment greater than or
7135equal to the size in memory of the operand.
7136
7137Semantics:
7138""""""""""
7139
Tim Northover420a2162014-06-13 14:24:07 +00007140The contents of memory at the location specified by the '``<pointer>``' operand
7141is read and compared to '``<cmp>``'; if the read value is the equal, the
7142'``<new>``' is written. The original value at the location is returned, together
7143with a flag indicating success (true) or failure (false).
7144
7145If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7146permitted: the operation may not write ``<new>`` even if the comparison
7147matched.
7148
7149If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7150if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007151
Tim Northovere94a5182014-03-11 10:48:52 +00007152A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7153identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7154load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007155
7156Example:
7157""""""""
7158
7159.. code-block:: llvm
7160
7161 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007162 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007163 br label %loop
7164
7165 loop:
7166 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7167 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007168 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007169 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7170 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007171 br i1 %success, label %done, label %loop
7172
7173 done:
7174 ...
7175
7176.. _i_atomicrmw:
7177
7178'``atomicrmw``' Instruction
7179^^^^^^^^^^^^^^^^^^^^^^^^^^^
7180
7181Syntax:
7182"""""""
7183
7184::
7185
Tim Northover675a0962014-06-13 14:24:23 +00007186 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007187
7188Overview:
7189"""""""""
7190
7191The '``atomicrmw``' instruction is used to atomically modify memory.
7192
7193Arguments:
7194""""""""""
7195
7196There are three arguments to the '``atomicrmw``' instruction: an
7197operation to apply, an address whose value to modify, an argument to the
7198operation. The operation must be one of the following keywords:
7199
7200- xchg
7201- add
7202- sub
7203- and
7204- nand
7205- or
7206- xor
7207- max
7208- min
7209- umax
7210- umin
7211
7212The type of '<value>' must be an integer type whose bit width is a power
7213of two greater than or equal to eight and less than or equal to a
7214target-specific size limit. The type of the '``<pointer>``' operand must
7215be a pointer to that type. If the ``atomicrmw`` is marked as
7216``volatile``, then the optimizer is not allowed to modify the number or
7217order of execution of this ``atomicrmw`` with other :ref:`volatile
7218operations <volatile>`.
7219
7220Semantics:
7221""""""""""
7222
7223The contents of memory at the location specified by the '``<pointer>``'
7224operand are atomically read, modified, and written back. The original
7225value at the location is returned. The modification is specified by the
7226operation argument:
7227
7228- xchg: ``*ptr = val``
7229- add: ``*ptr = *ptr + val``
7230- sub: ``*ptr = *ptr - val``
7231- and: ``*ptr = *ptr & val``
7232- nand: ``*ptr = ~(*ptr & val)``
7233- or: ``*ptr = *ptr | val``
7234- xor: ``*ptr = *ptr ^ val``
7235- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7236- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7237- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7238 comparison)
7239- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7240 comparison)
7241
7242Example:
7243""""""""
7244
7245.. code-block:: llvm
7246
Tim Northover675a0962014-06-13 14:24:23 +00007247 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007248
7249.. _i_getelementptr:
7250
7251'``getelementptr``' Instruction
7252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7253
7254Syntax:
7255"""""""
7256
7257::
7258
David Blaikie16a97eb2015-03-04 22:02:58 +00007259 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7260 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7261 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007262
7263Overview:
7264"""""""""
7265
7266The '``getelementptr``' instruction is used to get the address of a
7267subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007268address calculation only and does not access memory. The instruction can also
7269be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007270
7271Arguments:
7272""""""""""
7273
David Blaikie16a97eb2015-03-04 22:02:58 +00007274The first argument is always a type used as the basis for the calculations.
7275The second argument is always a pointer or a vector of pointers, and is the
7276base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007277that indicate which of the elements of the aggregate object are indexed.
7278The interpretation of each index is dependent on the type being indexed
7279into. The first index always indexes the pointer value given as the
7280first argument, the second index indexes a value of the type pointed to
7281(not necessarily the value directly pointed to, since the first index
7282can be non-zero), etc. The first type indexed into must be a pointer
7283value, subsequent types can be arrays, vectors, and structs. Note that
7284subsequent types being indexed into can never be pointers, since that
7285would require loading the pointer before continuing calculation.
7286
7287The type of each index argument depends on the type it is indexing into.
7288When indexing into a (optionally packed) structure, only ``i32`` integer
7289**constants** are allowed (when using a vector of indices they must all
7290be the **same** ``i32`` integer constant). When indexing into an array,
7291pointer or vector, integers of any width are allowed, and they are not
7292required to be constant. These integers are treated as signed values
7293where relevant.
7294
7295For example, let's consider a C code fragment and how it gets compiled
7296to LLVM:
7297
7298.. code-block:: c
7299
7300 struct RT {
7301 char A;
7302 int B[10][20];
7303 char C;
7304 };
7305 struct ST {
7306 int X;
7307 double Y;
7308 struct RT Z;
7309 };
7310
7311 int *foo(struct ST *s) {
7312 return &s[1].Z.B[5][13];
7313 }
7314
7315The LLVM code generated by Clang is:
7316
7317.. code-block:: llvm
7318
7319 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7320 %struct.ST = type { i32, double, %struct.RT }
7321
7322 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7323 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007324 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007325 ret i32* %arrayidx
7326 }
7327
7328Semantics:
7329""""""""""
7330
7331In the example above, the first index is indexing into the
7332'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7333= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7334indexes into the third element of the structure, yielding a
7335'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7336structure. The third index indexes into the second element of the
7337structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7338dimensions of the array are subscripted into, yielding an '``i32``'
7339type. The '``getelementptr``' instruction returns a pointer to this
7340element, thus computing a value of '``i32*``' type.
7341
7342Note that it is perfectly legal to index partially through a structure,
7343returning a pointer to an inner element. Because of this, the LLVM code
7344for the given testcase is equivalent to:
7345
7346.. code-block:: llvm
7347
7348 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007349 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7350 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7351 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7352 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7353 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007354 ret i32* %t5
7355 }
7356
7357If the ``inbounds`` keyword is present, the result value of the
7358``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7359pointer is not an *in bounds* address of an allocated object, or if any
7360of the addresses that would be formed by successive addition of the
7361offsets implied by the indices to the base address with infinitely
7362precise signed arithmetic are not an *in bounds* address of that
7363allocated object. The *in bounds* addresses for an allocated object are
7364all the addresses that point into the object, plus the address one byte
7365past the end. In cases where the base is a vector of pointers the
7366``inbounds`` keyword applies to each of the computations element-wise.
7367
7368If the ``inbounds`` keyword is not present, the offsets are added to the
7369base address with silently-wrapping two's complement arithmetic. If the
7370offsets have a different width from the pointer, they are sign-extended
7371or truncated to the width of the pointer. The result value of the
7372``getelementptr`` may be outside the object pointed to by the base
7373pointer. The result value may not necessarily be used to access memory
7374though, even if it happens to point into allocated storage. See the
7375:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7376information.
7377
7378The getelementptr instruction is often confusing. For some more insight
7379into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7380
7381Example:
7382""""""""
7383
7384.. code-block:: llvm
7385
7386 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007387 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007388 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007389 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007390 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007391 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007392 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007393 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007394
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007395Vector of pointers:
7396"""""""""""""""""""
7397
7398The ``getelementptr`` returns a vector of pointers, instead of a single address,
7399when one or more of its arguments is a vector. In such cases, all vector
7400arguments should have the same number of elements, and every scalar argument
7401will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007402
7403.. code-block:: llvm
7404
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007405 ; All arguments are vectors:
7406 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7407 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007408
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007409 ; Add the same scalar offset to each pointer of a vector:
7410 ; A[i] = ptrs[i] + offset*sizeof(i8)
7411 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007412
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007413 ; Add distinct offsets to the same pointer:
7414 ; A[i] = ptr + offsets[i]*sizeof(i8)
7415 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007416
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007417 ; In all cases described above the type of the result is <4 x i8*>
7418
7419The two following instructions are equivalent:
7420
7421.. code-block:: llvm
7422
7423 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7424 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7425 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7426 <4 x i32> %ind4,
7427 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007428
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007429 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7430 i32 2, i32 1, <4 x i32> %ind4, i64 13
7431
7432Let's look at the C code, where the vector version of ``getelementptr``
7433makes sense:
7434
7435.. code-block:: c
7436
7437 // Let's assume that we vectorize the following loop:
7438 double *A, B; int *C;
7439 for (int i = 0; i < size; ++i) {
7440 A[i] = B[C[i]];
7441 }
7442
7443.. code-block:: llvm
7444
7445 ; get pointers for 8 elements from array B
7446 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7447 ; load 8 elements from array B into A
7448 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7449 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007450
7451Conversion Operations
7452---------------------
7453
7454The instructions in this category are the conversion instructions
7455(casting) which all take a single operand and a type. They perform
7456various bit conversions on the operand.
7457
7458'``trunc .. to``' Instruction
7459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7460
7461Syntax:
7462"""""""
7463
7464::
7465
7466 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7467
7468Overview:
7469"""""""""
7470
7471The '``trunc``' instruction truncates its operand to the type ``ty2``.
7472
7473Arguments:
7474""""""""""
7475
7476The '``trunc``' instruction takes a value to trunc, and a type to trunc
7477it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7478of the same number of integers. The bit size of the ``value`` must be
7479larger than the bit size of the destination type, ``ty2``. Equal sized
7480types are not allowed.
7481
7482Semantics:
7483""""""""""
7484
7485The '``trunc``' instruction truncates the high order bits in ``value``
7486and converts the remaining bits to ``ty2``. Since the source size must
7487be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7488It will always truncate bits.
7489
7490Example:
7491""""""""
7492
7493.. code-block:: llvm
7494
7495 %X = trunc i32 257 to i8 ; yields i8:1
7496 %Y = trunc i32 123 to i1 ; yields i1:true
7497 %Z = trunc i32 122 to i1 ; yields i1:false
7498 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7499
7500'``zext .. to``' Instruction
7501^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7502
7503Syntax:
7504"""""""
7505
7506::
7507
7508 <result> = zext <ty> <value> to <ty2> ; yields ty2
7509
7510Overview:
7511"""""""""
7512
7513The '``zext``' instruction zero extends its operand to type ``ty2``.
7514
7515Arguments:
7516""""""""""
7517
7518The '``zext``' instruction takes a value to cast, and a type to cast it
7519to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7520the same number of integers. The bit size of the ``value`` must be
7521smaller than the bit size of the destination type, ``ty2``.
7522
7523Semantics:
7524""""""""""
7525
7526The ``zext`` fills the high order bits of the ``value`` with zero bits
7527until it reaches the size of the destination type, ``ty2``.
7528
7529When zero extending from i1, the result will always be either 0 or 1.
7530
7531Example:
7532""""""""
7533
7534.. code-block:: llvm
7535
7536 %X = zext i32 257 to i64 ; yields i64:257
7537 %Y = zext i1 true to i32 ; yields i32:1
7538 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7539
7540'``sext .. to``' Instruction
7541^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7542
7543Syntax:
7544"""""""
7545
7546::
7547
7548 <result> = sext <ty> <value> to <ty2> ; yields ty2
7549
7550Overview:
7551"""""""""
7552
7553The '``sext``' sign extends ``value`` to the type ``ty2``.
7554
7555Arguments:
7556""""""""""
7557
7558The '``sext``' instruction takes a value to cast, and a type to cast it
7559to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7560the same number of integers. The bit size of the ``value`` must be
7561smaller than the bit size of the destination type, ``ty2``.
7562
7563Semantics:
7564""""""""""
7565
7566The '``sext``' instruction performs a sign extension by copying the sign
7567bit (highest order bit) of the ``value`` until it reaches the bit size
7568of the type ``ty2``.
7569
7570When sign extending from i1, the extension always results in -1 or 0.
7571
7572Example:
7573""""""""
7574
7575.. code-block:: llvm
7576
7577 %X = sext i8 -1 to i16 ; yields i16 :65535
7578 %Y = sext i1 true to i32 ; yields i32:-1
7579 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7580
7581'``fptrunc .. to``' Instruction
7582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7583
7584Syntax:
7585"""""""
7586
7587::
7588
7589 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7590
7591Overview:
7592"""""""""
7593
7594The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7595
7596Arguments:
7597""""""""""
7598
7599The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7600value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7601The size of ``value`` must be larger than the size of ``ty2``. This
7602implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7603
7604Semantics:
7605""""""""""
7606
Dan Liew50456fb2015-09-03 18:43:56 +00007607The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007608:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007609point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7610destination type, ``ty2``, then the results are undefined. If the cast produces
7611an inexact result, how rounding is performed (e.g. truncation, also known as
7612round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007613
7614Example:
7615""""""""
7616
7617.. code-block:: llvm
7618
7619 %X = fptrunc double 123.0 to float ; yields float:123.0
7620 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7621
7622'``fpext .. to``' Instruction
7623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7624
7625Syntax:
7626"""""""
7627
7628::
7629
7630 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7631
7632Overview:
7633"""""""""
7634
7635The '``fpext``' extends a floating point ``value`` to a larger floating
7636point value.
7637
7638Arguments:
7639""""""""""
7640
7641The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7642``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7643to. The source type must be smaller than the destination type.
7644
7645Semantics:
7646""""""""""
7647
7648The '``fpext``' instruction extends the ``value`` from a smaller
7649:ref:`floating point <t_floating>` type to a larger :ref:`floating
7650point <t_floating>` type. The ``fpext`` cannot be used to make a
7651*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7652*no-op cast* for a floating point cast.
7653
7654Example:
7655""""""""
7656
7657.. code-block:: llvm
7658
7659 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7660 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7661
7662'``fptoui .. to``' Instruction
7663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7664
7665Syntax:
7666"""""""
7667
7668::
7669
7670 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7671
7672Overview:
7673"""""""""
7674
7675The '``fptoui``' converts a floating point ``value`` to its unsigned
7676integer equivalent of type ``ty2``.
7677
7678Arguments:
7679""""""""""
7680
7681The '``fptoui``' instruction takes a value to cast, which must be a
7682scalar or vector :ref:`floating point <t_floating>` value, and a type to
7683cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7684``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7685type with the same number of elements as ``ty``
7686
7687Semantics:
7688""""""""""
7689
7690The '``fptoui``' instruction converts its :ref:`floating
7691point <t_floating>` operand into the nearest (rounding towards zero)
7692unsigned integer value. If the value cannot fit in ``ty2``, the results
7693are undefined.
7694
7695Example:
7696""""""""
7697
7698.. code-block:: llvm
7699
7700 %X = fptoui double 123.0 to i32 ; yields i32:123
7701 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7702 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7703
7704'``fptosi .. to``' Instruction
7705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7706
7707Syntax:
7708"""""""
7709
7710::
7711
7712 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7713
7714Overview:
7715"""""""""
7716
7717The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7718``value`` to type ``ty2``.
7719
7720Arguments:
7721""""""""""
7722
7723The '``fptosi``' instruction takes a value to cast, which must be a
7724scalar or vector :ref:`floating point <t_floating>` value, and a type to
7725cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7726``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7727type with the same number of elements as ``ty``
7728
7729Semantics:
7730""""""""""
7731
7732The '``fptosi``' instruction converts its :ref:`floating
7733point <t_floating>` operand into the nearest (rounding towards zero)
7734signed integer value. If the value cannot fit in ``ty2``, the results
7735are undefined.
7736
7737Example:
7738""""""""
7739
7740.. code-block:: llvm
7741
7742 %X = fptosi double -123.0 to i32 ; yields i32:-123
7743 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7744 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7745
7746'``uitofp .. to``' Instruction
7747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7748
7749Syntax:
7750"""""""
7751
7752::
7753
7754 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7755
7756Overview:
7757"""""""""
7758
7759The '``uitofp``' instruction regards ``value`` as an unsigned integer
7760and converts that value to the ``ty2`` type.
7761
7762Arguments:
7763""""""""""
7764
7765The '``uitofp``' instruction takes a value to cast, which must be a
7766scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7767``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7768``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7769type with the same number of elements as ``ty``
7770
7771Semantics:
7772""""""""""
7773
7774The '``uitofp``' instruction interprets its operand as an unsigned
7775integer quantity and converts it to the corresponding floating point
7776value. If the value cannot fit in the floating point value, the results
7777are undefined.
7778
7779Example:
7780""""""""
7781
7782.. code-block:: llvm
7783
7784 %X = uitofp i32 257 to float ; yields float:257.0
7785 %Y = uitofp i8 -1 to double ; yields double:255.0
7786
7787'``sitofp .. to``' Instruction
7788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7789
7790Syntax:
7791"""""""
7792
7793::
7794
7795 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7796
7797Overview:
7798"""""""""
7799
7800The '``sitofp``' instruction regards ``value`` as a signed integer and
7801converts that value to the ``ty2`` type.
7802
7803Arguments:
7804""""""""""
7805
7806The '``sitofp``' instruction takes a value to cast, which must be a
7807scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7808``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7809``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7810type with the same number of elements as ``ty``
7811
7812Semantics:
7813""""""""""
7814
7815The '``sitofp``' instruction interprets its operand as a signed integer
7816quantity and converts it to the corresponding floating point value. If
7817the value cannot fit in the floating point value, the results are
7818undefined.
7819
7820Example:
7821""""""""
7822
7823.. code-block:: llvm
7824
7825 %X = sitofp i32 257 to float ; yields float:257.0
7826 %Y = sitofp i8 -1 to double ; yields double:-1.0
7827
7828.. _i_ptrtoint:
7829
7830'``ptrtoint .. to``' Instruction
7831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7832
7833Syntax:
7834"""""""
7835
7836::
7837
7838 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7839
7840Overview:
7841"""""""""
7842
7843The '``ptrtoint``' instruction converts the pointer or a vector of
7844pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7845
7846Arguments:
7847""""""""""
7848
7849The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007850a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007851type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7852a vector of integers type.
7853
7854Semantics:
7855""""""""""
7856
7857The '``ptrtoint``' instruction converts ``value`` to integer type
7858``ty2`` by interpreting the pointer value as an integer and either
7859truncating or zero extending that value to the size of the integer type.
7860If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7861``value`` is larger than ``ty2`` then a truncation is done. If they are
7862the same size, then nothing is done (*no-op cast*) other than a type
7863change.
7864
7865Example:
7866""""""""
7867
7868.. code-block:: llvm
7869
7870 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7871 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7872 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7873
7874.. _i_inttoptr:
7875
7876'``inttoptr .. to``' Instruction
7877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7878
7879Syntax:
7880"""""""
7881
7882::
7883
7884 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7885
7886Overview:
7887"""""""""
7888
7889The '``inttoptr``' instruction converts an integer ``value`` to a
7890pointer type, ``ty2``.
7891
7892Arguments:
7893""""""""""
7894
7895The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7896cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7897type.
7898
7899Semantics:
7900""""""""""
7901
7902The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7903applying either a zero extension or a truncation depending on the size
7904of the integer ``value``. If ``value`` is larger than the size of a
7905pointer then a truncation is done. If ``value`` is smaller than the size
7906of a pointer then a zero extension is done. If they are the same size,
7907nothing is done (*no-op cast*).
7908
7909Example:
7910""""""""
7911
7912.. code-block:: llvm
7913
7914 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7915 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7916 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7917 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7918
7919.. _i_bitcast:
7920
7921'``bitcast .. to``' Instruction
7922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7923
7924Syntax:
7925"""""""
7926
7927::
7928
7929 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7930
7931Overview:
7932"""""""""
7933
7934The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7935changing any bits.
7936
7937Arguments:
7938""""""""""
7939
7940The '``bitcast``' instruction takes a value to cast, which must be a
7941non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007942also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7943bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007944identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007945also be a pointer of the same size. This instruction supports bitwise
7946conversion of vectors to integers and to vectors of other types (as
7947long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007948
7949Semantics:
7950""""""""""
7951
Matt Arsenault24b49c42013-07-31 17:49:08 +00007952The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7953is always a *no-op cast* because no bits change with this
7954conversion. The conversion is done as if the ``value`` had been stored
7955to memory and read back as type ``ty2``. Pointer (or vector of
7956pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007957pointers) types with the same address space through this instruction.
7958To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7959or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007960
7961Example:
7962""""""""
7963
7964.. code-block:: llvm
7965
7966 %X = bitcast i8 255 to i8 ; yields i8 :-1
7967 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7968 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7969 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7970
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007971.. _i_addrspacecast:
7972
7973'``addrspacecast .. to``' Instruction
7974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7975
7976Syntax:
7977"""""""
7978
7979::
7980
7981 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7982
7983Overview:
7984"""""""""
7985
7986The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7987address space ``n`` to type ``pty2`` in address space ``m``.
7988
7989Arguments:
7990""""""""""
7991
7992The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7993to cast and a pointer type to cast it to, which must have a different
7994address space.
7995
7996Semantics:
7997""""""""""
7998
7999The '``addrspacecast``' instruction converts the pointer value
8000``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00008001value modification, depending on the target and the address space
8002pair. Pointer conversions within the same address space must be
8003performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008004conversion is legal then both result and operand refer to the same memory
8005location.
8006
8007Example:
8008""""""""
8009
8010.. code-block:: llvm
8011
Matt Arsenault9c13dd02013-11-15 22:43:50 +00008012 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
8013 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
8014 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00008015
Sean Silvab084af42012-12-07 10:36:55 +00008016.. _otherops:
8017
8018Other Operations
8019----------------
8020
8021The instructions in this category are the "miscellaneous" instructions,
8022which defy better classification.
8023
8024.. _i_icmp:
8025
8026'``icmp``' Instruction
8027^^^^^^^^^^^^^^^^^^^^^^
8028
8029Syntax:
8030"""""""
8031
8032::
8033
Tim Northover675a0962014-06-13 14:24:23 +00008034 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008035
8036Overview:
8037"""""""""
8038
8039The '``icmp``' instruction returns a boolean value or a vector of
8040boolean values based on comparison of its two integer, integer vector,
8041pointer, or pointer vector operands.
8042
8043Arguments:
8044""""""""""
8045
8046The '``icmp``' instruction takes three operands. The first operand is
8047the condition code indicating the kind of comparison to perform. It is
8048not a value, just a keyword. The possible condition code are:
8049
8050#. ``eq``: equal
8051#. ``ne``: not equal
8052#. ``ugt``: unsigned greater than
8053#. ``uge``: unsigned greater or equal
8054#. ``ult``: unsigned less than
8055#. ``ule``: unsigned less or equal
8056#. ``sgt``: signed greater than
8057#. ``sge``: signed greater or equal
8058#. ``slt``: signed less than
8059#. ``sle``: signed less or equal
8060
8061The remaining two arguments must be :ref:`integer <t_integer>` or
8062:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8063must also be identical types.
8064
8065Semantics:
8066""""""""""
8067
8068The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8069code given as ``cond``. The comparison performed always yields either an
8070:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8071
8072#. ``eq``: yields ``true`` if the operands are equal, ``false``
8073 otherwise. No sign interpretation is necessary or performed.
8074#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8075 otherwise. No sign interpretation is necessary or performed.
8076#. ``ugt``: interprets the operands as unsigned values and yields
8077 ``true`` if ``op1`` is greater than ``op2``.
8078#. ``uge``: interprets the operands as unsigned values and yields
8079 ``true`` if ``op1`` is greater than or equal to ``op2``.
8080#. ``ult``: interprets the operands as unsigned values and yields
8081 ``true`` if ``op1`` is less than ``op2``.
8082#. ``ule``: interprets the operands as unsigned values and yields
8083 ``true`` if ``op1`` is less than or equal to ``op2``.
8084#. ``sgt``: interprets the operands as signed values and yields ``true``
8085 if ``op1`` is greater than ``op2``.
8086#. ``sge``: interprets the operands as signed values and yields ``true``
8087 if ``op1`` is greater than or equal to ``op2``.
8088#. ``slt``: interprets the operands as signed values and yields ``true``
8089 if ``op1`` is less than ``op2``.
8090#. ``sle``: interprets the operands as signed values and yields ``true``
8091 if ``op1`` is less than or equal to ``op2``.
8092
8093If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8094are compared as if they were integers.
8095
8096If the operands are integer vectors, then they are compared element by
8097element. The result is an ``i1`` vector with the same number of elements
8098as the values being compared. Otherwise, the result is an ``i1``.
8099
8100Example:
8101""""""""
8102
8103.. code-block:: llvm
8104
8105 <result> = icmp eq i32 4, 5 ; yields: result=false
8106 <result> = icmp ne float* %X, %X ; yields: result=false
8107 <result> = icmp ult i16 4, 5 ; yields: result=true
8108 <result> = icmp sgt i16 4, 5 ; yields: result=false
8109 <result> = icmp ule i16 -4, 5 ; yields: result=false
8110 <result> = icmp sge i16 4, 5 ; yields: result=false
8111
8112Note that the code generator does not yet support vector types with the
8113``icmp`` instruction.
8114
8115.. _i_fcmp:
8116
8117'``fcmp``' Instruction
8118^^^^^^^^^^^^^^^^^^^^^^
8119
8120Syntax:
8121"""""""
8122
8123::
8124
James Molloy88eb5352015-07-10 12:52:00 +00008125 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008126
8127Overview:
8128"""""""""
8129
8130The '``fcmp``' instruction returns a boolean value or vector of boolean
8131values based on comparison of its operands.
8132
8133If the operands are floating point scalars, then the result type is a
8134boolean (:ref:`i1 <t_integer>`).
8135
8136If the operands are floating point vectors, then the result type is a
8137vector of boolean with the same number of elements as the operands being
8138compared.
8139
8140Arguments:
8141""""""""""
8142
8143The '``fcmp``' instruction takes three operands. The first operand is
8144the condition code indicating the kind of comparison to perform. It is
8145not a value, just a keyword. The possible condition code are:
8146
8147#. ``false``: no comparison, always returns false
8148#. ``oeq``: ordered and equal
8149#. ``ogt``: ordered and greater than
8150#. ``oge``: ordered and greater than or equal
8151#. ``olt``: ordered and less than
8152#. ``ole``: ordered and less than or equal
8153#. ``one``: ordered and not equal
8154#. ``ord``: ordered (no nans)
8155#. ``ueq``: unordered or equal
8156#. ``ugt``: unordered or greater than
8157#. ``uge``: unordered or greater than or equal
8158#. ``ult``: unordered or less than
8159#. ``ule``: unordered or less than or equal
8160#. ``une``: unordered or not equal
8161#. ``uno``: unordered (either nans)
8162#. ``true``: no comparison, always returns true
8163
8164*Ordered* means that neither operand is a QNAN while *unordered* means
8165that either operand may be a QNAN.
8166
8167Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8168point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8169type. They must have identical types.
8170
8171Semantics:
8172""""""""""
8173
8174The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8175condition code given as ``cond``. If the operands are vectors, then the
8176vectors are compared element by element. Each comparison performed
8177always yields an :ref:`i1 <t_integer>` result, as follows:
8178
8179#. ``false``: always yields ``false``, regardless of operands.
8180#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8181 is equal to ``op2``.
8182#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8183 is greater than ``op2``.
8184#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8185 is greater than or equal to ``op2``.
8186#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8187 is less than ``op2``.
8188#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8189 is less than or equal to ``op2``.
8190#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8191 is not equal to ``op2``.
8192#. ``ord``: yields ``true`` if both operands are not a QNAN.
8193#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8194 equal to ``op2``.
8195#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8196 greater than ``op2``.
8197#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8198 greater than or equal to ``op2``.
8199#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8200 less than ``op2``.
8201#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8202 less than or equal to ``op2``.
8203#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8204 not equal to ``op2``.
8205#. ``uno``: yields ``true`` if either operand is a QNAN.
8206#. ``true``: always yields ``true``, regardless of operands.
8207
James Molloy88eb5352015-07-10 12:52:00 +00008208The ``fcmp`` instruction can also optionally take any number of
8209:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8210otherwise unsafe floating point optimizations.
8211
8212Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8213only flags that have any effect on its semantics are those that allow
8214assumptions to be made about the values of input arguments; namely
8215``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8216
Sean Silvab084af42012-12-07 10:36:55 +00008217Example:
8218""""""""
8219
8220.. code-block:: llvm
8221
8222 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8223 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8224 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8225 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8226
8227Note that the code generator does not yet support vector types with the
8228``fcmp`` instruction.
8229
8230.. _i_phi:
8231
8232'``phi``' Instruction
8233^^^^^^^^^^^^^^^^^^^^^
8234
8235Syntax:
8236"""""""
8237
8238::
8239
8240 <result> = phi <ty> [ <val0>, <label0>], ...
8241
8242Overview:
8243"""""""""
8244
8245The '``phi``' instruction is used to implement the φ node in the SSA
8246graph representing the function.
8247
8248Arguments:
8249""""""""""
8250
8251The type of the incoming values is specified with the first type field.
8252After this, the '``phi``' instruction takes a list of pairs as
8253arguments, with one pair for each predecessor basic block of the current
8254block. Only values of :ref:`first class <t_firstclass>` type may be used as
8255the value arguments to the PHI node. Only labels may be used as the
8256label arguments.
8257
8258There must be no non-phi instructions between the start of a basic block
8259and the PHI instructions: i.e. PHI instructions must be first in a basic
8260block.
8261
8262For the purposes of the SSA form, the use of each incoming value is
8263deemed to occur on the edge from the corresponding predecessor block to
8264the current block (but after any definition of an '``invoke``'
8265instruction's return value on the same edge).
8266
8267Semantics:
8268""""""""""
8269
8270At runtime, the '``phi``' instruction logically takes on the value
8271specified by the pair corresponding to the predecessor basic block that
8272executed just prior to the current block.
8273
8274Example:
8275""""""""
8276
8277.. code-block:: llvm
8278
8279 Loop: ; Infinite loop that counts from 0 on up...
8280 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8281 %nextindvar = add i32 %indvar, 1
8282 br label %Loop
8283
8284.. _i_select:
8285
8286'``select``' Instruction
8287^^^^^^^^^^^^^^^^^^^^^^^^
8288
8289Syntax:
8290"""""""
8291
8292::
8293
8294 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8295
8296 selty is either i1 or {<N x i1>}
8297
8298Overview:
8299"""""""""
8300
8301The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008302condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008303
8304Arguments:
8305""""""""""
8306
8307The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8308values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008309class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008310
8311Semantics:
8312""""""""""
8313
8314If the condition is an i1 and it evaluates to 1, the instruction returns
8315the first value argument; otherwise, it returns the second value
8316argument.
8317
8318If the condition is a vector of i1, then the value arguments must be
8319vectors of the same size, and the selection is done element by element.
8320
David Majnemer40a0b592015-03-03 22:45:47 +00008321If the condition is an i1 and the value arguments are vectors of the
8322same size, then an entire vector is selected.
8323
Sean Silvab084af42012-12-07 10:36:55 +00008324Example:
8325""""""""
8326
8327.. code-block:: llvm
8328
8329 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8330
8331.. _i_call:
8332
8333'``call``' Instruction
8334^^^^^^^^^^^^^^^^^^^^^^
8335
8336Syntax:
8337"""""""
8338
8339::
8340
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008341 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008342 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008343
8344Overview:
8345"""""""""
8346
8347The '``call``' instruction represents a simple function call.
8348
8349Arguments:
8350""""""""""
8351
8352This instruction requires several arguments:
8353
Reid Kleckner5772b772014-04-24 20:14:34 +00008354#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008355 should perform tail call optimization. The ``tail`` marker is a hint that
8356 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008357 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008358 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008359
8360 #. The call will not cause unbounded stack growth if it is part of a
8361 recursive cycle in the call graph.
8362 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8363 forwarded in place.
8364
8365 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008366 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008367 rules:
8368
8369 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8370 or a pointer bitcast followed by a ret instruction.
8371 - The ret instruction must return the (possibly bitcasted) value
8372 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008373 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008374 parameters or return types may differ in pointee type, but not
8375 in address space.
8376 - The calling conventions of the caller and callee must match.
8377 - All ABI-impacting function attributes, such as sret, byval, inreg,
8378 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008379 - The callee must be varargs iff the caller is varargs. Bitcasting a
8380 non-varargs function to the appropriate varargs type is legal so
8381 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008382
8383 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8384 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008385
8386 - Caller and callee both have the calling convention ``fastcc``.
8387 - The call is in tail position (ret immediately follows call and ret
8388 uses value of call or is void).
8389 - Option ``-tailcallopt`` is enabled, or
8390 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008391 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008392 met. <CodeGenerator.html#tailcallopt>`_
8393
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008394#. The optional ``notail`` marker indicates that the optimizers should not add
8395 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8396 call optimization from being performed on the call.
8397
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008398#. The optional ``fast-math flags`` marker indicates that the call has one or more
8399 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8400 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8401 for calls that return a floating-point scalar or vector type.
8402
Sean Silvab084af42012-12-07 10:36:55 +00008403#. The optional "cconv" marker indicates which :ref:`calling
8404 convention <callingconv>` the call should use. If none is
8405 specified, the call defaults to using C calling conventions. The
8406 calling convention of the call must match the calling convention of
8407 the target function, or else the behavior is undefined.
8408#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8409 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8410 are valid here.
8411#. '``ty``': the type of the call instruction itself which is also the
8412 type of the return value. Functions that return no value are marked
8413 ``void``.
8414#. '``fnty``': shall be the signature of the pointer to function value
8415 being invoked. The argument types must match the types implied by
8416 this signature. This type can be omitted if the function is not
8417 varargs and if the function type does not return a pointer to a
8418 function.
8419#. '``fnptrval``': An LLVM value containing a pointer to a function to
8420 be invoked. In most cases, this is a direct function invocation, but
8421 indirect ``call``'s are just as possible, calling an arbitrary pointer
8422 to function value.
8423#. '``function args``': argument list whose types match the function
8424 signature argument types and parameter attributes. All arguments must
8425 be of :ref:`first class <t_firstclass>` type. If the function signature
8426 indicates the function accepts a variable number of arguments, the
8427 extra arguments can be specified.
8428#. The optional :ref:`function attributes <fnattrs>` list. Only
8429 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8430 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008431#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008432
8433Semantics:
8434""""""""""
8435
8436The '``call``' instruction is used to cause control flow to transfer to
8437a specified function, with its incoming arguments bound to the specified
8438values. Upon a '``ret``' instruction in the called function, control
8439flow continues with the instruction after the function call, and the
8440return value of the function is bound to the result argument.
8441
8442Example:
8443""""""""
8444
8445.. code-block:: llvm
8446
8447 %retval = call i32 @test(i32 %argc)
8448 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8449 %X = tail call i32 @foo() ; yields i32
8450 %Y = tail call fastcc i32 @foo() ; yields i32
8451 call void %foo(i8 97 signext)
8452
8453 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008454 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008455 %gr = extractvalue %struct.A %r, 0 ; yields i32
8456 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8457 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8458 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8459
8460llvm treats calls to some functions with names and arguments that match
8461the standard C99 library as being the C99 library functions, and may
8462perform optimizations or generate code for them under that assumption.
8463This is something we'd like to change in the future to provide better
8464support for freestanding environments and non-C-based languages.
8465
8466.. _i_va_arg:
8467
8468'``va_arg``' Instruction
8469^^^^^^^^^^^^^^^^^^^^^^^^
8470
8471Syntax:
8472"""""""
8473
8474::
8475
8476 <resultval> = va_arg <va_list*> <arglist>, <argty>
8477
8478Overview:
8479"""""""""
8480
8481The '``va_arg``' instruction is used to access arguments passed through
8482the "variable argument" area of a function call. It is used to implement
8483the ``va_arg`` macro in C.
8484
8485Arguments:
8486""""""""""
8487
8488This instruction takes a ``va_list*`` value and the type of the
8489argument. It returns a value of the specified argument type and
8490increments the ``va_list`` to point to the next argument. The actual
8491type of ``va_list`` is target specific.
8492
8493Semantics:
8494""""""""""
8495
8496The '``va_arg``' instruction loads an argument of the specified type
8497from the specified ``va_list`` and causes the ``va_list`` to point to
8498the next argument. For more information, see the variable argument
8499handling :ref:`Intrinsic Functions <int_varargs>`.
8500
8501It is legal for this instruction to be called in a function which does
8502not take a variable number of arguments, for example, the ``vfprintf``
8503function.
8504
8505``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8506function <intrinsics>` because it takes a type as an argument.
8507
8508Example:
8509""""""""
8510
8511See the :ref:`variable argument processing <int_varargs>` section.
8512
8513Note that the code generator does not yet fully support va\_arg on many
8514targets. Also, it does not currently support va\_arg with aggregate
8515types on any target.
8516
8517.. _i_landingpad:
8518
8519'``landingpad``' Instruction
8520^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8521
8522Syntax:
8523"""""""
8524
8525::
8526
David Majnemer7fddecc2015-06-17 20:52:32 +00008527 <resultval> = landingpad <resultty> <clause>+
8528 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008529
8530 <clause> := catch <type> <value>
8531 <clause> := filter <array constant type> <array constant>
8532
8533Overview:
8534"""""""""
8535
8536The '``landingpad``' instruction is used by `LLVM's exception handling
8537system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008538is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008539code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008540defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008541re-entry to the function. The ``resultval`` has the type ``resultty``.
8542
8543Arguments:
8544""""""""""
8545
David Majnemer7fddecc2015-06-17 20:52:32 +00008546The optional
Sean Silvab084af42012-12-07 10:36:55 +00008547``cleanup`` flag indicates that the landing pad block is a cleanup.
8548
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008549A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008550contains the global variable representing the "type" that may be caught
8551or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8552clause takes an array constant as its argument. Use
8553"``[0 x i8**] undef``" for a filter which cannot throw. The
8554'``landingpad``' instruction must contain *at least* one ``clause`` or
8555the ``cleanup`` flag.
8556
8557Semantics:
8558""""""""""
8559
8560The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008561:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008562therefore the "result type" of the ``landingpad`` instruction. As with
8563calling conventions, how the personality function results are
8564represented in LLVM IR is target specific.
8565
8566The clauses are applied in order from top to bottom. If two
8567``landingpad`` instructions are merged together through inlining, the
8568clauses from the calling function are appended to the list of clauses.
8569When the call stack is being unwound due to an exception being thrown,
8570the exception is compared against each ``clause`` in turn. If it doesn't
8571match any of the clauses, and the ``cleanup`` flag is not set, then
8572unwinding continues further up the call stack.
8573
8574The ``landingpad`` instruction has several restrictions:
8575
8576- A landing pad block is a basic block which is the unwind destination
8577 of an '``invoke``' instruction.
8578- A landing pad block must have a '``landingpad``' instruction as its
8579 first non-PHI instruction.
8580- There can be only one '``landingpad``' instruction within the landing
8581 pad block.
8582- A basic block that is not a landing pad block may not include a
8583 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008584
8585Example:
8586""""""""
8587
8588.. code-block:: llvm
8589
8590 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008591 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008592 catch i8** @_ZTIi
8593 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008594 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008595 cleanup
8596 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008597 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008598 catch i8** @_ZTIi
8599 filter [1 x i8**] [@_ZTId]
8600
David Majnemer654e1302015-07-31 17:58:14 +00008601.. _i_cleanuppad:
8602
8603'``cleanuppad``' Instruction
8604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8605
8606Syntax:
8607"""""""
8608
8609::
8610
David Majnemer8a1c45d2015-12-12 05:38:55 +00008611 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008612
8613Overview:
8614"""""""""
8615
8616The '``cleanuppad``' instruction is used by `LLVM's exception handling
8617system <ExceptionHandling.html#overview>`_ to specify that a basic block
8618is a cleanup block --- one where a personality routine attempts to
8619transfer control to run cleanup actions.
8620The ``args`` correspond to whatever additional
8621information the :ref:`personality function <personalityfn>` requires to
8622execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008623The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008624match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8625The ``parent`` argument is the token of the funclet that contains the
8626``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8627this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008628
8629Arguments:
8630""""""""""
8631
8632The instruction takes a list of arbitrary values which are interpreted
8633by the :ref:`personality function <personalityfn>`.
8634
8635Semantics:
8636""""""""""
8637
David Majnemer654e1302015-07-31 17:58:14 +00008638When the call stack is being unwound due to an exception being thrown,
8639the :ref:`personality function <personalityfn>` transfers control to the
8640``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008641As with calling conventions, how the personality function results are
8642represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008643
8644The ``cleanuppad`` instruction has several restrictions:
8645
8646- A cleanup block is a basic block which is the unwind destination of
8647 an exceptional instruction.
8648- A cleanup block must have a '``cleanuppad``' instruction as its
8649 first non-PHI instruction.
8650- There can be only one '``cleanuppad``' instruction within the
8651 cleanup block.
8652- A basic block that is not a cleanup block may not include a
8653 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008654
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008655When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8656described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8657it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8658that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008659
8660It is undefined behavior for the ``cleanuppad`` to exit via an unwind edge which
8661does not transitively unwind to the same destination as a constituent
8662``cleanupret``.
David Majnemer654e1302015-07-31 17:58:14 +00008663
8664Example:
8665""""""""
8666
8667.. code-block:: llvm
8668
David Majnemer8a1c45d2015-12-12 05:38:55 +00008669 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008670
Sean Silvab084af42012-12-07 10:36:55 +00008671.. _intrinsics:
8672
8673Intrinsic Functions
8674===================
8675
8676LLVM supports the notion of an "intrinsic function". These functions
8677have well known names and semantics and are required to follow certain
8678restrictions. Overall, these intrinsics represent an extension mechanism
8679for the LLVM language that does not require changing all of the
8680transformations in LLVM when adding to the language (or the bitcode
8681reader/writer, the parser, etc...).
8682
8683Intrinsic function names must all start with an "``llvm.``" prefix. This
8684prefix is reserved in LLVM for intrinsic names; thus, function names may
8685not begin with this prefix. Intrinsic functions must always be external
8686functions: you cannot define the body of intrinsic functions. Intrinsic
8687functions may only be used in call or invoke instructions: it is illegal
8688to take the address of an intrinsic function. Additionally, because
8689intrinsic functions are part of the LLVM language, it is required if any
8690are added that they be documented here.
8691
8692Some intrinsic functions can be overloaded, i.e., the intrinsic
8693represents a family of functions that perform the same operation but on
8694different data types. Because LLVM can represent over 8 million
8695different integer types, overloading is used commonly to allow an
8696intrinsic function to operate on any integer type. One or more of the
8697argument types or the result type can be overloaded to accept any
8698integer type. Argument types may also be defined as exactly matching a
8699previous argument's type or the result type. This allows an intrinsic
8700function which accepts multiple arguments, but needs all of them to be
8701of the same type, to only be overloaded with respect to a single
8702argument or the result.
8703
8704Overloaded intrinsics will have the names of its overloaded argument
8705types encoded into its function name, each preceded by a period. Only
8706those types which are overloaded result in a name suffix. Arguments
8707whose type is matched against another type do not. For example, the
8708``llvm.ctpop`` function can take an integer of any width and returns an
8709integer of exactly the same integer width. This leads to a family of
8710functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8711``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8712overloaded, and only one type suffix is required. Because the argument's
8713type is matched against the return type, it does not require its own
8714name suffix.
8715
8716To learn how to add an intrinsic function, please see the `Extending
8717LLVM Guide <ExtendingLLVM.html>`_.
8718
8719.. _int_varargs:
8720
8721Variable Argument Handling Intrinsics
8722-------------------------------------
8723
8724Variable argument support is defined in LLVM with the
8725:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8726functions. These functions are related to the similarly named macros
8727defined in the ``<stdarg.h>`` header file.
8728
8729All of these functions operate on arguments that use a target-specific
8730value type "``va_list``". The LLVM assembly language reference manual
8731does not define what this type is, so all transformations should be
8732prepared to handle these functions regardless of the type used.
8733
8734This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8735variable argument handling intrinsic functions are used.
8736
8737.. code-block:: llvm
8738
Tim Northoverab60bb92014-11-02 01:21:51 +00008739 ; This struct is different for every platform. For most platforms,
8740 ; it is merely an i8*.
8741 %struct.va_list = type { i8* }
8742
8743 ; For Unix x86_64 platforms, va_list is the following struct:
8744 ; %struct.va_list = type { i32, i32, i8*, i8* }
8745
Sean Silvab084af42012-12-07 10:36:55 +00008746 define i32 @test(i32 %X, ...) {
8747 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008748 %ap = alloca %struct.va_list
8749 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008750 call void @llvm.va_start(i8* %ap2)
8751
8752 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008753 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008754
8755 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8756 %aq = alloca i8*
8757 %aq2 = bitcast i8** %aq to i8*
8758 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8759 call void @llvm.va_end(i8* %aq2)
8760
8761 ; Stop processing of arguments.
8762 call void @llvm.va_end(i8* %ap2)
8763 ret i32 %tmp
8764 }
8765
8766 declare void @llvm.va_start(i8*)
8767 declare void @llvm.va_copy(i8*, i8*)
8768 declare void @llvm.va_end(i8*)
8769
8770.. _int_va_start:
8771
8772'``llvm.va_start``' Intrinsic
8773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8774
8775Syntax:
8776"""""""
8777
8778::
8779
Nick Lewycky04f6de02013-09-11 22:04:52 +00008780 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008781
8782Overview:
8783"""""""""
8784
8785The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8786subsequent use by ``va_arg``.
8787
8788Arguments:
8789""""""""""
8790
8791The argument is a pointer to a ``va_list`` element to initialize.
8792
8793Semantics:
8794""""""""""
8795
8796The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8797available in C. In a target-dependent way, it initializes the
8798``va_list`` element to which the argument points, so that the next call
8799to ``va_arg`` will produce the first variable argument passed to the
8800function. Unlike the C ``va_start`` macro, this intrinsic does not need
8801to know the last argument of the function as the compiler can figure
8802that out.
8803
8804'``llvm.va_end``' Intrinsic
8805^^^^^^^^^^^^^^^^^^^^^^^^^^^
8806
8807Syntax:
8808"""""""
8809
8810::
8811
8812 declare void @llvm.va_end(i8* <arglist>)
8813
8814Overview:
8815"""""""""
8816
8817The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8818initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8819
8820Arguments:
8821""""""""""
8822
8823The argument is a pointer to a ``va_list`` to destroy.
8824
8825Semantics:
8826""""""""""
8827
8828The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8829available in C. In a target-dependent way, it destroys the ``va_list``
8830element to which the argument points. Calls to
8831:ref:`llvm.va_start <int_va_start>` and
8832:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8833``llvm.va_end``.
8834
8835.. _int_va_copy:
8836
8837'``llvm.va_copy``' Intrinsic
8838^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8839
8840Syntax:
8841"""""""
8842
8843::
8844
8845 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8846
8847Overview:
8848"""""""""
8849
8850The '``llvm.va_copy``' intrinsic copies the current argument position
8851from the source argument list to the destination argument list.
8852
8853Arguments:
8854""""""""""
8855
8856The first argument is a pointer to a ``va_list`` element to initialize.
8857The second argument is a pointer to a ``va_list`` element to copy from.
8858
8859Semantics:
8860""""""""""
8861
8862The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8863available in C. In a target-dependent way, it copies the source
8864``va_list`` element into the destination ``va_list`` element. This
8865intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8866arbitrarily complex and require, for example, memory allocation.
8867
8868Accurate Garbage Collection Intrinsics
8869--------------------------------------
8870
Philip Reamesc5b0f562015-02-25 23:52:06 +00008871LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008872(GC) requires the frontend to generate code containing appropriate intrinsic
8873calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008874intrinsics in a manner which is appropriate for the target collector.
8875
Sean Silvab084af42012-12-07 10:36:55 +00008876These intrinsics allow identification of :ref:`GC roots on the
8877stack <int_gcroot>`, as well as garbage collector implementations that
8878require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008879Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008880these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008881details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008882
Philip Reamesf80bbff2015-02-25 23:45:20 +00008883Experimental Statepoint Intrinsics
8884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8885
8886LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008887collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008888to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008889:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008890differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008891<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008892described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008893
8894.. _int_gcroot:
8895
8896'``llvm.gcroot``' Intrinsic
8897^^^^^^^^^^^^^^^^^^^^^^^^^^^
8898
8899Syntax:
8900"""""""
8901
8902::
8903
8904 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8905
8906Overview:
8907"""""""""
8908
8909The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8910the code generator, and allows some metadata to be associated with it.
8911
8912Arguments:
8913""""""""""
8914
8915The first argument specifies the address of a stack object that contains
8916the root pointer. The second pointer (which must be either a constant or
8917a global value address) contains the meta-data to be associated with the
8918root.
8919
8920Semantics:
8921""""""""""
8922
8923At runtime, a call to this intrinsic stores a null pointer into the
8924"ptrloc" location. At compile-time, the code generator generates
8925information to allow the runtime to find the pointer at GC safe points.
8926The '``llvm.gcroot``' intrinsic may only be used in a function which
8927:ref:`specifies a GC algorithm <gc>`.
8928
8929.. _int_gcread:
8930
8931'``llvm.gcread``' Intrinsic
8932^^^^^^^^^^^^^^^^^^^^^^^^^^^
8933
8934Syntax:
8935"""""""
8936
8937::
8938
8939 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8940
8941Overview:
8942"""""""""
8943
8944The '``llvm.gcread``' intrinsic identifies reads of references from heap
8945locations, allowing garbage collector implementations that require read
8946barriers.
8947
8948Arguments:
8949""""""""""
8950
8951The second argument is the address to read from, which should be an
8952address allocated from the garbage collector. The first object is a
8953pointer to the start of the referenced object, if needed by the language
8954runtime (otherwise null).
8955
8956Semantics:
8957""""""""""
8958
8959The '``llvm.gcread``' intrinsic has the same semantics as a load
8960instruction, but may be replaced with substantially more complex code by
8961the garbage collector runtime, as needed. The '``llvm.gcread``'
8962intrinsic may only be used in a function which :ref:`specifies a GC
8963algorithm <gc>`.
8964
8965.. _int_gcwrite:
8966
8967'``llvm.gcwrite``' Intrinsic
8968^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8969
8970Syntax:
8971"""""""
8972
8973::
8974
8975 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8976
8977Overview:
8978"""""""""
8979
8980The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8981locations, allowing garbage collector implementations that require write
8982barriers (such as generational or reference counting collectors).
8983
8984Arguments:
8985""""""""""
8986
8987The first argument is the reference to store, the second is the start of
8988the object to store it to, and the third is the address of the field of
8989Obj to store to. If the runtime does not require a pointer to the
8990object, Obj may be null.
8991
8992Semantics:
8993""""""""""
8994
8995The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8996instruction, but may be replaced with substantially more complex code by
8997the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8998intrinsic may only be used in a function which :ref:`specifies a GC
8999algorithm <gc>`.
9000
9001Code Generator Intrinsics
9002-------------------------
9003
9004These intrinsics are provided by LLVM to expose special features that
9005may only be implemented with code generator support.
9006
9007'``llvm.returnaddress``' Intrinsic
9008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9009
9010Syntax:
9011"""""""
9012
9013::
9014
9015 declare i8 *@llvm.returnaddress(i32 <level>)
9016
9017Overview:
9018"""""""""
9019
9020The '``llvm.returnaddress``' intrinsic attempts to compute a
9021target-specific value indicating the return address of the current
9022function or one of its callers.
9023
9024Arguments:
9025""""""""""
9026
9027The argument to this intrinsic indicates which function to return the
9028address for. Zero indicates the calling function, one indicates its
9029caller, etc. The argument is **required** to be a constant integer
9030value.
9031
9032Semantics:
9033""""""""""
9034
9035The '``llvm.returnaddress``' intrinsic either returns a pointer
9036indicating the return address of the specified call frame, or zero if it
9037cannot be identified. The value returned by this intrinsic is likely to
9038be incorrect or 0 for arguments other than zero, so it should only be
9039used for debugging purposes.
9040
9041Note that calling this intrinsic does not prevent function inlining or
9042other aggressive transformations, so the value returned may not be that
9043of the obvious source-language caller.
9044
9045'``llvm.frameaddress``' Intrinsic
9046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9047
9048Syntax:
9049"""""""
9050
9051::
9052
9053 declare i8* @llvm.frameaddress(i32 <level>)
9054
9055Overview:
9056"""""""""
9057
9058The '``llvm.frameaddress``' intrinsic attempts to return the
9059target-specific frame pointer value for the specified stack frame.
9060
9061Arguments:
9062""""""""""
9063
9064The argument to this intrinsic indicates which function to return the
9065frame pointer for. Zero indicates the calling function, one indicates
9066its caller, etc. The argument is **required** to be a constant integer
9067value.
9068
9069Semantics:
9070""""""""""
9071
9072The '``llvm.frameaddress``' intrinsic either returns a pointer
9073indicating the frame address of the specified call frame, or zero if it
9074cannot be identified. The value returned by this intrinsic is likely to
9075be incorrect or 0 for arguments other than zero, so it should only be
9076used for debugging purposes.
9077
9078Note that calling this intrinsic does not prevent function inlining or
9079other aggressive transformations, so the value returned may not be that
9080of the obvious source-language caller.
9081
Reid Kleckner60381792015-07-07 22:25:32 +00009082'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9084
9085Syntax:
9086"""""""
9087
9088::
9089
Reid Kleckner60381792015-07-07 22:25:32 +00009090 declare void @llvm.localescape(...)
9091 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009092
9093Overview:
9094"""""""""
9095
Reid Kleckner60381792015-07-07 22:25:32 +00009096The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9097allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009098live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009099computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009100
9101Arguments:
9102""""""""""
9103
Reid Kleckner60381792015-07-07 22:25:32 +00009104All arguments to '``llvm.localescape``' must be pointers to static allocas or
9105casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009106once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009107
Reid Kleckner60381792015-07-07 22:25:32 +00009108The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009109bitcasted pointer to a function defined in the current module. The code
9110generator cannot determine the frame allocation offset of functions defined in
9111other modules.
9112
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009113The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9114call frame that is currently live. The return value of '``llvm.localaddress``'
9115is one way to produce such a value, but various runtimes also expose a suitable
9116pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009117
Reid Kleckner60381792015-07-07 22:25:32 +00009118The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9119'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009120
Reid Klecknere9b89312015-01-13 00:48:10 +00009121Semantics:
9122""""""""""
9123
Reid Kleckner60381792015-07-07 22:25:32 +00009124These intrinsics allow a group of functions to share access to a set of local
9125stack allocations of a one parent function. The parent function may call the
9126'``llvm.localescape``' intrinsic once from the function entry block, and the
9127child functions can use '``llvm.localrecover``' to access the escaped allocas.
9128The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9129the escaped allocas are allocated, which would break attempts to use
9130'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009131
Renato Golinc7aea402014-05-06 16:51:25 +00009132.. _int_read_register:
9133.. _int_write_register:
9134
9135'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9137
9138Syntax:
9139"""""""
9140
9141::
9142
9143 declare i32 @llvm.read_register.i32(metadata)
9144 declare i64 @llvm.read_register.i64(metadata)
9145 declare void @llvm.write_register.i32(metadata, i32 @value)
9146 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009147 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009148
9149Overview:
9150"""""""""
9151
9152The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9153provides access to the named register. The register must be valid on
9154the architecture being compiled to. The type needs to be compatible
9155with the register being read.
9156
9157Semantics:
9158""""""""""
9159
9160The '``llvm.read_register``' intrinsic returns the current value of the
9161register, where possible. The '``llvm.write_register``' intrinsic sets
9162the current value of the register, where possible.
9163
9164This is useful to implement named register global variables that need
9165to always be mapped to a specific register, as is common practice on
9166bare-metal programs including OS kernels.
9167
9168The compiler doesn't check for register availability or use of the used
9169register in surrounding code, including inline assembly. Because of that,
9170allocatable registers are not supported.
9171
9172Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009173architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009174work is needed to support other registers and even more so, allocatable
9175registers.
9176
Sean Silvab084af42012-12-07 10:36:55 +00009177.. _int_stacksave:
9178
9179'``llvm.stacksave``' Intrinsic
9180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9181
9182Syntax:
9183"""""""
9184
9185::
9186
9187 declare i8* @llvm.stacksave()
9188
9189Overview:
9190"""""""""
9191
9192The '``llvm.stacksave``' intrinsic is used to remember the current state
9193of the function stack, for use with
9194:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9195implementing language features like scoped automatic variable sized
9196arrays in C99.
9197
9198Semantics:
9199""""""""""
9200
9201This intrinsic returns a opaque pointer value that can be passed to
9202:ref:`llvm.stackrestore <int_stackrestore>`. When an
9203``llvm.stackrestore`` intrinsic is executed with a value saved from
9204``llvm.stacksave``, it effectively restores the state of the stack to
9205the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9206practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9207were allocated after the ``llvm.stacksave`` was executed.
9208
9209.. _int_stackrestore:
9210
9211'``llvm.stackrestore``' Intrinsic
9212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9213
9214Syntax:
9215"""""""
9216
9217::
9218
9219 declare void @llvm.stackrestore(i8* %ptr)
9220
9221Overview:
9222"""""""""
9223
9224The '``llvm.stackrestore``' intrinsic is used to restore the state of
9225the function stack to the state it was in when the corresponding
9226:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9227useful for implementing language features like scoped automatic variable
9228sized arrays in C99.
9229
9230Semantics:
9231""""""""""
9232
9233See the description for :ref:`llvm.stacksave <int_stacksave>`.
9234
Yury Gribovd7dbb662015-12-01 11:40:55 +00009235.. _int_get_dynamic_area_offset:
9236
9237'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009239
9240Syntax:
9241"""""""
9242
9243::
9244
9245 declare i32 @llvm.get.dynamic.area.offset.i32()
9246 declare i64 @llvm.get.dynamic.area.offset.i64()
9247
9248 Overview:
9249 """""""""
9250
9251 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9252 get the offset from native stack pointer to the address of the most
9253 recent dynamic alloca on the caller's stack. These intrinsics are
9254 intendend for use in combination with
9255 :ref:`llvm.stacksave <int_stacksave>` to get a
9256 pointer to the most recent dynamic alloca. This is useful, for example,
9257 for AddressSanitizer's stack unpoisoning routines.
9258
9259Semantics:
9260""""""""""
9261
9262 These intrinsics return a non-negative integer value that can be used to
9263 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9264 on the caller's stack. In particular, for targets where stack grows downwards,
9265 adding this offset to the native stack pointer would get the address of the most
9266 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9267 complicated, because substracting this value from stack pointer would get the address
9268 one past the end of the most recent dynamic alloca.
9269
9270 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9271 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9272 compile-time-known constant value.
9273
9274 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9275 must match the target's generic address space's (address space 0) pointer type.
9276
Sean Silvab084af42012-12-07 10:36:55 +00009277'``llvm.prefetch``' Intrinsic
9278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9279
9280Syntax:
9281"""""""
9282
9283::
9284
9285 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9286
9287Overview:
9288"""""""""
9289
9290The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9291insert a prefetch instruction if supported; otherwise, it is a noop.
9292Prefetches have no effect on the behavior of the program but can change
9293its performance characteristics.
9294
9295Arguments:
9296""""""""""
9297
9298``address`` is the address to be prefetched, ``rw`` is the specifier
9299determining if the fetch should be for a read (0) or write (1), and
9300``locality`` is a temporal locality specifier ranging from (0) - no
9301locality, to (3) - extremely local keep in cache. The ``cache type``
9302specifies whether the prefetch is performed on the data (1) or
9303instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9304arguments must be constant integers.
9305
9306Semantics:
9307""""""""""
9308
9309This intrinsic does not modify the behavior of the program. In
9310particular, prefetches cannot trap and do not produce a value. On
9311targets that support this intrinsic, the prefetch can provide hints to
9312the processor cache for better performance.
9313
9314'``llvm.pcmarker``' Intrinsic
9315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9316
9317Syntax:
9318"""""""
9319
9320::
9321
9322 declare void @llvm.pcmarker(i32 <id>)
9323
9324Overview:
9325"""""""""
9326
9327The '``llvm.pcmarker``' intrinsic is a method to export a Program
9328Counter (PC) in a region of code to simulators and other tools. The
9329method is target specific, but it is expected that the marker will use
9330exported symbols to transmit the PC of the marker. The marker makes no
9331guarantees that it will remain with any specific instruction after
9332optimizations. It is possible that the presence of a marker will inhibit
9333optimizations. The intended use is to be inserted after optimizations to
9334allow correlations of simulation runs.
9335
9336Arguments:
9337""""""""""
9338
9339``id`` is a numerical id identifying the marker.
9340
9341Semantics:
9342""""""""""
9343
9344This intrinsic does not modify the behavior of the program. Backends
9345that do not support this intrinsic may ignore it.
9346
9347'``llvm.readcyclecounter``' Intrinsic
9348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9349
9350Syntax:
9351"""""""
9352
9353::
9354
9355 declare i64 @llvm.readcyclecounter()
9356
9357Overview:
9358"""""""""
9359
9360The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9361counter register (or similar low latency, high accuracy clocks) on those
9362targets that support it. On X86, it should map to RDTSC. On Alpha, it
9363should map to RPCC. As the backing counters overflow quickly (on the
9364order of 9 seconds on alpha), this should only be used for small
9365timings.
9366
9367Semantics:
9368""""""""""
9369
9370When directly supported, reading the cycle counter should not modify any
9371memory. Implementations are allowed to either return a application
9372specific value or a system wide value. On backends without support, this
9373is lowered to a constant 0.
9374
Tim Northoverbc933082013-05-23 19:11:20 +00009375Note that runtime support may be conditional on the privilege-level code is
9376running at and the host platform.
9377
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009378'``llvm.clear_cache``' Intrinsic
9379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9380
9381Syntax:
9382"""""""
9383
9384::
9385
9386 declare void @llvm.clear_cache(i8*, i8*)
9387
9388Overview:
9389"""""""""
9390
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009391The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9392in the specified range to the execution unit of the processor. On
9393targets with non-unified instruction and data cache, the implementation
9394flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009395
9396Semantics:
9397""""""""""
9398
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009399On platforms with coherent instruction and data caches (e.g. x86), this
9400intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009401cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009402instructions or a system call, if cache flushing requires special
9403privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009404
Sean Silvad02bf3e2014-04-07 22:29:53 +00009405The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009406time library.
Renato Golin93010e62014-03-26 14:01:32 +00009407
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009408This instrinsic does *not* empty the instruction pipeline. Modifications
9409of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009410
Justin Bogner61ba2e32014-12-08 18:02:35 +00009411'``llvm.instrprof_increment``' Intrinsic
9412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9413
9414Syntax:
9415"""""""
9416
9417::
9418
9419 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9420 i32 <num-counters>, i32 <index>)
9421
9422Overview:
9423"""""""""
9424
9425The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9426frontend for use with instrumentation based profiling. These will be
9427lowered by the ``-instrprof`` pass to generate execution counts of a
9428program at runtime.
9429
9430Arguments:
9431""""""""""
9432
9433The first argument is a pointer to a global variable containing the
9434name of the entity being instrumented. This should generally be the
9435(mangled) function name for a set of counters.
9436
9437The second argument is a hash value that can be used by the consumer
9438of the profile data to detect changes to the instrumented source, and
9439the third is the number of counters associated with ``name``. It is an
9440error if ``hash`` or ``num-counters`` differ between two instances of
9441``instrprof_increment`` that refer to the same name.
9442
9443The last argument refers to which of the counters for ``name`` should
9444be incremented. It should be a value between 0 and ``num-counters``.
9445
9446Semantics:
9447""""""""""
9448
9449This intrinsic represents an increment of a profiling counter. It will
9450cause the ``-instrprof`` pass to generate the appropriate data
9451structures and the code to increment the appropriate value, in a
9452format that can be written out by a compiler runtime and consumed via
9453the ``llvm-profdata`` tool.
9454
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009455'``llvm.instrprof_value_profile``' Intrinsic
9456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9457
9458Syntax:
9459"""""""
9460
9461::
9462
9463 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9464 i64 <value>, i32 <value_kind>,
9465 i32 <index>)
9466
9467Overview:
9468"""""""""
9469
9470The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9471frontend for use with instrumentation based profiling. This will be
9472lowered by the ``-instrprof`` pass to find out the target values,
9473instrumented expressions take in a program at runtime.
9474
9475Arguments:
9476""""""""""
9477
9478The first argument is a pointer to a global variable containing the
9479name of the entity being instrumented. ``name`` should generally be the
9480(mangled) function name for a set of counters.
9481
9482The second argument is a hash value that can be used by the consumer
9483of the profile data to detect changes to the instrumented source. It
9484is an error if ``hash`` differs between two instances of
9485``llvm.instrprof_*`` that refer to the same name.
9486
9487The third argument is the value of the expression being profiled. The profiled
9488expression's value should be representable as an unsigned 64-bit value. The
9489fourth argument represents the kind of value profiling that is being done. The
9490supported value profiling kinds are enumerated through the
9491``InstrProfValueKind`` type declared in the
9492``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9493index of the instrumented expression within ``name``. It should be >= 0.
9494
9495Semantics:
9496""""""""""
9497
9498This intrinsic represents the point where a call to a runtime routine
9499should be inserted for value profiling of target expressions. ``-instrprof``
9500pass will generate the appropriate data structures and replace the
9501``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9502runtime library with proper arguments.
9503
Sean Silvab084af42012-12-07 10:36:55 +00009504Standard C Library Intrinsics
9505-----------------------------
9506
9507LLVM provides intrinsics for a few important standard C library
9508functions. These intrinsics allow source-language front-ends to pass
9509information about the alignment of the pointer arguments to the code
9510generator, providing opportunity for more efficient code generation.
9511
9512.. _int_memcpy:
9513
9514'``llvm.memcpy``' Intrinsic
9515^^^^^^^^^^^^^^^^^^^^^^^^^^^
9516
9517Syntax:
9518"""""""
9519
9520This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9521integer bit width and for different address spaces. Not all targets
9522support all bit widths however.
9523
9524::
9525
9526 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9527 i32 <len>, i32 <align>, i1 <isvolatile>)
9528 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9529 i64 <len>, i32 <align>, i1 <isvolatile>)
9530
9531Overview:
9532"""""""""
9533
9534The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9535source location to the destination location.
9536
9537Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9538intrinsics do not return a value, takes extra alignment/isvolatile
9539arguments and the pointers can be in specified address spaces.
9540
9541Arguments:
9542""""""""""
9543
9544The first argument is a pointer to the destination, the second is a
9545pointer to the source. The third argument is an integer argument
9546specifying the number of bytes to copy, the fourth argument is the
9547alignment of the source and destination locations, and the fifth is a
9548boolean indicating a volatile access.
9549
9550If the call to this intrinsic has an alignment value that is not 0 or 1,
9551then the caller guarantees that both the source and destination pointers
9552are aligned to that boundary.
9553
9554If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9555a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9556very cleanly specified and it is unwise to depend on it.
9557
9558Semantics:
9559""""""""""
9560
9561The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9562source location to the destination location, which are not allowed to
9563overlap. It copies "len" bytes of memory over. If the argument is known
9564to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009565argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009566
9567'``llvm.memmove``' Intrinsic
9568^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9569
9570Syntax:
9571"""""""
9572
9573This is an overloaded intrinsic. You can use llvm.memmove on any integer
9574bit width and for different address space. Not all targets support all
9575bit widths however.
9576
9577::
9578
9579 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9580 i32 <len>, i32 <align>, i1 <isvolatile>)
9581 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9582 i64 <len>, i32 <align>, i1 <isvolatile>)
9583
9584Overview:
9585"""""""""
9586
9587The '``llvm.memmove.*``' intrinsics move a block of memory from the
9588source location to the destination location. It is similar to the
9589'``llvm.memcpy``' intrinsic but allows the two memory locations to
9590overlap.
9591
9592Note that, unlike the standard libc function, the ``llvm.memmove.*``
9593intrinsics do not return a value, takes extra alignment/isvolatile
9594arguments and the pointers can be in specified address spaces.
9595
9596Arguments:
9597""""""""""
9598
9599The first argument is a pointer to the destination, the second is a
9600pointer to the source. The third argument is an integer argument
9601specifying the number of bytes to copy, the fourth argument is the
9602alignment of the source and destination locations, and the fifth is a
9603boolean indicating a volatile access.
9604
9605If the call to this intrinsic has an alignment value that is not 0 or 1,
9606then the caller guarantees that the source and destination pointers are
9607aligned to that boundary.
9608
9609If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9610is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9611not very cleanly specified and it is unwise to depend on it.
9612
9613Semantics:
9614""""""""""
9615
9616The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9617source location to the destination location, which may overlap. It
9618copies "len" bytes of memory over. If the argument is known to be
9619aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009620otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009621
9622'``llvm.memset.*``' Intrinsics
9623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9624
9625Syntax:
9626"""""""
9627
9628This is an overloaded intrinsic. You can use llvm.memset on any integer
9629bit width and for different address spaces. However, not all targets
9630support all bit widths.
9631
9632::
9633
9634 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9635 i32 <len>, i32 <align>, i1 <isvolatile>)
9636 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9637 i64 <len>, i32 <align>, i1 <isvolatile>)
9638
9639Overview:
9640"""""""""
9641
9642The '``llvm.memset.*``' intrinsics fill a block of memory with a
9643particular byte value.
9644
9645Note that, unlike the standard libc function, the ``llvm.memset``
9646intrinsic does not return a value and takes extra alignment/volatile
9647arguments. Also, the destination can be in an arbitrary address space.
9648
9649Arguments:
9650""""""""""
9651
9652The first argument is a pointer to the destination to fill, the second
9653is the byte value with which to fill it, the third argument is an
9654integer argument specifying the number of bytes to fill, and the fourth
9655argument is the known alignment of the destination location.
9656
9657If the call to this intrinsic has an alignment value that is not 0 or 1,
9658then the caller guarantees that the destination pointer is aligned to
9659that boundary.
9660
9661If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9662a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9663very cleanly specified and it is unwise to depend on it.
9664
9665Semantics:
9666""""""""""
9667
9668The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9669at the destination location. If the argument is known to be aligned to
9670some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009671it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009672
9673'``llvm.sqrt.*``' Intrinsic
9674^^^^^^^^^^^^^^^^^^^^^^^^^^^
9675
9676Syntax:
9677"""""""
9678
9679This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9680floating point or vector of floating point type. Not all targets support
9681all types however.
9682
9683::
9684
9685 declare float @llvm.sqrt.f32(float %Val)
9686 declare double @llvm.sqrt.f64(double %Val)
9687 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9688 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9689 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9690
9691Overview:
9692"""""""""
9693
9694The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9695returning the same value as the libm '``sqrt``' functions would. Unlike
9696``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9697negative numbers other than -0.0 (which allows for better optimization,
9698because there is no need to worry about errno being set).
9699``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9700
9701Arguments:
9702""""""""""
9703
9704The argument and return value are floating point numbers of the same
9705type.
9706
9707Semantics:
9708""""""""""
9709
9710This function returns the sqrt of the specified operand if it is a
9711nonnegative floating point number.
9712
9713'``llvm.powi.*``' Intrinsic
9714^^^^^^^^^^^^^^^^^^^^^^^^^^^
9715
9716Syntax:
9717"""""""
9718
9719This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9720floating point or vector of floating point type. Not all targets support
9721all types however.
9722
9723::
9724
9725 declare float @llvm.powi.f32(float %Val, i32 %power)
9726 declare double @llvm.powi.f64(double %Val, i32 %power)
9727 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9728 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9729 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9730
9731Overview:
9732"""""""""
9733
9734The '``llvm.powi.*``' intrinsics return the first operand raised to the
9735specified (positive or negative) power. The order of evaluation of
9736multiplications is not defined. When a vector of floating point type is
9737used, the second argument remains a scalar integer value.
9738
9739Arguments:
9740""""""""""
9741
9742The second argument is an integer power, and the first is a value to
9743raise to that power.
9744
9745Semantics:
9746""""""""""
9747
9748This function returns the first value raised to the second power with an
9749unspecified sequence of rounding operations.
9750
9751'``llvm.sin.*``' Intrinsic
9752^^^^^^^^^^^^^^^^^^^^^^^^^^
9753
9754Syntax:
9755"""""""
9756
9757This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9758floating point or vector of floating point type. Not all targets support
9759all types however.
9760
9761::
9762
9763 declare float @llvm.sin.f32(float %Val)
9764 declare double @llvm.sin.f64(double %Val)
9765 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9766 declare fp128 @llvm.sin.f128(fp128 %Val)
9767 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9768
9769Overview:
9770"""""""""
9771
9772The '``llvm.sin.*``' intrinsics return the sine of the operand.
9773
9774Arguments:
9775""""""""""
9776
9777The argument and return value are floating point numbers of the same
9778type.
9779
9780Semantics:
9781""""""""""
9782
9783This function returns the sine of the specified operand, returning the
9784same values as the libm ``sin`` functions would, and handles error
9785conditions in the same way.
9786
9787'``llvm.cos.*``' Intrinsic
9788^^^^^^^^^^^^^^^^^^^^^^^^^^
9789
9790Syntax:
9791"""""""
9792
9793This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9794floating point or vector of floating point type. Not all targets support
9795all types however.
9796
9797::
9798
9799 declare float @llvm.cos.f32(float %Val)
9800 declare double @llvm.cos.f64(double %Val)
9801 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9802 declare fp128 @llvm.cos.f128(fp128 %Val)
9803 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9804
9805Overview:
9806"""""""""
9807
9808The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9809
9810Arguments:
9811""""""""""
9812
9813The argument and return value are floating point numbers of the same
9814type.
9815
9816Semantics:
9817""""""""""
9818
9819This function returns the cosine of the specified operand, returning the
9820same values as the libm ``cos`` functions would, and handles error
9821conditions in the same way.
9822
9823'``llvm.pow.*``' Intrinsic
9824^^^^^^^^^^^^^^^^^^^^^^^^^^
9825
9826Syntax:
9827"""""""
9828
9829This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9830floating point or vector of floating point type. Not all targets support
9831all types however.
9832
9833::
9834
9835 declare float @llvm.pow.f32(float %Val, float %Power)
9836 declare double @llvm.pow.f64(double %Val, double %Power)
9837 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9838 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9839 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9840
9841Overview:
9842"""""""""
9843
9844The '``llvm.pow.*``' intrinsics return the first operand raised to the
9845specified (positive or negative) power.
9846
9847Arguments:
9848""""""""""
9849
9850The second argument is a floating point power, and the first is a value
9851to raise to that power.
9852
9853Semantics:
9854""""""""""
9855
9856This function returns the first value raised to the second power,
9857returning the same values as the libm ``pow`` functions would, and
9858handles error conditions in the same way.
9859
9860'``llvm.exp.*``' Intrinsic
9861^^^^^^^^^^^^^^^^^^^^^^^^^^
9862
9863Syntax:
9864"""""""
9865
9866This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9867floating point or vector of floating point type. Not all targets support
9868all types however.
9869
9870::
9871
9872 declare float @llvm.exp.f32(float %Val)
9873 declare double @llvm.exp.f64(double %Val)
9874 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9875 declare fp128 @llvm.exp.f128(fp128 %Val)
9876 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9877
9878Overview:
9879"""""""""
9880
9881The '``llvm.exp.*``' intrinsics perform the exp function.
9882
9883Arguments:
9884""""""""""
9885
9886The argument and return value are floating point numbers of the same
9887type.
9888
9889Semantics:
9890""""""""""
9891
9892This function returns the same values as the libm ``exp`` functions
9893would, and handles error conditions in the same way.
9894
9895'``llvm.exp2.*``' Intrinsic
9896^^^^^^^^^^^^^^^^^^^^^^^^^^^
9897
9898Syntax:
9899"""""""
9900
9901This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9902floating point or vector of floating point type. Not all targets support
9903all types however.
9904
9905::
9906
9907 declare float @llvm.exp2.f32(float %Val)
9908 declare double @llvm.exp2.f64(double %Val)
9909 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9910 declare fp128 @llvm.exp2.f128(fp128 %Val)
9911 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9912
9913Overview:
9914"""""""""
9915
9916The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9917
9918Arguments:
9919""""""""""
9920
9921The argument and return value are floating point numbers of the same
9922type.
9923
9924Semantics:
9925""""""""""
9926
9927This function returns the same values as the libm ``exp2`` functions
9928would, and handles error conditions in the same way.
9929
9930'``llvm.log.*``' Intrinsic
9931^^^^^^^^^^^^^^^^^^^^^^^^^^
9932
9933Syntax:
9934"""""""
9935
9936This is an overloaded intrinsic. You can use ``llvm.log`` on any
9937floating point or vector of floating point type. Not all targets support
9938all types however.
9939
9940::
9941
9942 declare float @llvm.log.f32(float %Val)
9943 declare double @llvm.log.f64(double %Val)
9944 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9945 declare fp128 @llvm.log.f128(fp128 %Val)
9946 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9947
9948Overview:
9949"""""""""
9950
9951The '``llvm.log.*``' intrinsics perform the log function.
9952
9953Arguments:
9954""""""""""
9955
9956The argument and return value are floating point numbers of the same
9957type.
9958
9959Semantics:
9960""""""""""
9961
9962This function returns the same values as the libm ``log`` functions
9963would, and handles error conditions in the same way.
9964
9965'``llvm.log10.*``' Intrinsic
9966^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9967
9968Syntax:
9969"""""""
9970
9971This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9972floating point or vector of floating point type. Not all targets support
9973all types however.
9974
9975::
9976
9977 declare float @llvm.log10.f32(float %Val)
9978 declare double @llvm.log10.f64(double %Val)
9979 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9980 declare fp128 @llvm.log10.f128(fp128 %Val)
9981 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9982
9983Overview:
9984"""""""""
9985
9986The '``llvm.log10.*``' intrinsics perform the log10 function.
9987
9988Arguments:
9989""""""""""
9990
9991The argument and return value are floating point numbers of the same
9992type.
9993
9994Semantics:
9995""""""""""
9996
9997This function returns the same values as the libm ``log10`` functions
9998would, and handles error conditions in the same way.
9999
10000'``llvm.log2.*``' Intrinsic
10001^^^^^^^^^^^^^^^^^^^^^^^^^^^
10002
10003Syntax:
10004"""""""
10005
10006This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10007floating point or vector of floating point type. Not all targets support
10008all types however.
10009
10010::
10011
10012 declare float @llvm.log2.f32(float %Val)
10013 declare double @llvm.log2.f64(double %Val)
10014 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10015 declare fp128 @llvm.log2.f128(fp128 %Val)
10016 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10017
10018Overview:
10019"""""""""
10020
10021The '``llvm.log2.*``' intrinsics perform the log2 function.
10022
10023Arguments:
10024""""""""""
10025
10026The argument and return value are floating point numbers of the same
10027type.
10028
10029Semantics:
10030""""""""""
10031
10032This function returns the same values as the libm ``log2`` functions
10033would, and handles error conditions in the same way.
10034
10035'``llvm.fma.*``' Intrinsic
10036^^^^^^^^^^^^^^^^^^^^^^^^^^
10037
10038Syntax:
10039"""""""
10040
10041This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10042floating point or vector of floating point type. Not all targets support
10043all types however.
10044
10045::
10046
10047 declare float @llvm.fma.f32(float %a, float %b, float %c)
10048 declare double @llvm.fma.f64(double %a, double %b, double %c)
10049 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10050 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10051 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10052
10053Overview:
10054"""""""""
10055
10056The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10057operation.
10058
10059Arguments:
10060""""""""""
10061
10062The argument and return value are floating point numbers of the same
10063type.
10064
10065Semantics:
10066""""""""""
10067
10068This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010069would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010070
10071'``llvm.fabs.*``' Intrinsic
10072^^^^^^^^^^^^^^^^^^^^^^^^^^^
10073
10074Syntax:
10075"""""""
10076
10077This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10078floating point or vector of floating point type. Not all targets support
10079all types however.
10080
10081::
10082
10083 declare float @llvm.fabs.f32(float %Val)
10084 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010085 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010086 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010087 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010088
10089Overview:
10090"""""""""
10091
10092The '``llvm.fabs.*``' intrinsics return the absolute value of the
10093operand.
10094
10095Arguments:
10096""""""""""
10097
10098The argument and return value are floating point numbers of the same
10099type.
10100
10101Semantics:
10102""""""""""
10103
10104This function returns the same values as the libm ``fabs`` functions
10105would, and handles error conditions in the same way.
10106
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010107'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010109
10110Syntax:
10111"""""""
10112
10113This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10114floating point or vector of floating point type. Not all targets support
10115all types however.
10116
10117::
10118
Matt Arsenault64313c92014-10-22 18:25:02 +000010119 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10120 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10121 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10122 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10123 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010124
10125Overview:
10126"""""""""
10127
10128The '``llvm.minnum.*``' intrinsics return the minimum of the two
10129arguments.
10130
10131
10132Arguments:
10133""""""""""
10134
10135The arguments and return value are floating point numbers of the same
10136type.
10137
10138Semantics:
10139""""""""""
10140
10141Follows the IEEE-754 semantics for minNum, which also match for libm's
10142fmin.
10143
10144If either operand is a NaN, returns the other non-NaN operand. Returns
10145NaN only if both operands are NaN. If the operands compare equal,
10146returns a value that compares equal to both operands. This means that
10147fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10148
10149'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010151
10152Syntax:
10153"""""""
10154
10155This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10156floating point or vector of floating point type. Not all targets support
10157all types however.
10158
10159::
10160
Matt Arsenault64313c92014-10-22 18:25:02 +000010161 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10162 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10163 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10164 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10165 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010166
10167Overview:
10168"""""""""
10169
10170The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10171arguments.
10172
10173
10174Arguments:
10175""""""""""
10176
10177The arguments and return value are floating point numbers of the same
10178type.
10179
10180Semantics:
10181""""""""""
10182Follows the IEEE-754 semantics for maxNum, which also match for libm's
10183fmax.
10184
10185If either operand is a NaN, returns the other non-NaN operand. Returns
10186NaN only if both operands are NaN. If the operands compare equal,
10187returns a value that compares equal to both operands. This means that
10188fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10189
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010190'``llvm.copysign.*``' Intrinsic
10191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10192
10193Syntax:
10194"""""""
10195
10196This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10197floating point or vector of floating point type. Not all targets support
10198all types however.
10199
10200::
10201
10202 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10203 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10204 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10205 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10206 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10207
10208Overview:
10209"""""""""
10210
10211The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10212first operand and the sign of the second operand.
10213
10214Arguments:
10215""""""""""
10216
10217The arguments and return value are floating point numbers of the same
10218type.
10219
10220Semantics:
10221""""""""""
10222
10223This function returns the same values as the libm ``copysign``
10224functions would, and handles error conditions in the same way.
10225
Sean Silvab084af42012-12-07 10:36:55 +000010226'``llvm.floor.*``' Intrinsic
10227^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10228
10229Syntax:
10230"""""""
10231
10232This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10233floating point or vector of floating point type. Not all targets support
10234all types however.
10235
10236::
10237
10238 declare float @llvm.floor.f32(float %Val)
10239 declare double @llvm.floor.f64(double %Val)
10240 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10241 declare fp128 @llvm.floor.f128(fp128 %Val)
10242 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10243
10244Overview:
10245"""""""""
10246
10247The '``llvm.floor.*``' intrinsics return the floor of the operand.
10248
10249Arguments:
10250""""""""""
10251
10252The argument and return value are floating point numbers of the same
10253type.
10254
10255Semantics:
10256""""""""""
10257
10258This function returns the same values as the libm ``floor`` functions
10259would, and handles error conditions in the same way.
10260
10261'``llvm.ceil.*``' Intrinsic
10262^^^^^^^^^^^^^^^^^^^^^^^^^^^
10263
10264Syntax:
10265"""""""
10266
10267This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10268floating point or vector of floating point type. Not all targets support
10269all types however.
10270
10271::
10272
10273 declare float @llvm.ceil.f32(float %Val)
10274 declare double @llvm.ceil.f64(double %Val)
10275 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10276 declare fp128 @llvm.ceil.f128(fp128 %Val)
10277 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10278
10279Overview:
10280"""""""""
10281
10282The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10283
10284Arguments:
10285""""""""""
10286
10287The argument and return value are floating point numbers of the same
10288type.
10289
10290Semantics:
10291""""""""""
10292
10293This function returns the same values as the libm ``ceil`` functions
10294would, and handles error conditions in the same way.
10295
10296'``llvm.trunc.*``' Intrinsic
10297^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10298
10299Syntax:
10300"""""""
10301
10302This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10303floating point or vector of floating point type. Not all targets support
10304all types however.
10305
10306::
10307
10308 declare float @llvm.trunc.f32(float %Val)
10309 declare double @llvm.trunc.f64(double %Val)
10310 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10311 declare fp128 @llvm.trunc.f128(fp128 %Val)
10312 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10313
10314Overview:
10315"""""""""
10316
10317The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10318nearest integer not larger in magnitude than the operand.
10319
10320Arguments:
10321""""""""""
10322
10323The argument and return value are floating point numbers of the same
10324type.
10325
10326Semantics:
10327""""""""""
10328
10329This function returns the same values as the libm ``trunc`` functions
10330would, and handles error conditions in the same way.
10331
10332'``llvm.rint.*``' Intrinsic
10333^^^^^^^^^^^^^^^^^^^^^^^^^^^
10334
10335Syntax:
10336"""""""
10337
10338This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10339floating point or vector of floating point type. Not all targets support
10340all types however.
10341
10342::
10343
10344 declare float @llvm.rint.f32(float %Val)
10345 declare double @llvm.rint.f64(double %Val)
10346 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10347 declare fp128 @llvm.rint.f128(fp128 %Val)
10348 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10349
10350Overview:
10351"""""""""
10352
10353The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10354nearest integer. It may raise an inexact floating-point exception if the
10355operand isn't an integer.
10356
10357Arguments:
10358""""""""""
10359
10360The argument and return value are floating point numbers of the same
10361type.
10362
10363Semantics:
10364""""""""""
10365
10366This function returns the same values as the libm ``rint`` functions
10367would, and handles error conditions in the same way.
10368
10369'``llvm.nearbyint.*``' Intrinsic
10370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10371
10372Syntax:
10373"""""""
10374
10375This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10376floating point or vector of floating point type. Not all targets support
10377all types however.
10378
10379::
10380
10381 declare float @llvm.nearbyint.f32(float %Val)
10382 declare double @llvm.nearbyint.f64(double %Val)
10383 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10384 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10385 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10386
10387Overview:
10388"""""""""
10389
10390The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10391nearest integer.
10392
10393Arguments:
10394""""""""""
10395
10396The argument and return value are floating point numbers of the same
10397type.
10398
10399Semantics:
10400""""""""""
10401
10402This function returns the same values as the libm ``nearbyint``
10403functions would, and handles error conditions in the same way.
10404
Hal Finkel171817e2013-08-07 22:49:12 +000010405'``llvm.round.*``' Intrinsic
10406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10407
10408Syntax:
10409"""""""
10410
10411This is an overloaded intrinsic. You can use ``llvm.round`` on any
10412floating point or vector of floating point type. Not all targets support
10413all types however.
10414
10415::
10416
10417 declare float @llvm.round.f32(float %Val)
10418 declare double @llvm.round.f64(double %Val)
10419 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10420 declare fp128 @llvm.round.f128(fp128 %Val)
10421 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10422
10423Overview:
10424"""""""""
10425
10426The '``llvm.round.*``' intrinsics returns the operand rounded to the
10427nearest integer.
10428
10429Arguments:
10430""""""""""
10431
10432The argument and return value are floating point numbers of the same
10433type.
10434
10435Semantics:
10436""""""""""
10437
10438This function returns the same values as the libm ``round``
10439functions would, and handles error conditions in the same way.
10440
Sean Silvab084af42012-12-07 10:36:55 +000010441Bit Manipulation Intrinsics
10442---------------------------
10443
10444LLVM provides intrinsics for a few important bit manipulation
10445operations. These allow efficient code generation for some algorithms.
10446
James Molloy90111f72015-11-12 12:29:09 +000010447'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010449
10450Syntax:
10451"""""""
10452
10453This is an overloaded intrinsic function. You can use bitreverse on any
10454integer type.
10455
10456::
10457
10458 declare i16 @llvm.bitreverse.i16(i16 <id>)
10459 declare i32 @llvm.bitreverse.i32(i32 <id>)
10460 declare i64 @llvm.bitreverse.i64(i64 <id>)
10461
10462Overview:
10463"""""""""
10464
10465The '``llvm.bitreverse``' family of intrinsics is used to reverse the
10466bitpattern of an integer value; for example ``0b1234567`` becomes
10467``0b7654321``.
10468
10469Semantics:
10470""""""""""
10471
10472The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10473``M`` in the input moved to bit ``N-M`` in the output.
10474
Sean Silvab084af42012-12-07 10:36:55 +000010475'``llvm.bswap.*``' Intrinsics
10476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10477
10478Syntax:
10479"""""""
10480
10481This is an overloaded intrinsic function. You can use bswap on any
10482integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10483
10484::
10485
10486 declare i16 @llvm.bswap.i16(i16 <id>)
10487 declare i32 @llvm.bswap.i32(i32 <id>)
10488 declare i64 @llvm.bswap.i64(i64 <id>)
10489
10490Overview:
10491"""""""""
10492
10493The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10494values with an even number of bytes (positive multiple of 16 bits).
10495These are useful for performing operations on data that is not in the
10496target's native byte order.
10497
10498Semantics:
10499""""""""""
10500
10501The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10502and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10503intrinsic returns an i32 value that has the four bytes of the input i32
10504swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10505returned i32 will have its bytes in 3, 2, 1, 0 order. The
10506``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10507concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10508respectively).
10509
10510'``llvm.ctpop.*``' Intrinsic
10511^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10512
10513Syntax:
10514"""""""
10515
10516This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10517bit width, or on any vector with integer elements. Not all targets
10518support all bit widths or vector types, however.
10519
10520::
10521
10522 declare i8 @llvm.ctpop.i8(i8 <src>)
10523 declare i16 @llvm.ctpop.i16(i16 <src>)
10524 declare i32 @llvm.ctpop.i32(i32 <src>)
10525 declare i64 @llvm.ctpop.i64(i64 <src>)
10526 declare i256 @llvm.ctpop.i256(i256 <src>)
10527 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10528
10529Overview:
10530"""""""""
10531
10532The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10533in a value.
10534
10535Arguments:
10536""""""""""
10537
10538The only argument is the value to be counted. The argument may be of any
10539integer type, or a vector with integer elements. The return type must
10540match the argument type.
10541
10542Semantics:
10543""""""""""
10544
10545The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10546each element of a vector.
10547
10548'``llvm.ctlz.*``' Intrinsic
10549^^^^^^^^^^^^^^^^^^^^^^^^^^^
10550
10551Syntax:
10552"""""""
10553
10554This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10555integer bit width, or any vector whose elements are integers. Not all
10556targets support all bit widths or vector types, however.
10557
10558::
10559
10560 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10561 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10562 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10563 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10564 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10565 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10566
10567Overview:
10568"""""""""
10569
10570The '``llvm.ctlz``' family of intrinsic functions counts the number of
10571leading zeros in a variable.
10572
10573Arguments:
10574""""""""""
10575
10576The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010577any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010578type must match the first argument type.
10579
10580The second argument must be a constant and is a flag to indicate whether
10581the intrinsic should ensure that a zero as the first argument produces a
10582defined result. Historically some architectures did not provide a
10583defined result for zero values as efficiently, and many algorithms are
10584now predicated on avoiding zero-value inputs.
10585
10586Semantics:
10587""""""""""
10588
10589The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10590zeros in a variable, or within each element of the vector. If
10591``src == 0`` then the result is the size in bits of the type of ``src``
10592if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10593``llvm.ctlz(i32 2) = 30``.
10594
10595'``llvm.cttz.*``' Intrinsic
10596^^^^^^^^^^^^^^^^^^^^^^^^^^^
10597
10598Syntax:
10599"""""""
10600
10601This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10602integer bit width, or any vector of integer elements. Not all targets
10603support all bit widths or vector types, however.
10604
10605::
10606
10607 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10608 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10609 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10610 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10611 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10612 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10613
10614Overview:
10615"""""""""
10616
10617The '``llvm.cttz``' family of intrinsic functions counts the number of
10618trailing zeros.
10619
10620Arguments:
10621""""""""""
10622
10623The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010624any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010625type must match the first argument type.
10626
10627The second argument must be a constant and is a flag to indicate whether
10628the intrinsic should ensure that a zero as the first argument produces a
10629defined result. Historically some architectures did not provide a
10630defined result for zero values as efficiently, and many algorithms are
10631now predicated on avoiding zero-value inputs.
10632
10633Semantics:
10634""""""""""
10635
10636The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10637zeros in a variable, or within each element of a vector. If ``src == 0``
10638then the result is the size in bits of the type of ``src`` if
10639``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10640``llvm.cttz(2) = 1``.
10641
Philip Reames34843ae2015-03-05 05:55:55 +000010642.. _int_overflow:
10643
Sean Silvab084af42012-12-07 10:36:55 +000010644Arithmetic with Overflow Intrinsics
10645-----------------------------------
10646
10647LLVM provides intrinsics for some arithmetic with overflow operations.
10648
10649'``llvm.sadd.with.overflow.*``' Intrinsics
10650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10651
10652Syntax:
10653"""""""
10654
10655This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10656on any integer bit width.
10657
10658::
10659
10660 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10661 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10662 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10663
10664Overview:
10665"""""""""
10666
10667The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10668a signed addition of the two arguments, and indicate whether an overflow
10669occurred during the signed summation.
10670
10671Arguments:
10672""""""""""
10673
10674The arguments (%a and %b) and the first element of the result structure
10675may be of integer types of any bit width, but they must have the same
10676bit width. The second element of the result structure must be of type
10677``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10678addition.
10679
10680Semantics:
10681""""""""""
10682
10683The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010684a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010685first element of which is the signed summation, and the second element
10686of which is a bit specifying if the signed summation resulted in an
10687overflow.
10688
10689Examples:
10690"""""""""
10691
10692.. code-block:: llvm
10693
10694 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10695 %sum = extractvalue {i32, i1} %res, 0
10696 %obit = extractvalue {i32, i1} %res, 1
10697 br i1 %obit, label %overflow, label %normal
10698
10699'``llvm.uadd.with.overflow.*``' Intrinsics
10700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10701
10702Syntax:
10703"""""""
10704
10705This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10706on any integer bit width.
10707
10708::
10709
10710 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10711 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10712 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10713
10714Overview:
10715"""""""""
10716
10717The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10718an unsigned addition of the two arguments, and indicate whether a carry
10719occurred during the unsigned summation.
10720
10721Arguments:
10722""""""""""
10723
10724The arguments (%a and %b) and the first element of the result structure
10725may be of integer types of any bit width, but they must have the same
10726bit width. The second element of the result structure must be of type
10727``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10728addition.
10729
10730Semantics:
10731""""""""""
10732
10733The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010734an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010735first element of which is the sum, and the second element of which is a
10736bit specifying if the unsigned summation resulted in a carry.
10737
10738Examples:
10739"""""""""
10740
10741.. code-block:: llvm
10742
10743 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10744 %sum = extractvalue {i32, i1} %res, 0
10745 %obit = extractvalue {i32, i1} %res, 1
10746 br i1 %obit, label %carry, label %normal
10747
10748'``llvm.ssub.with.overflow.*``' Intrinsics
10749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10750
10751Syntax:
10752"""""""
10753
10754This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10755on any integer bit width.
10756
10757::
10758
10759 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10760 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10761 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10762
10763Overview:
10764"""""""""
10765
10766The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10767a signed subtraction of the two arguments, and indicate whether an
10768overflow occurred during the signed subtraction.
10769
10770Arguments:
10771""""""""""
10772
10773The arguments (%a and %b) and the first element of the result structure
10774may be of integer types of any bit width, but they must have the same
10775bit width. The second element of the result structure must be of type
10776``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10777subtraction.
10778
10779Semantics:
10780""""""""""
10781
10782The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010783a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010784first element of which is the subtraction, and the second element of
10785which is a bit specifying if the signed subtraction resulted in an
10786overflow.
10787
10788Examples:
10789"""""""""
10790
10791.. code-block:: llvm
10792
10793 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10794 %sum = extractvalue {i32, i1} %res, 0
10795 %obit = extractvalue {i32, i1} %res, 1
10796 br i1 %obit, label %overflow, label %normal
10797
10798'``llvm.usub.with.overflow.*``' Intrinsics
10799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10800
10801Syntax:
10802"""""""
10803
10804This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10805on any integer bit width.
10806
10807::
10808
10809 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10810 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10811 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10812
10813Overview:
10814"""""""""
10815
10816The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10817an unsigned subtraction of the two arguments, and indicate whether an
10818overflow occurred during the unsigned subtraction.
10819
10820Arguments:
10821""""""""""
10822
10823The arguments (%a and %b) and the first element of the result structure
10824may be of integer types of any bit width, but they must have the same
10825bit width. The second element of the result structure must be of type
10826``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10827subtraction.
10828
10829Semantics:
10830""""""""""
10831
10832The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010833an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010834the first element of which is the subtraction, and the second element of
10835which is a bit specifying if the unsigned subtraction resulted in an
10836overflow.
10837
10838Examples:
10839"""""""""
10840
10841.. code-block:: llvm
10842
10843 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10844 %sum = extractvalue {i32, i1} %res, 0
10845 %obit = extractvalue {i32, i1} %res, 1
10846 br i1 %obit, label %overflow, label %normal
10847
10848'``llvm.smul.with.overflow.*``' Intrinsics
10849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10850
10851Syntax:
10852"""""""
10853
10854This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10855on any integer bit width.
10856
10857::
10858
10859 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10860 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10861 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10862
10863Overview:
10864"""""""""
10865
10866The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10867a signed multiplication of the two arguments, and indicate whether an
10868overflow occurred during the signed multiplication.
10869
10870Arguments:
10871""""""""""
10872
10873The arguments (%a and %b) and the first element of the result structure
10874may be of integer types of any bit width, but they must have the same
10875bit width. The second element of the result structure must be of type
10876``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10877multiplication.
10878
10879Semantics:
10880""""""""""
10881
10882The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010883a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010884the first element of which is the multiplication, and the second element
10885of which is a bit specifying if the signed multiplication resulted in an
10886overflow.
10887
10888Examples:
10889"""""""""
10890
10891.. code-block:: llvm
10892
10893 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10894 %sum = extractvalue {i32, i1} %res, 0
10895 %obit = extractvalue {i32, i1} %res, 1
10896 br i1 %obit, label %overflow, label %normal
10897
10898'``llvm.umul.with.overflow.*``' Intrinsics
10899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10900
10901Syntax:
10902"""""""
10903
10904This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10905on any integer bit width.
10906
10907::
10908
10909 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10910 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10911 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10912
10913Overview:
10914"""""""""
10915
10916The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10917a unsigned multiplication of the two arguments, and indicate whether an
10918overflow occurred during the unsigned multiplication.
10919
10920Arguments:
10921""""""""""
10922
10923The arguments (%a and %b) and the first element of the result structure
10924may be of integer types of any bit width, but they must have the same
10925bit width. The second element of the result structure must be of type
10926``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10927multiplication.
10928
10929Semantics:
10930""""""""""
10931
10932The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010933an unsigned multiplication of the two arguments. They return a structure ---
10934the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010935element of which is a bit specifying if the unsigned multiplication
10936resulted in an overflow.
10937
10938Examples:
10939"""""""""
10940
10941.. code-block:: llvm
10942
10943 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10944 %sum = extractvalue {i32, i1} %res, 0
10945 %obit = extractvalue {i32, i1} %res, 1
10946 br i1 %obit, label %overflow, label %normal
10947
10948Specialised Arithmetic Intrinsics
10949---------------------------------
10950
Owen Anderson1056a922015-07-11 07:01:27 +000010951'``llvm.canonicalize.*``' Intrinsic
10952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10953
10954Syntax:
10955"""""""
10956
10957::
10958
10959 declare float @llvm.canonicalize.f32(float %a)
10960 declare double @llvm.canonicalize.f64(double %b)
10961
10962Overview:
10963"""""""""
10964
10965The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010966encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010967implementing certain numeric primitives such as frexp. The canonical encoding is
10968defined by IEEE-754-2008 to be:
10969
10970::
10971
10972 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010973 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010974 numbers, infinities, and NaNs, especially in decimal formats.
10975
10976This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010977conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010978according to section 6.2.
10979
10980Examples of non-canonical encodings:
10981
Sean Silvaa1190322015-08-06 22:56:48 +000010982- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010983 converted to a canonical representation per hardware-specific protocol.
10984- Many normal decimal floating point numbers have non-canonical alternative
10985 encodings.
10986- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10987 These are treated as non-canonical encodings of zero and with be flushed to
10988 a zero of the same sign by this operation.
10989
10990Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10991default exception handling must signal an invalid exception, and produce a
10992quiet NaN result.
10993
10994This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010995that the compiler does not constant fold the operation. Likewise, division by
109961.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010997-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10998
Sean Silvaa1190322015-08-06 22:56:48 +000010999``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011000
11001- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11002- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11003 to ``(x == y)``
11004
11005Additionally, the sign of zero must be conserved:
11006``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11007
11008The payload bits of a NaN must be conserved, with two exceptions.
11009First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011010must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011011usual methods.
11012
11013The canonicalization operation may be optimized away if:
11014
Sean Silvaa1190322015-08-06 22:56:48 +000011015- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011016 floating-point operation that is required by the standard to be canonical.
11017- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011018 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011019
Sean Silvab084af42012-12-07 10:36:55 +000011020'``llvm.fmuladd.*``' Intrinsic
11021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11022
11023Syntax:
11024"""""""
11025
11026::
11027
11028 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11029 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11030
11031Overview:
11032"""""""""
11033
11034The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011035expressions that can be fused if the code generator determines that (a) the
11036target instruction set has support for a fused operation, and (b) that the
11037fused operation is more efficient than the equivalent, separate pair of mul
11038and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011039
11040Arguments:
11041""""""""""
11042
11043The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11044multiplicands, a and b, and an addend c.
11045
11046Semantics:
11047""""""""""
11048
11049The expression:
11050
11051::
11052
11053 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11054
11055is equivalent to the expression a \* b + c, except that rounding will
11056not be performed between the multiplication and addition steps if the
11057code generator fuses the operations. Fusion is not guaranteed, even if
11058the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011059corresponding llvm.fma.\* intrinsic function should be used
11060instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011061
11062Examples:
11063"""""""""
11064
11065.. code-block:: llvm
11066
Tim Northover675a0962014-06-13 14:24:23 +000011067 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011068
11069Half Precision Floating Point Intrinsics
11070----------------------------------------
11071
11072For most target platforms, half precision floating point is a
11073storage-only format. This means that it is a dense encoding (in memory)
11074but does not support computation in the format.
11075
11076This means that code must first load the half-precision floating point
11077value as an i16, then convert it to float with
11078:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11079then be performed on the float value (including extending to double
11080etc). To store the value back to memory, it is first converted to float
11081if needed, then converted to i16 with
11082:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11083i16 value.
11084
11085.. _int_convert_to_fp16:
11086
11087'``llvm.convert.to.fp16``' Intrinsic
11088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11089
11090Syntax:
11091"""""""
11092
11093::
11094
Tim Northoverfd7e4242014-07-17 10:51:23 +000011095 declare i16 @llvm.convert.to.fp16.f32(float %a)
11096 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011097
11098Overview:
11099"""""""""
11100
Tim Northoverfd7e4242014-07-17 10:51:23 +000011101The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11102conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011103
11104Arguments:
11105""""""""""
11106
11107The intrinsic function contains single argument - the value to be
11108converted.
11109
11110Semantics:
11111""""""""""
11112
Tim Northoverfd7e4242014-07-17 10:51:23 +000011113The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11114conventional floating point format to half precision floating point format. The
11115return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011116
11117Examples:
11118"""""""""
11119
11120.. code-block:: llvm
11121
Tim Northoverfd7e4242014-07-17 10:51:23 +000011122 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011123 store i16 %res, i16* @x, align 2
11124
11125.. _int_convert_from_fp16:
11126
11127'``llvm.convert.from.fp16``' Intrinsic
11128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11129
11130Syntax:
11131"""""""
11132
11133::
11134
Tim Northoverfd7e4242014-07-17 10:51:23 +000011135 declare float @llvm.convert.from.fp16.f32(i16 %a)
11136 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011137
11138Overview:
11139"""""""""
11140
11141The '``llvm.convert.from.fp16``' intrinsic function performs a
11142conversion from half precision floating point format to single precision
11143floating point format.
11144
11145Arguments:
11146""""""""""
11147
11148The intrinsic function contains single argument - the value to be
11149converted.
11150
11151Semantics:
11152""""""""""
11153
11154The '``llvm.convert.from.fp16``' intrinsic function performs a
11155conversion from half single precision floating point format to single
11156precision floating point format. The input half-float value is
11157represented by an ``i16`` value.
11158
11159Examples:
11160"""""""""
11161
11162.. code-block:: llvm
11163
David Blaikiec7aabbb2015-03-04 22:06:14 +000011164 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011165 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011166
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011167.. _dbg_intrinsics:
11168
Sean Silvab084af42012-12-07 10:36:55 +000011169Debugger Intrinsics
11170-------------------
11171
11172The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11173prefix), are described in the `LLVM Source Level
11174Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11175document.
11176
11177Exception Handling Intrinsics
11178-----------------------------
11179
11180The LLVM exception handling intrinsics (which all start with
11181``llvm.eh.`` prefix), are described in the `LLVM Exception
11182Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11183
11184.. _int_trampoline:
11185
11186Trampoline Intrinsics
11187---------------------
11188
11189These intrinsics make it possible to excise one parameter, marked with
11190the :ref:`nest <nest>` attribute, from a function. The result is a
11191callable function pointer lacking the nest parameter - the caller does
11192not need to provide a value for it. Instead, the value to use is stored
11193in advance in a "trampoline", a block of memory usually allocated on the
11194stack, which also contains code to splice the nest value into the
11195argument list. This is used to implement the GCC nested function address
11196extension.
11197
11198For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11199then the resulting function pointer has signature ``i32 (i32, i32)*``.
11200It can be created as follows:
11201
11202.. code-block:: llvm
11203
11204 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011205 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011206 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11207 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11208 %fp = bitcast i8* %p to i32 (i32, i32)*
11209
11210The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11211``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11212
11213.. _int_it:
11214
11215'``llvm.init.trampoline``' Intrinsic
11216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11217
11218Syntax:
11219"""""""
11220
11221::
11222
11223 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11224
11225Overview:
11226"""""""""
11227
11228This fills the memory pointed to by ``tramp`` with executable code,
11229turning it into a trampoline.
11230
11231Arguments:
11232""""""""""
11233
11234The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11235pointers. The ``tramp`` argument must point to a sufficiently large and
11236sufficiently aligned block of memory; this memory is written to by the
11237intrinsic. Note that the size and the alignment are target-specific -
11238LLVM currently provides no portable way of determining them, so a
11239front-end that generates this intrinsic needs to have some
11240target-specific knowledge. The ``func`` argument must hold a function
11241bitcast to an ``i8*``.
11242
11243Semantics:
11244""""""""""
11245
11246The block of memory pointed to by ``tramp`` is filled with target
11247dependent code, turning it into a function. Then ``tramp`` needs to be
11248passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11249be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11250function's signature is the same as that of ``func`` with any arguments
11251marked with the ``nest`` attribute removed. At most one such ``nest``
11252argument is allowed, and it must be of pointer type. Calling the new
11253function is equivalent to calling ``func`` with the same argument list,
11254but with ``nval`` used for the missing ``nest`` argument. If, after
11255calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11256modified, then the effect of any later call to the returned function
11257pointer is undefined.
11258
11259.. _int_at:
11260
11261'``llvm.adjust.trampoline``' Intrinsic
11262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11263
11264Syntax:
11265"""""""
11266
11267::
11268
11269 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11270
11271Overview:
11272"""""""""
11273
11274This performs any required machine-specific adjustment to the address of
11275a trampoline (passed as ``tramp``).
11276
11277Arguments:
11278""""""""""
11279
11280``tramp`` must point to a block of memory which already has trampoline
11281code filled in by a previous call to
11282:ref:`llvm.init.trampoline <int_it>`.
11283
11284Semantics:
11285""""""""""
11286
11287On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011288different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011289intrinsic returns the executable address corresponding to ``tramp``
11290after performing the required machine specific adjustments. The pointer
11291returned can then be :ref:`bitcast and executed <int_trampoline>`.
11292
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011293.. _int_mload_mstore:
11294
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011295Masked Vector Load and Store Intrinsics
11296---------------------------------------
11297
11298LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11299
11300.. _int_mload:
11301
11302'``llvm.masked.load.*``' Intrinsics
11303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11304
11305Syntax:
11306"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011307This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011308
11309::
11310
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011311 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11312 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11313 ;; The data is a vector of pointers to double
11314 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
11315 ;; The data is a vector of function pointers
11316 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011317
11318Overview:
11319"""""""""
11320
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011321Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011322
11323
11324Arguments:
11325""""""""""
11326
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011327The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011328
11329
11330Semantics:
11331""""""""""
11332
11333The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11334The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11335
11336
11337::
11338
11339 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011340
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011341 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011342 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011343 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011344
11345.. _int_mstore:
11346
11347'``llvm.masked.store.*``' Intrinsics
11348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11349
11350Syntax:
11351"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011352This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011353
11354::
11355
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011356 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11357 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11358 ;; The data is a vector of pointers to double
11359 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11360 ;; The data is a vector of function pointers
11361 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011362
11363Overview:
11364"""""""""
11365
11366Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11367
11368Arguments:
11369""""""""""
11370
11371The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11372
11373
11374Semantics:
11375""""""""""
11376
11377The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11378The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11379
11380::
11381
11382 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011383
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011384 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011385 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011386 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11387 store <16 x float> %res, <16 x float>* %ptr, align 4
11388
11389
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011390Masked Vector Gather and Scatter Intrinsics
11391-------------------------------------------
11392
11393LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11394
11395.. _int_mgather:
11396
11397'``llvm.masked.gather.*``' Intrinsics
11398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11399
11400Syntax:
11401"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011402This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011403
11404::
11405
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011406 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11407 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11408 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011409
11410Overview:
11411"""""""""
11412
11413Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11414
11415
11416Arguments:
11417""""""""""
11418
11419The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11420
11421
11422Semantics:
11423""""""""""
11424
11425The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11426The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11427
11428
11429::
11430
11431 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11432
11433 ;; The gather with all-true mask is equivalent to the following instruction sequence
11434 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11435 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11436 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11437 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11438
11439 %val0 = load double, double* %ptr0, align 8
11440 %val1 = load double, double* %ptr1, align 8
11441 %val2 = load double, double* %ptr2, align 8
11442 %val3 = load double, double* %ptr3, align 8
11443
11444 %vec0 = insertelement <4 x double>undef, %val0, 0
11445 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11446 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11447 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11448
11449.. _int_mscatter:
11450
11451'``llvm.masked.scatter.*``' Intrinsics
11452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11453
11454Syntax:
11455"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011456This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011457
11458::
11459
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011460 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11461 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11462 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011463
11464Overview:
11465"""""""""
11466
11467Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11468
11469Arguments:
11470""""""""""
11471
11472The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11473
11474
11475Semantics:
11476""""""""""
11477
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011478The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011479
11480::
11481
11482 ;; This instruction unconditionaly stores data vector in multiple addresses
11483 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11484
11485 ;; It is equivalent to a list of scalar stores
11486 %val0 = extractelement <8 x i32> %value, i32 0
11487 %val1 = extractelement <8 x i32> %value, i32 1
11488 ..
11489 %val7 = extractelement <8 x i32> %value, i32 7
11490 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11491 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11492 ..
11493 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11494 ;; Note: the order of the following stores is important when they overlap:
11495 store i32 %val0, i32* %ptr0, align 4
11496 store i32 %val1, i32* %ptr1, align 4
11497 ..
11498 store i32 %val7, i32* %ptr7, align 4
11499
11500
Sean Silvab084af42012-12-07 10:36:55 +000011501Memory Use Markers
11502------------------
11503
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011504This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011505memory objects and ranges where variables are immutable.
11506
Reid Klecknera534a382013-12-19 02:14:12 +000011507.. _int_lifestart:
11508
Sean Silvab084af42012-12-07 10:36:55 +000011509'``llvm.lifetime.start``' Intrinsic
11510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11511
11512Syntax:
11513"""""""
11514
11515::
11516
11517 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11518
11519Overview:
11520"""""""""
11521
11522The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11523object's lifetime.
11524
11525Arguments:
11526""""""""""
11527
11528The first argument is a constant integer representing the size of the
11529object, or -1 if it is variable sized. The second argument is a pointer
11530to the object.
11531
11532Semantics:
11533""""""""""
11534
11535This intrinsic indicates that before this point in the code, the value
11536of the memory pointed to by ``ptr`` is dead. This means that it is known
11537to never be used and has an undefined value. A load from the pointer
11538that precedes this intrinsic can be replaced with ``'undef'``.
11539
Reid Klecknera534a382013-12-19 02:14:12 +000011540.. _int_lifeend:
11541
Sean Silvab084af42012-12-07 10:36:55 +000011542'``llvm.lifetime.end``' Intrinsic
11543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11544
11545Syntax:
11546"""""""
11547
11548::
11549
11550 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11551
11552Overview:
11553"""""""""
11554
11555The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11556object's lifetime.
11557
11558Arguments:
11559""""""""""
11560
11561The first argument is a constant integer representing the size of the
11562object, or -1 if it is variable sized. The second argument is a pointer
11563to the object.
11564
11565Semantics:
11566""""""""""
11567
11568This intrinsic indicates that after this point in the code, the value of
11569the memory pointed to by ``ptr`` is dead. This means that it is known to
11570never be used and has an undefined value. Any stores into the memory
11571object following this intrinsic may be removed as dead.
11572
11573'``llvm.invariant.start``' Intrinsic
11574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11575
11576Syntax:
11577"""""""
11578
11579::
11580
11581 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11582
11583Overview:
11584"""""""""
11585
11586The '``llvm.invariant.start``' intrinsic specifies that the contents of
11587a memory object will not change.
11588
11589Arguments:
11590""""""""""
11591
11592The first argument is a constant integer representing the size of the
11593object, or -1 if it is variable sized. The second argument is a pointer
11594to the object.
11595
11596Semantics:
11597""""""""""
11598
11599This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11600the return value, the referenced memory location is constant and
11601unchanging.
11602
11603'``llvm.invariant.end``' Intrinsic
11604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11605
11606Syntax:
11607"""""""
11608
11609::
11610
11611 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11612
11613Overview:
11614"""""""""
11615
11616The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11617memory object are mutable.
11618
11619Arguments:
11620""""""""""
11621
11622The first argument is the matching ``llvm.invariant.start`` intrinsic.
11623The second argument is a constant integer representing the size of the
11624object, or -1 if it is variable sized and the third argument is a
11625pointer to the object.
11626
11627Semantics:
11628""""""""""
11629
11630This intrinsic indicates that the memory is mutable again.
11631
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011632'``llvm.invariant.group.barrier``' Intrinsic
11633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11634
11635Syntax:
11636"""""""
11637
11638::
11639
11640 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11641
11642Overview:
11643"""""""""
11644
11645The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11646established by invariant.group metadata no longer holds, to obtain a new pointer
11647value that does not carry the invariant information.
11648
11649
11650Arguments:
11651""""""""""
11652
11653The ``llvm.invariant.group.barrier`` takes only one argument, which is
11654the pointer to the memory for which the ``invariant.group`` no longer holds.
11655
11656Semantics:
11657""""""""""
11658
11659Returns another pointer that aliases its argument but which is considered different
11660for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11661
Sean Silvab084af42012-12-07 10:36:55 +000011662General Intrinsics
11663------------------
11664
11665This class of intrinsics is designed to be generic and has no specific
11666purpose.
11667
11668'``llvm.var.annotation``' Intrinsic
11669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11670
11671Syntax:
11672"""""""
11673
11674::
11675
11676 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11677
11678Overview:
11679"""""""""
11680
11681The '``llvm.var.annotation``' intrinsic.
11682
11683Arguments:
11684""""""""""
11685
11686The first argument is a pointer to a value, the second is a pointer to a
11687global string, the third is a pointer to a global string which is the
11688source file name, and the last argument is the line number.
11689
11690Semantics:
11691""""""""""
11692
11693This intrinsic allows annotation of local variables with arbitrary
11694strings. This can be useful for special purpose optimizations that want
11695to look for these annotations. These have no other defined use; they are
11696ignored by code generation and optimization.
11697
Michael Gottesman88d18832013-03-26 00:34:27 +000011698'``llvm.ptr.annotation.*``' Intrinsic
11699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11700
11701Syntax:
11702"""""""
11703
11704This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11705pointer to an integer of any width. *NOTE* you must specify an address space for
11706the pointer. The identifier for the default address space is the integer
11707'``0``'.
11708
11709::
11710
11711 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11712 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11713 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11714 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11715 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11716
11717Overview:
11718"""""""""
11719
11720The '``llvm.ptr.annotation``' intrinsic.
11721
11722Arguments:
11723""""""""""
11724
11725The first argument is a pointer to an integer value of arbitrary bitwidth
11726(result of some expression), the second is a pointer to a global string, the
11727third is a pointer to a global string which is the source file name, and the
11728last argument is the line number. It returns the value of the first argument.
11729
11730Semantics:
11731""""""""""
11732
11733This intrinsic allows annotation of a pointer to an integer with arbitrary
11734strings. This can be useful for special purpose optimizations that want to look
11735for these annotations. These have no other defined use; they are ignored by code
11736generation and optimization.
11737
Sean Silvab084af42012-12-07 10:36:55 +000011738'``llvm.annotation.*``' Intrinsic
11739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11740
11741Syntax:
11742"""""""
11743
11744This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11745any integer bit width.
11746
11747::
11748
11749 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11750 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11751 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11752 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11753 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11754
11755Overview:
11756"""""""""
11757
11758The '``llvm.annotation``' intrinsic.
11759
11760Arguments:
11761""""""""""
11762
11763The first argument is an integer value (result of some expression), the
11764second is a pointer to a global string, the third is a pointer to a
11765global string which is the source file name, and the last argument is
11766the line number. It returns the value of the first argument.
11767
11768Semantics:
11769""""""""""
11770
11771This intrinsic allows annotations to be put on arbitrary expressions
11772with arbitrary strings. This can be useful for special purpose
11773optimizations that want to look for these annotations. These have no
11774other defined use; they are ignored by code generation and optimization.
11775
11776'``llvm.trap``' Intrinsic
11777^^^^^^^^^^^^^^^^^^^^^^^^^
11778
11779Syntax:
11780"""""""
11781
11782::
11783
11784 declare void @llvm.trap() noreturn nounwind
11785
11786Overview:
11787"""""""""
11788
11789The '``llvm.trap``' intrinsic.
11790
11791Arguments:
11792""""""""""
11793
11794None.
11795
11796Semantics:
11797""""""""""
11798
11799This intrinsic is lowered to the target dependent trap instruction. If
11800the target does not have a trap instruction, this intrinsic will be
11801lowered to a call of the ``abort()`` function.
11802
11803'``llvm.debugtrap``' Intrinsic
11804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11805
11806Syntax:
11807"""""""
11808
11809::
11810
11811 declare void @llvm.debugtrap() nounwind
11812
11813Overview:
11814"""""""""
11815
11816The '``llvm.debugtrap``' intrinsic.
11817
11818Arguments:
11819""""""""""
11820
11821None.
11822
11823Semantics:
11824""""""""""
11825
11826This intrinsic is lowered to code which is intended to cause an
11827execution trap with the intention of requesting the attention of a
11828debugger.
11829
11830'``llvm.stackprotector``' Intrinsic
11831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11832
11833Syntax:
11834"""""""
11835
11836::
11837
11838 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11839
11840Overview:
11841"""""""""
11842
11843The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11844onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11845is placed on the stack before local variables.
11846
11847Arguments:
11848""""""""""
11849
11850The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11851The first argument is the value loaded from the stack guard
11852``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11853enough space to hold the value of the guard.
11854
11855Semantics:
11856""""""""""
11857
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011858This intrinsic causes the prologue/epilogue inserter to force the position of
11859the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11860to ensure that if a local variable on the stack is overwritten, it will destroy
11861the value of the guard. When the function exits, the guard on the stack is
11862checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11863different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11864calling the ``__stack_chk_fail()`` function.
11865
11866'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011868
11869Syntax:
11870"""""""
11871
11872::
11873
11874 declare void @llvm.stackprotectorcheck(i8** <guard>)
11875
11876Overview:
11877"""""""""
11878
11879The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011880created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011881``__stack_chk_fail()`` function.
11882
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011883Arguments:
11884""""""""""
11885
11886The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11887the variable ``@__stack_chk_guard``.
11888
11889Semantics:
11890""""""""""
11891
11892This intrinsic is provided to perform the stack protector check by comparing
11893``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11894values do not match call the ``__stack_chk_fail()`` function.
11895
11896The reason to provide this as an IR level intrinsic instead of implementing it
11897via other IR operations is that in order to perform this operation at the IR
11898level without an intrinsic, one would need to create additional basic blocks to
11899handle the success/failure cases. This makes it difficult to stop the stack
11900protector check from disrupting sibling tail calls in Codegen. With this
11901intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011902codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011903
Sean Silvab084af42012-12-07 10:36:55 +000011904'``llvm.objectsize``' Intrinsic
11905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11906
11907Syntax:
11908"""""""
11909
11910::
11911
11912 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11913 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11914
11915Overview:
11916"""""""""
11917
11918The ``llvm.objectsize`` intrinsic is designed to provide information to
11919the optimizers to determine at compile time whether a) an operation
11920(like memcpy) will overflow a buffer that corresponds to an object, or
11921b) that a runtime check for overflow isn't necessary. An object in this
11922context means an allocation of a specific class, structure, array, or
11923other object.
11924
11925Arguments:
11926""""""""""
11927
11928The ``llvm.objectsize`` intrinsic takes two arguments. The first
11929argument is a pointer to or into the ``object``. The second argument is
11930a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11931or -1 (if false) when the object size is unknown. The second argument
11932only accepts constants.
11933
11934Semantics:
11935""""""""""
11936
11937The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11938the size of the object concerned. If the size cannot be determined at
11939compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11940on the ``min`` argument).
11941
11942'``llvm.expect``' Intrinsic
11943^^^^^^^^^^^^^^^^^^^^^^^^^^^
11944
11945Syntax:
11946"""""""
11947
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011948This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11949integer bit width.
11950
Sean Silvab084af42012-12-07 10:36:55 +000011951::
11952
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011953 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011954 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11955 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11956
11957Overview:
11958"""""""""
11959
11960The ``llvm.expect`` intrinsic provides information about expected (the
11961most probable) value of ``val``, which can be used by optimizers.
11962
11963Arguments:
11964""""""""""
11965
11966The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11967a value. The second argument is an expected value, this needs to be a
11968constant value, variables are not allowed.
11969
11970Semantics:
11971""""""""""
11972
11973This intrinsic is lowered to the ``val``.
11974
Philip Reamese0e90832015-04-26 22:23:12 +000011975.. _int_assume:
11976
Hal Finkel93046912014-07-25 21:13:35 +000011977'``llvm.assume``' Intrinsic
11978^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11979
11980Syntax:
11981"""""""
11982
11983::
11984
11985 declare void @llvm.assume(i1 %cond)
11986
11987Overview:
11988"""""""""
11989
11990The ``llvm.assume`` allows the optimizer to assume that the provided
11991condition is true. This information can then be used in simplifying other parts
11992of the code.
11993
11994Arguments:
11995""""""""""
11996
11997The condition which the optimizer may assume is always true.
11998
11999Semantics:
12000""""""""""
12001
12002The intrinsic allows the optimizer to assume that the provided condition is
12003always true whenever the control flow reaches the intrinsic call. No code is
12004generated for this intrinsic, and instructions that contribute only to the
12005provided condition are not used for code generation. If the condition is
12006violated during execution, the behavior is undefined.
12007
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012008Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012009used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12010only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012011if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012012sufficient overall improvement in code quality. For this reason,
12013``llvm.assume`` should not be used to document basic mathematical invariants
12014that the optimizer can otherwise deduce or facts that are of little use to the
12015optimizer.
12016
Peter Collingbournee6909c82015-02-20 20:30:47 +000012017.. _bitset.test:
12018
12019'``llvm.bitset.test``' Intrinsic
12020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12021
12022Syntax:
12023"""""""
12024
12025::
12026
12027 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12028
12029
12030Arguments:
12031""""""""""
12032
12033The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012034metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012035
12036Overview:
12037"""""""""
12038
12039The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12040member of the given bitset.
12041
Sean Silvab084af42012-12-07 10:36:55 +000012042'``llvm.donothing``' Intrinsic
12043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12044
12045Syntax:
12046"""""""
12047
12048::
12049
12050 declare void @llvm.donothing() nounwind readnone
12051
12052Overview:
12053"""""""""
12054
Juergen Ributzkac9161192014-10-23 22:36:13 +000012055The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12056two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12057with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012058
12059Arguments:
12060""""""""""
12061
12062None.
12063
12064Semantics:
12065""""""""""
12066
12067This intrinsic does nothing, and it's removed by optimizers and ignored
12068by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012069
12070Stack Map Intrinsics
12071--------------------
12072
12073LLVM provides experimental intrinsics to support runtime patching
12074mechanisms commonly desired in dynamic language JITs. These intrinsics
12075are described in :doc:`StackMaps`.