blob: 5f745d2b06fcc127009e169bd4bee2dca850073e [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
Peter Collingbourne45cd0c32015-12-14 19:22:37 +0000207 Globals with "``available_externally``" linkage are never emitted into
208 the object file corresponding to the LLVM module. From the linker's
209 perspective, an ``available_externally`` global is equivalent to
210 an external declaration. They exist to allow inlining and other
211 optimizations to take place given knowledge of the definition of the
212 global, which is known to be somewhere outside the module. Globals
213 with ``available_externally`` linkage are allowed to be discarded at
214 will, and allow inlining and other optimizations. This linkage type is
215 only allowed on definitions, not declarations.
Sean Silvab084af42012-12-07 10:36:55 +0000216``linkonce``
217 Globals with "``linkonce``" linkage are merged with other globals of
218 the same name when linkage occurs. This can be used to implement
219 some forms of inline functions, templates, or other code which must
220 be generated in each translation unit that uses it, but where the
221 body may be overridden with a more definitive definition later.
222 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223 that ``linkonce`` linkage does not actually allow the optimizer to
224 inline the body of this function into callers because it doesn't
225 know if this definition of the function is the definitive definition
226 within the program or whether it will be overridden by a stronger
227 definition. To enable inlining and other optimizations, use
228 "``linkonce_odr``" linkage.
229``weak``
230 "``weak``" linkage has the same merging semantics as ``linkonce``
231 linkage, except that unreferenced globals with ``weak`` linkage may
232 not be discarded. This is used for globals that are declared "weak"
233 in C source code.
234``common``
235 "``common``" linkage is most similar to "``weak``" linkage, but they
236 are used for tentative definitions in C, such as "``int X;``" at
237 global scope. Symbols with "``common``" linkage are merged in the
238 same way as ``weak symbols``, and they may not be deleted if
239 unreferenced. ``common`` symbols may not have an explicit section,
240 must have a zero initializer, and may not be marked
241 ':ref:`constant <globalvars>`'. Functions and aliases may not have
242 common linkage.
243
244.. _linkage_appending:
245
246``appending``
247 "``appending``" linkage may only be applied to global variables of
248 pointer to array type. When two global variables with appending
249 linkage are linked together, the two global arrays are appended
250 together. This is the LLVM, typesafe, equivalent of having the
251 system linker append together "sections" with identical names when
252 .o files are linked.
253``extern_weak``
254 The semantics of this linkage follow the ELF object file model: the
255 symbol is weak until linked, if not linked, the symbol becomes null
256 instead of being an undefined reference.
257``linkonce_odr``, ``weak_odr``
258 Some languages allow differing globals to be merged, such as two
259 functions with different semantics. Other languages, such as
260 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000261 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000262 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
263 global will only be merged with equivalent globals. These linkage
264 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000265``external``
266 If none of the above identifiers are used, the global is externally
267 visible, meaning that it participates in linkage and can be used to
268 resolve external symbol references.
269
Sean Silvab084af42012-12-07 10:36:55 +0000270It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000271other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000272
Sean Silvab084af42012-12-07 10:36:55 +0000273.. _callingconv:
274
275Calling Conventions
276-------------------
277
278LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
279:ref:`invokes <i_invoke>` can all have an optional calling convention
280specified for the call. The calling convention of any pair of dynamic
281caller/callee must match, or the behavior of the program is undefined.
282The following calling conventions are supported by LLVM, and more may be
283added in the future:
284
285"``ccc``" - The C calling convention
286 This calling convention (the default if no other calling convention
287 is specified) matches the target C calling conventions. This calling
288 convention supports varargs function calls and tolerates some
289 mismatch in the declared prototype and implemented declaration of
290 the function (as does normal C).
291"``fastcc``" - The fast calling convention
292 This calling convention attempts to make calls as fast as possible
293 (e.g. by passing things in registers). This calling convention
294 allows the target to use whatever tricks it wants to produce fast
295 code for the target, without having to conform to an externally
296 specified ABI (Application Binary Interface). `Tail calls can only
297 be optimized when this, the GHC or the HiPE convention is
298 used. <CodeGenerator.html#id80>`_ This calling convention does not
299 support varargs and requires the prototype of all callees to exactly
300 match the prototype of the function definition.
301"``coldcc``" - The cold calling convention
302 This calling convention attempts to make code in the caller as
303 efficient as possible under the assumption that the call is not
304 commonly executed. As such, these calls often preserve all registers
305 so that the call does not break any live ranges in the caller side.
306 This calling convention does not support varargs and requires the
307 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000308 function definition. Furthermore the inliner doesn't consider such function
309 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000310"``cc 10``" - GHC convention
311 This calling convention has been implemented specifically for use by
312 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
313 It passes everything in registers, going to extremes to achieve this
314 by disabling callee save registers. This calling convention should
315 not be used lightly but only for specific situations such as an
316 alternative to the *register pinning* performance technique often
317 used when implementing functional programming languages. At the
318 moment only X86 supports this convention and it has the following
319 limitations:
320
321 - On *X86-32* only supports up to 4 bit type parameters. No
322 floating point types are supported.
323 - On *X86-64* only supports up to 10 bit type parameters and 6
324 floating point parameters.
325
326 This calling convention supports `tail call
327 optimization <CodeGenerator.html#id80>`_ but requires both the
328 caller and callee are using it.
329"``cc 11``" - The HiPE calling convention
330 This calling convention has been implemented specifically for use by
331 the `High-Performance Erlang
332 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
333 native code compiler of the `Ericsson's Open Source Erlang/OTP
334 system <http://www.erlang.org/download.shtml>`_. It uses more
335 registers for argument passing than the ordinary C calling
336 convention and defines no callee-saved registers. The calling
337 convention properly supports `tail call
338 optimization <CodeGenerator.html#id80>`_ but requires that both the
339 caller and the callee use it. It uses a *register pinning*
340 mechanism, similar to GHC's convention, for keeping frequently
341 accessed runtime components pinned to specific hardware registers.
342 At the moment only X86 supports this convention (both 32 and 64
343 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000344"``webkit_jscc``" - WebKit's JavaScript calling convention
345 This calling convention has been implemented for `WebKit FTL JIT
346 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
347 stack right to left (as cdecl does), and returns a value in the
348 platform's customary return register.
349"``anyregcc``" - Dynamic calling convention for code patching
350 This is a special convention that supports patching an arbitrary code
351 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000352 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000353 allocated. This can currently only be used with calls to
354 llvm.experimental.patchpoint because only this intrinsic records
355 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000356"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000357 This calling convention attempts to make the code in the caller as
358 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000359 calling convention on how arguments and return values are passed, but it
360 uses a different set of caller/callee-saved registers. This alleviates the
361 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000362 call in the caller. If the arguments are passed in callee-saved registers,
363 then they will be preserved by the callee across the call. This doesn't
364 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000365
366 - On X86-64 the callee preserves all general purpose registers, except for
367 R11. R11 can be used as a scratch register. Floating-point registers
368 (XMMs/YMMs) are not preserved and need to be saved by the caller.
369
370 The idea behind this convention is to support calls to runtime functions
371 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000372 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000373 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000374 registers, which haven't already been saved by the caller. The
375 `PreserveMost` calling convention is very similar to the `cold` calling
376 convention in terms of caller/callee-saved registers, but they are used for
377 different types of function calls. `coldcc` is for function calls that are
378 rarely executed, whereas `preserve_mostcc` function calls are intended to be
379 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
380 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000381
382 This calling convention will be used by a future version of the ObjectiveC
383 runtime and should therefore still be considered experimental at this time.
384 Although this convention was created to optimize certain runtime calls to
385 the ObjectiveC runtime, it is not limited to this runtime and might be used
386 by other runtimes in the future too. The current implementation only
387 supports X86-64, but the intention is to support more architectures in the
388 future.
389"``preserve_allcc``" - The `PreserveAll` calling convention
390 This calling convention attempts to make the code in the caller even less
391 intrusive than the `PreserveMost` calling convention. This calling
392 convention also behaves identical to the `C` calling convention on how
393 arguments and return values are passed, but it uses a different set of
394 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000395 recovering a large register set before and after the call in the caller. If
396 the arguments are passed in callee-saved registers, then they will be
397 preserved by the callee across the call. This doesn't apply for values
398 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000399
400 - On X86-64 the callee preserves all general purpose registers, except for
401 R11. R11 can be used as a scratch register. Furthermore it also preserves
402 all floating-point registers (XMMs/YMMs).
403
404 The idea behind this convention is to support calls to runtime functions
405 that don't need to call out to any other functions.
406
407 This calling convention, like the `PreserveMost` calling convention, will be
408 used by a future version of the ObjectiveC runtime and should be considered
409 experimental at this time.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000410"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
Manman Ren17567d22015-12-07 21:40:09 +0000411 Clang generates an access function to access C++-style TLS. The access
412 function generally has an entry block, an exit block and an initialization
413 block that is run at the first time. The entry and exit blocks can access
414 a few TLS IR variables, each access will be lowered to a platform-specific
415 sequence.
416
Manman Ren19c7bbe2015-12-04 17:40:13 +0000417 This calling convention aims to minimize overhead in the caller by
Manman Ren17567d22015-12-07 21:40:09 +0000418 preserving as many registers as possible (all the registers that are
419 perserved on the fast path, composed of the entry and exit blocks).
420
421 This calling convention behaves identical to the `C` calling convention on
422 how arguments and return values are passed, but it uses a different set of
423 caller/callee-saved registers.
424
425 Given that each platform has its own lowering sequence, hence its own set
426 of preserved registers, we can't use the existing `PreserveMost`.
Manman Ren19c7bbe2015-12-04 17:40:13 +0000427
428 - On X86-64 the callee preserves all general purpose registers, except for
429 RDI and RAX.
Sean Silvab084af42012-12-07 10:36:55 +0000430"``cc <n>``" - Numbered convention
431 Any calling convention may be specified by number, allowing
432 target-specific calling conventions to be used. Target specific
433 calling conventions start at 64.
434
435More calling conventions can be added/defined on an as-needed basis, to
436support Pascal conventions or any other well-known target-independent
437convention.
438
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000439.. _visibilitystyles:
440
Sean Silvab084af42012-12-07 10:36:55 +0000441Visibility Styles
442-----------------
443
444All Global Variables and Functions have one of the following visibility
445styles:
446
447"``default``" - Default style
448 On targets that use the ELF object file format, default visibility
449 means that the declaration is visible to other modules and, in
450 shared libraries, means that the declared entity may be overridden.
451 On Darwin, default visibility means that the declaration is visible
452 to other modules. Default visibility corresponds to "external
453 linkage" in the language.
454"``hidden``" - Hidden style
455 Two declarations of an object with hidden visibility refer to the
456 same object if they are in the same shared object. Usually, hidden
457 visibility indicates that the symbol will not be placed into the
458 dynamic symbol table, so no other module (executable or shared
459 library) can reference it directly.
460"``protected``" - Protected style
461 On ELF, protected visibility indicates that the symbol will be
462 placed in the dynamic symbol table, but that references within the
463 defining module will bind to the local symbol. That is, the symbol
464 cannot be overridden by another module.
465
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000466A symbol with ``internal`` or ``private`` linkage must have ``default``
467visibility.
468
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000469.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000470
Nico Rieck7157bb72014-01-14 15:22:47 +0000471DLL Storage Classes
472-------------------
473
474All Global Variables, Functions and Aliases can have one of the following
475DLL storage class:
476
477``dllimport``
478 "``dllimport``" causes the compiler to reference a function or variable via
479 a global pointer to a pointer that is set up by the DLL exporting the
480 symbol. On Microsoft Windows targets, the pointer name is formed by
481 combining ``__imp_`` and the function or variable name.
482``dllexport``
483 "``dllexport``" causes the compiler to provide a global pointer to a pointer
484 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
485 Microsoft Windows targets, the pointer name is formed by combining
486 ``__imp_`` and the function or variable name. Since this storage class
487 exists for defining a dll interface, the compiler, assembler and linker know
488 it is externally referenced and must refrain from deleting the symbol.
489
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000490.. _tls_model:
491
492Thread Local Storage Models
493---------------------------
494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507If no explicit model is given, the "general dynamic" model is used.
508
509The models correspond to the ELF TLS models; see `ELF Handling For
510Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
511more information on under which circumstances the different models may
512be used. The target may choose a different TLS model if the specified
513model is not supported, or if a better choice of model can be made.
514
Sean Silva706fba52015-08-06 22:56:24 +0000515A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000516the alias is accessed. It will not have any effect in the aliasee.
517
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000518For platforms without linker support of ELF TLS model, the -femulated-tls
519flag can be used to generate GCC compatible emulated TLS code.
520
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000521.. _namedtypes:
522
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000523Structure Types
524---------------
Sean Silvab084af42012-12-07 10:36:55 +0000525
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000526LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000527types <t_struct>`. Literal types are uniqued structurally, but identified types
528are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000529to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000530
Sean Silva706fba52015-08-06 22:56:24 +0000531An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000532
533.. code-block:: llvm
534
535 %mytype = type { %mytype*, i32 }
536
Sean Silvaa1190322015-08-06 22:56:48 +0000537Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000538literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000539
540.. _globalvars:
541
542Global Variables
543----------------
544
545Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000546instead of run-time.
547
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000548Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000549
550Global variables in other translation units can also be declared, in which
551case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000552
Bob Wilson85b24f22014-06-12 20:40:33 +0000553Either global variable definitions or declarations may have an explicit section
554to be placed in and may have an optional explicit alignment specified.
555
Michael Gottesman006039c2013-01-31 05:48:48 +0000556A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000557the contents of the variable will **never** be modified (enabling better
558optimization, allowing the global data to be placed in the read-only
559section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000560initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000561variable.
562
563LLVM explicitly allows *declarations* of global variables to be marked
564constant, even if the final definition of the global is not. This
565capability can be used to enable slightly better optimization of the
566program, but requires the language definition to guarantee that
567optimizations based on the 'constantness' are valid for the translation
568units that do not include the definition.
569
570As SSA values, global variables define pointer values that are in scope
571(i.e. they dominate) all basic blocks in the program. Global variables
572always define a pointer to their "content" type because they describe a
573region of memory, and all memory objects in LLVM are accessed through
574pointers.
575
576Global variables can be marked with ``unnamed_addr`` which indicates
577that the address is not significant, only the content. Constants marked
578like this can be merged with other constants if they have the same
579initializer. Note that a constant with significant address *can* be
580merged with a ``unnamed_addr`` constant, the result being a constant
581whose address is significant.
582
583A global variable may be declared to reside in a target-specific
584numbered address space. For targets that support them, address spaces
585may affect how optimizations are performed and/or what target
586instructions are used to access the variable. The default address space
587is zero. The address space qualifier must precede any other attributes.
588
589LLVM allows an explicit section to be specified for globals. If the
590target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000591Additionally, the global can placed in a comdat if the target has the necessary
592support.
Sean Silvab084af42012-12-07 10:36:55 +0000593
Michael Gottesmane743a302013-02-04 03:22:00 +0000594By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000595variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000596initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000597true even for variables potentially accessible from outside the
598module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000599``@llvm.used`` or dllexported variables. This assumption may be suppressed
600by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602An explicit alignment may be specified for a global, which must be a
603power of 2. If not present, or if the alignment is set to zero, the
604alignment of the global is set by the target to whatever it feels
605convenient. If an explicit alignment is specified, the global is forced
606to have exactly that alignment. Targets and optimizers are not allowed
607to over-align the global if the global has an assigned section. In this
608case, the extra alignment could be observable: for example, code could
609assume that the globals are densely packed in their section and try to
610iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000611iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000612
Nico Rieck7157bb72014-01-14 15:22:47 +0000613Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
614
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000615Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000616:ref:`Thread Local Storage Model <tls_model>`.
617
Nico Rieck7157bb72014-01-14 15:22:47 +0000618Syntax::
619
620 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000621 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000622 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000623 [, section "name"] [, comdat [($name)]]
624 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000625
Sean Silvab084af42012-12-07 10:36:55 +0000626For example, the following defines a global in a numbered address space
627with an initializer, section, and alignment:
628
629.. code-block:: llvm
630
631 @G = addrspace(5) constant float 1.0, section "foo", align 4
632
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000633The following example just declares a global variable
634
635.. code-block:: llvm
636
637 @G = external global i32
638
Sean Silvab084af42012-12-07 10:36:55 +0000639The following example defines a thread-local global with the
640``initialexec`` TLS model:
641
642.. code-block:: llvm
643
644 @G = thread_local(initialexec) global i32 0, align 4
645
646.. _functionstructure:
647
648Functions
649---------
650
651LLVM function definitions consist of the "``define``" keyword, an
652optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000653style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
654an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000655an optional ``unnamed_addr`` attribute, a return type, an optional
656:ref:`parameter attribute <paramattrs>` for the return type, a function
657name, a (possibly empty) argument list (each with optional :ref:`parameter
658attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000659an optional section, an optional alignment,
660an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000661an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000662an optional :ref:`prologue <prologuedata>`,
663an optional :ref:`personality <personalityfn>`,
Peter Collingbourne50108682015-11-06 02:41:02 +0000664an optional list of attached :ref:`metadata <metadata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000665an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000666
667LLVM function declarations consist of the "``declare``" keyword, an
668optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000669style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
670an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000671an optional ``unnamed_addr`` attribute, a return type, an optional
672:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000673name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000674:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
675and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000676
Bill Wendling6822ecb2013-10-27 05:09:12 +0000677A function definition contains a list of basic blocks, forming the CFG (Control
678Flow Graph) for the function. Each basic block may optionally start with a label
679(giving the basic block a symbol table entry), contains a list of instructions,
680and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
681function return). If an explicit label is not provided, a block is assigned an
682implicit numbered label, using the next value from the same counter as used for
683unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
684entry block does not have an explicit label, it will be assigned label "%0",
685then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000686
687The first basic block in a function is special in two ways: it is
688immediately executed on entrance to the function, and it is not allowed
689to have predecessor basic blocks (i.e. there can not be any branches to
690the entry block of a function). Because the block can have no
691predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
692
693LLVM allows an explicit section to be specified for functions. If the
694target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000695Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000696
697An explicit alignment may be specified for a function. If not present,
698or if the alignment is set to zero, the alignment of the function is set
699by the target to whatever it feels convenient. If an explicit alignment
700is specified, the function is forced to have at least that much
701alignment. All alignments must be a power of 2.
702
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000703If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000704be significant and two identical functions can be merged.
705
706Syntax::
707
Nico Rieck7157bb72014-01-14 15:22:47 +0000708 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000709 [cconv] [ret attrs]
710 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000711 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000712 [align N] [gc] [prefix Constant] [prologue Constant]
Peter Collingbourne50108682015-11-06 02:41:02 +0000713 [personality Constant] (!name !N)* { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000714
Sean Silva706fba52015-08-06 22:56:24 +0000715The argument list is a comma separated sequence of arguments where each
716argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000717
718Syntax::
719
720 <type> [parameter Attrs] [name]
721
722
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000723.. _langref_aliases:
724
Sean Silvab084af42012-12-07 10:36:55 +0000725Aliases
726-------
727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Aliases, unlike function or variables, don't create any new data. They
729are just a new symbol and metadata for an existing position.
730
731Aliases have a name and an aliasee that is either a global value or a
732constant expression.
733
Nico Rieck7157bb72014-01-14 15:22:47 +0000734Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000735:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
736<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000737
738Syntax::
739
David Blaikie196582e2015-10-22 01:17:29 +0000740 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000741
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000742The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000743``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000744might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000745
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000746Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000747the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
748to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000749
Rafael Espindola64c1e182014-06-03 02:41:57 +0000750Since aliases are only a second name, some restrictions apply, of which
751some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000752
Rafael Espindola64c1e182014-06-03 02:41:57 +0000753* The expression defining the aliasee must be computable at assembly
754 time. Since it is just a name, no relocations can be used.
755
756* No alias in the expression can be weak as the possibility of the
757 intermediate alias being overridden cannot be represented in an
758 object file.
759
760* No global value in the expression can be a declaration, since that
761 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000762
David Majnemerdad0a642014-06-27 18:19:56 +0000763.. _langref_comdats:
764
765Comdats
766-------
767
768Comdat IR provides access to COFF and ELF object file COMDAT functionality.
769
Sean Silvaa1190322015-08-06 22:56:48 +0000770Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000771specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000772that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000773aliasee computes to, if any.
774
775Comdats have a selection kind to provide input on how the linker should
776choose between keys in two different object files.
777
778Syntax::
779
780 $<Name> = comdat SelectionKind
781
782The selection kind must be one of the following:
783
784``any``
785 The linker may choose any COMDAT key, the choice is arbitrary.
786``exactmatch``
787 The linker may choose any COMDAT key but the sections must contain the
788 same data.
789``largest``
790 The linker will choose the section containing the largest COMDAT key.
791``noduplicates``
792 The linker requires that only section with this COMDAT key exist.
793``samesize``
794 The linker may choose any COMDAT key but the sections must contain the
795 same amount of data.
796
797Note that the Mach-O platform doesn't support COMDATs and ELF only supports
798``any`` as a selection kind.
799
800Here is an example of a COMDAT group where a function will only be selected if
801the COMDAT key's section is the largest:
802
803.. code-block:: llvm
804
805 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000806 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000807
Rafael Espindola83a362c2015-01-06 22:55:16 +0000808 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000809 ret void
810 }
811
Rafael Espindola83a362c2015-01-06 22:55:16 +0000812As a syntactic sugar the ``$name`` can be omitted if the name is the same as
813the global name:
814
815.. code-block:: llvm
816
817 $foo = comdat any
818 @foo = global i32 2, comdat
819
820
David Majnemerdad0a642014-06-27 18:19:56 +0000821In a COFF object file, this will create a COMDAT section with selection kind
822``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
823and another COMDAT section with selection kind
824``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000825section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000826
827There are some restrictions on the properties of the global object.
828It, or an alias to it, must have the same name as the COMDAT group when
829targeting COFF.
830The contents and size of this object may be used during link-time to determine
831which COMDAT groups get selected depending on the selection kind.
832Because the name of the object must match the name of the COMDAT group, the
833linkage of the global object must not be local; local symbols can get renamed
834if a collision occurs in the symbol table.
835
836The combined use of COMDATS and section attributes may yield surprising results.
837For example:
838
839.. code-block:: llvm
840
841 $foo = comdat any
842 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000843 @g1 = global i32 42, section "sec", comdat($foo)
844 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000845
846From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000847with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000848COMDAT groups and COMDATs, at the object file level, are represented by
849sections.
850
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000851Note that certain IR constructs like global variables and functions may
852create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000853COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000854in individual sections (e.g. when `-data-sections` or `-function-sections`
855is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000856
Sean Silvab084af42012-12-07 10:36:55 +0000857.. _namedmetadatastructure:
858
859Named Metadata
860--------------
861
862Named metadata is a collection of metadata. :ref:`Metadata
863nodes <metadata>` (but not metadata strings) are the only valid
864operands for a named metadata.
865
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000866#. Named metadata are represented as a string of characters with the
867 metadata prefix. The rules for metadata names are the same as for
868 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
869 are still valid, which allows any character to be part of a name.
870
Sean Silvab084af42012-12-07 10:36:55 +0000871Syntax::
872
873 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000874 !0 = !{!"zero"}
875 !1 = !{!"one"}
876 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000877 ; A named metadata.
878 !name = !{!0, !1, !2}
879
880.. _paramattrs:
881
882Parameter Attributes
883--------------------
884
885The return type and each parameter of a function type may have a set of
886*parameter attributes* associated with them. Parameter attributes are
887used to communicate additional information about the result or
888parameters of a function. Parameter attributes are considered to be part
889of the function, not of the function type, so functions with different
890parameter attributes can have the same function type.
891
892Parameter attributes are simple keywords that follow the type specified.
893If multiple parameter attributes are needed, they are space separated.
894For example:
895
896.. code-block:: llvm
897
898 declare i32 @printf(i8* noalias nocapture, ...)
899 declare i32 @atoi(i8 zeroext)
900 declare signext i8 @returns_signed_char()
901
902Note that any attributes for the function result (``nounwind``,
903``readonly``) come immediately after the argument list.
904
905Currently, only the following parameter attributes are defined:
906
907``zeroext``
908 This indicates to the code generator that the parameter or return
909 value should be zero-extended to the extent required by the target's
910 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
911 the caller (for a parameter) or the callee (for a return value).
912``signext``
913 This indicates to the code generator that the parameter or return
914 value should be sign-extended to the extent required by the target's
915 ABI (which is usually 32-bits) by the caller (for a parameter) or
916 the callee (for a return value).
917``inreg``
918 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000919 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000920 a function call or return (usually, by putting it in a register as
921 opposed to memory, though some targets use it to distinguish between
922 two different kinds of registers). Use of this attribute is
923 target-specific.
924``byval``
925 This indicates that the pointer parameter should really be passed by
926 value to the function. The attribute implies that a hidden copy of
927 the pointee is made between the caller and the callee, so the callee
928 is unable to modify the value in the caller. This attribute is only
929 valid on LLVM pointer arguments. It is generally used to pass
930 structs and arrays by value, but is also valid on pointers to
931 scalars. The copy is considered to belong to the caller not the
932 callee (for example, ``readonly`` functions should not write to
933 ``byval`` parameters). This is not a valid attribute for return
934 values.
935
936 The byval attribute also supports specifying an alignment with the
937 align attribute. It indicates the alignment of the stack slot to
938 form and the known alignment of the pointer specified to the call
939 site. If the alignment is not specified, then the code generator
940 makes a target-specific assumption.
941
Reid Klecknera534a382013-12-19 02:14:12 +0000942.. _attr_inalloca:
943
944``inalloca``
945
Reid Kleckner60d3a832014-01-16 22:59:24 +0000946 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000947 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000948 be a pointer to stack memory produced by an ``alloca`` instruction.
949 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000950 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000951 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000952
Reid Kleckner436c42e2014-01-17 23:58:17 +0000953 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000954 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000955 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000956 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000957 ``inalloca`` attribute also disables LLVM's implicit lowering of
958 large aggregate return values, which means that frontend authors
959 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000960
Reid Kleckner60d3a832014-01-16 22:59:24 +0000961 When the call site is reached, the argument allocation must have
962 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000963 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000964 space after an argument allocation and before its call site, but it
965 must be cleared off with :ref:`llvm.stackrestore
966 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000967
968 See :doc:`InAlloca` for more information on how to use this
969 attribute.
970
Sean Silvab084af42012-12-07 10:36:55 +0000971``sret``
972 This indicates that the pointer parameter specifies the address of a
973 structure that is the return value of the function in the source
974 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000975 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000976 not to trap and to be properly aligned. This may only be applied to
977 the first parameter. This is not a valid attribute for return
978 values.
Sean Silva1703e702014-04-08 21:06:22 +0000979
Hal Finkelccc70902014-07-22 16:58:55 +0000980``align <n>``
981 This indicates that the pointer value may be assumed by the optimizer to
982 have the specified alignment.
983
984 Note that this attribute has additional semantics when combined with the
985 ``byval`` attribute.
986
Sean Silva1703e702014-04-08 21:06:22 +0000987.. _noalias:
988
Sean Silvab084af42012-12-07 10:36:55 +0000989``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000990 This indicates that objects accessed via pointer values
991 :ref:`based <pointeraliasing>` on the argument or return value are not also
992 accessed, during the execution of the function, via pointer values not
993 *based* on the argument or return value. The attribute on a return value
994 also has additional semantics described below. The caller shares the
995 responsibility with the callee for ensuring that these requirements are met.
996 For further details, please see the discussion of the NoAlias response in
997 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000998
999 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +00001000 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001001
1002 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +00001003 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1004 attribute on return values are stronger than the semantics of the attribute
1005 when used on function arguments. On function return values, the ``noalias``
1006 attribute indicates that the function acts like a system memory allocation
1007 function, returning a pointer to allocated storage disjoint from the
1008 storage for any other object accessible to the caller.
1009
Sean Silvab084af42012-12-07 10:36:55 +00001010``nocapture``
1011 This indicates that the callee does not make any copies of the
1012 pointer that outlive the callee itself. This is not a valid
1013 attribute for return values.
1014
1015.. _nest:
1016
1017``nest``
1018 This indicates that the pointer parameter can be excised using the
1019 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +00001020 attribute for return values and can only be applied to one parameter.
1021
1022``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001023 This indicates that the function always returns the argument as its return
1024 value. This is an optimization hint to the code generator when generating
1025 the caller, allowing tail call optimization and omission of register saves
1026 and restores in some cases; it is not checked or enforced when generating
1027 the callee. The parameter and the function return type must be valid
1028 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1029 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001030
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001031``nonnull``
1032 This indicates that the parameter or return pointer is not null. This
1033 attribute may only be applied to pointer typed parameters. This is not
1034 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001035 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001036 is non-null.
1037
Hal Finkelb0407ba2014-07-18 15:51:28 +00001038``dereferenceable(<n>)``
1039 This indicates that the parameter or return pointer is dereferenceable. This
1040 attribute may only be applied to pointer typed parameters. A pointer that
1041 is dereferenceable can be loaded from speculatively without a risk of
1042 trapping. The number of bytes known to be dereferenceable must be provided
1043 in parentheses. It is legal for the number of bytes to be less than the
1044 size of the pointee type. The ``nonnull`` attribute does not imply
1045 dereferenceability (consider a pointer to one element past the end of an
1046 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1047 ``addrspace(0)`` (which is the default address space).
1048
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001049``dereferenceable_or_null(<n>)``
1050 This indicates that the parameter or return value isn't both
1051 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001052 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001053 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1054 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1055 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1056 and in other address spaces ``dereferenceable_or_null(<n>)``
1057 implies that a pointer is at least one of ``dereferenceable(<n>)``
1058 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001059 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001060 pointer typed parameters.
1061
Sean Silvab084af42012-12-07 10:36:55 +00001062.. _gc:
1063
Philip Reamesf80bbff2015-02-25 23:45:20 +00001064Garbage Collector Strategy Names
1065--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001066
Philip Reamesf80bbff2015-02-25 23:45:20 +00001067Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001068string:
1069
1070.. code-block:: llvm
1071
1072 define void @f() gc "name" { ... }
1073
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001074The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001075<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001076strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001077named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001078garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001079which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001080
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001081.. _prefixdata:
1082
1083Prefix Data
1084-----------
1085
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086Prefix data is data associated with a function which the code
1087generator will emit immediately before the function's entrypoint.
1088The purpose of this feature is to allow frontends to associate
1089language-specific runtime metadata with specific functions and make it
1090available through the function pointer while still allowing the
1091function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001092
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001093To access the data for a given function, a program may bitcast the
1094function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001095index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096the prefix data. For instance, take the example of a function annotated
1097with a single ``i32``,
1098
1099.. code-block:: llvm
1100
1101 define void @f() prefix i32 123 { ... }
1102
1103The prefix data can be referenced as,
1104
1105.. code-block:: llvm
1106
David Blaikie16a97eb2015-03-04 22:02:58 +00001107 %0 = bitcast void* () @f to i32*
1108 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001109 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001110
1111Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001112of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001113beginning of the prefix data is aligned. This means that if the size
1114of the prefix data is not a multiple of the alignment size, the
1115function's entrypoint will not be aligned. If alignment of the
1116function's entrypoint is desired, padding must be added to the prefix
1117data.
1118
Sean Silvaa1190322015-08-06 22:56:48 +00001119A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001120to the ``available_externally`` linkage in that the data may be used by the
1121optimizers but will not be emitted in the object file.
1122
1123.. _prologuedata:
1124
1125Prologue Data
1126-------------
1127
1128The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1129be inserted prior to the function body. This can be used for enabling
1130function hot-patching and instrumentation.
1131
1132To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001133have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134bytes which decode to a sequence of machine instructions, valid for the
1135module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001136the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001138definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001139makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001140
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001141A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001142which encodes the ``nop`` instruction:
1143
1144.. code-block:: llvm
1145
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001146 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001147
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001148Generally prologue data can be formed by encoding a relative branch instruction
1149which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001150x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1151
1152.. code-block:: llvm
1153
1154 %0 = type <{ i8, i8, i8* }>
1155
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001156 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001157
Sean Silvaa1190322015-08-06 22:56:48 +00001158A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001159to the ``available_externally`` linkage in that the data may be used by the
1160optimizers but will not be emitted in the object file.
1161
David Majnemer7fddecc2015-06-17 20:52:32 +00001162.. _personalityfn:
1163
1164Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001165--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001166
1167The ``personality`` attribute permits functions to specify what function
1168to use for exception handling.
1169
Bill Wendling63b88192013-02-06 06:52:58 +00001170.. _attrgrp:
1171
1172Attribute Groups
1173----------------
1174
1175Attribute groups are groups of attributes that are referenced by objects within
1176the IR. They are important for keeping ``.ll`` files readable, because a lot of
1177functions will use the same set of attributes. In the degenerative case of a
1178``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1179group will capture the important command line flags used to build that file.
1180
1181An attribute group is a module-level object. To use an attribute group, an
1182object references the attribute group's ID (e.g. ``#37``). An object may refer
1183to more than one attribute group. In that situation, the attributes from the
1184different groups are merged.
1185
1186Here is an example of attribute groups for a function that should always be
1187inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1188
1189.. code-block:: llvm
1190
1191 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001192 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001193
1194 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001195 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001196
1197 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1198 define void @f() #0 #1 { ... }
1199
Sean Silvab084af42012-12-07 10:36:55 +00001200.. _fnattrs:
1201
1202Function Attributes
1203-------------------
1204
1205Function attributes are set to communicate additional information about
1206a function. Function attributes are considered to be part of the
1207function, not of the function type, so functions with different function
1208attributes can have the same function type.
1209
1210Function attributes are simple keywords that follow the type specified.
1211If multiple attributes are needed, they are space separated. For
1212example:
1213
1214.. code-block:: llvm
1215
1216 define void @f() noinline { ... }
1217 define void @f() alwaysinline { ... }
1218 define void @f() alwaysinline optsize { ... }
1219 define void @f() optsize { ... }
1220
Sean Silvab084af42012-12-07 10:36:55 +00001221``alignstack(<n>)``
1222 This attribute indicates that, when emitting the prologue and
1223 epilogue, the backend should forcibly align the stack pointer.
1224 Specify the desired alignment, which must be a power of two, in
1225 parentheses.
1226``alwaysinline``
1227 This attribute indicates that the inliner should attempt to inline
1228 this function into callers whenever possible, ignoring any active
1229 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001230``builtin``
1231 This indicates that the callee function at a call site should be
1232 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001233 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001234 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001235 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001236``cold``
1237 This attribute indicates that this function is rarely called. When
1238 computing edge weights, basic blocks post-dominated by a cold
1239 function call are also considered to be cold; and, thus, given low
1240 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001241``convergent``
1242 This attribute indicates that the callee is dependent on a convergent
1243 thread execution pattern under certain parallel execution models.
Owen Andersond95b08a2015-10-09 18:06:13 +00001244 Transformations that are execution model agnostic may not make the execution
1245 of a convergent operation control dependent on any additional values.
Vaivaswatha Nagarajfb3f4902015-12-16 16:16:19 +00001246``inaccessiblememonly``
1247 This attribute indicates that the function may only access memory that
1248 is not accessible by the module being compiled. This is a weaker form
1249 of ``readnone``.
1250``inaccessiblemem_or_argmemonly``
1251 This attribute indicates that the function may only access memory that is
1252 either not accessible by the module being compiled, or is pointed to
1253 by its pointer arguments. This is a weaker form of ``argmemonly``
Sean Silvab084af42012-12-07 10:36:55 +00001254``inlinehint``
1255 This attribute indicates that the source code contained a hint that
1256 inlining this function is desirable (such as the "inline" keyword in
1257 C/C++). It is just a hint; it imposes no requirements on the
1258 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001259``jumptable``
1260 This attribute indicates that the function should be added to a
1261 jump-instruction table at code-generation time, and that all address-taken
1262 references to this function should be replaced with a reference to the
1263 appropriate jump-instruction-table function pointer. Note that this creates
1264 a new pointer for the original function, which means that code that depends
1265 on function-pointer identity can break. So, any function annotated with
1266 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001267``minsize``
1268 This attribute suggests that optimization passes and code generator
1269 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001270 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001271 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001272``naked``
1273 This attribute disables prologue / epilogue emission for the
1274 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001275``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001276 This indicates that the callee function at a call site is not recognized as
1277 a built-in function. LLVM will retain the original call and not replace it
1278 with equivalent code based on the semantics of the built-in function, unless
1279 the call site uses the ``builtin`` attribute. This is valid at call sites
1280 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001281``noduplicate``
1282 This attribute indicates that calls to the function cannot be
1283 duplicated. A call to a ``noduplicate`` function may be moved
1284 within its parent function, but may not be duplicated within
1285 its parent function.
1286
1287 A function containing a ``noduplicate`` call may still
1288 be an inlining candidate, provided that the call is not
1289 duplicated by inlining. That implies that the function has
1290 internal linkage and only has one call site, so the original
1291 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001292``noimplicitfloat``
1293 This attributes disables implicit floating point instructions.
1294``noinline``
1295 This attribute indicates that the inliner should never inline this
1296 function in any situation. This attribute may not be used together
1297 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001298``nonlazybind``
1299 This attribute suppresses lazy symbol binding for the function. This
1300 may make calls to the function faster, at the cost of extra program
1301 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001302``noredzone``
1303 This attribute indicates that the code generator should not use a
1304 red zone, even if the target-specific ABI normally permits it.
1305``noreturn``
1306 This function attribute indicates that the function never returns
1307 normally. This produces undefined behavior at runtime if the
1308 function ever does dynamically return.
James Molloye6f87ca2015-11-06 10:32:53 +00001309``norecurse``
1310 This function attribute indicates that the function does not call itself
1311 either directly or indirectly down any possible call path. This produces
1312 undefined behavior at runtime if the function ever does recurse.
Sean Silvab084af42012-12-07 10:36:55 +00001313``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001314 This function attribute indicates that the function never raises an
1315 exception. If the function does raise an exception, its runtime
1316 behavior is undefined. However, functions marked nounwind may still
1317 trap or generate asynchronous exceptions. Exception handling schemes
1318 that are recognized by LLVM to handle asynchronous exceptions, such
1319 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001320``optnone``
Paul Robinsona2550a62015-11-30 21:56:16 +00001321 This function attribute indicates that most optimization passes will skip
1322 this function, with the exception of interprocedural optimization passes.
1323 Code generation defaults to the "fast" instruction selector.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001324 This attribute cannot be used together with the ``alwaysinline``
1325 attribute; this attribute is also incompatible
1326 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001327
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001328 This attribute requires the ``noinline`` attribute to be specified on
1329 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001330 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001331 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001332``optsize``
1333 This attribute suggests that optimization passes and code generator
1334 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001335 and otherwise do optimizations specifically to reduce code size as
1336 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001337``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001338 On a function, this attribute indicates that the function computes its
1339 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001340 without dereferencing any pointer arguments or otherwise accessing
1341 any mutable state (e.g. memory, control registers, etc) visible to
1342 caller functions. It does not write through any pointer arguments
1343 (including ``byval`` arguments) and never changes any state visible
1344 to callers. This means that it cannot unwind exceptions by calling
1345 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001346
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001347 On an argument, this attribute indicates that the function does not
1348 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001349 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001350``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001351 On a function, this attribute indicates that the function does not write
1352 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001353 modify any state (e.g. memory, control registers, etc) visible to
1354 caller functions. It may dereference pointer arguments and read
1355 state that may be set in the caller. A readonly function always
1356 returns the same value (or unwinds an exception identically) when
1357 called with the same set of arguments and global state. It cannot
1358 unwind an exception by calling the ``C++`` exception throwing
1359 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001360
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001361 On an argument, this attribute indicates that the function does not write
1362 through this pointer argument, even though it may write to the memory that
1363 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001364``argmemonly``
1365 This attribute indicates that the only memory accesses inside function are
1366 loads and stores from objects pointed to by its pointer-typed arguments,
1367 with arbitrary offsets. Or in other words, all memory operations in the
1368 function can refer to memory only using pointers based on its function
1369 arguments.
1370 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1371 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001372``returns_twice``
1373 This attribute indicates that this function can return twice. The C
1374 ``setjmp`` is an example of such a function. The compiler disables
1375 some optimizations (like tail calls) in the caller of these
1376 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001377``safestack``
1378 This attribute indicates that
1379 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1380 protection is enabled for this function.
1381
1382 If a function that has a ``safestack`` attribute is inlined into a
1383 function that doesn't have a ``safestack`` attribute or which has an
1384 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1385 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001386``sanitize_address``
1387 This attribute indicates that AddressSanitizer checks
1388 (dynamic address safety analysis) are enabled for this function.
1389``sanitize_memory``
1390 This attribute indicates that MemorySanitizer checks (dynamic detection
1391 of accesses to uninitialized memory) are enabled for this function.
1392``sanitize_thread``
1393 This attribute indicates that ThreadSanitizer checks
1394 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001395``ssp``
1396 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001397 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001398 placed on the stack before the local variables that's checked upon
1399 return from the function to see if it has been overwritten. A
1400 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001401 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001402
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001403 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1404 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1405 - Calls to alloca() with variable sizes or constant sizes greater than
1406 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001407
Josh Magee24c7f062014-02-01 01:36:16 +00001408 Variables that are identified as requiring a protector will be arranged
1409 on the stack such that they are adjacent to the stack protector guard.
1410
Sean Silvab084af42012-12-07 10:36:55 +00001411 If a function that has an ``ssp`` attribute is inlined into a
1412 function that doesn't have an ``ssp`` attribute, then the resulting
1413 function will have an ``ssp`` attribute.
1414``sspreq``
1415 This attribute indicates that the function should *always* emit a
1416 stack smashing protector. This overrides the ``ssp`` function
1417 attribute.
1418
Josh Magee24c7f062014-02-01 01:36:16 +00001419 Variables that are identified as requiring a protector will be arranged
1420 on the stack such that they are adjacent to the stack protector guard.
1421 The specific layout rules are:
1422
1423 #. Large arrays and structures containing large arrays
1424 (``>= ssp-buffer-size``) are closest to the stack protector.
1425 #. Small arrays and structures containing small arrays
1426 (``< ssp-buffer-size``) are 2nd closest to the protector.
1427 #. Variables that have had their address taken are 3rd closest to the
1428 protector.
1429
Sean Silvab084af42012-12-07 10:36:55 +00001430 If a function that has an ``sspreq`` attribute is inlined into a
1431 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001432 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1433 an ``sspreq`` attribute.
1434``sspstrong``
1435 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001436 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001437 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001438 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001439
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001440 - Arrays of any size and type
1441 - Aggregates containing an array of any size and type.
1442 - Calls to alloca().
1443 - Local variables that have had their address taken.
1444
Josh Magee24c7f062014-02-01 01:36:16 +00001445 Variables that are identified as requiring a protector will be arranged
1446 on the stack such that they are adjacent to the stack protector guard.
1447 The specific layout rules are:
1448
1449 #. Large arrays and structures containing large arrays
1450 (``>= ssp-buffer-size``) are closest to the stack protector.
1451 #. Small arrays and structures containing small arrays
1452 (``< ssp-buffer-size``) are 2nd closest to the protector.
1453 #. Variables that have had their address taken are 3rd closest to the
1454 protector.
1455
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001456 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001457
1458 If a function that has an ``sspstrong`` attribute is inlined into a
1459 function that doesn't have an ``sspstrong`` attribute, then the
1460 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001461``"thunk"``
1462 This attribute indicates that the function will delegate to some other
1463 function with a tail call. The prototype of a thunk should not be used for
1464 optimization purposes. The caller is expected to cast the thunk prototype to
1465 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001466``uwtable``
1467 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001468 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001469 show that no exceptions passes by it. This is normally the case for
1470 the ELF x86-64 abi, but it can be disabled for some compilation
1471 units.
Sean Silvab084af42012-12-07 10:36:55 +00001472
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001473
1474.. _opbundles:
1475
1476Operand Bundles
1477---------------
1478
1479Note: operand bundles are a work in progress, and they should be
1480considered experimental at this time.
1481
1482Operand bundles are tagged sets of SSA values that can be associated
Sanjoy Dasb0e9d4a52015-09-25 00:05:40 +00001483with certain LLVM instructions (currently only ``call`` s and
1484``invoke`` s). In a way they are like metadata, but dropping them is
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001485incorrect and will change program semantics.
1486
1487Syntax::
David Majnemer34cacb42015-10-22 01:46:38 +00001488
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001489 operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001490 operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
1491 bundle operand ::= SSA value
1492 tag ::= string constant
1493
1494Operand bundles are **not** part of a function's signature, and a
1495given function may be called from multiple places with different kinds
1496of operand bundles. This reflects the fact that the operand bundles
1497are conceptually a part of the ``call`` (or ``invoke``), not the
1498callee being dispatched to.
1499
1500Operand bundles are a generic mechanism intended to support
1501runtime-introspection-like functionality for managed languages. While
1502the exact semantics of an operand bundle depend on the bundle tag,
1503there are certain limitations to how much the presence of an operand
1504bundle can influence the semantics of a program. These restrictions
1505are described as the semantics of an "unknown" operand bundle. As
1506long as the behavior of an operand bundle is describable within these
1507restrictions, LLVM does not need to have special knowledge of the
1508operand bundle to not miscompile programs containing it.
1509
David Majnemer34cacb42015-10-22 01:46:38 +00001510- The bundle operands for an unknown operand bundle escape in unknown
1511 ways before control is transferred to the callee or invokee.
1512- Calls and invokes with operand bundles have unknown read / write
1513 effect on the heap on entry and exit (even if the call target is
Sanjoy Das98a341b2015-10-22 03:12:22 +00001514 ``readnone`` or ``readonly``), unless they're overriden with
1515 callsite specific attributes.
1516- An operand bundle at a call site cannot change the implementation
1517 of the called function. Inter-procedural optimizations work as
1518 usual as long as they take into account the first two properties.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00001519
Sanjoy Dascdafd842015-11-11 21:38:02 +00001520More specific types of operand bundles are described below.
1521
1522Deoptimization Operand Bundles
1523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1524
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001525Deoptimization operand bundles are characterized by the ``"deopt"``
Sanjoy Dascdafd842015-11-11 21:38:02 +00001526operand bundle tag. These operand bundles represent an alternate
1527"safe" continuation for the call site they're attached to, and can be
1528used by a suitable runtime to deoptimize the compiled frame at the
Sanjoy Das9f3c1252015-11-21 09:12:07 +00001529specified call site. There can be at most one ``"deopt"`` operand
1530bundle attached to a call site. Exact details of deoptimization is
1531out of scope for the language reference, but it usually involves
1532rewriting a compiled frame into a set of interpreted frames.
Sanjoy Dascdafd842015-11-11 21:38:02 +00001533
1534From the compiler's perspective, deoptimization operand bundles make
1535the call sites they're attached to at least ``readonly``. They read
1536through all of their pointer typed operands (even if they're not
1537otherwise escaped) and the entire visible heap. Deoptimization
1538operand bundles do not capture their operands except during
1539deoptimization, in which case control will not be returned to the
1540compiled frame.
1541
Sanjoy Das2d161452015-11-18 06:23:38 +00001542The inliner knows how to inline through calls that have deoptimization
1543operand bundles. Just like inlining through a normal call site
1544involves composing the normal and exceptional continuations, inlining
1545through a call site with a deoptimization operand bundle needs to
1546appropriately compose the "safe" deoptimization continuation. The
1547inliner does this by prepending the parent's deoptimization
1548continuation to every deoptimization continuation in the inlined body.
1549E.g. inlining ``@f`` into ``@g`` in the following example
1550
1551.. code-block:: llvm
1552
1553 define void @f() {
1554 call void @x() ;; no deopt state
1555 call void @y() [ "deopt"(i32 10) ]
1556 call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
1557 ret void
1558 }
1559
1560 define void @g() {
1561 call void @f() [ "deopt"(i32 20) ]
1562 ret void
1563 }
1564
1565will result in
1566
1567.. code-block:: llvm
1568
1569 define void @g() {
1570 call void @x() ;; still no deopt state
1571 call void @y() [ "deopt"(i32 20, i32 10) ]
1572 call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
1573 ret void
1574 }
1575
1576It is the frontend's responsibility to structure or encode the
1577deoptimization state in a way that syntactically prepending the
1578caller's deoptimization state to the callee's deoptimization state is
1579semantically equivalent to composing the caller's deoptimization
1580continuation after the callee's deoptimization continuation.
1581
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001582.. _ob_funclet:
1583
David Majnemer3bb88c02015-12-15 21:27:27 +00001584Funclet Operand Bundles
1585^^^^^^^^^^^^^^^^^^^^^^^
1586
1587Funclet operand bundles are characterized by the ``"funclet"``
1588operand bundle tag. These operand bundles indicate that a call site
1589is within a particular funclet. There can be at most one
1590``"funclet"`` operand bundle attached to a call site and it must have
1591exactly one bundle operand.
1592
Joseph Tremoulete28885e2016-01-10 04:28:38 +00001593If any funclet EH pads have been "entered" but not "exited" (per the
1594`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
1595it is undefined behavior to execute a ``call`` or ``invoke`` which:
1596
1597* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
1598 intrinsic, or
1599* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
1600 not-yet-exited funclet EH pad.
1601
1602Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
1603executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
1604
Sanjoy Dasa34ce952016-01-20 19:50:25 +00001605GC Transition Operand Bundles
1606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1607
1608GC transition operand bundles are characterized by the
1609``"gc-transition"`` operand bundle tag. These operand bundles mark a
1610call as a transition between a function with one GC strategy to a
1611function with a different GC strategy. If coordinating the transition
1612between GC strategies requires additional code generation at the call
1613site, these bundles may contain any values that are needed by the
1614generated code. For more details, see :ref:`GC Transitions
1615<gc_transition_args>`.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617.. _moduleasm:
1618
1619Module-Level Inline Assembly
1620----------------------------
1621
1622Modules may contain "module-level inline asm" blocks, which corresponds
1623to the GCC "file scope inline asm" blocks. These blocks are internally
1624concatenated by LLVM and treated as a single unit, but may be separated
1625in the ``.ll`` file if desired. The syntax is very simple:
1626
1627.. code-block:: llvm
1628
1629 module asm "inline asm code goes here"
1630 module asm "more can go here"
1631
1632The strings can contain any character by escaping non-printable
1633characters. The escape sequence used is simply "\\xx" where "xx" is the
1634two digit hex code for the number.
1635
James Y Knightbc832ed2015-07-08 18:08:36 +00001636Note that the assembly string *must* be parseable by LLVM's integrated assembler
1637(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001638
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001639.. _langref_datalayout:
1640
Sean Silvab084af42012-12-07 10:36:55 +00001641Data Layout
1642-----------
1643
1644A module may specify a target specific data layout string that specifies
1645how data is to be laid out in memory. The syntax for the data layout is
1646simply:
1647
1648.. code-block:: llvm
1649
1650 target datalayout = "layout specification"
1651
1652The *layout specification* consists of a list of specifications
1653separated by the minus sign character ('-'). Each specification starts
1654with a letter and may include other information after the letter to
1655define some aspect of the data layout. The specifications accepted are
1656as follows:
1657
1658``E``
1659 Specifies that the target lays out data in big-endian form. That is,
1660 the bits with the most significance have the lowest address
1661 location.
1662``e``
1663 Specifies that the target lays out data in little-endian form. That
1664 is, the bits with the least significance have the lowest address
1665 location.
1666``S<size>``
1667 Specifies the natural alignment of the stack in bits. Alignment
1668 promotion of stack variables is limited to the natural stack
1669 alignment to avoid dynamic stack realignment. The stack alignment
1670 must be a multiple of 8-bits. If omitted, the natural stack
1671 alignment defaults to "unspecified", which does not prevent any
1672 alignment promotions.
1673``p[n]:<size>:<abi>:<pref>``
1674 This specifies the *size* of a pointer and its ``<abi>`` and
1675 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001676 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001677 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001678 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001679``i<size>:<abi>:<pref>``
1680 This specifies the alignment for an integer type of a given bit
1681 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1682``v<size>:<abi>:<pref>``
1683 This specifies the alignment for a vector type of a given bit
1684 ``<size>``.
1685``f<size>:<abi>:<pref>``
1686 This specifies the alignment for a floating point type of a given bit
1687 ``<size>``. Only values of ``<size>`` that are supported by the target
1688 will work. 32 (float) and 64 (double) are supported on all targets; 80
1689 or 128 (different flavors of long double) are also supported on some
1690 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001691``a:<abi>:<pref>``
1692 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001693``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001694 If present, specifies that llvm names are mangled in the output. The
1695 options are
1696
1697 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1698 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1699 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1700 symbols get a ``_`` prefix.
1701 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1702 functions also get a suffix based on the frame size.
Saleem Abdulrasool70d2d642015-10-25 20:39:35 +00001703 * ``x``: Windows x86 COFF prefix: Similar to Windows COFF, but use a ``_``
1704 prefix for ``__cdecl`` functions.
Sean Silvab084af42012-12-07 10:36:55 +00001705``n<size1>:<size2>:<size3>...``
1706 This specifies a set of native integer widths for the target CPU in
1707 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1708 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1709 this set are considered to support most general arithmetic operations
1710 efficiently.
1711
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001712On every specification that takes a ``<abi>:<pref>``, specifying the
1713``<pref>`` alignment is optional. If omitted, the preceding ``:``
1714should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1715
Sean Silvab084af42012-12-07 10:36:55 +00001716When constructing the data layout for a given target, LLVM starts with a
1717default set of specifications which are then (possibly) overridden by
1718the specifications in the ``datalayout`` keyword. The default
1719specifications are given in this list:
1720
1721- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001722- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1723- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1724 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001725- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001726- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1727- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1728- ``i16:16:16`` - i16 is 16-bit aligned
1729- ``i32:32:32`` - i32 is 32-bit aligned
1730- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1731 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001732- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001733- ``f32:32:32`` - float is 32-bit aligned
1734- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001735- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001736- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1737- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001738- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001739
1740When LLVM is determining the alignment for a given type, it uses the
1741following rules:
1742
1743#. If the type sought is an exact match for one of the specifications,
1744 that specification is used.
1745#. If no match is found, and the type sought is an integer type, then
1746 the smallest integer type that is larger than the bitwidth of the
1747 sought type is used. If none of the specifications are larger than
1748 the bitwidth then the largest integer type is used. For example,
1749 given the default specifications above, the i7 type will use the
1750 alignment of i8 (next largest) while both i65 and i256 will use the
1751 alignment of i64 (largest specified).
1752#. If no match is found, and the type sought is a vector type, then the
1753 largest vector type that is smaller than the sought vector type will
1754 be used as a fall back. This happens because <128 x double> can be
1755 implemented in terms of 64 <2 x double>, for example.
1756
1757The function of the data layout string may not be what you expect.
1758Notably, this is not a specification from the frontend of what alignment
1759the code generator should use.
1760
1761Instead, if specified, the target data layout is required to match what
1762the ultimate *code generator* expects. This string is used by the
1763mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001764what the ultimate code generator uses. There is no way to generate IR
1765that does not embed this target-specific detail into the IR. If you
1766don't specify the string, the default specifications will be used to
1767generate a Data Layout and the optimization phases will operate
1768accordingly and introduce target specificity into the IR with respect to
1769these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001770
Bill Wendling5cc90842013-10-18 23:41:25 +00001771.. _langref_triple:
1772
1773Target Triple
1774-------------
1775
1776A module may specify a target triple string that describes the target
1777host. The syntax for the target triple is simply:
1778
1779.. code-block:: llvm
1780
1781 target triple = "x86_64-apple-macosx10.7.0"
1782
1783The *target triple* string consists of a series of identifiers delimited
1784by the minus sign character ('-'). The canonical forms are:
1785
1786::
1787
1788 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1789 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1790
1791This information is passed along to the backend so that it generates
1792code for the proper architecture. It's possible to override this on the
1793command line with the ``-mtriple`` command line option.
1794
Sean Silvab084af42012-12-07 10:36:55 +00001795.. _pointeraliasing:
1796
1797Pointer Aliasing Rules
1798----------------------
1799
1800Any memory access must be done through a pointer value associated with
1801an address range of the memory access, otherwise the behavior is
1802undefined. Pointer values are associated with address ranges according
1803to the following rules:
1804
1805- A pointer value is associated with the addresses associated with any
1806 value it is *based* on.
1807- An address of a global variable is associated with the address range
1808 of the variable's storage.
1809- The result value of an allocation instruction is associated with the
1810 address range of the allocated storage.
1811- A null pointer in the default address-space is associated with no
1812 address.
1813- An integer constant other than zero or a pointer value returned from
1814 a function not defined within LLVM may be associated with address
1815 ranges allocated through mechanisms other than those provided by
1816 LLVM. Such ranges shall not overlap with any ranges of addresses
1817 allocated by mechanisms provided by LLVM.
1818
1819A pointer value is *based* on another pointer value according to the
1820following rules:
1821
1822- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001823 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001824- The result value of a ``bitcast`` is *based* on the operand of the
1825 ``bitcast``.
1826- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1827 values that contribute (directly or indirectly) to the computation of
1828 the pointer's value.
1829- The "*based* on" relationship is transitive.
1830
1831Note that this definition of *"based"* is intentionally similar to the
1832definition of *"based"* in C99, though it is slightly weaker.
1833
1834LLVM IR does not associate types with memory. The result type of a
1835``load`` merely indicates the size and alignment of the memory from
1836which to load, as well as the interpretation of the value. The first
1837operand type of a ``store`` similarly only indicates the size and
1838alignment of the store.
1839
1840Consequently, type-based alias analysis, aka TBAA, aka
1841``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1842:ref:`Metadata <metadata>` may be used to encode additional information
1843which specialized optimization passes may use to implement type-based
1844alias analysis.
1845
1846.. _volatile:
1847
1848Volatile Memory Accesses
1849------------------------
1850
1851Certain memory accesses, such as :ref:`load <i_load>`'s,
1852:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1853marked ``volatile``. The optimizers must not change the number of
1854volatile operations or change their order of execution relative to other
1855volatile operations. The optimizers *may* change the order of volatile
1856operations relative to non-volatile operations. This is not Java's
1857"volatile" and has no cross-thread synchronization behavior.
1858
Andrew Trick89fc5a62013-01-30 21:19:35 +00001859IR-level volatile loads and stores cannot safely be optimized into
1860llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1861flagged volatile. Likewise, the backend should never split or merge
1862target-legal volatile load/store instructions.
1863
Andrew Trick7e6f9282013-01-31 00:49:39 +00001864.. admonition:: Rationale
1865
1866 Platforms may rely on volatile loads and stores of natively supported
1867 data width to be executed as single instruction. For example, in C
1868 this holds for an l-value of volatile primitive type with native
1869 hardware support, but not necessarily for aggregate types. The
1870 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001871 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001872 do not violate the frontend's contract with the language.
1873
Sean Silvab084af42012-12-07 10:36:55 +00001874.. _memmodel:
1875
1876Memory Model for Concurrent Operations
1877--------------------------------------
1878
1879The LLVM IR does not define any way to start parallel threads of
1880execution or to register signal handlers. Nonetheless, there are
1881platform-specific ways to create them, and we define LLVM IR's behavior
1882in their presence. This model is inspired by the C++0x memory model.
1883
1884For a more informal introduction to this model, see the :doc:`Atomics`.
1885
1886We define a *happens-before* partial order as the least partial order
1887that
1888
1889- Is a superset of single-thread program order, and
1890- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1891 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1892 techniques, like pthread locks, thread creation, thread joining,
1893 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1894 Constraints <ordering>`).
1895
1896Note that program order does not introduce *happens-before* edges
1897between a thread and signals executing inside that thread.
1898
1899Every (defined) read operation (load instructions, memcpy, atomic
1900loads/read-modify-writes, etc.) R reads a series of bytes written by
1901(defined) write operations (store instructions, atomic
1902stores/read-modify-writes, memcpy, etc.). For the purposes of this
1903section, initialized globals are considered to have a write of the
1904initializer which is atomic and happens before any other read or write
1905of the memory in question. For each byte of a read R, R\ :sub:`byte`
1906may see any write to the same byte, except:
1907
1908- If write\ :sub:`1` happens before write\ :sub:`2`, and
1909 write\ :sub:`2` happens before R\ :sub:`byte`, then
1910 R\ :sub:`byte` does not see write\ :sub:`1`.
1911- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1912 R\ :sub:`byte` does not see write\ :sub:`3`.
1913
1914Given that definition, R\ :sub:`byte` is defined as follows:
1915
1916- If R is volatile, the result is target-dependent. (Volatile is
1917 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001918 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001919 like normal memory. It does not generally provide cross-thread
1920 synchronization.)
1921- Otherwise, if there is no write to the same byte that happens before
1922 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1923- Otherwise, if R\ :sub:`byte` may see exactly one write,
1924 R\ :sub:`byte` returns the value written by that write.
1925- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1926 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1927 Memory Ordering Constraints <ordering>` section for additional
1928 constraints on how the choice is made.
1929- Otherwise R\ :sub:`byte` returns ``undef``.
1930
1931R returns the value composed of the series of bytes it read. This
1932implies that some bytes within the value may be ``undef`` **without**
1933the entire value being ``undef``. Note that this only defines the
1934semantics of the operation; it doesn't mean that targets will emit more
1935than one instruction to read the series of bytes.
1936
1937Note that in cases where none of the atomic intrinsics are used, this
1938model places only one restriction on IR transformations on top of what
1939is required for single-threaded execution: introducing a store to a byte
1940which might not otherwise be stored is not allowed in general.
1941(Specifically, in the case where another thread might write to and read
1942from an address, introducing a store can change a load that may see
1943exactly one write into a load that may see multiple writes.)
1944
1945.. _ordering:
1946
1947Atomic Memory Ordering Constraints
1948----------------------------------
1949
1950Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1951:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1952:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001953ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001954the same address they *synchronize with*. These semantics are borrowed
1955from Java and C++0x, but are somewhat more colloquial. If these
1956descriptions aren't precise enough, check those specs (see spec
1957references in the :doc:`atomics guide <Atomics>`).
1958:ref:`fence <i_fence>` instructions treat these orderings somewhat
1959differently since they don't take an address. See that instruction's
1960documentation for details.
1961
1962For a simpler introduction to the ordering constraints, see the
1963:doc:`Atomics`.
1964
1965``unordered``
1966 The set of values that can be read is governed by the happens-before
1967 partial order. A value cannot be read unless some operation wrote
1968 it. This is intended to provide a guarantee strong enough to model
1969 Java's non-volatile shared variables. This ordering cannot be
1970 specified for read-modify-write operations; it is not strong enough
1971 to make them atomic in any interesting way.
1972``monotonic``
1973 In addition to the guarantees of ``unordered``, there is a single
1974 total order for modifications by ``monotonic`` operations on each
1975 address. All modification orders must be compatible with the
1976 happens-before order. There is no guarantee that the modification
1977 orders can be combined to a global total order for the whole program
1978 (and this often will not be possible). The read in an atomic
1979 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1980 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1981 order immediately before the value it writes. If one atomic read
1982 happens before another atomic read of the same address, the later
1983 read must see the same value or a later value in the address's
1984 modification order. This disallows reordering of ``monotonic`` (or
1985 stronger) operations on the same address. If an address is written
1986 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1987 read that address repeatedly, the other threads must eventually see
1988 the write. This corresponds to the C++0x/C1x
1989 ``memory_order_relaxed``.
1990``acquire``
1991 In addition to the guarantees of ``monotonic``, a
1992 *synchronizes-with* edge may be formed with a ``release`` operation.
1993 This is intended to model C++'s ``memory_order_acquire``.
1994``release``
1995 In addition to the guarantees of ``monotonic``, if this operation
1996 writes a value which is subsequently read by an ``acquire``
1997 operation, it *synchronizes-with* that operation. (This isn't a
1998 complete description; see the C++0x definition of a release
1999 sequence.) This corresponds to the C++0x/C1x
2000 ``memory_order_release``.
2001``acq_rel`` (acquire+release)
2002 Acts as both an ``acquire`` and ``release`` operation on its
2003 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2004``seq_cst`` (sequentially consistent)
2005 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00002006 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00002007 writes), there is a global total order on all
2008 sequentially-consistent operations on all addresses, which is
2009 consistent with the *happens-before* partial order and with the
2010 modification orders of all the affected addresses. Each
2011 sequentially-consistent read sees the last preceding write to the
2012 same address in this global order. This corresponds to the C++0x/C1x
2013 ``memory_order_seq_cst`` and Java volatile.
2014
2015.. _singlethread:
2016
2017If an atomic operation is marked ``singlethread``, it only *synchronizes
2018with* or participates in modification and seq\_cst total orderings with
2019other operations running in the same thread (for example, in signal
2020handlers).
2021
2022.. _fastmath:
2023
2024Fast-Math Flags
2025---------------
2026
2027LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
2028:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00002029:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
2030be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00002031
2032``nnan``
2033 No NaNs - Allow optimizations to assume the arguments and result are not
2034 NaN. Such optimizations are required to retain defined behavior over
2035 NaNs, but the value of the result is undefined.
2036
2037``ninf``
2038 No Infs - Allow optimizations to assume the arguments and result are not
2039 +/-Inf. Such optimizations are required to retain defined behavior over
2040 +/-Inf, but the value of the result is undefined.
2041
2042``nsz``
2043 No Signed Zeros - Allow optimizations to treat the sign of a zero
2044 argument or result as insignificant.
2045
2046``arcp``
2047 Allow Reciprocal - Allow optimizations to use the reciprocal of an
2048 argument rather than perform division.
2049
2050``fast``
2051 Fast - Allow algebraically equivalent transformations that may
2052 dramatically change results in floating point (e.g. reassociate). This
2053 flag implies all the others.
2054
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002055.. _uselistorder:
2056
2057Use-list Order Directives
2058-------------------------
2059
2060Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00002061order to be recreated. ``<order-indexes>`` is a comma-separated list of
2062indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002063value's use-list is immediately sorted by these indexes.
2064
Sean Silvaa1190322015-08-06 22:56:48 +00002065Use-list directives may appear at function scope or global scope. They are not
2066instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002067function scope, they must appear after the terminator of the final basic block.
2068
2069If basic blocks have their address taken via ``blockaddress()`` expressions,
2070``uselistorder_bb`` can be used to reorder their use-lists from outside their
2071function's scope.
2072
2073:Syntax:
2074
2075::
2076
2077 uselistorder <ty> <value>, { <order-indexes> }
2078 uselistorder_bb @function, %block { <order-indexes> }
2079
2080:Examples:
2081
2082::
2083
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00002084 define void @foo(i32 %arg1, i32 %arg2) {
2085 entry:
2086 ; ... instructions ...
2087 bb:
2088 ; ... instructions ...
2089
2090 ; At function scope.
2091 uselistorder i32 %arg1, { 1, 0, 2 }
2092 uselistorder label %bb, { 1, 0 }
2093 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00002094
2095 ; At global scope.
2096 uselistorder i32* @global, { 1, 2, 0 }
2097 uselistorder i32 7, { 1, 0 }
2098 uselistorder i32 (i32) @bar, { 1, 0 }
2099 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2100
Sean Silvab084af42012-12-07 10:36:55 +00002101.. _typesystem:
2102
2103Type System
2104===========
2105
2106The LLVM type system is one of the most important features of the
2107intermediate representation. Being typed enables a number of
2108optimizations to be performed on the intermediate representation
2109directly, without having to do extra analyses on the side before the
2110transformation. A strong type system makes it easier to read the
2111generated code and enables novel analyses and transformations that are
2112not feasible to perform on normal three address code representations.
2113
Rafael Espindola08013342013-12-07 19:34:20 +00002114.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002115
Rafael Espindola08013342013-12-07 19:34:20 +00002116Void Type
2117---------
Sean Silvab084af42012-12-07 10:36:55 +00002118
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002119:Overview:
2120
Rafael Espindola08013342013-12-07 19:34:20 +00002121
2122The void type does not represent any value and has no size.
2123
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002124:Syntax:
2125
Rafael Espindola08013342013-12-07 19:34:20 +00002126
2127::
2128
2129 void
Sean Silvab084af42012-12-07 10:36:55 +00002130
2131
Rafael Espindola08013342013-12-07 19:34:20 +00002132.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00002133
Rafael Espindola08013342013-12-07 19:34:20 +00002134Function Type
2135-------------
Sean Silvab084af42012-12-07 10:36:55 +00002136
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002137:Overview:
2138
Sean Silvab084af42012-12-07 10:36:55 +00002139
Rafael Espindola08013342013-12-07 19:34:20 +00002140The function type can be thought of as a function signature. It consists of a
2141return type and a list of formal parameter types. The return type of a function
2142type is a void type or first class type --- except for :ref:`label <t_label>`
2143and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00002144
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002145:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002146
Rafael Espindola08013342013-12-07 19:34:20 +00002147::
Sean Silvab084af42012-12-07 10:36:55 +00002148
Rafael Espindola08013342013-12-07 19:34:20 +00002149 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00002150
Rafael Espindola08013342013-12-07 19:34:20 +00002151...where '``<parameter list>``' is a comma-separated list of type
2152specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00002153indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00002154argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00002155handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00002156except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00002157
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002158:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002159
Rafael Espindola08013342013-12-07 19:34:20 +00002160+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2161| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
2162+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2163| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
2164+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2165| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2166+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2167| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
2168+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2169
2170.. _t_firstclass:
2171
2172First Class Types
2173-----------------
Sean Silvab084af42012-12-07 10:36:55 +00002174
2175The :ref:`first class <t_firstclass>` types are perhaps the most important.
2176Values of these types are the only ones which can be produced by
2177instructions.
2178
Rafael Espindola08013342013-12-07 19:34:20 +00002179.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002180
Rafael Espindola08013342013-12-07 19:34:20 +00002181Single Value Types
2182^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002183
Rafael Espindola08013342013-12-07 19:34:20 +00002184These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002185
2186.. _t_integer:
2187
2188Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002189""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002190
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002191:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002192
2193The integer type is a very simple type that simply specifies an
2194arbitrary bit width for the integer type desired. Any bit width from 1
2195bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2196
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002197:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002198
2199::
2200
2201 iN
2202
2203The number of bits the integer will occupy is specified by the ``N``
2204value.
2205
2206Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002207*********
Sean Silvab084af42012-12-07 10:36:55 +00002208
2209+----------------+------------------------------------------------+
2210| ``i1`` | a single-bit integer. |
2211+----------------+------------------------------------------------+
2212| ``i32`` | a 32-bit integer. |
2213+----------------+------------------------------------------------+
2214| ``i1942652`` | a really big integer of over 1 million bits. |
2215+----------------+------------------------------------------------+
2216
2217.. _t_floating:
2218
2219Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002220""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002221
2222.. list-table::
2223 :header-rows: 1
2224
2225 * - Type
2226 - Description
2227
2228 * - ``half``
2229 - 16-bit floating point value
2230
2231 * - ``float``
2232 - 32-bit floating point value
2233
2234 * - ``double``
2235 - 64-bit floating point value
2236
2237 * - ``fp128``
2238 - 128-bit floating point value (112-bit mantissa)
2239
2240 * - ``x86_fp80``
2241 - 80-bit floating point value (X87)
2242
2243 * - ``ppc_fp128``
2244 - 128-bit floating point value (two 64-bits)
2245
Reid Kleckner9a16d082014-03-05 02:41:37 +00002246X86_mmx Type
2247""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002248
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002249:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002250
Reid Kleckner9a16d082014-03-05 02:41:37 +00002251The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002252machine. The operations allowed on it are quite limited: parameters and
2253return values, load and store, and bitcast. User-specified MMX
2254instructions are represented as intrinsic or asm calls with arguments
2255and/or results of this type. There are no arrays, vectors or constants
2256of this type.
2257
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002258:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002259
2260::
2261
Reid Kleckner9a16d082014-03-05 02:41:37 +00002262 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002263
Sean Silvab084af42012-12-07 10:36:55 +00002264
Rafael Espindola08013342013-12-07 19:34:20 +00002265.. _t_pointer:
2266
2267Pointer Type
2268""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002271
Rafael Espindola08013342013-12-07 19:34:20 +00002272The pointer type is used to specify memory locations. Pointers are
2273commonly used to reference objects in memory.
2274
2275Pointer types may have an optional address space attribute defining the
2276numbered address space where the pointed-to object resides. The default
2277address space is number zero. The semantics of non-zero address spaces
2278are target-specific.
2279
2280Note that LLVM does not permit pointers to void (``void*``) nor does it
2281permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002284
2285::
2286
Rafael Espindola08013342013-12-07 19:34:20 +00002287 <type> *
2288
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002289:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002290
2291+-------------------------+--------------------------------------------------------------------------------------------------------------+
2292| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2293+-------------------------+--------------------------------------------------------------------------------------------------------------+
2294| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2295+-------------------------+--------------------------------------------------------------------------------------------------------------+
2296| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2297+-------------------------+--------------------------------------------------------------------------------------------------------------+
2298
2299.. _t_vector:
2300
2301Vector Type
2302"""""""""""
2303
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002304:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002305
2306A vector type is a simple derived type that represents a vector of
2307elements. Vector types are used when multiple primitive data are
2308operated in parallel using a single instruction (SIMD). A vector type
2309requires a size (number of elements) and an underlying primitive data
2310type. Vector types are considered :ref:`first class <t_firstclass>`.
2311
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002312:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002313
2314::
2315
2316 < <# elements> x <elementtype> >
2317
2318The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002319elementtype may be any integer, floating point or pointer type. Vectors
2320of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002321
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002322:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002323
2324+-------------------+--------------------------------------------------+
2325| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2326+-------------------+--------------------------------------------------+
2327| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2328+-------------------+--------------------------------------------------+
2329| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2330+-------------------+--------------------------------------------------+
2331| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2332+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002333
2334.. _t_label:
2335
2336Label Type
2337^^^^^^^^^^
2338
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002339:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002340
2341The label type represents code labels.
2342
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002343:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002344
2345::
2346
2347 label
2348
David Majnemerb611e3f2015-08-14 05:09:07 +00002349.. _t_token:
2350
2351Token Type
2352^^^^^^^^^^
2353
2354:Overview:
2355
2356The token type is used when a value is associated with an instruction
2357but all uses of the value must not attempt to introspect or obscure it.
2358As such, it is not appropriate to have a :ref:`phi <i_phi>` or
2359:ref:`select <i_select>` of type token.
2360
2361:Syntax:
2362
2363::
2364
2365 token
2366
2367
2368
Sean Silvab084af42012-12-07 10:36:55 +00002369.. _t_metadata:
2370
2371Metadata Type
2372^^^^^^^^^^^^^
2373
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002374:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002375
2376The metadata type represents embedded metadata. No derived types may be
2377created from metadata except for :ref:`function <t_function>` arguments.
2378
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002379:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002380
2381::
2382
2383 metadata
2384
Sean Silvab084af42012-12-07 10:36:55 +00002385.. _t_aggregate:
2386
2387Aggregate Types
2388^^^^^^^^^^^^^^^
2389
2390Aggregate Types are a subset of derived types that can contain multiple
2391member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2392aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2393aggregate types.
2394
2395.. _t_array:
2396
2397Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002398""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002399
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002400:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002401
2402The array type is a very simple derived type that arranges elements
2403sequentially in memory. The array type requires a size (number of
2404elements) and an underlying data type.
2405
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002406:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002407
2408::
2409
2410 [<# elements> x <elementtype>]
2411
2412The number of elements is a constant integer value; ``elementtype`` may
2413be any type with a size.
2414
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002415:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002416
2417+------------------+--------------------------------------+
2418| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2419+------------------+--------------------------------------+
2420| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2421+------------------+--------------------------------------+
2422| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2423+------------------+--------------------------------------+
2424
2425Here are some examples of multidimensional arrays:
2426
2427+-----------------------------+----------------------------------------------------------+
2428| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2429+-----------------------------+----------------------------------------------------------+
2430| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2431+-----------------------------+----------------------------------------------------------+
2432| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2433+-----------------------------+----------------------------------------------------------+
2434
2435There is no restriction on indexing beyond the end of the array implied
2436by a static type (though there are restrictions on indexing beyond the
2437bounds of an allocated object in some cases). This means that
2438single-dimension 'variable sized array' addressing can be implemented in
2439LLVM with a zero length array type. An implementation of 'pascal style
2440arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2441example.
2442
Sean Silvab084af42012-12-07 10:36:55 +00002443.. _t_struct:
2444
2445Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002446""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002447
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002448:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002449
2450The structure type is used to represent a collection of data members
2451together in memory. The elements of a structure may be any type that has
2452a size.
2453
2454Structures in memory are accessed using '``load``' and '``store``' by
2455getting a pointer to a field with the '``getelementptr``' instruction.
2456Structures in registers are accessed using the '``extractvalue``' and
2457'``insertvalue``' instructions.
2458
2459Structures may optionally be "packed" structures, which indicate that
2460the alignment of the struct is one byte, and that there is no padding
2461between the elements. In non-packed structs, padding between field types
2462is inserted as defined by the DataLayout string in the module, which is
2463required to match what the underlying code generator expects.
2464
2465Structures can either be "literal" or "identified". A literal structure
2466is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2467identified types are always defined at the top level with a name.
2468Literal types are uniqued by their contents and can never be recursive
2469or opaque since there is no way to write one. Identified types can be
2470recursive, can be opaqued, and are never uniqued.
2471
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002472:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002473
2474::
2475
2476 %T1 = type { <type list> } ; Identified normal struct type
2477 %T2 = type <{ <type list> }> ; Identified packed struct type
2478
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002479:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002480
2481+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2482| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2483+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002484| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002485+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2486| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2487+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2488
2489.. _t_opaque:
2490
2491Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002492""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002493
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002494:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002495
2496Opaque structure types are used to represent named structure types that
2497do not have a body specified. This corresponds (for example) to the C
2498notion of a forward declared structure.
2499
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002500:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002501
2502::
2503
2504 %X = type opaque
2505 %52 = type opaque
2506
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002507:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002508
2509+--------------+-------------------+
2510| ``opaque`` | An opaque type. |
2511+--------------+-------------------+
2512
Sean Silva1703e702014-04-08 21:06:22 +00002513.. _constants:
2514
Sean Silvab084af42012-12-07 10:36:55 +00002515Constants
2516=========
2517
2518LLVM has several different basic types of constants. This section
2519describes them all and their syntax.
2520
2521Simple Constants
2522----------------
2523
2524**Boolean constants**
2525 The two strings '``true``' and '``false``' are both valid constants
2526 of the ``i1`` type.
2527**Integer constants**
2528 Standard integers (such as '4') are constants of the
2529 :ref:`integer <t_integer>` type. Negative numbers may be used with
2530 integer types.
2531**Floating point constants**
2532 Floating point constants use standard decimal notation (e.g.
2533 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2534 hexadecimal notation (see below). The assembler requires the exact
2535 decimal value of a floating-point constant. For example, the
2536 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2537 decimal in binary. Floating point constants must have a :ref:`floating
2538 point <t_floating>` type.
2539**Null pointer constants**
2540 The identifier '``null``' is recognized as a null pointer constant
2541 and must be of :ref:`pointer type <t_pointer>`.
David Majnemerf0f224d2015-11-11 21:57:16 +00002542**Token constants**
2543 The identifier '``none``' is recognized as an empty token constant
2544 and must be of :ref:`token type <t_token>`.
Sean Silvab084af42012-12-07 10:36:55 +00002545
2546The one non-intuitive notation for constants is the hexadecimal form of
2547floating point constants. For example, the form
2548'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2549than) '``double 4.5e+15``'. The only time hexadecimal floating point
2550constants are required (and the only time that they are generated by the
2551disassembler) is when a floating point constant must be emitted but it
2552cannot be represented as a decimal floating point number in a reasonable
2553number of digits. For example, NaN's, infinities, and other special
2554values are represented in their IEEE hexadecimal format so that assembly
2555and disassembly do not cause any bits to change in the constants.
2556
2557When using the hexadecimal form, constants of types half, float, and
2558double are represented using the 16-digit form shown above (which
2559matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002560must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002561precision, respectively. Hexadecimal format is always used for long
2562double, and there are three forms of long double. The 80-bit format used
2563by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2564128-bit format used by PowerPC (two adjacent doubles) is represented by
2565``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002566represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2567will only work if they match the long double format on your target.
2568The IEEE 16-bit format (half precision) is represented by ``0xH``
2569followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2570(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002571
Reid Kleckner9a16d082014-03-05 02:41:37 +00002572There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002573
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002574.. _complexconstants:
2575
Sean Silvab084af42012-12-07 10:36:55 +00002576Complex Constants
2577-----------------
2578
2579Complex constants are a (potentially recursive) combination of simple
2580constants and smaller complex constants.
2581
2582**Structure constants**
2583 Structure constants are represented with notation similar to
2584 structure type definitions (a comma separated list of elements,
2585 surrounded by braces (``{}``)). For example:
2586 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2587 "``@G = external global i32``". Structure constants must have
2588 :ref:`structure type <t_struct>`, and the number and types of elements
2589 must match those specified by the type.
2590**Array constants**
2591 Array constants are represented with notation similar to array type
2592 definitions (a comma separated list of elements, surrounded by
2593 square brackets (``[]``)). For example:
2594 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2595 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002596 match those specified by the type. As a special case, character array
2597 constants may also be represented as a double-quoted string using the ``c``
2598 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002599**Vector constants**
2600 Vector constants are represented with notation similar to vector
2601 type definitions (a comma separated list of elements, surrounded by
2602 less-than/greater-than's (``<>``)). For example:
2603 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2604 must have :ref:`vector type <t_vector>`, and the number and types of
2605 elements must match those specified by the type.
2606**Zero initialization**
2607 The string '``zeroinitializer``' can be used to zero initialize a
2608 value to zero of *any* type, including scalar and
2609 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2610 having to print large zero initializers (e.g. for large arrays) and
2611 is always exactly equivalent to using explicit zero initializers.
2612**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002613 A metadata node is a constant tuple without types. For example:
2614 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002615 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2616 Unlike other typed constants that are meant to be interpreted as part of
2617 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002618 information such as debug info.
2619
2620Global Variable and Function Addresses
2621--------------------------------------
2622
2623The addresses of :ref:`global variables <globalvars>` and
2624:ref:`functions <functionstructure>` are always implicitly valid
2625(link-time) constants. These constants are explicitly referenced when
2626the :ref:`identifier for the global <identifiers>` is used and always have
2627:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2628file:
2629
2630.. code-block:: llvm
2631
2632 @X = global i32 17
2633 @Y = global i32 42
2634 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2635
2636.. _undefvalues:
2637
2638Undefined Values
2639----------------
2640
2641The string '``undef``' can be used anywhere a constant is expected, and
2642indicates that the user of the value may receive an unspecified
2643bit-pattern. Undefined values may be of any type (other than '``label``'
2644or '``void``') and be used anywhere a constant is permitted.
2645
2646Undefined values are useful because they indicate to the compiler that
2647the program is well defined no matter what value is used. This gives the
2648compiler more freedom to optimize. Here are some examples of
2649(potentially surprising) transformations that are valid (in pseudo IR):
2650
2651.. code-block:: llvm
2652
2653 %A = add %X, undef
2654 %B = sub %X, undef
2655 %C = xor %X, undef
2656 Safe:
2657 %A = undef
2658 %B = undef
2659 %C = undef
2660
2661This is safe because all of the output bits are affected by the undef
2662bits. Any output bit can have a zero or one depending on the input bits.
2663
2664.. code-block:: llvm
2665
2666 %A = or %X, undef
2667 %B = and %X, undef
2668 Safe:
2669 %A = -1
2670 %B = 0
2671 Unsafe:
2672 %A = undef
2673 %B = undef
2674
2675These logical operations have bits that are not always affected by the
2676input. For example, if ``%X`` has a zero bit, then the output of the
2677'``and``' operation will always be a zero for that bit, no matter what
2678the corresponding bit from the '``undef``' is. As such, it is unsafe to
2679optimize or assume that the result of the '``and``' is '``undef``'.
2680However, it is safe to assume that all bits of the '``undef``' could be
26810, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2682all the bits of the '``undef``' operand to the '``or``' could be set,
2683allowing the '``or``' to be folded to -1.
2684
2685.. code-block:: llvm
2686
2687 %A = select undef, %X, %Y
2688 %B = select undef, 42, %Y
2689 %C = select %X, %Y, undef
2690 Safe:
2691 %A = %X (or %Y)
2692 %B = 42 (or %Y)
2693 %C = %Y
2694 Unsafe:
2695 %A = undef
2696 %B = undef
2697 %C = undef
2698
2699This set of examples shows that undefined '``select``' (and conditional
2700branch) conditions can go *either way*, but they have to come from one
2701of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2702both known to have a clear low bit, then ``%A`` would have to have a
2703cleared low bit. However, in the ``%C`` example, the optimizer is
2704allowed to assume that the '``undef``' operand could be the same as
2705``%Y``, allowing the whole '``select``' to be eliminated.
2706
2707.. code-block:: llvm
2708
2709 %A = xor undef, undef
2710
2711 %B = undef
2712 %C = xor %B, %B
2713
2714 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002715 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002716 %F = icmp gte %D, 4
2717
2718 Safe:
2719 %A = undef
2720 %B = undef
2721 %C = undef
2722 %D = undef
2723 %E = undef
2724 %F = undef
2725
2726This example points out that two '``undef``' operands are not
2727necessarily the same. This can be surprising to people (and also matches
2728C semantics) where they assume that "``X^X``" is always zero, even if
2729``X`` is undefined. This isn't true for a number of reasons, but the
2730short answer is that an '``undef``' "variable" can arbitrarily change
2731its value over its "live range". This is true because the variable
2732doesn't actually *have a live range*. Instead, the value is logically
2733read from arbitrary registers that happen to be around when needed, so
2734the value is not necessarily consistent over time. In fact, ``%A`` and
2735``%C`` need to have the same semantics or the core LLVM "replace all
2736uses with" concept would not hold.
2737
2738.. code-block:: llvm
2739
2740 %A = fdiv undef, %X
2741 %B = fdiv %X, undef
2742 Safe:
2743 %A = undef
2744 b: unreachable
2745
2746These examples show the crucial difference between an *undefined value*
2747and *undefined behavior*. An undefined value (like '``undef``') is
2748allowed to have an arbitrary bit-pattern. This means that the ``%A``
2749operation can be constant folded to '``undef``', because the '``undef``'
2750could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2751However, in the second example, we can make a more aggressive
2752assumption: because the ``undef`` is allowed to be an arbitrary value,
2753we are allowed to assume that it could be zero. Since a divide by zero
2754has *undefined behavior*, we are allowed to assume that the operation
2755does not execute at all. This allows us to delete the divide and all
2756code after it. Because the undefined operation "can't happen", the
2757optimizer can assume that it occurs in dead code.
2758
2759.. code-block:: llvm
2760
2761 a: store undef -> %X
2762 b: store %X -> undef
2763 Safe:
2764 a: <deleted>
2765 b: unreachable
2766
2767These examples reiterate the ``fdiv`` example: a store *of* an undefined
2768value can be assumed to not have any effect; we can assume that the
2769value is overwritten with bits that happen to match what was already
2770there. However, a store *to* an undefined location could clobber
2771arbitrary memory, therefore, it has undefined behavior.
2772
2773.. _poisonvalues:
2774
2775Poison Values
2776-------------
2777
2778Poison values are similar to :ref:`undef values <undefvalues>`, however
2779they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002780that cannot evoke side effects has nevertheless detected a condition
2781that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002782
2783There is currently no way of representing a poison value in the IR; they
2784only exist when produced by operations such as :ref:`add <i_add>` with
2785the ``nsw`` flag.
2786
2787Poison value behavior is defined in terms of value *dependence*:
2788
2789- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2790- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2791 their dynamic predecessor basic block.
2792- Function arguments depend on the corresponding actual argument values
2793 in the dynamic callers of their functions.
2794- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2795 instructions that dynamically transfer control back to them.
2796- :ref:`Invoke <i_invoke>` instructions depend on the
2797 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2798 call instructions that dynamically transfer control back to them.
2799- Non-volatile loads and stores depend on the most recent stores to all
2800 of the referenced memory addresses, following the order in the IR
2801 (including loads and stores implied by intrinsics such as
2802 :ref:`@llvm.memcpy <int_memcpy>`.)
2803- An instruction with externally visible side effects depends on the
2804 most recent preceding instruction with externally visible side
2805 effects, following the order in the IR. (This includes :ref:`volatile
2806 operations <volatile>`.)
2807- An instruction *control-depends* on a :ref:`terminator
2808 instruction <terminators>` if the terminator instruction has
2809 multiple successors and the instruction is always executed when
2810 control transfers to one of the successors, and may not be executed
2811 when control is transferred to another.
2812- Additionally, an instruction also *control-depends* on a terminator
2813 instruction if the set of instructions it otherwise depends on would
2814 be different if the terminator had transferred control to a different
2815 successor.
2816- Dependence is transitive.
2817
Richard Smith32dbdf62014-07-31 04:25:36 +00002818Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2819with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002820on a poison value has undefined behavior.
2821
2822Here are some examples:
2823
2824.. code-block:: llvm
2825
2826 entry:
2827 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2828 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002829 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002830 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2831
2832 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002833 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002834
2835 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2836
2837 %narrowaddr = bitcast i32* @g to i16*
2838 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002839 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2840 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002841
2842 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2843 br i1 %cmp, label %true, label %end ; Branch to either destination.
2844
2845 true:
2846 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2847 ; it has undefined behavior.
2848 br label %end
2849
2850 end:
2851 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2852 ; Both edges into this PHI are
2853 ; control-dependent on %cmp, so this
2854 ; always results in a poison value.
2855
2856 store volatile i32 0, i32* @g ; This would depend on the store in %true
2857 ; if %cmp is true, or the store in %entry
2858 ; otherwise, so this is undefined behavior.
2859
2860 br i1 %cmp, label %second_true, label %second_end
2861 ; The same branch again, but this time the
2862 ; true block doesn't have side effects.
2863
2864 second_true:
2865 ; No side effects!
2866 ret void
2867
2868 second_end:
2869 store volatile i32 0, i32* @g ; This time, the instruction always depends
2870 ; on the store in %end. Also, it is
2871 ; control-equivalent to %end, so this is
2872 ; well-defined (ignoring earlier undefined
2873 ; behavior in this example).
2874
2875.. _blockaddress:
2876
2877Addresses of Basic Blocks
2878-------------------------
2879
2880``blockaddress(@function, %block)``
2881
2882The '``blockaddress``' constant computes the address of the specified
2883basic block in the specified function, and always has an ``i8*`` type.
2884Taking the address of the entry block is illegal.
2885
2886This value only has defined behavior when used as an operand to the
2887':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2888against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002889undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002890no label is equal to the null pointer. This may be passed around as an
2891opaque pointer sized value as long as the bits are not inspected. This
2892allows ``ptrtoint`` and arithmetic to be performed on these values so
2893long as the original value is reconstituted before the ``indirectbr``
2894instruction.
2895
2896Finally, some targets may provide defined semantics when using the value
2897as the operand to an inline assembly, but that is target specific.
2898
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002899.. _constantexprs:
2900
Sean Silvab084af42012-12-07 10:36:55 +00002901Constant Expressions
2902--------------------
2903
2904Constant expressions are used to allow expressions involving other
2905constants to be used as constants. Constant expressions may be of any
2906:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2907that does not have side effects (e.g. load and call are not supported).
2908The following is the syntax for constant expressions:
2909
2910``trunc (CST to TYPE)``
2911 Truncate a constant to another type. The bit size of CST must be
2912 larger than the bit size of TYPE. Both types must be integers.
2913``zext (CST to TYPE)``
2914 Zero extend a constant to another type. The bit size of CST must be
2915 smaller than the bit size of TYPE. Both types must be integers.
2916``sext (CST to TYPE)``
2917 Sign extend a constant to another type. The bit size of CST must be
2918 smaller than the bit size of TYPE. Both types must be integers.
2919``fptrunc (CST to TYPE)``
2920 Truncate a floating point constant to another floating point type.
2921 The size of CST must be larger than the size of TYPE. Both types
2922 must be floating point.
2923``fpext (CST to TYPE)``
2924 Floating point extend a constant to another type. The size of CST
2925 must be smaller or equal to the size of TYPE. Both types must be
2926 floating point.
2927``fptoui (CST to TYPE)``
2928 Convert a floating point constant to the corresponding unsigned
2929 integer constant. TYPE must be a scalar or vector integer type. CST
2930 must be of scalar or vector floating point type. Both CST and TYPE
2931 must be scalars, or vectors of the same number of elements. If the
2932 value won't fit in the integer type, the results are undefined.
2933``fptosi (CST to TYPE)``
2934 Convert a floating point constant to the corresponding signed
2935 integer constant. TYPE must be a scalar or vector integer type. CST
2936 must be of scalar or vector floating point type. Both CST and TYPE
2937 must be scalars, or vectors of the same number of elements. If the
2938 value won't fit in the integer type, the results are undefined.
2939``uitofp (CST to TYPE)``
2940 Convert an unsigned integer constant to the corresponding floating
2941 point constant. TYPE must be a scalar or vector floating point type.
2942 CST must be of scalar or vector integer type. Both CST and TYPE must
2943 be scalars, or vectors of the same number of elements. If the value
2944 won't fit in the floating point type, the results are undefined.
2945``sitofp (CST to TYPE)``
2946 Convert a signed integer constant to the corresponding floating
2947 point constant. TYPE must be a scalar or vector floating point type.
2948 CST must be of scalar or vector integer type. Both CST and TYPE must
2949 be scalars, or vectors of the same number of elements. If the value
2950 won't fit in the floating point type, the results are undefined.
2951``ptrtoint (CST to TYPE)``
2952 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002953 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002954 pointer type. The ``CST`` value is zero extended, truncated, or
2955 unchanged to make it fit in ``TYPE``.
2956``inttoptr (CST to TYPE)``
2957 Convert an integer constant to a pointer constant. TYPE must be a
2958 pointer type. CST must be of integer type. The CST value is zero
2959 extended, truncated, or unchanged to make it fit in a pointer size.
2960 This one is *really* dangerous!
2961``bitcast (CST to TYPE)``
2962 Convert a constant, CST, to another TYPE. The constraints of the
2963 operands are the same as those for the :ref:`bitcast
2964 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002965``addrspacecast (CST to TYPE)``
2966 Convert a constant pointer or constant vector of pointer, CST, to another
2967 TYPE in a different address space. The constraints of the operands are the
2968 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002969``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002970 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2971 constants. As with the :ref:`getelementptr <i_getelementptr>`
2972 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002973 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002974``select (COND, VAL1, VAL2)``
2975 Perform the :ref:`select operation <i_select>` on constants.
2976``icmp COND (VAL1, VAL2)``
2977 Performs the :ref:`icmp operation <i_icmp>` on constants.
2978``fcmp COND (VAL1, VAL2)``
2979 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2980``extractelement (VAL, IDX)``
2981 Perform the :ref:`extractelement operation <i_extractelement>` on
2982 constants.
2983``insertelement (VAL, ELT, IDX)``
2984 Perform the :ref:`insertelement operation <i_insertelement>` on
2985 constants.
2986``shufflevector (VEC1, VEC2, IDXMASK)``
2987 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2988 constants.
2989``extractvalue (VAL, IDX0, IDX1, ...)``
2990 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2991 constants. The index list is interpreted in a similar manner as
2992 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2993 least one index value must be specified.
2994``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2995 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2996 The index list is interpreted in a similar manner as indices in a
2997 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2998 value must be specified.
2999``OPCODE (LHS, RHS)``
3000 Perform the specified operation of the LHS and RHS constants. OPCODE
3001 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3002 binary <bitwiseops>` operations. The constraints on operands are
3003 the same as those for the corresponding instruction (e.g. no bitwise
3004 operations on floating point values are allowed).
3005
3006Other Values
3007============
3008
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003009.. _inlineasmexprs:
3010
Sean Silvab084af42012-12-07 10:36:55 +00003011Inline Assembler Expressions
3012----------------------------
3013
3014LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00003015Inline Assembly <moduleasm>`) through the use of a special value. This value
3016represents the inline assembler as a template string (containing the
3017instructions to emit), a list of operand constraints (stored as a string), a
3018flag that indicates whether or not the inline asm expression has side effects,
3019and a flag indicating whether the function containing the asm needs to align its
3020stack conservatively.
3021
3022The template string supports argument substitution of the operands using "``$``"
3023followed by a number, to indicate substitution of the given register/memory
3024location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3025be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3026operand (See :ref:`inline-asm-modifiers`).
3027
3028A literal "``$``" may be included by using "``$$``" in the template. To include
3029other special characters into the output, the usual "``\XX``" escapes may be
3030used, just as in other strings. Note that after template substitution, the
3031resulting assembly string is parsed by LLVM's integrated assembler unless it is
3032disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3033syntax known to LLVM.
3034
3035LLVM's support for inline asm is modeled closely on the requirements of Clang's
3036GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3037modifier codes listed here are similar or identical to those in GCC's inline asm
3038support. However, to be clear, the syntax of the template and constraint strings
3039described here is *not* the same as the syntax accepted by GCC and Clang, and,
3040while most constraint letters are passed through as-is by Clang, some get
3041translated to other codes when converting from the C source to the LLVM
3042assembly.
3043
3044An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00003045
3046.. code-block:: llvm
3047
3048 i32 (i32) asm "bswap $0", "=r,r"
3049
3050Inline assembler expressions may **only** be used as the callee operand
3051of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3052Thus, typically we have:
3053
3054.. code-block:: llvm
3055
3056 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3057
3058Inline asms with side effects not visible in the constraint list must be
3059marked as having side effects. This is done through the use of the
3060'``sideeffect``' keyword, like so:
3061
3062.. code-block:: llvm
3063
3064 call void asm sideeffect "eieio", ""()
3065
3066In some cases inline asms will contain code that will not work unless
3067the stack is aligned in some way, such as calls or SSE instructions on
3068x86, yet will not contain code that does that alignment within the asm.
3069The compiler should make conservative assumptions about what the asm
3070might contain and should generate its usual stack alignment code in the
3071prologue if the '``alignstack``' keyword is present:
3072
3073.. code-block:: llvm
3074
3075 call void asm alignstack "eieio", ""()
3076
3077Inline asms also support using non-standard assembly dialects. The
3078assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3079the inline asm is using the Intel dialect. Currently, ATT and Intel are
3080the only supported dialects. An example is:
3081
3082.. code-block:: llvm
3083
3084 call void asm inteldialect "eieio", ""()
3085
3086If multiple keywords appear the '``sideeffect``' keyword must come
3087first, the '``alignstack``' keyword second and the '``inteldialect``'
3088keyword last.
3089
James Y Knightbc832ed2015-07-08 18:08:36 +00003090Inline Asm Constraint String
3091^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3092
3093The constraint list is a comma-separated string, each element containing one or
3094more constraint codes.
3095
3096For each element in the constraint list an appropriate register or memory
3097operand will be chosen, and it will be made available to assembly template
3098string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
3099second, etc.
3100
3101There are three different types of constraints, which are distinguished by a
3102prefix symbol in front of the constraint code: Output, Input, and Clobber. The
3103constraints must always be given in that order: outputs first, then inputs, then
3104clobbers. They cannot be intermingled.
3105
3106There are also three different categories of constraint codes:
3107
3108- Register constraint. This is either a register class, or a fixed physical
3109 register. This kind of constraint will allocate a register, and if necessary,
3110 bitcast the argument or result to the appropriate type.
3111- Memory constraint. This kind of constraint is for use with an instruction
3112 taking a memory operand. Different constraints allow for different addressing
3113 modes used by the target.
3114- Immediate value constraint. This kind of constraint is for an integer or other
3115 immediate value which can be rendered directly into an instruction. The
3116 various target-specific constraints allow the selection of a value in the
3117 proper range for the instruction you wish to use it with.
3118
3119Output constraints
3120""""""""""""""""""
3121
3122Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
3123indicates that the assembly will write to this operand, and the operand will
3124then be made available as a return value of the ``asm`` expression. Output
3125constraints do not consume an argument from the call instruction. (Except, see
3126below about indirect outputs).
3127
3128Normally, it is expected that no output locations are written to by the assembly
3129expression until *all* of the inputs have been read. As such, LLVM may assign
3130the same register to an output and an input. If this is not safe (e.g. if the
3131assembly contains two instructions, where the first writes to one output, and
3132the second reads an input and writes to a second output), then the "``&``"
3133modifier must be used (e.g. "``=&r``") to specify that the output is an
3134"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
3135will not use the same register for any inputs (other than an input tied to this
3136output).
3137
3138Input constraints
3139"""""""""""""""""
3140
3141Input constraints do not have a prefix -- just the constraint codes. Each input
3142constraint will consume one argument from the call instruction. It is not
3143permitted for the asm to write to any input register or memory location (unless
3144that input is tied to an output). Note also that multiple inputs may all be
3145assigned to the same register, if LLVM can determine that they necessarily all
3146contain the same value.
3147
3148Instead of providing a Constraint Code, input constraints may also "tie"
3149themselves to an output constraint, by providing an integer as the constraint
3150string. Tied inputs still consume an argument from the call instruction, and
3151take up a position in the asm template numbering as is usual -- they will simply
3152be constrained to always use the same register as the output they've been tied
3153to. For example, a constraint string of "``=r,0``" says to assign a register for
3154output, and use that register as an input as well (it being the 0'th
3155constraint).
3156
3157It is permitted to tie an input to an "early-clobber" output. In that case, no
3158*other* input may share the same register as the input tied to the early-clobber
3159(even when the other input has the same value).
3160
3161You may only tie an input to an output which has a register constraint, not a
3162memory constraint. Only a single input may be tied to an output.
3163
3164There is also an "interesting" feature which deserves a bit of explanation: if a
3165register class constraint allocates a register which is too small for the value
3166type operand provided as input, the input value will be split into multiple
3167registers, and all of them passed to the inline asm.
3168
3169However, this feature is often not as useful as you might think.
3170
3171Firstly, the registers are *not* guaranteed to be consecutive. So, on those
3172architectures that have instructions which operate on multiple consecutive
3173instructions, this is not an appropriate way to support them. (e.g. the 32-bit
3174SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
3175hardware then loads into both the named register, and the next register. This
3176feature of inline asm would not be useful to support that.)
3177
3178A few of the targets provide a template string modifier allowing explicit access
3179to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
3180``D``). On such an architecture, you can actually access the second allocated
3181register (yet, still, not any subsequent ones). But, in that case, you're still
3182probably better off simply splitting the value into two separate operands, for
3183clarity. (e.g. see the description of the ``A`` constraint on X86, which,
3184despite existing only for use with this feature, is not really a good idea to
3185use)
3186
3187Indirect inputs and outputs
3188"""""""""""""""""""""""""""
3189
3190Indirect output or input constraints can be specified by the "``*``" modifier
3191(which goes after the "``=``" in case of an output). This indicates that the asm
3192will write to or read from the contents of an *address* provided as an input
3193argument. (Note that in this way, indirect outputs act more like an *input* than
3194an output: just like an input, they consume an argument of the call expression,
3195rather than producing a return value. An indirect output constraint is an
3196"output" only in that the asm is expected to write to the contents of the input
3197memory location, instead of just read from it).
3198
3199This is most typically used for memory constraint, e.g. "``=*m``", to pass the
3200address of a variable as a value.
3201
3202It is also possible to use an indirect *register* constraint, but only on output
3203(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3204value normally, and then, separately emit a store to the address provided as
3205input, after the provided inline asm. (It's not clear what value this
3206functionality provides, compared to writing the store explicitly after the asm
3207statement, and it can only produce worse code, since it bypasses many
3208optimization passes. I would recommend not using it.)
3209
3210
3211Clobber constraints
3212"""""""""""""""""""
3213
3214A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3215consume an input operand, nor generate an output. Clobbers cannot use any of the
3216general constraint code letters -- they may use only explicit register
3217constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3218"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3219memory locations -- not only the memory pointed to by a declared indirect
3220output.
3221
3222
3223Constraint Codes
3224""""""""""""""""
3225After a potential prefix comes constraint code, or codes.
3226
3227A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3228followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3229(e.g. "``{eax}``").
3230
3231The one and two letter constraint codes are typically chosen to be the same as
3232GCC's constraint codes.
3233
3234A single constraint may include one or more than constraint code in it, leaving
3235it up to LLVM to choose which one to use. This is included mainly for
3236compatibility with the translation of GCC inline asm coming from clang.
3237
3238There are two ways to specify alternatives, and either or both may be used in an
3239inline asm constraint list:
3240
32411) Append the codes to each other, making a constraint code set. E.g. "``im``"
3242 or "``{eax}m``". This means "choose any of the options in the set". The
3243 choice of constraint is made independently for each constraint in the
3244 constraint list.
3245
32462) Use "``|``" between constraint code sets, creating alternatives. Every
3247 constraint in the constraint list must have the same number of alternative
3248 sets. With this syntax, the same alternative in *all* of the items in the
3249 constraint list will be chosen together.
3250
3251Putting those together, you might have a two operand constraint string like
3252``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3253operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3254may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3255
3256However, the use of either of the alternatives features is *NOT* recommended, as
3257LLVM is not able to make an intelligent choice about which one to use. (At the
3258point it currently needs to choose, not enough information is available to do so
3259in a smart way.) Thus, it simply tries to make a choice that's most likely to
3260compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3261always choose to use memory, not registers). And, if given multiple registers,
3262or multiple register classes, it will simply choose the first one. (In fact, it
3263doesn't currently even ensure explicitly specified physical registers are
3264unique, so specifying multiple physical registers as alternatives, like
3265``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3266intended.)
3267
3268Supported Constraint Code List
3269""""""""""""""""""""""""""""""
3270
3271The constraint codes are, in general, expected to behave the same way they do in
3272GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3273inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3274and GCC likely indicates a bug in LLVM.
3275
3276Some constraint codes are typically supported by all targets:
3277
3278- ``r``: A register in the target's general purpose register class.
3279- ``m``: A memory address operand. It is target-specific what addressing modes
3280 are supported, typical examples are register, or register + register offset,
3281 or register + immediate offset (of some target-specific size).
3282- ``i``: An integer constant (of target-specific width). Allows either a simple
3283 immediate, or a relocatable value.
3284- ``n``: An integer constant -- *not* including relocatable values.
3285- ``s``: An integer constant, but allowing *only* relocatable values.
3286- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3287 useful to pass a label for an asm branch or call.
3288
3289 .. FIXME: but that surely isn't actually okay to jump out of an asm
3290 block without telling llvm about the control transfer???)
3291
3292- ``{register-name}``: Requires exactly the named physical register.
3293
3294Other constraints are target-specific:
3295
3296AArch64:
3297
3298- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3299- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3300 i.e. 0 to 4095 with optional shift by 12.
3301- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3302 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3303- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3304 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3305- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3306 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3307- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3308 32-bit register. This is a superset of ``K``: in addition to the bitmask
3309 immediate, also allows immediate integers which can be loaded with a single
3310 ``MOVZ`` or ``MOVL`` instruction.
3311- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3312 64-bit register. This is a superset of ``L``.
3313- ``Q``: Memory address operand must be in a single register (no
3314 offsets). (However, LLVM currently does this for the ``m`` constraint as
3315 well.)
3316- ``r``: A 32 or 64-bit integer register (W* or X*).
3317- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3318- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3319
3320AMDGPU:
3321
3322- ``r``: A 32 or 64-bit integer register.
3323- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3324- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3325
3326
3327All ARM modes:
3328
3329- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3330 operand. Treated the same as operand ``m``, at the moment.
3331
3332ARM and ARM's Thumb2 mode:
3333
3334- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3335- ``I``: An immediate integer valid for a data-processing instruction.
3336- ``J``: An immediate integer between -4095 and 4095.
3337- ``K``: An immediate integer whose bitwise inverse is valid for a
3338 data-processing instruction. (Can be used with template modifier "``B``" to
3339 print the inverted value).
3340- ``L``: An immediate integer whose negation is valid for a data-processing
3341 instruction. (Can be used with template modifier "``n``" to print the negated
3342 value).
3343- ``M``: A power of two or a integer between 0 and 32.
3344- ``N``: Invalid immediate constraint.
3345- ``O``: Invalid immediate constraint.
3346- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3347- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3348 as ``r``.
3349- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3350 invalid.
3351- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3352 ``d0-d31``, or ``q0-q15``.
3353- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3354 ``d0-d7``, or ``q0-q3``.
3355- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3356 ``s0-s31``.
3357
3358ARM's Thumb1 mode:
3359
3360- ``I``: An immediate integer between 0 and 255.
3361- ``J``: An immediate integer between -255 and -1.
3362- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3363 some amount.
3364- ``L``: An immediate integer between -7 and 7.
3365- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3366- ``N``: An immediate integer between 0 and 31.
3367- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3368- ``r``: A low 32-bit GPR register (``r0-r7``).
3369- ``l``: A low 32-bit GPR register (``r0-r7``).
3370- ``h``: A high GPR register (``r0-r7``).
3371- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3372 ``d0-d31``, or ``q0-q15``.
3373- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3374 ``d0-d7``, or ``q0-q3``.
3375- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3376 ``s0-s31``.
3377
3378
3379Hexagon:
3380
3381- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3382 at the moment.
3383- ``r``: A 32 or 64-bit register.
3384
3385MSP430:
3386
3387- ``r``: An 8 or 16-bit register.
3388
3389MIPS:
3390
3391- ``I``: An immediate signed 16-bit integer.
3392- ``J``: An immediate integer zero.
3393- ``K``: An immediate unsigned 16-bit integer.
3394- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3395- ``N``: An immediate integer between -65535 and -1.
3396- ``O``: An immediate signed 15-bit integer.
3397- ``P``: An immediate integer between 1 and 65535.
3398- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3399 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3400- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3401 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3402 ``m``.
3403- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3404 ``sc`` instruction on the given subtarget (details vary).
3405- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3406- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003407 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3408 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003409- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3410 ``25``).
3411- ``l``: The ``lo`` register, 32 or 64-bit.
3412- ``x``: Invalid.
3413
3414NVPTX:
3415
3416- ``b``: A 1-bit integer register.
3417- ``c`` or ``h``: A 16-bit integer register.
3418- ``r``: A 32-bit integer register.
3419- ``l`` or ``N``: A 64-bit integer register.
3420- ``f``: A 32-bit float register.
3421- ``d``: A 64-bit float register.
3422
3423
3424PowerPC:
3425
3426- ``I``: An immediate signed 16-bit integer.
3427- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3428- ``K``: An immediate unsigned 16-bit integer.
3429- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3430- ``M``: An immediate integer greater than 31.
3431- ``N``: An immediate integer that is an exact power of 2.
3432- ``O``: The immediate integer constant 0.
3433- ``P``: An immediate integer constant whose negation is a signed 16-bit
3434 constant.
3435- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3436 treated the same as ``m``.
3437- ``r``: A 32 or 64-bit integer register.
3438- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3439 ``R1-R31``).
3440- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3441 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3442- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3443 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3444 altivec vector register (``V0-V31``).
3445
3446 .. FIXME: is this a bug that v accepts QPX registers? I think this
3447 is supposed to only use the altivec vector registers?
3448
3449- ``y``: Condition register (``CR0-CR7``).
3450- ``wc``: An individual CR bit in a CR register.
3451- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3452 register set (overlapping both the floating-point and vector register files).
3453- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3454 set.
3455
3456Sparc:
3457
3458- ``I``: An immediate 13-bit signed integer.
3459- ``r``: A 32-bit integer register.
3460
3461SystemZ:
3462
3463- ``I``: An immediate unsigned 8-bit integer.
3464- ``J``: An immediate unsigned 12-bit integer.
3465- ``K``: An immediate signed 16-bit integer.
3466- ``L``: An immediate signed 20-bit integer.
3467- ``M``: An immediate integer 0x7fffffff.
3468- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3469 ``m``, at the moment.
3470- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3471- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3472 address context evaluates as zero).
3473- ``h``: A 32-bit value in the high part of a 64bit data register
3474 (LLVM-specific)
3475- ``f``: A 32, 64, or 128-bit floating point register.
3476
3477X86:
3478
3479- ``I``: An immediate integer between 0 and 31.
3480- ``J``: An immediate integer between 0 and 64.
3481- ``K``: An immediate signed 8-bit integer.
3482- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3483 0xffffffff.
3484- ``M``: An immediate integer between 0 and 3.
3485- ``N``: An immediate unsigned 8-bit integer.
3486- ``O``: An immediate integer between 0 and 127.
3487- ``e``: An immediate 32-bit signed integer.
3488- ``Z``: An immediate 32-bit unsigned integer.
3489- ``o``, ``v``: Treated the same as ``m``, at the moment.
3490- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3491 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3492 registers, and on X86-64, it is all of the integer registers.
3493- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3494 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3495- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3496- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3497 existed since i386, and can be accessed without the REX prefix.
3498- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3499- ``y``: A 64-bit MMX register, if MMX is enabled.
3500- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3501 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3502 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3503 512-bit vector operand in an AVX512 register, Otherwise, an error.
3504- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3505- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3506 32-bit mode, a 64-bit integer operand will get split into two registers). It
3507 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3508 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3509 you're better off splitting it yourself, before passing it to the asm
3510 statement.
3511
3512XCore:
3513
3514- ``r``: A 32-bit integer register.
3515
3516
3517.. _inline-asm-modifiers:
3518
3519Asm template argument modifiers
3520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3521
3522In the asm template string, modifiers can be used on the operand reference, like
3523"``${0:n}``".
3524
3525The modifiers are, in general, expected to behave the same way they do in
3526GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3527inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3528and GCC likely indicates a bug in LLVM.
3529
3530Target-independent:
3531
Sean Silvaa1190322015-08-06 22:56:48 +00003532- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003533 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3534- ``n``: Negate and print immediate integer constant unadorned, without the
3535 target-specific immediate punctuation (e.g. no ``$`` prefix).
3536- ``l``: Print as an unadorned label, without the target-specific label
3537 punctuation (e.g. no ``$`` prefix).
3538
3539AArch64:
3540
3541- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3542 instead of ``x30``, print ``w30``.
3543- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3544- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3545 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3546 ``v*``.
3547
3548AMDGPU:
3549
3550- ``r``: No effect.
3551
3552ARM:
3553
3554- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3555 register).
3556- ``P``: No effect.
3557- ``q``: No effect.
3558- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3559 as ``d4[1]`` instead of ``s9``)
3560- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3561 prefix.
3562- ``L``: Print the low 16-bits of an immediate integer constant.
3563- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3564 register operands subsequent to the specified one (!), so use carefully.
3565- ``Q``: Print the low-order register of a register-pair, or the low-order
3566 register of a two-register operand.
3567- ``R``: Print the high-order register of a register-pair, or the high-order
3568 register of a two-register operand.
3569- ``H``: Print the second register of a register-pair. (On a big-endian system,
3570 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3571 to ``R``.)
3572
3573 .. FIXME: H doesn't currently support printing the second register
3574 of a two-register operand.
3575
3576- ``e``: Print the low doubleword register of a NEON quad register.
3577- ``f``: Print the high doubleword register of a NEON quad register.
3578- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3579 adornment.
3580
3581Hexagon:
3582
3583- ``L``: Print the second register of a two-register operand. Requires that it
3584 has been allocated consecutively to the first.
3585
3586 .. FIXME: why is it restricted to consecutive ones? And there's
3587 nothing that ensures that happens, is there?
3588
3589- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3590 nothing. Used to print 'addi' vs 'add' instructions.
3591
3592MSP430:
3593
3594No additional modifiers.
3595
3596MIPS:
3597
3598- ``X``: Print an immediate integer as hexadecimal
3599- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3600- ``d``: Print an immediate integer as decimal.
3601- ``m``: Subtract one and print an immediate integer as decimal.
3602- ``z``: Print $0 if an immediate zero, otherwise print normally.
3603- ``L``: Print the low-order register of a two-register operand, or prints the
3604 address of the low-order word of a double-word memory operand.
3605
3606 .. FIXME: L seems to be missing memory operand support.
3607
3608- ``M``: Print the high-order register of a two-register operand, or prints the
3609 address of the high-order word of a double-word memory operand.
3610
3611 .. FIXME: M seems to be missing memory operand support.
3612
3613- ``D``: Print the second register of a two-register operand, or prints the
3614 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3615 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3616 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003617- ``w``: No effect. Provided for compatibility with GCC which requires this
3618 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3619 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003620
3621NVPTX:
3622
3623- ``r``: No effect.
3624
3625PowerPC:
3626
3627- ``L``: Print the second register of a two-register operand. Requires that it
3628 has been allocated consecutively to the first.
3629
3630 .. FIXME: why is it restricted to consecutive ones? And there's
3631 nothing that ensures that happens, is there?
3632
3633- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3634 nothing. Used to print 'addi' vs 'add' instructions.
3635- ``y``: For a memory operand, prints formatter for a two-register X-form
3636 instruction. (Currently always prints ``r0,OPERAND``).
3637- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3638 otherwise. (NOTE: LLVM does not support update form, so this will currently
3639 always print nothing)
3640- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3641 not support indexed form, so this will currently always print nothing)
3642
3643Sparc:
3644
3645- ``r``: No effect.
3646
3647SystemZ:
3648
3649SystemZ implements only ``n``, and does *not* support any of the other
3650target-independent modifiers.
3651
3652X86:
3653
3654- ``c``: Print an unadorned integer or symbol name. (The latter is
3655 target-specific behavior for this typically target-independent modifier).
3656- ``A``: Print a register name with a '``*``' before it.
3657- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3658 operand.
3659- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3660 memory operand.
3661- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3662 operand.
3663- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3664 operand.
3665- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3666 available, otherwise the 32-bit register name; do nothing on a memory operand.
3667- ``n``: Negate and print an unadorned integer, or, for operands other than an
3668 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3669 the operand. (The behavior for relocatable symbol expressions is a
3670 target-specific behavior for this typically target-independent modifier)
3671- ``H``: Print a memory reference with additional offset +8.
3672- ``P``: Print a memory reference or operand for use as the argument of a call
3673 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3674
3675XCore:
3676
3677No additional modifiers.
3678
3679
Sean Silvab084af42012-12-07 10:36:55 +00003680Inline Asm Metadata
3681^^^^^^^^^^^^^^^^^^^
3682
3683The call instructions that wrap inline asm nodes may have a
3684"``!srcloc``" MDNode attached to it that contains a list of constant
3685integers. If present, the code generator will use the integer as the
3686location cookie value when report errors through the ``LLVMContext``
3687error reporting mechanisms. This allows a front-end to correlate backend
3688errors that occur with inline asm back to the source code that produced
3689it. For example:
3690
3691.. code-block:: llvm
3692
3693 call void asm sideeffect "something bad", ""(), !srcloc !42
3694 ...
3695 !42 = !{ i32 1234567 }
3696
3697It is up to the front-end to make sense of the magic numbers it places
3698in the IR. If the MDNode contains multiple constants, the code generator
3699will use the one that corresponds to the line of the asm that the error
3700occurs on.
3701
3702.. _metadata:
3703
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003704Metadata
3705========
Sean Silvab084af42012-12-07 10:36:55 +00003706
3707LLVM IR allows metadata to be attached to instructions in the program
3708that can convey extra information about the code to the optimizers and
3709code generator. One example application of metadata is source-level
3710debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003711
Sean Silvaa1190322015-08-06 22:56:48 +00003712Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003713``call`` instruction, it uses the ``metadata`` type.
3714
3715All metadata are identified in syntax by a exclamation point ('``!``').
3716
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003717.. _metadata-string:
3718
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003719Metadata Nodes and Metadata Strings
3720-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003721
3722A metadata string is a string surrounded by double quotes. It can
3723contain any character by escaping non-printable characters with
3724"``\xx``" where "``xx``" is the two digit hex code. For example:
3725"``!"test\00"``".
3726
3727Metadata nodes are represented with notation similar to structure
3728constants (a comma separated list of elements, surrounded by braces and
3729preceded by an exclamation point). Metadata nodes can have any values as
3730their operand. For example:
3731
3732.. code-block:: llvm
3733
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003734 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003735
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003736Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3737
3738.. code-block:: llvm
3739
3740 !0 = distinct !{!"test\00", i32 10}
3741
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003742``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003743content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003744when metadata operands change.
3745
Sean Silvab084af42012-12-07 10:36:55 +00003746A :ref:`named metadata <namedmetadatastructure>` is a collection of
3747metadata nodes, which can be looked up in the module symbol table. For
3748example:
3749
3750.. code-block:: llvm
3751
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003752 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003753
3754Metadata can be used as function arguments. Here ``llvm.dbg.value``
3755function is using two metadata arguments:
3756
3757.. code-block:: llvm
3758
3759 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3760
Peter Collingbourne50108682015-11-06 02:41:02 +00003761Metadata can be attached to an instruction. Here metadata ``!21`` is attached
3762to the ``add`` instruction using the ``!dbg`` identifier:
Sean Silvab084af42012-12-07 10:36:55 +00003763
3764.. code-block:: llvm
3765
3766 %indvar.next = add i64 %indvar, 1, !dbg !21
3767
Peter Collingbourne50108682015-11-06 02:41:02 +00003768Metadata can also be attached to a function definition. Here metadata ``!22``
3769is attached to the ``foo`` function using the ``!dbg`` identifier:
3770
3771.. code-block:: llvm
3772
3773 define void @foo() !dbg !22 {
3774 ret void
3775 }
3776
Sean Silvab084af42012-12-07 10:36:55 +00003777More information about specific metadata nodes recognized by the
3778optimizers and code generator is found below.
3779
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003780.. _specialized-metadata:
3781
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003782Specialized Metadata Nodes
3783^^^^^^^^^^^^^^^^^^^^^^^^^^
3784
3785Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003786to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003787order.
3788
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789These aren't inherently debug info centric, but currently all the specialized
3790metadata nodes are related to debug info.
3791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003793
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003794DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003795"""""""""""""
3796
Sean Silvaa1190322015-08-06 22:56:48 +00003797``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003798``retainedTypes:``, ``subprograms:``, ``globals:``, ``imports:`` and ``macros:``
3799fields are tuples containing the debug info to be emitted along with the compile
3800unit, regardless of code optimizations (some nodes are only emitted if there are
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003801references to them from instructions).
3802
3803.. code-block:: llvm
3804
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003805 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003806 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3807 splitDebugFilename: "abc.debug", emissionKind: 1,
3808 enums: !2, retainedTypes: !3, subprograms: !4,
Amjad Abouda9bcf162015-12-10 12:56:35 +00003809 globals: !5, imports: !6, macros: !7, dwoId: 0x0abcd)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003810
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003811Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003812specific compilation unit. File descriptors are defined using this scope.
3813These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003814keep track of subprograms, global variables, type information, and imported
3815entities (declarations and namespaces).
3816
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003817.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003818
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003819DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003820""""""
3821
Sean Silvaa1190322015-08-06 22:56:48 +00003822``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003823
3824.. code-block:: llvm
3825
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003826 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003828Files are sometimes used in ``scope:`` fields, and are the only valid target
3829for ``file:`` fields.
3830
Michael Kuperstein605308a2015-05-14 10:58:59 +00003831.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003833DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003834"""""""""""
3835
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003836``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003837``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003838
3839.. code-block:: llvm
3840
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003841 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003842 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003843 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003844
Sean Silvaa1190322015-08-06 22:56:48 +00003845The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003846following:
3847
3848.. code-block:: llvm
3849
3850 DW_ATE_address = 1
3851 DW_ATE_boolean = 2
3852 DW_ATE_float = 4
3853 DW_ATE_signed = 5
3854 DW_ATE_signed_char = 6
3855 DW_ATE_unsigned = 7
3856 DW_ATE_unsigned_char = 8
3857
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003858.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003859
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861""""""""""""""""
3862
Sean Silvaa1190322015-08-06 22:56:48 +00003863``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003864refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003865types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003866represents a function with no return value (such as ``void foo() {}`` in C++).
3867
3868.. code-block:: llvm
3869
3870 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3871 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003872 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003875
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003876DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003877"""""""""""""
3878
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003879``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003880qualified types.
3881
3882.. code-block:: llvm
3883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003885 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003886 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003887 align: 32)
3888
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003889The following ``tag:`` values are valid:
3890
3891.. code-block:: llvm
3892
3893 DW_TAG_formal_parameter = 5
3894 DW_TAG_member = 13
3895 DW_TAG_pointer_type = 15
3896 DW_TAG_reference_type = 16
3897 DW_TAG_typedef = 22
3898 DW_TAG_ptr_to_member_type = 31
3899 DW_TAG_const_type = 38
3900 DW_TAG_volatile_type = 53
3901 DW_TAG_restrict_type = 55
3902
3903``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003904<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3905is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003906``DW_TAG_formal_parameter`` is used to define a member which is a formal
3907argument of a subprogram.
3908
3909``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3910
3911``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3912``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3913``baseType:``.
3914
3915Note that the ``void *`` type is expressed as a type derived from NULL.
3916
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003918
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003919DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003920"""""""""""""""
3921
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003922``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003923structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003924
3925If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003926identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003927can refer to composite types indirectly via a :ref:`metadata string
3928<metadata-string>` that matches their identifier.
3929
3930.. code-block:: llvm
3931
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003932 !0 = !DIEnumerator(name: "SixKind", value: 7)
3933 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3934 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3935 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003936 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3937 elements: !{!0, !1, !2})
3938
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003939The following ``tag:`` values are valid:
3940
3941.. code-block:: llvm
3942
3943 DW_TAG_array_type = 1
3944 DW_TAG_class_type = 2
3945 DW_TAG_enumeration_type = 4
3946 DW_TAG_structure_type = 19
3947 DW_TAG_union_type = 23
3948 DW_TAG_subroutine_type = 21
3949 DW_TAG_inheritance = 28
3950
3951
3952For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003953descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003954level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003955array type is a native packed vector.
3956
3957For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003958descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003959value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003961
3962For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3963``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003964<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003965
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003966.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003967
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003968DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003969""""""""""
3970
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003971``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003972:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003973
3974.. code-block:: llvm
3975
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003976 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3977 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3978 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003979
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003980.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003981
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003982DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003983""""""""""""
3984
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003985``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3986variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003987
3988.. code-block:: llvm
3989
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003990 !0 = !DIEnumerator(name: "SixKind", value: 7)
3991 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3992 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003993
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003994DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003995"""""""""""""""""""""""
3996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003997``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003998language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003999:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004000
4001.. code-block:: llvm
4002
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004003 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004004
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004005DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004006""""""""""""""""""""""""
4007
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004008``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00004009language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004010but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00004011``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004012:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004013
4014.. code-block:: llvm
4015
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004016 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004017
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004018DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004019"""""""""""
4020
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004021``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004022
4023.. code-block:: llvm
4024
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004025 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004026
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004027DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004028""""""""""""""""
4029
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004030``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004031
4032.. code-block:: llvm
4033
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004034 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004035 file: !2, line: 7, type: !3, isLocal: true,
4036 isDefinition: false, variable: i32* @foo,
4037 declaration: !4)
4038
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004039All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004040:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004041
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004042.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004043
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004044DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004045""""""""""""
4046
Peter Collingbourne50108682015-11-06 02:41:02 +00004047``DISubprogram`` nodes represent functions from the source language. A
4048``DISubprogram`` may be attached to a function definition using ``!dbg``
4049metadata. The ``variables:`` field points at :ref:`variables <DILocalVariable>`
4050that must be retained, even if their IR counterparts are optimized out of
4051the IR. The ``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004052
4053.. code-block:: llvm
4054
Peter Collingbourne50108682015-11-06 02:41:02 +00004055 define void @_Z3foov() !dbg !0 {
4056 ...
4057 }
4058
4059 !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
4060 file: !2, line: 7, type: !3, isLocal: true,
4061 isDefinition: false, scopeLine: 8,
4062 containingType: !4,
4063 virtuality: DW_VIRTUALITY_pure_virtual,
4064 virtualIndex: 10, flags: DIFlagPrototyped,
4065 isOptimized: true, templateParams: !5,
4066 declaration: !6, variables: !7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004067
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004068.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004069
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004070DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004071""""""""""""""
4072
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004073``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004074<DISubprogram>`. The line number and column numbers are used to distinguish
Sean Silvaa1190322015-08-06 22:56:48 +00004075two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004076fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004077
4078.. code-block:: llvm
4079
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004080 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00004081
4082Usually lexical blocks are ``distinct`` to prevent node merging based on
4083operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004084
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004085.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004086
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004087DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004088""""""""""""""""""
4089
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004090``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00004091:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004092indicate textual inclusion, or the ``discriminator:`` field can be used to
4093discriminate between control flow within a single block in the source language.
4094
4095.. code-block:: llvm
4096
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004097 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
4098 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
4099 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004100
Michael Kuperstein605308a2015-05-14 10:58:59 +00004101.. _DILocation:
4102
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004103DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004104""""""""""
4105
Sean Silvaa1190322015-08-06 22:56:48 +00004106``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004107mandatory, and points at an :ref:`DILexicalBlockFile`, an
4108:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004109
4110.. code-block:: llvm
4111
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004112 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00004113
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004114.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004115
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004116DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004117"""""""""""""""
4118
Sean Silvaa1190322015-08-06 22:56:48 +00004119``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004120the ``arg:`` field is set to non-zero, then this variable is a subprogram
4121parameter, and it will be included in the ``variables:`` field of its
4122:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004123
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004124.. code-block:: llvm
4125
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00004126 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
4127 type: !3, flags: DIFlagArtificial)
4128 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
4129 type: !3)
4130 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004131
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004132DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004133""""""""""""
4134
Sean Silvaa1190322015-08-06 22:56:48 +00004135``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004136:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
4137describe how the referenced LLVM variable relates to the source language
4138variable.
4139
4140The current supported vocabulary is limited:
4141
4142- ``DW_OP_deref`` dereferences the working expression.
4143- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
4144- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
4145 here, respectively) of the variable piece from the working expression.
4146
4147.. code-block:: llvm
4148
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004149 !0 = !DIExpression(DW_OP_deref)
4150 !1 = !DIExpression(DW_OP_plus, 3)
4151 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
4152 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004154DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004155""""""""""""""
4156
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004157``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004158
4159.. code-block:: llvm
4160
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004161 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004162 getter: "getFoo", attributes: 7, type: !2)
4163
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004164DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004165""""""""""""""""
4166
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004167``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004168compile unit.
4169
4170.. code-block:: llvm
4171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00004172 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00004173 entity: !1, line: 7)
4174
Amjad Abouda9bcf162015-12-10 12:56:35 +00004175DIMacro
4176"""""""
4177
4178``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
4179The ``name:`` field is the macro identifier, followed by macro parameters when
4180definining a function-like macro, and the ``value`` field is the token-string
4181used to expand the macro identifier.
4182
4183.. code-block:: llvm
4184
4185 !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
4186 value: "((x) + 1)")
4187 !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
4188
4189DIMacroFile
4190"""""""""""
4191
4192``DIMacroFile`` nodes represent inclusion of source files.
4193The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
4194appear in the included source file.
4195
4196.. code-block:: llvm
4197
4198 !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
4199 nodes: !3)
4200
Sean Silvab084af42012-12-07 10:36:55 +00004201'``tbaa``' Metadata
4202^^^^^^^^^^^^^^^^^^^
4203
4204In LLVM IR, memory does not have types, so LLVM's own type system is not
4205suitable for doing TBAA. Instead, metadata is added to the IR to
4206describe a type system of a higher level language. This can be used to
4207implement typical C/C++ TBAA, but it can also be used to implement
4208custom alias analysis behavior for other languages.
4209
4210The current metadata format is very simple. TBAA metadata nodes have up
4211to three fields, e.g.:
4212
4213.. code-block:: llvm
4214
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004215 !0 = !{ !"an example type tree" }
4216 !1 = !{ !"int", !0 }
4217 !2 = !{ !"float", !0 }
4218 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004219
4220The first field is an identity field. It can be any value, usually a
4221metadata string, which uniquely identifies the type. The most important
4222name in the tree is the name of the root node. Two trees with different
4223root node names are entirely disjoint, even if they have leaves with
4224common names.
4225
4226The second field identifies the type's parent node in the tree, or is
4227null or omitted for a root node. A type is considered to alias all of
4228its descendants and all of its ancestors in the tree. Also, a type is
4229considered to alias all types in other trees, so that bitcode produced
4230from multiple front-ends is handled conservatively.
4231
4232If the third field is present, it's an integer which if equal to 1
4233indicates that the type is "constant" (meaning
4234``pointsToConstantMemory`` should return true; see `other useful
4235AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
4236
4237'``tbaa.struct``' Metadata
4238^^^^^^^^^^^^^^^^^^^^^^^^^^
4239
4240The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4241aggregate assignment operations in C and similar languages, however it
4242is defined to copy a contiguous region of memory, which is more than
4243strictly necessary for aggregate types which contain holes due to
4244padding. Also, it doesn't contain any TBAA information about the fields
4245of the aggregate.
4246
4247``!tbaa.struct`` metadata can describe which memory subregions in a
4248memcpy are padding and what the TBAA tags of the struct are.
4249
4250The current metadata format is very simple. ``!tbaa.struct`` metadata
4251nodes are a list of operands which are in conceptual groups of three.
4252For each group of three, the first operand gives the byte offset of a
4253field in bytes, the second gives its size in bytes, and the third gives
4254its tbaa tag. e.g.:
4255
4256.. code-block:: llvm
4257
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004258 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004259
4260This describes a struct with two fields. The first is at offset 0 bytes
4261with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4262and has size 4 bytes and has tbaa tag !2.
4263
4264Note that the fields need not be contiguous. In this example, there is a
42654 byte gap between the two fields. This gap represents padding which
4266does not carry useful data and need not be preserved.
4267
Hal Finkel94146652014-07-24 14:25:39 +00004268'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004270
4271``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4272noalias memory-access sets. This means that some collection of memory access
4273instructions (loads, stores, memory-accessing calls, etc.) that carry
4274``noalias`` metadata can specifically be specified not to alias with some other
4275collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004276Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004277a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004278of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004279subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004280instruction's ``noalias`` list, then the two memory accesses are assumed not to
4281alias.
Hal Finkel94146652014-07-24 14:25:39 +00004282
Hal Finkel029cde62014-07-25 15:50:02 +00004283The metadata identifying each domain is itself a list containing one or two
4284entries. The first entry is the name of the domain. Note that if the name is a
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004285string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004286self-reference can be used to create globally unique domain names. A
4287descriptive string may optionally be provided as a second list entry.
4288
4289The metadata identifying each scope is also itself a list containing two or
4290three entries. The first entry is the name of the scope. Note that if the name
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00004291is a string then it can be combined across functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004292self-reference can be used to create globally unique scope names. A metadata
4293reference to the scope's domain is the second entry. A descriptive string may
4294optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004295
4296For example,
4297
4298.. code-block:: llvm
4299
Hal Finkel029cde62014-07-25 15:50:02 +00004300 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004301 !0 = !{!0}
4302 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004303
Hal Finkel029cde62014-07-25 15:50:02 +00004304 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004305 !2 = !{!2, !0}
4306 !3 = !{!3, !0}
4307 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004308
Hal Finkel029cde62014-07-25 15:50:02 +00004309 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004310 !5 = !{!4} ; A list containing only scope !4
4311 !6 = !{!4, !3, !2}
4312 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004313
4314 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004315 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004316 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004317
Hal Finkel029cde62014-07-25 15:50:02 +00004318 ; These two instructions also don't alias (for domain !1, the set of scopes
4319 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004320 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004321 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004322
Adam Nemet0a8416f2015-05-11 08:30:28 +00004323 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004324 ; the !noalias list is not a superset of, or equal to, the scopes in the
4325 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004326 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004327 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004328
Sean Silvab084af42012-12-07 10:36:55 +00004329'``fpmath``' Metadata
4330^^^^^^^^^^^^^^^^^^^^^
4331
4332``fpmath`` metadata may be attached to any instruction of floating point
4333type. It can be used to express the maximum acceptable error in the
4334result of that instruction, in ULPs, thus potentially allowing the
4335compiler to use a more efficient but less accurate method of computing
4336it. ULP is defined as follows:
4337
4338 If ``x`` is a real number that lies between two finite consecutive
4339 floating-point numbers ``a`` and ``b``, without being equal to one
4340 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4341 distance between the two non-equal finite floating-point numbers
4342 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4343
4344The metadata node shall consist of a single positive floating point
4345number representing the maximum relative error, for example:
4346
4347.. code-block:: llvm
4348
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004349 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004350
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004351.. _range-metadata:
4352
Sean Silvab084af42012-12-07 10:36:55 +00004353'``range``' Metadata
4354^^^^^^^^^^^^^^^^^^^^
4355
Jingyue Wu37fcb592014-06-19 16:50:16 +00004356``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4357integer types. It expresses the possible ranges the loaded value or the value
4358returned by the called function at this call site is in. The ranges are
4359represented with a flattened list of integers. The loaded value or the value
4360returned is known to be in the union of the ranges defined by each consecutive
4361pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004362
4363- The type must match the type loaded by the instruction.
4364- The pair ``a,b`` represents the range ``[a,b)``.
4365- Both ``a`` and ``b`` are constants.
4366- The range is allowed to wrap.
4367- The range should not represent the full or empty set. That is,
4368 ``a!=b``.
4369
4370In addition, the pairs must be in signed order of the lower bound and
4371they must be non-contiguous.
4372
4373Examples:
4374
4375.. code-block:: llvm
4376
David Blaikiec7aabbb2015-03-04 22:06:14 +00004377 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4378 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004379 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4380 %d = invoke i8 @bar() to label %cont
4381 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004382 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004383 !0 = !{ i8 0, i8 2 }
4384 !1 = !{ i8 255, i8 2 }
4385 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4386 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004387
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004388'``unpredictable``' Metadata
Sanjay Patel1f12b342015-09-02 19:35:31 +00004389^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sanjay Patela99ab1f2015-09-02 19:06:43 +00004390
4391``unpredictable`` metadata may be attached to any branch or switch
4392instruction. It can be used to express the unpredictability of control
4393flow. Similar to the llvm.expect intrinsic, it may be used to alter
4394optimizations related to compare and branch instructions. The metadata
4395is treated as a boolean value; if it exists, it signals that the branch
4396or switch that it is attached to is completely unpredictable.
4397
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004398'``llvm.loop``'
4399^^^^^^^^^^^^^^^
4400
4401It is sometimes useful to attach information to loop constructs. Currently,
4402loop metadata is implemented as metadata attached to the branch instruction
4403in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004404guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004405specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004406
4407The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004408itself to avoid merging it with any other identifier metadata, e.g.,
4409during module linkage or function inlining. That is, each loop should refer
4410to their own identification metadata even if they reside in separate functions.
4411The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004412constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004413
4414.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004415
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004416 !0 = !{!0}
4417 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004418
Mark Heffernan893752a2014-07-18 19:24:51 +00004419The loop identifier metadata can be used to specify additional
4420per-loop metadata. Any operands after the first operand can be treated
4421as user-defined metadata. For example the ``llvm.loop.unroll.count``
4422suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004423
Paul Redmond5fdf8362013-05-28 20:00:34 +00004424.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004425
Paul Redmond5fdf8362013-05-28 20:00:34 +00004426 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4427 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004428 !0 = !{!0, !1}
4429 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004430
Mark Heffernan9d20e422014-07-21 23:11:03 +00004431'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4432^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004433
Mark Heffernan9d20e422014-07-21 23:11:03 +00004434Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4435used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004436vectorization width and interleave count. These metadata should be used in
4437conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004438``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4439optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004440it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004441which contains information about loop-carried memory dependencies can be helpful
4442in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004443
Mark Heffernan9d20e422014-07-21 23:11:03 +00004444'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4446
Mark Heffernan9d20e422014-07-21 23:11:03 +00004447This metadata suggests an interleave count to the loop interleaver.
4448The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004449second operand is an integer specifying the interleave count. For
4450example:
4451
4452.. code-block:: llvm
4453
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004454 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004455
Mark Heffernan9d20e422014-07-21 23:11:03 +00004456Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004457multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004458then the interleave count will be determined automatically.
4459
4460'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004462
4463This metadata selectively enables or disables vectorization for the loop. The
4464first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004465is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000044660 disables vectorization:
4467
4468.. code-block:: llvm
4469
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004470 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4471 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004472
4473'``llvm.loop.vectorize.width``' Metadata
4474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4475
4476This metadata sets the target width of the vectorizer. The first
4477operand is the string ``llvm.loop.vectorize.width`` and the second
4478operand is an integer specifying the width. For example:
4479
4480.. code-block:: llvm
4481
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004482 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004483
4484Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004485vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000044860 or if the loop does not have this metadata the width will be
4487determined automatically.
4488
4489'``llvm.loop.unroll``'
4490^^^^^^^^^^^^^^^^^^^^^^
4491
4492Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4493optimization hints such as the unroll factor. ``llvm.loop.unroll``
4494metadata should be used in conjunction with ``llvm.loop`` loop
4495identification metadata. The ``llvm.loop.unroll`` metadata are only
4496optimization hints and the unrolling will only be performed if the
4497optimizer believes it is safe to do so.
4498
Mark Heffernan893752a2014-07-18 19:24:51 +00004499'``llvm.loop.unroll.count``' Metadata
4500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4501
4502This metadata suggests an unroll factor to the loop unroller. The
4503first operand is the string ``llvm.loop.unroll.count`` and the second
4504operand is a positive integer specifying the unroll factor. For
4505example:
4506
4507.. code-block:: llvm
4508
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004509 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004510
4511If the trip count of the loop is less than the unroll count the loop
4512will be partially unrolled.
4513
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004514'``llvm.loop.unroll.disable``' Metadata
4515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4516
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004517This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004518which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004519
4520.. code-block:: llvm
4521
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004522 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004523
Kevin Qin715b01e2015-03-09 06:14:18 +00004524'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004526
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004527This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004528operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004529
4530.. code-block:: llvm
4531
4532 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4533
Mark Heffernan89391542015-08-10 17:28:08 +00004534'``llvm.loop.unroll.enable``' Metadata
4535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4536
4537This metadata suggests that the loop should be fully unrolled if the trip count
4538is known at compile time and partially unrolled if the trip count is not known
4539at compile time. The metadata has a single operand which is the string
4540``llvm.loop.unroll.enable``. For example:
4541
4542.. code-block:: llvm
4543
4544 !0 = !{!"llvm.loop.unroll.enable"}
4545
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004546'``llvm.loop.unroll.full``' Metadata
4547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4548
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004549This metadata suggests that the loop should be unrolled fully. The
4550metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004551For example:
4552
4553.. code-block:: llvm
4554
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004555 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004556
Ashutosh Nemadf6763a2016-02-06 07:47:48 +00004557'``llvm.loop.licm_versioning.disable``' Metadata
4558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4559
4560This metadata indicates that the loop should not be versioned for the purpose
4561of enabling loop-invariant code motion (LICM). The metadata has a single operand
4562which is the string ``llvm.loop.licm_versioning.disable``. For example:
4563
4564.. code-block:: llvm
4565
4566 !0 = !{!"llvm.loop.licm_versioning.disable"}
4567
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004568'``llvm.mem``'
4569^^^^^^^^^^^^^^^
4570
4571Metadata types used to annotate memory accesses with information helpful
4572for optimizations are prefixed with ``llvm.mem``.
4573
4574'``llvm.mem.parallel_loop_access``' Metadata
4575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4576
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004577The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4578or metadata containing a list of loop identifiers for nested loops.
4579The metadata is attached to memory accessing instructions and denotes that
4580no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004581with the same loop identifier.
4582
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004583Precisely, given two instructions ``m1`` and ``m2`` that both have the
4584``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4585set of loops associated with that metadata, respectively, then there is no loop
4586carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004587``L2``.
4588
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004589As a special case, if all memory accessing instructions in a loop have
4590``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4591loop has no loop carried memory dependences and is considered to be a parallel
4592loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004593
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004594Note that if not all memory access instructions have such metadata referring to
4595the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004596memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004597safe mechanism, this causes loops that were originally parallel to be considered
4598sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004599insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004600
4601Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004602both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004603metadata types that refer to the same loop identifier metadata.
4604
4605.. code-block:: llvm
4606
4607 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004608 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004609 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004610 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004611 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004612 ...
4613 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004614
4615 for.end:
4616 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004617 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004618
4619It is also possible to have nested parallel loops. In that case the
4620memory accesses refer to a list of loop identifier metadata nodes instead of
4621the loop identifier metadata node directly:
4622
4623.. code-block:: llvm
4624
4625 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004626 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004627 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004628 ...
4629 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004630
4631 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004632 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004633 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004634 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004635 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004636 ...
4637 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004638
4639 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004640 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004641 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004642 ...
4643 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004644
4645 outer.for.end: ; preds = %for.body
4646 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004647 !0 = !{!1, !2} ; a list of loop identifiers
4648 !1 = !{!1} ; an identifier for the inner loop
4649 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004650
Peter Collingbournee6909c82015-02-20 20:30:47 +00004651'``llvm.bitsets``'
4652^^^^^^^^^^^^^^^^^^
4653
4654The ``llvm.bitsets`` global metadata is used to implement
4655:doc:`bitsets <BitSets>`.
4656
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00004657'``invariant.group``' Metadata
4658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4659
4660The ``invariant.group`` metadata may be attached to ``load``/``store`` instructions.
4661The existence of the ``invariant.group`` metadata on the instruction tells
4662the optimizer that every ``load`` and ``store`` to the same pointer operand
4663within the same invariant group can be assumed to load or store the same
4664value (but see the ``llvm.invariant.group.barrier`` intrinsic which affects
4665when two pointers are considered the same).
4666
4667Examples:
4668
4669.. code-block:: llvm
4670
4671 @unknownPtr = external global i8
4672 ...
4673 %ptr = alloca i8
4674 store i8 42, i8* %ptr, !invariant.group !0
4675 call void @foo(i8* %ptr)
4676
4677 %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
4678 call void @foo(i8* %ptr)
4679 %b = load i8, i8* %ptr, !invariant.group !1 ; Can't assume anything, because group changed
4680
4681 %newPtr = call i8* @getPointer(i8* %ptr)
4682 %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
4683
4684 %unknownValue = load i8, i8* @unknownPtr
4685 store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
4686
4687 call void @foo(i8* %ptr)
4688 %newPtr2 = call i8* @llvm.invariant.group.barrier(i8* %ptr)
4689 %d = load i8, i8* %newPtr2, !invariant.group !0 ; Can't step through invariant.group.barrier to get value of %ptr
4690
4691 ...
4692 declare void @foo(i8*)
4693 declare i8* @getPointer(i8*)
4694 declare i8* @llvm.invariant.group.barrier(i8*)
4695
4696 !0 = !{!"magic ptr"}
4697 !1 = !{!"other ptr"}
4698
4699
4700
Sean Silvab084af42012-12-07 10:36:55 +00004701Module Flags Metadata
4702=====================
4703
4704Information about the module as a whole is difficult to convey to LLVM's
4705subsystems. The LLVM IR isn't sufficient to transmit this information.
4706The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004707this. These flags are in the form of key / value pairs --- much like a
4708dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004709look it up.
4710
4711The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4712Each triplet has the following form:
4713
4714- The first element is a *behavior* flag, which specifies the behavior
4715 when two (or more) modules are merged together, and it encounters two
4716 (or more) metadata with the same ID. The supported behaviors are
4717 described below.
4718- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004719 metadata. Each module may only have one flag entry for each unique ID (not
4720 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004721- The third element is the value of the flag.
4722
4723When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004724``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4725each unique metadata ID string, there will be exactly one entry in the merged
4726modules ``llvm.module.flags`` metadata table, and the value for that entry will
4727be determined by the merge behavior flag, as described below. The only exception
4728is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004729
4730The following behaviors are supported:
4731
4732.. list-table::
4733 :header-rows: 1
4734 :widths: 10 90
4735
4736 * - Value
4737 - Behavior
4738
4739 * - 1
4740 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004741 Emits an error if two values disagree, otherwise the resulting value
4742 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004743
4744 * - 2
4745 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004746 Emits a warning if two values disagree. The result value will be the
4747 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004748
4749 * - 3
4750 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004751 Adds a requirement that another module flag be present and have a
4752 specified value after linking is performed. The value must be a
4753 metadata pair, where the first element of the pair is the ID of the
4754 module flag to be restricted, and the second element of the pair is
4755 the value the module flag should be restricted to. This behavior can
4756 be used to restrict the allowable results (via triggering of an
4757 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004758
4759 * - 4
4760 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004761 Uses the specified value, regardless of the behavior or value of the
4762 other module. If both modules specify **Override**, but the values
4763 differ, an error will be emitted.
4764
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004765 * - 5
4766 - **Append**
4767 Appends the two values, which are required to be metadata nodes.
4768
4769 * - 6
4770 - **AppendUnique**
4771 Appends the two values, which are required to be metadata
4772 nodes. However, duplicate entries in the second list are dropped
4773 during the append operation.
4774
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004775It is an error for a particular unique flag ID to have multiple behaviors,
4776except in the case of **Require** (which adds restrictions on another metadata
4777value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004778
4779An example of module flags:
4780
4781.. code-block:: llvm
4782
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004783 !0 = !{ i32 1, !"foo", i32 1 }
4784 !1 = !{ i32 4, !"bar", i32 37 }
4785 !2 = !{ i32 2, !"qux", i32 42 }
4786 !3 = !{ i32 3, !"qux",
4787 !{
4788 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004789 }
4790 }
4791 !llvm.module.flags = !{ !0, !1, !2, !3 }
4792
4793- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4794 if two or more ``!"foo"`` flags are seen is to emit an error if their
4795 values are not equal.
4796
4797- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4798 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004799 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004800
4801- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4802 behavior if two or more ``!"qux"`` flags are seen is to emit a
4803 warning if their values are not equal.
4804
4805- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4806
4807 ::
4808
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004809 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004810
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004811 The behavior is to emit an error if the ``llvm.module.flags`` does not
4812 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4813 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004814
4815Objective-C Garbage Collection Module Flags Metadata
4816----------------------------------------------------
4817
4818On the Mach-O platform, Objective-C stores metadata about garbage
4819collection in a special section called "image info". The metadata
4820consists of a version number and a bitmask specifying what types of
4821garbage collection are supported (if any) by the file. If two or more
4822modules are linked together their garbage collection metadata needs to
4823be merged rather than appended together.
4824
4825The Objective-C garbage collection module flags metadata consists of the
4826following key-value pairs:
4827
4828.. list-table::
4829 :header-rows: 1
4830 :widths: 30 70
4831
4832 * - Key
4833 - Value
4834
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004835 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004836 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004837
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004838 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004839 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004840 always 0.
4841
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004842 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004843 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004844 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4845 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4846 Objective-C ABI version 2.
4847
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004848 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004849 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004850 not. Valid values are 0, for no garbage collection, and 2, for garbage
4851 collection supported.
4852
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004853 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004854 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004855 If present, its value must be 6. This flag requires that the
4856 ``Objective-C Garbage Collection`` flag have the value 2.
4857
4858Some important flag interactions:
4859
4860- If a module with ``Objective-C Garbage Collection`` set to 0 is
4861 merged with a module with ``Objective-C Garbage Collection`` set to
4862 2, then the resulting module has the
4863 ``Objective-C Garbage Collection`` flag set to 0.
4864- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4865 merged with a module with ``Objective-C GC Only`` set to 6.
4866
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004867Automatic Linker Flags Module Flags Metadata
4868--------------------------------------------
4869
4870Some targets support embedding flags to the linker inside individual object
4871files. Typically this is used in conjunction with language extensions which
4872allow source files to explicitly declare the libraries they depend on, and have
4873these automatically be transmitted to the linker via object files.
4874
4875These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004876using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004877to be ``AppendUnique``, and the value for the key is expected to be a metadata
4878node which should be a list of other metadata nodes, each of which should be a
4879list of metadata strings defining linker options.
4880
4881For example, the following metadata section specifies two separate sets of
4882linker options, presumably to link against ``libz`` and the ``Cocoa``
4883framework::
4884
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004885 !0 = !{ i32 6, !"Linker Options",
4886 !{
4887 !{ !"-lz" },
4888 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004889 !llvm.module.flags = !{ !0 }
4890
4891The metadata encoding as lists of lists of options, as opposed to a collapsed
4892list of options, is chosen so that the IR encoding can use multiple option
4893strings to specify e.g., a single library, while still having that specifier be
4894preserved as an atomic element that can be recognized by a target specific
4895assembly writer or object file emitter.
4896
4897Each individual option is required to be either a valid option for the target's
4898linker, or an option that is reserved by the target specific assembly writer or
4899object file emitter. No other aspect of these options is defined by the IR.
4900
Oliver Stannard5dc29342014-06-20 10:08:11 +00004901C type width Module Flags Metadata
4902----------------------------------
4903
4904The ARM backend emits a section into each generated object file describing the
4905options that it was compiled with (in a compiler-independent way) to prevent
4906linking incompatible objects, and to allow automatic library selection. Some
4907of these options are not visible at the IR level, namely wchar_t width and enum
4908width.
4909
4910To pass this information to the backend, these options are encoded in module
4911flags metadata, using the following key-value pairs:
4912
4913.. list-table::
4914 :header-rows: 1
4915 :widths: 30 70
4916
4917 * - Key
4918 - Value
4919
4920 * - short_wchar
4921 - * 0 --- sizeof(wchar_t) == 4
4922 * 1 --- sizeof(wchar_t) == 2
4923
4924 * - short_enum
4925 - * 0 --- Enums are at least as large as an ``int``.
4926 * 1 --- Enums are stored in the smallest integer type which can
4927 represent all of its values.
4928
4929For example, the following metadata section specifies that the module was
4930compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4931enum is the smallest type which can represent all of its values::
4932
4933 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004934 !0 = !{i32 1, !"short_wchar", i32 1}
4935 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004936
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004937.. _intrinsicglobalvariables:
4938
Sean Silvab084af42012-12-07 10:36:55 +00004939Intrinsic Global Variables
4940==========================
4941
4942LLVM has a number of "magic" global variables that contain data that
4943affect code generation or other IR semantics. These are documented here.
4944All globals of this sort should have a section specified as
4945"``llvm.metadata``". This section and all globals that start with
4946"``llvm.``" are reserved for use by LLVM.
4947
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004948.. _gv_llvmused:
4949
Sean Silvab084af42012-12-07 10:36:55 +00004950The '``llvm.used``' Global Variable
4951-----------------------------------
4952
Rafael Espindola74f2e462013-04-22 14:58:02 +00004953The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004954:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004955pointers to named global variables, functions and aliases which may optionally
4956have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004957use of it is:
4958
4959.. code-block:: llvm
4960
4961 @X = global i8 4
4962 @Y = global i32 123
4963
4964 @llvm.used = appending global [2 x i8*] [
4965 i8* @X,
4966 i8* bitcast (i32* @Y to i8*)
4967 ], section "llvm.metadata"
4968
Rafael Espindola74f2e462013-04-22 14:58:02 +00004969If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4970and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004971symbol that it cannot see (which is why they have to be named). For example, if
4972a variable has internal linkage and no references other than that from the
4973``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4974references from inline asms and other things the compiler cannot "see", and
4975corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004976
4977On some targets, the code generator must emit a directive to the
4978assembler or object file to prevent the assembler and linker from
4979molesting the symbol.
4980
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004981.. _gv_llvmcompilerused:
4982
Sean Silvab084af42012-12-07 10:36:55 +00004983The '``llvm.compiler.used``' Global Variable
4984--------------------------------------------
4985
4986The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4987directive, except that it only prevents the compiler from touching the
4988symbol. On targets that support it, this allows an intelligent linker to
4989optimize references to the symbol without being impeded as it would be
4990by ``@llvm.used``.
4991
4992This is a rare construct that should only be used in rare circumstances,
4993and should not be exposed to source languages.
4994
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004995.. _gv_llvmglobalctors:
4996
Sean Silvab084af42012-12-07 10:36:55 +00004997The '``llvm.global_ctors``' Global Variable
4998-------------------------------------------
4999
5000.. code-block:: llvm
5001
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005002 %0 = type { i32, void ()*, i8* }
5003 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005004
5005The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005006functions, priorities, and an optional associated global or function.
5007The functions referenced by this array will be called in ascending order
5008of priority (i.e. lowest first) when the module is loaded. The order of
5009functions with the same priority is not defined.
5010
5011If the third field is present, non-null, and points to a global variable
5012or function, the initializer function will only run if the associated
5013data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005014
Eli Bendersky0220e6b2013-06-07 20:24:43 +00005015.. _llvmglobaldtors:
5016
Sean Silvab084af42012-12-07 10:36:55 +00005017The '``llvm.global_dtors``' Global Variable
5018-------------------------------------------
5019
5020.. code-block:: llvm
5021
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005022 %0 = type { i32, void ()*, i8* }
5023 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00005024
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005025The ``@llvm.global_dtors`` array contains a list of destructor
5026functions, priorities, and an optional associated global or function.
5027The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00005028order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00005029order of functions with the same priority is not defined.
5030
5031If the third field is present, non-null, and points to a global variable
5032or function, the destructor function will only run if the associated
5033data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00005034
5035Instruction Reference
5036=====================
5037
5038The LLVM instruction set consists of several different classifications
5039of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
5040instructions <binaryops>`, :ref:`bitwise binary
5041instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
5042:ref:`other instructions <otherops>`.
5043
5044.. _terminators:
5045
5046Terminator Instructions
5047-----------------------
5048
5049As mentioned :ref:`previously <functionstructure>`, every basic block in a
5050program ends with a "Terminator" instruction, which indicates which
5051block should be executed after the current block is finished. These
5052terminator instructions typically yield a '``void``' value: they produce
5053control flow, not values (the one exception being the
5054':ref:`invoke <i_invoke>`' instruction).
5055
5056The terminator instructions are: ':ref:`ret <i_ret>`',
5057':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
5058':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer8a1c45d2015-12-12 05:38:55 +00005059':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
David Majnemer654e1302015-07-31 17:58:14 +00005060':ref:`catchret <i_catchret>`',
5061':ref:`cleanupret <i_cleanupret>`',
David Majnemer654e1302015-07-31 17:58:14 +00005062and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00005063
5064.. _i_ret:
5065
5066'``ret``' Instruction
5067^^^^^^^^^^^^^^^^^^^^^
5068
5069Syntax:
5070"""""""
5071
5072::
5073
5074 ret <type> <value> ; Return a value from a non-void function
5075 ret void ; Return from void function
5076
5077Overview:
5078"""""""""
5079
5080The '``ret``' instruction is used to return control flow (and optionally
5081a value) from a function back to the caller.
5082
5083There are two forms of the '``ret``' instruction: one that returns a
5084value and then causes control flow, and one that just causes control
5085flow to occur.
5086
5087Arguments:
5088""""""""""
5089
5090The '``ret``' instruction optionally accepts a single argument, the
5091return value. The type of the return value must be a ':ref:`first
5092class <t_firstclass>`' type.
5093
5094A function is not :ref:`well formed <wellformed>` if it it has a non-void
5095return type and contains a '``ret``' instruction with no return value or
5096a return value with a type that does not match its type, or if it has a
5097void return type and contains a '``ret``' instruction with a return
5098value.
5099
5100Semantics:
5101""""""""""
5102
5103When the '``ret``' instruction is executed, control flow returns back to
5104the calling function's context. If the caller is a
5105":ref:`call <i_call>`" instruction, execution continues at the
5106instruction after the call. If the caller was an
5107":ref:`invoke <i_invoke>`" instruction, execution continues at the
5108beginning of the "normal" destination block. If the instruction returns
5109a value, that value shall set the call or invoke instruction's return
5110value.
5111
5112Example:
5113""""""""
5114
5115.. code-block:: llvm
5116
5117 ret i32 5 ; Return an integer value of 5
5118 ret void ; Return from a void function
5119 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
5120
5121.. _i_br:
5122
5123'``br``' Instruction
5124^^^^^^^^^^^^^^^^^^^^
5125
5126Syntax:
5127"""""""
5128
5129::
5130
5131 br i1 <cond>, label <iftrue>, label <iffalse>
5132 br label <dest> ; Unconditional branch
5133
5134Overview:
5135"""""""""
5136
5137The '``br``' instruction is used to cause control flow to transfer to a
5138different basic block in the current function. There are two forms of
5139this instruction, corresponding to a conditional branch and an
5140unconditional branch.
5141
5142Arguments:
5143""""""""""
5144
5145The conditional branch form of the '``br``' instruction takes a single
5146'``i1``' value and two '``label``' values. The unconditional form of the
5147'``br``' instruction takes a single '``label``' value as a target.
5148
5149Semantics:
5150""""""""""
5151
5152Upon execution of a conditional '``br``' instruction, the '``i1``'
5153argument is evaluated. If the value is ``true``, control flows to the
5154'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
5155to the '``iffalse``' ``label`` argument.
5156
5157Example:
5158""""""""
5159
5160.. code-block:: llvm
5161
5162 Test:
5163 %cond = icmp eq i32 %a, %b
5164 br i1 %cond, label %IfEqual, label %IfUnequal
5165 IfEqual:
5166 ret i32 1
5167 IfUnequal:
5168 ret i32 0
5169
5170.. _i_switch:
5171
5172'``switch``' Instruction
5173^^^^^^^^^^^^^^^^^^^^^^^^
5174
5175Syntax:
5176"""""""
5177
5178::
5179
5180 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
5181
5182Overview:
5183"""""""""
5184
5185The '``switch``' instruction is used to transfer control flow to one of
5186several different places. It is a generalization of the '``br``'
5187instruction, allowing a branch to occur to one of many possible
5188destinations.
5189
5190Arguments:
5191""""""""""
5192
5193The '``switch``' instruction uses three parameters: an integer
5194comparison value '``value``', a default '``label``' destination, and an
5195array of pairs of comparison value constants and '``label``'s. The table
5196is not allowed to contain duplicate constant entries.
5197
5198Semantics:
5199""""""""""
5200
5201The ``switch`` instruction specifies a table of values and destinations.
5202When the '``switch``' instruction is executed, this table is searched
5203for the given value. If the value is found, control flow is transferred
5204to the corresponding destination; otherwise, control flow is transferred
5205to the default destination.
5206
5207Implementation:
5208"""""""""""""""
5209
5210Depending on properties of the target machine and the particular
5211``switch`` instruction, this instruction may be code generated in
5212different ways. For example, it could be generated as a series of
5213chained conditional branches or with a lookup table.
5214
5215Example:
5216""""""""
5217
5218.. code-block:: llvm
5219
5220 ; Emulate a conditional br instruction
5221 %Val = zext i1 %value to i32
5222 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
5223
5224 ; Emulate an unconditional br instruction
5225 switch i32 0, label %dest [ ]
5226
5227 ; Implement a jump table:
5228 switch i32 %val, label %otherwise [ i32 0, label %onzero
5229 i32 1, label %onone
5230 i32 2, label %ontwo ]
5231
5232.. _i_indirectbr:
5233
5234'``indirectbr``' Instruction
5235^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5236
5237Syntax:
5238"""""""
5239
5240::
5241
5242 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
5243
5244Overview:
5245"""""""""
5246
5247The '``indirectbr``' instruction implements an indirect branch to a
5248label within the current function, whose address is specified by
5249"``address``". Address must be derived from a
5250:ref:`blockaddress <blockaddress>` constant.
5251
5252Arguments:
5253""""""""""
5254
5255The '``address``' argument is the address of the label to jump to. The
5256rest of the arguments indicate the full set of possible destinations
5257that the address may point to. Blocks are allowed to occur multiple
5258times in the destination list, though this isn't particularly useful.
5259
5260This destination list is required so that dataflow analysis has an
5261accurate understanding of the CFG.
5262
5263Semantics:
5264""""""""""
5265
5266Control transfers to the block specified in the address argument. All
5267possible destination blocks must be listed in the label list, otherwise
5268this instruction has undefined behavior. This implies that jumps to
5269labels defined in other functions have undefined behavior as well.
5270
5271Implementation:
5272"""""""""""""""
5273
5274This is typically implemented with a jump through a register.
5275
5276Example:
5277""""""""
5278
5279.. code-block:: llvm
5280
5281 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
5282
5283.. _i_invoke:
5284
5285'``invoke``' Instruction
5286^^^^^^^^^^^^^^^^^^^^^^^^
5287
5288Syntax:
5289"""""""
5290
5291::
5292
5293 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005294 [operand bundles] to label <normal label> unwind label <exception label>
Sean Silvab084af42012-12-07 10:36:55 +00005295
5296Overview:
5297"""""""""
5298
5299The '``invoke``' instruction causes control to transfer to a specified
5300function, with the possibility of control flow transfer to either the
5301'``normal``' label or the '``exception``' label. If the callee function
5302returns with the "``ret``" instruction, control flow will return to the
5303"normal" label. If the callee (or any indirect callees) returns via the
5304":ref:`resume <i_resume>`" instruction or other exception handling
5305mechanism, control is interrupted and continued at the dynamically
5306nearest "exception" label.
5307
5308The '``exception``' label is a `landing
5309pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5310'``exception``' label is required to have the
5311":ref:`landingpad <i_landingpad>`" instruction, which contains the
5312information about the behavior of the program after unwinding happens,
5313as its first non-PHI instruction. The restrictions on the
5314"``landingpad``" instruction's tightly couples it to the "``invoke``"
5315instruction, so that the important information contained within the
5316"``landingpad``" instruction can't be lost through normal code motion.
5317
5318Arguments:
5319""""""""""
5320
5321This instruction requires several arguments:
5322
5323#. The optional "cconv" marker indicates which :ref:`calling
5324 convention <callingconv>` the call should use. If none is
5325 specified, the call defaults to using C calling conventions.
5326#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5327 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5328 are valid here.
5329#. '``ptr to function ty``': shall be the signature of the pointer to
5330 function value being invoked. In most cases, this is a direct
5331 function invocation, but indirect ``invoke``'s are just as possible,
5332 branching off an arbitrary pointer to function value.
5333#. '``function ptr val``': An LLVM value containing a pointer to a
5334 function to be invoked.
5335#. '``function args``': argument list whose types match the function
5336 signature argument types and parameter attributes. All arguments must
5337 be of :ref:`first class <t_firstclass>` type. If the function signature
5338 indicates the function accepts a variable number of arguments, the
5339 extra arguments can be specified.
5340#. '``normal label``': the label reached when the called function
5341 executes a '``ret``' instruction.
5342#. '``exception label``': the label reached when a callee returns via
5343 the :ref:`resume <i_resume>` instruction or other exception handling
5344 mechanism.
5345#. The optional :ref:`function attributes <fnattrs>` list. Only
5346 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5347 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00005348#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00005349
5350Semantics:
5351""""""""""
5352
5353This instruction is designed to operate as a standard '``call``'
5354instruction in most regards. The primary difference is that it
5355establishes an association with a label, which is used by the runtime
5356library to unwind the stack.
5357
5358This instruction is used in languages with destructors to ensure that
5359proper cleanup is performed in the case of either a ``longjmp`` or a
5360thrown exception. Additionally, this is important for implementation of
5361'``catch``' clauses in high-level languages that support them.
5362
5363For the purposes of the SSA form, the definition of the value returned
5364by the '``invoke``' instruction is deemed to occur on the edge from the
5365current block to the "normal" label. If the callee unwinds then no
5366return value is available.
5367
5368Example:
5369""""""""
5370
5371.. code-block:: llvm
5372
5373 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005374 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005375 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005376 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005377
5378.. _i_resume:
5379
5380'``resume``' Instruction
5381^^^^^^^^^^^^^^^^^^^^^^^^
5382
5383Syntax:
5384"""""""
5385
5386::
5387
5388 resume <type> <value>
5389
5390Overview:
5391"""""""""
5392
5393The '``resume``' instruction is a terminator instruction that has no
5394successors.
5395
5396Arguments:
5397""""""""""
5398
5399The '``resume``' instruction requires one argument, which must have the
5400same type as the result of any '``landingpad``' instruction in the same
5401function.
5402
5403Semantics:
5404""""""""""
5405
5406The '``resume``' instruction resumes propagation of an existing
5407(in-flight) exception whose unwinding was interrupted with a
5408:ref:`landingpad <i_landingpad>` instruction.
5409
5410Example:
5411""""""""
5412
5413.. code-block:: llvm
5414
5415 resume { i8*, i32 } %exn
5416
David Majnemer8a1c45d2015-12-12 05:38:55 +00005417.. _i_catchswitch:
5418
5419'``catchswitch``' Instruction
Akira Hatanakacedf8e92015-12-14 05:15:40 +00005420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
David Majnemer8a1c45d2015-12-12 05:38:55 +00005421
5422Syntax:
5423"""""""
5424
5425::
5426
5427 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
5428 <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
5429
5430Overview:
5431"""""""""
5432
5433The '``catchswitch``' instruction is used by `LLVM's exception handling system
5434<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
5435that may be executed by the :ref:`EH personality routine <personalityfn>`.
5436
5437Arguments:
5438""""""""""
5439
5440The ``parent`` argument is the token of the funclet that contains the
5441``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
5442this operand may be the token ``none``.
5443
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005444The ``default`` argument is the label of another basic block beginning with
5445either a ``cleanuppad`` or ``catchswitch`` instruction. This unwind destination
5446must be a legal target with respect to the ``parent`` links, as described in
5447the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer8a1c45d2015-12-12 05:38:55 +00005448
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005449The ``handlers`` are a nonempty list of successor blocks that each begin with a
David Majnemer8a1c45d2015-12-12 05:38:55 +00005450:ref:`catchpad <i_catchpad>` instruction.
5451
5452Semantics:
5453""""""""""
5454
5455Executing this instruction transfers control to one of the successors in
5456``handlers``, if appropriate, or continues to unwind via the unwind label if
5457present.
5458
5459The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
5460it must be both the first non-phi instruction and last instruction in the basic
5461block. Therefore, it must be the only non-phi instruction in the block.
5462
5463Example:
5464""""""""
5465
5466.. code-block:: llvm
5467
5468 dispatch1:
5469 %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
5470 dispatch2:
5471 %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
5472
David Majnemer654e1302015-07-31 17:58:14 +00005473.. _i_catchret:
5474
5475'``catchret``' Instruction
5476^^^^^^^^^^^^^^^^^^^^^^^^^^
5477
5478Syntax:
5479"""""""
5480
5481::
5482
David Majnemer8a1c45d2015-12-12 05:38:55 +00005483 catchret from <token> to label <normal>
David Majnemer654e1302015-07-31 17:58:14 +00005484
5485Overview:
5486"""""""""
5487
5488The '``catchret``' instruction is a terminator instruction that has a
5489single successor.
5490
5491
5492Arguments:
5493""""""""""
5494
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005495The first argument to a '``catchret``' indicates which ``catchpad`` it
5496exits. It must be a :ref:`catchpad <i_catchpad>`.
5497The second argument to a '``catchret``' specifies where control will
5498transfer to next.
David Majnemer654e1302015-07-31 17:58:14 +00005499
5500Semantics:
5501""""""""""
5502
David Majnemer8a1c45d2015-12-12 05:38:55 +00005503The '``catchret``' instruction ends an existing (in-flight) exception whose
5504unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction. The
5505:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
5506code to, for example, destroy the active exception. Control then transfers to
5507``normal``.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005508
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005509The ``token`` argument must be a token produced by a ``catchpad`` instruction.
5510If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
5511funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5512the ``catchret``'s behavior is undefined.
David Majnemer654e1302015-07-31 17:58:14 +00005513
5514Example:
5515""""""""
5516
5517.. code-block:: llvm
5518
David Majnemer8a1c45d2015-12-12 05:38:55 +00005519 catchret from %catch label %continue
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005520
David Majnemer654e1302015-07-31 17:58:14 +00005521.. _i_cleanupret:
5522
5523'``cleanupret``' Instruction
5524^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5525
5526Syntax:
5527"""""""
5528
5529::
5530
David Majnemer8a1c45d2015-12-12 05:38:55 +00005531 cleanupret from <value> unwind label <continue>
5532 cleanupret from <value> unwind to caller
David Majnemer654e1302015-07-31 17:58:14 +00005533
5534Overview:
5535"""""""""
5536
5537The '``cleanupret``' instruction is a terminator instruction that has
5538an optional successor.
5539
5540
5541Arguments:
5542""""""""""
5543
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00005544The '``cleanupret``' instruction requires one argument, which indicates
5545which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
Joseph Tremoulete28885e2016-01-10 04:28:38 +00005546If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
5547funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
5548the ``cleanupret``'s behavior is undefined.
5549
5550The '``cleanupret``' instruction also has an optional successor, ``continue``,
5551which must be the label of another basic block beginning with either a
5552``cleanuppad`` or ``catchswitch`` instruction. This unwind destination must
5553be a legal target with respect to the ``parent`` links, as described in the
5554`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
David Majnemer654e1302015-07-31 17:58:14 +00005555
5556Semantics:
5557""""""""""
5558
5559The '``cleanupret``' instruction indicates to the
5560:ref:`personality function <personalityfn>` that one
5561:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5562It transfers control to ``continue`` or unwinds out of the function.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00005563
David Majnemer654e1302015-07-31 17:58:14 +00005564Example:
5565""""""""
5566
5567.. code-block:: llvm
5568
David Majnemer8a1c45d2015-12-12 05:38:55 +00005569 cleanupret from %cleanup unwind to caller
5570 cleanupret from %cleanup unwind label %continue
David Majnemer654e1302015-07-31 17:58:14 +00005571
Sean Silvab084af42012-12-07 10:36:55 +00005572.. _i_unreachable:
5573
5574'``unreachable``' Instruction
5575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5576
5577Syntax:
5578"""""""
5579
5580::
5581
5582 unreachable
5583
5584Overview:
5585"""""""""
5586
5587The '``unreachable``' instruction has no defined semantics. This
5588instruction is used to inform the optimizer that a particular portion of
5589the code is not reachable. This can be used to indicate that the code
5590after a no-return function cannot be reached, and other facts.
5591
5592Semantics:
5593""""""""""
5594
5595The '``unreachable``' instruction has no defined semantics.
5596
5597.. _binaryops:
5598
5599Binary Operations
5600-----------------
5601
5602Binary operators are used to do most of the computation in a program.
5603They require two operands of the same type, execute an operation on
5604them, and produce a single value. The operands might represent multiple
5605data, as is the case with the :ref:`vector <t_vector>` data type. The
5606result value has the same type as its operands.
5607
5608There are several different binary operators:
5609
5610.. _i_add:
5611
5612'``add``' Instruction
5613^^^^^^^^^^^^^^^^^^^^^
5614
5615Syntax:
5616"""""""
5617
5618::
5619
Tim Northover675a0962014-06-13 14:24:23 +00005620 <result> = add <ty> <op1>, <op2> ; yields ty:result
5621 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5622 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5623 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005624
5625Overview:
5626"""""""""
5627
5628The '``add``' instruction returns the sum of its two operands.
5629
5630Arguments:
5631""""""""""
5632
5633The two arguments to the '``add``' instruction must be
5634:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5635arguments must have identical types.
5636
5637Semantics:
5638""""""""""
5639
5640The value produced is the integer sum of the two operands.
5641
5642If the sum has unsigned overflow, the result returned is the
5643mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5644the result.
5645
5646Because LLVM integers use a two's complement representation, this
5647instruction is appropriate for both signed and unsigned integers.
5648
5649``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5650respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5651result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5652unsigned and/or signed overflow, respectively, occurs.
5653
5654Example:
5655""""""""
5656
5657.. code-block:: llvm
5658
Tim Northover675a0962014-06-13 14:24:23 +00005659 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005660
5661.. _i_fadd:
5662
5663'``fadd``' Instruction
5664^^^^^^^^^^^^^^^^^^^^^^
5665
5666Syntax:
5667"""""""
5668
5669::
5670
Tim Northover675a0962014-06-13 14:24:23 +00005671 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005672
5673Overview:
5674"""""""""
5675
5676The '``fadd``' instruction returns the sum of its two operands.
5677
5678Arguments:
5679""""""""""
5680
5681The two arguments to the '``fadd``' instruction must be :ref:`floating
5682point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5683Both arguments must have identical types.
5684
5685Semantics:
5686""""""""""
5687
5688The value produced is the floating point sum of the two operands. This
5689instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5690which are optimization hints to enable otherwise unsafe floating point
5691optimizations:
5692
5693Example:
5694""""""""
5695
5696.. code-block:: llvm
5697
Tim Northover675a0962014-06-13 14:24:23 +00005698 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005699
5700'``sub``' Instruction
5701^^^^^^^^^^^^^^^^^^^^^
5702
5703Syntax:
5704"""""""
5705
5706::
5707
Tim Northover675a0962014-06-13 14:24:23 +00005708 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5709 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5710 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5711 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005712
5713Overview:
5714"""""""""
5715
5716The '``sub``' instruction returns the difference of its two operands.
5717
5718Note that the '``sub``' instruction is used to represent the '``neg``'
5719instruction present in most other intermediate representations.
5720
5721Arguments:
5722""""""""""
5723
5724The two arguments to the '``sub``' instruction must be
5725:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5726arguments must have identical types.
5727
5728Semantics:
5729""""""""""
5730
5731The value produced is the integer difference of the two operands.
5732
5733If the difference has unsigned overflow, the result returned is the
5734mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5735the result.
5736
5737Because LLVM integers use a two's complement representation, this
5738instruction is appropriate for both signed and unsigned integers.
5739
5740``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5741respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5742result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5743unsigned and/or signed overflow, respectively, occurs.
5744
5745Example:
5746""""""""
5747
5748.. code-block:: llvm
5749
Tim Northover675a0962014-06-13 14:24:23 +00005750 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5751 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005752
5753.. _i_fsub:
5754
5755'``fsub``' Instruction
5756^^^^^^^^^^^^^^^^^^^^^^
5757
5758Syntax:
5759"""""""
5760
5761::
5762
Tim Northover675a0962014-06-13 14:24:23 +00005763 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005764
5765Overview:
5766"""""""""
5767
5768The '``fsub``' instruction returns the difference of its two operands.
5769
5770Note that the '``fsub``' instruction is used to represent the '``fneg``'
5771instruction present in most other intermediate representations.
5772
5773Arguments:
5774""""""""""
5775
5776The two arguments to the '``fsub``' instruction must be :ref:`floating
5777point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5778Both arguments must have identical types.
5779
5780Semantics:
5781""""""""""
5782
5783The value produced is the floating point difference of the two operands.
5784This instruction can also take any number of :ref:`fast-math
5785flags <fastmath>`, which are optimization hints to enable otherwise
5786unsafe floating point optimizations:
5787
5788Example:
5789""""""""
5790
5791.. code-block:: llvm
5792
Tim Northover675a0962014-06-13 14:24:23 +00005793 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5794 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005795
5796'``mul``' Instruction
5797^^^^^^^^^^^^^^^^^^^^^
5798
5799Syntax:
5800"""""""
5801
5802::
5803
Tim Northover675a0962014-06-13 14:24:23 +00005804 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5805 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5806 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5807 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005808
5809Overview:
5810"""""""""
5811
5812The '``mul``' instruction returns the product of its two operands.
5813
5814Arguments:
5815""""""""""
5816
5817The two arguments to the '``mul``' instruction must be
5818:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5819arguments must have identical types.
5820
5821Semantics:
5822""""""""""
5823
5824The value produced is the integer product of the two operands.
5825
5826If the result of the multiplication has unsigned overflow, the result
5827returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5828bit width of the result.
5829
5830Because LLVM integers use a two's complement representation, and the
5831result is the same width as the operands, this instruction returns the
5832correct result for both signed and unsigned integers. If a full product
5833(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5834sign-extended or zero-extended as appropriate to the width of the full
5835product.
5836
5837``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5838respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5839result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5840unsigned and/or signed overflow, respectively, occurs.
5841
5842Example:
5843""""""""
5844
5845.. code-block:: llvm
5846
Tim Northover675a0962014-06-13 14:24:23 +00005847 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005848
5849.. _i_fmul:
5850
5851'``fmul``' Instruction
5852^^^^^^^^^^^^^^^^^^^^^^
5853
5854Syntax:
5855"""""""
5856
5857::
5858
Tim Northover675a0962014-06-13 14:24:23 +00005859 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005860
5861Overview:
5862"""""""""
5863
5864The '``fmul``' instruction returns the product of its two operands.
5865
5866Arguments:
5867""""""""""
5868
5869The two arguments to the '``fmul``' instruction must be :ref:`floating
5870point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5871Both arguments must have identical types.
5872
5873Semantics:
5874""""""""""
5875
5876The value produced is the floating point product of the two operands.
5877This instruction can also take any number of :ref:`fast-math
5878flags <fastmath>`, which are optimization hints to enable otherwise
5879unsafe floating point optimizations:
5880
5881Example:
5882""""""""
5883
5884.. code-block:: llvm
5885
Tim Northover675a0962014-06-13 14:24:23 +00005886 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005887
5888'``udiv``' Instruction
5889^^^^^^^^^^^^^^^^^^^^^^
5890
5891Syntax:
5892"""""""
5893
5894::
5895
Tim Northover675a0962014-06-13 14:24:23 +00005896 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5897 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005898
5899Overview:
5900"""""""""
5901
5902The '``udiv``' instruction returns the quotient of its two operands.
5903
5904Arguments:
5905""""""""""
5906
5907The two arguments to the '``udiv``' instruction must be
5908:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5909arguments must have identical types.
5910
5911Semantics:
5912""""""""""
5913
5914The value produced is the unsigned integer quotient of the two operands.
5915
5916Note that unsigned integer division and signed integer division are
5917distinct operations; for signed integer division, use '``sdiv``'.
5918
5919Division by zero leads to undefined behavior.
5920
5921If the ``exact`` keyword is present, the result value of the ``udiv`` is
5922a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5923such, "((a udiv exact b) mul b) == a").
5924
5925Example:
5926""""""""
5927
5928.. code-block:: llvm
5929
Tim Northover675a0962014-06-13 14:24:23 +00005930 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005931
5932'``sdiv``' Instruction
5933^^^^^^^^^^^^^^^^^^^^^^
5934
5935Syntax:
5936"""""""
5937
5938::
5939
Tim Northover675a0962014-06-13 14:24:23 +00005940 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5941 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005942
5943Overview:
5944"""""""""
5945
5946The '``sdiv``' instruction returns the quotient of its two operands.
5947
5948Arguments:
5949""""""""""
5950
5951The two arguments to the '``sdiv``' instruction must be
5952:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5953arguments must have identical types.
5954
5955Semantics:
5956""""""""""
5957
5958The value produced is the signed integer quotient of the two operands
5959rounded towards zero.
5960
5961Note that signed integer division and unsigned integer division are
5962distinct operations; for unsigned integer division, use '``udiv``'.
5963
5964Division by zero leads to undefined behavior. Overflow also leads to
5965undefined behavior; this is a rare case, but can occur, for example, by
5966doing a 32-bit division of -2147483648 by -1.
5967
5968If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5969a :ref:`poison value <poisonvalues>` if the result would be rounded.
5970
5971Example:
5972""""""""
5973
5974.. code-block:: llvm
5975
Tim Northover675a0962014-06-13 14:24:23 +00005976 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005977
5978.. _i_fdiv:
5979
5980'``fdiv``' Instruction
5981^^^^^^^^^^^^^^^^^^^^^^
5982
5983Syntax:
5984"""""""
5985
5986::
5987
Tim Northover675a0962014-06-13 14:24:23 +00005988 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005989
5990Overview:
5991"""""""""
5992
5993The '``fdiv``' instruction returns the quotient of its two operands.
5994
5995Arguments:
5996""""""""""
5997
5998The two arguments to the '``fdiv``' instruction must be :ref:`floating
5999point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6000Both arguments must have identical types.
6001
6002Semantics:
6003""""""""""
6004
6005The value produced is the floating point quotient of the two operands.
6006This instruction can also take any number of :ref:`fast-math
6007flags <fastmath>`, which are optimization hints to enable otherwise
6008unsafe floating point optimizations:
6009
6010Example:
6011""""""""
6012
6013.. code-block:: llvm
6014
Tim Northover675a0962014-06-13 14:24:23 +00006015 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00006016
6017'``urem``' Instruction
6018^^^^^^^^^^^^^^^^^^^^^^
6019
6020Syntax:
6021"""""""
6022
6023::
6024
Tim Northover675a0962014-06-13 14:24:23 +00006025 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006026
6027Overview:
6028"""""""""
6029
6030The '``urem``' instruction returns the remainder from the unsigned
6031division of its two arguments.
6032
6033Arguments:
6034""""""""""
6035
6036The two arguments to the '``urem``' instruction must be
6037:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6038arguments must have identical types.
6039
6040Semantics:
6041""""""""""
6042
6043This instruction returns the unsigned integer *remainder* of a division.
6044This instruction always performs an unsigned division to get the
6045remainder.
6046
6047Note that unsigned integer remainder and signed integer remainder are
6048distinct operations; for signed integer remainder, use '``srem``'.
6049
6050Taking the remainder of a division by zero leads to undefined behavior.
6051
6052Example:
6053""""""""
6054
6055.. code-block:: llvm
6056
Tim Northover675a0962014-06-13 14:24:23 +00006057 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006058
6059'``srem``' Instruction
6060^^^^^^^^^^^^^^^^^^^^^^
6061
6062Syntax:
6063"""""""
6064
6065::
6066
Tim Northover675a0962014-06-13 14:24:23 +00006067 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006068
6069Overview:
6070"""""""""
6071
6072The '``srem``' instruction returns the remainder from the signed
6073division of its two operands. This instruction can also take
6074:ref:`vector <t_vector>` versions of the values in which case the elements
6075must be integers.
6076
6077Arguments:
6078""""""""""
6079
6080The two arguments to the '``srem``' instruction must be
6081:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6082arguments must have identical types.
6083
6084Semantics:
6085""""""""""
6086
6087This instruction returns the *remainder* of a division (where the result
6088is either zero or has the same sign as the dividend, ``op1``), not the
6089*modulo* operator (where the result is either zero or has the same sign
6090as the divisor, ``op2``) of a value. For more information about the
6091difference, see `The Math
6092Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
6093table of how this is implemented in various languages, please see
6094`Wikipedia: modulo
6095operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
6096
6097Note that signed integer remainder and unsigned integer remainder are
6098distinct operations; for unsigned integer remainder, use '``urem``'.
6099
6100Taking the remainder of a division by zero leads to undefined behavior.
6101Overflow also leads to undefined behavior; this is a rare case, but can
6102occur, for example, by taking the remainder of a 32-bit division of
6103-2147483648 by -1. (The remainder doesn't actually overflow, but this
6104rule lets srem be implemented using instructions that return both the
6105result of the division and the remainder.)
6106
6107Example:
6108""""""""
6109
6110.. code-block:: llvm
6111
Tim Northover675a0962014-06-13 14:24:23 +00006112 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006113
6114.. _i_frem:
6115
6116'``frem``' Instruction
6117^^^^^^^^^^^^^^^^^^^^^^
6118
6119Syntax:
6120"""""""
6121
6122::
6123
Tim Northover675a0962014-06-13 14:24:23 +00006124 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006125
6126Overview:
6127"""""""""
6128
6129The '``frem``' instruction returns the remainder from the division of
6130its two operands.
6131
6132Arguments:
6133""""""""""
6134
6135The two arguments to the '``frem``' instruction must be :ref:`floating
6136point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
6137Both arguments must have identical types.
6138
6139Semantics:
6140""""""""""
6141
6142This instruction returns the *remainder* of a division. The remainder
6143has the same sign as the dividend. This instruction can also take any
6144number of :ref:`fast-math flags <fastmath>`, which are optimization hints
6145to enable otherwise unsafe floating point optimizations:
6146
6147Example:
6148""""""""
6149
6150.. code-block:: llvm
6151
Tim Northover675a0962014-06-13 14:24:23 +00006152 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00006153
6154.. _bitwiseops:
6155
6156Bitwise Binary Operations
6157-------------------------
6158
6159Bitwise binary operators are used to do various forms of bit-twiddling
6160in a program. They are generally very efficient instructions and can
6161commonly be strength reduced from other instructions. They require two
6162operands of the same type, execute an operation on them, and produce a
6163single value. The resulting value is the same type as its operands.
6164
6165'``shl``' Instruction
6166^^^^^^^^^^^^^^^^^^^^^
6167
6168Syntax:
6169"""""""
6170
6171::
6172
Tim Northover675a0962014-06-13 14:24:23 +00006173 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6174 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6175 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6176 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006177
6178Overview:
6179"""""""""
6180
6181The '``shl``' instruction returns the first operand shifted to the left
6182a specified number of bits.
6183
6184Arguments:
6185""""""""""
6186
6187Both arguments to the '``shl``' instruction must be the same
6188:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6189'``op2``' is treated as an unsigned value.
6190
6191Semantics:
6192""""""""""
6193
6194The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6195where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006196dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006197``op1``, the result is undefined. If the arguments are vectors, each
6198vector element of ``op1`` is shifted by the corresponding shift amount
6199in ``op2``.
6200
6201If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6202value <poisonvalues>` if it shifts out any non-zero bits. If the
6203``nsw`` keyword is present, then the shift produces a :ref:`poison
6204value <poisonvalues>` if it shifts out any bits that disagree with the
6205resultant sign bit. As such, NUW/NSW have the same semantics as they
6206would if the shift were expressed as a mul instruction with the same
6207nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6208
6209Example:
6210""""""""
6211
6212.. code-block:: llvm
6213
Tim Northover675a0962014-06-13 14:24:23 +00006214 <result> = shl i32 4, %var ; yields i32: 4 << %var
6215 <result> = shl i32 4, 2 ; yields i32: 16
6216 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006217 <result> = shl i32 1, 32 ; undefined
6218 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6219
6220'``lshr``' Instruction
6221^^^^^^^^^^^^^^^^^^^^^^
6222
6223Syntax:
6224"""""""
6225
6226::
6227
Tim Northover675a0962014-06-13 14:24:23 +00006228 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6229 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006230
6231Overview:
6232"""""""""
6233
6234The '``lshr``' instruction (logical shift right) returns the first
6235operand shifted to the right a specified number of bits with zero fill.
6236
6237Arguments:
6238""""""""""
6239
6240Both arguments to the '``lshr``' instruction must be the same
6241:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6242'``op2``' is treated as an unsigned value.
6243
6244Semantics:
6245""""""""""
6246
6247This instruction always performs a logical shift right operation. The
6248most significant bits of the result will be filled with zero bits after
6249the shift. If ``op2`` is (statically or dynamically) equal to or larger
6250than the number of bits in ``op1``, the result is undefined. If the
6251arguments are vectors, each vector element of ``op1`` is shifted by the
6252corresponding shift amount in ``op2``.
6253
6254If the ``exact`` keyword is present, the result value of the ``lshr`` is
6255a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6256non-zero.
6257
6258Example:
6259""""""""
6260
6261.. code-block:: llvm
6262
Tim Northover675a0962014-06-13 14:24:23 +00006263 <result> = lshr i32 4, 1 ; yields i32:result = 2
6264 <result> = lshr i32 4, 2 ; yields i32:result = 1
6265 <result> = lshr i8 4, 3 ; yields i8:result = 0
6266 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006267 <result> = lshr i32 1, 32 ; undefined
6268 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6269
6270'``ashr``' Instruction
6271^^^^^^^^^^^^^^^^^^^^^^
6272
6273Syntax:
6274"""""""
6275
6276::
6277
Tim Northover675a0962014-06-13 14:24:23 +00006278 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6279 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006280
6281Overview:
6282"""""""""
6283
6284The '``ashr``' instruction (arithmetic shift right) returns the first
6285operand shifted to the right a specified number of bits with sign
6286extension.
6287
6288Arguments:
6289""""""""""
6290
6291Both arguments to the '``ashr``' instruction must be the same
6292:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6293'``op2``' is treated as an unsigned value.
6294
6295Semantics:
6296""""""""""
6297
6298This instruction always performs an arithmetic shift right operation,
6299The most significant bits of the result will be filled with the sign bit
6300of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6301than the number of bits in ``op1``, the result is undefined. If the
6302arguments are vectors, each vector element of ``op1`` is shifted by the
6303corresponding shift amount in ``op2``.
6304
6305If the ``exact`` keyword is present, the result value of the ``ashr`` is
6306a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6307non-zero.
6308
6309Example:
6310""""""""
6311
6312.. code-block:: llvm
6313
Tim Northover675a0962014-06-13 14:24:23 +00006314 <result> = ashr i32 4, 1 ; yields i32:result = 2
6315 <result> = ashr i32 4, 2 ; yields i32:result = 1
6316 <result> = ashr i8 4, 3 ; yields i8:result = 0
6317 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006318 <result> = ashr i32 1, 32 ; undefined
6319 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6320
6321'``and``' Instruction
6322^^^^^^^^^^^^^^^^^^^^^
6323
6324Syntax:
6325"""""""
6326
6327::
6328
Tim Northover675a0962014-06-13 14:24:23 +00006329 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006330
6331Overview:
6332"""""""""
6333
6334The '``and``' instruction returns the bitwise logical and of its two
6335operands.
6336
6337Arguments:
6338""""""""""
6339
6340The two arguments to the '``and``' instruction must be
6341:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6342arguments must have identical types.
6343
6344Semantics:
6345""""""""""
6346
6347The truth table used for the '``and``' instruction is:
6348
6349+-----+-----+-----+
6350| In0 | In1 | Out |
6351+-----+-----+-----+
6352| 0 | 0 | 0 |
6353+-----+-----+-----+
6354| 0 | 1 | 0 |
6355+-----+-----+-----+
6356| 1 | 0 | 0 |
6357+-----+-----+-----+
6358| 1 | 1 | 1 |
6359+-----+-----+-----+
6360
6361Example:
6362""""""""
6363
6364.. code-block:: llvm
6365
Tim Northover675a0962014-06-13 14:24:23 +00006366 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6367 <result> = and i32 15, 40 ; yields i32:result = 8
6368 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006369
6370'``or``' Instruction
6371^^^^^^^^^^^^^^^^^^^^
6372
6373Syntax:
6374"""""""
6375
6376::
6377
Tim Northover675a0962014-06-13 14:24:23 +00006378 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006379
6380Overview:
6381"""""""""
6382
6383The '``or``' instruction returns the bitwise logical inclusive or of its
6384two operands.
6385
6386Arguments:
6387""""""""""
6388
6389The two arguments to the '``or``' instruction must be
6390:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6391arguments must have identical types.
6392
6393Semantics:
6394""""""""""
6395
6396The truth table used for the '``or``' instruction is:
6397
6398+-----+-----+-----+
6399| In0 | In1 | Out |
6400+-----+-----+-----+
6401| 0 | 0 | 0 |
6402+-----+-----+-----+
6403| 0 | 1 | 1 |
6404+-----+-----+-----+
6405| 1 | 0 | 1 |
6406+-----+-----+-----+
6407| 1 | 1 | 1 |
6408+-----+-----+-----+
6409
6410Example:
6411""""""""
6412
6413::
6414
Tim Northover675a0962014-06-13 14:24:23 +00006415 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6416 <result> = or i32 15, 40 ; yields i32:result = 47
6417 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006418
6419'``xor``' Instruction
6420^^^^^^^^^^^^^^^^^^^^^
6421
6422Syntax:
6423"""""""
6424
6425::
6426
Tim Northover675a0962014-06-13 14:24:23 +00006427 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006428
6429Overview:
6430"""""""""
6431
6432The '``xor``' instruction returns the bitwise logical exclusive or of
6433its two operands. The ``xor`` is used to implement the "one's
6434complement" operation, which is the "~" operator in C.
6435
6436Arguments:
6437""""""""""
6438
6439The two arguments to the '``xor``' instruction must be
6440:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6441arguments must have identical types.
6442
6443Semantics:
6444""""""""""
6445
6446The truth table used for the '``xor``' instruction is:
6447
6448+-----+-----+-----+
6449| In0 | In1 | Out |
6450+-----+-----+-----+
6451| 0 | 0 | 0 |
6452+-----+-----+-----+
6453| 0 | 1 | 1 |
6454+-----+-----+-----+
6455| 1 | 0 | 1 |
6456+-----+-----+-----+
6457| 1 | 1 | 0 |
6458+-----+-----+-----+
6459
6460Example:
6461""""""""
6462
6463.. code-block:: llvm
6464
Tim Northover675a0962014-06-13 14:24:23 +00006465 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6466 <result> = xor i32 15, 40 ; yields i32:result = 39
6467 <result> = xor i32 4, 8 ; yields i32:result = 12
6468 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006469
6470Vector Operations
6471-----------------
6472
6473LLVM supports several instructions to represent vector operations in a
6474target-independent manner. These instructions cover the element-access
6475and vector-specific operations needed to process vectors effectively.
6476While LLVM does directly support these vector operations, many
6477sophisticated algorithms will want to use target-specific intrinsics to
6478take full advantage of a specific target.
6479
6480.. _i_extractelement:
6481
6482'``extractelement``' Instruction
6483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6484
6485Syntax:
6486"""""""
6487
6488::
6489
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006490 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006491
6492Overview:
6493"""""""""
6494
6495The '``extractelement``' instruction extracts a single scalar element
6496from a vector at a specified index.
6497
6498Arguments:
6499""""""""""
6500
6501The first operand of an '``extractelement``' instruction is a value of
6502:ref:`vector <t_vector>` type. The second operand is an index indicating
6503the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006504variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006505
6506Semantics:
6507""""""""""
6508
6509The result is a scalar of the same type as the element type of ``val``.
6510Its value is the value at position ``idx`` of ``val``. If ``idx``
6511exceeds the length of ``val``, the results are undefined.
6512
6513Example:
6514""""""""
6515
6516.. code-block:: llvm
6517
6518 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6519
6520.. _i_insertelement:
6521
6522'``insertelement``' Instruction
6523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6524
6525Syntax:
6526"""""""
6527
6528::
6529
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006530 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006531
6532Overview:
6533"""""""""
6534
6535The '``insertelement``' instruction inserts a scalar element into a
6536vector at a specified index.
6537
6538Arguments:
6539""""""""""
6540
6541The first operand of an '``insertelement``' instruction is a value of
6542:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6543type must equal the element type of the first operand. The third operand
6544is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006545index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006546
6547Semantics:
6548""""""""""
6549
6550The result is a vector of the same type as ``val``. Its element values
6551are those of ``val`` except at position ``idx``, where it gets the value
6552``elt``. If ``idx`` exceeds the length of ``val``, the results are
6553undefined.
6554
6555Example:
6556""""""""
6557
6558.. code-block:: llvm
6559
6560 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6561
6562.. _i_shufflevector:
6563
6564'``shufflevector``' Instruction
6565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6566
6567Syntax:
6568"""""""
6569
6570::
6571
6572 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6573
6574Overview:
6575"""""""""
6576
6577The '``shufflevector``' instruction constructs a permutation of elements
6578from two input vectors, returning a vector with the same element type as
6579the input and length that is the same as the shuffle mask.
6580
6581Arguments:
6582""""""""""
6583
6584The first two operands of a '``shufflevector``' instruction are vectors
6585with the same type. The third argument is a shuffle mask whose element
6586type is always 'i32'. The result of the instruction is a vector whose
6587length is the same as the shuffle mask and whose element type is the
6588same as the element type of the first two operands.
6589
6590The shuffle mask operand is required to be a constant vector with either
6591constant integer or undef values.
6592
6593Semantics:
6594""""""""""
6595
6596The elements of the two input vectors are numbered from left to right
6597across both of the vectors. The shuffle mask operand specifies, for each
6598element of the result vector, which element of the two input vectors the
6599result element gets. The element selector may be undef (meaning "don't
6600care") and the second operand may be undef if performing a shuffle from
6601only one vector.
6602
6603Example:
6604""""""""
6605
6606.. code-block:: llvm
6607
6608 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6609 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6610 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6611 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6612 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6613 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6614 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6615 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6616
6617Aggregate Operations
6618--------------------
6619
6620LLVM supports several instructions for working with
6621:ref:`aggregate <t_aggregate>` values.
6622
6623.. _i_extractvalue:
6624
6625'``extractvalue``' Instruction
6626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6627
6628Syntax:
6629"""""""
6630
6631::
6632
6633 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6634
6635Overview:
6636"""""""""
6637
6638The '``extractvalue``' instruction extracts the value of a member field
6639from an :ref:`aggregate <t_aggregate>` value.
6640
6641Arguments:
6642""""""""""
6643
6644The first operand of an '``extractvalue``' instruction is a value of
Arch D. Robisona7f8f252015-10-14 19:10:45 +00006645:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
Sean Silvab084af42012-12-07 10:36:55 +00006646constant indices to specify which value to extract in a similar manner
6647as indices in a '``getelementptr``' instruction.
6648
6649The major differences to ``getelementptr`` indexing are:
6650
6651- Since the value being indexed is not a pointer, the first index is
6652 omitted and assumed to be zero.
6653- At least one index must be specified.
6654- Not only struct indices but also array indices must be in bounds.
6655
6656Semantics:
6657""""""""""
6658
6659The result is the value at the position in the aggregate specified by
6660the index operands.
6661
6662Example:
6663""""""""
6664
6665.. code-block:: llvm
6666
6667 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6668
6669.. _i_insertvalue:
6670
6671'``insertvalue``' Instruction
6672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6673
6674Syntax:
6675"""""""
6676
6677::
6678
6679 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6680
6681Overview:
6682"""""""""
6683
6684The '``insertvalue``' instruction inserts a value into a member field in
6685an :ref:`aggregate <t_aggregate>` value.
6686
6687Arguments:
6688""""""""""
6689
6690The first operand of an '``insertvalue``' instruction is a value of
6691:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6692a first-class value to insert. The following operands are constant
6693indices indicating the position at which to insert the value in a
6694similar manner as indices in a '``extractvalue``' instruction. The value
6695to insert must have the same type as the value identified by the
6696indices.
6697
6698Semantics:
6699""""""""""
6700
6701The result is an aggregate of the same type as ``val``. Its value is
6702that of ``val`` except that the value at the position specified by the
6703indices is that of ``elt``.
6704
6705Example:
6706""""""""
6707
6708.. code-block:: llvm
6709
6710 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6711 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006712 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006713
6714.. _memoryops:
6715
6716Memory Access and Addressing Operations
6717---------------------------------------
6718
6719A key design point of an SSA-based representation is how it represents
6720memory. In LLVM, no memory locations are in SSA form, which makes things
6721very simple. This section describes how to read, write, and allocate
6722memory in LLVM.
6723
6724.. _i_alloca:
6725
6726'``alloca``' Instruction
6727^^^^^^^^^^^^^^^^^^^^^^^^
6728
6729Syntax:
6730"""""""
6731
6732::
6733
Tim Northover675a0962014-06-13 14:24:23 +00006734 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006735
6736Overview:
6737"""""""""
6738
6739The '``alloca``' instruction allocates memory on the stack frame of the
6740currently executing function, to be automatically released when this
6741function returns to its caller. The object is always allocated in the
6742generic address space (address space zero).
6743
6744Arguments:
6745""""""""""
6746
6747The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6748bytes of memory on the runtime stack, returning a pointer of the
6749appropriate type to the program. If "NumElements" is specified, it is
6750the number of elements allocated, otherwise "NumElements" is defaulted
6751to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006752allocation is guaranteed to be aligned to at least that boundary. The
6753alignment may not be greater than ``1 << 29``. If not specified, or if
6754zero, the target can choose to align the allocation on any convenient
6755boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006756
6757'``type``' may be any sized type.
6758
6759Semantics:
6760""""""""""
6761
6762Memory is allocated; a pointer is returned. The operation is undefined
6763if there is insufficient stack space for the allocation. '``alloca``'d
6764memory is automatically released when the function returns. The
6765'``alloca``' instruction is commonly used to represent automatic
6766variables that must have an address available. When the function returns
6767(either with the ``ret`` or ``resume`` instructions), the memory is
6768reclaimed. Allocating zero bytes is legal, but the result is undefined.
6769The order in which memory is allocated (ie., which way the stack grows)
6770is not specified.
6771
6772Example:
6773""""""""
6774
6775.. code-block:: llvm
6776
Tim Northover675a0962014-06-13 14:24:23 +00006777 %ptr = alloca i32 ; yields i32*:ptr
6778 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6779 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6780 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006781
6782.. _i_load:
6783
6784'``load``' Instruction
6785^^^^^^^^^^^^^^^^^^^^^^
6786
6787Syntax:
6788"""""""
6789
6790::
6791
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006792 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !invariant.group !<index>][, !nonnull !<index>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>]
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006793 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006794 !<index> = !{ i32 1 }
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006795 !<deref_bytes_node> = !{i64 <dereferenceable_bytes>}
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006796 !<align_node> = !{ i64 <value_alignment> }
Sean Silvab084af42012-12-07 10:36:55 +00006797
6798Overview:
6799"""""""""
6800
6801The '``load``' instruction is used to read from memory.
6802
6803Arguments:
6804""""""""""
6805
Eli Bendersky239a78b2013-04-17 20:17:08 +00006806The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006807from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006808class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6809then the optimizer is not allowed to modify the number or order of
6810execution of this ``load`` with other :ref:`volatile
6811operations <volatile>`.
6812
JF Bastiend1fb5852015-12-17 22:09:19 +00006813If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
6814<ordering>` and optional ``singlethread`` argument. The ``release`` and
6815``acq_rel`` orderings are not valid on ``load`` instructions. Atomic loads
6816produce :ref:`defined <memmodel>` results when they may see multiple atomic
6817stores. The type of the pointee must be an integer, pointer, or floating-point
6818type whose bit width is a power of two greater than or equal to eight and less
6819than or equal to a target-specific size limit. ``align`` must be explicitly
6820specified on atomic loads, and the load has undefined behavior if the alignment
6821is not set to a value which is at least the size in bytes of the
6822pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
Sean Silvab084af42012-12-07 10:36:55 +00006823
6824The optional constant ``align`` argument specifies the alignment of the
6825operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006826or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006827alignment for the target. It is the responsibility of the code emitter
6828to ensure that the alignment information is correct. Overestimating the
6829alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006830may produce less efficient code. An alignment of 1 is always safe. The
6831maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006832
6833The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006834metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006835``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006836metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006837that this load is not expected to be reused in the cache. The code
6838generator may select special instructions to save cache bandwidth, such
6839as the ``MOVNT`` instruction on x86.
6840
6841The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006842metadata name ``<index>`` corresponding to a metadata node with no
6843entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006844instruction tells the optimizer and code generator that the address
6845operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006846Being invariant does not imply that a location is dereferenceable,
6847but it does imply that once the location is known dereferenceable
6848its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006849
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006850The optional ``!invariant.group`` metadata must reference a single metadata name
6851 ``<index>`` corresponding to a metadata node. See ``invariant.group`` metadata.
6852
Philip Reamescdb72f32014-10-20 22:40:55 +00006853The optional ``!nonnull`` metadata must reference a single
6854metadata name ``<index>`` corresponding to a metadata node with no
6855entries. The existence of the ``!nonnull`` metadata on the
6856instruction tells the optimizer that the value loaded is known to
Piotr Padlewskid97846e2015-09-02 20:33:16 +00006857never be null. This is analogous to the ``nonnull`` attribute
Sean Silvaa1190322015-08-06 22:56:48 +00006858on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006859to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006860
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006861The optional ``!dereferenceable`` metadata must reference a single metadata
6862name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006863entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006864tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006865The number of bytes known to be dereferenceable is specified by the integer
6866value in the metadata node. This is analogous to the ''dereferenceable''
6867attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006868to loads of a pointer type.
6869
6870The optional ``!dereferenceable_or_null`` metadata must reference a single
Artur Pilipenko253d71e2015-09-18 12:07:10 +00006871metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
6872``i64`` entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006873instruction tells the optimizer that the value loaded is known to be either
6874dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006875The number of bytes known to be dereferenceable is specified by the integer
6876value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6877attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006878to loads of a pointer type.
6879
Artur Pilipenkob4d00902015-09-28 17:41:08 +00006880The optional ``!align`` metadata must reference a single metadata name
6881``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
6882The existence of the ``!align`` metadata on the instruction tells the
6883optimizer that the value loaded is known to be aligned to a boundary specified
6884by the integer value in the metadata node. The alignment must be a power of 2.
6885This is analogous to the ''align'' attribute on parameters and return values.
6886This metadata can only be applied to loads of a pointer type.
6887
Sean Silvab084af42012-12-07 10:36:55 +00006888Semantics:
6889""""""""""
6890
6891The location of memory pointed to is loaded. If the value being loaded
6892is of scalar type then the number of bytes read does not exceed the
6893minimum number of bytes needed to hold all bits of the type. For
6894example, loading an ``i24`` reads at most three bytes. When loading a
6895value of a type like ``i20`` with a size that is not an integral number
6896of bytes, the result is undefined if the value was not originally
6897written using a store of the same type.
6898
6899Examples:
6900"""""""""
6901
6902.. code-block:: llvm
6903
Tim Northover675a0962014-06-13 14:24:23 +00006904 %ptr = alloca i32 ; yields i32*:ptr
6905 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006906 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006907
6908.. _i_store:
6909
6910'``store``' Instruction
6911^^^^^^^^^^^^^^^^^^^^^^^
6912
6913Syntax:
6914"""""""
6915
6916::
6917
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006918 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.group !<index>] ; yields void
6919 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> [, !invariant.group !<index>] ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006920
6921Overview:
6922"""""""""
6923
6924The '``store``' instruction is used to write to memory.
6925
6926Arguments:
6927""""""""""
6928
Eli Benderskyca380842013-04-17 17:17:20 +00006929There are two arguments to the ``store`` instruction: a value to store
6930and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006931operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006932the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006933then the optimizer is not allowed to modify the number or order of
6934execution of this ``store`` with other :ref:`volatile
6935operations <volatile>`.
6936
JF Bastiend1fb5852015-12-17 22:09:19 +00006937If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
6938<ordering>` and optional ``singlethread`` argument. The ``acquire`` and
6939``acq_rel`` orderings aren't valid on ``store`` instructions. Atomic loads
6940produce :ref:`defined <memmodel>` results when they may see multiple atomic
6941stores. The type of the pointee must be an integer, pointer, or floating-point
6942type whose bit width is a power of two greater than or equal to eight and less
6943than or equal to a target-specific size limit. ``align`` must be explicitly
6944specified on atomic stores, and the store has undefined behavior if the
6945alignment is not set to a value which is at least the size in bytes of the
6946pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
Sean Silvab084af42012-12-07 10:36:55 +00006947
Eli Benderskyca380842013-04-17 17:17:20 +00006948The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006949operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006950or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006951alignment for the target. It is the responsibility of the code emitter
6952to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006953alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006954alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006955safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006956
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006957The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006958name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006959value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006960tells the optimizer and code generator that this load is not expected to
6961be reused in the cache. The code generator may select special
JF Bastiend2d8ffd2016-01-13 04:52:26 +00006962instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
Sean Silvab084af42012-12-07 10:36:55 +00006963x86.
6964
Piotr Padlewski6c15ec42015-09-15 18:32:14 +00006965The optional ``!invariant.group`` metadata must reference a
6966single metadata name ``<index>``. See ``invariant.group`` metadata.
6967
Sean Silvab084af42012-12-07 10:36:55 +00006968Semantics:
6969""""""""""
6970
Eli Benderskyca380842013-04-17 17:17:20 +00006971The contents of memory are updated to contain ``<value>`` at the
6972location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006973of scalar type then the number of bytes written does not exceed the
6974minimum number of bytes needed to hold all bits of the type. For
6975example, storing an ``i24`` writes at most three bytes. When writing a
6976value of a type like ``i20`` with a size that is not an integral number
6977of bytes, it is unspecified what happens to the extra bits that do not
6978belong to the type, but they will typically be overwritten.
6979
6980Example:
6981""""""""
6982
6983.. code-block:: llvm
6984
Tim Northover675a0962014-06-13 14:24:23 +00006985 %ptr = alloca i32 ; yields i32*:ptr
6986 store i32 3, i32* %ptr ; yields void
Nick Lewycky149d04c2015-08-11 01:05:16 +00006987 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006988
6989.. _i_fence:
6990
6991'``fence``' Instruction
6992^^^^^^^^^^^^^^^^^^^^^^^
6993
6994Syntax:
6995"""""""
6996
6997::
6998
Tim Northover675a0962014-06-13 14:24:23 +00006999 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007000
7001Overview:
7002"""""""""
7003
7004The '``fence``' instruction is used to introduce happens-before edges
7005between operations.
7006
7007Arguments:
7008""""""""""
7009
7010'``fence``' instructions take an :ref:`ordering <ordering>` argument which
7011defines what *synchronizes-with* edges they add. They can only be given
7012``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
7013
7014Semantics:
7015""""""""""
7016
7017A fence A which has (at least) ``release`` ordering semantics
7018*synchronizes with* a fence B with (at least) ``acquire`` ordering
7019semantics if and only if there exist atomic operations X and Y, both
7020operating on some atomic object M, such that A is sequenced before X, X
7021modifies M (either directly or through some side effect of a sequence
7022headed by X), Y is sequenced before B, and Y observes M. This provides a
7023*happens-before* dependency between A and B. Rather than an explicit
7024``fence``, one (but not both) of the atomic operations X or Y might
7025provide a ``release`` or ``acquire`` (resp.) ordering constraint and
7026still *synchronize-with* the explicit ``fence`` and establish the
7027*happens-before* edge.
7028
7029A ``fence`` which has ``seq_cst`` ordering, in addition to having both
7030``acquire`` and ``release`` semantics specified above, participates in
7031the global program order of other ``seq_cst`` operations and/or fences.
7032
7033The optional ":ref:`singlethread <singlethread>`" argument specifies
7034that the fence only synchronizes with other fences in the same thread.
7035(This is useful for interacting with signal handlers.)
7036
7037Example:
7038""""""""
7039
7040.. code-block:: llvm
7041
Tim Northover675a0962014-06-13 14:24:23 +00007042 fence acquire ; yields void
7043 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00007044
7045.. _i_cmpxchg:
7046
7047'``cmpxchg``' Instruction
7048^^^^^^^^^^^^^^^^^^^^^^^^^
7049
7050Syntax:
7051"""""""
7052
7053::
7054
Tim Northover675a0962014-06-13 14:24:23 +00007055 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00007056
7057Overview:
7058"""""""""
7059
7060The '``cmpxchg``' instruction is used to atomically modify memory. It
7061loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00007062equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00007063
7064Arguments:
7065""""""""""
7066
7067There are three arguments to the '``cmpxchg``' instruction: an address
7068to operate on, a value to compare to the value currently be at that
7069address, and a new value to place at that address if the compared values
7070are equal. The type of '<cmp>' must be an integer type whose bit width
7071is a power of two greater than or equal to eight and less than or equal
7072to a target-specific size limit. '<cmp>' and '<new>' must have the same
7073type, and the type of '<pointer>' must be a pointer to that type. If the
7074``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
7075to modify the number or order of execution of this ``cmpxchg`` with
7076other :ref:`volatile operations <volatile>`.
7077
Tim Northovere94a5182014-03-11 10:48:52 +00007078The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00007079``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
7080must be at least ``monotonic``, the ordering constraint on failure must be no
7081stronger than that on success, and the failure ordering cannot be either
7082``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00007083
7084The optional "``singlethread``" argument declares that the ``cmpxchg``
7085is only atomic with respect to code (usually signal handlers) running in
7086the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
7087respect to all other code in the system.
7088
7089The pointer passed into cmpxchg must have alignment greater than or
7090equal to the size in memory of the operand.
7091
7092Semantics:
7093""""""""""
7094
Tim Northover420a2162014-06-13 14:24:07 +00007095The contents of memory at the location specified by the '``<pointer>``' operand
7096is read and compared to '``<cmp>``'; if the read value is the equal, the
7097'``<new>``' is written. The original value at the location is returned, together
7098with a flag indicating success (true) or failure (false).
7099
7100If the cmpxchg operation is marked as ``weak`` then a spurious failure is
7101permitted: the operation may not write ``<new>`` even if the comparison
7102matched.
7103
7104If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
7105if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00007106
Tim Northovere94a5182014-03-11 10:48:52 +00007107A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
7108identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
7109load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00007110
7111Example:
7112""""""""
7113
7114.. code-block:: llvm
7115
7116 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00007117 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007118 br label %loop
7119
7120 loop:
7121 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
7122 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00007123 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00007124 %value_loaded = extractvalue { i32, i1 } %val_success, 0
7125 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00007126 br i1 %success, label %done, label %loop
7127
7128 done:
7129 ...
7130
7131.. _i_atomicrmw:
7132
7133'``atomicrmw``' Instruction
7134^^^^^^^^^^^^^^^^^^^^^^^^^^^
7135
7136Syntax:
7137"""""""
7138
7139::
7140
Tim Northover675a0962014-06-13 14:24:23 +00007141 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00007142
7143Overview:
7144"""""""""
7145
7146The '``atomicrmw``' instruction is used to atomically modify memory.
7147
7148Arguments:
7149""""""""""
7150
7151There are three arguments to the '``atomicrmw``' instruction: an
7152operation to apply, an address whose value to modify, an argument to the
7153operation. The operation must be one of the following keywords:
7154
7155- xchg
7156- add
7157- sub
7158- and
7159- nand
7160- or
7161- xor
7162- max
7163- min
7164- umax
7165- umin
7166
7167The type of '<value>' must be an integer type whose bit width is a power
7168of two greater than or equal to eight and less than or equal to a
7169target-specific size limit. The type of the '``<pointer>``' operand must
7170be a pointer to that type. If the ``atomicrmw`` is marked as
7171``volatile``, then the optimizer is not allowed to modify the number or
7172order of execution of this ``atomicrmw`` with other :ref:`volatile
7173operations <volatile>`.
7174
7175Semantics:
7176""""""""""
7177
7178The contents of memory at the location specified by the '``<pointer>``'
7179operand are atomically read, modified, and written back. The original
7180value at the location is returned. The modification is specified by the
7181operation argument:
7182
7183- xchg: ``*ptr = val``
7184- add: ``*ptr = *ptr + val``
7185- sub: ``*ptr = *ptr - val``
7186- and: ``*ptr = *ptr & val``
7187- nand: ``*ptr = ~(*ptr & val)``
7188- or: ``*ptr = *ptr | val``
7189- xor: ``*ptr = *ptr ^ val``
7190- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7191- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7192- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7193 comparison)
7194- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7195 comparison)
7196
7197Example:
7198""""""""
7199
7200.. code-block:: llvm
7201
Tim Northover675a0962014-06-13 14:24:23 +00007202 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007203
7204.. _i_getelementptr:
7205
7206'``getelementptr``' Instruction
7207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7208
7209Syntax:
7210"""""""
7211
7212::
7213
David Blaikie16a97eb2015-03-04 22:02:58 +00007214 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7215 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7216 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007217
7218Overview:
7219"""""""""
7220
7221The '``getelementptr``' instruction is used to get the address of a
7222subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007223address calculation only and does not access memory. The instruction can also
7224be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007225
7226Arguments:
7227""""""""""
7228
David Blaikie16a97eb2015-03-04 22:02:58 +00007229The first argument is always a type used as the basis for the calculations.
7230The second argument is always a pointer or a vector of pointers, and is the
7231base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007232that indicate which of the elements of the aggregate object are indexed.
7233The interpretation of each index is dependent on the type being indexed
7234into. The first index always indexes the pointer value given as the
7235first argument, the second index indexes a value of the type pointed to
7236(not necessarily the value directly pointed to, since the first index
7237can be non-zero), etc. The first type indexed into must be a pointer
7238value, subsequent types can be arrays, vectors, and structs. Note that
7239subsequent types being indexed into can never be pointers, since that
7240would require loading the pointer before continuing calculation.
7241
7242The type of each index argument depends on the type it is indexing into.
7243When indexing into a (optionally packed) structure, only ``i32`` integer
7244**constants** are allowed (when using a vector of indices they must all
7245be the **same** ``i32`` integer constant). When indexing into an array,
7246pointer or vector, integers of any width are allowed, and they are not
7247required to be constant. These integers are treated as signed values
7248where relevant.
7249
7250For example, let's consider a C code fragment and how it gets compiled
7251to LLVM:
7252
7253.. code-block:: c
7254
7255 struct RT {
7256 char A;
7257 int B[10][20];
7258 char C;
7259 };
7260 struct ST {
7261 int X;
7262 double Y;
7263 struct RT Z;
7264 };
7265
7266 int *foo(struct ST *s) {
7267 return &s[1].Z.B[5][13];
7268 }
7269
7270The LLVM code generated by Clang is:
7271
7272.. code-block:: llvm
7273
7274 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7275 %struct.ST = type { i32, double, %struct.RT }
7276
7277 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7278 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007279 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007280 ret i32* %arrayidx
7281 }
7282
7283Semantics:
7284""""""""""
7285
7286In the example above, the first index is indexing into the
7287'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7288= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7289indexes into the third element of the structure, yielding a
7290'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7291structure. The third index indexes into the second element of the
7292structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7293dimensions of the array are subscripted into, yielding an '``i32``'
7294type. The '``getelementptr``' instruction returns a pointer to this
7295element, thus computing a value of '``i32*``' type.
7296
7297Note that it is perfectly legal to index partially through a structure,
7298returning a pointer to an inner element. Because of this, the LLVM code
7299for the given testcase is equivalent to:
7300
7301.. code-block:: llvm
7302
7303 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007304 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7305 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7306 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7307 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7308 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007309 ret i32* %t5
7310 }
7311
7312If the ``inbounds`` keyword is present, the result value of the
7313``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7314pointer is not an *in bounds* address of an allocated object, or if any
7315of the addresses that would be formed by successive addition of the
7316offsets implied by the indices to the base address with infinitely
7317precise signed arithmetic are not an *in bounds* address of that
7318allocated object. The *in bounds* addresses for an allocated object are
7319all the addresses that point into the object, plus the address one byte
7320past the end. In cases where the base is a vector of pointers the
7321``inbounds`` keyword applies to each of the computations element-wise.
7322
7323If the ``inbounds`` keyword is not present, the offsets are added to the
7324base address with silently-wrapping two's complement arithmetic. If the
7325offsets have a different width from the pointer, they are sign-extended
7326or truncated to the width of the pointer. The result value of the
7327``getelementptr`` may be outside the object pointed to by the base
7328pointer. The result value may not necessarily be used to access memory
7329though, even if it happens to point into allocated storage. See the
7330:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7331information.
7332
7333The getelementptr instruction is often confusing. For some more insight
7334into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7335
7336Example:
7337""""""""
7338
7339.. code-block:: llvm
7340
7341 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007342 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007343 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007344 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007345 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007346 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007347 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007348 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007349
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007350Vector of pointers:
7351"""""""""""""""""""
7352
7353The ``getelementptr`` returns a vector of pointers, instead of a single address,
7354when one or more of its arguments is a vector. In such cases, all vector
7355arguments should have the same number of elements, and every scalar argument
7356will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007357
7358.. code-block:: llvm
7359
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007360 ; All arguments are vectors:
7361 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7362 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007363
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007364 ; Add the same scalar offset to each pointer of a vector:
7365 ; A[i] = ptrs[i] + offset*sizeof(i8)
7366 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007367
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007368 ; Add distinct offsets to the same pointer:
7369 ; A[i] = ptr + offsets[i]*sizeof(i8)
7370 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007371
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007372 ; In all cases described above the type of the result is <4 x i8*>
7373
7374The two following instructions are equivalent:
7375
7376.. code-block:: llvm
7377
7378 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7379 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7380 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7381 <4 x i32> %ind4,
7382 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007383
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007384 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7385 i32 2, i32 1, <4 x i32> %ind4, i64 13
7386
7387Let's look at the C code, where the vector version of ``getelementptr``
7388makes sense:
7389
7390.. code-block:: c
7391
7392 // Let's assume that we vectorize the following loop:
7393 double *A, B; int *C;
7394 for (int i = 0; i < size; ++i) {
7395 A[i] = B[C[i]];
7396 }
7397
7398.. code-block:: llvm
7399
7400 ; get pointers for 8 elements from array B
7401 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7402 ; load 8 elements from array B into A
7403 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7404 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007405
7406Conversion Operations
7407---------------------
7408
7409The instructions in this category are the conversion instructions
7410(casting) which all take a single operand and a type. They perform
7411various bit conversions on the operand.
7412
7413'``trunc .. to``' Instruction
7414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7415
7416Syntax:
7417"""""""
7418
7419::
7420
7421 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7422
7423Overview:
7424"""""""""
7425
7426The '``trunc``' instruction truncates its operand to the type ``ty2``.
7427
7428Arguments:
7429""""""""""
7430
7431The '``trunc``' instruction takes a value to trunc, and a type to trunc
7432it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7433of the same number of integers. The bit size of the ``value`` must be
7434larger than the bit size of the destination type, ``ty2``. Equal sized
7435types are not allowed.
7436
7437Semantics:
7438""""""""""
7439
7440The '``trunc``' instruction truncates the high order bits in ``value``
7441and converts the remaining bits to ``ty2``. Since the source size must
7442be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7443It will always truncate bits.
7444
7445Example:
7446""""""""
7447
7448.. code-block:: llvm
7449
7450 %X = trunc i32 257 to i8 ; yields i8:1
7451 %Y = trunc i32 123 to i1 ; yields i1:true
7452 %Z = trunc i32 122 to i1 ; yields i1:false
7453 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7454
7455'``zext .. to``' Instruction
7456^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7457
7458Syntax:
7459"""""""
7460
7461::
7462
7463 <result> = zext <ty> <value> to <ty2> ; yields ty2
7464
7465Overview:
7466"""""""""
7467
7468The '``zext``' instruction zero extends its operand to type ``ty2``.
7469
7470Arguments:
7471""""""""""
7472
7473The '``zext``' instruction takes a value to cast, and a type to cast it
7474to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7475the same number of integers. The bit size of the ``value`` must be
7476smaller than the bit size of the destination type, ``ty2``.
7477
7478Semantics:
7479""""""""""
7480
7481The ``zext`` fills the high order bits of the ``value`` with zero bits
7482until it reaches the size of the destination type, ``ty2``.
7483
7484When zero extending from i1, the result will always be either 0 or 1.
7485
7486Example:
7487""""""""
7488
7489.. code-block:: llvm
7490
7491 %X = zext i32 257 to i64 ; yields i64:257
7492 %Y = zext i1 true to i32 ; yields i32:1
7493 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7494
7495'``sext .. to``' Instruction
7496^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7497
7498Syntax:
7499"""""""
7500
7501::
7502
7503 <result> = sext <ty> <value> to <ty2> ; yields ty2
7504
7505Overview:
7506"""""""""
7507
7508The '``sext``' sign extends ``value`` to the type ``ty2``.
7509
7510Arguments:
7511""""""""""
7512
7513The '``sext``' instruction takes a value to cast, and a type to cast it
7514to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7515the same number of integers. The bit size of the ``value`` must be
7516smaller than the bit size of the destination type, ``ty2``.
7517
7518Semantics:
7519""""""""""
7520
7521The '``sext``' instruction performs a sign extension by copying the sign
7522bit (highest order bit) of the ``value`` until it reaches the bit size
7523of the type ``ty2``.
7524
7525When sign extending from i1, the extension always results in -1 or 0.
7526
7527Example:
7528""""""""
7529
7530.. code-block:: llvm
7531
7532 %X = sext i8 -1 to i16 ; yields i16 :65535
7533 %Y = sext i1 true to i32 ; yields i32:-1
7534 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7535
7536'``fptrunc .. to``' Instruction
7537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7538
7539Syntax:
7540"""""""
7541
7542::
7543
7544 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7545
7546Overview:
7547"""""""""
7548
7549The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7550
7551Arguments:
7552""""""""""
7553
7554The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7555value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7556The size of ``value`` must be larger than the size of ``ty2``. This
7557implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7558
7559Semantics:
7560""""""""""
7561
Dan Liew50456fb2015-09-03 18:43:56 +00007562The '``fptrunc``' instruction casts a ``value`` from a larger
Sean Silvab084af42012-12-07 10:36:55 +00007563:ref:`floating point <t_floating>` type to a smaller :ref:`floating
Dan Liew50456fb2015-09-03 18:43:56 +00007564point <t_floating>` type. If the value cannot fit (i.e. overflows) within the
7565destination type, ``ty2``, then the results are undefined. If the cast produces
7566an inexact result, how rounding is performed (e.g. truncation, also known as
7567round to zero) is undefined.
Sean Silvab084af42012-12-07 10:36:55 +00007568
7569Example:
7570""""""""
7571
7572.. code-block:: llvm
7573
7574 %X = fptrunc double 123.0 to float ; yields float:123.0
7575 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7576
7577'``fpext .. to``' Instruction
7578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7579
7580Syntax:
7581"""""""
7582
7583::
7584
7585 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7586
7587Overview:
7588"""""""""
7589
7590The '``fpext``' extends a floating point ``value`` to a larger floating
7591point value.
7592
7593Arguments:
7594""""""""""
7595
7596The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7597``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7598to. The source type must be smaller than the destination type.
7599
7600Semantics:
7601""""""""""
7602
7603The '``fpext``' instruction extends the ``value`` from a smaller
7604:ref:`floating point <t_floating>` type to a larger :ref:`floating
7605point <t_floating>` type. The ``fpext`` cannot be used to make a
7606*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7607*no-op cast* for a floating point cast.
7608
7609Example:
7610""""""""
7611
7612.. code-block:: llvm
7613
7614 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7615 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7616
7617'``fptoui .. to``' Instruction
7618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7619
7620Syntax:
7621"""""""
7622
7623::
7624
7625 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7626
7627Overview:
7628"""""""""
7629
7630The '``fptoui``' converts a floating point ``value`` to its unsigned
7631integer equivalent of type ``ty2``.
7632
7633Arguments:
7634""""""""""
7635
7636The '``fptoui``' instruction takes a value to cast, which must be a
7637scalar or vector :ref:`floating point <t_floating>` value, and a type to
7638cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7639``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7640type with the same number of elements as ``ty``
7641
7642Semantics:
7643""""""""""
7644
7645The '``fptoui``' instruction converts its :ref:`floating
7646point <t_floating>` operand into the nearest (rounding towards zero)
7647unsigned integer value. If the value cannot fit in ``ty2``, the results
7648are undefined.
7649
7650Example:
7651""""""""
7652
7653.. code-block:: llvm
7654
7655 %X = fptoui double 123.0 to i32 ; yields i32:123
7656 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7657 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7658
7659'``fptosi .. to``' Instruction
7660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7661
7662Syntax:
7663"""""""
7664
7665::
7666
7667 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7668
7669Overview:
7670"""""""""
7671
7672The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7673``value`` to type ``ty2``.
7674
7675Arguments:
7676""""""""""
7677
7678The '``fptosi``' instruction takes a value to cast, which must be a
7679scalar or vector :ref:`floating point <t_floating>` value, and a type to
7680cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7681``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7682type with the same number of elements as ``ty``
7683
7684Semantics:
7685""""""""""
7686
7687The '``fptosi``' instruction converts its :ref:`floating
7688point <t_floating>` operand into the nearest (rounding towards zero)
7689signed integer value. If the value cannot fit in ``ty2``, the results
7690are undefined.
7691
7692Example:
7693""""""""
7694
7695.. code-block:: llvm
7696
7697 %X = fptosi double -123.0 to i32 ; yields i32:-123
7698 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7699 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7700
7701'``uitofp .. to``' Instruction
7702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7703
7704Syntax:
7705"""""""
7706
7707::
7708
7709 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7710
7711Overview:
7712"""""""""
7713
7714The '``uitofp``' instruction regards ``value`` as an unsigned integer
7715and converts that value to the ``ty2`` type.
7716
7717Arguments:
7718""""""""""
7719
7720The '``uitofp``' instruction takes a value to cast, which must be a
7721scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7722``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7723``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7724type with the same number of elements as ``ty``
7725
7726Semantics:
7727""""""""""
7728
7729The '``uitofp``' instruction interprets its operand as an unsigned
7730integer quantity and converts it to the corresponding floating point
7731value. If the value cannot fit in the floating point value, the results
7732are undefined.
7733
7734Example:
7735""""""""
7736
7737.. code-block:: llvm
7738
7739 %X = uitofp i32 257 to float ; yields float:257.0
7740 %Y = uitofp i8 -1 to double ; yields double:255.0
7741
7742'``sitofp .. to``' Instruction
7743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7744
7745Syntax:
7746"""""""
7747
7748::
7749
7750 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7751
7752Overview:
7753"""""""""
7754
7755The '``sitofp``' instruction regards ``value`` as a signed integer and
7756converts that value to the ``ty2`` type.
7757
7758Arguments:
7759""""""""""
7760
7761The '``sitofp``' instruction takes a value to cast, which must be a
7762scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7763``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7764``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7765type with the same number of elements as ``ty``
7766
7767Semantics:
7768""""""""""
7769
7770The '``sitofp``' instruction interprets its operand as a signed integer
7771quantity and converts it to the corresponding floating point value. If
7772the value cannot fit in the floating point value, the results are
7773undefined.
7774
7775Example:
7776""""""""
7777
7778.. code-block:: llvm
7779
7780 %X = sitofp i32 257 to float ; yields float:257.0
7781 %Y = sitofp i8 -1 to double ; yields double:-1.0
7782
7783.. _i_ptrtoint:
7784
7785'``ptrtoint .. to``' Instruction
7786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7787
7788Syntax:
7789"""""""
7790
7791::
7792
7793 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7794
7795Overview:
7796"""""""""
7797
7798The '``ptrtoint``' instruction converts the pointer or a vector of
7799pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7800
7801Arguments:
7802""""""""""
7803
7804The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007805a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007806type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7807a vector of integers type.
7808
7809Semantics:
7810""""""""""
7811
7812The '``ptrtoint``' instruction converts ``value`` to integer type
7813``ty2`` by interpreting the pointer value as an integer and either
7814truncating or zero extending that value to the size of the integer type.
7815If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7816``value`` is larger than ``ty2`` then a truncation is done. If they are
7817the same size, then nothing is done (*no-op cast*) other than a type
7818change.
7819
7820Example:
7821""""""""
7822
7823.. code-block:: llvm
7824
7825 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7826 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7827 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7828
7829.. _i_inttoptr:
7830
7831'``inttoptr .. to``' Instruction
7832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7833
7834Syntax:
7835"""""""
7836
7837::
7838
7839 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7840
7841Overview:
7842"""""""""
7843
7844The '``inttoptr``' instruction converts an integer ``value`` to a
7845pointer type, ``ty2``.
7846
7847Arguments:
7848""""""""""
7849
7850The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7851cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7852type.
7853
7854Semantics:
7855""""""""""
7856
7857The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7858applying either a zero extension or a truncation depending on the size
7859of the integer ``value``. If ``value`` is larger than the size of a
7860pointer then a truncation is done. If ``value`` is smaller than the size
7861of a pointer then a zero extension is done. If they are the same size,
7862nothing is done (*no-op cast*).
7863
7864Example:
7865""""""""
7866
7867.. code-block:: llvm
7868
7869 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7870 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7871 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7872 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7873
7874.. _i_bitcast:
7875
7876'``bitcast .. to``' Instruction
7877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7878
7879Syntax:
7880"""""""
7881
7882::
7883
7884 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7885
7886Overview:
7887"""""""""
7888
7889The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7890changing any bits.
7891
7892Arguments:
7893""""""""""
7894
7895The '``bitcast``' instruction takes a value to cast, which must be a
7896non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007897also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7898bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007899identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007900also be a pointer of the same size. This instruction supports bitwise
7901conversion of vectors to integers and to vectors of other types (as
7902long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007903
7904Semantics:
7905""""""""""
7906
Matt Arsenault24b49c42013-07-31 17:49:08 +00007907The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7908is always a *no-op cast* because no bits change with this
7909conversion. The conversion is done as if the ``value`` had been stored
7910to memory and read back as type ``ty2``. Pointer (or vector of
7911pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007912pointers) types with the same address space through this instruction.
7913To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7914or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007915
7916Example:
7917""""""""
7918
7919.. code-block:: llvm
7920
7921 %X = bitcast i8 255 to i8 ; yields i8 :-1
7922 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7923 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7924 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7925
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007926.. _i_addrspacecast:
7927
7928'``addrspacecast .. to``' Instruction
7929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7930
7931Syntax:
7932"""""""
7933
7934::
7935
7936 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7937
7938Overview:
7939"""""""""
7940
7941The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7942address space ``n`` to type ``pty2`` in address space ``m``.
7943
7944Arguments:
7945""""""""""
7946
7947The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7948to cast and a pointer type to cast it to, which must have a different
7949address space.
7950
7951Semantics:
7952""""""""""
7953
7954The '``addrspacecast``' instruction converts the pointer value
7955``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007956value modification, depending on the target and the address space
7957pair. Pointer conversions within the same address space must be
7958performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007959conversion is legal then both result and operand refer to the same memory
7960location.
7961
7962Example:
7963""""""""
7964
7965.. code-block:: llvm
7966
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007967 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7968 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7969 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007970
Sean Silvab084af42012-12-07 10:36:55 +00007971.. _otherops:
7972
7973Other Operations
7974----------------
7975
7976The instructions in this category are the "miscellaneous" instructions,
7977which defy better classification.
7978
7979.. _i_icmp:
7980
7981'``icmp``' Instruction
7982^^^^^^^^^^^^^^^^^^^^^^
7983
7984Syntax:
7985"""""""
7986
7987::
7988
Tim Northover675a0962014-06-13 14:24:23 +00007989 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007990
7991Overview:
7992"""""""""
7993
7994The '``icmp``' instruction returns a boolean value or a vector of
7995boolean values based on comparison of its two integer, integer vector,
7996pointer, or pointer vector operands.
7997
7998Arguments:
7999""""""""""
8000
8001The '``icmp``' instruction takes three operands. The first operand is
8002the condition code indicating the kind of comparison to perform. It is
8003not a value, just a keyword. The possible condition code are:
8004
8005#. ``eq``: equal
8006#. ``ne``: not equal
8007#. ``ugt``: unsigned greater than
8008#. ``uge``: unsigned greater or equal
8009#. ``ult``: unsigned less than
8010#. ``ule``: unsigned less or equal
8011#. ``sgt``: signed greater than
8012#. ``sge``: signed greater or equal
8013#. ``slt``: signed less than
8014#. ``sle``: signed less or equal
8015
8016The remaining two arguments must be :ref:`integer <t_integer>` or
8017:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
8018must also be identical types.
8019
8020Semantics:
8021""""""""""
8022
8023The '``icmp``' compares ``op1`` and ``op2`` according to the condition
8024code given as ``cond``. The comparison performed always yields either an
8025:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
8026
8027#. ``eq``: yields ``true`` if the operands are equal, ``false``
8028 otherwise. No sign interpretation is necessary or performed.
8029#. ``ne``: yields ``true`` if the operands are unequal, ``false``
8030 otherwise. No sign interpretation is necessary or performed.
8031#. ``ugt``: interprets the operands as unsigned values and yields
8032 ``true`` if ``op1`` is greater than ``op2``.
8033#. ``uge``: interprets the operands as unsigned values and yields
8034 ``true`` if ``op1`` is greater than or equal to ``op2``.
8035#. ``ult``: interprets the operands as unsigned values and yields
8036 ``true`` if ``op1`` is less than ``op2``.
8037#. ``ule``: interprets the operands as unsigned values and yields
8038 ``true`` if ``op1`` is less than or equal to ``op2``.
8039#. ``sgt``: interprets the operands as signed values and yields ``true``
8040 if ``op1`` is greater than ``op2``.
8041#. ``sge``: interprets the operands as signed values and yields ``true``
8042 if ``op1`` is greater than or equal to ``op2``.
8043#. ``slt``: interprets the operands as signed values and yields ``true``
8044 if ``op1`` is less than ``op2``.
8045#. ``sle``: interprets the operands as signed values and yields ``true``
8046 if ``op1`` is less than or equal to ``op2``.
8047
8048If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
8049are compared as if they were integers.
8050
8051If the operands are integer vectors, then they are compared element by
8052element. The result is an ``i1`` vector with the same number of elements
8053as the values being compared. Otherwise, the result is an ``i1``.
8054
8055Example:
8056""""""""
8057
8058.. code-block:: llvm
8059
8060 <result> = icmp eq i32 4, 5 ; yields: result=false
8061 <result> = icmp ne float* %X, %X ; yields: result=false
8062 <result> = icmp ult i16 4, 5 ; yields: result=true
8063 <result> = icmp sgt i16 4, 5 ; yields: result=false
8064 <result> = icmp ule i16 -4, 5 ; yields: result=false
8065 <result> = icmp sge i16 4, 5 ; yields: result=false
8066
8067Note that the code generator does not yet support vector types with the
8068``icmp`` instruction.
8069
8070.. _i_fcmp:
8071
8072'``fcmp``' Instruction
8073^^^^^^^^^^^^^^^^^^^^^^
8074
8075Syntax:
8076"""""""
8077
8078::
8079
James Molloy88eb5352015-07-10 12:52:00 +00008080 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00008081
8082Overview:
8083"""""""""
8084
8085The '``fcmp``' instruction returns a boolean value or vector of boolean
8086values based on comparison of its operands.
8087
8088If the operands are floating point scalars, then the result type is a
8089boolean (:ref:`i1 <t_integer>`).
8090
8091If the operands are floating point vectors, then the result type is a
8092vector of boolean with the same number of elements as the operands being
8093compared.
8094
8095Arguments:
8096""""""""""
8097
8098The '``fcmp``' instruction takes three operands. The first operand is
8099the condition code indicating the kind of comparison to perform. It is
8100not a value, just a keyword. The possible condition code are:
8101
8102#. ``false``: no comparison, always returns false
8103#. ``oeq``: ordered and equal
8104#. ``ogt``: ordered and greater than
8105#. ``oge``: ordered and greater than or equal
8106#. ``olt``: ordered and less than
8107#. ``ole``: ordered and less than or equal
8108#. ``one``: ordered and not equal
8109#. ``ord``: ordered (no nans)
8110#. ``ueq``: unordered or equal
8111#. ``ugt``: unordered or greater than
8112#. ``uge``: unordered or greater than or equal
8113#. ``ult``: unordered or less than
8114#. ``ule``: unordered or less than or equal
8115#. ``une``: unordered or not equal
8116#. ``uno``: unordered (either nans)
8117#. ``true``: no comparison, always returns true
8118
8119*Ordered* means that neither operand is a QNAN while *unordered* means
8120that either operand may be a QNAN.
8121
8122Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
8123point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
8124type. They must have identical types.
8125
8126Semantics:
8127""""""""""
8128
8129The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
8130condition code given as ``cond``. If the operands are vectors, then the
8131vectors are compared element by element. Each comparison performed
8132always yields an :ref:`i1 <t_integer>` result, as follows:
8133
8134#. ``false``: always yields ``false``, regardless of operands.
8135#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
8136 is equal to ``op2``.
8137#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
8138 is greater than ``op2``.
8139#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
8140 is greater than or equal to ``op2``.
8141#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
8142 is less than ``op2``.
8143#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
8144 is less than or equal to ``op2``.
8145#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
8146 is not equal to ``op2``.
8147#. ``ord``: yields ``true`` if both operands are not a QNAN.
8148#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
8149 equal to ``op2``.
8150#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
8151 greater than ``op2``.
8152#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
8153 greater than or equal to ``op2``.
8154#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
8155 less than ``op2``.
8156#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
8157 less than or equal to ``op2``.
8158#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
8159 not equal to ``op2``.
8160#. ``uno``: yields ``true`` if either operand is a QNAN.
8161#. ``true``: always yields ``true``, regardless of operands.
8162
James Molloy88eb5352015-07-10 12:52:00 +00008163The ``fcmp`` instruction can also optionally take any number of
8164:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8165otherwise unsafe floating point optimizations.
8166
8167Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
8168only flags that have any effect on its semantics are those that allow
8169assumptions to be made about the values of input arguments; namely
8170``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
8171
Sean Silvab084af42012-12-07 10:36:55 +00008172Example:
8173""""""""
8174
8175.. code-block:: llvm
8176
8177 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
8178 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
8179 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
8180 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
8181
8182Note that the code generator does not yet support vector types with the
8183``fcmp`` instruction.
8184
8185.. _i_phi:
8186
8187'``phi``' Instruction
8188^^^^^^^^^^^^^^^^^^^^^
8189
8190Syntax:
8191"""""""
8192
8193::
8194
8195 <result> = phi <ty> [ <val0>, <label0>], ...
8196
8197Overview:
8198"""""""""
8199
8200The '``phi``' instruction is used to implement the φ node in the SSA
8201graph representing the function.
8202
8203Arguments:
8204""""""""""
8205
8206The type of the incoming values is specified with the first type field.
8207After this, the '``phi``' instruction takes a list of pairs as
8208arguments, with one pair for each predecessor basic block of the current
8209block. Only values of :ref:`first class <t_firstclass>` type may be used as
8210the value arguments to the PHI node. Only labels may be used as the
8211label arguments.
8212
8213There must be no non-phi instructions between the start of a basic block
8214and the PHI instructions: i.e. PHI instructions must be first in a basic
8215block.
8216
8217For the purposes of the SSA form, the use of each incoming value is
8218deemed to occur on the edge from the corresponding predecessor block to
8219the current block (but after any definition of an '``invoke``'
8220instruction's return value on the same edge).
8221
8222Semantics:
8223""""""""""
8224
8225At runtime, the '``phi``' instruction logically takes on the value
8226specified by the pair corresponding to the predecessor basic block that
8227executed just prior to the current block.
8228
8229Example:
8230""""""""
8231
8232.. code-block:: llvm
8233
8234 Loop: ; Infinite loop that counts from 0 on up...
8235 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8236 %nextindvar = add i32 %indvar, 1
8237 br label %Loop
8238
8239.. _i_select:
8240
8241'``select``' Instruction
8242^^^^^^^^^^^^^^^^^^^^^^^^
8243
8244Syntax:
8245"""""""
8246
8247::
8248
8249 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8250
8251 selty is either i1 or {<N x i1>}
8252
8253Overview:
8254"""""""""
8255
8256The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008257condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008258
8259Arguments:
8260""""""""""
8261
8262The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8263values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008264class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008265
8266Semantics:
8267""""""""""
8268
8269If the condition is an i1 and it evaluates to 1, the instruction returns
8270the first value argument; otherwise, it returns the second value
8271argument.
8272
8273If the condition is a vector of i1, then the value arguments must be
8274vectors of the same size, and the selection is done element by element.
8275
David Majnemer40a0b592015-03-03 22:45:47 +00008276If the condition is an i1 and the value arguments are vectors of the
8277same size, then an entire vector is selected.
8278
Sean Silvab084af42012-12-07 10:36:55 +00008279Example:
8280""""""""
8281
8282.. code-block:: llvm
8283
8284 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8285
8286.. _i_call:
8287
8288'``call``' Instruction
8289^^^^^^^^^^^^^^^^^^^^^^
8290
8291Syntax:
8292"""""""
8293
8294::
8295
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008296 <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008297 [ operand bundles ]
Sean Silvab084af42012-12-07 10:36:55 +00008298
8299Overview:
8300"""""""""
8301
8302The '``call``' instruction represents a simple function call.
8303
8304Arguments:
8305""""""""""
8306
8307This instruction requires several arguments:
8308
Reid Kleckner5772b772014-04-24 20:14:34 +00008309#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008310 should perform tail call optimization. The ``tail`` marker is a hint that
8311 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008312 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008313 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008314
8315 #. The call will not cause unbounded stack growth if it is part of a
8316 recursive cycle in the call graph.
8317 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8318 forwarded in place.
8319
8320 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008321 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008322 rules:
8323
8324 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8325 or a pointer bitcast followed by a ret instruction.
8326 - The ret instruction must return the (possibly bitcasted) value
8327 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008328 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008329 parameters or return types may differ in pointee type, but not
8330 in address space.
8331 - The calling conventions of the caller and callee must match.
8332 - All ABI-impacting function attributes, such as sret, byval, inreg,
8333 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008334 - The callee must be varargs iff the caller is varargs. Bitcasting a
8335 non-varargs function to the appropriate varargs type is legal so
8336 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008337
8338 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8339 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008340
8341 - Caller and callee both have the calling convention ``fastcc``.
8342 - The call is in tail position (ret immediately follows call and ret
8343 uses value of call or is void).
8344 - Option ``-tailcallopt`` is enabled, or
8345 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008346 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008347 met. <CodeGenerator.html#tailcallopt>`_
8348
Akira Hatanaka5cfcce122015-11-06 23:55:38 +00008349#. The optional ``notail`` marker indicates that the optimizers should not add
8350 ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
8351 call optimization from being performed on the call.
8352
Sanjay Patelfa54ace2015-12-14 21:59:03 +00008353#. The optional ``fast-math flags`` marker indicates that the call has one or more
8354 :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
8355 otherwise unsafe floating-point optimizations. Fast-math flags are only valid
8356 for calls that return a floating-point scalar or vector type.
8357
Sean Silvab084af42012-12-07 10:36:55 +00008358#. The optional "cconv" marker indicates which :ref:`calling
8359 convention <callingconv>` the call should use. If none is
8360 specified, the call defaults to using C calling conventions. The
8361 calling convention of the call must match the calling convention of
8362 the target function, or else the behavior is undefined.
8363#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8364 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8365 are valid here.
8366#. '``ty``': the type of the call instruction itself which is also the
8367 type of the return value. Functions that return no value are marked
8368 ``void``.
8369#. '``fnty``': shall be the signature of the pointer to function value
8370 being invoked. The argument types must match the types implied by
8371 this signature. This type can be omitted if the function is not
8372 varargs and if the function type does not return a pointer to a
8373 function.
8374#. '``fnptrval``': An LLVM value containing a pointer to a function to
8375 be invoked. In most cases, this is a direct function invocation, but
8376 indirect ``call``'s are just as possible, calling an arbitrary pointer
8377 to function value.
8378#. '``function args``': argument list whose types match the function
8379 signature argument types and parameter attributes. All arguments must
8380 be of :ref:`first class <t_firstclass>` type. If the function signature
8381 indicates the function accepts a variable number of arguments, the
8382 extra arguments can be specified.
8383#. The optional :ref:`function attributes <fnattrs>` list. Only
8384 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8385 attributes are valid here.
Sanjoy Dasb513a9f2015-09-24 23:34:52 +00008386#. The optional :ref:`operand bundles <opbundles>` list.
Sean Silvab084af42012-12-07 10:36:55 +00008387
8388Semantics:
8389""""""""""
8390
8391The '``call``' instruction is used to cause control flow to transfer to
8392a specified function, with its incoming arguments bound to the specified
8393values. Upon a '``ret``' instruction in the called function, control
8394flow continues with the instruction after the function call, and the
8395return value of the function is bound to the result argument.
8396
8397Example:
8398""""""""
8399
8400.. code-block:: llvm
8401
8402 %retval = call i32 @test(i32 %argc)
8403 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8404 %X = tail call i32 @foo() ; yields i32
8405 %Y = tail call fastcc i32 @foo() ; yields i32
8406 call void %foo(i8 97 signext)
8407
8408 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008409 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008410 %gr = extractvalue %struct.A %r, 0 ; yields i32
8411 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8412 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8413 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8414
8415llvm treats calls to some functions with names and arguments that match
8416the standard C99 library as being the C99 library functions, and may
8417perform optimizations or generate code for them under that assumption.
8418This is something we'd like to change in the future to provide better
8419support for freestanding environments and non-C-based languages.
8420
8421.. _i_va_arg:
8422
8423'``va_arg``' Instruction
8424^^^^^^^^^^^^^^^^^^^^^^^^
8425
8426Syntax:
8427"""""""
8428
8429::
8430
8431 <resultval> = va_arg <va_list*> <arglist>, <argty>
8432
8433Overview:
8434"""""""""
8435
8436The '``va_arg``' instruction is used to access arguments passed through
8437the "variable argument" area of a function call. It is used to implement
8438the ``va_arg`` macro in C.
8439
8440Arguments:
8441""""""""""
8442
8443This instruction takes a ``va_list*`` value and the type of the
8444argument. It returns a value of the specified argument type and
8445increments the ``va_list`` to point to the next argument. The actual
8446type of ``va_list`` is target specific.
8447
8448Semantics:
8449""""""""""
8450
8451The '``va_arg``' instruction loads an argument of the specified type
8452from the specified ``va_list`` and causes the ``va_list`` to point to
8453the next argument. For more information, see the variable argument
8454handling :ref:`Intrinsic Functions <int_varargs>`.
8455
8456It is legal for this instruction to be called in a function which does
8457not take a variable number of arguments, for example, the ``vfprintf``
8458function.
8459
8460``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8461function <intrinsics>` because it takes a type as an argument.
8462
8463Example:
8464""""""""
8465
8466See the :ref:`variable argument processing <int_varargs>` section.
8467
8468Note that the code generator does not yet fully support va\_arg on many
8469targets. Also, it does not currently support va\_arg with aggregate
8470types on any target.
8471
8472.. _i_landingpad:
8473
8474'``landingpad``' Instruction
8475^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8476
8477Syntax:
8478"""""""
8479
8480::
8481
David Majnemer7fddecc2015-06-17 20:52:32 +00008482 <resultval> = landingpad <resultty> <clause>+
8483 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008484
8485 <clause> := catch <type> <value>
8486 <clause> := filter <array constant type> <array constant>
8487
8488Overview:
8489"""""""""
8490
8491The '``landingpad``' instruction is used by `LLVM's exception handling
8492system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008493is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008494code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008495defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008496re-entry to the function. The ``resultval`` has the type ``resultty``.
8497
8498Arguments:
8499""""""""""
8500
David Majnemer7fddecc2015-06-17 20:52:32 +00008501The optional
Sean Silvab084af42012-12-07 10:36:55 +00008502``cleanup`` flag indicates that the landing pad block is a cleanup.
8503
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008504A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008505contains the global variable representing the "type" that may be caught
8506or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8507clause takes an array constant as its argument. Use
8508"``[0 x i8**] undef``" for a filter which cannot throw. The
8509'``landingpad``' instruction must contain *at least* one ``clause`` or
8510the ``cleanup`` flag.
8511
8512Semantics:
8513""""""""""
8514
8515The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008516:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008517therefore the "result type" of the ``landingpad`` instruction. As with
8518calling conventions, how the personality function results are
8519represented in LLVM IR is target specific.
8520
8521The clauses are applied in order from top to bottom. If two
8522``landingpad`` instructions are merged together through inlining, the
8523clauses from the calling function are appended to the list of clauses.
8524When the call stack is being unwound due to an exception being thrown,
8525the exception is compared against each ``clause`` in turn. If it doesn't
8526match any of the clauses, and the ``cleanup`` flag is not set, then
8527unwinding continues further up the call stack.
8528
8529The ``landingpad`` instruction has several restrictions:
8530
8531- A landing pad block is a basic block which is the unwind destination
8532 of an '``invoke``' instruction.
8533- A landing pad block must have a '``landingpad``' instruction as its
8534 first non-PHI instruction.
8535- There can be only one '``landingpad``' instruction within the landing
8536 pad block.
8537- A basic block that is not a landing pad block may not include a
8538 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008539
8540Example:
8541""""""""
8542
8543.. code-block:: llvm
8544
8545 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008546 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008547 catch i8** @_ZTIi
8548 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008549 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008550 cleanup
8551 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008552 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008553 catch i8** @_ZTIi
8554 filter [1 x i8**] [@_ZTId]
8555
Joseph Tremoulet2adaa982016-01-10 04:46:10 +00008556.. _i_catchpad:
8557
8558'``catchpad``' Instruction
8559^^^^^^^^^^^^^^^^^^^^^^^^^^
8560
8561Syntax:
8562"""""""
8563
8564::
8565
8566 <resultval> = catchpad within <catchswitch> [<args>*]
8567
8568Overview:
8569"""""""""
8570
8571The '``catchpad``' instruction is used by `LLVM's exception handling
8572system <ExceptionHandling.html#overview>`_ to specify that a basic block
8573begins a catch handler --- one where a personality routine attempts to transfer
8574control to catch an exception.
8575
8576Arguments:
8577""""""""""
8578
8579The ``catchswitch`` operand must always be a token produced by a
8580:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
8581ensures that each ``catchpad`` has exactly one predecessor block, and it always
8582terminates in a ``catchswitch``.
8583
8584The ``args`` correspond to whatever information the personality routine
8585requires to know if this is an appropriate handler for the exception. Control
8586will transfer to the ``catchpad`` if this is the first appropriate handler for
8587the exception.
8588
8589The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
8590``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
8591pads.
8592
8593Semantics:
8594""""""""""
8595
8596When the call stack is being unwound due to an exception being thrown, the
8597exception is compared against the ``args``. If it doesn't match, control will
8598not reach the ``catchpad`` instruction. The representation of ``args`` is
8599entirely target and personality function-specific.
8600
8601Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
8602instruction must be the first non-phi of its parent basic block.
8603
8604The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
8605instructions is described in the
8606`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
8607
8608When a ``catchpad`` has been "entered" but not yet "exited" (as
8609described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8610it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8611that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
8612
8613Example:
8614""""""""
8615
8616.. code-block:: llvm
8617
8618 dispatch:
8619 %cs = catchswitch within none [label %handler0] unwind to caller
8620 ;; A catch block which can catch an integer.
8621 handler0:
8622 %tok = catchpad within %cs [i8** @_ZTIi]
8623
David Majnemer654e1302015-07-31 17:58:14 +00008624.. _i_cleanuppad:
8625
8626'``cleanuppad``' Instruction
8627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8628
8629Syntax:
8630"""""""
8631
8632::
8633
David Majnemer8a1c45d2015-12-12 05:38:55 +00008634 <resultval> = cleanuppad within <parent> [<args>*]
David Majnemer654e1302015-07-31 17:58:14 +00008635
8636Overview:
8637"""""""""
8638
8639The '``cleanuppad``' instruction is used by `LLVM's exception handling
8640system <ExceptionHandling.html#overview>`_ to specify that a basic block
8641is a cleanup block --- one where a personality routine attempts to
8642transfer control to run cleanup actions.
8643The ``args`` correspond to whatever additional
8644information the :ref:`personality function <personalityfn>` requires to
8645execute the cleanup.
Joseph Tremoulet8220bcc2015-08-23 00:26:33 +00008646The ``resultval`` has the type :ref:`token <t_token>` and is used to
David Majnemer8a1c45d2015-12-12 05:38:55 +00008647match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
8648The ``parent`` argument is the token of the funclet that contains the
8649``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
8650this operand may be the token ``none``.
David Majnemer654e1302015-07-31 17:58:14 +00008651
8652Arguments:
8653""""""""""
8654
8655The instruction takes a list of arbitrary values which are interpreted
8656by the :ref:`personality function <personalityfn>`.
8657
8658Semantics:
8659""""""""""
8660
David Majnemer654e1302015-07-31 17:58:14 +00008661When the call stack is being unwound due to an exception being thrown,
8662the :ref:`personality function <personalityfn>` transfers control to the
8663``cleanuppad`` with the aid of the personality-specific arguments.
Joseph Tremoulet9ce71f72015-09-03 09:09:43 +00008664As with calling conventions, how the personality function results are
8665represented in LLVM IR is target specific.
David Majnemer654e1302015-07-31 17:58:14 +00008666
8667The ``cleanuppad`` instruction has several restrictions:
8668
8669- A cleanup block is a basic block which is the unwind destination of
8670 an exceptional instruction.
8671- A cleanup block must have a '``cleanuppad``' instruction as its
8672 first non-PHI instruction.
8673- There can be only one '``cleanuppad``' instruction within the
8674 cleanup block.
8675- A basic block that is not a cleanup block may not include a
8676 '``cleanuppad``' instruction.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008677
Joseph Tremoulete28885e2016-01-10 04:28:38 +00008678When a ``cleanuppad`` has been "entered" but not yet "exited" (as
8679described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
8680it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
8681that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
David Majnemer8a1c45d2015-12-12 05:38:55 +00008682
David Majnemer654e1302015-07-31 17:58:14 +00008683Example:
8684""""""""
8685
8686.. code-block:: llvm
8687
David Majnemer8a1c45d2015-12-12 05:38:55 +00008688 %tok = cleanuppad within %cs []
David Majnemer654e1302015-07-31 17:58:14 +00008689
Sean Silvab084af42012-12-07 10:36:55 +00008690.. _intrinsics:
8691
8692Intrinsic Functions
8693===================
8694
8695LLVM supports the notion of an "intrinsic function". These functions
8696have well known names and semantics and are required to follow certain
8697restrictions. Overall, these intrinsics represent an extension mechanism
8698for the LLVM language that does not require changing all of the
8699transformations in LLVM when adding to the language (or the bitcode
8700reader/writer, the parser, etc...).
8701
8702Intrinsic function names must all start with an "``llvm.``" prefix. This
8703prefix is reserved in LLVM for intrinsic names; thus, function names may
8704not begin with this prefix. Intrinsic functions must always be external
8705functions: you cannot define the body of intrinsic functions. Intrinsic
8706functions may only be used in call or invoke instructions: it is illegal
8707to take the address of an intrinsic function. Additionally, because
8708intrinsic functions are part of the LLVM language, it is required if any
8709are added that they be documented here.
8710
8711Some intrinsic functions can be overloaded, i.e., the intrinsic
8712represents a family of functions that perform the same operation but on
8713different data types. Because LLVM can represent over 8 million
8714different integer types, overloading is used commonly to allow an
8715intrinsic function to operate on any integer type. One or more of the
8716argument types or the result type can be overloaded to accept any
8717integer type. Argument types may also be defined as exactly matching a
8718previous argument's type or the result type. This allows an intrinsic
8719function which accepts multiple arguments, but needs all of them to be
8720of the same type, to only be overloaded with respect to a single
8721argument or the result.
8722
8723Overloaded intrinsics will have the names of its overloaded argument
8724types encoded into its function name, each preceded by a period. Only
8725those types which are overloaded result in a name suffix. Arguments
8726whose type is matched against another type do not. For example, the
8727``llvm.ctpop`` function can take an integer of any width and returns an
8728integer of exactly the same integer width. This leads to a family of
8729functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8730``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8731overloaded, and only one type suffix is required. Because the argument's
8732type is matched against the return type, it does not require its own
8733name suffix.
8734
8735To learn how to add an intrinsic function, please see the `Extending
8736LLVM Guide <ExtendingLLVM.html>`_.
8737
8738.. _int_varargs:
8739
8740Variable Argument Handling Intrinsics
8741-------------------------------------
8742
8743Variable argument support is defined in LLVM with the
8744:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8745functions. These functions are related to the similarly named macros
8746defined in the ``<stdarg.h>`` header file.
8747
8748All of these functions operate on arguments that use a target-specific
8749value type "``va_list``". The LLVM assembly language reference manual
8750does not define what this type is, so all transformations should be
8751prepared to handle these functions regardless of the type used.
8752
8753This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8754variable argument handling intrinsic functions are used.
8755
8756.. code-block:: llvm
8757
Tim Northoverab60bb92014-11-02 01:21:51 +00008758 ; This struct is different for every platform. For most platforms,
8759 ; it is merely an i8*.
8760 %struct.va_list = type { i8* }
8761
8762 ; For Unix x86_64 platforms, va_list is the following struct:
8763 ; %struct.va_list = type { i32, i32, i8*, i8* }
8764
Sean Silvab084af42012-12-07 10:36:55 +00008765 define i32 @test(i32 %X, ...) {
8766 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008767 %ap = alloca %struct.va_list
8768 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008769 call void @llvm.va_start(i8* %ap2)
8770
8771 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008772 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008773
8774 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8775 %aq = alloca i8*
8776 %aq2 = bitcast i8** %aq to i8*
8777 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8778 call void @llvm.va_end(i8* %aq2)
8779
8780 ; Stop processing of arguments.
8781 call void @llvm.va_end(i8* %ap2)
8782 ret i32 %tmp
8783 }
8784
8785 declare void @llvm.va_start(i8*)
8786 declare void @llvm.va_copy(i8*, i8*)
8787 declare void @llvm.va_end(i8*)
8788
8789.. _int_va_start:
8790
8791'``llvm.va_start``' Intrinsic
8792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8793
8794Syntax:
8795"""""""
8796
8797::
8798
Nick Lewycky04f6de02013-09-11 22:04:52 +00008799 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008800
8801Overview:
8802"""""""""
8803
8804The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8805subsequent use by ``va_arg``.
8806
8807Arguments:
8808""""""""""
8809
8810The argument is a pointer to a ``va_list`` element to initialize.
8811
8812Semantics:
8813""""""""""
8814
8815The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8816available in C. In a target-dependent way, it initializes the
8817``va_list`` element to which the argument points, so that the next call
8818to ``va_arg`` will produce the first variable argument passed to the
8819function. Unlike the C ``va_start`` macro, this intrinsic does not need
8820to know the last argument of the function as the compiler can figure
8821that out.
8822
8823'``llvm.va_end``' Intrinsic
8824^^^^^^^^^^^^^^^^^^^^^^^^^^^
8825
8826Syntax:
8827"""""""
8828
8829::
8830
8831 declare void @llvm.va_end(i8* <arglist>)
8832
8833Overview:
8834"""""""""
8835
8836The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8837initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8838
8839Arguments:
8840""""""""""
8841
8842The argument is a pointer to a ``va_list`` to destroy.
8843
8844Semantics:
8845""""""""""
8846
8847The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8848available in C. In a target-dependent way, it destroys the ``va_list``
8849element to which the argument points. Calls to
8850:ref:`llvm.va_start <int_va_start>` and
8851:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8852``llvm.va_end``.
8853
8854.. _int_va_copy:
8855
8856'``llvm.va_copy``' Intrinsic
8857^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8858
8859Syntax:
8860"""""""
8861
8862::
8863
8864 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8865
8866Overview:
8867"""""""""
8868
8869The '``llvm.va_copy``' intrinsic copies the current argument position
8870from the source argument list to the destination argument list.
8871
8872Arguments:
8873""""""""""
8874
8875The first argument is a pointer to a ``va_list`` element to initialize.
8876The second argument is a pointer to a ``va_list`` element to copy from.
8877
8878Semantics:
8879""""""""""
8880
8881The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8882available in C. In a target-dependent way, it copies the source
8883``va_list`` element into the destination ``va_list`` element. This
8884intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8885arbitrarily complex and require, for example, memory allocation.
8886
8887Accurate Garbage Collection Intrinsics
8888--------------------------------------
8889
Philip Reamesc5b0f562015-02-25 23:52:06 +00008890LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008891(GC) requires the frontend to generate code containing appropriate intrinsic
8892calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008893intrinsics in a manner which is appropriate for the target collector.
8894
Sean Silvab084af42012-12-07 10:36:55 +00008895These intrinsics allow identification of :ref:`GC roots on the
8896stack <int_gcroot>`, as well as garbage collector implementations that
8897require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008898Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008899these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008900details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008901
Philip Reamesf80bbff2015-02-25 23:45:20 +00008902Experimental Statepoint Intrinsics
8903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8904
8905LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008906collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008907to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008908:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008909differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008910<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008911described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008912
8913.. _int_gcroot:
8914
8915'``llvm.gcroot``' Intrinsic
8916^^^^^^^^^^^^^^^^^^^^^^^^^^^
8917
8918Syntax:
8919"""""""
8920
8921::
8922
8923 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8924
8925Overview:
8926"""""""""
8927
8928The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8929the code generator, and allows some metadata to be associated with it.
8930
8931Arguments:
8932""""""""""
8933
8934The first argument specifies the address of a stack object that contains
8935the root pointer. The second pointer (which must be either a constant or
8936a global value address) contains the meta-data to be associated with the
8937root.
8938
8939Semantics:
8940""""""""""
8941
8942At runtime, a call to this intrinsic stores a null pointer into the
8943"ptrloc" location. At compile-time, the code generator generates
8944information to allow the runtime to find the pointer at GC safe points.
8945The '``llvm.gcroot``' intrinsic may only be used in a function which
8946:ref:`specifies a GC algorithm <gc>`.
8947
8948.. _int_gcread:
8949
8950'``llvm.gcread``' Intrinsic
8951^^^^^^^^^^^^^^^^^^^^^^^^^^^
8952
8953Syntax:
8954"""""""
8955
8956::
8957
8958 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8959
8960Overview:
8961"""""""""
8962
8963The '``llvm.gcread``' intrinsic identifies reads of references from heap
8964locations, allowing garbage collector implementations that require read
8965barriers.
8966
8967Arguments:
8968""""""""""
8969
8970The second argument is the address to read from, which should be an
8971address allocated from the garbage collector. The first object is a
8972pointer to the start of the referenced object, if needed by the language
8973runtime (otherwise null).
8974
8975Semantics:
8976""""""""""
8977
8978The '``llvm.gcread``' intrinsic has the same semantics as a load
8979instruction, but may be replaced with substantially more complex code by
8980the garbage collector runtime, as needed. The '``llvm.gcread``'
8981intrinsic may only be used in a function which :ref:`specifies a GC
8982algorithm <gc>`.
8983
8984.. _int_gcwrite:
8985
8986'``llvm.gcwrite``' Intrinsic
8987^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8988
8989Syntax:
8990"""""""
8991
8992::
8993
8994 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8995
8996Overview:
8997"""""""""
8998
8999The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
9000locations, allowing garbage collector implementations that require write
9001barriers (such as generational or reference counting collectors).
9002
9003Arguments:
9004""""""""""
9005
9006The first argument is the reference to store, the second is the start of
9007the object to store it to, and the third is the address of the field of
9008Obj to store to. If the runtime does not require a pointer to the
9009object, Obj may be null.
9010
9011Semantics:
9012""""""""""
9013
9014The '``llvm.gcwrite``' intrinsic has the same semantics as a store
9015instruction, but may be replaced with substantially more complex code by
9016the garbage collector runtime, as needed. The '``llvm.gcwrite``'
9017intrinsic may only be used in a function which :ref:`specifies a GC
9018algorithm <gc>`.
9019
9020Code Generator Intrinsics
9021-------------------------
9022
9023These intrinsics are provided by LLVM to expose special features that
9024may only be implemented with code generator support.
9025
9026'``llvm.returnaddress``' Intrinsic
9027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9028
9029Syntax:
9030"""""""
9031
9032::
9033
9034 declare i8 *@llvm.returnaddress(i32 <level>)
9035
9036Overview:
9037"""""""""
9038
9039The '``llvm.returnaddress``' intrinsic attempts to compute a
9040target-specific value indicating the return address of the current
9041function or one of its callers.
9042
9043Arguments:
9044""""""""""
9045
9046The argument to this intrinsic indicates which function to return the
9047address for. Zero indicates the calling function, one indicates its
9048caller, etc. The argument is **required** to be a constant integer
9049value.
9050
9051Semantics:
9052""""""""""
9053
9054The '``llvm.returnaddress``' intrinsic either returns a pointer
9055indicating the return address of the specified call frame, or zero if it
9056cannot be identified. The value returned by this intrinsic is likely to
9057be incorrect or 0 for arguments other than zero, so it should only be
9058used for debugging purposes.
9059
9060Note that calling this intrinsic does not prevent function inlining or
9061other aggressive transformations, so the value returned may not be that
9062of the obvious source-language caller.
9063
9064'``llvm.frameaddress``' Intrinsic
9065^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9066
9067Syntax:
9068"""""""
9069
9070::
9071
9072 declare i8* @llvm.frameaddress(i32 <level>)
9073
9074Overview:
9075"""""""""
9076
9077The '``llvm.frameaddress``' intrinsic attempts to return the
9078target-specific frame pointer value for the specified stack frame.
9079
9080Arguments:
9081""""""""""
9082
9083The argument to this intrinsic indicates which function to return the
9084frame pointer for. Zero indicates the calling function, one indicates
9085its caller, etc. The argument is **required** to be a constant integer
9086value.
9087
9088Semantics:
9089""""""""""
9090
9091The '``llvm.frameaddress``' intrinsic either returns a pointer
9092indicating the frame address of the specified call frame, or zero if it
9093cannot be identified. The value returned by this intrinsic is likely to
9094be incorrect or 0 for arguments other than zero, so it should only be
9095used for debugging purposes.
9096
9097Note that calling this intrinsic does not prevent function inlining or
9098other aggressive transformations, so the value returned may not be that
9099of the obvious source-language caller.
9100
Reid Kleckner60381792015-07-07 22:25:32 +00009101'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00009102^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9103
9104Syntax:
9105"""""""
9106
9107::
9108
Reid Kleckner60381792015-07-07 22:25:32 +00009109 declare void @llvm.localescape(...)
9110 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00009111
9112Overview:
9113"""""""""
9114
Reid Kleckner60381792015-07-07 22:25:32 +00009115The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
9116allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009117live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00009118computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00009119
9120Arguments:
9121""""""""""
9122
Reid Kleckner60381792015-07-07 22:25:32 +00009123All arguments to '``llvm.localescape``' must be pointers to static allocas or
9124casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009125once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00009126
Reid Kleckner60381792015-07-07 22:25:32 +00009127The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00009128bitcasted pointer to a function defined in the current module. The code
9129generator cannot determine the frame allocation offset of functions defined in
9130other modules.
9131
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00009132The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
9133call frame that is currently live. The return value of '``llvm.localaddress``'
9134is one way to produce such a value, but various runtimes also expose a suitable
9135pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00009136
Reid Kleckner60381792015-07-07 22:25:32 +00009137The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
9138'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00009139
Reid Klecknere9b89312015-01-13 00:48:10 +00009140Semantics:
9141""""""""""
9142
Reid Kleckner60381792015-07-07 22:25:32 +00009143These intrinsics allow a group of functions to share access to a set of local
9144stack allocations of a one parent function. The parent function may call the
9145'``llvm.localescape``' intrinsic once from the function entry block, and the
9146child functions can use '``llvm.localrecover``' to access the escaped allocas.
9147The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
9148the escaped allocas are allocated, which would break attempts to use
9149'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00009150
Renato Golinc7aea402014-05-06 16:51:25 +00009151.. _int_read_register:
9152.. _int_write_register:
9153
9154'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
9155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9156
9157Syntax:
9158"""""""
9159
9160::
9161
9162 declare i32 @llvm.read_register.i32(metadata)
9163 declare i64 @llvm.read_register.i64(metadata)
9164 declare void @llvm.write_register.i32(metadata, i32 @value)
9165 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00009166 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00009167
9168Overview:
9169"""""""""
9170
9171The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
9172provides access to the named register. The register must be valid on
9173the architecture being compiled to. The type needs to be compatible
9174with the register being read.
9175
9176Semantics:
9177""""""""""
9178
9179The '``llvm.read_register``' intrinsic returns the current value of the
9180register, where possible. The '``llvm.write_register``' intrinsic sets
9181the current value of the register, where possible.
9182
9183This is useful to implement named register global variables that need
9184to always be mapped to a specific register, as is common practice on
9185bare-metal programs including OS kernels.
9186
9187The compiler doesn't check for register availability or use of the used
9188register in surrounding code, including inline assembly. Because of that,
9189allocatable registers are not supported.
9190
9191Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00009192architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00009193work is needed to support other registers and even more so, allocatable
9194registers.
9195
Sean Silvab084af42012-12-07 10:36:55 +00009196.. _int_stacksave:
9197
9198'``llvm.stacksave``' Intrinsic
9199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9200
9201Syntax:
9202"""""""
9203
9204::
9205
9206 declare i8* @llvm.stacksave()
9207
9208Overview:
9209"""""""""
9210
9211The '``llvm.stacksave``' intrinsic is used to remember the current state
9212of the function stack, for use with
9213:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
9214implementing language features like scoped automatic variable sized
9215arrays in C99.
9216
9217Semantics:
9218""""""""""
9219
9220This intrinsic returns a opaque pointer value that can be passed to
9221:ref:`llvm.stackrestore <int_stackrestore>`. When an
9222``llvm.stackrestore`` intrinsic is executed with a value saved from
9223``llvm.stacksave``, it effectively restores the state of the stack to
9224the state it was in when the ``llvm.stacksave`` intrinsic executed. In
9225practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
9226were allocated after the ``llvm.stacksave`` was executed.
9227
9228.. _int_stackrestore:
9229
9230'``llvm.stackrestore``' Intrinsic
9231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9232
9233Syntax:
9234"""""""
9235
9236::
9237
9238 declare void @llvm.stackrestore(i8* %ptr)
9239
9240Overview:
9241"""""""""
9242
9243The '``llvm.stackrestore``' intrinsic is used to restore the state of
9244the function stack to the state it was in when the corresponding
9245:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
9246useful for implementing language features like scoped automatic variable
9247sized arrays in C99.
9248
9249Semantics:
9250""""""""""
9251
9252See the description for :ref:`llvm.stacksave <int_stacksave>`.
9253
Yury Gribovd7dbb662015-12-01 11:40:55 +00009254.. _int_get_dynamic_area_offset:
9255
9256'``llvm.get.dynamic.area.offset``' Intrinsic
Yury Gribov81f3f152015-12-01 13:24:48 +00009257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Yury Gribovd7dbb662015-12-01 11:40:55 +00009258
9259Syntax:
9260"""""""
9261
9262::
9263
9264 declare i32 @llvm.get.dynamic.area.offset.i32()
9265 declare i64 @llvm.get.dynamic.area.offset.i64()
9266
9267 Overview:
9268 """""""""
9269
9270 The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
9271 get the offset from native stack pointer to the address of the most
9272 recent dynamic alloca on the caller's stack. These intrinsics are
9273 intendend for use in combination with
9274 :ref:`llvm.stacksave <int_stacksave>` to get a
9275 pointer to the most recent dynamic alloca. This is useful, for example,
9276 for AddressSanitizer's stack unpoisoning routines.
9277
9278Semantics:
9279""""""""""
9280
9281 These intrinsics return a non-negative integer value that can be used to
9282 get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
9283 on the caller's stack. In particular, for targets where stack grows downwards,
9284 adding this offset to the native stack pointer would get the address of the most
9285 recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
9286 complicated, because substracting this value from stack pointer would get the address
9287 one past the end of the most recent dynamic alloca.
9288
9289 Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9290 returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
9291 compile-time-known constant value.
9292
9293 The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
9294 must match the target's generic address space's (address space 0) pointer type.
9295
Sean Silvab084af42012-12-07 10:36:55 +00009296'``llvm.prefetch``' Intrinsic
9297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9298
9299Syntax:
9300"""""""
9301
9302::
9303
9304 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9305
9306Overview:
9307"""""""""
9308
9309The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9310insert a prefetch instruction if supported; otherwise, it is a noop.
9311Prefetches have no effect on the behavior of the program but can change
9312its performance characteristics.
9313
9314Arguments:
9315""""""""""
9316
9317``address`` is the address to be prefetched, ``rw`` is the specifier
9318determining if the fetch should be for a read (0) or write (1), and
9319``locality`` is a temporal locality specifier ranging from (0) - no
9320locality, to (3) - extremely local keep in cache. The ``cache type``
9321specifies whether the prefetch is performed on the data (1) or
9322instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9323arguments must be constant integers.
9324
9325Semantics:
9326""""""""""
9327
9328This intrinsic does not modify the behavior of the program. In
9329particular, prefetches cannot trap and do not produce a value. On
9330targets that support this intrinsic, the prefetch can provide hints to
9331the processor cache for better performance.
9332
9333'``llvm.pcmarker``' Intrinsic
9334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9335
9336Syntax:
9337"""""""
9338
9339::
9340
9341 declare void @llvm.pcmarker(i32 <id>)
9342
9343Overview:
9344"""""""""
9345
9346The '``llvm.pcmarker``' intrinsic is a method to export a Program
9347Counter (PC) in a region of code to simulators and other tools. The
9348method is target specific, but it is expected that the marker will use
9349exported symbols to transmit the PC of the marker. The marker makes no
9350guarantees that it will remain with any specific instruction after
9351optimizations. It is possible that the presence of a marker will inhibit
9352optimizations. The intended use is to be inserted after optimizations to
9353allow correlations of simulation runs.
9354
9355Arguments:
9356""""""""""
9357
9358``id`` is a numerical id identifying the marker.
9359
9360Semantics:
9361""""""""""
9362
9363This intrinsic does not modify the behavior of the program. Backends
9364that do not support this intrinsic may ignore it.
9365
9366'``llvm.readcyclecounter``' Intrinsic
9367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9368
9369Syntax:
9370"""""""
9371
9372::
9373
9374 declare i64 @llvm.readcyclecounter()
9375
9376Overview:
9377"""""""""
9378
9379The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9380counter register (or similar low latency, high accuracy clocks) on those
9381targets that support it. On X86, it should map to RDTSC. On Alpha, it
9382should map to RPCC. As the backing counters overflow quickly (on the
9383order of 9 seconds on alpha), this should only be used for small
9384timings.
9385
9386Semantics:
9387""""""""""
9388
9389When directly supported, reading the cycle counter should not modify any
9390memory. Implementations are allowed to either return a application
9391specific value or a system wide value. On backends without support, this
9392is lowered to a constant 0.
9393
Tim Northoverbc933082013-05-23 19:11:20 +00009394Note that runtime support may be conditional on the privilege-level code is
9395running at and the host platform.
9396
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009397'``llvm.clear_cache``' Intrinsic
9398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9399
9400Syntax:
9401"""""""
9402
9403::
9404
9405 declare void @llvm.clear_cache(i8*, i8*)
9406
9407Overview:
9408"""""""""
9409
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009410The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9411in the specified range to the execution unit of the processor. On
9412targets with non-unified instruction and data cache, the implementation
9413flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009414
9415Semantics:
9416""""""""""
9417
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009418On platforms with coherent instruction and data caches (e.g. x86), this
9419intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009420cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009421instructions or a system call, if cache flushing requires special
9422privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009423
Sean Silvad02bf3e2014-04-07 22:29:53 +00009424The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009425time library.
Renato Golin93010e62014-03-26 14:01:32 +00009426
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009427This instrinsic does *not* empty the instruction pipeline. Modifications
9428of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009429
Justin Bogner61ba2e32014-12-08 18:02:35 +00009430'``llvm.instrprof_increment``' Intrinsic
9431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9432
9433Syntax:
9434"""""""
9435
9436::
9437
9438 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9439 i32 <num-counters>, i32 <index>)
9440
9441Overview:
9442"""""""""
9443
9444The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9445frontend for use with instrumentation based profiling. These will be
9446lowered by the ``-instrprof`` pass to generate execution counts of a
9447program at runtime.
9448
9449Arguments:
9450""""""""""
9451
9452The first argument is a pointer to a global variable containing the
9453name of the entity being instrumented. This should generally be the
9454(mangled) function name for a set of counters.
9455
9456The second argument is a hash value that can be used by the consumer
9457of the profile data to detect changes to the instrumented source, and
9458the third is the number of counters associated with ``name``. It is an
9459error if ``hash`` or ``num-counters`` differ between two instances of
9460``instrprof_increment`` that refer to the same name.
9461
9462The last argument refers to which of the counters for ``name`` should
9463be incremented. It should be a value between 0 and ``num-counters``.
9464
9465Semantics:
9466""""""""""
9467
9468This intrinsic represents an increment of a profiling counter. It will
9469cause the ``-instrprof`` pass to generate the appropriate data
9470structures and the code to increment the appropriate value, in a
9471format that can be written out by a compiler runtime and consumed via
9472the ``llvm-profdata`` tool.
9473
Betul Buyukkurt6fac1742015-11-18 18:14:55 +00009474'``llvm.instrprof_value_profile``' Intrinsic
9475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9476
9477Syntax:
9478"""""""
9479
9480::
9481
9482 declare void @llvm.instrprof_value_profile(i8* <name>, i64 <hash>,
9483 i64 <value>, i32 <value_kind>,
9484 i32 <index>)
9485
9486Overview:
9487"""""""""
9488
9489The '``llvm.instrprof_value_profile``' intrinsic can be emitted by a
9490frontend for use with instrumentation based profiling. This will be
9491lowered by the ``-instrprof`` pass to find out the target values,
9492instrumented expressions take in a program at runtime.
9493
9494Arguments:
9495""""""""""
9496
9497The first argument is a pointer to a global variable containing the
9498name of the entity being instrumented. ``name`` should generally be the
9499(mangled) function name for a set of counters.
9500
9501The second argument is a hash value that can be used by the consumer
9502of the profile data to detect changes to the instrumented source. It
9503is an error if ``hash`` differs between two instances of
9504``llvm.instrprof_*`` that refer to the same name.
9505
9506The third argument is the value of the expression being profiled. The profiled
9507expression's value should be representable as an unsigned 64-bit value. The
9508fourth argument represents the kind of value profiling that is being done. The
9509supported value profiling kinds are enumerated through the
9510``InstrProfValueKind`` type declared in the
9511``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
9512index of the instrumented expression within ``name``. It should be >= 0.
9513
9514Semantics:
9515""""""""""
9516
9517This intrinsic represents the point where a call to a runtime routine
9518should be inserted for value profiling of target expressions. ``-instrprof``
9519pass will generate the appropriate data structures and replace the
9520``llvm.instrprof_value_profile`` intrinsic with the call to the profile
9521runtime library with proper arguments.
9522
Sean Silvab084af42012-12-07 10:36:55 +00009523Standard C Library Intrinsics
9524-----------------------------
9525
9526LLVM provides intrinsics for a few important standard C library
9527functions. These intrinsics allow source-language front-ends to pass
9528information about the alignment of the pointer arguments to the code
9529generator, providing opportunity for more efficient code generation.
9530
9531.. _int_memcpy:
9532
9533'``llvm.memcpy``' Intrinsic
9534^^^^^^^^^^^^^^^^^^^^^^^^^^^
9535
9536Syntax:
9537"""""""
9538
9539This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9540integer bit width and for different address spaces. Not all targets
9541support all bit widths however.
9542
9543::
9544
9545 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9546 i32 <len>, i32 <align>, i1 <isvolatile>)
9547 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9548 i64 <len>, i32 <align>, i1 <isvolatile>)
9549
9550Overview:
9551"""""""""
9552
9553The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9554source location to the destination location.
9555
9556Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9557intrinsics do not return a value, takes extra alignment/isvolatile
9558arguments and the pointers can be in specified address spaces.
9559
9560Arguments:
9561""""""""""
9562
9563The first argument is a pointer to the destination, the second is a
9564pointer to the source. The third argument is an integer argument
9565specifying the number of bytes to copy, the fourth argument is the
9566alignment of the source and destination locations, and the fifth is a
9567boolean indicating a volatile access.
9568
9569If the call to this intrinsic has an alignment value that is not 0 or 1,
9570then the caller guarantees that both the source and destination pointers
9571are aligned to that boundary.
9572
9573If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9574a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9575very cleanly specified and it is unwise to depend on it.
9576
9577Semantics:
9578""""""""""
9579
9580The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9581source location to the destination location, which are not allowed to
9582overlap. It copies "len" bytes of memory over. If the argument is known
9583to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009584argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009585
9586'``llvm.memmove``' Intrinsic
9587^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9588
9589Syntax:
9590"""""""
9591
9592This is an overloaded intrinsic. You can use llvm.memmove on any integer
9593bit width and for different address space. Not all targets support all
9594bit widths however.
9595
9596::
9597
9598 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9599 i32 <len>, i32 <align>, i1 <isvolatile>)
9600 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9601 i64 <len>, i32 <align>, i1 <isvolatile>)
9602
9603Overview:
9604"""""""""
9605
9606The '``llvm.memmove.*``' intrinsics move a block of memory from the
9607source location to the destination location. It is similar to the
9608'``llvm.memcpy``' intrinsic but allows the two memory locations to
9609overlap.
9610
9611Note that, unlike the standard libc function, the ``llvm.memmove.*``
9612intrinsics do not return a value, takes extra alignment/isvolatile
9613arguments and the pointers can be in specified address spaces.
9614
9615Arguments:
9616""""""""""
9617
9618The first argument is a pointer to the destination, the second is a
9619pointer to the source. The third argument is an integer argument
9620specifying the number of bytes to copy, the fourth argument is the
9621alignment of the source and destination locations, and the fifth is a
9622boolean indicating a volatile access.
9623
9624If the call to this intrinsic has an alignment value that is not 0 or 1,
9625then the caller guarantees that the source and destination pointers are
9626aligned to that boundary.
9627
9628If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9629is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9630not very cleanly specified and it is unwise to depend on it.
9631
9632Semantics:
9633""""""""""
9634
9635The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9636source location to the destination location, which may overlap. It
9637copies "len" bytes of memory over. If the argument is known to be
9638aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009639otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009640
9641'``llvm.memset.*``' Intrinsics
9642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9643
9644Syntax:
9645"""""""
9646
9647This is an overloaded intrinsic. You can use llvm.memset on any integer
9648bit width and for different address spaces. However, not all targets
9649support all bit widths.
9650
9651::
9652
9653 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9654 i32 <len>, i32 <align>, i1 <isvolatile>)
9655 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9656 i64 <len>, i32 <align>, i1 <isvolatile>)
9657
9658Overview:
9659"""""""""
9660
9661The '``llvm.memset.*``' intrinsics fill a block of memory with a
9662particular byte value.
9663
9664Note that, unlike the standard libc function, the ``llvm.memset``
9665intrinsic does not return a value and takes extra alignment/volatile
9666arguments. Also, the destination can be in an arbitrary address space.
9667
9668Arguments:
9669""""""""""
9670
9671The first argument is a pointer to the destination to fill, the second
9672is the byte value with which to fill it, the third argument is an
9673integer argument specifying the number of bytes to fill, and the fourth
9674argument is the known alignment of the destination location.
9675
9676If the call to this intrinsic has an alignment value that is not 0 or 1,
9677then the caller guarantees that the destination pointer is aligned to
9678that boundary.
9679
9680If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9681a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9682very cleanly specified and it is unwise to depend on it.
9683
9684Semantics:
9685""""""""""
9686
9687The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9688at the destination location. If the argument is known to be aligned to
9689some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009690it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009691
9692'``llvm.sqrt.*``' Intrinsic
9693^^^^^^^^^^^^^^^^^^^^^^^^^^^
9694
9695Syntax:
9696"""""""
9697
9698This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9699floating point or vector of floating point type. Not all targets support
9700all types however.
9701
9702::
9703
9704 declare float @llvm.sqrt.f32(float %Val)
9705 declare double @llvm.sqrt.f64(double %Val)
9706 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9707 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9708 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9709
9710Overview:
9711"""""""""
9712
9713The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9714returning the same value as the libm '``sqrt``' functions would. Unlike
9715``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9716negative numbers other than -0.0 (which allows for better optimization,
9717because there is no need to worry about errno being set).
9718``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9719
9720Arguments:
9721""""""""""
9722
9723The argument and return value are floating point numbers of the same
9724type.
9725
9726Semantics:
9727""""""""""
9728
9729This function returns the sqrt of the specified operand if it is a
9730nonnegative floating point number.
9731
9732'``llvm.powi.*``' Intrinsic
9733^^^^^^^^^^^^^^^^^^^^^^^^^^^
9734
9735Syntax:
9736"""""""
9737
9738This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9739floating point or vector of floating point type. Not all targets support
9740all types however.
9741
9742::
9743
9744 declare float @llvm.powi.f32(float %Val, i32 %power)
9745 declare double @llvm.powi.f64(double %Val, i32 %power)
9746 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9747 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9748 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9749
9750Overview:
9751"""""""""
9752
9753The '``llvm.powi.*``' intrinsics return the first operand raised to the
9754specified (positive or negative) power. The order of evaluation of
9755multiplications is not defined. When a vector of floating point type is
9756used, the second argument remains a scalar integer value.
9757
9758Arguments:
9759""""""""""
9760
9761The second argument is an integer power, and the first is a value to
9762raise to that power.
9763
9764Semantics:
9765""""""""""
9766
9767This function returns the first value raised to the second power with an
9768unspecified sequence of rounding operations.
9769
9770'``llvm.sin.*``' Intrinsic
9771^^^^^^^^^^^^^^^^^^^^^^^^^^
9772
9773Syntax:
9774"""""""
9775
9776This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9777floating point or vector of floating point type. Not all targets support
9778all types however.
9779
9780::
9781
9782 declare float @llvm.sin.f32(float %Val)
9783 declare double @llvm.sin.f64(double %Val)
9784 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9785 declare fp128 @llvm.sin.f128(fp128 %Val)
9786 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9787
9788Overview:
9789"""""""""
9790
9791The '``llvm.sin.*``' intrinsics return the sine of the operand.
9792
9793Arguments:
9794""""""""""
9795
9796The argument and return value are floating point numbers of the same
9797type.
9798
9799Semantics:
9800""""""""""
9801
9802This function returns the sine of the specified operand, returning the
9803same values as the libm ``sin`` functions would, and handles error
9804conditions in the same way.
9805
9806'``llvm.cos.*``' Intrinsic
9807^^^^^^^^^^^^^^^^^^^^^^^^^^
9808
9809Syntax:
9810"""""""
9811
9812This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9813floating point or vector of floating point type. Not all targets support
9814all types however.
9815
9816::
9817
9818 declare float @llvm.cos.f32(float %Val)
9819 declare double @llvm.cos.f64(double %Val)
9820 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9821 declare fp128 @llvm.cos.f128(fp128 %Val)
9822 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9823
9824Overview:
9825"""""""""
9826
9827The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9828
9829Arguments:
9830""""""""""
9831
9832The argument and return value are floating point numbers of the same
9833type.
9834
9835Semantics:
9836""""""""""
9837
9838This function returns the cosine of the specified operand, returning the
9839same values as the libm ``cos`` functions would, and handles error
9840conditions in the same way.
9841
9842'``llvm.pow.*``' Intrinsic
9843^^^^^^^^^^^^^^^^^^^^^^^^^^
9844
9845Syntax:
9846"""""""
9847
9848This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9849floating point or vector of floating point type. Not all targets support
9850all types however.
9851
9852::
9853
9854 declare float @llvm.pow.f32(float %Val, float %Power)
9855 declare double @llvm.pow.f64(double %Val, double %Power)
9856 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9857 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9858 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9859
9860Overview:
9861"""""""""
9862
9863The '``llvm.pow.*``' intrinsics return the first operand raised to the
9864specified (positive or negative) power.
9865
9866Arguments:
9867""""""""""
9868
9869The second argument is a floating point power, and the first is a value
9870to raise to that power.
9871
9872Semantics:
9873""""""""""
9874
9875This function returns the first value raised to the second power,
9876returning the same values as the libm ``pow`` functions would, and
9877handles error conditions in the same way.
9878
9879'``llvm.exp.*``' Intrinsic
9880^^^^^^^^^^^^^^^^^^^^^^^^^^
9881
9882Syntax:
9883"""""""
9884
9885This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9886floating point or vector of floating point type. Not all targets support
9887all types however.
9888
9889::
9890
9891 declare float @llvm.exp.f32(float %Val)
9892 declare double @llvm.exp.f64(double %Val)
9893 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9894 declare fp128 @llvm.exp.f128(fp128 %Val)
9895 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9896
9897Overview:
9898"""""""""
9899
9900The '``llvm.exp.*``' intrinsics perform the exp function.
9901
9902Arguments:
9903""""""""""
9904
9905The argument and return value are floating point numbers of the same
9906type.
9907
9908Semantics:
9909""""""""""
9910
9911This function returns the same values as the libm ``exp`` functions
9912would, and handles error conditions in the same way.
9913
9914'``llvm.exp2.*``' Intrinsic
9915^^^^^^^^^^^^^^^^^^^^^^^^^^^
9916
9917Syntax:
9918"""""""
9919
9920This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9921floating point or vector of floating point type. Not all targets support
9922all types however.
9923
9924::
9925
9926 declare float @llvm.exp2.f32(float %Val)
9927 declare double @llvm.exp2.f64(double %Val)
9928 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9929 declare fp128 @llvm.exp2.f128(fp128 %Val)
9930 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9931
9932Overview:
9933"""""""""
9934
9935The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9936
9937Arguments:
9938""""""""""
9939
9940The argument and return value are floating point numbers of the same
9941type.
9942
9943Semantics:
9944""""""""""
9945
9946This function returns the same values as the libm ``exp2`` functions
9947would, and handles error conditions in the same way.
9948
9949'``llvm.log.*``' Intrinsic
9950^^^^^^^^^^^^^^^^^^^^^^^^^^
9951
9952Syntax:
9953"""""""
9954
9955This is an overloaded intrinsic. You can use ``llvm.log`` on any
9956floating point or vector of floating point type. Not all targets support
9957all types however.
9958
9959::
9960
9961 declare float @llvm.log.f32(float %Val)
9962 declare double @llvm.log.f64(double %Val)
9963 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9964 declare fp128 @llvm.log.f128(fp128 %Val)
9965 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9966
9967Overview:
9968"""""""""
9969
9970The '``llvm.log.*``' intrinsics perform the log function.
9971
9972Arguments:
9973""""""""""
9974
9975The argument and return value are floating point numbers of the same
9976type.
9977
9978Semantics:
9979""""""""""
9980
9981This function returns the same values as the libm ``log`` functions
9982would, and handles error conditions in the same way.
9983
9984'``llvm.log10.*``' Intrinsic
9985^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9986
9987Syntax:
9988"""""""
9989
9990This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9991floating point or vector of floating point type. Not all targets support
9992all types however.
9993
9994::
9995
9996 declare float @llvm.log10.f32(float %Val)
9997 declare double @llvm.log10.f64(double %Val)
9998 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9999 declare fp128 @llvm.log10.f128(fp128 %Val)
10000 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
10001
10002Overview:
10003"""""""""
10004
10005The '``llvm.log10.*``' intrinsics perform the log10 function.
10006
10007Arguments:
10008""""""""""
10009
10010The argument and return value are floating point numbers of the same
10011type.
10012
10013Semantics:
10014""""""""""
10015
10016This function returns the same values as the libm ``log10`` functions
10017would, and handles error conditions in the same way.
10018
10019'``llvm.log2.*``' Intrinsic
10020^^^^^^^^^^^^^^^^^^^^^^^^^^^
10021
10022Syntax:
10023"""""""
10024
10025This is an overloaded intrinsic. You can use ``llvm.log2`` on any
10026floating point or vector of floating point type. Not all targets support
10027all types however.
10028
10029::
10030
10031 declare float @llvm.log2.f32(float %Val)
10032 declare double @llvm.log2.f64(double %Val)
10033 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
10034 declare fp128 @llvm.log2.f128(fp128 %Val)
10035 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
10036
10037Overview:
10038"""""""""
10039
10040The '``llvm.log2.*``' intrinsics perform the log2 function.
10041
10042Arguments:
10043""""""""""
10044
10045The argument and return value are floating point numbers of the same
10046type.
10047
10048Semantics:
10049""""""""""
10050
10051This function returns the same values as the libm ``log2`` functions
10052would, and handles error conditions in the same way.
10053
10054'``llvm.fma.*``' Intrinsic
10055^^^^^^^^^^^^^^^^^^^^^^^^^^
10056
10057Syntax:
10058"""""""
10059
10060This is an overloaded intrinsic. You can use ``llvm.fma`` on any
10061floating point or vector of floating point type. Not all targets support
10062all types however.
10063
10064::
10065
10066 declare float @llvm.fma.f32(float %a, float %b, float %c)
10067 declare double @llvm.fma.f64(double %a, double %b, double %c)
10068 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
10069 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
10070 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
10071
10072Overview:
10073"""""""""
10074
10075The '``llvm.fma.*``' intrinsics perform the fused multiply-add
10076operation.
10077
10078Arguments:
10079""""""""""
10080
10081The argument and return value are floating point numbers of the same
10082type.
10083
10084Semantics:
10085""""""""""
10086
10087This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010088would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +000010089
10090'``llvm.fabs.*``' Intrinsic
10091^^^^^^^^^^^^^^^^^^^^^^^^^^^
10092
10093Syntax:
10094"""""""
10095
10096This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
10097floating point or vector of floating point type. Not all targets support
10098all types however.
10099
10100::
10101
10102 declare float @llvm.fabs.f32(float %Val)
10103 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010104 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010105 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010106 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +000010107
10108Overview:
10109"""""""""
10110
10111The '``llvm.fabs.*``' intrinsics return the absolute value of the
10112operand.
10113
10114Arguments:
10115""""""""""
10116
10117The argument and return value are floating point numbers of the same
10118type.
10119
10120Semantics:
10121""""""""""
10122
10123This function returns the same values as the libm ``fabs`` functions
10124would, and handles error conditions in the same way.
10125
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010126'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010128
10129Syntax:
10130"""""""
10131
10132This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
10133floating point or vector of floating point type. Not all targets support
10134all types however.
10135
10136::
10137
Matt Arsenault64313c92014-10-22 18:25:02 +000010138 declare float @llvm.minnum.f32(float %Val0, float %Val1)
10139 declare double @llvm.minnum.f64(double %Val0, double %Val1)
10140 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10141 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
10142 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010143
10144Overview:
10145"""""""""
10146
10147The '``llvm.minnum.*``' intrinsics return the minimum of the two
10148arguments.
10149
10150
10151Arguments:
10152""""""""""
10153
10154The arguments and return value are floating point numbers of the same
10155type.
10156
10157Semantics:
10158""""""""""
10159
10160Follows the IEEE-754 semantics for minNum, which also match for libm's
10161fmin.
10162
10163If either operand is a NaN, returns the other non-NaN operand. Returns
10164NaN only if both operands are NaN. If the operands compare equal,
10165returns a value that compares equal to both operands. This means that
10166fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10167
10168'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +000010169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010170
10171Syntax:
10172"""""""
10173
10174This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
10175floating point or vector of floating point type. Not all targets support
10176all types however.
10177
10178::
10179
Matt Arsenault64313c92014-10-22 18:25:02 +000010180 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
10181 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
10182 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
10183 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
10184 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +000010185
10186Overview:
10187"""""""""
10188
10189The '``llvm.maxnum.*``' intrinsics return the maximum of the two
10190arguments.
10191
10192
10193Arguments:
10194""""""""""
10195
10196The arguments and return value are floating point numbers of the same
10197type.
10198
10199Semantics:
10200""""""""""
10201Follows the IEEE-754 semantics for maxNum, which also match for libm's
10202fmax.
10203
10204If either operand is a NaN, returns the other non-NaN operand. Returns
10205NaN only if both operands are NaN. If the operands compare equal,
10206returns a value that compares equal to both operands. This means that
10207fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
10208
Hal Finkel0c5c01aa2013-08-19 23:35:46 +000010209'``llvm.copysign.*``' Intrinsic
10210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10211
10212Syntax:
10213"""""""
10214
10215This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
10216floating point or vector of floating point type. Not all targets support
10217all types however.
10218
10219::
10220
10221 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
10222 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
10223 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
10224 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
10225 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
10226
10227Overview:
10228"""""""""
10229
10230The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
10231first operand and the sign of the second operand.
10232
10233Arguments:
10234""""""""""
10235
10236The arguments and return value are floating point numbers of the same
10237type.
10238
10239Semantics:
10240""""""""""
10241
10242This function returns the same values as the libm ``copysign``
10243functions would, and handles error conditions in the same way.
10244
Sean Silvab084af42012-12-07 10:36:55 +000010245'``llvm.floor.*``' Intrinsic
10246^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10247
10248Syntax:
10249"""""""
10250
10251This is an overloaded intrinsic. You can use ``llvm.floor`` on any
10252floating point or vector of floating point type. Not all targets support
10253all types however.
10254
10255::
10256
10257 declare float @llvm.floor.f32(float %Val)
10258 declare double @llvm.floor.f64(double %Val)
10259 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
10260 declare fp128 @llvm.floor.f128(fp128 %Val)
10261 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
10262
10263Overview:
10264"""""""""
10265
10266The '``llvm.floor.*``' intrinsics return the floor of the operand.
10267
10268Arguments:
10269""""""""""
10270
10271The argument and return value are floating point numbers of the same
10272type.
10273
10274Semantics:
10275""""""""""
10276
10277This function returns the same values as the libm ``floor`` functions
10278would, and handles error conditions in the same way.
10279
10280'``llvm.ceil.*``' Intrinsic
10281^^^^^^^^^^^^^^^^^^^^^^^^^^^
10282
10283Syntax:
10284"""""""
10285
10286This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
10287floating point or vector of floating point type. Not all targets support
10288all types however.
10289
10290::
10291
10292 declare float @llvm.ceil.f32(float %Val)
10293 declare double @llvm.ceil.f64(double %Val)
10294 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
10295 declare fp128 @llvm.ceil.f128(fp128 %Val)
10296 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
10297
10298Overview:
10299"""""""""
10300
10301The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
10302
10303Arguments:
10304""""""""""
10305
10306The argument and return value are floating point numbers of the same
10307type.
10308
10309Semantics:
10310""""""""""
10311
10312This function returns the same values as the libm ``ceil`` functions
10313would, and handles error conditions in the same way.
10314
10315'``llvm.trunc.*``' Intrinsic
10316^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10317
10318Syntax:
10319"""""""
10320
10321This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
10322floating point or vector of floating point type. Not all targets support
10323all types however.
10324
10325::
10326
10327 declare float @llvm.trunc.f32(float %Val)
10328 declare double @llvm.trunc.f64(double %Val)
10329 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
10330 declare fp128 @llvm.trunc.f128(fp128 %Val)
10331 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
10332
10333Overview:
10334"""""""""
10335
10336The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
10337nearest integer not larger in magnitude than the operand.
10338
10339Arguments:
10340""""""""""
10341
10342The argument and return value are floating point numbers of the same
10343type.
10344
10345Semantics:
10346""""""""""
10347
10348This function returns the same values as the libm ``trunc`` functions
10349would, and handles error conditions in the same way.
10350
10351'``llvm.rint.*``' Intrinsic
10352^^^^^^^^^^^^^^^^^^^^^^^^^^^
10353
10354Syntax:
10355"""""""
10356
10357This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10358floating point or vector of floating point type. Not all targets support
10359all types however.
10360
10361::
10362
10363 declare float @llvm.rint.f32(float %Val)
10364 declare double @llvm.rint.f64(double %Val)
10365 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10366 declare fp128 @llvm.rint.f128(fp128 %Val)
10367 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10368
10369Overview:
10370"""""""""
10371
10372The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10373nearest integer. It may raise an inexact floating-point exception if the
10374operand isn't an integer.
10375
10376Arguments:
10377""""""""""
10378
10379The argument and return value are floating point numbers of the same
10380type.
10381
10382Semantics:
10383""""""""""
10384
10385This function returns the same values as the libm ``rint`` functions
10386would, and handles error conditions in the same way.
10387
10388'``llvm.nearbyint.*``' Intrinsic
10389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10390
10391Syntax:
10392"""""""
10393
10394This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10395floating point or vector of floating point type. Not all targets support
10396all types however.
10397
10398::
10399
10400 declare float @llvm.nearbyint.f32(float %Val)
10401 declare double @llvm.nearbyint.f64(double %Val)
10402 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10403 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10404 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10405
10406Overview:
10407"""""""""
10408
10409The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10410nearest integer.
10411
10412Arguments:
10413""""""""""
10414
10415The argument and return value are floating point numbers of the same
10416type.
10417
10418Semantics:
10419""""""""""
10420
10421This function returns the same values as the libm ``nearbyint``
10422functions would, and handles error conditions in the same way.
10423
Hal Finkel171817e2013-08-07 22:49:12 +000010424'``llvm.round.*``' Intrinsic
10425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10426
10427Syntax:
10428"""""""
10429
10430This is an overloaded intrinsic. You can use ``llvm.round`` on any
10431floating point or vector of floating point type. Not all targets support
10432all types however.
10433
10434::
10435
10436 declare float @llvm.round.f32(float %Val)
10437 declare double @llvm.round.f64(double %Val)
10438 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10439 declare fp128 @llvm.round.f128(fp128 %Val)
10440 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10441
10442Overview:
10443"""""""""
10444
10445The '``llvm.round.*``' intrinsics returns the operand rounded to the
10446nearest integer.
10447
10448Arguments:
10449""""""""""
10450
10451The argument and return value are floating point numbers of the same
10452type.
10453
10454Semantics:
10455""""""""""
10456
10457This function returns the same values as the libm ``round``
10458functions would, and handles error conditions in the same way.
10459
Sean Silvab084af42012-12-07 10:36:55 +000010460Bit Manipulation Intrinsics
10461---------------------------
10462
10463LLVM provides intrinsics for a few important bit manipulation
10464operations. These allow efficient code generation for some algorithms.
10465
James Molloy90111f72015-11-12 12:29:09 +000010466'``llvm.bitreverse.*``' Intrinsics
Akira Hatanaka7f5562b2015-11-13 21:09:57 +000010467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
James Molloy90111f72015-11-12 12:29:09 +000010468
10469Syntax:
10470"""""""
10471
10472This is an overloaded intrinsic function. You can use bitreverse on any
10473integer type.
10474
10475::
10476
10477 declare i16 @llvm.bitreverse.i16(i16 <id>)
10478 declare i32 @llvm.bitreverse.i32(i32 <id>)
10479 declare i64 @llvm.bitreverse.i64(i64 <id>)
10480
10481Overview:
10482"""""""""
10483
10484The '``llvm.bitreverse``' family of intrinsics is used to reverse the
10485bitpattern of an integer value; for example ``0b1234567`` becomes
10486``0b7654321``.
10487
10488Semantics:
10489""""""""""
10490
10491The ``llvm.bitreverse.iN`` intrinsic returns an i16 value that has bit
10492``M`` in the input moved to bit ``N-M`` in the output.
10493
Sean Silvab084af42012-12-07 10:36:55 +000010494'``llvm.bswap.*``' Intrinsics
10495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10496
10497Syntax:
10498"""""""
10499
10500This is an overloaded intrinsic function. You can use bswap on any
10501integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10502
10503::
10504
10505 declare i16 @llvm.bswap.i16(i16 <id>)
10506 declare i32 @llvm.bswap.i32(i32 <id>)
10507 declare i64 @llvm.bswap.i64(i64 <id>)
10508
10509Overview:
10510"""""""""
10511
10512The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10513values with an even number of bytes (positive multiple of 16 bits).
10514These are useful for performing operations on data that is not in the
10515target's native byte order.
10516
10517Semantics:
10518""""""""""
10519
10520The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10521and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10522intrinsic returns an i32 value that has the four bytes of the input i32
10523swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10524returned i32 will have its bytes in 3, 2, 1, 0 order. The
10525``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10526concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10527respectively).
10528
10529'``llvm.ctpop.*``' Intrinsic
10530^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10531
10532Syntax:
10533"""""""
10534
10535This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10536bit width, or on any vector with integer elements. Not all targets
10537support all bit widths or vector types, however.
10538
10539::
10540
10541 declare i8 @llvm.ctpop.i8(i8 <src>)
10542 declare i16 @llvm.ctpop.i16(i16 <src>)
10543 declare i32 @llvm.ctpop.i32(i32 <src>)
10544 declare i64 @llvm.ctpop.i64(i64 <src>)
10545 declare i256 @llvm.ctpop.i256(i256 <src>)
10546 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10547
10548Overview:
10549"""""""""
10550
10551The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10552in a value.
10553
10554Arguments:
10555""""""""""
10556
10557The only argument is the value to be counted. The argument may be of any
10558integer type, or a vector with integer elements. The return type must
10559match the argument type.
10560
10561Semantics:
10562""""""""""
10563
10564The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10565each element of a vector.
10566
10567'``llvm.ctlz.*``' Intrinsic
10568^^^^^^^^^^^^^^^^^^^^^^^^^^^
10569
10570Syntax:
10571"""""""
10572
10573This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10574integer bit width, or any vector whose elements are integers. Not all
10575targets support all bit widths or vector types, however.
10576
10577::
10578
10579 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10580 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10581 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10582 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10583 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10584 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10585
10586Overview:
10587"""""""""
10588
10589The '``llvm.ctlz``' family of intrinsic functions counts the number of
10590leading zeros in a variable.
10591
10592Arguments:
10593""""""""""
10594
10595The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010596any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010597type must match the first argument type.
10598
10599The second argument must be a constant and is a flag to indicate whether
10600the intrinsic should ensure that a zero as the first argument produces a
10601defined result. Historically some architectures did not provide a
10602defined result for zero values as efficiently, and many algorithms are
10603now predicated on avoiding zero-value inputs.
10604
10605Semantics:
10606""""""""""
10607
10608The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10609zeros in a variable, or within each element of the vector. If
10610``src == 0`` then the result is the size in bits of the type of ``src``
10611if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10612``llvm.ctlz(i32 2) = 30``.
10613
10614'``llvm.cttz.*``' Intrinsic
10615^^^^^^^^^^^^^^^^^^^^^^^^^^^
10616
10617Syntax:
10618"""""""
10619
10620This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10621integer bit width, or any vector of integer elements. Not all targets
10622support all bit widths or vector types, however.
10623
10624::
10625
10626 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10627 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10628 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10629 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10630 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10631 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10632
10633Overview:
10634"""""""""
10635
10636The '``llvm.cttz``' family of intrinsic functions counts the number of
10637trailing zeros.
10638
10639Arguments:
10640""""""""""
10641
10642The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010643any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010644type must match the first argument type.
10645
10646The second argument must be a constant and is a flag to indicate whether
10647the intrinsic should ensure that a zero as the first argument produces a
10648defined result. Historically some architectures did not provide a
10649defined result for zero values as efficiently, and many algorithms are
10650now predicated on avoiding zero-value inputs.
10651
10652Semantics:
10653""""""""""
10654
10655The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10656zeros in a variable, or within each element of a vector. If ``src == 0``
10657then the result is the size in bits of the type of ``src`` if
10658``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10659``llvm.cttz(2) = 1``.
10660
Philip Reames34843ae2015-03-05 05:55:55 +000010661.. _int_overflow:
10662
Sean Silvab084af42012-12-07 10:36:55 +000010663Arithmetic with Overflow Intrinsics
10664-----------------------------------
10665
10666LLVM provides intrinsics for some arithmetic with overflow operations.
10667
10668'``llvm.sadd.with.overflow.*``' Intrinsics
10669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10670
10671Syntax:
10672"""""""
10673
10674This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10675on any integer bit width.
10676
10677::
10678
10679 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10680 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10681 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10682
10683Overview:
10684"""""""""
10685
10686The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10687a signed addition of the two arguments, and indicate whether an overflow
10688occurred during the signed summation.
10689
10690Arguments:
10691""""""""""
10692
10693The arguments (%a and %b) and the first element of the result structure
10694may be of integer types of any bit width, but they must have the same
10695bit width. The second element of the result structure must be of type
10696``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10697addition.
10698
10699Semantics:
10700""""""""""
10701
10702The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010703a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010704first element of which is the signed summation, and the second element
10705of which is a bit specifying if the signed summation resulted in an
10706overflow.
10707
10708Examples:
10709"""""""""
10710
10711.. code-block:: llvm
10712
10713 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10714 %sum = extractvalue {i32, i1} %res, 0
10715 %obit = extractvalue {i32, i1} %res, 1
10716 br i1 %obit, label %overflow, label %normal
10717
10718'``llvm.uadd.with.overflow.*``' Intrinsics
10719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10720
10721Syntax:
10722"""""""
10723
10724This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10725on any integer bit width.
10726
10727::
10728
10729 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10730 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10731 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10732
10733Overview:
10734"""""""""
10735
10736The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10737an unsigned addition of the two arguments, and indicate whether a carry
10738occurred during the unsigned summation.
10739
10740Arguments:
10741""""""""""
10742
10743The arguments (%a and %b) and the first element of the result structure
10744may be of integer types of any bit width, but they must have the same
10745bit width. The second element of the result structure must be of type
10746``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10747addition.
10748
10749Semantics:
10750""""""""""
10751
10752The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010753an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010754first element of which is the sum, and the second element of which is a
10755bit specifying if the unsigned summation resulted in a carry.
10756
10757Examples:
10758"""""""""
10759
10760.. code-block:: llvm
10761
10762 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10763 %sum = extractvalue {i32, i1} %res, 0
10764 %obit = extractvalue {i32, i1} %res, 1
10765 br i1 %obit, label %carry, label %normal
10766
10767'``llvm.ssub.with.overflow.*``' Intrinsics
10768^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10769
10770Syntax:
10771"""""""
10772
10773This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10774on any integer bit width.
10775
10776::
10777
10778 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10779 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10780 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10781
10782Overview:
10783"""""""""
10784
10785The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10786a signed subtraction of the two arguments, and indicate whether an
10787overflow occurred during the signed subtraction.
10788
10789Arguments:
10790""""""""""
10791
10792The arguments (%a and %b) and the first element of the result structure
10793may be of integer types of any bit width, but they must have the same
10794bit width. The second element of the result structure must be of type
10795``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10796subtraction.
10797
10798Semantics:
10799""""""""""
10800
10801The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010802a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010803first element of which is the subtraction, and the second element of
10804which is a bit specifying if the signed subtraction resulted in an
10805overflow.
10806
10807Examples:
10808"""""""""
10809
10810.. code-block:: llvm
10811
10812 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10813 %sum = extractvalue {i32, i1} %res, 0
10814 %obit = extractvalue {i32, i1} %res, 1
10815 br i1 %obit, label %overflow, label %normal
10816
10817'``llvm.usub.with.overflow.*``' Intrinsics
10818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10819
10820Syntax:
10821"""""""
10822
10823This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10824on any integer bit width.
10825
10826::
10827
10828 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10829 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10830 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10831
10832Overview:
10833"""""""""
10834
10835The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10836an unsigned subtraction of the two arguments, and indicate whether an
10837overflow occurred during the unsigned subtraction.
10838
10839Arguments:
10840""""""""""
10841
10842The arguments (%a and %b) and the first element of the result structure
10843may be of integer types of any bit width, but they must have the same
10844bit width. The second element of the result structure must be of type
10845``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10846subtraction.
10847
10848Semantics:
10849""""""""""
10850
10851The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010852an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010853the first element of which is the subtraction, and the second element of
10854which is a bit specifying if the unsigned subtraction resulted in an
10855overflow.
10856
10857Examples:
10858"""""""""
10859
10860.. code-block:: llvm
10861
10862 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10863 %sum = extractvalue {i32, i1} %res, 0
10864 %obit = extractvalue {i32, i1} %res, 1
10865 br i1 %obit, label %overflow, label %normal
10866
10867'``llvm.smul.with.overflow.*``' Intrinsics
10868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10869
10870Syntax:
10871"""""""
10872
10873This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10874on any integer bit width.
10875
10876::
10877
10878 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10879 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10880 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10881
10882Overview:
10883"""""""""
10884
10885The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10886a signed multiplication of the two arguments, and indicate whether an
10887overflow occurred during the signed multiplication.
10888
10889Arguments:
10890""""""""""
10891
10892The arguments (%a and %b) and the first element of the result structure
10893may be of integer types of any bit width, but they must have the same
10894bit width. The second element of the result structure must be of type
10895``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10896multiplication.
10897
10898Semantics:
10899""""""""""
10900
10901The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010902a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010903the first element of which is the multiplication, and the second element
10904of which is a bit specifying if the signed multiplication resulted in an
10905overflow.
10906
10907Examples:
10908"""""""""
10909
10910.. code-block:: llvm
10911
10912 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10913 %sum = extractvalue {i32, i1} %res, 0
10914 %obit = extractvalue {i32, i1} %res, 1
10915 br i1 %obit, label %overflow, label %normal
10916
10917'``llvm.umul.with.overflow.*``' Intrinsics
10918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10919
10920Syntax:
10921"""""""
10922
10923This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10924on any integer bit width.
10925
10926::
10927
10928 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10929 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10930 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10931
10932Overview:
10933"""""""""
10934
10935The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10936a unsigned multiplication of the two arguments, and indicate whether an
10937overflow occurred during the unsigned multiplication.
10938
10939Arguments:
10940""""""""""
10941
10942The arguments (%a and %b) and the first element of the result structure
10943may be of integer types of any bit width, but they must have the same
10944bit width. The second element of the result structure must be of type
10945``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10946multiplication.
10947
10948Semantics:
10949""""""""""
10950
10951The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010952an unsigned multiplication of the two arguments. They return a structure ---
10953the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010954element of which is a bit specifying if the unsigned multiplication
10955resulted in an overflow.
10956
10957Examples:
10958"""""""""
10959
10960.. code-block:: llvm
10961
10962 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10963 %sum = extractvalue {i32, i1} %res, 0
10964 %obit = extractvalue {i32, i1} %res, 1
10965 br i1 %obit, label %overflow, label %normal
10966
10967Specialised Arithmetic Intrinsics
10968---------------------------------
10969
Owen Anderson1056a922015-07-11 07:01:27 +000010970'``llvm.canonicalize.*``' Intrinsic
10971^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10972
10973Syntax:
10974"""""""
10975
10976::
10977
10978 declare float @llvm.canonicalize.f32(float %a)
10979 declare double @llvm.canonicalize.f64(double %b)
10980
10981Overview:
10982"""""""""
10983
10984The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010985encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010986implementing certain numeric primitives such as frexp. The canonical encoding is
10987defined by IEEE-754-2008 to be:
10988
10989::
10990
10991 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010992 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010993 numbers, infinities, and NaNs, especially in decimal formats.
10994
10995This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010996conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010997according to section 6.2.
10998
10999Examples of non-canonical encodings:
11000
Sean Silvaa1190322015-08-06 22:56:48 +000011001- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000011002 converted to a canonical representation per hardware-specific protocol.
11003- Many normal decimal floating point numbers have non-canonical alternative
11004 encodings.
11005- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
11006 These are treated as non-canonical encodings of zero and with be flushed to
11007 a zero of the same sign by this operation.
11008
11009Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
11010default exception handling must signal an invalid exception, and produce a
11011quiet NaN result.
11012
11013This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000011014that the compiler does not constant fold the operation. Likewise, division by
110151.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000011016-0.0 is also sufficient provided that the rounding mode is not -Infinity.
11017
Sean Silvaa1190322015-08-06 22:56:48 +000011018``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000011019
11020- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
11021- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
11022 to ``(x == y)``
11023
11024Additionally, the sign of zero must be conserved:
11025``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
11026
11027The payload bits of a NaN must be conserved, with two exceptions.
11028First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000011029must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000011030usual methods.
11031
11032The canonicalization operation may be optimized away if:
11033
Sean Silvaa1190322015-08-06 22:56:48 +000011034- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000011035 floating-point operation that is required by the standard to be canonical.
11036- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000011037 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000011038
Sean Silvab084af42012-12-07 10:36:55 +000011039'``llvm.fmuladd.*``' Intrinsic
11040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11041
11042Syntax:
11043"""""""
11044
11045::
11046
11047 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
11048 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
11049
11050Overview:
11051"""""""""
11052
11053The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000011054expressions that can be fused if the code generator determines that (a) the
11055target instruction set has support for a fused operation, and (b) that the
11056fused operation is more efficient than the equivalent, separate pair of mul
11057and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000011058
11059Arguments:
11060""""""""""
11061
11062The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
11063multiplicands, a and b, and an addend c.
11064
11065Semantics:
11066""""""""""
11067
11068The expression:
11069
11070::
11071
11072 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
11073
11074is equivalent to the expression a \* b + c, except that rounding will
11075not be performed between the multiplication and addition steps if the
11076code generator fuses the operations. Fusion is not guaranteed, even if
11077the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000011078corresponding llvm.fma.\* intrinsic function should be used
11079instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000011080
11081Examples:
11082"""""""""
11083
11084.. code-block:: llvm
11085
Tim Northover675a0962014-06-13 14:24:23 +000011086 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000011087
11088Half Precision Floating Point Intrinsics
11089----------------------------------------
11090
11091For most target platforms, half precision floating point is a
11092storage-only format. This means that it is a dense encoding (in memory)
11093but does not support computation in the format.
11094
11095This means that code must first load the half-precision floating point
11096value as an i16, then convert it to float with
11097:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
11098then be performed on the float value (including extending to double
11099etc). To store the value back to memory, it is first converted to float
11100if needed, then converted to i16 with
11101:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
11102i16 value.
11103
11104.. _int_convert_to_fp16:
11105
11106'``llvm.convert.to.fp16``' Intrinsic
11107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11108
11109Syntax:
11110"""""""
11111
11112::
11113
Tim Northoverfd7e4242014-07-17 10:51:23 +000011114 declare i16 @llvm.convert.to.fp16.f32(float %a)
11115 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000011116
11117Overview:
11118"""""""""
11119
Tim Northoverfd7e4242014-07-17 10:51:23 +000011120The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11121conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000011122
11123Arguments:
11124""""""""""
11125
11126The intrinsic function contains single argument - the value to be
11127converted.
11128
11129Semantics:
11130""""""""""
11131
Tim Northoverfd7e4242014-07-17 10:51:23 +000011132The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
11133conventional floating point format to half precision floating point format. The
11134return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000011135
11136Examples:
11137"""""""""
11138
11139.. code-block:: llvm
11140
Tim Northoverfd7e4242014-07-17 10:51:23 +000011141 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000011142 store i16 %res, i16* @x, align 2
11143
11144.. _int_convert_from_fp16:
11145
11146'``llvm.convert.from.fp16``' Intrinsic
11147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11148
11149Syntax:
11150"""""""
11151
11152::
11153
Tim Northoverfd7e4242014-07-17 10:51:23 +000011154 declare float @llvm.convert.from.fp16.f32(i16 %a)
11155 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011156
11157Overview:
11158"""""""""
11159
11160The '``llvm.convert.from.fp16``' intrinsic function performs a
11161conversion from half precision floating point format to single precision
11162floating point format.
11163
11164Arguments:
11165""""""""""
11166
11167The intrinsic function contains single argument - the value to be
11168converted.
11169
11170Semantics:
11171""""""""""
11172
11173The '``llvm.convert.from.fp16``' intrinsic function performs a
11174conversion from half single precision floating point format to single
11175precision floating point format. The input half-float value is
11176represented by an ``i16`` value.
11177
11178Examples:
11179"""""""""
11180
11181.. code-block:: llvm
11182
David Blaikiec7aabbb2015-03-04 22:06:14 +000011183 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000011184 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000011185
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000011186.. _dbg_intrinsics:
11187
Sean Silvab084af42012-12-07 10:36:55 +000011188Debugger Intrinsics
11189-------------------
11190
11191The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
11192prefix), are described in the `LLVM Source Level
11193Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
11194document.
11195
11196Exception Handling Intrinsics
11197-----------------------------
11198
11199The LLVM exception handling intrinsics (which all start with
11200``llvm.eh.`` prefix), are described in the `LLVM Exception
11201Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
11202
11203.. _int_trampoline:
11204
11205Trampoline Intrinsics
11206---------------------
11207
11208These intrinsics make it possible to excise one parameter, marked with
11209the :ref:`nest <nest>` attribute, from a function. The result is a
11210callable function pointer lacking the nest parameter - the caller does
11211not need to provide a value for it. Instead, the value to use is stored
11212in advance in a "trampoline", a block of memory usually allocated on the
11213stack, which also contains code to splice the nest value into the
11214argument list. This is used to implement the GCC nested function address
11215extension.
11216
11217For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
11218then the resulting function pointer has signature ``i32 (i32, i32)*``.
11219It can be created as follows:
11220
11221.. code-block:: llvm
11222
11223 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000011224 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000011225 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
11226 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
11227 %fp = bitcast i8* %p to i32 (i32, i32)*
11228
11229The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
11230``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
11231
11232.. _int_it:
11233
11234'``llvm.init.trampoline``' Intrinsic
11235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11236
11237Syntax:
11238"""""""
11239
11240::
11241
11242 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
11243
11244Overview:
11245"""""""""
11246
11247This fills the memory pointed to by ``tramp`` with executable code,
11248turning it into a trampoline.
11249
11250Arguments:
11251""""""""""
11252
11253The ``llvm.init.trampoline`` intrinsic takes three arguments, all
11254pointers. The ``tramp`` argument must point to a sufficiently large and
11255sufficiently aligned block of memory; this memory is written to by the
11256intrinsic. Note that the size and the alignment are target-specific -
11257LLVM currently provides no portable way of determining them, so a
11258front-end that generates this intrinsic needs to have some
11259target-specific knowledge. The ``func`` argument must hold a function
11260bitcast to an ``i8*``.
11261
11262Semantics:
11263""""""""""
11264
11265The block of memory pointed to by ``tramp`` is filled with target
11266dependent code, turning it into a function. Then ``tramp`` needs to be
11267passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
11268be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
11269function's signature is the same as that of ``func`` with any arguments
11270marked with the ``nest`` attribute removed. At most one such ``nest``
11271argument is allowed, and it must be of pointer type. Calling the new
11272function is equivalent to calling ``func`` with the same argument list,
11273but with ``nval`` used for the missing ``nest`` argument. If, after
11274calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
11275modified, then the effect of any later call to the returned function
11276pointer is undefined.
11277
11278.. _int_at:
11279
11280'``llvm.adjust.trampoline``' Intrinsic
11281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11282
11283Syntax:
11284"""""""
11285
11286::
11287
11288 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
11289
11290Overview:
11291"""""""""
11292
11293This performs any required machine-specific adjustment to the address of
11294a trampoline (passed as ``tramp``).
11295
11296Arguments:
11297""""""""""
11298
11299``tramp`` must point to a block of memory which already has trampoline
11300code filled in by a previous call to
11301:ref:`llvm.init.trampoline <int_it>`.
11302
11303Semantics:
11304""""""""""
11305
11306On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011307different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000011308intrinsic returns the executable address corresponding to ``tramp``
11309after performing the required machine specific adjustments. The pointer
11310returned can then be :ref:`bitcast and executed <int_trampoline>`.
11311
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011312.. _int_mload_mstore:
11313
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011314Masked Vector Load and Store Intrinsics
11315---------------------------------------
11316
11317LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
11318
11319.. _int_mload:
11320
11321'``llvm.masked.load.*``' Intrinsics
11322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11323
11324Syntax:
11325"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011326This is an overloaded intrinsic. The loaded data is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011327
11328::
11329
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011330 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11331 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11332 ;; The data is a vector of pointers to double
11333 declare <8 x double*> @llvm.masked.load.v8p0f64 (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
11334 ;; The data is a vector of function pointers
11335 declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011336
11337Overview:
11338"""""""""
11339
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011340Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011341
11342
11343Arguments:
11344""""""""""
11345
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011346The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011347
11348
11349Semantics:
11350""""""""""
11351
11352The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11353The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11354
11355
11356::
11357
11358 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011359
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011360 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011361 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011362 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011363
11364.. _int_mstore:
11365
11366'``llvm.masked.store.*``' Intrinsics
11367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11368
11369Syntax:
11370"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011371This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011372
11373::
11374
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011375 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11376 declare void @llvm.masked.store.v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11377 ;; The data is a vector of pointers to double
11378 declare void @llvm.masked.store.v8p0f64 (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
11379 ;; The data is a vector of function pointers
11380 declare void @llvm.masked.store.v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011381
11382Overview:
11383"""""""""
11384
11385Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11386
11387Arguments:
11388""""""""""
11389
11390The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11391
11392
11393Semantics:
11394""""""""""
11395
11396The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11397The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11398
11399::
11400
11401 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011402
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011403 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011404 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011405 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11406 store <16 x float> %res, <16 x float>* %ptr, align 4
11407
11408
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011409Masked Vector Gather and Scatter Intrinsics
11410-------------------------------------------
11411
11412LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11413
11414.. _int_mgather:
11415
11416'``llvm.masked.gather.*``' Intrinsics
11417^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11418
11419Syntax:
11420"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011421This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating point or pointer data type gathered together into one vector.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011422
11423::
11424
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011425 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11426 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11427 declare <8 x float*> @llvm.masked.gather.v8p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float*> <passthru>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011428
11429Overview:
11430"""""""""
11431
11432Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11433
11434
11435Arguments:
11436""""""""""
11437
11438The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11439
11440
11441Semantics:
11442""""""""""
11443
11444The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11445The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11446
11447
11448::
11449
11450 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11451
11452 ;; The gather with all-true mask is equivalent to the following instruction sequence
11453 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11454 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11455 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11456 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11457
11458 %val0 = load double, double* %ptr0, align 8
11459 %val1 = load double, double* %ptr1, align 8
11460 %val2 = load double, double* %ptr2, align 8
11461 %val3 = load double, double* %ptr3, align 8
11462
11463 %vec0 = insertelement <4 x double>undef, %val0, 0
11464 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11465 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11466 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11467
11468.. _int_mscatter:
11469
11470'``llvm.masked.scatter.*``' Intrinsics
11471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11472
11473Syntax:
11474"""""""
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011475This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011476
11477::
11478
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +000011479 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11480 declare void @llvm.masked.scatter.v16f32 (<16 x float> <value>, <16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11481 declare void @llvm.masked.scatter.v4p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1> <mask>)
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011482
11483Overview:
11484"""""""""
11485
11486Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11487
11488Arguments:
11489""""""""""
11490
11491The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11492
11493
11494Semantics:
11495""""""""""
11496
Bruce Mitchenere9ffb452015-09-12 01:17:08 +000011497The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011498
11499::
11500
11501 ;; This instruction unconditionaly stores data vector in multiple addresses
11502 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11503
11504 ;; It is equivalent to a list of scalar stores
11505 %val0 = extractelement <8 x i32> %value, i32 0
11506 %val1 = extractelement <8 x i32> %value, i32 1
11507 ..
11508 %val7 = extractelement <8 x i32> %value, i32 7
11509 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11510 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11511 ..
11512 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11513 ;; Note: the order of the following stores is important when they overlap:
11514 store i32 %val0, i32* %ptr0, align 4
11515 store i32 %val1, i32* %ptr1, align 4
11516 ..
11517 store i32 %val7, i32* %ptr7, align 4
11518
11519
Sean Silvab084af42012-12-07 10:36:55 +000011520Memory Use Markers
11521------------------
11522
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011523This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011524memory objects and ranges where variables are immutable.
11525
Reid Klecknera534a382013-12-19 02:14:12 +000011526.. _int_lifestart:
11527
Sean Silvab084af42012-12-07 10:36:55 +000011528'``llvm.lifetime.start``' Intrinsic
11529^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11530
11531Syntax:
11532"""""""
11533
11534::
11535
11536 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11537
11538Overview:
11539"""""""""
11540
11541The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11542object's lifetime.
11543
11544Arguments:
11545""""""""""
11546
11547The first argument is a constant integer representing the size of the
11548object, or -1 if it is variable sized. The second argument is a pointer
11549to the object.
11550
11551Semantics:
11552""""""""""
11553
11554This intrinsic indicates that before this point in the code, the value
11555of the memory pointed to by ``ptr`` is dead. This means that it is known
11556to never be used and has an undefined value. A load from the pointer
11557that precedes this intrinsic can be replaced with ``'undef'``.
11558
Reid Klecknera534a382013-12-19 02:14:12 +000011559.. _int_lifeend:
11560
Sean Silvab084af42012-12-07 10:36:55 +000011561'``llvm.lifetime.end``' Intrinsic
11562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11563
11564Syntax:
11565"""""""
11566
11567::
11568
11569 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11570
11571Overview:
11572"""""""""
11573
11574The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11575object's lifetime.
11576
11577Arguments:
11578""""""""""
11579
11580The first argument is a constant integer representing the size of the
11581object, or -1 if it is variable sized. The second argument is a pointer
11582to the object.
11583
11584Semantics:
11585""""""""""
11586
11587This intrinsic indicates that after this point in the code, the value of
11588the memory pointed to by ``ptr`` is dead. This means that it is known to
11589never be used and has an undefined value. Any stores into the memory
11590object following this intrinsic may be removed as dead.
11591
11592'``llvm.invariant.start``' Intrinsic
11593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11594
11595Syntax:
11596"""""""
11597
11598::
11599
11600 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11601
11602Overview:
11603"""""""""
11604
11605The '``llvm.invariant.start``' intrinsic specifies that the contents of
11606a memory object will not change.
11607
11608Arguments:
11609""""""""""
11610
11611The first argument is a constant integer representing the size of the
11612object, or -1 if it is variable sized. The second argument is a pointer
11613to the object.
11614
11615Semantics:
11616""""""""""
11617
11618This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11619the return value, the referenced memory location is constant and
11620unchanging.
11621
11622'``llvm.invariant.end``' Intrinsic
11623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11624
11625Syntax:
11626"""""""
11627
11628::
11629
11630 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11631
11632Overview:
11633"""""""""
11634
11635The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11636memory object are mutable.
11637
11638Arguments:
11639""""""""""
11640
11641The first argument is the matching ``llvm.invariant.start`` intrinsic.
11642The second argument is a constant integer representing the size of the
11643object, or -1 if it is variable sized and the third argument is a
11644pointer to the object.
11645
11646Semantics:
11647""""""""""
11648
11649This intrinsic indicates that the memory is mutable again.
11650
Piotr Padlewski6c15ec42015-09-15 18:32:14 +000011651'``llvm.invariant.group.barrier``' Intrinsic
11652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11653
11654Syntax:
11655"""""""
11656
11657::
11658
11659 declare i8* @llvm.invariant.group.barrier(i8* <ptr>)
11660
11661Overview:
11662"""""""""
11663
11664The '``llvm.invariant.group.barrier``' intrinsic can be used when an invariant
11665established by invariant.group metadata no longer holds, to obtain a new pointer
11666value that does not carry the invariant information.
11667
11668
11669Arguments:
11670""""""""""
11671
11672The ``llvm.invariant.group.barrier`` takes only one argument, which is
11673the pointer to the memory for which the ``invariant.group`` no longer holds.
11674
11675Semantics:
11676""""""""""
11677
11678Returns another pointer that aliases its argument but which is considered different
11679for the purposes of ``load``/``store`` ``invariant.group`` metadata.
11680
Sean Silvab084af42012-12-07 10:36:55 +000011681General Intrinsics
11682------------------
11683
11684This class of intrinsics is designed to be generic and has no specific
11685purpose.
11686
11687'``llvm.var.annotation``' Intrinsic
11688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11689
11690Syntax:
11691"""""""
11692
11693::
11694
11695 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11696
11697Overview:
11698"""""""""
11699
11700The '``llvm.var.annotation``' intrinsic.
11701
11702Arguments:
11703""""""""""
11704
11705The first argument is a pointer to a value, the second is a pointer to a
11706global string, the third is a pointer to a global string which is the
11707source file name, and the last argument is the line number.
11708
11709Semantics:
11710""""""""""
11711
11712This intrinsic allows annotation of local variables with arbitrary
11713strings. This can be useful for special purpose optimizations that want
11714to look for these annotations. These have no other defined use; they are
11715ignored by code generation and optimization.
11716
Michael Gottesman88d18832013-03-26 00:34:27 +000011717'``llvm.ptr.annotation.*``' Intrinsic
11718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11719
11720Syntax:
11721"""""""
11722
11723This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11724pointer to an integer of any width. *NOTE* you must specify an address space for
11725the pointer. The identifier for the default address space is the integer
11726'``0``'.
11727
11728::
11729
11730 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11731 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11732 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11733 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11734 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11735
11736Overview:
11737"""""""""
11738
11739The '``llvm.ptr.annotation``' intrinsic.
11740
11741Arguments:
11742""""""""""
11743
11744The first argument is a pointer to an integer value of arbitrary bitwidth
11745(result of some expression), the second is a pointer to a global string, the
11746third is a pointer to a global string which is the source file name, and the
11747last argument is the line number. It returns the value of the first argument.
11748
11749Semantics:
11750""""""""""
11751
11752This intrinsic allows annotation of a pointer to an integer with arbitrary
11753strings. This can be useful for special purpose optimizations that want to look
11754for these annotations. These have no other defined use; they are ignored by code
11755generation and optimization.
11756
Sean Silvab084af42012-12-07 10:36:55 +000011757'``llvm.annotation.*``' Intrinsic
11758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11759
11760Syntax:
11761"""""""
11762
11763This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11764any integer bit width.
11765
11766::
11767
11768 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11769 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11770 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11771 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11772 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11773
11774Overview:
11775"""""""""
11776
11777The '``llvm.annotation``' intrinsic.
11778
11779Arguments:
11780""""""""""
11781
11782The first argument is an integer value (result of some expression), the
11783second is a pointer to a global string, the third is a pointer to a
11784global string which is the source file name, and the last argument is
11785the line number. It returns the value of the first argument.
11786
11787Semantics:
11788""""""""""
11789
11790This intrinsic allows annotations to be put on arbitrary expressions
11791with arbitrary strings. This can be useful for special purpose
11792optimizations that want to look for these annotations. These have no
11793other defined use; they are ignored by code generation and optimization.
11794
11795'``llvm.trap``' Intrinsic
11796^^^^^^^^^^^^^^^^^^^^^^^^^
11797
11798Syntax:
11799"""""""
11800
11801::
11802
11803 declare void @llvm.trap() noreturn nounwind
11804
11805Overview:
11806"""""""""
11807
11808The '``llvm.trap``' intrinsic.
11809
11810Arguments:
11811""""""""""
11812
11813None.
11814
11815Semantics:
11816""""""""""
11817
11818This intrinsic is lowered to the target dependent trap instruction. If
11819the target does not have a trap instruction, this intrinsic will be
11820lowered to a call of the ``abort()`` function.
11821
11822'``llvm.debugtrap``' Intrinsic
11823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11824
11825Syntax:
11826"""""""
11827
11828::
11829
11830 declare void @llvm.debugtrap() nounwind
11831
11832Overview:
11833"""""""""
11834
11835The '``llvm.debugtrap``' intrinsic.
11836
11837Arguments:
11838""""""""""
11839
11840None.
11841
11842Semantics:
11843""""""""""
11844
11845This intrinsic is lowered to code which is intended to cause an
11846execution trap with the intention of requesting the attention of a
11847debugger.
11848
11849'``llvm.stackprotector``' Intrinsic
11850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11851
11852Syntax:
11853"""""""
11854
11855::
11856
11857 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11858
11859Overview:
11860"""""""""
11861
11862The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11863onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11864is placed on the stack before local variables.
11865
11866Arguments:
11867""""""""""
11868
11869The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11870The first argument is the value loaded from the stack guard
11871``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11872enough space to hold the value of the guard.
11873
11874Semantics:
11875""""""""""
11876
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011877This intrinsic causes the prologue/epilogue inserter to force the position of
11878the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11879to ensure that if a local variable on the stack is overwritten, it will destroy
11880the value of the guard. When the function exits, the guard on the stack is
11881checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11882different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11883calling the ``__stack_chk_fail()`` function.
11884
11885'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011886^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011887
11888Syntax:
11889"""""""
11890
11891::
11892
11893 declare void @llvm.stackprotectorcheck(i8** <guard>)
11894
11895Overview:
11896"""""""""
11897
11898The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011899created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011900``__stack_chk_fail()`` function.
11901
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011902Arguments:
11903""""""""""
11904
11905The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11906the variable ``@__stack_chk_guard``.
11907
11908Semantics:
11909""""""""""
11910
11911This intrinsic is provided to perform the stack protector check by comparing
11912``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11913values do not match call the ``__stack_chk_fail()`` function.
11914
11915The reason to provide this as an IR level intrinsic instead of implementing it
11916via other IR operations is that in order to perform this operation at the IR
11917level without an intrinsic, one would need to create additional basic blocks to
11918handle the success/failure cases. This makes it difficult to stop the stack
11919protector check from disrupting sibling tail calls in Codegen. With this
11920intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011921codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011922
Sean Silvab084af42012-12-07 10:36:55 +000011923'``llvm.objectsize``' Intrinsic
11924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11925
11926Syntax:
11927"""""""
11928
11929::
11930
11931 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11932 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11933
11934Overview:
11935"""""""""
11936
11937The ``llvm.objectsize`` intrinsic is designed to provide information to
11938the optimizers to determine at compile time whether a) an operation
11939(like memcpy) will overflow a buffer that corresponds to an object, or
11940b) that a runtime check for overflow isn't necessary. An object in this
11941context means an allocation of a specific class, structure, array, or
11942other object.
11943
11944Arguments:
11945""""""""""
11946
11947The ``llvm.objectsize`` intrinsic takes two arguments. The first
11948argument is a pointer to or into the ``object``. The second argument is
11949a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11950or -1 (if false) when the object size is unknown. The second argument
11951only accepts constants.
11952
11953Semantics:
11954""""""""""
11955
11956The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11957the size of the object concerned. If the size cannot be determined at
11958compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11959on the ``min`` argument).
11960
11961'``llvm.expect``' Intrinsic
11962^^^^^^^^^^^^^^^^^^^^^^^^^^^
11963
11964Syntax:
11965"""""""
11966
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011967This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11968integer bit width.
11969
Sean Silvab084af42012-12-07 10:36:55 +000011970::
11971
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011972 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011973 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11974 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11975
11976Overview:
11977"""""""""
11978
11979The ``llvm.expect`` intrinsic provides information about expected (the
11980most probable) value of ``val``, which can be used by optimizers.
11981
11982Arguments:
11983""""""""""
11984
11985The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11986a value. The second argument is an expected value, this needs to be a
11987constant value, variables are not allowed.
11988
11989Semantics:
11990""""""""""
11991
11992This intrinsic is lowered to the ``val``.
11993
Philip Reamese0e90832015-04-26 22:23:12 +000011994.. _int_assume:
11995
Hal Finkel93046912014-07-25 21:13:35 +000011996'``llvm.assume``' Intrinsic
11997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11998
11999Syntax:
12000"""""""
12001
12002::
12003
12004 declare void @llvm.assume(i1 %cond)
12005
12006Overview:
12007"""""""""
12008
12009The ``llvm.assume`` allows the optimizer to assume that the provided
12010condition is true. This information can then be used in simplifying other parts
12011of the code.
12012
12013Arguments:
12014""""""""""
12015
12016The condition which the optimizer may assume is always true.
12017
12018Semantics:
12019""""""""""
12020
12021The intrinsic allows the optimizer to assume that the provided condition is
12022always true whenever the control flow reaches the intrinsic call. No code is
12023generated for this intrinsic, and instructions that contribute only to the
12024provided condition are not used for code generation. If the condition is
12025violated during execution, the behavior is undefined.
12026
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012027Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000012028used by the ``llvm.assume`` intrinsic in order to preserve the instructions
12029only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000012030if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000012031sufficient overall improvement in code quality. For this reason,
12032``llvm.assume`` should not be used to document basic mathematical invariants
12033that the optimizer can otherwise deduce or facts that are of little use to the
12034optimizer.
12035
Peter Collingbournee6909c82015-02-20 20:30:47 +000012036.. _bitset.test:
12037
12038'``llvm.bitset.test``' Intrinsic
12039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12040
12041Syntax:
12042"""""""
12043
12044::
12045
12046 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
12047
12048
12049Arguments:
12050""""""""""
12051
12052The first argument is a pointer to be tested. The second argument is a
Peter Collingbourne8d24ae92015-09-08 22:49:35 +000012053metadata object representing an identifier for a :doc:`bitset <BitSets>`.
Peter Collingbournee6909c82015-02-20 20:30:47 +000012054
12055Overview:
12056"""""""""
12057
12058The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
12059member of the given bitset.
12060
Sean Silvab084af42012-12-07 10:36:55 +000012061'``llvm.donothing``' Intrinsic
12062^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12063
12064Syntax:
12065"""""""
12066
12067::
12068
12069 declare void @llvm.donothing() nounwind readnone
12070
12071Overview:
12072"""""""""
12073
Juergen Ributzkac9161192014-10-23 22:36:13 +000012074The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
12075two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
12076with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000012077
12078Arguments:
12079""""""""""
12080
12081None.
12082
12083Semantics:
12084""""""""""
12085
12086This intrinsic does nothing, and it's removed by optimizers and ignored
12087by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000012088
12089Stack Map Intrinsics
12090--------------------
12091
12092LLVM provides experimental intrinsics to support runtime patching
12093mechanisms commonly desired in dynamic language JITs. These intrinsics
12094are described in :doc:`StackMaps`.